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Abstract

The progression of Moore’s Law has resulted in both embedded and performance

computing systems which use an ever increasing number of processing cores inte-

grated in a single chip. Commercial systems are now available which provide hundreds

of cores, and academics have proposed architectures for up to 1024 cores. Embedded

multicores are increasingly popular as it is easier to guarantee hard-realtime constraints

using individual cores dedicated for tasks, than to use traditional time-multiplexed pro-

cessing. However, finding the optimal hardware configuration to meet these require-

ments at minimum cost requires extensive trial and error approaches to investigate the

design space.

This thesis tackles the problems encountered in the design of these large scale mul-

ticore systems by first addressing the problem of fast, detailed micro-architectural sim-

ulation. Initially addressing embedded systems, this work exploits the lack of hardware

cache-coherence support in many deeply embedded systems to increase the available

parallelism in the simulation. Then, through partitioning the NoC and using packet

counting and cycle skipping reduces the amount of computation required to accurately

model the NoC interconnect. In combination, this enables simulation speeds signif-

icantly higher than the state of the art, while maintaining less error, when compared

to real hardware, than any similar simulator. Simulation speeds reach up to 370MIPS

(Million (target) Instructions Per Second), or 110MHz, which is better than typical

FPGA prototypes, and approaching final ASIC production speeds. This is achieved

while maintaining an error of only 2.1%, significantly lower than other similar simula-

tors.

The thesis continues by scaling the simulator past large embedded systems up to

64-1024 core processors, adding support for coherent architectures using the same

packet counting techniques along with low overhead context switching to enable the

simulation of such large systems with stricter synchronisation requirements. The new

interconnect model was partitioned to enable parallel simulation to further improve

simulation speeds in a manner which did not sacrifice any accuracy.

These innovations were leveraged to investigate significant novel energy saving op-

timisations to the coherency protocol, processor ISA, and processor micro-architecture.

By introducing a new instruction, with the name wait-on-address, the energy spent dur-

ing spin-wait style synchronisation events can be significantly reduced. This functions

by putting the core into a low-power idle state while the cache line of the indicated
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address is monitored for coherency action. Upon an update or invalidation (or tra-

ditional timer or external interrupts) the core will resume execution, but the active

energy of running the core pipeline and repeatedly accessing the data and instruction

caches is effectively reduced to static idle power. The thesis also shows that existing

combined software-hardware schemes to track data regions which do not require co-

herency can adequately address the directory-associativity problem, and introduces a

new coherency sharer encoding which reduces the energy consumed by sharer inval-

idations when sharers are grouped closely together, such as would be the case with a

system running many tasks with a small degree of parallelism in each.

The research concludes by using the extremely fast simulation speeds developed to

produce a large set of training data, collecting various runtime and energy statistics for

a wide range of embedded applications on a huge diverse range of potential MPSoC

designs. This data was used to train a series of machine learning based models which

were then evaluated on their capacity to predict performance characteristics of unseen

workload combinations across the explored MPSoC design space, using only two sam-

ple simulations, with promising results from some of the machine learning techniques.

The models were then used to produce a ranking of predicted performance across the

design space, and on average Random Forest was able to predict the best design within

89% of the runtime performance of the actual best tested design, and better than 93%

of the alternative design space. When predicting for a weighted metric of energy, de-

lay and area, Random Forest on average produced results within 93% of the optimum

result.

In summary this thesis improves upon the state of the art for cycle accurate mul-

ticore simulation, introduces novel energy saving changes the the ISA and micro-

architecture of future multicore processors, and demonstrates the viability of machine

learning techniques to significantly accelerate the design space exploration required to

bring a new manycore design to market.
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Lay Summary
Many tasks performed by computers can be broken down into multiple smaller

tasks can be processed independently. These can then be worked on in parallel, by

multiple processing cores within the computer. So long as the work can be split into

enough independent jobs it is possible to keep increasing the speed at which the whole

task is computed by adding more processing cores to the system. The degree to which

a task can be split into independent tasks is called the parallelism of the task. It is also

possible to make each processing core more powerful, and in turn increase the overall

processing rate. However each increase in performance of an individual core comes at

ever increasing non-linear cost, in both space and energy, eventually reaching a limit

to what is physically possible. Because of this, the best design of computer for a given

application depends on the parallelism inherent to the application, and the energy and

space constraints in which the application must execute. An extremely parallel applica-

tion would suite a large number of processors, while one which cannot be parallelised

needs the most powerful single-core system available (within the constraints).

This thesis addresses the design of such parallel computing systems from several

inter-related directions. Firstly through innovations in the simulations of such systems

it enables much greater simulation performance at extremely high levels of detail and

accuracy, enabling greater exploration of the performance of an application across a

number of design parameters. Secondly it leverages this simulation infrastructure to

evaluate the effectiveness of some existing techniques in a new context to address scal-

ability issues with the communication challenges that rise from splitting a problem

between hundreds of processing cores. These focus mostly on reducing the exchange

of information through tracking the sharing state of memory, and through increas-

ing the energy efficiency of waiting periods during synchronisation. The thesis then

presents and evaluates novel contributions to the problem of “cache coherency” at the

extreme scale of hundreds to a thousand processing cores in a single processor. Cache

coherency is an aspect of the inter-processor communication inherent to the most com-

mon way of parallelising programs, where all processing cores can access the data

from any other processor working on the same task. The thesis finally evaluates a set

of algorithms from the field of Artificial Intelligence called “machine learning” algo-

rithms, to predict the performance of new applications across a large design space of

potential embedded computer designs. It finds that existing algorithms can make very

good predictions for identifying the best overall design choice,targeting a number of

design goals, such as performance, or a balance between energy and design size.
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Chapter 1

Introduction

In recent years there have been several factors pushing chip manufacturers to pursue

chip-multiprocessors (CMP) with an ever growing number of cores. Moore’s Law

continues [1], giving us ever more transistors each year, but silicon processes have hit

a frequency wall, preventing performance increases by simply raising the operating

frequency [2]. There is also very little instruction level parallelism (ILP) left to extract

via techniques such as superscalar architectures, known as the ILP wall [3; 4; 2]. These

factors are driving chip designers to exploit thread level parallelism (TLP) using both

simultaneous multi-threading (SMT) and CMP techniques [5; 6; 7]. These can all be

clearly seen from 2005 in the typical Moore’s Law graph, Figure 1.1.

On top of this, the power consumed by transistors is no longer scaling down with

their size, so while more transistors can still be packed onto a chip, doing so now

increases the power consumed, where traditionally the power saved by shrinking tran-

sistor sizes would offset the additional transistors used. This means that while extra

transistors are available, they cannot be used in power hungry features like those used

to aggressively exploit ILP. Simply adding more of the same cores to exploit thread-

level parallelism (TLP), without sacrificing per-core performance, will still result in

a large increase in power. As a result of the frequency, ILP and power walls, chip

designs for applications with significant TLP are looking towards using smaller, en-

ergy efficient cores to extract performance. Smaller cores are especially attractive as

single core processors scale approximately quadratically in power and area, for linear

performance, while an ideal multicore scales linearly in power and area for linear per-

formance gains. This simplified model of course neglects the achievements of features

such as clock and power gating to keep single core power consumption low, and the

interconnect and synchronisation overheads of multicores. It also ignores the issue of
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Figure 1.1: Microprocessor trends from 1970–2010, showing the exponential growth in

transistors with Moore’s Law. The abrupt end of frequency and single core performance

scaling, and growth in power consumption, is clear from 2005 where CMP architectures

become popular. Source of illustration: C. Moore (AMD) [8]

.

Amdahl’s Law of parallel speedup [9], assuming that applications are perfectly par-

allel. As such, the ideal balance between per-core performance and number of cores

is highly dependant on the application demands and the constraints of the operating

environment. In many cases, from extreme scale super computing to deeply embedded

biomedical sensors, there is a delicate balance between providing sufficient perfor-

mance, while being as energy efficient as possible.

Unfortunately, CMP systems bring new problems which can severely limit the scal-

ability of the system: thread synchronisation, interconnect complexity, and cache co-

herency.

For small scale CMPs like those in most consumer systems today, which contain

between 2 and 8 cores, a simple shared bus or crossbar can connect all of the cores

to the shared cache or memory system. This configuration allows for simple snooping

coherence protocols, which perform well for such small systems, but are not efficient

for more than 8 cores [10]. Manycore processors however (>16 core CMPs), require

more scalable interconnects and coherence mechanisms, with the most common inter-

connects used being the 2D mesh in a tiled architecture, and bi-directional ring bus.
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Just because these designs are currently in use, this does not mean they are the opti-

mum choice. The best interconnect may be application dependent, and could borrow

elements from multiple interconnect topologies, to provide a balance between the ad-

vantages and disadvantages of each. Architectures without a shared bus require more

complicated coherence protocols, because memory traffic is not visible to all cores.

Less homogeneous multi-core devices such as a multi-processor system-on-chip (MP-

SoC), often use less regular interconnects, using network-on-chip (NoC) architectures

like Butterfly networks, and may not even support direct core-to-core communication.

The best cache coherency protocol is still an open question, and depends very much

on the application, the size and design of the underlying architecture, and the memory

consistency and programming models to be provided.

When considering developing a new MPSoC or manycore processor the number

of possible design combinations presents a massive design space, such as those in

Figure 1.2, with subtle trade-offs and design interactions. To reason about what design

is best for a given target application requires detailed simulation of many different

possible solutions.

No. 
Cores
 ?
1
2...
100...
1000...

X

uArch
 ?
Interlocked
In Order
Super Scalar
Out-of-order
SMT...

X

Heterogeneous
 ?
Homogeneous
-uArch
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X

Interconnect
 ?
Bus
Ring
Mesh
-2D
-Torus
-3D
Tree
Optical...

X

Memory-
Consistency-
Model
 ?
None
SC
TSO
PSO
RC
C++11...

X

Cache-
Coherency
 ?
Software
Snooping
Directory
MSI
MESI
Token
SCI...

X ... =  ???X

ISA
 ?
x86
x86_64
ARM
ARC
PPC
SPARC...

Figure 1.2: Design space state explosion for CMP to manycore processors.

Cycle accurate multicore full system simulation typically is either very slow, re-

quires specialised hardware, or is non-deterministic and lacking in accuracy (i.e. not

truly cycle accurate). This means that an architect cannot quickly iterate through dif-

ferent designs to find the optimal solution, and must either settle for a potentially sub-

optimal solution, or spend many hours waiting on simulation results.

The effort of simulating manycore systems has also left a large number of design

issues unsolved, with many issues relating to large scale interconnects and scalable

cache coherency mechanisms remaining. Developing a simulator capable of exploring

these problems enables the micro-architectural experimentation and analysis required

to begin addressing these problems effectively.



4 Chapter 1. Introduction

1.1 Research Goals

The objective of this thesis was to address three fundamental and interrelated chal-

lenges facing the design of future manycore processors: fast and accurate simulation,

scalability, and design-space-exploration. One of the most significant impediments to

manycore research is the challenge of providing accurate, flexible, and yet high per-

formance simulation models. Without such models, the design of future manycore

systems will rapidly become an intractable problem. An initial goal of this research

was to advance the state-of-the-art in simulation technologies to significantly increase

the simulation speed of truly cycle-accurate models. Using these fast simulation mod-

els, the second goal was to investigate issues that constrain the scalability of future

manycore processor designs. Key issues in scaling manycore processors include: the

interconnect between cores, the coherency protocols used within the interconnect, and

the energy efficiency of inter-processor synchronization primitives. One of the aims of

this work was to demonstrate that fast models would enable new innovations in these

areas to be explored, and to validate the specific novel solutions proposed in this the-

sis. The third goal of this thesis was to show that fast simulation models can be used

to populate machine-learning models, and in turn those models can be used to rapidly

search the design space for good manycore architectures.

1.2 Contributions

The primary contributions of this thesis are new techniques which enable much higher

simulation rates than have previously been possible for large scale embedded MPSoCs,

while maintaining cycle accurate correctness. Using using commodity hardware the re-

sults are competitive even against FPGA simulation and prototyping options. Extend-

ing this highly accurate simulation platform to explore cache-coherent CMPs, while

still improving upon the state-of-the art, this thesis then presents novel techniques for

reducing energy consumption of CMPs and demonstrates that scalability concerns of

centralised directory architectures can be addressed by extending existing software-

hardware coherency techniques. Finally this thesis demonstrates that by applying the

high speed, accurate, simulation technologies developed in this thesis to existing ma-

chine learning techniques, close to optimal multicore and manycore architectures can

be predicted quickly and efficiently for new applications.

Specifically the contributions of this thesis are: Improved simulation performance
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of multicore, cycle-accurate, simulation through more efficient NoC simulation, by

using compact cache friendly data structures, and by tracking packets through NoC

regions to reduce the simulation work. Simulation performance has also been im-

proved by increasing the available parallelism in MPSoC simulations, by decoupling

the core and interconnect simulation, and exploiting cache-incoherency of embedded

architectures to increase the timing slack between simulation threads without sacrific-

ing accuracy. The thesis demonstrates that the combination of these techniques allows

for software based cycle accurate simulation rates significantly better than the state of

the art, competitive with FPGA based techniques. It also shows that many of these

techniques can be used to construct an efficient cache-coherent simulator capable of

simulating up to 1024 cores in a fully cycle accurate system, with detailed NoC mod-

els, with better accuracy, and higher simulation speeds, than the current state of-the-art

in multicore software simulation. This thesis proposes a novel manycore architecture

which offers different bandwidth/latency trade-offs, enabling an energy efficient mul-

ticast coherency mechanism to address scalability problems with traditional coherency

protocols. It demonstrates that existing software-hardware techniques for coherency

filtering are capable of addressing the directory-associativity problem without an ex-

travagant hardware directory, reducing pressure on the directory or alternative coher-

ence protocol, reducing the required die space, and reducing energy required to process

coherency transactions. This work proposes and evaluates a new hint instruction which

can eliminate the dynamic energy used in spin-wait synchronisation primitives, while

requiring minimal hardware or program modification. It also proposes an optimisa-

tion to the existing atomic-exchange instruction found in many ISAs to reduce cache

write-back traffic and cache-line "ping-ponging" for contended mutex’s. The thesis

then proposes and evaluates a new sharer encoding and multicast scheme which can

be used to reduce the interconnect traffic and number of unnecessary cores involved in

multicast coherency events, addressing the scalability problem of directory space from

the sharer encoding space dimension, and addressing communication bandwidth and

latency scalability challenges. Finally the thesis demonstrates that existing machine

learning techniques can be applied to the design space of large scale MPSoCs, running

mixed program workloads, to enable the rapid identification of near-optimal MPSoC

configurations for new workloads.
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1.3 Publications

The relevant publications in which the author was primary or co-author are:

• First Author: High Speed Cycle Approximate Simulation for Cache-Incoherent

MPSoCs [11] – 2013 International Conference on Embedded Computer Sys-

tems: Architectures, Modeling, and Simulation (SAMOS XIII)

In this work the author was responsible for all major components of the research,

including adding cycle accurate multicore interconnect simulation to Arcsim,

developing cache incoherent multi-threaded benchmarks (based on an existing

embedded benchmark suite and runtime), and developing NoC models from ex-

isting Verilog designs. The author was also responsible for ensuring accuracy

against RTL by analysing detailed cycle accurate Verilog based simulation and

comparing with cycle by cycle traces from the developed simulator, as well as

conducting parallel experiments on FPGA prototype platforms along side the

simulator based experiments to verify accuracy of performance counters from

full benchmark results. This paper forms the basis of Chaper 4.

• Co-author: Scalable multi-core simulation using parallel dynamic binary translation[12]

– 2011 International Conference on Embedded Computer Systems: Architec-

tures, Modeling, and Simulation (SAMOS XI)

• Co-author: A Parallel Dynamic Binary Translator for Efficient Multi-Core Simulation[13]

– 2013 International Journal of Parallel Programming

In the above work the author contributed to benchmark porting efforts and analy-

sis of results – explaining the unusual performance behaviour as simulations are

scaled up and an increasing proportion of the benchmark runtime is spent in syn-

chronisation. The author was also responsible for proposing and implementing a

direct-memory-access optimisation for the JIT compiled simulation code, which

contributed approximately 30% , on average, to the performance achieved.
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1.4 Structure of this Thesis

The remainder of this thesis is structured as follows:

• Chapter 2 presents background information on multicore systems, cache co-

herency, and system simulation of single and multicore targets.

• Chapter 3 discusses the important related work, relating to each of the sections

in Chapter 2 and the work undertaken in this thesis.

• Chapter 4 investigates the simulation of embedded multiprocessor systems, pre-

senting new techniques for increasing the simulation speed and accuracy of mul-

ticore simulation.

• Chapter 5 presents the extension of the incoherent simulation work to cache

coherent manycore architectures.

• Chapter 6 presents the scalable coherent manycore architecture used in Chapters

5 through 7 of this thesis, along with analysing the scalability of the architecture

and the potential for existing software based techniques to address the directory

associativity problem often tackled with expensive hardware.

• Chapter 7 presents a novel hint instruction to drastically reduce the energy con-

sumption wasted on synchronisation operations along with another energy sav-

ing microachitectural optimisation and novel coherence sharer state compression

and multicast scheme, which reduces the energy required to send multicast in-

validations, using no more storage overhead than the state of the art.

• Chapter 8 investigates the feasibility of extending previous machine learning

based design space exploration techniques to larger manycore embedded sys-

tems.





Chapter 2

Background

2.1 Parallel Computing Systems

The concept of using multiple processors to increase performance is long-standing

within the field. There are a huge variety of parallel computing architectures, with

various degrees of coupling between processing elements. The first sections of this

chapter look at how programmers can utilise these platforms. Then, because this thesis

focuses primarily on integrated single-chip multiprocessors, this thesis looks in more

detail at issues which affect shared memory parallelism and on-chip interconnects. The

final section of this chapter looks at the challenges of simulating these parallel systems

when designing and exploring new architecture and programming options.

2.2 Programming Models

Programming these parallel systems usually takes one of two forms, often depending

on the underlying architecture of the system:

1. Message Passing

2. Shared Memory

Ranked in order of increasing coupling, message passing is the most disconnected

form of parallel computing. Each processing thread can only communicate with other

threads via explicit messages, no thread can inspect or modify another threads’ state.

In this model, processing elements need only be connected by a form of communica-

tion network. This can be a slow network such as TCP/IP, a dedicated on-ship inter-

connect optimised for the message passing API in use, or an abstraction on top of a

9
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shared memory system, with operating system (OS) provided interprocess communi-

cation (IPC). Shared memory systems appear to the running process as if all threads

are running in a single, shared, address space. So, if thread A modifies a global vari-

able, all other threads will see this change. The semantics of how soon the new value

propagates are dependent on the memory consistency model of the system, discussed

in Section 2.3.1.

Both mechanisms have real world implementations scaling from large scale dis-

tributed systems, to tightly coupled single chip systems. For example, message passing

architectures range from world wide distributed Grid Computing platforms, to exotic

dataflow architectures, while shared memory systems can similarly range from large

distributed non-uniform memory architecture (NUMA) systems (where different mem-

ory regions live on different nodes and must make remote memory requests) down to

vector machines (where an array of parallel processing elements operate in a parallel

indexed fashion on the same memory space, executing the same program in lockstep,

like modern graphics processors (GPUs)). It should be noted that GPU architectures

usually do not provide cache coherence for the L1 caches, so there is stronger data

coupling in CMP systems, with weaker thread timing synchronisation. Modern GPU

systems also relax the thread timing synchronisation, moving closer to a manycore

general purpose architecture.

2.2.1 Message Passing

Message passing can be conceptually simpler to program correctly. Data and control

flow between the various processing nodes is explicit and clear in the program de-

scription, and there are no concerns about data races or mutual exclusion algorithms.

The clear separation between local computation and communication makes the pro-

gramming model much more scalable, and is the predominant means of programming

large scale supercomputers (although each individual node may use shared memory

parallelism and vector processing).

2.2.2 Shared Memory

Shared memory programming is how most consumer and small scale parallel systems

communicate and share information. In the simplest case, all memory is visible to all

cores, at the same memory location, so if one thread writes to a variable at address

A, any other thread can read from address A and see the new value for that variable.



2.3. Cache Coherency & Memory Consistency 11

On modern CMP systems, and older SMP systems with off-chip memory controllers,

this is simple because all cores and threads share the same main memory, with cache

coherence either enforced by hardware, software, or a mixture of the two. Modern

multi-socket machines, and multi-node system, have a less uniform view of the system

memory: the address space is partitioned across the different nodes in the system.

When a thread needs to access memory, it may need to make a remote memory request,

to be served by another node or processor in the system. This is referred to as a

non-uniform memory architecture, and the granularity of address space partitioning

and allocation, and the protocol for migrating, caching and owning memory regions

can vary greatly between different architectures. Because of this, optimisations on a

shared memory program for one architecture often do not transfer directly to other

shared memory architectures.

2.3 Cache Coherency & Memory Consistency

To improve performance, processing cores usually have a small local memory called

a cache, which is used to temporarily hold copies of data from main memory, while it

is being used by the core. For a single core system, this drastically reduces the time

spent fetching data from main memory, but presents a problem when there are multiple

processors or cores in a system. Since each core can cache a copy of any data element,

it is possible for two or more cores to cache the same element simultaneously, and

without any extra hardware or software enforcement, such cores could modify their

local copies of the data. The problem here is that there is no way for each core to

know if another has modified any data, and if both cores write back their cache lines,

one of them will be over written in main memory. The data elements need not even

be the same address, so long as they are cached in the same block. This problem is

known as cache coherency, and an ideal system should maintain a view of the shared

memory space where all cores can see stores from other cores, and accidental write-

back masking cannot occur. The term coherency usually refers to the fact that reads

and writes from different cores are visible to each other, and Culler et al. [14] provide

a more formal definition which explains the property of cache-coherence well:
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More formally, we say that a multiprocessor memory system is coher-
ent if the results of any execution of a program are such that, for each
location, it is possible to construct a hypothetical serial order of all opera-
tions to the location (i.e., put all reads/writes issued by all processors into
a total order) which is consistent with the results of the execution and in
which:
1. operations issued by any particular processor occur in the above se-
quence in the order in which they were issued to the memory system by
that processor, and
2. the value returned by each read operation is the value written by the last
write to that location in the above sequence.

Fulfilling this definition results in "write-serialization", which means that accesses

to a specific memory location (from any processor) are seen in the same order by all

processors.

It should be noted that this definition of cache-coherency does not imply any strict-

ness to the ordering of accesses to different memory locations with respect to each

other – this is defined instead by the memory consistency model. The stricter the con-

sistency model, the easier it is to reason about program behaviour and write programs.

However, the more relaxed models allow for more aggressive hardware optimisations

and less hardware coherency synchronisation, giving better performance. Some pro-

cessors, like the Sun SPARC architecture, allow the user to switch between multiple

models, allowing them to pick the balance they would like, while most consumer sys-

tems such as x86 and ARM have a fixed model.

Almost all consumer CMPs provide cache coherency, but deeply embedded MP-

SoCs forego cache coherency to reduce hardware complexity and power consump-

tion. Because hardware-enforced cache coherency can be expensive, and lead to per-

formance interference between different cores, putting the task of managing memory

consistency in the programmer’s hands can allow for better control of worst case ex-

ecution time and a cheaper, more energy efficient end solution. This is a level of

programming complexity which most programmers do not want to deal with however,

and most software assumes relatively strict cache coherency and memory consistency

guarantees. There are also coherence strategies which use only software [15; 16] and

can be assisted by the compiler [17].



2.3. Cache Coherency & Memory Consistency 13

2.3.1 Memory Consistency Models

When multiple threads of execution on different cores perform a series of memory

load and store operations, the memory consistency model defines exactly what or-

derings are allowed on a given system. These range from the strictest – sequential

consistency (SC), to much more relaxed schemes, like release consistency (RC). This

section describes a few of the more popular memory consistency models, although a

more thorough introduction to these and more memory consistency models may be

found in Adve and Gharachorloo’s tutorial [18].

2.3.1.1 Sequential Consistency

Sequential consistency (SC) is the strictest of all consistency models. It requires that

all threads and cores in the system see the same ordering of all memory operations.

This ordering must be equivalent to a possible interleaving of all thread executions on

a single time multiplexed in-order core. In other words, the memory accesses are all in

program sequential order, with a single global ordering [19].

2.3.1.2 Total Store Order

Total store order (TSO) is the next most relaxed form of consistency, which relaxes

SC and allows load operations to be executed in any order. There does not need to

be a globally agreed ordering for load operations, however all store operations must

complete in a globally agreed ordering – total store ordering [20]. This means that if

two cores make a store operation, all cores see them happen in the same order. Memory

fences are used on loads to ensure they do not overtake the global store order view, so

when a core completes a store operation, a subsequent load cannot see a stale value for

a memory location which had a store from another core that committed before its own

in the global ordering.

TSO is the memory consistency model found on the x86 processors [21] used in

most consumer systems, and is also supported by the Sun SPARC architecture [22].

2.3.1.3 Partial Store Order

Relaxing TSO further, partial store order (PSO) does not guarantee stores from a partic-

ular core will appear in memory any particular ordering, with memory barrier instruc-

tions required to enforce a particular ordering between two memory operations [22].
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2.3.1.4 Release Consistency

Release consistency (RC) is one of the most relaxed consistency models available.

Instead of enforcing an order on all load or store operations, it introduces new instruc-

tions, with acquire and release semantics. All standard memory operations can appear

in any order to other cores, except that on acquire all external stores that were issued

before a release are visible, and on a release, all local stores so far are committed

and visible. This ensures that the shared memory regions are consistent across mem-

ory synchronisations primitives such as a mutex (when to acquire the lock one would

involve an acquire instruction, and on release one would similarly involve a release

instruction). However, if proper thread synchronisation primitives are not used, there

are no guarantees about memory orderings.

2.3.1.5 C++11

The new C++ standard includes a memory consistency specification, allowing for re-

laxed and atomic memory operations. Programs that need the extra performance of a

relaxed memory consistency model can explicitly annotate memory accesses to allow

the compiler to avoid emitting memory fences. For memory with extremely relaxed

requirements it may be possible to avoid hardware coherency at all (although it may

be necessary to track dirty bytes or words in the cache, to prevent over-writing new

data with stale, i.e. to provide memory coherency, without the memory consistency or

in-cache coherency requirements). How future platforms’ coherency and consistency

models are adapted to closely model the C++ standard will be an interesting develop-

ment to watch.

2.3.1.6 Transactional Memory

A completely different approach to parallel programming is encompassed by the con-

cept of transactional memory. This model allows a thread to build up a "transaction"

of memory operations, which only finally commit to be visible to the rest of the system

if a final condition check is met. This is a popular method for speculative execution,

where a thread speculatively takes a lock, operates on a data element, and then com-

mits back the changes if and only if the lock was successful. This allows the internal

processor architecture to operate efficiently on the task, while the speculative lock is in

flight through the coherency system. An efficient speculative system will kill the thread

as soon as the lock returns with a failure, but speedups can still be achieved letting the
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thread run to completion if there are enough other cores to take on other speculative

tasks. Performing this in software has typically been too expensive, but there have been

experimental research platforms such as Atlas [23], and Intel has recently incorporated

some hardware transactional memory support into its processors [24]. Transactional

memory operations are one area where incoherent memory regions could be used:

with a high enough compute-to-data ratio the thread may operate speculatively within

an incoherent buffer, then commit back to coherent memory space upon completion.

It could also be possible to use large scratchpads or the data-cache as a write-buffer

(speculation would have to halt until it was no longer speculative if the cache required

a dirty write-back or the scratchpad was full, however).

One form of this transactional memory style operation is a technique called Spec-

ulative Lock Elison (SLE) [25] which allows speculative parallel execution of critical

sections provided by a mutex lock. SLE begins speculation at the lock acquire instruc-

tion sequence, but does not acquire the lock, and continues executing the code path

for the critical section until the lock release instruction are reached. If at any point a

coherency conflict is detected – a memory location read within the critical section is

written to by another processor, or a memory location stored in the critical section is

read by another processor – this causes the speculation to abort and either re-attempt

speculation, or fall back to actually acquiring the lock and progressing with traditional

execution. The processor may attempt to speculate a number of times before resorting

to actually acquiring the lock. The speculation must also be aborted if there are insuf-

ficient resources to track all memory locations accessed during the speculation, or of

the speculation mechanism cannot track any more register changes.

Transactional operations like this can be more efficient than traditional synchroni-

sation because coarse grained locks may protect multiple sensitive memory locations,

depending on the control flow within the critical section (such as a lock on a hash-map),

and fine-grained locks can incur more significant overheads in terms of synchronisa-

tion impact of acquiring these locks, and memory space for storing them (along with

the cache-affects of how and where these locks are stored relative to the data they

guard and other locks in the code). By speculatively executing through the critical

section coarse grained lock regions can be effectively executed in parallel, and only

abort and serialise when a true dependency is encountered, speculating fine grained

lock regions can remove much of the synchronisation overhead while still providing

correctness. SLE is an effective transactional approach because it can be applied to ex-

isting code without any changes (and in some cases can be automatically be applied by
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the hardware without re-compilation). The fact that critical sections are often short (a

requirement to avoid lock contention) means that the resources needed in the processor

to speculatively execute them are quite minimal over what already exists for coherency

and branch prediction support.

