19 research outputs found

    Building Computing-As-A-Service Mobile Cloud System

    Get PDF
    The last five years have witnessed the proliferation of smart mobile devices, the explosion of various mobile applications and the rapid adoption of cloud computing in business, governmental and educational IT deployment. There is also a growing trends of combining mobile computing and cloud computing as a new popular computing paradigm nowadays. This thesis envisions the future of mobile computing which is primarily affected by following three trends: First, servers in cloud equipped with high speed multi-core technology have been the main stream today. Meanwhile, ARM processor powered servers is growingly became popular recently and the virtualization on ARM systems is also gaining wide ranges of attentions recently. Second, high-speed internet has been pervasive and highly available. Mobile devices are able to connect to cloud anytime and anywhere. Third, cloud computing is reshaping the way of using computing resources. The classic pay/scale-as-you-go model allows hardware resources to be optimally allocated and well-managed. These three trends lend credence to a new mobile computing model with the combination of resource-rich cloud and less powerful mobile devices. In this model, mobile devices run the core virtualization hypervisor with virtualized phone instances, allowing for pervasive access to more powerful, highly-available virtual phone clones in the cloud. The centralized cloud, powered by rich computing and memory recourses, hosts virtual phone clones and repeatedly synchronize the data changes with virtual phone instances running on mobile devices. Users can flexibly isolate different computing environments. In this dissertation, we explored the opportunity of leveraging cloud resources for mobile computing for the purpose of energy saving, performance augmentation as well as secure computing enviroment isolation. We proposed a framework that allows mo- bile users to seamlessly leverage cloud to augment the computing capability of mobile devices and also makes it simpler for application developers to run their smartphone applications in the cloud without tedious application partitioning. This framework was built with virtualization on both server side and mobile devices. It has three building blocks including agile virtual machine deployment, efficient virtual resource management, and seamless mobile augmentation. We presented the design, imple- mentation and evaluation of these three components and demonstrated the feasibility of the proposed mobile cloud model

    Maruchi OS kankyo o shiensuru sofutowea oyobi hadowea kino no teian

    Get PDF
    制度:新 ; 報告番号:甲3534号 ; 学位の種類:博士(工学) ; 授与年月日:2012/2/25 ; 早大学位記番号:新587

    A Survey of Techniques for Architecting TLBs

    Get PDF
    “Translation lookaside buffer” (TLB) caches virtual to physical address translation information and is used in systems ranging from embedded devices to high-end servers. Since TLB is accessed very frequently and a TLB miss is extremely costly, prudent management of TLB is important for improving performance and energy efficiency of processors. In this paper, we present a survey of techniques for architecting and managing TLBs. We characterize the techniques across several dimensions to highlight their similarities and distinctions. We believe that this paper will be useful for chip designers, computer architects and system engineers