2.4 Coherency Mechanisms

Cache coherency is usually maintained via Snooping or Directory based protocols [26;

27], although more alternative protocols such as Token coherency have been proposed.

Each of these broad classifications encompasses a large variety of different protocols.

2.4.1 Snooping

One of the simplest means of ensuring hardware coherency [27], and one of the earliest

implemented for microprocessors [28] is a technique called snooping. This relies on

all processors using a shared bus to memory, where every core can see the memory

requests of other cores by "snooping" the bus. Many of these snooping protocols can be

implemented using an alternative broadcast scheme for coherency messages, separate

from the memory interconnect.

2.4.1.1 Write-through Invalidate

The simplest protocol is to use a write through cache with a write-invalidate proto-

col [27]. This allows any core to load any value into cache at any time, because the

main memory is always up to date. If they see a store on the bus they invalidate their

local copy, and must fetch an updated copy from main memory or a shared cache level

the next time they require the value.

2.4.1.2 Write-through Update

With these protocols, instead of invalidating cached copies upon witnessing a write,

all the snooping caches take the new value off the bus to update their local copies.

This requires the snooping coherency controller to have a port into the data store of the

cache RAM however, while write-invalidate only requires the coherency controller to

write into the tag RAM.
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2.4.1.3 Write-back Invalidate

Obviously write-through caches have a significant performance impact for write-heavy

workloads. Also it is often undesirable to broadcast writes because this requires every

memory write to gain bus arbitration, and spend energy transmitting the data. As such

a variety of write-back invalidate protocols have been developed, usually named after

the coherency states involved, which have been shown to be significantly more energy

efficient [10].

• MSI: The simplest write-back scheme, Modified-Shared-Invalid, assumes that

any clean cache line is shared, and to perform a write it must send all of the

sharers an invalidate signal, transitioning the local line the Modified state, and all

others to Invalid. To access a cache line which another core has in the Modified

state, the modified cache line must be written back to memory and either changed

to Shared or Invalid, depending on if the new core wishes to load or store from

the address.

• Write-once: This protocol [29] is a hybrid write-through and write-back protocol

with states Invalid, Valid, Reserved and Dirty. When a processor first writes

to a clean memory location, it performs a write-through operation which both

informs all other cores to invalidate their copy, and updates the backing memory

store, the cache line now changes to the Reserved state. A subsequent write

transitions the cache line to Dirty. Upon a read from another core, the Reserved

state would simply revert to Valid, and the second core can retrieve the value

from memory, however from Dirty, the first core must block the main memory

from providing the data, and provide the data directly. The data should also

be written to backing store, and the state transitioned to Valid. If another core

wishes to make a write, a similar series of events takes place except the original

core will arrive at the Invalid state. This is very similar to MSI, except the

first write performs a write-through to optimise the touch-once then share access

pattern.

• MESI: Modified-Exclusive-Shared-Invalid [27] is an optimisation of MSI where

a cache line currently in use by a single core is marked as Exclusive, rather

than Shared. This allows the core to promote it to Modified without sending a

message to the other cores in the system, and transitioning from Exclusive to

Shared does not require a write-back.
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• MOSI: Modified-Owner-Shared-Invalid is another extension of MSI in which a

cache can take ownership of the most up to date value of a cache line. This means

once a cache line has been modified and another core requests it, the core with

the modified line can transition to Owner of this cache line, and serve all requests

for the modified cache line, until it writes back to main memory sometime in the

future. The owned state can also encapsulate the Forward state of MESIF, if

Owned-clean states are allowed.

• MOESI: [26] This is an obvious combination of the MOSI and MESI states, to

enable serving of modified cache lines from the owning core, while also incor-

porating the Exclusive state optimisation.

• MESIF: Proposed by Intel [30], this protocol substitutes the Owned state for a

Forwarding state. Unlike the Owned state, the Forwarding state must always be

clean. Introduced to optimise the case where a cache miss is fulfilled by another

on-chip cache, this state allows exactly one cache to respond, rather than all

Shared state caches [31].

2.4.1.4 Write-back Update

The final set of protocols allow the update of remote caches, while avoiding write-back

to main memory for every store operation.

• Firefly: [32] This protocol contains three states, corresponding to the M, E, and

S states of MESI. Some argue that because there is no invalidation in Firefly that

it does not have an Invalid state, but when cache line has no contents because

it is cold then it could be considered Invalid. If a cache line is held clean by

a single core, it is Exclusive, this can transition to Modified without signalling

other cores, or transition to Shared if another core makes a request for the cache

line. If the cache line is Modified and another core requests it the cache line

must be written back to main memory and transitioned to Shared. Once in the

Shared state the cache line remains in this state until it falls out of all caches

due to capacity or conflict misses over time. A write to the cache line while in

the Shared state acts as a write-through update operation, where both the main

memory and all snooping caches are updated at the same time. For this reason

sometimes Firefly is classified as a write-through update protocol, even though

the single sharer case is a write-back behaviour.
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• Dragon: [33; 32] A very similar protocol to Firefly, Dragon differs by differ-

entiating the Shared state into Shared-clean and Shared-dirty, equivalent of the

Shared and Owned state of MOESI. A write to a shared cache line in Dragon

requires updating all snooping sharers, but does not write back to main mem-

ory, making it more efficient than Firefly. The most recent writer to a cache line

takes the Shared-dirty state, while all others are Shared-clean. It is the respon-

sibility of the Shared-dirty cache to fulfil cache line requests and write-back to

main memory on eviction (which will be due to self invalidation from capacity

or conflict misses).

2.4.1.5 Snoop Filtering

To reduce the accesses to all caches when broadcasting invalidation or fetch requests,

and traffic for more complex interconnects, it is possible to add special filtering con-

trollers to various points on the bus. These reduce accesses to caches which don’t con-

tain the data by storing an approximate but conservative overview of the sharing state,

which can be used to remove cores from the broadcast operation when it is known that

it definitely has not cached this data. One mechanism is to create a form of directory-

like cache which sits on the bus and is responsible for actually sending out broadcasts.

When it has information about the cache line it uses this to reduce the broadcast to a

multicast, but if the cache has over-flowed it will send a full broadcast. This can save

on energy when a cache line is being rapidly passed between a subset of the cores in the

system. Another snoop-filtering mechanism is to put Bloom-filter structures in front of

each core, or clusters of cores, to track addresses that have been recently cached. The

Bloom-filter with either guarantee that a cache line is not present, so the request will

not propagate to the cache, or return that the cache line may be present, so the request

must be forwarded. So long as the energy to maintain the Bloom-filter is less than the

energy to access all of the cache it guards there is the potential to save energy. If the

cache tag RAM has a limited number of ports it may also improve performance, since

the core will have to arbitrate with bus snooping requests less often.

2.4.2 Directory

Directory protocols are a more scalable solution which do not require the cores to

constantly snoop and broadcast to each other, instead a dedicated structure is used

to track the state of cache lines in the system, and is used to coordinate the cache
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line coherency state transitions. On older multi-processor systems, which use discrete

processor chips, it would be more likely that a full directory is implemented in main

memory, to store the sharing state for every cache line in the memory space. This

has a very large memory overhead, but allows the simultaneous caching of any and all

cache blocks in the system. For multiple processor chips the first common level in the

memory hierarchy is the main memory, so this is an obvious level at which to perform

the directory service. On-chip directories can either act as a directory-cache for an off-

chip full directory, or maintain directory information just for memory blocks currently

residing in cache. Both on- and off-chip directories need not be centralised, and can

instead be distributed across last level cache blocks, or processor nodes in a large scale

multiprocessor system. Distributing the directory enables higher throughput, at the

expense of complicating the directory coherence protocol.

For inclusive cache hierarchies the sharer information can simply be kept in the

last level cache (LLC) tags, maintaining the directory information without dedicating

a whole new directory structure. However for large scale systems, a fully inclusive

shared cache can become undesirable, and the directory structure must either become

extremely large and associative to allow all on-chip caches to be fully utilised, or accept

that it cannot contain the maximum number of unique cached memory blocks’ sharing

state.

2.4.2.1 Sharer-reconstruction

Instead of requiring the directory to hold all on-chip cache state, the directory can

instead be used to cache a subset of the cache state, providing efficient coherency tran-

sitions when possible. When there is a miss in the directory, a broadcast probe must be

sent out to reconstruct the sharer information from the processors in the system. This

can provide good performance when the application benefits most from full utilisa-

tion of the on-chip caches, but suffers the high energy and performance cost of having

to snoop the whole chip whenever there is a cold cache miss or the working set is

significantly larger than the on-chip caches [34].

2.4.2.2 Forced Invalidations

An alternative to snooping to reconstruct sharer state is to instead invalidate cache

entries when the directory becomes full and needs to replace an entry. This saves the

expensive snoop on a directory miss, but can reduce performance by limiting the utility
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of on-chip caches if the directory is not large or associative enough. Previous work has

shown that this is more scalable than the snoop filtering approach [34].

2.4.2.3 Off-chip Backing Store

Instead of discarding directory overflows, it is possible to overflow the on-chip direc-

tory to a dedicated region of main memory. This can be handled either by hardware, or

trap to a software handler. There are two aspects of the directory which can overflow,

the number of cache line entries, or the sharer list for a given entry, examples of each

are discussed in Section 3.1.

2.4.2.4 Highly Associative Directory Caches

Various work has been done in increasing the apparent associativity of the directory

cache to cope with the high associativity of the on chip caches (an N core CMP with

M way set associative caches requires an M×N way associative directory structure for

full coverage). These have predominantly focused around using different hashing func-

tions to index into different ways, to reduce aliasing between different cores’ caches,

allowing them to use larger sets, but fewer of them, to reduce parallel lookup energy

and time. The main work is encompassed by the Z-Cache [35], Cuckoo Directory [36],

and Scalable Coherence Directory [37] (SCD) papers discussed in Section 3.1.

2.4.3 Other Sharer-Tracking Mechanisms

2.4.3.1 Token Coherence

Rather than have a directory structure to track all sharers, Token Coherence [38] works

using broadcasts in the same way as a Write-back Invalidate snooping protocol, but

enabling correctness on unordered interconnects by using tokens. With Token Coher-

ence each cache block has an associated number of tokens, T , the exact number is not

important to the correctness of the protocol but limits the number of sharers which can

simultaneously hold a read-only copy of the data. The tokens reside in caches, main

memory, and in-flight transactions, but exactly T tokens must exist at all times for

every cache line. This requires additional memory space to store the token count for

cache blocks which are not live in the processor caches, and extra bits in each proces-

sor cache line. For a read operation the processor requires at least one token, while for

write operations all tokens must be held. This token protocol ensures that all tokens
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for a cache line contain the most recent cache-line data, which is only modified when

all tokens are together at a single core. The token policy ensures correctness, but the

mechanism by which tokens are acquired depends on the specific performance policy

implemented, with TokenB (Token Broadcast) for example making a full chip broad-

cast for both read and write misses. If a read request is received at a core or cache,

then a single token is sent back with a copy of the cache line data and the local count

reduced by one, if a write request is made then all tokens must be returned. When

a cache line is self-invalidated then the token count must be written back to the next

level of cache or memory hierarchy. When races occur, such as two concurrent write-

misses to the same cache line, a time-out on the transaction is used to ensure that cores

which fail the transaction make a subsequent attempt after a fixed delay. To prevent

starvation, after four consecutive failed requests a special Persistent request is made.

Each processor has a small table to record any pending persistent requests, and the

processor will always forward tokens for this cache line to the requesting processor to

ensure that it is satisfied. It has been shown that for a 16 core processor, across a range

of benchmarks, requests are only re-issued for 2-3% of transactions, and persistent

requests only required for 0.1-0.3%.

Token coherence can require a lot of cross chip traffic, but its point-to-point style

of communication is well suited to a highly connected architecture such as a mesh or

torus, however the broadcast requirements can be challenge to the on-chip bandwidth

without hardware broadcast or multicast support [39]. While other performance poli-

cies such as TokenD (Token Directory) and TokenM (Token using Multicast) reduce

the bandwidth requirement, the number of bits required to track the token counter,

along with the cross-chip traffic cost, both scale poorly when considering architectures

with hundreds of cores and workloads which require whole-chip data sharing.

2.4.3.2 Sharer-Chaining

Alternatively an in-hardware linked list of sharers can be used in a similar fashion

to Scalable Coherence Interface (SCI) [40]. This method allocates every cache block

a home node (like a distributed directory), where only a pointer to the first sharer is

stored. Each core that holds a cached copy then joins the linked list by holding a

pointer to the next core in the list. To read the cache line, a core must send a request

to the home node. Then it will be inserted into the start of the linked list, with the

home node pointing to it, and it pointing to the core which was previously at the start

of the list. When a core wants to write to the address, it must walk the linked list
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sending invalidations, until it has received all responses, the home node entry is locked

to prevent read requests progressing until the write is complete. A similar process must

occur if the home node runs out of capacity and must evict the entry for this cache line.

2.4.4 Software Managed Coherency

Not all platforms provide transparent hardware coherence, but it is possible to use

the operating system and traditional MMU memory protection features to provide a

running application with the illusion of cache coherency, and even provide a distributed

system with the appearance of a single shared memory space. These work by marking

shared pages as read-only, then on a write fault communicate with other processors in

the system to arbitrate write access and disable the other read-only pages (depending

on the memory consistency model), before allowing the processor to promote its page

to writeable. If another processor has a read-fault on this page, it will request a "diff" or

full copy from the core which modified the page. There has been work on optimising

this process [41] and relaxing the memory model to allow multiple writers to the same

page. There are also hardware assisted techniques to automatically handle remote

memory accesses, where pages which are often modified are pinned to a single core,

somewhat like the Owned state in the MOSI protocol, except that writes may be stored

directly to the remote cache, without a local duplicate being created [41].

It is also possible to use techniques like this to simply reduce the demands on the

hardware coherency system, to isolate pages that do not require coherency (such as

code pages and thread local memory) and only run hardware coherency on pages for

which it is necessary.

On deeply embedded systems without any form of page protection, it is up to the

programmer to manage cache behaviour and ensure there is no write-masking. Spe-

cial cache-bypassing instructions can be used to synchronise cores and coordinate the

flushing of caches as necessary. Systems like this can be easier to program using an

abstracted message passing library, leaving the complicated cache management to the

expert library writer.

Software based coherency can also benefit greatly from compiler support [17], al-

though the results of many studies comparing software and hardware coherence has

been inconclusive, due to the different circumstances under which each is prefer-

able [42]. Like many things, a compromise where some hardware support is provided,

but software only uses it when necessary, is probably the optimal solution.
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2.5 Architecture Scalability

When designing a CMP or MPSoC architecture there are a lot of areas that are a scala-

bility concern, the most dominant being the performance of the cache coherency mech-

anism, and the properties of the interconnect joining the cores, caches, and other on-

chip components. This section will focus on the scalability of the interconnect options.

2.5.1 Buses and Crossbars

The shared bus, and the crossbar are two of the most poorly scaling interconnect op-

tions. The shared bus is a single communication link that is shared and arbitrated for

all components, connecting all cores to the memory system. This allows the simple

implementation of snooping coherency, but scales poorly as more devices are attached

to the bus. Ignoring physical constraints at first, the bus bandwidth must be shared

between all devices, this means that the per core bandwidth scales as 1/N , where N is

the number of cores in the system. When the electrical characteristics of the bus are

considered, adding more devices requires the bus to grow approximately linearly with

the number of devices. Unfortunately, the longer the bus, the greater its electrical ca-

pacitance, so the bus must operate at lower frequencies or be driven at a higher voltage.

The wire lengths along with the number of devices will also affect the complexity of

arbitration, and how quickly it can be resolved. This all means that the frequency and

bandwidth of the bus itself may have to be reduced, making the per core bandwidth

scaling worse than 1/N .

Unlike a shared bus, a crossbar allows all connected devices to send a message

to another device simultaneously, so long as there is not a conflict at the destina-

tion. This interconnect is good for core-to-core communication, or NUMA systems.

One of the largest crossbar architectures actually produced is probably the 80-core

Cyclops-64 [43] (discussed in Section 3.2.5), produced by Cray to be used as nodes in

a supercomputer. Unfortunately crossbars cannot be used with passive snooping, so a

snooping based coherence protocol would require dedicated request and acknowledge

messages. They also scale extremely poorly in terms of area when adding more nodes,

and when increasing the width of the connection.
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2.5.2 Mesh and Tiled Architectures

One of the most popular manycore interconnects is the 2D mesh, used to build a tiled

architecture. The 2D mesh has many traits which make it an obvious choice when

designing a scalable architecture:

• bandwidth scales linearly with the number of nodes

• area overhead per node is constant, each new node requires the same router and

connecting wire overhead

• switch radix is constant, all routers are the same, and adding more nodes does

not increase the number of ports required on each

• supports core-to-core communication

• redundant routing for fault tolerance

• short wires, so the links can be run at high frequencies.

Unfortunately the downsides to mesh topologies are:

• average node to node latency is 2/3
√

N

• every router is at least 5× 5, which is quite large, and can take multiple cycles

to route

• hard to verify that complicated routing rules and virtual channels are free of

deadlock

• no simple multicast or broadcast scheme

• no single point of serialisation for coherency protocols, which requires more

complex protocols with a greater number of messages.

2.5.3 Tree and other NoC architectures

There are other interconnects that trade off bandwidth in return for latency, and use

much simpler switches. One of the simplest conceptually is a binary tree (or H-tree,

named for the shape it takes when routed on a chip), where a central last level cache or

coherency controller might reside at the root. The tree may also be used without a root

node, in a point to point communication fashion, where messages get reflected back
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up the tree when they have reached the first common node. This would resemble each

half of the chip being an H-tree fanout, with the root of each tree linked to connect the

two halves of the chip together. Picturing it like this makes the downside of the tree

obvious, the bisection bandwidth is that of the single link between the two roots.

The benefits of tree based topologies are:

• switch area overhead per node is approximately constant, N nodes require N−1

switches

• node to root latency is log2N

• switch radix is constant, all routers are the same, and adding more nodes does

not increase the number of ports required on each

• every router is 2× 1 (or 2× 2 if core-to-core routing is enabled at all levels),

which is small and fast to route

• supports core-to-core communication

• centralised point for coherency transactions if a coherency controller such as a

directory is placed at the root node.

Unfortunately the downsides are:

• bisection bandwidth is limited to a single link, like the shared bus

• no redundant routing for fault tolerance

• long wires at the root of the tree, so operating frequency may be limited.

The bandwidth concerns can be mitigated slightly by using Fat Trees [44], which use

higher bandwidth links between the lower nodes and the root, but this does not help

for small packets. Long wires can also be split with registers, but this introduces extra

latency and can complicate arbitration policies.

Between the extremes of the mesh and tree architectures, are other multi-state

logarithmic networks, such as the delta networks: Omega, Butterfly, Baseline, and

Benes [45]. These all work by implementing a perfect shuffle network between the

source and destination, taking log2(N) layers to do so.
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2.5.4 Design Space Exploration

One of the biggest reasons for doing cycle accurate simulation is to perform explore

the parameter space of a hypothetical design. When trying to architect an MPSoC for

a new application, or design new features for an upcoming CMP, it is important to be

able to test new considerations quickly, and be able to prune out unlikely candidates

early on in the process.

When it comes to selecting from existing hardware features to match a new ap-

plication, recent work [46] has shown that machine learning techniques can go a long

way to predicting the performance of a new application across a large design space,

providing the design space itself has been profiled already with a large set of training

applications, and the new application has been profiled on at least one prospective de-

sign. It is possible that this will extend to larger many-core architectures and this thesis

tests that hypothesis in Chapter 8.

2.6 Simulation

One of the most powerful tools for an engineer is a good simulator. Simulators are in-

valuable for tasks such as providing performance estimates while iterating over design

options, verifying design correctness, or developing and testing application code ahead

of hardware availability.

2.6.1 Emulation and Instrumentation

When simulating processor architectures, the first hurdle is performing correct func-

tional behavioural simulation, parsing and executing each instruction faithfully to the

target ISA. When performing on-host ISA simulation, i.e. simulating the same target

architecture as the host platform the simulation is being run on, an approach called

instrumentation can be used, where code is inserted into the application binary being

simulated around key events (such as control flow and memory instructions) through

recompiling or dynamic binary translation (DBT) techniques. These extra code sec-

tions can be used to calculate changes to the timing model, or communicate with an-

other thread executing the timing model to perform asynchronous simulation of micro-

architectural state and simulated IO devices. Instrumentation based simulators often

boast very close to native execution speeds, due to actually executing on-host, but suf-

fer accuracy problems with multicore systems, and are limited to executing the host
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ISA. This makes them difficult for investigating ISA modifications, or interconnect

micro-architecture features.

Emulation based simulators are those which decode the target instructions and re-

map them to instruction sequences on the host. Using JIT-compilation and DBT tech-

niques they can provide simulation on-par with instrumentation based systems, but

allow more flexible simulation of modifications to the target ISA.

It is possible to construct an accurate simulator using either technology, but truly

cycle accurate multicore simulation is usually slow regardless of this choice.

2.6.2 Single-Core Simulation

The simplest simulations are those which only deal with a single core system, as they

do not have to deal with memory contention modelling, synchronise accesses with

other cores, nor handle any discrepancy between host and target coherency protocols.

While still a powerful tool for core micro-architectural research, they are often not

useful for looking at modern multithreaded programs. This is not to say there is nothing

that can be taken from high speed single core simulation to help accelerate multicore

simulation however. The next chapter covers a few notable single core simulators,

while the concepts such as decoupled simulation to exploit simulation parallelism used

in the fastest single core simulators are discussed in the rest of this section.

2.6.3 Serial Simulation

The simplest way to write a deterministic, correct simulator, is to write it as one thread

of serial execution. For functional simulation this might involve interpreting a fixed

number of instructions, before switching to an IO device or another processor thread,

and for cycle accurate simulation will often result in a core simulation handler execut-

ing a number of attached models one cycle at a time, in a round robin fashion. While

simple and correct, this is the slowest form of simulation.

2.6.4 Decoupled Simulation

Decoupled simulators work on multiple parts of the simulation in parallel, in separate

threads. Some simulators decouple functional and micro-architectural simulation [47;

48; 49], while others use decoupled threads to provide JIT compilation services to

accelerate the primary simulation thread [50]. Multicore simulators can simulate target
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cores in separate host threads, but the degree of decoupling here is very dependant on

the simulation model and accuracy requirements.

2.6.5 Parallel Relaxed System Simulation

Multi-processor simulators have been parallelized to take advantage of modern multi-

core systems, with the simulation divided between host cores, usually at the granularity

of target cores. However, these simulations still synchronize after every cycle to main-

tain correctness; this introduces significant overhead, and stalls the whole simulation

when the operating system context-switches one of the threads. To reduce this over-

head simulators have increased the synchronization quantum beyond a single cycle, but

this introduces inaccuracies in simulation. These systems also only typically model a

shared bus or crossbar, and may not model the effect of shared bandwidth correctly if

the quantum is larger than a single cycle.

The most relaxed and decoupled simulations run target cores in parallel threads,

and parts of the interconnect in other threads, using timestamped message passing be-

tween them to form a loosely timed model. Absolute accuracy suffers in these systems,

but they can still be useful for debugging routing protocols and software running on

the system.

2.6.6 Hardware Accelerated Simulation

Perhaps the only way to perform cycle accurate simulation fast, is to use dedicated

hardware to accelerate the most complicated parts of the model. There are successful

projects which use FPGAs to implement all or part of the simulation (usually micro-

architecture and interconnect models at least), and industry makes extensive use of

large FPGA based modelling and prototyping systems [51]. Another use of specialised

hardware is the use of GPU acceleration of functional and RTL simulation, where the

extremely parallel and well synchronised nature of the graphics processor can provide

large speedups.

2.7 Machine Learning

Machine learning is the name given to the use of algorithms which can “learn” a model

to correlate some given inputs to an output value, by processing representative sample

data. Most machine learning algorithms either classify (as in the classic “spam” filter
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example), or predict. In the case of design space exploration this work is most inter-

ested in algorithms which can learn to predict features of a design, such as performance

or energy, from training data and only a small set of input data upon which to base its

prediction. This thesis treats machine learning methods as black box tools, so no deep

understanding of their mechanisms is required.

2.8 Energy Modeling

Often when comparing two or more items in computer architecture, be it a different

router implementation, or a different cache-coherency policy, it is desirable to be able

to evaluate the power or energy differences involved. In an ideal world one would

always be able to produce an energy figure in SI units of Joules, or Watts, with which

the value can be compared against any other energy figure, within the same piece of

work, or from other studies.

Unfortunately in computer architecture one is often dealing with abstract concepts,

and the real world energy values are very much dependent on implementation details.

This makes energy comparisons between different features implemented with differ-

ent techniques completely incomparable, as the difference of interest is lost in the other

implementation differences. To obtain this real world energy value also requires signif-

icant computational effort for gate level power simulation, or better yet a manufactured

silicon implementation which can be measured.

When comparing abstract concepts such as cache coherency policies it is not fea-

sible to implement a different chip for each point of interest, and this would be a huge

waste of resources. Instead higher level approximate models can be used.

When using abstract energy models it is important to remember that two values can

only be compared if they represent the same concept, and the same assumptions are

made about the energy model for each. For example if you assume that a 2-way set

associative cache requires twice as much energy to access as a direct mapped cache,

then you can compare the energy attributed to the cache accesses in two different pro-

cessor models. This model does not let you compare the cache energy to the energy

consumed by the branch predictor, for example, only between the two caches. How-

ever, so long as the initial assumption that the energy of the associative cache is twice

that of the direct mapped cache is defensible, the results of comparing the two models

are sound.

This thesis makes use of a few energy energy models at similar levels of abstraction.
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For Chapter 8, which uses non-communicating multi-program workloads, it is as-

sumed that dynamic core energy is the same regardless of platform, since the program

executed does not change significantly regardless of how many cores it is run on (this

neglects the difference that frequency and voltage would make). It also neglects static

energy consumption, assuming that compared with network and dynamic core energy

it will be negligible. Finally the network energy is modelled as a fixed energy cost

for a packet traversing a link, weighted by the width of the link, i.e. a fixed cost per

wire, per transfer. The only energy used from these models is the network energy

measurements, because these are the only ones that change in the model used, and

without synthesis and detailed simulation there is no reasoning with which to weigh

them against either dynamic core energy or static energy. For Chapter 8’s purposes

the energy model is only required to provide an interesting feature, which behaves like

an energy model, to the machine learning model. As such the accuracy of the model

itself is not very important, since the work is evaluating whether the model can predict

it. The important factor is that the energy model is complex enough to be as hard to

predict as a more accurate model. This energy model is not very different from that

used by Fensch et al. [52], which assumes that network energy is proportional to the

quantity of data transferred.

For Chapter 6 a much more sophisticated model is used, which isolates multiple

static, dynamic, and wire energy components for individual comparison. Here it is

assumed that static leakage power scales linearly with the number of transistors, and

as such, for the presented architecture, with the number of cores. Energy lost to static

power over the runtime of a benchmark is therefore modelled by the number of cores,

multiplied by the runtime. These values are directly comparable to other static energy

values in the chapter. Because there are no synthesized models, the dynamic power

of different components must be isolated and compared only to other components of

the same type. For processor cores, the number of instructions executed, and the num-

ber of data cache accesses are presented as metrics for dynamic core energy, since for

the simple core used, cache accesses may be a significant contribution to the over-

all energy consumption, while other instructions will not vary so greatly. Network

switches are categorised by their radix and bus width, making the reasonable assump-

tion that a wider bus takes more energy to route than a narrower bus, and a higher radix

router requires more energy also. Without performing some level of synthesis a reli-

able weighting with which to compare them cannot be provided, so no comparison is

performed. Finally, for wire energy a capacitive model is used, like that used in other
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research [53; 54], where it was noticed that for a fixed technology implementation

(i.e. same voltage, drive strength, silicon and metal characteristics, and wire width)

the constants can be combined to give Equation 2.1. This reads as: total wire energy

equals the sum of all wire transitions (from 0 to 1, and 1 to 0), multiplied by the length

of the wire. This result is equivalent to the self energy term in the more advanced

energy model presented by Sundaresan and Mahapatra [55]. This more advanced en-

ergy model takes into account the interaction between adjacent wires in the bus, but

the model used in this thesis is too abstract to calculate appropriate coupling capaci-

tances between adjacent wires. Enhancing the energy model would also be a matter of

calibration and engineering effort, rather than providing any innovation over the cur-

rent state-of-the-art; the more advanced energy model is only slightly more difficult to

compute than the model in use already.

Energy = C×∑Transition×Length (2.1)

By using this wire model the wire energy of all buses in the NoC can be compared,

unlike the routing energy which must be considered separately.