    Gestão e engenharia de CAP na nuvem híbrida

    Get PDF
    Doutoramento em InformáticaThe evolution and maturation of Cloud Computing created an opportunity for the emergence of new Cloud applications. High-performance Computing, a complex problem solving class, arises as a new business consumer by taking advantage of the Cloud premises and leaving the expensive datacenter management and difficult grid development. Standing on an advanced maturing phase, today’s Cloud discarded many of its drawbacks, becoming more and more efficient and widespread. Performance enhancements, prices drops due to massification and customizable services on demand triggered an emphasized attention from other markets. HPC, regardless of being a very well established field, traditionally has a narrow frontier concerning its deployment and runs on dedicated datacenters or large grid computing. The problem with common placement is mainly the initial cost and the inability to fully use resources which not all research labs can afford. The main objective of this work was to investigate new technical solutions to allow the deployment of HPC applications on the Cloud, with particular emphasis on the private on-premise resources – the lower end of the chain which reduces costs. The work includes many experiments and analysis to identify obstacles and technology limitations. The feasibility of the objective was tested with new modeling, architecture and several applications migration. The final application integrates a simplified incorporation of both public and private Cloud resources, as well as HPC applications scheduling, deployment and management. It uses a well-defined user role strategy, based on federated authentication and a seamless procedure to daily usage with balanced low cost and performance.O desenvolvimento e maturação da Computação em Nuvem abriu a janela de oportunidade para o surgimento de novas aplicações na Nuvem. A Computação de Alta Performance, uma classe dedicada à resolução de problemas complexos, surge como um novo consumidor no Mercado ao aproveitar as vantagens inerentes à Nuvem e deixando o dispendioso centro de computação tradicional e o difícil desenvolvimento em grelha. Situando-se num avançado estado de maturação, a Nuvem de hoje deixou para trás muitas das suas limitações, tornando-se cada vez mais eficiente e disseminada. Melhoramentos de performance, baixa de preços devido à massificação e serviços personalizados a pedido despoletaram uma atenção inusitada de outros mercados. A CAP, independentemente de ser uma área extremamente bem estabelecida, tradicionalmente tem uma fronteira estreita em relação à sua implementação. É executada em centros de computação dedicados ou computação em grelha de larga escala. O maior problema com o tipo de instalação habitual é o custo inicial e o não aproveitamento dos recursos a tempo inteiro, fator que nem todos os laboratórios de investigação conseguem suportar. O objetivo principal deste trabalho foi investigar novas soluções técnicas para permitir o lançamento de aplicações CAP na Nuvem, com particular ênfase nos recursos privados existentes, a parte peculiar e final da cadeia onde se pode reduzir custos. O trabalho inclui várias experiências e análises para identificar obstáculos e limitações tecnológicas. A viabilidade e praticabilidade do objetivo foi testada com inovação em modelos, arquitetura e migração de várias aplicações. A aplicação final integra uma agregação de recursos de Nuvens, públicas e privadas, assim como escalonamento, lançamento e gestão de aplicações CAP. É usada uma estratégia de perfil de utilizador baseada em autenticação federada, assim como procedimentos transparentes para a utilização diária com um equilibrado custo e performance

    Adaptive CPU Allocation for Resource Isolation and Work Conservation

    Get PDF
    Consolidating multiple workloads on the same physical machine is an effective measure for utilizing resources efficiently and reducing costs. The main objective is to execute multiple demanding workloads using no more than necessary resources while simultaneously maximizing performance. Conventional work-conserving resource managers are designed for this purpose. However, without adequate control, the performance of consolidated workloads may degrade dramatically or become unpredictable because of contention for shared resources. Hence, resource isolation should be enforced according to a sharing policy when there is resource contention among workloads, i.e., each workload should obtain a theoretical share of resources. In reality, it is challenging for state-of-the-art resource managers to achieve both resource isolation and work conservation simultaneously due to complex and dynamic workloads. This thesis proposes adaptive resource allocation to address this sharing problem and studies CPU management as an example. A novel feedback-based resource manager is designed to perform adaptive allocation of CPU resources, taking into account each workload's requirements. First, an application-agnostic metric is proposed as the feedback signal, which can be used to measure the performance change of various applications in a non-invasive and timely way. Second, two alternative feedback-based algorithms are designed to search for the optimal resource allocation for each workload. The adaptive allocation is modelled as a dynamic optimization problem. The algorithms solve this problem by assessing performance changes in response to a change in resource allocation. The algorithms are demonstrated to be capable of handling complex and dynamic workloads. The resource manager proposed in this thesis uses these algorithms to determine the CPU allocation for multiple tenants. A prototype is implemented with four different sharing policies. For three common policies, the experimental evaluation confirms that the resource manager can achieve resource isolation and work conservation simultaneously, while the existing best-practice mechanisms cannot. Moreover, the resource manager can support a novel efficiency policy, which determines CPU sharing based on the overall system efficiency. In addition, a preliminary study shows that the feedback-based methodology for CPU management can be extended to control I/O bandwidth