For Chapter 7 the same core energy model is used, considering instructions exe-

cuted and cache accesses an instructive approximation for dynamic core energy. How-

ever for the interconnect only the routing events of the multicast network are consid-

ered as, this is the area of focus for this chapter.
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Related Work

This chapter follows a similar format to the background material, but focuses on spe-

cific items of related work that demonstrate the concepts discussed in the Chapter 2.

The order of material is the same with the first section looking at coherency and direc-

tory schemes, the second looking at existing and proposed manycore architectures, the

third looking at system simulation and the final chapter looking at higher level design

space exploration and prediction.

3.1 Coherency Components

3.1.1 Efficient Directory Storage

Since the directory has moved to be an on-chip structure, and space is now a serious

constraint, there have been several notable works to reduce the size of the directory,

taking primarily one of two orthogonal approaches: reducing the required size for

each entry by shrinking the representation of the sharer set, and reducing the number

of entries required for acceptable performance.

3.1.1.1 Sharer list representation

Since the number of cores actively sharing a cache line is unlikely to be the set of

all cores in the system, one way to reduce the storage requirements of the coherence

system is to reduce the size of each entry, by reducing the number of cores that can be

simultaneously tracked.

The easiest way to store all possible cores is to use one bit per core, requiring

exactly n bits of sharer state, where n is the number of cores in the system, but to reduce

33
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the number of identifiable sharers another encoding approach is needed. The simplest

option is the "Limited Pointer" or Dirk[N]B [56] representation, which stores k pointers

to cores for exact messaging, requiring k log2(n) bits of sharer state, and then either

invalidates a sharer to make room (DirkNB), or falls back to broadcasting when there

are more than k sharers (DirkB). The ATAC paper [57] extends this slightly to track the

number of sharers once a broadcast is required, so that non-sharing cores do not have

to respond to invalidation requests. This AckWise protocol requires the same storage

space of k log2(n) bits (if a sharer pointer is converted into a counter once there are

more than k sharers), and can significantly reduce the energy required if the coherence

protocol requires acknowledgements for broadcast or multicast messages. The later

work in this thesis avoids the issue entirely however, by designing a coherency protocol

which does not require these acknowledgements, and as such does not benefit from

tracking the number of sharers.

An alternative is to let the sharer list overflow into another data structure, either

hardware or software managed. This overflow mechanism has been implemented using

a software fall-back in the LimitLESS protocol running on the Alewife machine [58],

which although comprised of physically distributed processors, and a similarly dis-

tributed directory, does not allocate enough memory for every coherency block to be

shared by all possible sharers simultaneously, as this would be a huge waste of mem-

ory. Instead the LimitLESS protocol traps to a software handler via an interrupt when

the local node encounters a sharer overflow while handling a request, and handles the

situation with software. From this point on, until the sharers are invalidated, any co-

herency action for this region would trap to software and let the runtime system or

operating system manage the transactions. Because the processors in the Alewife sys-

tem supported a very lightweight and fast interrupt mechanism, and each processor

was closely coupled to its slice of physical memory, the overhead for this was accept-

able. Unfortunately in a single chip manycore the general purpose cores running the

software stack would be too far away from the directory and memory controller to

perform this task efficiently. Thus to implement LimitLESS on a modern manycore

would require either a dedicated processing core to handle these directory overflows,

or the software part of limitless would have to be implemented in a dedicated hardware

engine.

Taking things back on chip, Scalable Coherence Directory (SCD) [37] proposes

using highly associative directories and allowing a single cache line to occupy multi-

ple entries across the sets, enabling it to expand the sharer list dynamically as required,
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at the expense of directory capacity and associativity for other cache entries. This ap-

proach requires every directory way to be evaluated if a cache line in the shared state is

accessed however, such as to invalidate upon a write to the cache line, which can con-

sume a large amount of energy, and if performed serially will take significant time for

the transaction. Since most sharer patterns only have a small number of sharers, the

average performance is acceptable however, but poor handling of pathological cases

(such as all cores sharing to read a barrier state flag) can significantly reduce the per-

formance. The actual encoding used by SCD is hierarchical bit-vectors, where
√

(n)

bits are used for the root vector, and for every bit which is set in this vector, a second

entry is used with another
√

(n) bits to fully specify the sharers in that subtree.For a

small number of sharers (
√

(n)/ log2(n)) a limited number of pointers are kept first, so

small sharer sets fit within a single entry, then the state gradually fills to represent a full

bit vector as the number of sharers increases to a full chip, and occupies
√

(n)+1 di-

rectory entries, requiring at least this degree of associativity in the directory. The final

sharer list could be multicast in multiple bursts, for example each bit in the root vector

could result in a multicast to its region, with the full bit-vector attached as a
√

(n) bit

payload. Unlike lossy encoding schemes, if acknowledgements are required from shar-

ers an early self invalidation from a sharer can be handled as it happens, rather than the

core still having to respond to an invalidation request as in the case with AckWise. The

SCD paper claims that capacity invalidations are sufficiently rare that they do not need

to define a replacement policy, but the two options when a second level bit-vector must

be evicted are to invalidate all sharers in this bit-vector, or let the entry be evicted, but

assume that if an entry is set in the root bit-vector, but the second level is absent, that is

is a full broadcast to that subtree. Working with this second option could allow space

to be reclaimed by de-allocating second level bit-vector entries which have occupancy

greater than some threshold (such as 90%, or completely full).

In the directory comparison paper [56] where Dirk[N]B is discussed, an alterna-

tive suggestion is made of combining together core pointers, where each pointer bit

is represented a two bit symbol. For example walking through the core ID in binary

a 0 would be encoded as 01 and a 1 as 10, cores are combined into the sharer repre-

sentation with a simple bitwise or on the symbols, resulting in a 11 symbol where the

core IDs diverge. This is an early suggestion for a lossy encoding of the sharer vector,

which does not result in a full broadcast; sometimes referred to as DirX, or Tristate

encoding [59; 60]. In Chapter 7 this thesis evaluates the Tristate option for 1024-core

systems with synthetic tests and finds that it suffers many pathological cases. While
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being better than a full broadcast, it appears to be a better use of space to simply store

a coarse bit-vector, a conclusion shared by Gupa et al. [61], although Mukherjee and

Hill arrived at a different conclusion when using benchmark data [59]. In this same

paper, Mukherjee and Hill suggest using a Gray coding scheme to encode the tristate

information, to reduce the number of different bits set to the same 11 combined state

when sharers are adjacent. This means that adjacent pairs of cores sharing information

will only have a difference in one symbol, and as a result will always be perfectly iden-

tifiable, where the naive tristate encoding has pathological cases such as core 7 and 8,

which when added in a naive tristate encoding also aliases to cores 0-15. However,

performing the Grayscale encoding in hardware adds complexity to the directory con-

troller, and does not result in an encoding suitable for multicasting in the same manner

that coarse vector and naive tristate are. The same work also proposes performing

the Gray-code mapping at the software layer when allocating the processor threads to

cores; when trying to map a core adjacent to another, it instead identifies a core which

results in a Gray-code neighbour, i.e. it identifies a core which only differs by one

bit in its location. This allows the naive tristate hardware to function efficiently, and

enables higher dimensionality mappings, such as software which is logically mapping

threads to a 3D mesh, can be mapped to the same naive tristate encoding effectively,

where the hardware Gray-code based tristate encoding can only operate on a single

dimension (having no information about the application). Unfortunately, using this

software Gray-code approach results in sharers which are physically non-adjacent on

the processor. This can result in poor use of the memory hierarchy and interconnect

bandwidth if there are shared caches which could be utilised, or direct core-to-core

data forwarding is supported. It also could prevent regions of the processor dropping

to a lower power state as threads are not allocated contiguously, and could result in a

energy inefficient multicast path when messaging all sharers, because the symbol that

does differ, resulting in a path branching, could be in the more significant bits of the

core location code.

The aforementioned paper by Gupal et al. introduces another other method of

shrinking the sharer state: instead of one bit per core, use one bit to represent a fixed

number of cores – a coarse vector representation of the sharers. This is another lossy

compression scheme, which must send messages to a minimum of n/k sharers, where

n is the number of cores, and k the number of bits used. If more than log2(n) bits

are used the memory can be used to represent a limited number of fully qualified core

pointers until there is no more space, and the system reverts back to a coarse vector
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representation, helping address the inefficiency of coarse vector for a very small num-

ber of sharers. However, these core pointers would require unicast messages on most

networks, while coarse vector is simpler to multicast. This is a very simple represen-

tation to compute, unlike the Gray-coded tristate encoding, and is significantly more

robust than any of the tristate options when given random sharer patterns. Like Ack-

Wise, coarse vector can be used as an obvious enhancement to DirkB, replacing the

broadcast with a multicast. If more than log2(n) bits of state are used, coarse vec-

tor can be used as an enhancement to AckWise, giving some multicast (or broadcast

filtering) support with the bits not required by the sharer counter in AckWise.

Acacio et al. propose another very compact encoding for binary tree based sys-

tems using distributed directories where each core is responsible for a slice of the

directory [62]. The paper proposes a Binary Tree encoding, for binary trees which

have directories at the leaves, not the root, which stores the highest level of the tree

that is shared in common between all sharers and the home node for the cache line,

performing well for data located in a home node close to the cores using it, and only

using dlog2(log2(n)+ 1)e bits per directory entry. However for data located far away

from the home node, this performs very badly, so Acacio et al. suggests using a small

full map cache, in front of a larger directory storage which uses the compact binary tree

encoding. To further improve on the effectiveness of the binary tree encoding they pro-

pose using an extra two bits of storage to reference what they call a Symmetric Node

of the home node; this involves allowing all 4 possible combinations of the two most

significant bits of the home node address, enabling three alternative reference locations

to be used for the tree. To compute the new sharer state, the smallest tree covering all

sharers from the four possible reference nodes is used, giving much better performance

when sharers are clustered together, but are not in the same sub-tree as the home node;

this requires dlog2(log2(n) + 1) + 2e bits of state. Neither of these compact encod-

ings allow for the unique referencing of a single sharer however, so even invalidations

to exclusive lines will require multiple excess messages, and increasing the storage

to log2(n) bits does not benefit the compressed sharer representation. To deal with

this Acacio et al. propose a final more elaborate encoding, which uses log2(n) bits to

represent the single sharer state, and switches to a binary tree representation they call

Binary Tree with Sub-Trees. This binary tree representation uses two binary trees to

encode the sharers, a tree relative to the home node, plus an extra tree relative to one of

the symmetric nodes; when the sharer state is computed the combination of home node

relative tree, plus symmetric relative tree, which gives the least false sharers is chosen,
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although the paper does not give an example algorithm to compute this efficiently.

The simple binary tree encoding is very simple to multicast from the home node,

requiring only a very small number of bits to be transmitted to determine when the

correct tree depth has been reached for the subtree broadcast to be sent; the other

schemes however require log2(n) + log2(log2(n)) and log2(n) + 2log2(log2(n)) bits

respectively, because the symmetric node must be fully specified.

For a single directory, at the root of the tree, this binary tree style encoding could

be adapted to point to the lowest subtree which contains all sharers, avoiding the issue

of the home node not being in the same subtree as the sharers. However, it requires

log2(n) bits of sharer state to specify an arbitrary node in the binary tree from the root

(or log2(n)+ log2(log2(n)) for the simpler encoding which uses a full leaf destination

and a short code to specify the depth to truncate at, like would be required for the

symmetric node multicast), rather than the more compact log2(log2(n)+1) storage for

the distributed sharer case.

Another method, presented as SPACE [63] by Zhao et al., is to store a separate

cache of sharer vectors, and for each directory line store a pointer into the sharer cache

entry which matches the sharer vector. This only works well if there are a limited

number of sharing patterns in use, but similar patterns can be merged at the sacrifice

of a small amount of aliasing. The biggest downside to this method is the expense

of finding the sharer vector in the table, which can be highly associative, but also the

required number of entries for good performance on 1024-core architectures may grow

to the point where a large sharer vector is once again needed to point into the sharer

table.

One option for keeping individual directory entries light is the linked-list, or chained

directory, option used in the IEEE standard Scalable Coherent Interface [40] (SCI). In

this protocol the home node keeps a pointer to only the first sharer, and then each sharer

keeps a pointer to the next. In theory this has no limit to the number of uniquely tracked

sharers, but requires traversing the whole linked list, sending an invalidation to each

sharer and awaiting their response, in order to perform an exclusive operation on the

cache line. SCI requires each core to be associated with its own slice of directory, and

when taking into account the overhead of memory control logic is likely to be a waste

of die area for a processor with hundreds of tiny cores. A reasonable alternative would

be to operate SCI across a group of clusters, and rely on another encoding, such as full

or coarse bit vector, for the local tile, and use SCI to deal with inter-tile coherency.

Recently a proposal was made for a completely different sort of directory struc-
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ture, the Tagless Coherence Directory [64], which uses a table of Bloom filters to

conservatively store information about which cores might hold copies of a given cache

line. When a cache line must be accessed in an exclusive fashion, the Bloom filters

are queried to return a full map bit vector which identifies the cores which definitely

do not contain a copy of the cache line, requiring a message to be sent to all those

remaining which may contain a cached copy of it. This message may then be sent

unicast, multicast using the full bit vector (requiring a problematic number of wires if

there are a large number of cores) or be fed into one of the lossy multicast encodings

such as coarse vector or tristate, or the lossless multi-phase multicast for a hierarchical

bitvector.

3.1.2 Invalidation Multicast Energy

Something not discussed in the early papers is the network energy used to multicast

these schemes. In fact, many of the papers still expect multiple unicast messages to be

used, under the assumption the interconnect was a simple mesh. In fact many of the

encoding schemes discussed so far are amenable to multicasting on a binary or higher

order tree, but there is a trade-off to be made between the accuracy of the encoding, and

the number of bits that must be transmitted along the network to carry the encoding.

The unicast based invalidations of DirNB and DirB, while perhaps reasonable for a

mesh architecture, require duplicate messages being sent often up very similar paths

in a tree network. Unfortunately, the closer to the root the longer the wire length,

and the greater the probability that two messages will share the link. Since the longer

links require more energy to transmit over, the most common links are the ones that

require the most energy . In this model, the downside for Dir[N]B is that there can be a

huge amount of wasted energy duplicating messages over these links, while multicast

messages can share the same link, at the expense of more target address bits being

transmitted, or more cores finally receiving the message than necessary.

However, this model makes the false assumption that each transfer will take the

same energy to change the wire state of the link (which might be true if the packets

were very different, or the link was a serial interface such as transmission line), but for

a regular parallel wire link the Dir[N]B messages will change only a few of the target

address bits, leaving the message payload identical. This means that unicast messages

in fact do not waste significantly more wire energy, as might be naively expected, they

simply require more routing energy near the root, and compared to lossy multicast
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messages they require less routing energy near the leaves of the tree. Where multiple

unicast messages perform particularly badly is the time taken to send the messages. A

tree based design is not suited for unicasting to a large number of sharers because only

one message can be sent from the root per cycle, where a multicast requires only a

single cycle of time at the root to sent the message to all targets. Also, from an energy

perspective it may be preferable to incur greater power usage near the leaves in routing

unnecessary packets, than route extra packets near the root, as this would spread the

thermal load more evenly throughout the chip.

From this realisation that the message payload to all sharers will require the same

energy, it is clear that the energy difference between protocols comes from the number

of bits needed to make routing decisions, and the number of false paths taken because

of a lossy encoding scheme. Dir[N]B results in no false paths, but requires log2(n)

bits of routing address at the root, reducing by one bit every level up to a single bit

for the final switch, and effectively an extra bit worth of energy for every routing bit

which differs between subsequent sharers. The naive tristate option is similar to the

unicast energy, except requiring twice the number of routing bits, and reducing by two

bits at a time ascending the tree; however the energy is increased further by involving

false paths where sharer information has been lost in the encoding. The Conservative

Tree Encoding proposed in Chapter 7 has an identical routing bit behaviour to the tris-

tate routing, but can be configured to trade-off extra routing bits, for less false paths,

and can truncate the routing bits arbitrarily at different levels depending on the de-

sired behaviour (over provisioned for the lower levels to support very random sharer

distributions for example).

The binary tree based encodings which use symmetric nodes require log2(n) +

log2(log2(n)) bits of information to be sent to the first common node between the

symmetric node and the home node; essentially through the whole height of the net-

work. A root based binary tree scheme would send log2(n)+ log2(log2(n)) bits from

the root, reducing by one bit per level until it reaches the root of the broadcast subtree,

at which point only a single bit or two must be sent to indicate the presence of a valid

broadcast packet.

The full and coarse vector are very different in that they require either n or k bits

at the root, but the number of bits halves at every level until there are no more bits

remaining. For full vector this is the leaf of the tree, the core, but for coarse vector this

is some point lower in the tree, from which a broadcast is performed with no routing

information. Which of these options requires the least energy requires detailed energy
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simulations running benchmark workloads which are representative of those going to

be run on the processor, because different sharer patterns can drastically affect the

number of false sharers produced by a lossy encoding, and as such the trade-off point

between the different multicasting encodings.

3.1.3 Efficient Coherence Messaging Support

Optical interconnects are becoming popular for proposed interconnect optimisations,

for instance ATAC [57] and C3 [65], and there are other architectural proposals to

reduce the latency of some operations such as transmission-line rings [66]. However,

none of these make any contribution to the efficient multicast of invalidations beyond

that already possible with a full sharer vector or coarse vector, which has been shown

to be a significant problem for larger scale multicore processors by Jerger et al. [39] in

their work to introduce multicast support to mesh routers. While these are very suitable

options for smaller multicores, there is room for improvement in the manycore scale

era, especially when exotic optical interconnects are not an option.

The ATAC [57] design, discussed in more detail in Section 3.2 uses a similar mesh

and tree design to that proposed later in Chapter 6, but with a full mesh connecting

all cores, and a broadcast tree from the centre of each of the 16 tiles (up to 64 cores

per tile). Tiles themselves are connected with an optical broadcast ring bus. This de-

sign requires a sophisticated optical interconnect, and with the directory partitioned

into N slices (one slice per core), the directories themselves are not very area effi-

cient (RAM control logic overhead is relatively large with small RAMS) and sharer

invalidations require acknowledgements. This is the traditional distributed directory

approach, which trades off the increased bandwidth of a distributed directory, with the

increased bandwidth and energy requirements, along with greater latency on S→I/E

transitions. Jungju Oh et al. [66] demonstrate that an electrical transmission-line based

ring can provide a similar low latency network around the chip which could enable an

ATAC like architecture without the optical interconnect. These architectures as pro-

posed however only support unicast or full broadcast operations, while using a few

extra transmission bits to filter the broadcast into a multicast could potentially save

much energy in the traditional bus based components of the architectures, and in the

coherency controllers in the L1 caches which must handle the broadcast operations.

Another important consideration is physical proximity between cores which share

data. One of the advantages of snooping protocols is that it is very simple for cores
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to forward data, without involving a third device, such as a shared cache or directory.

Directory architectures can still support data forwarding, especially in architectures

with good core-to-core communication such as ring bus or mesh based topologies, but

this still requires a rather indirect series of communications with the directory, which

may not be near to the cores with the data, even if the data does not have to travel very

far. It is still worth performing this data forwarding, as data packets are much larger

and require more bandwidth and energy to transfer than coherency messages, but it

would be better if the coherence protocol could operate locally.

One method of reducing the latency and energy of accessing the directory, is to use

a topology which allows effective directory caching, usually a hierarchical topology

such as a tree. In these cases the coherence requests can often be resolved locally, and

the data forwarded if possible from a nearby cache. The coherency protocol presented

later in this thesis is very amenable to this hierarchical directory cache optimisation,

and only neglects it in order to reduce development time.

An alternative approach which can reduce traffic to the directory by keeping co-

herency requests local, is the Proximity Coherence protocol [52]. This allows cores

to snoop neighbouring cores’ caches to gain access to cache lines which they posses.

This works by allowing each cache line in a L1 cache to track a number of neighbours,

which can then receive a copy of the line in their cache without sending the request to

the directory. Exclusive and modified lines can be forwarded with these raised privi-

leges, but shared cache lines may only be forwarded in the shared state. When a in-

validation arrives for a forwarded cache line it must forward the invalidation, and wait

for response from all sharers before responding to the coherency request form the di-

rectory. If the owner core wishes to evict the cache line due to self-invalidation it must

inform the directory of the change in sharers, and await the directory’s response before

completing the cache line invalidation. Proximity Coherence is in some ways a hybrid

of SCD and a MESI based directory protocol, with a directory maintaining the root

coherency state, but SCD style sharer chaining allowed between adjacent cores. Un-

fortunately, due to the potential chain of sharers, Proximity Coherence based coherency

requires an acknowledgement from the cores upon invalidation from the shared state.

This means that inexact sharer state encodings must track the number of sharers, like

AckWise, and receive unicast responses; it also makes it initially incompatible with

the coherency protocol proposed in Chapter 6 of this thesis.
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3.1.4 Tackling the associativity problem

Sharer state is not the only way to shrink directory storage requirements, there are other

orthogonal directions to save space and energy. Reducing the number of entries in the

on-chip directory will reduce the size and energy of the RAM required to implement it,

while less associative structures will have less control logic overhead and result in less

time or energy taken to locate an entry. Unfortunately simply reducing the capacity or

associativity alone results in a huge drop off in performance.

3.1.4.1 WayPoint

One solution is that proposed by Kelm et al., called WayPoint [34], which reduces

the associativity of the directory to a fraction of that required to fully represent all of

the cores in the system, and instead overflows the set into a hardware managed in-

memory structure. The WayPoint paper makes an in-depth analysis of the scalability

of other coherence mechanisms, like probe-filtering – which instead of evicting when

directory capacity is exceeded, sends a broadcast to reconstruct sharer state when a

new or previously evicted line is requested, and determines that even with the aid of

assisting hardware, this does not scale up to 1024 cores.

WayPoint operates by using a in-memory linked list structure, which stores any di-

rectory cache entries which will not fit due to associativity or capacity constraints. This

structure uses the existing processor cache hierarchy to access the data, which allows

it to keep good performance, without adding the extra complexity of another cache

or memory controller. WayPoint is assessed using Dir4B encoding for each node, but

the WayPint mechanism is compatible with any directory based sharer representation.

When using WayPoint to provide the extra directory capacity and associativity to en-

able a full map coverage, the performance with smaller directories is comparable to

that of directories with 4× to 16× the capacity. When comparing associativity sen-

sitivity WayPoint can enable performance close to a full map directory with as few as

4-way associativity in the directory, often out-performing even 64-way associativity

for a directory without WayPoint, which must evict sharers on capacity and conflict

misses.

WayPoint and other compressed sharer encoding schemes are not mutually exclu-

sive, but complement each other. For example an ideal system could use WayPoint

to enable sufficient associativity and effective capacity of the directory, while a com-

pressed encoding reduces the space required per-line, and reduces the energy and traf-
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fic required on multicast. However, for many workloads it is possible to reduce asso-

ciativity requirements through filtering of the memory regions which actually require

coherence, as shown is Chapter 6.

3.1.4.2 ZCache and Cuckoo Caches

An alternative approach to tackling the associativity problem is to increase the effec-

tive associativity by reducing aliasing, through the use of different hash functions to

index different sets. Two examples of these structures are the Cuckoo directory [36]

and ZCaches [35], which can help prevent evictions by increasing effective associativ-

ity without the overhead of a traditional high-associativity cache structure. These are

again orthogonal solutions akin to WayPoint, and could be used as the foundation for

the directory storage. Sanchez et al. make a good case for ZCaches in their Scalable

Coherence Directory paper [37]. Both the Cuckoo Directory and SCD papers suggest

that the best way to save energy is to reduce the associativity of the directory cache,

but to over provision the number of entries by about 25%, allowing the effective as-

sociativity introduced by mixed hashing schemes to function effectively. This helps

compact the directory because fewer larger sets are more silicon efficient than multiple

smaller sets.

The SCD paper also mentions hierarchical directories, suggesting that they can

overly complicate the coherence protocol, but under constrained architectures such

as if implemented in a physically ordered tree, a hierarchical directory protocol need

not add significant complexity. It is possible that a hierarchical directory cache could

take on the roll of caching the second level bit-vector for lines which require multiple

entries in the SCD hierarchical-bit-vector representation, with an eviction taking the

roles previously discussed of eviction or resorting to broadcast on that sub-tree. This

would also enable a single cycle multicast form the root, as the second level bit-vector

is held at the root of the sub-tree and does not need sending from the root itself.

3.1.5 Software assisted solutions

Of course using software assisted approaches to reduce the coherency demands on the

system is likely to reduce not just the bandwidth requirements, but also the storage

requirements for limited directory systems. Cuesta et al. [67] use a page based coher-

ence state tracking mechanism implemented in the TLB to reduce the demand on their

directory based coherency protocol, and in doing so show that directory size can be
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reduced as much as 16 times while still providing the same performance, for systems

up to 64 cores. Their work fails to analyse the effect on the associativity requirements

however, which this thesis addresses by performing a similar exercise on 32 to 1024-

core systems with an without a very similar coherency filtering scheme, the analysis of

which can be found in Chapter 6.

Taking this idea to its limit results in a system with no hardware coherency, such as

that proposed by Fensch and Cintra [41]. This architecture operates by prohibiting a

memory page to exist in a modified state in any two caches simultaneously, but requires

the programs be written using release consistency, a much more relaxed memory model

than that which many programs are written for.

The best solution is probably a balance of all of these techniques. By using page

based coherence filtering with a multi-hash directory and an overflow scheme such as

WayPoint, the directory could be significantly under provisioned, while still maintain-

ing the same performance as SCD or Cuckoo Directories alone.

3.2 Multicore Architectures

There have been a a number of commercially produced, and even more academically

proposed, manycore architectures recently. This section discusses the various features

of those most relevant.

3.2.1 Intel Research and Products

Intel has explored three main experiments into the manycore architecture space with

their experimental Teraflops chip, Single-chip Cloud Computer (SCC) research plat-

form, and then their commercial Xeon Phi architectures. Although both SCC and Xeon

Phi execute the x86 ISA, the architectural design and programming model for each is

very different.

3.2.1.1 Teraflops Chip

The original Teraflops experiment was implemented in a 65nm process, and used 80

specialised VLIW floating point cores in a 10×8 mesh running at 5GHz [68; 7], with

3D stacked memory. Using 100,000,000 transistors and a 275mm2 die, each of these

specialised cores occupied 3mm2 while providing two single precision floating point
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engines. Part of the sacrifice made to provide this density was to use 2KB data memo-

ries and 3KB instruction memories for each of the cores, relying on the 2.56Tb/s mesh

bisection bandwidth and stacked memory interface to provide the data, along with

careful programming; the processor also lacked cache coherency. One of the main

discoveries when testing the processor was that adding more cores to some problems

did not improve performance, and instead hampered it, with the extra cores interfering

with memory traffic more than they accelerated the computation [69]; this problem

was realised again in the work of Chapter 6. The chip realises its design goal of 1

TeraFLOPS single precision performance, at only 62 Watts running at 3.16GHz, giv-

ing credence to the idea that multiple simple cores can be more energy efficient than

fewer larger cores. Scaling to 5.7GHz, for 1.81 TeraFLOPS of performance, required

increasing the voltage from 0.9V to 1.35V, and increased the power consumption from

62W to 265W; a reduction in energy efficiency of 58%. This experiment confirmed that

more cores are better than increasing voltage and frequency, from a power efficiency

perspective, so long as the program itself scales well.

3.2.1.2 Single-chip Cloud Computer (SCC)

Based around the simple P54C Pentium architecture in Intel’s 45nm process, the SCC

provided 48 simple cores each operating within its own discrete memory space and

communicating via message passing. The SCC architecture was based around tiles of

two cores each, arranged to form a 4× 6 2D mesh, providing a core-to-core message

passing interface and a path to the memory controllers, but no coherence mechanism

between the cores. Intel’s SCC appeared to the programmer as a cluster of 48 isolated

systems, each capable of running a lightweight operating system or runtime, rather

than a traditional CMP system. This configuration was familiar to developers used

to writing MPI programs for larger scale compute clusters, but very different to those

targeting accelerator architectures such as those based on GPUs. The SSC was devel-

oped as a research platform, and is not a commercial design that was taken further and

productised.

3.2.1.3 Xeon Phi

Intel took a very different approach to designing their Xeon Phi accelerators (devel-

oped from the failed Larabee graphics accelerator), using a design much closer to their

traditional CMP architecture. Returning to a single unified coherent memory space
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the first generation Knights Ferry (KF) architecture was still based around the P54C

architecture in 45nm, but with 64-bit, four-way SMT, and 512-bit wide vector support

for high throughput floating point processing. This KF architecture was provided with

only 32 cores and is estimated to require a die of approximately 700mm2. The Xeon

Phi architecture is based around a bi-directional ring, not unlike the Cell Broad Band

Engine, with each direction providing a high bandwidth data ring, and a narrower set

of address and coherence rings. Original designs for the Xeon Phi provided only a

single data, address and coherence ring per direction, but simulations suggested that

this would not scale beyond 32 cores as the address and coherence networks were sat-

urated; to alleviate this the production Xeon Phi silicon provides two sets of address

and coherence rings per direction, with a single 64-byte wide data ring. Coherency is

provided through a distributed directory along with each core’s L2 cache, and provides

consistency conforming to the standard x86 memory model (TSO), making the Xeon

Phi as simple to program for as any standard x86 desktop processor. Even the required

performance optimisations are similar to those required to write scalable applications

on large scale multi-socket x86 systems.

Moving to 22nm the first production generation of Xeon Phi, Knights Corner (KC),

uses the same modified P54C core, but increases the number of cores, enabling to up to

61-core designs for 244 threads and up to 1.2 TeraFLOPS of double precision compute

performance. This design has been used as part of the Tianhe-2 supercomputer to

achieve 33.86 PetaFLOPS, taking the number one spot in the Top 500 supercomputer

rankings.

The current generation Xeon Phi, Knights Landing (KL) moves away from the

P54C architecture, moving to a more modern Airmont Atom core design. This new

core provides out-of-order execution, as opposed to the P54C’s in-order pipeline, while

maintaining 4-way SMT. Despite the more sophisticated microarchitecture the 14nm

process allows KL to pack up to 72 cores into each processor. One of the benefits of

the new microarchitecture is that Xeon Phi now supports the full modern x86-64 ISA,

while the modified P54C only supported some of the 64-bit extensions and did not

support the vector instructions used in Intel’s traditional x86 line.

Intel’s provision of a full 64-byte wide data network between not only the 72 cores,

but also the memory controllers, demonstrates clearly that a number of extremely wide

wire links are possible on such large architectures, motivating the use of 32-byte wide

mesh links in Chapter 6 of this thesis.
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3.2.2 Tilera TilePro/TileGX

Tilera is one of the few companies producing industrial manycore processors, used

primarily for high bandwidth network applications or multimedia transcoding. Their

original 64-core Tile64 processor is based on 32-bit, RISC, 3-way VLIW core in a 8×8

2d mesh, with hardware managed caches providing 8 KB instruction and 8 KB data L1

cache, and 64 KB unified L2 caches local to each tile [70; 71]. The Tile64 also provides

“neighborhood caching”, which allows any core to access the L2 on other tiles, acting

as a large shared L3 cache. Each core has full virtual memory support, providing a 32-

bit virtual memory space for applications on a 64-bit (36-bits implemented) physical

address space, and the Tile64 can run SMP Linux. Tilera’s largest chip provides 72

64-bit processor cores, operating at up to 1.2GHz in a 2D mesh architecture. The

TileGX processors uses a non-blocking single-cycle "Terabit" mesh router architecture

to provide their very high bandwidth. This mesh is split into 5 dedicated channels and

provides full cache coherency (although the memory consistency model is unspecified)

across the processor [72]. The Tilera processors embody the SoC design philosophy,

providing not just four memory controllers and 26 PCI-express lanes, but eight 10G

network ports, for 80GB/s of networking bandwidth. Tilera’s success demonstrates

that there are market niches where highly parallel systems, using full general purpose

processing cores, provide the best balance of energy, compute, latency, and bandwidth.

3.2.3 Rigel

The Rigel [73] architecture was originally conceived as a 1024-core accelerator ar-

chitecture, designed to run programs written and compiled specifically with their pro-

gramming interface, in a similar fashion to programming for graphics cards as accel-

erators. As such the architecture initially provided no cache coherency, instead using

the lower global cache level as the only cache for accesses to memory regions which

required coherency. Unlike graphics cards however, Rigel provides full Multiple In-

struction Multiple Data parallelism, like a traditional CMP architecture, with each core

being a full 2-issue in-order RISC pipeline with a single precision floating point unit.

The hybrid hierarchical-tiled architecture of the Rigel processor shows that some con-

sideration has been put into the design, which uses clusters of eight cores with private

instruction caches and a single shared data cache which are in turn connected by a

bi-directional binary tree with another 15 clusters to form a tile of 16 clusters. Eight

of these tiles of 16 clusters are then connected to the global cache banks and memory
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controllers through a multi-stage crossbar for a total of 1024 cores.

The Rigel accelerator is designed to be programmed with their Low-Level Pro-

gramming Interface (LPI) which exposes a task based parallel programming model

utilising software based relaxed consistency cache coherency for some memory re-

gions, and enforcing stronger coherency for communication structures by preventing

them from being locally cached. This model works well for many benchmarks which

have already been designed to run on accelerator architectures, leveraging the compute

and memory bandwidth without the impact of managing strict memory consistency

between the 1024 cores.

Later work on the project adds cache coherency to the Rigel architecture, investi-

gating the possibilities of probe filtering and directory caching as scalable solutions.

Probe filtering works much like a directory cache, but capacity evictions are not re-

moved from the core caches, and instead a directory cache miss requires a full chip

broadcast probe to reconstruct the sharer state. Despite adding hardware support to

accelerate the probe broadcast and collection phases this option does not provide suf-

ficient scalability in the Rigel architecture. Because capacity misses for eviction based

directory caches also presents a performance problem (due to the required associativ-

ity for such a large manycore system) they developed the WayPoint [34] coherency

scheme discussed in more detail in Section 3.1.4.1.

3.2.4 ATAC 1000

Proposed by Kurian et al., the ATAC [57] architecture is a scalable tile based architec-

ture designed to scale from 64 to 1024 cores, based largely on the traditional distributed

directory structure on a 2D mesh. What ATAC contributes to the field is an on-chip

optical broadcast ring, which is used in ATAC to send broadcast coherence invalida-

tions and long distance point to point messages. The ATAC architecture is divided

into 64 tiles, in a 8× 8 mesh, with each tile’s hub containing an optical transceiver

to inject messages into the ring, and read messages out of it. The ring is finely tuned

so that each receiver coupling removes a fraction of the optical signal which is small

enough to allow the other 63 hubs to receive it, but large enough such that after the

63rd the signal is below the detection threshold. Due to the nature of light it is possible

to transmit multiple wavelengths of light simultaneously down the same wave-guide,

which ATAC uses to eliminate contention on the optical broadcast ring by tuning the

wavelengths of the light sources for each hub to be different. The wavelengths must
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still be very close together however, because transmission through wave-guides is sen-

sitive to the wavelength of the electromagnetic wave, and different wavelengths will

propagate at slightly different efficiencies, and speeds, known as dispersion. The se-

lected wavelengths must also maintain sufficient frequency separation that the mod-

ulation frequency does not cause the modulated signals to overlap in the frequency

domain, resulting in interference. By using multiple wave-guides each transmission

on the optical bus can contain a number of bits, just like an electrical bus; ATAC uses

a 64-wave-guide ring to provide 64-bits per message on the optical network. By using

the same frequency on all wave-guides, a message sent from a hub can avoid paral-

lel bus related skew that could otherwise be introduced by dispersion, assuming that

each of the 64 wave-guides is manufactured within suitable tolerances, and is length

matched throughout the chip. This low contention network requires that each receiver

be capable of filtering out 63× 64 frequency–wave-guide combinations for a 64-hub,

64-bit wide optical network, with each filter loop in every receiver requiring precision

manufacturing. One feature of the optical network which is not described is how flow

control and rate limiting is handled. Because the bus itself is not arbitrated, each re-

ceiver may receive up to 64 messages per cycle to process, and while there are FIFO

buffers to cover momentary bursts of traffic, eventually the FIFOs will become full and

no more traffic may be sent. Of course it is posible to utilize the optical bus itself to

send messages indicating the full status of each FIFO to the associated sharer, with

each transmitter keeping 63 bits of state to store the corresponding input FIFO state

for each destination, but the authors do not explain if this is the scheme they use, or

how much impact this has on the bus bandwidth and latency.

Another potential shortcoming of the ATAC architecture is the lack of support for

packet combining of broadcast responses, as in the Rigel architecture, so responses

must be processed serially. Although very few broadcasts require a full response, for a

1024-core architecture those few instances, such as when a barrier variable is cleared,

require a single directory node to process 1023 unicast point to point response mes-

sages, with a mixture of electrical mesh and optical network paths.

One of the largest shortcomings of the ATAC architecture is the distributed direc-

tory model that ATAC uses, which is highly inefficient and likely would not scale to

the 1024 cores they simulate. This would be due to the high associativity required for

good performance, and the small size of each of the directory slices. By partitioning

the directory into 1024 slices using address partitioning, each slice must have suffi-

cient associativity to achieve the full performance potential of the processor, which for
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simple schemes is equal to the associativity of the L1 cache level – at least 1024 ways

for the ATAC 1000. With each of the 1024 directory slices being capable of caching

1024 cache lines, this totals 1M cache lines, or 32MB of cache with 32 byte cache

lines, which matches the 32KB of private L2 the authors provide for each core. To

summarize, the ATAC 1000 is provided with 1024, 1024-way fully associative direc-

tory caches, which is a huge waste of area and will consume an unreasonable cost in

energy. By using serial walk-through of the directory tags the physical associativity

can be reduced in trade-off for latency, while maintaining the same logical associativ-

ity, with the additional benefit that on average the energy of a lookup will be reduced

by about half, since the average linear search will need to scan through half of the tags;

the fewer physical ways the closer the energy saving approaches 50% and the closer

the average latency comes to 500 cycles. Even in the optimal case, reading on average

512 tags requires far too much energy for a power efficient design, so this is clearly an

area where the ATAC design is not fully thought out.

Finally, Kurian et al. do not evaluate the scalability of the ATAC architecture,

presenting only benchmark results which are compared relatively within either the 64-

core or 1024-core design configurations, and not comparable between the two. The fact

that when scaling from 64 to 1024 cores the electrical mesh bus width was increased

from 64 to 256 bits wide suggests that architecture did not scale well with the simple

linear increase in on-chip bandwidth, and a quadrupling of bandwidth and quartering

of large packet latency was required to combat the huge increase in point to point

latency and traffic requirements of the larger design.

3.2.5 Cyclops-64

Part of the IBM Blue-Gene project, one of the earlier research manycore processors

was the the Cyclops-64 [43].This processor is comprised of either 80 or 160 cores

depending on one’s perspective, with each of the 80 cores providing two thread exe-

cution engines based on a subset of the IBM Power ISA, but sharing a single 64-bit

floating point engine. Each of the 80 cores also contained two 32KB SRAM scratch-

pad memories, which could be partitioned to provide a contiguous address space of

NUMA global memory, although the private scratchpad partition could still be ac-

cessed by all cores through a non-uniform address scheme. The architecture provides

no data caches, and as such no coherency, instead relying on the programmer to man-

age memory allocation and duplication between the private scratchpads/NUMA global
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memory. Instruction caches were provided, but only 16 32KB I-caches were provided

for the whole processor, with five cores sharing each.

The most unusual component of the Cyclops-64, at least compared to other many-

core processors, was the use of a massive 96× 96 7-stage, non-blocking, crossbar to

connect the cores to each other (to access the distributed SRAMs) and the memory

controllers and other off chip connections. Surprisingly the crossbar only occupies

6% of the 462mm2 chip, while providing more than sufficient bandwidth between the

cores and memory elements.

3.2.6 Godson-T

The Godson-T is a homogeneous 64-core processor, arranged in an 8×8 grid, to form

a mesh network where each core is a 1GHz RISC core based on the MIPS ISA. In their

paper [74] Wang et al. investigate the memory hierarchy of the processor. The Godson-

T has 16 L2 cache banks (four on each edge) with four memory controllers (the four

L2 cache banks from each edge are connected to a single memory controller via a

crossbar), and conclude that on chip L2 cache can satisfy the memory requirements of

the processor, and that almost all of the on chip traffic is generated by memory traffic.

This means that the processor designer has to be careful to allocate enough bandwidth

so that critical links, such as those near L2 cache banks, do not become a bottleneck,

in order to fully realise the bandwidth of the off chip connections.

Strangely Tan et al. give a contradictory account of the architecture of the Godson-

T [75], to that of Fan et al. [76] and Wang et al. [74], describing the architecture as a

hierarchy consisting of a 5× 5 mesh of tiles, with all but the centre tile consisting of

a 4-core processing node. This gives a total of 24 tiles of 4 cores per tile, or 96 cores.

This hierarchy is completely different to the 8×8 mesh described previously. Within

each tile the 4 cores share a write through L1 cache and are connected by a full 7×7

crossbar. The L2 cache is global to the whole chip and fronts the memory controllers.

3.2.7 Cicso Metro, a.k.a. Silicon Packet Processor

Cisco ships managed switches which use 188-core Tensilica processors as network

processors [77; 70; 4]. At 130nm the processor die is 18x18mm, with the cores being

0.5mm2 and 30% of the chip is taken up by DRAM and extensions. Four spare pro-

cessors allow for defects, so this is technically a 192 core processor with 4 disabled for

yields. The total area per core is a little under 1.7mm2 and draws 35W at 250MHz.
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3.3 Simulators

This section discusses some of the more relevant simulators and how they relate to the

work on cycle accurate multicore simulation in this thesis.

3.3.1 Single Threaded Simulators

Many of the simulators used commercially and academically for cycle accurate or

approximate simulation are designs around single threaded discrete event simulation,

with SystemC based simulation, Simics, and Gem5 based simulations being the most

popular.

3.3.1.1 SystemC

One of the biggest industry tools for device, processor, and full platform simulation

is the SystemC modelling language, based around heavily templated C++ with a main

simulation kernel handling the event loop, and extensive signalling and transaction

support. SystemC can be used to write cycle by cycle models, through loosely timed

transactional models, to purely functional simulation. The most relaxed timed model

is a version of Transaction Level Modelling which supports timed transactions (TLM

2.0), and uses a feature called the Quantum Keeper to track timing offsets between

simulation elements, using timing annotations in the transaction objects. This simula-

tion is still all run in a single thread running the SystemC scheduler however. SystemC

is a powerful simulation tool because of its flexibility and the large library of models

already available, but its performance in cycle accurate and even functional simulation

is poor compared to other dedicated simulators.

3.3.1.2 Simics

Simics [78], is an emulation based functional full system simulator supporting multiple

ISAs, originally developed in academia but spun out commercially under Virtuatec and

now owned by Intel. Simics has been used to provide the core functional simulation

to a number of cycle accurate simulators, and provides some powerful features for

application development and debugging on virtual prototype hardware, competing with

TLM based SystemC models in industry. The lack of cycle accurate support allows it to

be fast, but makes it inappropriate for use in design space exploration or performance

profiling, and more suitable to application development ahead of hardware availability.
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3.3.1.3 Gems

Gems [79] provides cycle accurate full system simulation by leveraging Simics as a

functional emulator for the target SPARC ISA, and driving it from its own timing mod-

els. Gems can use the Opal out of order processor timing model and Ruby interconnect

models, but development has ceased in favour of its derivative Gem5, based on the M5

simulator in place of Simics, allowing the tool to be fully open source. Because Gems

drives Simics a single instruction at a time, and runs in a single thread, performance is

relatively poor.

3.3.1.4 SimFlex

Like Gems, SimFlex [80] uses Simics as its functional emulation core, but uses statisti-

cal sampling of the application to avoid the overhead of simulating each instruction one

by one with a timing model. By using statistical sampling SimFlex can achieve good

performance, but accuracy suffers because it does not observe the entire application

behaviour.

3.3.1.5 Gem5

GEM5 [81] is currently one of the most popular tools for SoC and MPSoC simulation

and design-space exploration. Based originally on the Gems and M5 simulators it uses

emulation based simulation to provide simulation models for multiple ISAs, while also

supporting a variety of micro-architectural models for each core type, scaling from a

simple atomic model of one cycle per instruction, to full out of order superscalar mod-

els. The interconnect is also modelled with a similar degree of configurability, with

the most detailed interconnect simulations provided by the Ruby Garnet models, while

simpler and faster models are supported with the Ruby Simple interconnect models and

GEM5 Classic shared bus based models. GEM5’s accuracy has been evaluated against

a dual-core reference platform [82] demonstrating up to 35% error, but across Splash2

and ALPBench it achieved an RMS error of 8.8%. Unfortunately GEM5 suffers from

relatively poor simulation speed; running on the same University of Edinburgh com-

pute cluster as used in later chapters of this thesis, the ECDF [83], it provides simula-

tion speeds of 0.06 MIPS to 0.275 MIPS with an average speed of 0.157 MIPS when

simulating 4- to 16-core shared memory systems with the simple Atomic core model

and Ruby interconnect model. While the Garnet interconnect models may provide

detailed router microarchitecture models, the topology options are limited to a set of
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regular structures such as mesh and torus, inhibiting experimentation with more exotic

or novel NoC topologies. Additionally its timing/control-flow only based modelling

means that effective wire level power modelling cannot be performed accurately. It

also means that relaxed memory consistency models cannot be accurately modelled

or verified because the absence of data caching means that host memory consistency

and coherency is applied, regardless of that specified in the model’s coherency proto-

col. Much of the Garnet model infrastructure is written in Python, which also puts the

models at a performance disadvantage to those written carefully and compiled from

pure C/C++.

3.3.1.6 ARMn

ARMn is a simulator designed to simulate multicore ARM systems [84], which con-

nects multiple cycle accurate processor elements based on Simit-ARM together with

a SystemC interconnect model. Out of the box it provides a simulation infrastructure

with a configurable interconnect model enabling bus, mesh, and star based topologies

with full cycle accurate simulation. Unfortunately it does so for a message passing API

only, and does not model a shared memory system, requiring programs to be written

against a special message passing library. This limits its usefulness in general purpose

multicore simulation and design space exploration. The simulations speeds achieved

are also not particularly fast, with reported speeds of under 7K cycles/s for a 16 node

torus coupled to a synthetic traffic generator, although a simple four node bus can be

simulated at a little over 400K cycles/s. As a result of the slow speed and inflexibil-

ity of simulation target of ARMn, the simulator is of little use outside of performing

experiments on the specific architecture which it models, and is not useful for more

general design space exploration.

SimpleScalar

SimpleScalar [85] is another historically popular simulator, capable of functional down

to detailed cycle accurate simulation. SimpleScalar was parallelised by Zhong et

al. [86], but SimpleScalar must run its own ISA, requiring its own compiler, and does

not offer the simulation performance of more modern simulators.
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3.3.2 Tightly Coupled Parallel Simulators

Multi-processor simulators have been parallelized to take advantage of modern multi-

core systems, with the simulation divided between host cores, usually at the granularity

of target cores. However, these simulations still synchronize after every cycle to main-

tain correctness; this introduces significant overhead, and stalls the whole simulation

when the operating system context-switches one of the threads. To reduce this over-

head simulators have increased the synchronization quantum beyond a single cycle, but

this introduces inaccuracies in simulation. These systems also only typically model a

shared bus or crossbar, and may not model the effect of shared bandwidth correctly if

the quantum is larger than a single cycle.

3.3.2.1 GPGPU Simulation

One of the most interesting parallel simulators, is the CUDA based GPGPU simulation

of ARM multicore processors by Pinto et al. [87]. This simulator uses a Nvidia GPU,

running a Cuda kernel which implements the instruction set simulator, cache model,

and simple interconnect model. Despite executing the simulation in lockstep, it pro-

vides simulation rates up to 1,800 MIPS for a 8192-core simulation. When adding a

simple switch arbitration model the simulation rate droops to approximately 1 MIPS

for 32-core simulation up to 50 MIPS for a 4096-core simulation, with single instruc-

tion synchronisation.

Although it currently only supports a subset of the ARM ISA, and functional simu-

lation, a large NoC model is highly amenable to GPGPU acceleration. Communication

bottlenecks are too high to currently run the core simulation on the CPU and intercon-

nect on the GPU, communication latencies outweighing the time saved by executing

it on the GPU, but moving the whole simulation onto GPU architectures could be a

promising way forward for cycle accurate manycore simulators in the future. Alter-

natively future architectures with closer coupling between the CPU and GPU such as

the Heterogeneous System Architecture (HSA) [88] could reduce the communication

latency to the point where it becomes profitable.
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3.3.3 Parallel Relaxed System Simulators

3.3.3.1 BigSim

BigSim [89] is a modern multiprocessor simulator designed to deliver scalability and

performance estimates on current and future large scale super-computers. BigSim

works by running message passing based applications developed with MPI or Charm++

on a system much smaller than the simulation target, but running as many threads as

would be run on the real target, and capturing the messages passed through the API

with timing information. The timing estimation for code sequences can be based on

either user annotated timings for straight line code segments, scaled wall clock time

of the time taken to execute the code segment on the simulation host, or a weighted

heuristic based on hardware performance counters such as number of floating point

instructions, branch instructions and memory instructions; BigSim does not currently

support a cycle accurate simulation of the target platform processors. Timing estimates

for the interconnect are based on the latency of a message through the network topol-

ogy of the simulation target, under infinite bandwidth/zero congestion circumstances.

The authors argue that this is accurate enough for applications with high compute to

communication ratios, and for their presented benchmarks this does seem to be the

case. However, a slight increase in network traffic can have significant impacts on the

latency of communications as the network approaches saturation; in Chapter 6 Fig-

ure 6.13 shows how drastically the communication latency over a network can change

under increasing traffic demands. While BigSim is obviously useful for supercomputer

scale performance estimates of message passing applications, the lack of microarchi-

tecture simulation, overly simple network model, and lack of shared memory program

support make it unsuitable for manycore CMP simulation.

3.3.3.2 FastMP

FastMP [90] attempts to address the issue of simulation scalability for multicore plat-

forms. Their platform combines checkpoint based sampled execution to minimise the

simulation work required, and analyses the discrepancy between the CPI of each core

and the average CPI across all simulated cores to try and address errors in simulation

accuracy at runtime. Unfortunately FastMP can only simulate applications which do

not share data between threads, largely missing the point of parallel system simulation.
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3.3.3.3 Wisconsin Wind Tunnel

Wisconsin Wind Tunnel (WWT) [91] is one of the earliest parallel simulators, but un-

fortunately requires applications to use an explicit interface for shared memory. Its

direct execution simulation method also limits it to running on CM-5 machines, mak-

ing it impractical for modern usage. WWT II is the evolution of the first generation

WWT, and Mukherjee et al. [92] transition the WWT II methodology to other host ar-

chitectures. Unfortunately it still does not model anything other than the original target

memory system, and requires applications to be modified to explicitly allocate shared

memory blocks.

3.3.3.4 HORNET

HORNET [93] is a scalable cycle accurate simulator for on chip interconnects. The

cores can be fed from simulation (such as the MIPS simulator that is integrated into

HORNET), from previously generated traces, or from instrumented natively execut-

ing code, such as with PIN. HORNET is also integrated with a power model based

on ORION 2.0 [94] and thermal model using HotSpot 5.0 [95]. This simulator is

demonstrated to show good scalability up to 24 host cores, for 64- and 1024-core mesh

architectures, but unfortunately does not give any absolute performance figures for

comparison. The paper confirms that for accurate results the simulation feeding the

interconnect model must be run with the interconnect simulation providing feedback,

otherwise the interconnect injection rates could be much higher (since the cores do not

wait the correct delay before the next request, as they assume an ideal interconnect),

resulting in lower execution time. The paper also indicates that congestion modelling

is only significant in bandwidth heavy applications, with benchmarks that do not stress

the interconnect showing minimal error when congestion is not modelled. Benchmarks

that do produce a lot of interconnect traffic exhibit significant error if the congestion is

not modelled however.

HORNET does support a cycle-by-cycle execution mode, but has not been verified

against a target platform. This means it is only useful for reasoning about abstract

design-space exploration rather than evaluating the best MPSoC configuration for a

given application.
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3.3.3.5 Marss

Marss [96] is a "cycle-accurate" multicore x86 simulator based on QEMU [97] and

PTLsim [96], designed to model modern superscalar x86 architectures. It supports

relatively complex interconnect architectures, but is limited to x86 simulation, and is

also non deterministic. Being limited to x86 means that it is not suitable for experi-

mentation with modifications to the ISA, such as adding new instructions. It is also

not one of the ISAs used by low power embedded cores likely to be found in a many-

core processor design, although it is the ISA of choice for the Xeon-Phi accelerator.

By being non-deterministic Marss demonstrates that it is not performing a true cycle-

accurate simulation, and some event timings and relative orderings are being decided

by host execution order, rather than strict timing model order. This makes performing

experiments on features such as relaxed memory consistency models difficult, if not

impossible, and also makes it extremely hard to debug subtle race conditions either in

simulated hardware protocols, or in the application being simulated.

3.3.3.6 SlackSim

SlackSim [98] is one of the early simulators exploring the relationship between syn-

chronisation granularity and accuracy. It is a parallelised cycle by cycle simulator

which simulates cores with caches in different threads, and allows for configurable

synchronisation slack between the components. The simplest form is to synchronise

with a barrier every N cycles, with synchronisation every cycle providing full cycle

accuracy, and increasing error as the synchronisation period, or quantum, is increased.

SlackSim also introduces a different form of relaxation, where the difference in cycle

time between the slowest thread and fastest thread is maintained within a defined slack.

Similarly to relaxing the simulation period, relaxing the slack allows one to trade off

performance for accuracy. Like many of the simulators here, the accuracy of SlackSim

has never been verified against existing hardware. The performance of SlackSim is

typically around 100 KIPS, while simulating a 4-way out-of-order processor, although

this does not involve a detailed NoC simulation.

3.3.3.7 FaCSim

FacSim [48] is a single core simulator which decouples functional simulation from

micro-architectural and memory hierarchy simulation, to enable high simulation speeds.

Because there is only a single simulated processor there is no need to simulate mem-
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ory contention or coherence traffic, and no potential for violation of memory orderings.

This allows FaCSim to run an unbounded, fast, functional only, simulation to generate

the program instruction stream and then feed it asynchronously to an optimised tim-

ing model of the processor and memory hierarchy. The models are connected through

a shared memory circular buffer, making efficient use of a dual core host, and stall

the functional simulation when the buffer becomes full. This simulation setup would

also allow for the instruction stream to be stored to disk and run with multiple tim-

ing models offline, or streamed online to multiple timing models running in parallel.

These features are only possible because the single core target system does not have

any behavioural dependence on the timing of events in the model. For a multicore

system the functional behaviour can be dependent on the timing because of the inter-

action between the simulated cores. It also means that the interconnect timing model

can be extremely simple to calculate, as there is no opportunity for contention between

multiple memory requests, which requires a more detailed simulation that a simple

latency calculation based upon link distance and bandwidth. FacSim provides simula-

tion rates up to 4 MIPS and has been shown to produce only a 6.8% root-mean-squared

(RMS) timing error relative to reference hardware. This is not as fast as modern just

in time compiled (JIT) simulators which compile the core timing model into the trans-

lated functional simulation, but is a good demonstration of the strengths of decoupling

simulation components to improve performance through increased parallelism.

3.3.3.8 Graphite

Graphite [99][99] is a distributed multicore simulator that uses Pin [100] to instru-

ment a natively executable application. The interconnect and distributed shared caches

are simulated in parallel and can also be distributed across multiple nodes along with

the functional execution. By instrumenting memory accesses with Pin, Graphite sup-

ports running a wide range of shared memory applications across multiple nodes, al-

lowing the different timing and functional components of the simulation to run asyn-

chronously within a configurable bounded slack. The three supplied methods of syn-

chronisation are a lax barrier, which keeps all simulations components running close

to lock-step, synchronising every N cycles (1,000 in their presented results), lax peer-

to-peer synchronisation, which puts cores which are too far ahead of the slowest core

to sleep briefly (presented results used 100,000 cycles) and lax synchronisation. The

last method uses timestamped messages from the different components to estimate the

global clock locally, and never suspends simulation components for the sake of timing
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synchronisation. In all methods events are processed in the order they are received,

and not reordered into correct timing order. As a result, although Graphite provides

a scalable reasonably performant multicore simulation infrastructure, the accuracy is

not sufficient for some more subtle micro-architecture experiments. For example an

interconnect which arbitrates on a per-flit basis rather than a per-packet basis will re-

sult in interleaved flits from multiple packets, depending on the design of the memory

controller this could be significantly worse, or better, for performance. By processing

events in arrival order rather than timing order, this detail would be lost to a Graphite

simulation.

3.3.3.9 Sniper

Sniper [101] is effectively Graphite, with the Pin based functional simulation replaced

by an interval simulation technique. The authors claim that this should provide greater

accuracy for complex architectures than the in-order model which Graphite models.

Unfortunately their accuracy evaluation against a real world Intel Core-2 based system

resulted in, on average, 25% error. This poor accuracy provides strong evidence that

the cycle approximate techniques used by many of these multi-processor simulators is

insufficiently detailed for micro-architectural experimentation, or for performance pro-

filing of systems which are extremely timing sensitive, such as hard-realtime systems.

Sniper claims up to 2 MIPS performance when simulating a 16-core target on an

8-core host, approximately twice that of Graphite, although some of this may be due to

differences in interconnect complexity modelled, and performance of the host machine.