    On the simulation and design of manycore CMPs

    Get PDF
    The progression of Moore’s Law has resulted in both embedded and performance computing systems which use an ever increasing number of processing cores integrated in a single chip. Commercial systems are now available which provide hundreds of cores, and academics have proposed architectures for up to 1024 cores. Embedded multicores are increasingly popular as it is easier to guarantee hard-realtime constraints using individual cores dedicated for tasks, than to use traditional time-multiplexed processing. However, finding the optimal hardware configuration to meet these requirements at minimum cost requires extensive trial and error approaches to investigate the design space. This thesis tackles the problems encountered in the design of these large scale multicore systems by first addressing the problem of fast, detailed micro-architectural simulation. Initially addressing embedded systems, this work exploits the lack of hardware cache-coherence support in many deeply embedded systems to increase the available parallelism in the simulation. Then, through partitioning the NoC and using packet counting and cycle skipping reduces the amount of computation required to accurately model the NoC interconnect. In combination, this enables simulation speeds significantly higher than the state of the art, while maintaining less error, when compared to real hardware, than any similar simulator. Simulation speeds reach up to 370MIPS (Million (target) Instructions Per Second), or 110MHz, which is better than typical FPGA prototypes, and approaching final ASIC production speeds. This is achieved while maintaining an error of only 2.1%, significantly lower than other similar simulators. The thesis continues by scaling the simulator past large embedded systems up to 64-1024 core processors, adding support for coherent architectures using the same packet counting techniques along with low overhead context switching to enable the simulation of such large systems with stricter synchronisation requirements. The new interconnect model was partitioned to enable parallel simulation to further improve simulation speeds in a manner which did not sacrifice any accuracy. These innovations were leveraged to investigate significant novel energy saving optimisations to the coherency protocol, processor ISA, and processor micro-architecture. By introducing a new instruction, with the name wait-on-address, the energy spent during spin-wait style synchronisation events can be significantly reduced. This functions by putting the core into a low-power idle state while the cache line of the indicated address is monitored for coherency action. Upon an update or invalidation (or traditional timer or external interrupts) the core will resume execution, but the active energy of running the core pipeline and repeatedly accessing the data and instruction caches is effectively reduced to static idle power. The thesis also shows that existing combined software-hardware schemes to track data regions which do not require coherency can adequately address the directory-associativity problem, and introduces a new coherency sharer encoding which reduces the energy consumed by sharer invalidations when sharers are grouped closely together, such as would be the case with a system running many tasks with a small degree of parallelism in each. The research concludes by using the extremely fast simulation speeds developed to produce a large set of training data, collecting various runtime and energy statistics for a wide range of embedded applications on a huge diverse range of potential MPSoC designs. This data was used to train a series of machine learning based models which were then evaluated on their capacity to predict performance characteristics of unseen workload combinations across the explored MPSoC design space, using only two sample simulations, with promising results from some of the machine learning techniques. The models were then used to produce a ranking of predicted performance across the design space, and on average Random Forest was able to predict the best design within 89% of the runtime performance of the actual best tested design, and better than 93% of the alternative design space. When predicting for a weighted metric of energy, delay and area, Random Forest on average produced results within 93% of the optimum result. In summary this thesis improves upon the state of the art for cycle accurate multicore simulation, introduces novel energy saving changes the the ISA and microarchitecture of future multicore processors, and demonstrates the viability of machine learning techniques to significantly accelerate the design space exploration required to bring a new manycore design to market