3.3.3.10 ZSim

Another of the instrumentation based x86 multicore simulators, ZSim at first glance

appears to be the holy grail of large scale manycore system simulation [102]. The pa-

per presents a simulator apparently capable of simulating up to 1024 cores, with per-

formance up to 1123 MIPS using a simple core model with interconnect contention,

while demonstrating that relative to a 6-core system it can on average provide perfor-

mance accuracy of 10% error. It achieves this by running a period simulation between

1K and 10K cycles where core models are processed for all simulated cores, generat-

ing memory events into a shared memory data structure, then running a model of the

memory hierarchy to compute the timing effects, before returning for another period

of core simulation. If your end goal is simply to measure final figure performance
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on a given benchmark and simulated system, then this might well be sufficient, and

certainly outperforms the other x86 instrumentation based simulators such as Sniper;

however unlike full cycle accurate simulators it does not accurately simulate func-

tional memory ordering within the 1K-10K cycle simulation phases, and it assumes

that core-to-core interference events (such as coherence evictions) are rare. This as-

sumption breaks down with low associativity shared resources, such as lower cache

levels or directories, meaning the simulation will not be accurate to a designer trying

to test the limits of their directory associativity or sizing options. Non cycle-accurate

memory orderings can also severely distort spin-wait style timing statistics, such as

the average time spent waiting on a spin-lock, or at a barrier; for example core A may

be scheduled early in a simulation batch, and at the end of the period may acquire a

lock variable. Core B is scheduled in a later batch, and immediately tries to acquire

the lock, but fails and spends its entire scheduling period spinning (possibly up to 10K

instructions), only to be scheduled before Core A on the next period, resulting in an-

other 10K instructions of waiting. Core A finally releases the lock near the start of its

simulation period, effectively holding the lock for only a few cycles, but resulting in

core B spending almost 20K instructions more that the real system would have when

waiting to acquire the lock. This can make efforts to optimise the memory hierarchy

and interconnects difficult to measure, because the results are masked by simulator in-

accuracies; it is even possible for a badly designed memory system to be masked by the

host providing functional memory coherency, so protocol errors cannot be discovered.

3.3.3.11 HP COTSon

HP’s COTSon simulator [103] uses AMD’s SimNowTM for functional modelling and

suffers from some of the same problems as SimFlex [80] and Gems [79].

Monchiero et al. have presented a methodology to simulate shared-memory multi-

processors composed of hundreds of cores [49]. The basic idea is to use thread-level

parallelism in the software system and translate it into core-level parallelism in the

simulated world. The existing COTSon simulator is first augmented to identify and

separate the instruction streams belonging to the different software threads. Then, the

simulator dynamically maps each instruction flow to the corresponding core of the tar-

get multi-core architecture, taking into account the inherent thread synchronisation of

the running applications. This approach treats the functional simulator as a monolithic

block, thus requiring an intermediate step for de-interleaving instructions belonging

to different application threads. ArcSim, as used in the remainder of this thesis, does
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not require this costly preprocessing step. Its functional simulator explicitly maintains

parallel threads for the CPUs of the target system. Monchiero reports this simulator

performs at 1 MIPS for a single core simulation, scaling down to 0.7 MIPS for 1024

cores.

3.3.3.12 ArcSim

The simulator used in the rest of this thesis is based on the ArcSim simulator, devel-

oped at The University of Edinburgh. ArcSim is a high speed simulator designed to

simulate the ARCompact RISC ISA for both functional simulation and cycle accurate

simulation. ArcSim is compatible with the ARC600, ARC700 and ARCv2 ISAs, pro-

viding cycle accurate models for both 3, 5 and 7 stage interlocked in-order pipeline

micro-architectures, with the 3 and 5 stage models developed around the synthesizable

EnCore microprocessor, with both versions existing in silicon implementation.

ArcSim is a functional-first simulator, meaning that each instruction has its func-

tional behaviour emulated in its entirety before the micro-architectural timing is cal-

culated. This is relatively straight forward for an interlocked pipeline, and works as

follows.

Each stage of the pipeline is represented by a 64-bit cycle counter, this counter rep-

resents the cycle at which the previous instruction left the pipeline stage (i.e. the first

cycle at which a new instruction may enter the pipeline stage). When an instruction has

been executed, first the branch predictor and instruction cache are queried to determine

the earliest time at which the instruction could enter the pipeline, if this is greater than

the current value stored in the first pipeline stage then it is updated to this new time,

plus one cycle. The simulator is programmed with pipeline latencies for each stage,

for each major class of operation, allowing it to now walk through the pipeline in this

same manner; starting with each pipeline time being the greater of either the time the

instruction left the previous stage, plus the pipeline delay of the current stage, or the

existing recorded time in the pipeline stage plus the instruction’s associated latency.

When coupling the pipeline model to the interconnect the cache-incoherent sim-

ulation in the next chapter takes the time for instruction-cache misses from the first

pipeline stage, while data operations are taken from the memory stage. The coher-

ent simulation in subsequent chapters simplifies the model by using the memory stage

timing for both, because the small impact on modelling accuracy is less important due

to the more abstract system being modelled, and it greatly simplifies development and

testing of the simulator.
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To achieve high simulation performance ArcSim uses an asynchronous dynamic

binary translator (DBT), or just in time compiler (JIT), to accelerate simulation by

translating target instruction sequences into native code, while also supporting the in-

clusion of code to model the core micro-architectural state changes for the instruction

sequence. This can result in simulation speeds of up to 1000 MIPS, or 100 MIPS in

cycle accurate mode. ArcSim supports full system simulation, along with syscall em-

ulation to enable user-land application simulation, or a hybrid simulation mode where

a bare metal environment can run in full system simulation mode with IO devices and

full control of the MMU, but system calls are still trapped to the host to allow file

access and console IO support.

Multicore simulation has only recently been developed in ArcSim, with the work

presented in SAMOS 2011 [12] demonstrating functional simulation support for over

1024 cores at speeds in excess of 10,000MIPS, which this thesis extends through Chap-

ters 4 and 5 to provide support for extremely accurate high speed cycle accurate simu-

lation of multi-core and manycore processors and MPSoCs.

3.3.3.13 Parallel Embra

Like ArcSim, Parallel Embra [104] is a fast functional simulator for shared-memory

multiprocessors which is part of the Parallel SimOS complete machine simulator [105].

It takes an aggressive approach to parallel simulation; while it runs at user level and

does not make use of the MMU hardware, it combines binary translation with loose

timing constraints and relies on the underlying shared memory system for event order-

ing, time synchronisation, and memory synchronisation. While Parallel Embra shares

its use of binary translation with ArcSim it lacks its scalability and parallel JIT trans-

lation facility. Parallel Embra also provides no timing synchronisation or performance

modelling, so is unsuitable for micro-architectural research.

3.3.3.14 Mambo and MalSim

Another effort to parallelise a complete machine software simulator was undertaken

with Mambo [106]. It aims to produce a fast functional simulator by extending a

binary translation based emulation mode; published results include a speedup of up to

3.8 for a 4-way parallel simulation.

Similarly, the MalSim [107] parallel functional simulator has only been evaluated

for workloads comprising up to 16 threads. Despite some conceptual similarities with
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these works, the work of this thesis aims at larger multi-core configurations with cycle

accurate performance models.

3.3.4 Hardware Accelerated Simulation

The two main limitations to hardware accelerated platforms such as FAST, RAMP

Gold, and ProtoFlex, are the cost of an FPGA platform to perform the simulation,

and the limit to the number of simulatable cores imposed by the limited resources of

the FPGA. This is unlike software simulation, where adding more cores may reduce

performance, but the amount of RAM required to simulate even 1024 cores is well

within the constraints of typical consumer hardware.

3.3.4.1 ProtoFlex

ProtoFlex [108] achieves reasonably high speed functional multicore simulation per-

forming most of the simulation in FPGAs. Targeting the SPARC architecture ProtoFlex

uses a pipelined core simulation engine called BlueSPARC in FPGA to simulate up to

16 instances of a SPARC processor model,with the aim to scale up in future by adding

more engines. ProtoFlex supports full system simulation by falling back to a Simics

based simulation when the FPGA model cannot simulate some part of the simulation,

which can lead to a drop in performance below the theoretical 100 MIPS throughput of

the BlueSPARC engine. This reduction in simulation efficiency can be reduced by us-

ing a on-FPGA embedded or soft processor to run the software fall-back model rather

than require the high-latency communication to the host computer. The 16-core simu-

lation achieves simulation rates up to 62 MIPS, which is now significantly slower than

modern JIT compiled software simulators are capable of (typically several hundred

MIPS per core, with results up to 1323 MIPS per core achieved by the current state of

the art [109]).

Being already in-FPGA allows for the memory trace to be easily fed into FACS

FPGA cache model, which is capable of modelling the CMP cache model at full speed,

except for very memory active periods of simulation, and this allows for high speed

"functional warming" of the cache state for a statistical sampling based cycle accurate

model such as SimFlex, where ProtoFlex can run with functional cache model, then

switch to cycle accurate software for brief phases to collect sample statistics which can

be used to estimate full runtime performance.



66 Chapter 3. Related Work

3.3.4.2 RAMP Gold

There are several RAMP projects which use FPGAs in various ways for simulation,

but the most recent and relevant is the RAMP Gold [110] project. This uses an FPGA

to perform cycle accurate simulation of multicore and manycore CMP architectures,

and is able to simulate up to 64 cores on a relatively cheap Xilinx Virtex-5 FPGA.

RAMP Gold comprises two main in-FPGA components, a functional model of the

cores, which time multiplexes the multiple instances of the simulated core sharing

memory and cache resources between the models, and a separate timing model. The

timing model performs the micro-architectural simulation for each of the simulated

cores, and the timing model of the memory hierarchy (i.e. tags only, no data). The

timing model drives the functional model’s scheduler so that threads are scheduled in

the correct order, but because data is only actually cached in a single cache shared

by all models, RAMP Gold cannot simulate memory constancy models which violate

sequential consistency, by virtue of being inherently a sequentially operating simula-

tion sharing a single cache. As such, while an improvement over ProtoFlex in actually

providing cycle accurate simulation, the circumstances in which it can be accurate is

limited to a subset of the interesting memory consistency models and cache coherency

protocols that are of interest to manycore chip designers.

In functional-only mode, RAMP Gold achieves a throughput of up to 100 MIPS,

but only when the number of target cores can cover the functional pipeline depth. For

fewer target cores (and non-synthetic workloads), the fraction of peak performance

achieved is proportionally lower. In comparison to the peak performance of software-

only simulation approaches (based on ISAs of comparable complexity and similar

functional-only simulation) the performance of the FPGA architecture simulation is

disappointing. However the close to 50 MIPS [110] performance for a 64-core, cache

coherent, cycle accurate simulation is currently beyond the limits of software only

simulation.

Other approaches to FPGA simulation such as RAMP [111] and ProtoFlex [108]

suffer from the same performance issues and for none of the mentioned systems has

scalability beyond 64 cores been demonstrated.

3.3.4.3 FAST

Another FPGA based simulation system, the FAST project [47; 112; 113], is one of

the fastest cycle accurate simulators that can really claim to be cycle accurate. It does
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this by performing functional simulation of each core in a high speed functional only

simulator (QEMU [97]), and feeding the resulting instruction trace into a high speed

timing model, implemented in a FPGA. The FPGA model simulates the pipeline for

each core, along with the memory hierarchy, and contains the true memory state of the

system, or Oracle Memory as the authors refer to it, from which the software models

use cached regions to simulate ahead.

To enable full decoupling of the functional simulations and the timing model,

checkpointing snapshots are used, with speculative run-ahead and roll-back, to ensure

timing-accurate functional correctness from the functional simulation. These roll-back

operations are triggered by events and checks in the timing model, which detect mem-

ory ordering violations by comparing the memory values in the instruction streams

against the Oracle Memory when the timing simulation is performed..

Unfortunately, like the other FPGA based simulators, FAST has not been demon-

strated above 64 cores, and total system simulation size is limited by the size of the

available FPGA.

3.4 Machine Learning based Design Space Exploration

It was realised some time ago that new approaches to designing MPSoC systems were

required, due to their increasing size and complexity. The paper by Flake [114] briefly

discusses these issues.

The usual method of addressing these challenges has been to use high-level sim-

ulation to coarsely, but exhaustively, explore the MPSoC design space for a given

application. The papers by Angiolini et al. [115] and Oliveira et al. [116] are examples

of this approach. In these, the design space for a MPSoC application is simulated at

a high and relatively inaccurate level, where simulation is fast. The information from

such high-level explorations is then used to select large-scale system parameters, with

detailed design and implementation left for later. In contrast, the approach used in

Chapter 8 relies on slower, detailed, simulation of randomly distributed points in the

design space, from which the performance at other points can be predicted. The paper

by Gries [117] discusses and contrasts then-current methods for evaluating the MPSoC

design space.

A machine learning approach has also been previously used to predict the run-

time of programs, and then perform scheduling based on such information [118; 119].

These efforts have been focused more on online predictions for resolving the schedul-
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ing problems, than on the system exploration it is used for in this thesis, and therefore

does not address architectural differences in a quantifiable way.

Ipek et al. [120] have previously used Artificial Neural Networks (ANN) to predict

the performance of simulated architectural systems. They use ANN methods due to

their relative ease of use and the well-understood operations of these predictors rather

than an evaluative approach comparing different predictors. They achieved predic-

tion performance within 1-2% of the real values, but the evaluation used less complex

system models than the approach taken in this thesis, leading to simpler design spaces.

The most relevant work in the area is the paper by Almer et al. [121] and his doc-

toral thesis [46], which uses machine learning to predict designs with optimal energy

consumption, runtime, and EDP. The authors also try to predict whether a design will

synthesise to their FPGA target, to eliminate areas of the design space which are not

viable. As Chapter 8 was a collaborative work with Almer, a more detailed comparison

with this work, and a break-down of the contributions, can be found there.
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Exploiting Cache Incoherence for Fast

Parallel MPSoC Simulation

4.1 Introduction

When designing a system on chip (SoC) for any system it is important to evaluate

performance characteristics, but when designing for a high volume deeply embedded

system it can be especially important to minimise the area (and as such cost) of the

silicon needed for the chip, along with the power requirements. This usually means

tuning the performance to only just meet the worst case performance requirements,

and no more.

In order to find this optimal configuration many iterations of software development

and system configurations are required, typically using slow cycle by cycle simulators,

perhaps with the use of faster functional only simulators to aid software development.

Unfortunately evaluating the performance of new software, and finding the most cost

effective system, requires a slow cycle accurate simulation of every likely SoC config-

uration, and using a typical single threaded cycle accurate simulation does not allow

fast turnaround for a programmer doing performance optimisations.

Hardware prototypes implemented in field programmable gate arrays (FPGAs) are

a great platform for running and evaluating performance of software on a prospective

hardware design, but require significant upfront synthesis time to generate a new de-

sign configuration. This means they are more useful for evaluating different software

options, on a fixed hardware platform, rather than rapidly testing multiple hardware

options.

The size constraints of FPGAs also mean that larger multi-processor SoC (MPSoC)

69
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designs are unlikely to be feasible, and must be tested in simulation. Expanding on

these problems, FPGA development boards themselves are very expensive, so it is

preferable for software developers to work in simulation, with the ubiquitous general-

purpose computing power of compute clusters and server farms.

Many embedded systems use multiple processor cores without hardware cache-

coherence, such as the SH-4 family SH7750 processor used in the SEGA Dream-

cast [122]. In fact some of the popular embedded interconnect such as AMBA AXI

do not support coherency, relying on the provision of atomic bus operations to syn-

chronise communications between bus masters. Providing hardware coherence adds

an unnecessary hardware development expense, in implementation and verification,

and more significantly in silicon area and system power consumption; it also adds

complications when reasoning about worst-case execution time and performance for

hard real-time systems. As transistor counts increase multicore embedded systems are

becoming more common, and so cache-incoherent MPSoCs are becoming an increas-

ingly important simulation target; yet recent advances in simulation technology have

largely been applied to cache-coherent targets.

Traditional cycle-accurate simulators take a cycle-by-cycle approach to the pro-

cess, modelling the pipeline of each core and interconnecting buses in a single thread.

This is the easiest way to ensure timing-accurate functional behaviour, deterministic

simulation, and correct evaluation of memory interleavings between cores. Functional-

first simulators perform a high-speed functional evaluation of behaviour and then re-

construct timing data using a timing model. This approach yields greater simulation

speed and can be easily parallelized, but it is difficult to extend accurately to the case

of cache-coherent MPSoCs, in which timing influences the behaviour of cores. The

problem has been tackled before [113] but this implementation requires an FPGA to

process the timing model, and significant communication between the timing model

and functional simulation. However, in the cache-incoherent case the timing inter-

actions between cores are limited to cache misses, cache flushes and cache-bypassing

memory operations, making accurate parallel functional-first simulation possible while

maintaining high simulation speeds.

This chapter presents a novel approach to simulating these embedded systems,

where decoupling the simulation of the cores and interconnect is exploited while still

maintaining cycle-accurate timing behaviour. This results in accurate performance

modelling at simulation speeds up to 378 MIPS, or 117 MHz, with an average speed

of 5.7 MIPS and 10.1 MHz across a large design-space of over 20204 design points.
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The key contributions presented are:

• Leveraging incoherence to increase parallelism in the simulation.

• Efficient NoC simulation through packet tracking and cache friendly data struc-

tures.

• Faster than state-of-the-art simulation without sacrificing accuracy.

4.2 Target Platform

The target platform for this multicore simulator is a custom NoC based MPSoC flow,

using the 3-stage variant of the EnCore RISC microprocessor. The tool flow takes a

high level MPSoC description and generates Verilog for FPGA and silicon implemen-

tation, and equivalent configuration files for the simulator. The platform comprises

clusters of 1-8 processor cores, connected through a per-cluster arbiter to an ARM

AMBA AXI [123] based packet switched network, which connects cores to memory

banks and devices, such as the UART, real-time clock, and display controller. The de-

sign options are summarised in Table 4.1 with an overview diagram in Figure 4.1. The

complexity parameter influences the number of switches and number of layers in the

switching network before adding cores and peripherals, extra switches are added if the

configured complexity does not provide enough connectivity.

Core Core Core Core Core Core

RAM RTC RAM

UART LCD

Figure 4.1: Overview of the target architecture.

The cores are a modern ultra-low-power, silicon optimised three-stage RISC archi-

tecture, implementing the ARCompact instruction set. Implementation in a Xilinx Vir-

tex6 can be achieved at 75 MHz, with 65nm LP implementation exceeding 250 MHz.
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Design Parameter Possible Configurations

Core Architecture ARC700 32-bit RISC

Pipeline 3-stage in-order

D-Cache Size 4 KB

D-Cache Associativity Direct Mapped, 2-Way

I-Cache Size 4 KB

I-Cache Associativity Direct Mapped, 2-Way

Cache line size 32 Bytes

Interconnect Protocol AMBA AXI

Interconnect Topology 32-bit wide binary-routing network

Coherency Protocol None – Cache-Incoherent

Cores per cluster 1 – 8

Clusters 1 – 8

Block RAMs 1, 2, 4, 8

Total Block RAM Size 512 KB for comparison with FPGA

2 MB for sim-only experiments

Complexity 1, 2, 4, 8, 16

Fifo Depth 2, 16

Core Freq(MHz) 12.5, 25, 50

NoC Freq(MHz) 12.5, 25, 50, 100

Table 4.1: MPSoC design configurations.
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While it is possible to synthesize an FPGA design with 12 cores, as used for accuracy

comparisons in Section 4.6, the University of Edinburgh has recently fabricated at chip

at 65nm with 32 cores in a similar configuration, for use in the transceiver of a new

wireless network technology [124].

The processor core is highly configurable, with a limited set of configurations used

in this thesis. The selected configurations provide 32 32-bit registers, with 4 KB each

of instruction and data caches which are configured as direct mapped or 2-way set as-

sociative for different experiments in this chapter. The pipeline is a latency and energy

optimised 3-stage pipeline which approximately breaks down into fetch, execute, and

memory & writeback. Branches have a fixed penalty, but this can be offset through its

support for delay-slot instructions. Because of the short pipeline, many branch types

can be evaluated in a single cycle of delay, which can be fully masked by schedul-

ing an instruction into this delay slot (performed automatically by the compiler in

many cases), although branches involving computation rather than status bits require

a further cycle to evaluate, and under certain micro-architectural configurations an ex-

tra cycle further, which enables higher operating frequencies. ArcSim fully supports

more complex branch prediction schemes in cycle accurate mode, but the short 3-stage

pipeline does not warrant the area or energy expense of prediction logic, especially

given its deeply embedded target domain. Further reducing the impact of branch over-

head is the architecture support for “zero-overhead loops”, which are take the form of

a programmable hardware loop counter. The start, end, and count registers are pro-

grammed before entering the loop body, after which the loop is executed exactly the

programmed number of times (unless the count register is modified inside the loop),

with no branch delay penalties nor the overhead executing a branch instruction of dur-

ing the execution. These are automatically generated for many loops, especially ‘for’

loops, by the compiler. Each of the two caches has its own bus master interface to

perform fetch and write-back operations, but they are statically arbitrated to give the

instruction cache priority. The bus protocol used by the bus masters is a single unified

interface, so read request, write request and write data must be time multiplexed out,

before they are converted onto the AXI interface. The write request will issue before

the associated data, but read requests are statically arbitrated with lower priority than

write requests and above data, so are inserted in a cycle between write requests and the

trailing write data. Since the instruction cache has its own output port, it is statically

arbitrated as higher priority than the data cache port, before being separated onto the

discrete AXI channels.
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The interconnect comprises five independent channels, implemented as in the AXI

standard: three from master to slave for sending read requests, write requests, and write

data, and two return channels for read data and write-complete acknowledgement. By

using dedicated channels for each category it is simple to avoid deadlock and avoids

issues of bandwidth sharing between the different channels.

Cores are connected to the interconnect through a cluster arbiter, which aggregates

up to eight cores onto the interconnect fabric. The 8-way arbitration is implemented

on a per channel basis (for the three outgoing channels) consisting of a three layer

deep tree of two-way arbiters. Each arbiter contains a synchronous flip-flop to perform

arbitration, which is toggled when the Ready line is asserted from the next arbiter,

and a packet is ready to be sent from the previous. There are no other registers in

the arbiters, just one final output register for the cluster, so the whole three level tree

functions as a single cycle eight-way arbiter, with the correct arbiters being toggled

due to the backwards propagation of the ready signal through the arbiter network. The

arbiters can also be configured to toggle arbitration only on "Last" packets, for mul-

ticycle data write-backs. With this enabled, data will arrive at the memory controller

in a contiguous series of packets, rather than interleaved with data from other cores.

Depending on the implementation of the memory controller, the performance differ-

ence can be significant, and a simple memory controller may not support interleaved

data packets. The cluster arbiter is fair for power-of-two cluster sizes, and fairness is

still maintained under most other circumstances due to the time taken for responses

from the memory controllers through the network. Because each core can only have

two outstanding requests (one for each cache), and each requests takes several cycles,

it’s is unlikely that any processor core in a cluster would achieve a greater share of

the available bandwidth. The binary-tree round-robin arbitration policy in the cluster

prevents starvation and will provide all cores with at least the bandwidth share of 1/N,

where N is the smallest power of two equal to or greater than the number of cores

attached to that cluster. Similarly the network arbitration policy will guarantee at least

a 1/M share of the bandwidth to each cluster, where M is the number of ‘master’ ports

on the same level of the interconnect as the clusters.

The rest of the switches in the system are two input two output, statically routed

switches, implementing a binary routing network as proposed by Hopper and Wheeler

[125] and described in the context of other networks and routers by Newman [45]. The

routes for different memory regions are stored in a small lookup table at the core/cluster

level, and encoded into the AXI slave address signals, while the slave to master routing
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is performed by evaluating the route bit-string in reverse. Each output from the switch

is essentially another two input arbiter, this time with the address bit check combined

with the valid packet signal, and uses the same arbiter module as the cluster arbiter.

Each switch can either be configured as buffered or combinatorial, so portions of the

network propagate in a single cycle. The switches are generated in layers with the

same number of switches, with the width of the layer determining the initial maximum

number of slave or master ports, and the depth great enough that a packet can be routed

between any master and any slave. If a generated interconnect cannot attach all masters

or slaves, then extra switches are automatically added onto the master or slave port of

the interconnect to grow the network. Devices on these extra branches will incur an

extra hop of latency through the network.

Since there are five channels in the AXI standard implemented, even a simple two

by two network (supporting up to four slaves, and four masters/clusters) requires 20

switches.

The aforementioned memory controllers are a multi-cycle pipelined bus slave serv-

ing access to a RAM comprised of FPGA block RAMs. The total available memory

is divided equally between the number of controllers, and the RAM backed portion of

the address space is mapped to them in a linear fashion, with each controller mapping

a contiguous region. For designs where were evaluated against FGPA implementation

the RAM was limited to 512 KB by the available bock RAMs, but for the larger design

space experiment 2 MB of RAM was allocated to allow systems of up to 64-cores to

operate while running 64 independent benchmarks, each with their own static data,

stack and heap.

4.3 Motivation and Innovation

Simulation of this MPSoC was one of the driving factors for developing the simulator,

to help with performance estimations and software development before the chip devel-

opment completed. It is likely that there are many similar cases where a simulator such

as this would be extremely beneficial.

It was realised when designing the simulator that the out of core traffic could be

modelled much more efficiently than traditional coherent simulators. A timing accu-

rate simulator for a coherent system must ensure that every single memory access hap-

pens in the correct order. This means that every memory access simulated must result

in the simulation thread synchronising with a global clock reference, to ensure that all
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memory operations that should happen before it have taken place. This tight synchro-

nisation causes problems with simulation performance, as each simulation thread can

not do much work without synchronising; the Slacksim paper [98] discusses this well.

With a cache incoherent system a correct program must already assume that cached

memory operations will not be immediately available to another processor core, and

cannot guarantee visibility until a cache flush operation. A well behaved program

should also not assume that it is running on an incoherent system, as events may cause

cache lines to be flushed before the programmer is expecting it, such as interrupts. This

means that all cached memory accesses should be free of data races between cores,

and these memory operations can be performed as soon as possible in the independent

core threads. Now a significant synchronisation problem has been removed, and only

modelling the timing side effects remains. To do this requires the communication of

cache miss events to a separate thread to model the NoC interconnect, which takes

care of the timing impact on the out of core traffic. For memory accesses which will

cause data races or require synchronisation (i.e. cache bypassing operations and cache

line flushes) the core thread is synchronised to the interconnect thread, and the timing

model completes its operation before continuing core simulation. In doing so, timing

correct behaviour is maintained, with significantly less synchronisation than traditional

coherent simulators.

4.4 Simulator Implementation

This simulator advances the previous work on Arcsim [126; 12], the high speed functional-

first cycle accurate simulator, which uses modern JIT compiler techniques to accelerate

both the functional execution and core micro-architectural model of the target ARC

microprocessor. Through runtime configuration it supports many different microar-

chitectural options, including 3, 5 and 7 stage pipeline models, making it already a

useful tool for single-core design space exploration. Previous work on this simulator is

extended by implementing a decoupled interconnect model for multicore architectures.

When operating in cycle-accurate mode Arcsim reconstructs updates to the pipeline

model after executing each target instruction (both in fully interpretive and JIT-compiled

modes). It has previously been parallelised for functional simulation [12], and the core

model simulation is explained in detail in Chapter 3 and in the paper by Böhm et

al. [126].
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To parallelise the multicore simulation while providing cycle-accurate modelling of

the shared NoC interconnect a similar approach to the FaCSim [48] and FAST [47; 112;

113] simulators is used, making use of lock-free asynchronous producer-consumer

circular buffers to decouple simulation of the cores from the interconnect.

These relatively large buffers provide significant slack for the core simulation threads

to execute ahead of the interconnect model, which means the interconnect model is

rarely waiting for work to process, and helps to cover the time when the thread simu-

lating a particular core is scheduled off by the host operating system. This increases

the efficiency of the simulation when the host system has fewer physical cores than

the target being simulated, and is enabled by exploiting the reduced synchronisation

required for incoherent programs.

Unlike either FacSim or FAST, which decouple the functional simulation and the

core timing model, Arcsim [126] models the core micro-architecture interleaved in the

same thread as the functional core simulation. Each core is simulated in its own thread,

which means that the core timing model is as parallelised as the functional simulation,

helping maintain performance when larger multicore designs are simulated. Because

the NoC architecture is cache incoherent, the core model can safely include the caches,

meaning only cache misses and explicit cache-bypassing instructions must be commu-

nicated to the interconnect model. This reduction in communication allows the use of

smaller communication buffers when compared to other decoupled simulators such as

FAST, COTSon [49] and FaCSim, allowing larger target systems to be modelled on

smaller hosts systems. Figure 4.2 shows a simplified view of the memory components

of the core simulation kernel, highlighting where asynchronous and synchronous com-

munication is required, and the presence of both instruction and data caches in the core

simulation. Embedded cores, such as the ones used here, are often simple in-order in-

terlocked pipelines, which stall on memory events such as cache misses. This allows

the time passed for a processor core to be accurately described as the the sum of cycles

spent internally, plus the cycles spent waiting for IO requests. This is the second prop-

erty of the embedded cores leveraged to decouple the simulation to this extent, and is

in some ways analogous to the QuantumKeeper in SystemC TLM2.0 [127]. Features

such as victim caches and store buffers can still be accurately modelled so long as the

interconnect model is aware of them. For example, a store buffer of depth N would

mean that the interconnect can process up to N cache write-miss events in parallel

before adding time to the core’s IO-time offset, while a write-back buffer would be

modelled in the interconnect itself.
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s i m u l a t e _ i n s t r u c t i o n ( ) {

u p d a t e _ i c a c h e ( ) ;

. . .

i f ( memory_op )

pe r fo rm_memory_ope ra t i on ( ) ;

}

u p d a t e _ i c a c h e ( ) {

i f ( ! i _ c a c h e−> i s _ h i t ( pc ) ) {

i n t e r c o n n e c t _ i _ q u e u e −>p u s h _ f e t c h ( pc ) ;

}

}

pe r fo rm_memory_ope ra t i on ( ) {

i f ( i s _ b y p a s s ) {

i f ( i s _ r e a d ) {

i n t e r c o n n e c t _ d _ q u e u e . p u s h _ r e a d ( add r ) ;

whi le ( ! i n t e r c o n n e c t _ d _ q u e u e . empty ( ) ) { o s _ y e i l d ( ) ; }

r _ d a t a = i n t e r c o n n e c t −>g e t _ r e a d _ v a l u e ( c o r e _ i d ) ;

} e l s e {

i n t e r c o n n e c t _ d _ q u e u e . p u s h _ w r i t e ( addr , w_data ) ;

whi le ( ! i n t e r c o n n e c t _ d _ q u e u e . empty ( ) ) { o s _ y e i l d ( ) ; }

}

} e l s e {

i f ( i s _ r e a d ) {

r _ d a t a = mem−>r e a d ( add r ) ;

} e l s e {

m−>w r i t e ( addr , w_data ) ;

}

i f ( ! d_cache−> i s _ h i t ( add r ) {

i f ( d_cache−> i s _ d i r t y ( add r ) {

i n t e r c o n n e c t _ d _ q u e u e . p u s h _ w r i t e b a c k ( add r ) ;

}

i n t e r c o n n e c t _ d _ q u e u e . p u s h _ f e t c h ( add r ) ;

}

}

}

Figure 4.2: Simplified processor simulation instruction implementation, demonstrating

communication to the interconnect thread.
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Figure 4.3: Overview of the incoherent simulation, threads are identified by dashed

boundary boxes.

The simulator is designed to make full use of modern multicore processors, sim-

ilarly to FAST running parallel functional simulations. One host thread is used per

simulated core, another thread for the interconnect, and additional threads for the func-

tional simulation of IO devices such as display and sound devices. The simulator also

supports parallel JIT worker threads to improve the performance of the core simu-

lation. When running the interconnect thread, the simulator will use at least N + 1

host cores where N is the number of target cores being simulated. The core and in-

terconnect simulation threads are shown in Figure 4.3, with dashed box boundaries

representing operating system threads and dashed circles representing asynchronous

lock-free queues. Other threads such as virtual displays and JIT compilation threads

are omitted for clarity.

4.4.1 Details of the NoC Interconnect

Based on the AXI protocol the NoC is implemented with five identically implemented

channels, as described in Section 4.2. The design flow takes a list of ‘master’ nodes,

‘slave’ nodes, a design metric termed the ‘complexity’ of the network, and other con-

figuration parameters. The complexity controls the width and depth of the binary-
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routing network generated; then extra switches are added if nodes cannot be connected,

and redundant switches are pruned. Binary-routing networks use a multi-layer switch

topology like the butterfly, comprising two input and two output switches. Unlike a

traditional butterfly network, the presented network’s source and destination nodes are

not the same: there are explicit ‘master’ ports for cores and DMA-capable devices, and

‘slave’ ports for memory-mapped device and RAM interfaces. The tools then generate

for the simulator an ordered list of these switches, with outputs and inputs explicitly

connected with named ‘wires’, along with details of the master and slave connections

and routing information based on memory addresses. In hardware the routing is per-

formed by a binary routing string encoded in the AXI address field, which is rotated

one bit each time it passes through a router, and rotated in reverse for the return routing.

Additional complexity is introduced because not all switches are registered. They

can optionally be configured with FIFO buffers, or they can act entirely combinato-

rially from one registered switch or input to the next registered switch or output in a

single cycle. In this mode they behave somewhat like an N×N crossbar, but with in-

ternal collisions. The simulator correctly handles these combinatorial switches while

still modelling them in a modular per-switch fashion.

4.4.2 Modeling the NoC Interconnect

The interconnect model has two key roles in the simulation: not only must it model

traffic and keep track of time spent in IO for each core, it must ensure timing-correct

ordering of memory operations. Because the target platform is cache-incoherent, only

cache-bypassing instructions must be committed in timing order to ensure timing-

accurate behaviour. Because of this, cache transfers are modelled without actual data,

and memory operations are committed by the core simulation thread. This is also how

FaCSim operates, but because it only simulates a single core it does not need to worry

about memory orderings. Cache miss operations are logged in the circular buffers by

the core simulation and the core can continue simulation, but for cache-bypassing op-

erations the core must wait until the buffer is flushed empty signalling the operation

has been completed by the interconnect thread. This impacts performance somewhat;

but it is required unless an alternative mechanism of ensuring correctness is employed

in the functional simulation, such as checkpointing and roll-back as implemented in

FAST [47].

Rather than compute routing tables at the cores to generate the routing bit-strings
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like the hardware, the simulator uses the routing tables from the NoC description to

perform master to slave routing at each switch, and constructs the return routing bit-

string dynamically as it passes through the network. Routing tables are shared between

the switches on each channel for the same logical switch node.

Since ArcSim already provides extremely fast cycle-accurate simulation of the core

micro-architecture, it was a challenge to model the interconnect and memory con-

trollers at sufficient speed to avoid bottlenecking the whole system. To achieve this

numerous optimisations were used, such as extensive packet counting and fast for-

warding, to ensure as little work as necessary is performed while processing the inter-

connect.

One of the most important steps to enabling the interconnect simulation to keep up

with core simulation was the "fast-forward" mechanism. Each cycle the interconnect

model checks to see if each core has an active transaction, and if not when the next

transaction is due (by checking the pending transactions in the buffer). If there are

no active transactions then the interconnect can directly skip ahead to the cycle of the

next pending event – it fast-forwards the interconnect simulation up to the point in

time where the next event may occur. This enables the significantly higher than 1 MHz

simulation speeds for cache-efficient workloads.

To provide performance for those times when the interconnect is busy there are

a few important optimisations, foremost packet-counting. Packet counting works by

dividing the network into independent sub-networks, in this case each of the five AXI

channels is as separate network, and tracking the number of active flits in each network.

By counting flits into the network, and flits out of the network, the simulation can

completely avoid processing a network with zero flits in transit.

The final non-standard optimisation is to expose an ‘active’ flag for each network

switch. Although the implementation in this thesis did not use inheritance (each switch

was a self-contained class), the description here will describe it as if C++ class hierar-

chies were used to implement switch behaviours, because this is where the optimisation

is most important. Despite packet counting, even when a network portion must be pro-

cessed only a fraction of the switches are likely to require processing. For switches

without any active flits, either on inputs or in buffers, the processing should be ter-

minated as quickly as possible to return to the interconnect loop and process the next

switch. However, performing this early-out within the switch model code means that

every idle switch still incurs a function call and return overhead (unless the code has

been inlined)). To avoid this a public boolean value is exported from the base class –
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this is important, as the base class member can be read directly from the object pointer

without looking up the virtual table, calling into a virtual function, or resolving the

switch to a more specific type. Because the active flag can be read directly, without

any function call overheads, it is the most efficient way to avoid processing the switch

and move on to the next.

Even without class hierarchies the optimisation is important, because unless switch

processing methods are very carefully written and compiled as part of the whole in-

terconnect source unit, the methods will not be inlined without modern link-time op-

timisation techniques. Given the complexity of the switch processing function for a

non-trivial microarchitecture it is unlikely that the method would be selected for inlin-

ing, and the function call overhead would not be avoidable.

Switches are connected via pointers to a common ‘message’ type, with each switch

output being a instance of this ‘message’, and each switch input being a pointer to the

output message of whichever switch output it connects to. The ‘ready’ state of the

destination is implicitly indicated by whether the message was cleared in the previous

cycle. This communication mechanism allows switches to be completely agnostic of

what they are connected to, and transfer information very efficiently, but does not allow

switches to add each other to a list or other data structure to track active switches.

Good cache behaviour was achieved by first allocating all of the interconnect switches

in a single array, and as the network was constructed the switches were selected from

this array in network-dependence order. Because of this, as the switches are processed

they are simply processed in array order, allowing the cache prefetcher to work ef-

ficiently, and many of the pointer references between switches will still be in cache,

from when the source switch was recently processed.

The constructs used to track the state of each core, such as timing offsets and

state machines, were not grouped into structs or classes for each processor, and then

allocated as an array, but instead maintained as individual arrays of each attribute.

This is because clustering them resulted in a dramatic performance impact, up to a

third reduction in performance. Because of the usage pattern of these arrays it is more

common to operate on a select few of these in a loop over the processors, where cache

benefits are felt and packing them into a struct would cause the extra data to pollutes

the cache. Following this reasoning it may be better to keep the ‘active’ state tracking

in a separate array for the switches, than contain it within the switch struct, because

this would avoid loading the whole switch into cache when it was not going to be

processed.
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A summary diagram of the main interconnect loop is provided in Figure 4.4 demon-

strating where various optimisations are performed, and how phases of computation are

interleaved.

Figure 4.4: Overview of the interconnect simulation loop identifying work-saving optimi-

sations.

To compute a single cycle of the network the simulator iterates over all switches

(in active channels) three times, marked as phases 1, 2 and 3 in the diagram. First

all switches check their inputs for an incoming packet, flagging themselves as ‘active’

if they take in data or still have data in a FIFO. Because the switches are correctly

ordered in source→destination dependency order the combinatorial switches can sim-

ply propagate the packets here to their output: this is the same memory location as

their destination’s input, so they can be computed in a modular fashion rather than as a

monolithic N×N switch. In the case where all switches are registered, packets can be

consumed at this point; but when combinatorial switches are present they are left to be

cleared up in phase three. The second phase is for registered switches to output their

data packet onto the wire, depending on their internal state machine which is modelled
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as part of the switch micro-architecture. Finally the third phase is run in reverse di-

rection, from destination to source, to track back and clear up the packets left when

combinatorial switches are enabled. In this phase packet collisions are detected and

the internal switch state machines and arbiters updated. The simulation also updates

traffic counters on switches which successfully transferred a packet. The overhead of

simulating combinatorial switches is a reduction in simulator performance of approxi-

mately 30% for a benchmark with moderate traffic, because of the extra book-keeping

involved. It was disabled for the work in this thesis, since all the designs tested used

registered switches with FIFOs of depth 2 or 16 depending on the design. The output

phase of connected devices is run between phase one and two, and the input phase

between the second and third phases of the network.

Unlike FAST, this simulator does not have to model the data for all memory op-

erations, only the information relevant to timing: the address, time, and size of cache

misses. The exception is single transfer un-cached accesses which are processed in

the micro-architecturally-accurate model of the memory controller or device model,

ensuring the correct memory operation interleaving and behaviour on locked memory

regions when atomic accesses are used.

4.4.3 Simulation Challenges

A potentially problematic feature of the functional-first simulation technique used in

the simulator is that instruction-cache miss events are only realised after the completed

execution of the previous instruction. This means that the event may only be discovered

after the simulation of another memory event in a previous instruction, which it should

have preceded. To solve this problem two buffers are implemented between the core

and interconnect simulation components, one for each of the two pipeline stages which

can generate memory events. When the interconnect reads off events from a core’s

buffers it waits until one of the following conditions is met before proceeding:

• There is an I-cache event, but no data events. It can continue because the data

memory port cannot produce events which happen before this.

• There are entries in both buffers. It executes them according to their timestamps

– potentially simultaneously in the same fashion as the core supports.

• There is a data entry and the core model has advanced beyond the point where

an instruction cache event can over-take it.
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• There are no events but the core model has advanced beyond the point where any

event could be generated for this cycle.

• There is a data event and the data buffer is flagged as containing a cache bypass-

ing operation, which is preventing the core simulation from continuing. This

is the only condition under which the core is allowed to violate the ordering

of instruction and data memory events, because the simulation cannot continue

without running the memory operation through the interconnect or potentially

violating the ordering of data memory operations from different cores.

The violation in the final clause is an extremely rare event. The I-cache event is

still modelled and its latency accounted for, just at slightly the wrong time. It is also

possible to write code such that this never happens, if it is extremely important that the

platform is simulated accurately.

Because the simulator’s correctness relies on a correctly written target application,

which does not have accidental cached read/write data sharing, a second mode of sim-

ulation is provided which moves the data cache model to the interconnect. This mode

fully models the data in the caches, and the correct interleaving of data cache line

reads and write backs in the memory controllers. It is almost completely functionally

true to the target system, while still maintaining significant parallelism, but loses the

performance benefits of the mode primarily discussed in this paper, falling back to

performance of 1-2 MIPS for small scale MPSoCs. This mode is used for debugging

target applications which exhibit signs of accidental data sharing, and for coherent

simulation modes.

4.5 Performance Evaluation

Unfortunately there is no standard parallel benchmark suite for cache incoherent ar-

chitectures, so various multiprogrammed workloads were composed using Coremark

and a subset of the EEMBC [128] suite. The benchmarks used were restricted by

the target platform simulated, due to limited on-board memory and the capabilities of

the current runtime only the following benchmarks could be run: Coremark, Auto-

Cor, Conven, Fbital, FFT and Viterb. In addition to these standard benchmarks we

also ran two memory bandwidth heavy in-house benchmarks: a panning image display

benchmark ‘imgdisp’, and a synthetic cache-thrashing benchmark. The image display

benchmark features both bad cache performance, due to its working set and access
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patterns, and extensive uncached IO to the display controller, which is treated in the

simulation as a synchronising event, making it a good indicator of simulator perfor-

mance for workloads which feature communication and are IO heavy. Between the

EEMBC and Coremark benchmarks there are a wide range of runtime behaviours, and

with in-house memory intensive benchmarks cover the spectrum of compute and mem-

ory intensive workloads, while still exposing enough code complexity to challenge the

core micro-architectural model.

Statically scheduled parallel workloads for 1 to 64 tasks were composed by ran-

domly selecting benchmarks from this set. The benchmarks used in the 1 to 6 task

workloads also used for accuracy comparisons can be found in Table 4.2.

To give a clearer measure of how performance varies with the benchmark behaviour

1, 3, 6 and 12 thread single benchmark workloads were also composed for the EEMBC

suite and Coremark benchmarks. These benchmarks were run on appropriately con-

figured 1-, 3-, 6- and 12-core MPSoC designs and simulated on a dual socket, 6-core

Intel Xeon X5650 workstation, providing 12 cores at 2.6 GHz. Performance results

are shown in Figure 4.5, with solid bars representing 4KB direct-mapped caches, and

striped bars representing 4KB 2-way set associative caches.

The JIT worker threads were enabled for these experiments highlighting the best

case for simulation performance. The 2-way set associative results for Conven and

FBital demonstrate that extremely high simulation rates are possible for cache friendly

benchmarks, with simulation rates over 377 MIPS, but the graphs also highlight that

the simulator has two distinct interacting performance profiles. The core simulations

run at approximately 14 MIPS per core in interpretive simulation, or 50-100 MIPS

with the JIT enabled, and while the interconnect can keep up easily when there is

minimal work to do, it can only simulate a saturated medium sized interconnect at

around 1 MHz. Testing with a 64 thread cache thrashing workload on a 64-core target,

resulting in 98.8% of each core’s time being spent waiting for IO and only 0.006%

of cycles able to be fast forwarded, gives a simulation rate of only 0.285 MHz on a

1.8 GHz 32-core server. However this still represents an aggregate simulation speed

of 18.25 core-MHz, and despite the effective CPI of 170 provided a still competitive

simulation rate of 0.107 MIPS.
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Simulator performance with JIT
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Figure 4.5: Simulator performance across the EEMBC and Coremark benchmarks for

1-, 3-, 6- and 12-core designs. Solid bars indicate 4KB direct-mapped simulated I and

D caches, striped bars indicate 2-way set associative variants of the adjacent design.
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Workload Contained Benchmarks

1_0 imgdisp

1_1 fbital

1_2 conven

1_3 autcor

2_0 coremark, imgdisp

2_1 autcor, conven

2_2 fft, vinterb

2_3 viterb, imgdisp

3_0 conven(2), imgdisp

3_1 conven, coremark, cache_thrash

3_2 coremark, fbital, imgdisp

3_3 coremark, fbital(2)

4_0 conven(4)

4_1 autcor, conven, coremark(2)

4_2 autcor, fbital(2), imgdisp

4_3 autcor, fbital, fft, imgdisp

6_0 coremark(5), fft

6_1 autcor, fbital, viterb(2), cache_thrash(2)

6_2 conven, coremark(2), fbital, fft, viterb

6_3 autcor, conven, coremark, fft, imgdisp, cache_thrash

Table 4.2: Composition of multi-benchmark workloads.
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Interconnect Traffic
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Figure 4.6: Cache behaviour across the EEMBC and Coremark benchmarks for 1-, 3-,

6- and 12-core designs. Bars are arranged in the same order as Figure 4.5, grouped

into 4KB direct-mapped and 2-way set associative caches.

By analysing the cache behaviour of the benchmarks in the simulations which pro-

duced Figure 4.5 we can see the relationship between interconnect traffic and simula-

tion performance. Figure 4.6 shows the breakdown of interconnect traffic across the

simulations in terms of cache miss events per thousand instructions executed, isolat-

ing synchronising cache-bypassing traffic, data cache misses, and instruction cache

misses. It can be seen comparing these two figures that good cache performance leads

to exceptional simulation performance, although even when interconnect traffic causes

simulation performance to drop, it is still significantly faster than the state of the art.

Simulator performance statistics were also collected from a large scale design-

space exploration on a shared cluster computing facility, comprising a mix of 8- and

12-core nodes. The simulations involved the previously discussed generated work-

loads, of which 64 different multiprogrammed workloads were produced comprising

between 1 and 64 independent tasks. The designs were also randomly selected from a

design space of 12000 designs, the possible combinations of the configuration param-
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eters listed in Table 4.1, varying the number of cores from 1 to 64, divided between 1

to 8 clusters. In total 20204 design-benchmark combinations were simulated, which

used 1008 different MPSoC configurations from the total design space. For time-

allocation on the compute cluster, the number of host cores requested for a specific

design/benchmark configuration was the minimum of the number of cores in the de-

sign, and the number of tasks in the workload, plus one for the interconnect. This was

chosen because cores will shut down once there are no tasks remaining to execute.

The bare-metal runtime has an IO heavy start-up phase which must be executed on all

cores of the design, so simulation speed can appear artificially limited by having to

simulate many cores and an interconnect on only a few allocated physical cores dur-

ing this time. Unfortunately the cluster workload scheduler has greater throughput as

scheduling both shorter running and less resource demanding tasks, in comparison to

those with longer estimated run-times or greater physical core allocation. Because of

this the results of the simulations are heavily weighted towards those with fewer ac-

tive cores, since more of these were successfully scheduled and completed in the fixed

timespan available for experimentation. The average simulation required 5.3 active

cores, or approximately 6 host threads.

For the large scale cluster experiments the results are presented in two parts. Firstly,

Figure 4.7(a) presents the performance in instruction throughput expressed in MIPS,

as is typical for instruction set simulators. Here you can see the instruction throughput

rarely drops below 1 MIPS (<5% of simulations), and on average achieves 5.7 MIPS

aggregate across the simulated cores. In the worst case there are almost no simulations

which executed at under 0.3 MIPS (<0.7% of simulations), and none below 0.08 MIPS,

while the best-case simulations ran at an aggregate 45 MIPS.

Secondly, Figure 4.7(b) presents the results as effective simulation rate of the whole

MPSoC in MHz, not aggregated per core. For example a design with a 2:1 core to in-

terconnect clock ratio reported as 10 MHz, means that each core simulated at 10 MHz,

and the interconnect at 5 MHz (since it only executes 1 cycle for every two the cores

execute). Similarly if the core to interconnect ratio was 1:2, 10 MHz means that the

cores simulated at 5 MHz each, while the interconnect ran at an effective 10 MHz.

On average simulation rates of 10.1 MHz were achieved, only 7.5 times slower than

the fastest design which can be synthesized to a Virtex6 FPGA. The maximum per-

formance was 117 MHz: significantly faster than the FPGA implementation, and ap-

proaching the 250 MHz projected speed for 65nm silicon implementation. Unfortu-

nately there is a very shallow tail below 1 MHz covering 8% of the simulations, which
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extends down to 0.01 MHz, indicating either pathological simulation conditions, or

the simulation host in the cluster was being shared with an application causing a high

degree of performance interference. The simulations were primarily run as a large de-

sign space simulation experiment, rather than for performance metrics, so time was not

spent investigating the cause of the poor simulation performance of this tiny fraction

of experiments. Looking at Figures 4.8 and 4.9 however helps to explain some of the

behaviour. With a maximum number of required host threads of 12, no simulations

except a few with a single active core execute at less than 0.5 MIPS. All 1.8% of the

designs which execute below 0.5 MIPS are running on over-loaded hosts, while on av-

erage simulation throughput was increasing with the number of target cores up to this

point. This, along with the marked drop in average simulation performance when more

threads than the available 12 host cores are required, indicates that the performance

was probably lost to the overhead of the operating system scheduler, and later work in

this thesis on a coherent simulation, employing a user-space scheduler, does not suffer

from this problem. As such the worst results most likely could be redeemed through

such a user-space scheduling system.

These figures for extremely stressed interconnect traffic do not present a realistic

view of the simulator performance, since most workloads make effective use of the

core’s private caches to reduce IO traffic; the simulations used to generate Figure 4.7

report an average IO/core cycles ratio of 7.4%, with a maximum of 93%. This is the

reason for the extremely large performance distribution seen in Figure 4.7(a), which is

unusual for a cycle-accurate simulator. The very lowest tails of the performance distri-

bution are likely caused by simulations with more cores than host threads, which exe-

cute multiple instances of the panning image benchmark. Because this generates un-

cached IO to the screen, the core-interconnect synchronisation is triggered frequently.

While not a problem in isolation, when the operating system cannot schedule all the

threads to run simultaneously, it will often send the thread simulating the core per-

forming IO to sleep, to let another core run. The interconnect thread will quickly

process the single event and then hang waiting for the core to continue, because it

cannot proceed beyond the current cycle time of the slowest core. With normal cache

miss operations some of this scheduling overhead is masked by using large circular

buffers, which allow the cores to execute sufficiently far ahead that the interconnect

will not have to stall for long if the core thread is scheduled to sleep. This pathological

behaviour is addressed in the next chapter with the introduction of user-space schedul-

ing, which provides significantly lower context switch overheads and allows for finer



92 Chapter 4. Exploiting Cache Incoherence for Fast Parallel MPSoC Simulation

Simulator Performance Distribution (MIPS)

Performance (MIPS)

F
re

qu
en

cy

0
20

0
40

0
60

0
80

0
10

00

0.1 1 10 100

(a)

Simulator Performance Distribution (effective MHz)

Performance (MHz)

F
re

qu
en

cy

0
20

0
40

0
60

0
80

0
10

00

0.01 0.1 1 10 100

(b)

Figure 4.7: Histograms of simulator performance from a large scale design space ex-

ploration, showing that almost all of the 20204 design/workload combinations have sim-

ulated performance over 1 MIPS, while most perform significantly better than this.
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Simulator Performance vs Active Target Cores
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Figure 4.8: Simulation performance against number of active simulated cores. This is

one less than the required number of simulation threads. Results less than 0.5 MIPS

are highlighted with hollow circles.

control of the scheduling. Other simulators also use user-space scheduling for the same

reasons [129].

It is worth noting that while the simulator supports JIT compilation to accelerate

simulation of the individual cores, it was disabled for the large-scale performance and

accuracy results presented in Figures 4.7 & 4.11. This is because there are a few cases

where the JIT compiled simulation model produces slightly different timing of events,

due to a microarchitectural detail that has been updated in the interpreted mode only.

This does not lead to a significant error in the simulated accuracy (<1% difference to

interpreted with the 3-stage pipeline), but does lead to non-determinism, as events will

be generated at slightly different times. Since the cluster-based simulations were run

primarily for purposes of design-space exploration rather than performance evaluation

of the simulator, it was decided that leaving the feature disabled was preferable. Since

the extra performance provided by using the JIT has the most impact when the inter-

connect has little work and can fast-forward to keep up, its use would only stretch out
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Figure 4.9: Average simulation performance against number of active simulated cores,

showing the impact of simulation with more threads than there are physical cores in the

host.
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the upper tail in simulation performance towards 100 MIPS per core. It would not

significantly affect the body of the results, which are limited by the performance of the

interconnect model.

4.6 Accuracy Evaluation

To construct and verify the detailed microarchitectural switch and memory controller

models, detailed tracing output from the simulator was compared manually against

Verilog simulation, confirming that the interconnect switch and memory controller

implementations were indeed cycle accurate under a variety of test conditions. To em-

pirically measure accuracy of the whole simulator several designs were synthesized to

a Xilinx Virtex6 FPGA and test workloads were run on these platforms. The run-times

in cycles for each core were collected and the results compared with the simulator,

using the generated simulator configuration file.

To demonstrate how simulator accuracy varies with the different EEMBC bench-

marks, and when scaling up the core count, the simulated cycle counts from the perfor-

mance tests in Figure 4.5 were compared with the same design running on the FPGA.

Once again solid bars represent direct mapped caches, and striped are 2-way set as-

sociative, with each benchmark being run on 1-, 3-, 6- and 12-core designs. The bar

for 12-core 2-way set associative is absent because this design does not fit into the

available Virtex6 FPGA. The results, shown in Figure 4.10 clearly show that the error

is most affected by the benchmark, rather than the hardware configuration. Another

feature which can be discerned using Figures 4.5, 4.6 and 4.10 is that benchmarks with

good cache behaviour (almost no interconnect traffic) such as FBital can have poor

simulation accuracy, while those with poor simulation speed due to higher intercon-

nect traffic like AutCor have very little error, indicating that the core microarchitec-

tural model is more responsible for the error. The fact that error is most affected by

benchmark and not size of the design supports this.

Secondly, as shown in Figure 4.11, the randomly generated multiprogrammed

workloads as described in Section 4.5 were run on a range of different MPSoC con-

figurations, listed in Table 4.3, to evaluate error across different design options and

more interesting workload combinations. Each shaded region represents the results for

one workload, with each bar being the RMS error of the cores compared to the same

core on the FPGA for a given MPSoC design. The designs are listed in order in Table

4.3. Here the trend that accuracy is determined by benchmark mostly continues, al-
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Design 1 2 3 4 5 6 7 8

Cores 1 2 2 2 2 2 2 2

Clusters 1 1 1 1 1 1 1 1

RAMs 1 1 1 1 1 1 1 1

Complexity 2 2 2 2 2 2 2 2

Fifo Depth 2 2 2 2 2 2 2 16

Core

Freq(MHz)
12.5 12.5 12.5 12.5 12.5 25 50 12.5

NoC

Freq(MHz)
12.5 12.5 25 50 100 12.5 12.5 12.5

Design 9 10 11 12 13 14 15 16

Cores 2 2 2 2 2 2 2 4

Clusters 1 1 1 1 1 1 2 2

RAMs 1 1 1 2 4 8 1 1

Complexity 4 8 16 1 1 1 1 1

Fifo Depth 1 1 1 1 1 1 1 1

Core

Freq(MHz)
12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5

NoC

Freq(MHz)
12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5

Table 4.3: NoC configurations used for accuracy analysis.
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Benchmark/Scaling Simulator Error vs FPGA Instance
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Figure 4.10: Error from performance graph Figure 4.5. Cycle count error from 1-, 3-, 6-

and 12-core simulations of direct mapped and 2-way set associative configurations, for

standard embedded benchmarks.
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Workload/Design Simulation Error vs FPGA Instance
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Figure 4.11: Cycle count error across the small scale design space in Table 4.3 for

mixed benchmark workloads detailed in Table 4.2.



4.7. Conclusion 99

though more per-design variation is demonstrated than in Figure 4.10 due to the shift

in execution time spent in the interconnect and core respectively across the different

designs.

The mean error from this larger experiment set is only 1.8%, with an RMS error of

2.1%, comparing well to the single core FaCSim, which achieves an average 7% error

relative to its reference platform, and GEM5, which was recently evaluated to provide

an average RMS error of 8.8% relative to a more complicated dual-core reference

platform [82]. The most similar simulation system, a parallelised SystemC simulator,

manages an average error of 6% [129] over a cycle accurate software model.

4.7 Conclusion

Having demonstrated simulation speeds of up to 377 MIPS, with an average execution

time error of only 2.1% relative to hardware reference implementations, the presented

simulator clearly provides a flexible, powerful tool for embedded systems develop-

ment. With unrivalled performance for software based, multicore, full system, cycle

accurate simulation the simulator is not only useful for application development (for

timing accurate functional behaviour, debugging, and performance evaluation) but also

large scale design space exploration. This was leveraged to perform over 20,000 sim-

ulations on a shared cluster service in under three weeks.