    Dynamic adaptation to CPU and memory load in scientific applications

    Get PDF
    As commodity computers and networking technologies have become faster and more affordable, fairly capable machines have become nearly ubiquitous while the effective distance between them has decreased as network connectivity and capacity has multiplied. There is considerable interest in developing means to readily access such vast amounts of computing power to solve scientific problems, but the complexity of these modern computing environments pose problems for conventional computer codes designed to run on a static, homogeneous set of resources. One source of problems is the heterogeneity that is naturally present in these settings. More problematic is the competition that arises between programs for shared resources in these semi-autonomous environments. Fluctuations in the availability of CPU, memory, and other resources can cripple application performance. Contention for CPU time between jobs may introduce significant load imbalance in parallel applications. Contention for limited memory resources may cause even more severe performance problems, as thrashing may increase execution times by an order of magnitude or more.;Our goal is to develop techniques that enable scientific applications to achieve good performance in non-dedicated environments by monitoring system conditions and adapting their behavior accordingly. We focus on two important shared resources, CPU and memory, and pursue our goal on two distinct but complementary fronts: First, we present some simple algorithmic modifications that can significantly improve load balance in a class of iterative methods that form the computational core of many scientific and engineering applications. Second, we introduce a framework for enabling scientific applications to dynamically adapt their memory usage according to current availability of main memory. An application-specific caching policy is used to keep as much of the data set as possible in main memory, while the remainder of the data are accessed in an out-of-core fashion.;We have developed modular code libraries to facilitate implementation of our techniques, and have deployed them in a variety of scientific application kernels. Experimental evaluation of their performance indicates that our techniques provide some important classes of scientific applications with robust and low-overhead means for mitigating the effects of fluctuations in CPU and memory availability

    Suddenly, tomorrow came... A history of the Johnson Space Center

    Get PDF
    This book chronicles the history of the Johnson Space Center into 17 chapters with a forward written by Donald K. Slayton. Photographs and illustrations are provided. This book becomes part of the NASA history series

    BITE: Recipes for Remarkable Research

    Get PDF
    BITE: Recipes for remarkable research is an edited field book capturing the research, learning and experiences of an international network of scholars studying effective and creative research environments. The book encapsulates what it is that enables remarkable research, and offers, as Professor Lizbeth Goodman says, “practical, evidence-based instantiations of ideas and innovations” as well as theoretical knowledge. It is set out as a recipe book, with supporting academic papers and case studies.; Readership: Educational Researchers and their student

    Scheduling and locking in multiprocessor real-time operating systems

    Get PDF
    With the widespread adoption of multicore architectures, multiprocessors are now a standard deployment platform for (soft) real-time applications. This dissertation addresses two questions fundamental to the design of multicore-ready real-time operating systems: (1) Which scheduling policies offer the greatest flexibility in satisfying temporal constraints; and (2) which locking algorithms should be used to avoid unpredictable delays? With regard to Question 1, LITMUSRT, a real-time extension of the Linux kernel, is presented and its design is discussed in detail. Notably, LITMUSRT implements link-based scheduling, a novel approach to controlling blocking due to non-preemptive sections. Each implemented scheduler (22 configurations in total) is evaluated under consideration of overheads on a 24-core Intel Xeon platform. The experiments show that partitioned earliest-deadline first (EDF) scheduling is generally preferable in a hard real-time setting, whereas global and clustered EDF scheduling are effective in a soft real-time setting. With regard to Question 2, real-time locking protocols are required to ensure that the maximum delay due to priority inversion can be bounded a priori. Several spinlock- and semaphore-based multiprocessor real-time locking protocols for mutual exclusion (mutex), reader-writer (RW) exclusion, and k-exclusion are proposed and analyzed. A new category of RW locks suited to worst-case analysis, termed phase-fair locks, is proposed and three efficient phase-fair spinlock implementations are provided (one with few atomic operations, one with low space requirements, and one with constant RMR complexity). Maximum priority-inversion blocking is proposed as a natural complexity measure for semaphore protocols. It is shown that there are two classes of schedulability analysis, namely suspension-oblivious and suspension-aware analysis, that yield two different lower bounds on blocking. Five asymptotically optimal locking protocols are designed and analyzed: a family of mutex, RW, and k-exclusion protocols for global, partitioned, and clustered scheduling that are asymptotically optimal in the suspension-oblivious case, and a mutex protocol for partitioned scheduling that is asymptotically optimal in the suspension-aware case. A LITMUSRT-based empirical evaluation is presented that shows these protocols to be practical
    corecore