This was achieved through novel exploitation of the cache-incoherent nature of

embedded systems to decouple simulation components with significant slack, allowing

for efficient parallelism. The performance potential was only fully realisable through

the presented packet tracking and counting optimisation techniques, which, along with

the cache efficient interconnect model and cycle skipping techniques, allows the NoC

based interconnect simulation to keep up with the high speed parallel core simulations.





Chapter 5

A Simulation Architecture for

Cache-Coherent Manycore Systems

5.1 Introduction

While a manycore embedded system without cache coherency may be an option for

some applications, there are a large number of existing applications and operating sys-

tems which require cache coherency to function, which one might wish to run on a

manycore architecture. As with the target architectures of the previous chapter, it is

highly beneficial to investigate detailed micro-architectural decisions involved in the

design of a platform before committing to a final design, and novel micro-architectural

changes require detailed, accurate, simulation to verify their impact.

This chapter extends the work in the previous chapter to enable the cycle accu-

rate simulation of systems up to 1024 cores, while fully simulating a complex cache

coherency protocol and collecting a large number of important statistics.

5.2 Architectural Summary and Assumptions

Continuing the theme of the previous chapter, this work remains focused on the use of

embedded general purpose cores, because to reach the high density required to build a

1024-core chip the cores themselves must not only be very small, but also very power

efficient. The architecture itself is discussed in more detail in the next chapter, but this

section will highlight the important points as they relate to simulation.

The small 3-stage core is retained, but to reduce the size of the tag RAM, and co-

herency overhead per byte of memory, the cache line size was increased to 64 bytes for

101
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both the instruction and data caches. The in-order interlocked pipeline assumptions

are also retained, allowing the use of time-offset tracking discussed in the previous

chapter, although synchronisation must now happen on all data accesses. To better

simulate an application processor, a pseudo MMU has been added to the data memory

hierarchy, featuring a 128-entry 2-way data TLB of 8KB pages, trapping to a software

handler. The TLB is not used in simulation to actually translate between virtual and

physical memory, the simulation still runs in a single address space, but it produces the

traffic and performance characteristics equivalent to a full MMU. An instruction TLB

is not modelled, for simplicity, under the assumption that the small benchmarks used

will easily fit within one or two pages and not produce a significant number of TLB

miss events. The data cache is now coherent, so all memory operations must be or-

dered in interconnect timing order, reducing the slack in the simulation. To accurately

model the coherence protocol also requires full data caching, not just tags and timing

information, to correctly model any errors or behaviours which are more relaxed, or

differently timed, than the host memory consistency model. The timing accurate func-

tional caches, which store not only tags but also data, are one feature which GEM5 for

example lacks, which makes it difficult to model relaxed memory consistency mod-

els, although recent contributions have implemented some cache shadowing to help

address this [130]. The data interconnect contains multiple levels with different bus

and switch types, from a narrow tree hierarchy, through a flit merging FIFO, to a wider

4×4 mesh giving 16 isolated data trees. An overview of the architecture is provided in

Table 5.1 along with Figure 5.1, which is featured again and explained in more detail

in the next chapter.

As a simplification measure, the multiple clock domain support was removed and

all components are run at a synchronous 800MHz simulated clock rate. The directory

is designed to match the 64 entry set size of the L1 caches, with configurable associativ-

ity, allowing experimentation of the associativity requirements of the directory ranging

from the same associativity as the L1 cache system, down to highly constrained small,

low associativity directories. For many of the later presented experiments the direc-

tory is configured to match the L1 associativity, to remove it as a source of noise and

highlight the features of interest in the experiment. Similarly the last-level caches are

modelled as “perfect” caches, which always result in a hit; this removes noise artefacts

from the simulation that would be caused by DRAM accesses which are orthogonal to

those attributes being investigated. While off chip memory bandwidth is a significant

problem for manycore processors [131] it is outside the scope of this thesis. The direc-
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Design Parameter Configuration

Core Architecture ARC700 32-bit RISC

Pipeline 3-stage in-order

I&D-Cache 4 KB Direct Mapped

Cache line size 64 Bytes

Interconnect Protocol Custom unified packet based.

Coherency Protocol MESI Directory with Coarse Vector

Table 5.1: Architecture design parameters.
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    Data Writeback

2. Read Data, Write-Ack - Priority on stall
  prevents deadlock

Figure 5.1: Overview of the simulated architecture.
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tory uses a simple mask on the lower address bits to generate the index as found in a

traditional direct mapped cache. The directory is internally sharded into four pipelines,

with cache lines assigned based on the lowest two index bits. This was done to dis-

tribute the directory better between smaller, and as such faster, memory blocks; and

to allow operations to be processed in parallel while one or more of the four pipelines

is stalled on an operation. Each pipeline has a four entry transaction buffer, indexed

on the next two index bits. This is to enable certain operations to be suspended which

would otherwise require the pipeline to stall while the pipeline continues operations on

other independent transactions. The directory and coherence protocol are discussed in

more detail in the next chapter.

5.3 Simulator Construction

Each of the NoC switch and router elements are modelled as a simple class containing

some internal data structures for arbitration state and any buffering, a C++ ‘struct’ in-

stance for each output port of the appropriate type for the bus protocol it transports, a

pointer to a similar struct for each input port, and a procedure to call which will execute

a simulation cycle in the switch. A diagrammatic representation of the up and down

tree routers can be found in Figre 5.2. The full NoC model is created by allocating

large arrays of each type of switch and router as required, then procedurally assigning

the input pointers to the appropriate output ports in the source switch. To reduce com-

putational complexity and the number of iterations through the arrays on processing

the ordered interconnects (data and coherency trees) are allocated in the array in such

a way that a linear traversal either forward or backwards through the array will process

the elements in data flow order, so by traversing the array in the opposite direction a

simple registered bus is easy to simulate without requiring extra buffers or handshaking

– each switch can propagate its result to the output in the same cycle knowing that its

output was computed before it, so the result will not be accidentally propagated. This

is a small simplification over the switch models in the previous chapter, in which the

registered switches in the incoherent platform used asynchronous FIFO buffers, which

introduced longer processing delays and requiring more complicated internal microar-

chitecture. The simplification allows lighter weight simulation without a significant

impact in accuracy, and still provides the full resource contention modelling which is

so important in a manycore model.

Because the switches communicate through structures and pointers, any switch
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Figure 5.2: Memory representation of interconnect elements.

can be connected to any other switch so long as they use the same struct for com-

munication. This mechanism allows different parts of the network to be connected

using converter switches as in the real hardware, for example the flit splitting com-

ponent between the data trees and the mesh, which take in wide flits from the mesh

into a FIFO buffer, and over multiple cycles produce smaller flits exposed to the data

tree. This construct allows for memory efficient modelling, because there are almost

no extra memory overheads than the registers used in the FPGA or ASIC implementa-

tion, which in turn allows for large interconnect simulations which are not bounded by

memory constraints, and fairly cache efficient simulation.

5.4 Instrumentation and Statistics Gathering

One of the great benefits of developing an interconnect model from scratch is the po-

tential to include instrumentation which is understood to be an accurate measure of the

features one is trying to measure. Because the data structures used for switch to switch

communication effectively expose the wire level communication, it is trivial to collect

a measure of wire energy for the NoC model. A good first approximation for bus wire

energy is the capacitive model, which within a fixed voltage and process scaling, has

a fixed cost for flipping an individual wire from one state to the other, scaled linearly

with the length of the wire, i.e. the cost is calculated as bit flips per unit length. To
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calculate the number of bit-flips that occurred on an individual link in the interconnect,

when a new value is about to be written into the output registers representing that link

the hamming distance between the new and old value is computed and accumulated

in a counter variable stored in the switch. This is performed efficiently by combining

the new value with the original using a bitwise XOR operation, so the resulting bit

pattern holds a 1 for every bit which has changed, then counting these efficiently using

the popcount instruction. Thus for every wire link in the interconnect, the number of

bit-flips is cheaply recorded. To arrive at an energy model from this the final count

at the end of simulation is multiplied by the estimated wire length for that bus. The

number of flits and packets is also recorded to give a separate indication of energy used

in the switch routing and overall network traffic, along with an indication of the aver-

age number of wires which change state for each flit. A common model simplification

made is that on average half of the wires change state, and collecting this information

allows us to demonstrate the validity or fallacy of this simplification.

In addition to the usual cache and TLB statistics, the simulator also uses a his-

togram to track the time to serve memory requests for data and instructions, and time

spent idle on sleep instructions explained in the later chapters, providing powerful view

into the behaviour of the memory hierarchy and platform performance as software and

hardware parameters are modified. The number of active cores is also sampled every

10,000 cycles along with the directory occupancy, to provide a runtime profile of the

processor activity and directory utilisation, giving further insights to how a program

uses the hardware over the course of its runtime.

5.5 Performance Optimisations

To keep the simulation of coherent architectures fast, many of the techniques from the

previous chapter can still be applied to good effect. Whereas in the future, with archi-

tectures like AMD’s Fusion APUs, and the HSA combined memory space, it will be

much more feasible to execute the apparently data parallel NoC switch simulation on

an accelerator card, the data transfer and kernel invocation overhead is still far too high

with discrete accelerator cards. As such it is faster to compute the NoC serially on a

conventional processor, and take advantage of the serial processing nature to make the

simulation more efficient. As discussed in Section 5.3, by simulating the switch micro-

architecture in a controlled order the requirement for externally visible state to remain

unchanged during computation is removed. This allows any form of state shadowing
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and duplicating, which would almost certainly be required for GPGPU aided compu-

tation (such as using a simulation kernel which computes from one copy of system

state, to another, and switches each cycle like the traditional graphics front and back

frame-buffers), to be avoided. One of the best techniques for reducing interconnect

simulation discussed in the previous chapter was the use of network partitioning and

packet counting. Unlike the AXI based network of the previous architecture, the pro-

posed manycore architecture uses a unified data bus, so the method must be applied

differently. Each of the 16 tiles contains its own independent data tree, with two sep-

arate directions of traffic, giving 32 networks which can be simulated independently.

Not only can these be packet counted to avoid simulating the network when possible,

but they can be simulated in parallel across a small number of general purpose pro-

cessors. Similarly the mesh can be treated as another network to be packet counted,

but it must be run in its entirety (including the components which couple it to the data

trees) before the tree networks can be simulated in parallel. The four coherency trees

can also be simulated in parallel to these, with three of them being amenable to packet

counting, and the multicast tree (due to its non-blocking nature) able to be put to sleep

after a known time-out after the last packet being injected. Another two phases of the

simulation which can be executed in parallel are the handling of the core cache con-

trollers and the L2 cache controllers attached to the mesh nodes. After the statistics

collecting phase, run every 10,000 cycles, the simulator first runs the core communi-

cation and cache controller phase, optionally in parallel, because after this phase it is

known if any IO activity must be performed or the entire cycle (or several) may be

skipped. It then evaluates whether coherency or data must be simulated and runs the

coherency networks, followed after a barrier by the directory simulation. Then, the

parallel phase of the data network simulation (including L2 cache output and mesh

switch output simulation phases), and finally after another barrier, the mesh and L2

cache output phases of simulation.

The described method is definitely not optimal for a parallel simulation, and it

would make more sense to batch all of the parallel network simulation jobs at once

(coherency and data trees) perhaps using a task farm style of parallelism rather than

the static partitioning used in this implementation, then run the directory and mesh

phases of the simulation afterwards, but in parallel with each other. Such a design may

be taken by future work which emphasises simulation performance, but the limited

time available for this work meant that efforts had to be focussed on architectural

exploration using the simulator, rather than further refinement of the simulator itself.



108 Chapter 5. A Simulation Architecture for Cache-Coherent Manycore Systems

It should now be apparent that there is available parallelism to be exploited in the

interconnect, and a small number of cores, from 2 to 4, shows meaningful speedups for

most configurations. Unfortunately it is not possible to keep the same degree of core

simulation parallelism with the coherent simulation that was seen with incoherent sim-

ulation, due to the stricter synchronisation requirements. To tackle the large reduction

in simulation slack, and handle the significantly larger number of simulated processors,

the switch was made from OS managed multithreading to user-space context switch-

ing. A fixed number of OS threads were allocated for running the core simulations (in

a similar fashion, a fixed number was allocated to interconnect simulation) between

which the simulated cores were statically partitioned. Each core simulation is now

running in a user-space managed thread, which is transparent to the running simula-

tion, except it must now yield using a different function which enables a cooperative

multithreading based scheduling to take place. This yield function returns the thread

from the core simulation, to the thread manager, which then picks the next core sim-

ulation to run, and switches context again into that thread, restoring its register state

and switching to its thread stack. This approach is similar to how the SystemC kernel

switches between running Threads and Methods when they issue Wait statements, con-

text switching to the next Method or Thread which is scheduled to run and moving the

thread handler which just suspended into the appropriate queue for the event it called

Wait upon. Unlike the parallel SystemC runtime presented by Mello et al. [129] the

parallelisation presented in this thesis does not sacrifice simulation accuracy, despite

the initial similar appearance.

The user-space scheduler used was a simple round robin scheduler, which poten-

tially wasted many cycles switching execution state back to a processor which was still

waiting on a response from the interconnect thread. An obvious optimisation which

could be implemented in the future would be to maintain a list of active core sim-

ulation threads, and remove a core when it yields, leaving only active cores in the

list. When the interconnect thread has processed its request, it pushes the core back

onto the active threads list. This could also allow work balancing between the threads

which handle simulation, because the interconnect could push it back onto the sched-

uler thread which was quietest, rather than the one the thread came from. This could

result in poor cache performance because of threads being regularly migrated however,

and is left for future work.
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5.6 Performance Evaluation and Conclusions

It is difficult to form an apples-to-apples comparison between the presented simulator

and others, because the presented simulator has greater potential accuracy, but less

overall flexibility and a restriction on simpler in-order pipelines, when compared to

the nearest competition. However taking the best performing simulators capable of

simulating a manycore target with some form of timing model gives Sniper [101] and

the Monchiero et al. modified COTSon [49] as the best competitors. These both have

performance claims for high speed multicore coherent simulation. These respectively

are 2 MIPS instruction throughput for a 16-core target on an 8-core host for Sniper,

and 1 MIPS scaling down to 0.7 MIPS for the COTSon based simulation.

In this section performance results are presented from simulations used to produce

the experimental results in the subsequent chapters. As such they were not run in a

timing controlled manner, were often running on the same machine as other workloads

and simulations, and did not all run on the same hardware configuration or with the

same number of threads allocated. However, all simulations which form the same line

segment were run on the same machine, with the same thread allocation, so trends

amongst the results are still valid. The results can also be considered a lower bound

on the performance expected from the highest performing simulation environment and

configuration used, and as such can still be compared against the Sniper and COTSon

competition. The simulations were all run with either three or five threads, config-

ured as two or four threads executing core simulations, and a single thread running

the interconnect simulation. This arrangement was chosen to simplify statistics instru-

mentation in the interconnect (so thread-safety was not a concern) and to get the best

simulation throughput out of the multi-socket workstations and compute-servers used

to perform the experiments (simulation performance does not scale linearly with more

cores, while running more simulations in parallel achieves close to linear improve-

ments in throughput). The fastest machine configuration was a dual socket 6-core

Xeon X5650 machine, providing 12 cores running at 2.6GHz, of which each simula-

tion used at most five cores.

Figure 5.3 presents the instruction throughput for the simulator developed in this

chapter. There are three distinct sections to the graph: No-TLB No-Sleep refers to

simulation where no MMU is modelled, no coherence filtering takes place (all mem-

ory accesses require coherency) and cores may not sleep (active spin-wait is requires

for synchronisation). TLB No-Sleep introduces a TLB and coherence filtering pre-
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sented in the next chapter, which allows conservatively detected non-coherent pages of

memory to be accessed without involving the coherency protocol. Finally TLB Sleep

adds the Wait-on-Address instruction presented in Chapter 7, which allows cores to be

suspended while awaiting synchronisation operations, rather than use spin-wait opera-

tions. This has the side affect of drastically dropping the apparent IPC and instruction

throughput of the simulator, because spin-wait instructions otherwise fill this waiting

time with "work" for the simulator.

Figure 5.3: Instruction throughput of the simulator in different operating modes.

It is apparent from the initial No-TLB No-Sleep results that the presented simula-

tion infrastructure, despite using only five host cores and using a tightly synchronised

and cycle accurate interconnect model, is competitive with Sniper. The 32- and 64-

core simulations of Radix, achieving 2.15 and 2.18 MIPS respectively, outperform the

best quoted result from Sniper, although Sniper simulates a more complex core micro-

architecture, while Arcsim provides greater interconnect accuracy. While the simulator

appears to drop off in performance more rapidly than COTSon, this is due to the signif-

icantly more detailed interconnect model becoming a bottleneck, resulting in a drop off

in IPC; this means that for a relatively constant simulation rate in core-cycles per sec-

ond, the effective instruction throughput will drop. Despite this only Ocean and FFT

drop to performance slightly worse than COTSon, simulating at 0.44 MIPS for 256-

core Ocean, and 0.5 MIPS for 512-core FFT. Moving on to the TLB No-Sleep results,

performance drops slightly, although unfortunately there are only two benchmarks in

common between these data-sets. This is due in part to the increased simulation com-
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plexity of resolving a TLB lookup and resolving the coherency filtering for every mem-

ory access, and because more instrumentation was added to the interconnect. However,

simulation performance is still maintained at around 1 MIPS, on-par with the relaxed

COTSon and Sniper simulations. This is while providing full, cycle accurate, timing

correct data duplication for cache models, and calculating wire-accurate energy mod-

els based on the data transmitted over each wire in every flit, amongst other detailed

modelling features. Finally the TLB Sleep results, which enable the cores to be sus-

pended while waiting on synchronisation primitives, appear to perform significantly

worse. As explained in more detail in later chapters, the SPLASH-2 benchmarks all

spend an ever increasing proportion of their time in spin-wait synchronisation as the

number of threads is increased. As a result, removing these instructions gives the ap-

pearance that the simulation is doing no work. The truth will become apparent on

analysis of Figure 5.4.

Figure 5.4: Cycle throughput of the simulator in different operating modes.

In Figure 5.4 results are presented for the core-cycle throughput, i.e. the number of

cycles per second simulated by the simulator, multiplied by the number of cores being

simulated, to give a figure in core-MHz. This metric is a good metric for how well

the simulator is actually performing, since many aspects of the interconnect model

also scale up linearly with the number of cores. A good result for a single threaded

simulator would be a horizontal line. This would represent constant performance, with

the increase in work for the extra cores resulting in a linear increase in the time taken to

process it. A parallel simulator with a fixed number of worker threads such as the one
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presented in this chapter should expect similar behaviour. Indeed, when WoA is not

enabled, so cores cannot sleep, the simulation performance remains mostly constant

at around 3-5 core-MHz, with the exception of Ocean which is likely to be spending

an increasing proportion of its time fulfilling cache requests, running at maximum

interconnect processing rate while the core threads are relatively idle. Because of

the extensive optimisations performed on the network model, interconnect simulation

does not take proportionally longer as more cores are added, and can remain relatively

constant under the right circumstances. As such the core-MHz actually increases when

cores are waiting proportionally longer on interconnect simulation. This behaviour is

unique to Ocean however, with the TLB No-Sleep results corroborating this.

The interesting results are those where WoA is enabled. Although discussed in

detail in Chapter 7, the WoA optimisation was initially conceptualized as a means for

increasing simulation efficiency and performance. After witnessing the large number

of processor cycles spend simulating the instructions for a synchronisation spin-wait

a new mechanism for communicating to the simulator the intent behind the inefficient

waiting was clearly needed. Wait-on-Address fulfils this need by explicitly informing

the simulator that the processor is waiting for a specific cache line to change, enabling

the core to be completely suspended from both the core simulation loop, and skipped

over when simulating the core side of the cache model (external coherence events must

still be handled for example). This has the extra benefit of dedicating proportionally

more resources to the simulation thread doing the work upon which other cores are

waiting, drastically increasing the simulation performance, and greatly shortening the

time taken to complete the work. The TLB Sleep portion of Figure 5.4 shows that

simulation performance can be over 4 times greater for the equivalent simulation, de-

spite the initial appearances of Figure 5.3. Accounting for this the effective simulation

rate of the presented simulator, for a suitable compiled benchmark, can in fact simu-

late significantly faster than the less accurate Sniper or COTSon simulators, with the

only simulators providing better performance for the same accuracy provisions requir-

ing FPGAs to perform the timing model, or both timing and functional model. Even

these do not provide the same simulation detail, especially with regards to incorrect or

relaxed coherence protocols, as the simulator presented here.

In conclusion, the presented cycle accurate, multi-threaded, full system simulator

for large scale cache coherent architectures demonstrates that it is possible to build a

performant coherent simulator for large scale milticore systems; especially in the case

where the simulated cores have simple interlocked pipelines. The presented simulator
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is fast enough, accurate enough, and collects enough information to be a more use-

ful tool than the existing simulators when designing new features for new multicore

processor systems.





Chapter 6

A Latency-Bandwidth Balanced

Manycore Architecture

6.1 Introduction

Since technology scaling no longer yields increases in single-thread performance, fu-

ture scaling relies on integrating more cores in a single chip. This is particularly preva-

lent in the power and thermally constrained mobile world, where over the past few

years there has been a rapid progression from single low-powered ARM cores, up

to eight relatively high-powered ARM cores with a handful of DSPs and other ac-

celerators. However, despite moving on to multicore architectures, as of 2013 the

individual cores were still an order of magnitude less powerful than the desktop and

server processor found today [132; 133; 134]. By 2015 this gap has been closing,

especially with newer 64-bit ARM processors such as the A57, but many of these

benchmarks are performed at maximum operating frequencies, which cannot be sus-

tained in the thermally restricted operating environment of mobile processors. This

move to multicore processors is because larger cores require significantly more energy

per unit of computation that their smaller brethren and so, where sufficient parallelism

exists, near-linear throughput gains can be made with near-linear power expenditure by

adding more cores. Most programs written today assume a coherent view of memory,

and a fairly strict memory consistency model. Keeping each core’s view of memory

“coherent” has many possible solutions, which revolve around either direct core-to-

core communication (e.g. snooping, which works well for small core counts), keeping

sharer information in the last level cache tags, or the introduction of a new on-chip

structure, the coherence directory.

115
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With modern fabrication nodes and tiny embedded microprocessor cores deliver-

ing compelling performance, it is possible to design a homogeneous general-purpose

manycore, with 1024 cores on a single die of similar area to a typical server pro-

cessor [73]. In order to run existing parallel code, with minimal modification, cache

coherency must be a first class citizen, and power consumption will be very important.

However, without accurate, high performance simulation tools, such as those de-

veloped in the previous chapters, performing accurate evaluations of any hypothetical

designs must either take far too long to enable iteration and design space exploration,

or be so inaccurate that any performance comparisons have low statistical confidence.

As systems are scaled ever larger, maintaining cache coherence with strong mem-

ory consistency models becomes an increasing bottleneck to parallelism and system

performance [34], so a new platform should provide a means to avoid the coherence

system if possible enabling future programs to be written with as little strong coherency

as possible. Eventually this could allow future manycore processors to provide only

a simple, small coherency mechanism for occasional use, rather than provisioned for

use with every memory access.

This chapter proposes such an interim architecture, which provides strong sequen-

tial consistency by default, but allows memory regions to be accessed with the co-

herency infrastructure disabled, and can automatically handle the migration of memory

regions from private and shared incoherent and shared coherent states without violat-

ing sequential consistency. The novel simulation technology developed in the previous

chapter is then used to asses the new architecture’s performance and power scalability.

6.2 Architecture

The proposed design is a hybrid tree-mesh architecture, connecting many small em-

bedded embedded RISC processors based on the ARCompact instruction set [135].

These cores combine low die area with high cycle efficiency, and are thus ideal for

manycore systems. Each core has 4KB of direct-mapped instruction and data cache,

with only the data cache connected to the coherency infrastructure. At 28nm it is pos-

sible to fit 1024 cores on a single die. These cores can operate at frequencies of up

to 1GHz, so the proposed architecture is operated at a conservative 800MHz. The

data network features a narrow bandwidth tree, truncated close to the roots with a wide

high-bandwidth mesh, while the coherency network is separate, and unusually is based

on a binary tree with a single root. Many mesh architectures distribute their directory
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with their last-level cache (LLC), and insist on an inclusive cache architecture [136].

Instead a separate, centralised directory is utilised, which allows optimisation of the

LLC contents, not explored in this thesis. An overview of the 64-core example archi-

tecture can be seen in Figure 6.1, and a summary of the configurations simulated can

be found in Table 6.1. Milo et al. argue that a hierarchy of fully inclusive caches,

with coherency state tracked in the tags would be a good way to achieve full chip

coherency for a manycore processor [136], but when applying their three level cache

hierarchy to a 1024 core design of even small 4 KB caches like those in this thesis

results in a 4 MB 1024-way set associative last-level cache (LLC), without accounting

for instruction caches. Ignoring at first the associativity problem, a three level cache

hierarchy would use 12 MB of cache for this processor, which for a very data parallel

problem would only provide 4 MB of useful cache. To avoid the associativity problem

Milo et al. suggest using an over-sized but less associative cache. This only solves

the problem when there is extensive data sharing or the data is carefully aligned to

avoid conflicting in the last level cache, otherwise the utilisation of the L1 caches will

be restricted. Even if a four times over-provisioning addressed the associativity con-

cerns, a three tier cache hierarchy with 4 MB of total L1 and L2 cache now requires

4+4+16 = 24 MB of total cache capacity, while still effectively only providing each

core with 4 KB of usable cache. By separating the coherency concerns into a sepa-

rate directory (with potential for a hierarchy of directory caches), the cache hierarchy

is free to be non-inclusive, and the die area can be retained for cache which can be

better utilised, removed to shrink the processor, or used to provide other features such

as accelerators or complex IO interfaces. By isolating the coherency and data-caching

concerns it is also possible to use less on-chip memory to store the coherency infor-

mation, because data can be stored usefully in cache, without the need for tracking

coherency information, so long as the software takes responsibility for tracking it, or

it is only in the LLC. It also moves the associativity problem from the data hierarchy,

where much more information-destructive compression techniques can be used not just

on the sharer state, but also on the address tags [64].
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Figure 6.1: Overview of the simulated architecture.
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Cores 32 64 128 256 512 1024

Mesh 4×4

Mesh Width 256 bits

Cluster Size 2 4 8 16 32 64

Tree Width 64 bits

Directory
Associativity

32 64 128 256 512 1024

Table 6.1: Architecture Summary.

6.2.1 Design Decisions

There are many reasons for selecting this tree based architecture, mostly relating to

latency, logic area, and energy. Simplicity was also a key factor: because the coherency

interconnect is ordered, it simplifies the coherency protocol, making it easier to reason

about and also enabling protocol optimisations.

With a 2D mesh architecture the node to node communication latency is on average

(2/3)
√

N, while a binary tree (or H-tree) scales as log2(N). For 16 cores, a mesh has

a better average hop count of only 2.7 (maximum 6), while the tree is 4 in all cases.

However, the tree is more attractive at 64 cores, with a mesh giving 5 hope on average,

but a maximum of 14 compared to a tree’s 6 hops. For 1024 cores the mesh has more

than double the average hop count of a tree, with a worst case 6 times greater than the

tree, which still only requires 10 hops. The latency and wire distance comparison for

various sizes of mesh and tree can be found in Table 6.2.

Mesh Size Mesh Hops Tree Hops Tree Distance

2×2 1.3 2 1

4×4 2.7 4 3

8×8 5.3 6 7

16×16 10.7 8 15

32×32 21.3 10 31

Table 6.2: Average hop distance and wire distance for mesh and tree networks.



120 Chapter 6. A Latency-Bandwidth Balanced Manycore Architecture

The logic area advantage comes from the fact that the binary tree router is ex-

tremely simple compared to a 5 port mesh router. While a tree and 2D mesh architec-

ture both require approximately the same number of routers, each mesh router must be

significantly larger than the corresponding tree router. This is caused not only by the

fact that the mesh router must arbitrate significantly more physical directions, it must

handle virtual channel arbitration on each bidirectional link, while in this case the tree

does not require virtual channels.

With many cores attached to each mesh node, there can easily be enough request

packets sent to a particular mesh node’s LLC slice that it fills the local buffer and jams

the network on links heading towards the node. If this happens to two nodes, A and B,

and a response packet from B must head to A to be routed back to its target core, the

network can deadlock. To avoid this, "up" and "down" packets must be separated into

virtual channels, with buffer allocation in the routers to allow for "up" packets returning

to cores, to proceed even when the "down" channel has saturated and jammed.

Because the tree does not share links between "up" and "down" channels, direction-

ality is built into the tree; there is no need for virtual channel allocation, or buffering

(other than to drive the flit onwards on the next cycle). If coherency traffic ran over the

same wires as data then VC would be needed to arbitrate between them, and due to the

coherence messages being much smaller than the data bus flit size (to allow fast cache

line transfers) it would also be a large waste of potential bandwidth, and incur a higher

routing energy overhead than necessary.

The energy difference comes again from the complexity of the larger switches re-

quired in a mesh. Unfortunately the wire distance travelled on average for meshes is

less than for large trees – while the mesh architecture requires 2/3
√

N hops on average,

an H-tree requires exactly
√

N− 1 hop-length equivalents, so the latency and routing

energy must pay off against the 50% greater energy cost for the tree.

As a tree cannot provide the required bandwidth for such a large architecture, it

makes sense to leverage the 2D mesh at the lowest level of the tree, to handle the high

bandwidth data movement across the chip. A 4×4 mesh provides 4 times the bisection

bandwidth using links of the same length as the tree roots it would replace, while an

alternative such as a butterfly or omega network would introduce even longer wires. A

mesh also provides natural power islands allowing sections of the chip to be turned off

to conserve power.
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6.2.2 Data Interconnect

The 4×4 mesh carries two virtual channels, one going from cores to L2 caches, and the

other returning from caches to cores. They are given equal priority, using a toggling

arbiter when a whole packet has transmitted, but if a core to cache packet is blocked

and there is a cache to core packet waiting for the link, it will back-off into a storage

buffer in the source router and be exchanged for a cache to core message. This is done

to prevent deadlock in the network, when too many requests prevent the responses

from exiting the mesh. The mesh routing uses fully provisioned buffering for both

virtual channels, once a packet has been accepted it can receive the whole packet even

if the next link is not available yet. This allows the virtual channel back-off to function

without splitting packets, which can be up to 3 flits for a 256 bit bus width, and 64 byte

cache line size.

Each router consists of a 6×6 crossbar (5×5 from the perspective of each virtual

channel) with each virtual channel output buffer doing its own round robin arbitration

of the input sources, and the final output multiplexor arbitration performed on these

buffers, as shown in Figure 6.2.
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Figure 6.2: Overview of Mesh Router Micro-architecture.



122 Chapter 6. A Latency-Bandwidth Balanced Manycore Architecture

6.2.3 Coherency Tree

A point of potential controversy in the proposed design is the use of a single tree to

provide the directory. At first glance this is a serious bottleneck and might appear to

have long wire issues which were avoided in the data interconnect via the use of a

mesh. The longest wires in the tree, however, are exactly the same length as those used

in the mesh (and significantly narrower) and the use of a single directory in the design

brings a large simplification to the coherency protocol: invalidation acknowledgements

are not required for the invalidation of a "Shared" cache line (AckIS messages). The

tree architecture also enables efficient multicast opportunities, which combined with

the lack of AckIS messages, allows for both a large saving in interconnect packets, and

subsequently energy, and the streamlining of the directory operation itself, which can

greatly reduce the latency of requests.

To quickly address the bandwidth fears, the tree architecture is amenable to a hi-

erarchy of directory caches at higher points in the tree, which operate like the caches

in a traditional memory hierarchy. These reduce the strain on the central directory

without violating the (effective) single serialisation point at the root of the directory.

Once again this is a feature omitted from the simulation to reduce complexity and help

ensure correctness of the implementation. The bandwidth required by the proposed

directory is also significantly less than that required for a traditional distributed direc-

tory in that the directory does not need to process AckIS packets, nor does it have to

send multiple unicast messages for shared invalidations. Other opportunities to reduce

coherency bandwidth demands are discussed in Section 6.3.

The coherency tree is separated into two down channels, and two up channels.

From core to directory there is a channel for coherency requests, and a channel for

responses. The separate response channel is required to allow the responses to over-

take requests, to prevent deadlock; it would be possible to implement these as virtual

channels on the same physical network, but for simplicity it is simulated as a separate

physical network. From directory to the cores the two channels are quite different:

there is a non-blocking channel which progresses every cycle, cores guarantee to han-

dle messages off this network within one cycle, and a blocking channel which carries

messages which cannot guarantee a single cycle processing time, or which might have

a dependency on putting a message onto a return channel, which could be blocked.

The non-blocking channel supports multicast, and carries acknowledgement messages

back to core messages, along with invalidate-shared messages (which are multicast)
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and invalidate Shared Read-Only TLB entry (which is full broadcast). The blocking

channel is left to carry requests which could result in cache write-backs: invalidate

exclusive and flush page messages. Again it would be possible to use virtual channels,

but it is much easier to manage the strict requirements of the non-blocking channel if

it does not also have to handle virtual channel arbitration, so it is modelled as a distinct

physical network also.

It should be noted that the definition of non-blocking used in this chapter is not the

same as that traditionally used with interconnects. In the context of this chapter non-

blocking means that a single unit of forward progress is made on every cycle, with no

potential for arbitration or stalls. This allows all routes in the interconnect to progress

synchronously.

6.2.4 Coherency Protocol

The proposed coherency scheme is based on the MESI protocol, with directories main-

taining the states Invalid, Shared or Exclusive for each stored line, and L1 caches con-

taining the states Invalid, Shared, Exclusive and Modified. The Exclusive state could

be merged with the Modified state by sending a "shared" acknowledgement (AckS)

from the directory upon read requests even when it is the first and only sharer, which

could save on latency in an application with a large component of shared read only

data.

The key distinction between other protocols and the one presented here is that

the directory transition Shared→Exclusive has no intermediate state, where one must

wait for invalidation acknowledgements from the sharers. The directory immediately

sends out an invalidation multicast on the first cycle (ignoring directory lookup latency)

after a request, and on the subsequent cycle can send the exclusive acknowledgement

(AckEx), storing the new state immediately.

This works because the acknowledgement messages are sent on the same non

blocking channel as the invalidate-shared message, and from the serialisation point

at the centre of the tree all cores will receive the InvS command at least one cycle

before the AckEx message arrives at the requesting core.

Like any sequentially consistent (SC) protocol, the Exclusive to Shared transition

must still wait on the response from the current owner, to indicate that the LLC value

is current and it has downgraded its copy to Shared. Here the protocol must only wait

for the response of an individual core, however, not potentially 1024 responses.
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This brings us to the internal storage of the proposed directory: to store every

sharer exactly would require N bits per line, which is quite infeasible on the scale

of 1024-core systems. Because the proposed policy does not use shared invalidation

acknowledgements, it does not matter if sharer cannot be removed from the sharer vec-

tor, such as a with coarse vector representation. This allows the protocol to use a lossy

sharer compression without worrying about keeping track of the number of sharers

(AckWise) or requiring AckIS messages from all receivers of an invalidate message –

in fact, the protocol does not even need to know how many cores received the message

– it can simply send and forget. If the directory was distributed and/or AckIS messages

were required it would still be fairly straightforward to perform acknowledgement ag-

gregation in the response trees to reduce energy and bandwidth requirements. The

directory requires a minimum of log2(N) bits per cache line, to store the owner of an

Exclusive cache line, and 2 bits for coherency state. This makes the best case space

storage O(log2(N)). The naive storage requires N bits, one for each sharer, but there

are a few existing ways to represent the sharer vector in an O(log2(N)) representation

as discussed in Chapters 2 and 3:

1. Store a limited number of core pointers (enforce this with invalidations, ADirkNB,

or fall back to broadcast when full, ADirkB [56], and the extension of this which

counts sharers to reduce the required AckIS messages AckWise [57]).

2. Store a coarse vector representation [61] (easiest with power of 2 bits allocated

to the sharer vector, but possible with any number of bits).

3. Store a hash of the sharer pointers, like a Bloom filter to filter out cores that

should not receive invalidations. For example, expand each sharer pointer into a

2log2(N) bits representation where 0→ 01, and 1→ 10, then OR these symbols

together to generate a mask of cores which should receive the message, as pro-

posed by Agarwal [56] and later given the names DirX [61] and Tristate [59; 60].

This can be multicast on the tree quite easily – 01 means go left, 10 means go

right, 11 means take both branches.

Each of these has its own set of problems:

1. These must send a unicast message for each sharer, or fall back to full broadcast,

neither of which are ideal from an energy or bandwidth perspective.

2. If 2 log2(N) bits are used for the vector, then each bit represents N/(2log2(N))

cores, so as N grows, the number of sharers represented by each bit increases



6.3. Reducing Bandwidth and Directory Size/Associativity Requirements 125

dramatically – meaning many false invalidation requests for a small number of

sharers.

3. This method is prone to pathological sharer combinations, which can result in

only two sharers aliasing to cause a full chip broadcast; Section 7.4.2 demon-

strates this problem.

6.3 Reducing Bandwidth and Directory Size/Associa-

tivity Requirements

Coherency bandwidth is an important problem when scaling up an architecture, and

a centralised directory, even when throughput optimised, can only handle about one

request per cycle. The proposed scheme as described so far works to reduce the traffic

in the protocol: a single packet is sent for any invalidation (multicast), and at most only

requires processing a single invalidation or share acknowledgement for each transac-

tion (no need for AckSI). This still means each core can only really make a request to

the root directory about once every 1024 cycles. With small data caches, which are

required to fit 1024 cores on a chip, the rate of cache misses is likely to be much higher

than this, but there are three obvious ways to reduce directory strain:

• Introduce directory caches in the tree, to merge and filter requests to shared data,

and to catch capacity/conflict victims.

• Introduce another localised coherency mechanism, such as Proximity Coher-

ence [52].

• Track whether or not data needs to be kept coherent at all [67].

The first option would not be very difficult to incorporate in the proposed archi-

tecture, with perhaps 4, 8, or 16 caches placed at the appropriate level of the tree,

each entry would hold the local sharer vector, the coherency state, and an additional

bit to indicate if the cache line was currently private to this branch of the tree (seen

as Exclusive to the root, allowing the cache to transition between Shared, Exclusive,

and Modified states independently) or present in other branches (requiring a request

to be propagated to the root for escalation of a cache line to Exclusive). The architec-

ture above this point would be identical to that described so far, but the issue of the
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inclusiveness of the cache must be decided. The options are to either enforce inclu-

siveness, requiring a large cache or limiting the local coherent data capacity, or to be

non-inclusive and make a best effort to maintain local sharer state. When an eviction

is required it would likely make sense for cache lines which are broadly shared to be

evicted, where resulting in a broadcast would not be much more inefficient than the

current multicast state. The root directory would simply hold a full sharer vector of the

directory caches, and not the tree representation above them. This architecture would

also allow the operation of a more distributed directory such as the ring based ATAC-

1000 to operate with an AckSI based protocol at the lowest level, but getting those

small number of Ack messages quickly from the directory caches, which use the same

non-blocking multicast/broadcast scheme described above.

Because the architecture demonstrates scaling potential without these caches, and

their presence is not necessary for the research investigated in the rest of this thesis,

the implementation and benefits of these caches are not investigated further.

The second option, as discussed in Section 3.1.3, is initially incompatible with

the ack-less shared-invalidate phase of the proposed coherency protocol. However if

the sharer encoding used a coarse vector or other clustered approach then because all

cores within a cluster would receive the invalidation request, the chaining of Shared

cache lines would be unnecessary, they can be forwarded freely within the cluster.

This change requires the Proximity coherence only forward Shared cache lines within

a cluster, but in doing so simplifies some of the Proximity Coherence protocol, and

enables it to be used with an architecture like the one proposed here. Evaluating such a

complex addition to the protocol is outside the scope of this thesis however, and would

require significant modification to enable data-forwarding within the architecture.

This third option has the least overhead in introduced chip area, and can be im-

plemented explicitly at the programmer/compiler level, or transparently, at the OS and

MMU level. This was implemented in the proposed platform by adding a software

handled TLB, which additionally tracked the state of each 8KB page, either Private,

Shared Read-Only, or Shared Read/Write. All pages initially start in the Untouched

state, moving on first access to the Private state when a core accesses them. In this

state the page table entry not only stores the sharing state (and physical address), but

also the core which has private access to the page. When another core wishes to access

the page, it must lock the page table entry, then transition to one of the shared states

by sending a special page flush message to the core which is holding the page private.

This causes the target core to invalidate the TLB entry, and walk its L1 cache writing
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back all of the dirty cache lines from this page. The core then sends back an acknowl-

edgement informing the new core it has completed, and the core may now insert the

page into its own TLB, and update the page table state before removing the lock on

the page table entry. If it is a read operation the page transitions to Shared Read (e.g.

single core initialised read only data), and then any writes will transition it to Shared

Read/Write. If a Private page is written to by another core it is directly transitioned to

Shared Read/Write. With this scheme in place only Shared Read/Write traffic needs

to go to the directory, private memories such as program stacks and other thread local

storage, along with static read-only data, are automatically detected, and the MMU can

dynamically determine if it needs to perform a coherency operation on a cache miss.

This also has the added side affect of reducing the required directory storage, and as

shown later in this section, greatly reduces the required associativity. Without this, an

alternate scheme for dealing with directory associativity would have to be used, such

as one of the related works in this area discussed in Chapter 3. The page transitions

are summarized in Table 6.3.

Page State Read Write

Untouched →Private Owned →Private Owned

Private Owned Success Success

Private Other →Shared R-O →Shared R/W

Shared R-O Success →Shared R/W

Shared R/W Success Success

Table 6.3: Transition events for Read and Write accesses to different Page states.

Implementing this scheme, the TLB sharing state is checked upon every cache

access. With a TLB state of Private or Read-Only, a cache line in any of the valid

coherence states, or the Incoherent state, is valid for a read, while in the Read/Write

state only coherent states are valid. For writes, the TLB state must be Private or Read-

/Write, or a page fault is raised, and similarly Read/Write requires the cache line to

be in a coherent state (specifically Exclusive of Modified), while the Private state may

write if the cache line is Incoherent, or Exclusive or Modified. Arriving at a cache line

in the Shared state for a Private line is only possible with an MSI coherence protocol

(when a private cache line is accessed with filtering disabled, which can happen to the
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stack on TLB faults), or through an error of the runtime system, and this cache line

would be migrated to Incoherent (dirty), invalidating the coherency state of the line.

To handle thread migration, a solution could enforce some pages to be Private (such

as the program stack), and instead of transitioning them to a Shared state upon access

from another core, force the cache entries to be flushed from the current owner (as

would happen anyway) and transition the page to new ownership, instead of a Shared

state. Alternatively, when preparing to migrate a thread, the current owner thread could

flush its caches and walk the page table to clear ownership of any Private pages it is

holding. This would allow any new core it was scheduled on to take ownership of

the pages it needed, without having to wait for inter-core page flush commands to

complete.

Cache lines can become temporarily marked with coherency information even if

they are in the Private state, because upon page faults the runtime system must disable

On Read Cache Line Coherence State

Page State Invalid Incoherent Exclusive Modified Shared

Invalid TLB Miss TLB Miss TLB Miss TLB Miss TLB Miss

Private Incoherent Fetch Success Success Success Success

Shared R-O Incoherent Fetch Success Success Success Success

Shared R/W Coherent Fetch Coherent Fetch Success Success Success

On Write Cache Line Coherence State

Page State Invalid Incoherent Exclusive Modified Shared

Invalid TLB Miss TLB Miss TLB Miss TLB Miss TLB Miss

Private Incoherent Fetch Success →Modified Success →Incoherent

Shared R-O TLB Miss TLB Miss TLB Miss TLB Miss TLB Miss

Shared R/W Coherent Fetch Coherent Fetch →Modified Success Coherency Miss

Table 6.4: Transition events for accesses to different cache states when page filtering

is active. Note that the Private page Shared coherence state can only be reached in

a corner case when using the MSI protocol, and is not a reachable state when using

MESI. When using a kernel stack to handle TLB misses, Private and Shared R-O cannot

reach a state with coherent cache lines at all.
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the coherency filtering and handle the fault conservatively, using coherency protocols

for all memory accesses. When returning from the page fault handler some cache lines

in the stack, which will likely be Private, may have been fetched as coherent. This only

happens because the experimental runtime does not use a dedicated kernel mode stack

when handling TLB misses, and instead pushes registers onto the application stack to

execute the handler. If a proper kernel mode switch was used, or dedicated hardware

logic handled the TLB transitions, then the Incoherent page states Private and Read-

Only would not have the potential for coherent cache lines. The access permissions

and actions are summarised in Table 6.4.

6.3.1 Benchmarks

To investigate scalability and other features of the proposed architecture the parallel

benchmark suite Splash2 [137] is used, unfortunately architecture and runtime support

have limited the experiments to a subset of the suite. The selected benchmarks and

their configurations can be found in Table 6.5.

Benchmark Configuration

Radix 1048576

FFT 220 points

LU (contiguous) 512x512 Matrix

Ocean (contiguous) 258x258 Ocean

Barnes 16384 bodies

Table 6.5: Benchmark Configurations.

It has been shown that these benchmarks do not scale as far as 1024 cores [49], but

the benchmarks should still usefully highlight performance trends up to 512 cores, and

provide a platform for further innovations presented in Chapter 7.

6.4 Architecture Scalability Analysis

The experiments into scalability were conducted using a Course Vector sharer com-

pression of 2 log2(N) bits. Alternate encodings which provide multicast capability

would have negligible impact on performance, but may be significantly better or worse
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in terms of energy scalability for the multicast energy contribution. Unless otherwise

stated the associativity of the directory is equal to the number of cores in the system,

and each way contains 64 entries, corresponding directly to the 64 entries in the 4 KB

direct mapped L1 data cache. The directory replacement policy when there are no

free entries is pseudo-random, with a way-counter incrementing every time a capacity

eviction must be performed. There are more intelligent schemes, such as preferentially

evicting shared entries because they are lower latency and may be stale, where exclu-

sive lines are definitely live and must wait for an acknowledgement (this policy would

work well for the case where directory associativity is equal to the total L1 cache asso-

ciativity, but does not address how the shared line is then selected for eviction). How-

ever common cache policies like least-recently used (LRU) do not always work well

at a directory level, because the measure of activity at the directory does not correlate

with the activity of this cache line in the L1 cache. Because of this pseudo-random was

chosen as a simple to implement and fair invalidation policy, which should invalidate

with an equal distribution across the sets, being relatively robust against pathological

cases.

6.4.1 Performance

Accepting that an architecture so far from the traditional multi-core system that these

benchmarks are targeted for will not perform equally well across the benchmark set,

the initial analysis will focus on one of the best performing – LU. This benchmark

is also the focus of more detailed analysis because its shorter runtime makes it more

amenable to iterative experimentation, enabling some code generation issues to be

analysed and corrected which were not for other benchmarks; the shorter runtime also

enabled collection of results up to 1024 cores, which were not possible due to time

or benchmarks constraints for many of the other benchmarks. Although the analysis

focuses on LU, equivalent figures for most of the other benchmarks can be found in

Appendix Section A.1.

Before the detailed look at LU however, Figure 6.3 presents the performance of

the Splash2 benchmarks across the design space, giving an indication of performance

scaling and a means of comparison with results in other work, while Figure 6.4 presents

the instruction throughput per cycle of the target platform while executing the parallel

section of the benchmark. The IPC results are from the simulations with efficient

spin-waiting enabled, so instructions are almost entirely those used to do computation.
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Figure 6.3: Execution times of the parallel sections of Splash2 benchmarks on 32 to

1024 core systems.

An increase in IPC should therefore be correlated with an increase in performance,

and vice versa. The poor IPC performance of Radix suggests that it either exhibits

extremely poor cache performance, or spends a large amount of time on spin-wait

operations, either of which is likely to hamper it’s performance and scalability on the

proposed architecture.

Starting the analysis of LU with its scalability performance, shown in Figure 6.5,

it is apparent that the proposed architecture does not scale particularly well with even

with this benchmark, scaling sublinearly up to 256 cores, then actually reducing in

performance with 512 and 1024 cores due to bottlenecks in the IO system. However,

achieving a speedup of 71x over the single threaded version (which does not require

any cache coherency overhead) is not an insignificant result.

6.4.2 Cache Aliasing

Using such small, direct mapped, caches introduces a problem not encountered often

on modern high performance cores – instruction and data cache aliasing. This is where

two frequently accessed data elements or instructions are mapped to the same entry in

the cache, and the regular evictions and misses due to this conflict results in a large

volume of memory traffic and very poor program performance. In the case of the LU
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Figure 6.4: IPC of the parallel sections of Splash2 benchmarks on 32 to 1024 core

systems, excluding spin-wait instructions.

benchmark the compiler naively places two of the main kernel functions either side

of a large body of code which is either called once or never, for benchmark setup and

validation purposes, resulting in the two main kernel functions largely overlapping in

a small area of the L1 I-cache, while the rest goes unused. By manually relocating the

code segments to be adjacent, the cache hit rate was improved from around 99.45%

to 99.98%, and the affect of this can be seen most clearly by looking at the cache line

fills requested from the data and instruction caches, shown in Figure 6.6. This shows

the proportion of cache line fills performed relative to the total number of requests

made by the I-cache optimised 32-core LU benchmark, across the design space of

32 to 1024 cores. It highlights the stress a small increase in instruction cache miss

rate can put on the data interconnect, and helps solidify the argument made earlier

that the instruction cache should be excluded from the coherency mechanisms. Cases

where code coherency is required, such as self modifying code, JIT compiled code, and

kernel mode execution loading a program binary, are already well handled by software

coherency techniques. These use page protection schemes to trap on writes to code

pages, and force an invalidation of any affected I-cache entries (on many architectures

this requires a full I-cache flush).

Looking at the trends of Figure 6.6 it is also apparent that the total traffic require-
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Figure 6.5: Speedup of LU benchmark relative to a single thread running on a 32-

core architecture (after addressing instruction cache aliasing problems discussed in

Section 6.4.2).

ment for the benchmark is almost constant as the number of cores scales towards 512.

At this point it begins to increase, in line with the rapid deterioration of scalability

shown in Figure 6.5. It is likely that these are related, and with 512 and 1024 cores

the work elements assigned to each core are small enough that they either suffer from

false cache line sharing, or the computations require data sharing that was unnecessary

with the larger work elements. The increased I-cache misses also resulted in a 10 to

30% performance reduction.

Sadly LU was not the worst off by far, with Barnes suffering an abysmal I-cache

hit rate of only 97.4%, i.e. every 40th instruction resulted in a cache fetch, which given

the average instruction cache miss fetch latency on a 64-core system running Barnes of

92 cycles, means a CPI of over 2 before any coherency or data misses are considered.

This extreme ratio of instruction to data traffic is shown in Figure 6.6 from which it

is clear interconnect bandwidth and overall performance will be severely impacted by

the volume of instruction traffic.
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Figure 6.6: L1 cache fills generated by the LU benchmark before and after addressing

I-cache aliasing problems. Bars are annotated with the I-cache miss rate (%).

Unfortunately the instruction cache issue was not noticed until after the experi-

ments had been run and data analysis begun, so there was not enough time to manually

tune and re-run all of the benchmarks. This means that the results for other benchmarks

in this thesis are sub-optimal. There is however active research into helping compilers

automatically pack program code in a cache aware manner, which could be used to

avoid this problem on a real implementation of this platform. This research not only

targets the direct mapped caches from the proposed architecture, but more associative

caches, enabling the best use of the available L1 cache [138]. In the manycore sce-

nario, using more associative or larger caches as an L2 I-cache for smaller clusters of

four to eight cores may also help to alleviate the problem, and allow the cores to use

even smaller caches, while leveraging the shared cache to avoid the large performance

and energy penalty of fetching from the LLC. If this tier of cache was only used for

instruction caching, the coherence protocol would not need to be involved at a hard-

ware level, so long as instruction cache flush or invalidate operations were propagated

to the shared caches. Other, currently unpublished, work suggests that support could
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be provided to allow code generation, as occurs in a JIT compiler, to write directly to

this shared I-cache to improve performance of JIT compiler based runtimes, like the

JAVA virtual machine. In a production version of this design it is likely that a combi-

nation of compiler assistance and hierarchical caching would be used to maximise the

performance of the resulting system. Fortunately many of the experiments conducted

in the rest of the thesis are not badly affected by the I-cache performance, as they focus

on the data memory operations in isolation.

6.4.3 Energy Scalability Analysis

It has already been shown in Figure 6.6 that for 32 to 256 cores the number of cache

fills, and hence total interconnect traffic, remains constant, but this is not necessarily

an indicator of constant power consumption. The four main energy contributions are:

1. Active core energy, cycles when the core is not sleeping or stalled on IO.

2. Static power (transistor leakage for the whole chip, constant power overhead).

3. Switch routing energy, the energy used to perform the routing of each network

packet through each switch in the network.

4. Wire energy, the energy used to transition the state of an interconnect wire be-

tween states when sending a packet over a network link.

In the best case, the active core energy should be constant, with the same amount

of work distributed fairly amongst all of the cores. Static power is a trade-off between

the increased leakage of more transistors, versus the reduced runtime due to the in-

creased parallelism. Unless the benchmark achieves perfect speedup, the static power

will increase proportionally to the inefficiency of the parallelism in the benchmark.

Because adding more cores requires extra switches in the network, and more switches

for a packet to navigate when in flight, the switching energy will increase in line with

the average hop count of the network. However, the proposed design increases the

number of hops through light-weight radix-2 switches, and keeps the number of large

radix-5 mesh routers constant. This means that with constant total traffic, the mesh

routing energy will remain constant. Finally the wire energy is the area where energy

growth is a necessity. Adding extra cores necessitates expanding the area which the

network covers, making the wire links scale in length with
√

(N); because wire energy
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is linearly related to both traffic and length, even maintaining constant traffic results in

the power consumption growing as
√

(N).

Unfortunately, without performing detailed synthesis of the different components

in the architecture, it is not possible to combine the different factors into a single figure,

so instead these components must be compared in isolation; however this does ensure

the areas where scaling is problematic, and those where it not yet a problem, are high-

lighted clearly. First, looking at the energy spent in routing flits through the network in

Figure 6.7, it can be seen that the small data trees make up most of the routing events.

This is unsurprising given that each cache line requires nine flits compared to only

three in the mesh, and single flit packets for the coherency networks. However, the

biggest problem is growth in switch routing events (through increased traffic, and in-

creased switch distance for trees) as the system grows. Normalising each traffic type to

its 32-core value results in Figure 6.8, where it is more evident that while mesh traffic

remains relatively constant even up to 1024-core systems, the data tree quickly grows

in a close to linear relationship with the number of cores. This is expected since the

number of tree switches is approximately equal to the number of cores. The unicast

based coherency networks grow in a similar fashion, with a slower growth rate, but the

multicast coherency network rapidly grows with a high power function and overtakes

the data tree growth at 512 cores. This is most likely due to the fact that the lossy

coarse-vector multicast scheme results in greater numbers of cores being messaged

as the system scales, something which is addressed in the next chapter with a novel

encoding scheme.
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Figure 6.7: Interconnect flits routed through different classes of interconnect switch.

Figure 6.8: Interconnect flits routed through different classes of interconnect switch

normalised to 32-core design.
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The mesh network at first may appear to have less contribution to routing energy,

since it processes fewer flits. However, the higher complexity of the switch micro-

architecture, along with the significantly wider bus width and higher switch radix,

means that each flit routed through a mesh router will consume many times the energy

of routing a single flit through the simple tree switches. The other major contribution to

interconnect energy is the wire switching energy. Assuming that all on chip networks

operate at the same voltage, frequency, and wire spacing, the energy values given by

multiplying the number of bit-transitions and wire lengths for each wire, should give

results in the same, directly comparable, units for each bus type. This means that

the results can be combined and directly compared, allowing us to see how energy

scales overall, and how the each network type contributes to the overall totals for each

network size. Figure 6.9 shows the wire energy for the LU benchmark and it is clear

that the mesh dominates the network wire-energy consumption due to its longer wires,

and significantly wider buses. Given the nature of these long, high bandwidth links it

may be prudent to replace them with an alternative technology such as transmission-

line or on-chip optical link such as those used in other work [66; 65; 57]. The data

response network soon grows to be a large contribution to the network energy also,

indicating that one of the best ways to reduce the network energy would be to introduce

an intermediate level of caching, either at the core cluster level (such as 2-8 cores) or

the per tile level (2-64 cores) to reduce the duplicate fetches of common data and

instructions across the mesh, and handle local capacity or associativity shortcomings

more gracefully.

A good result from Figures 6.7 and 6.9 is that the energy of the coherence networks

is only a very small fraction of the network energy. The final contributions to chip

energy, chip-wide static energy and dynamic processor energy, should stay constant in

a perfectly scaling system. As the number of transistors scales linearly with the number

of cores the static power should grow linearly, while the runtime should reduce at the

same rate; resulting in constant static energy. Likewise, the number of cpu-cycles spent

processing instructions should be the same, simply spread across more cores.
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Figure 6.9: Interconnect wire energy generated by the LU benchmark.

Figure 6.10: Static energy consumed by the LU benchmark.
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Static energy, approximated by the number of cores multiplied by the runtime of

the benchmark, can been seen in Figure 6.10, where it can be seen to scale well from

32 to 64 cores, which requires only 10% more static energy for a 1.75x improvement

in performance, and even 256 cores still maintains a potentially acceptable energy con-

sumption of 2.2x for a 3.6x speedup. Unfortunately scaling to 512 or more cores re-

sults in a drop in performance from the 256-core peak, resulting in significantly poorer

energy efficiency because there are twice as many cores and interconnect switches

consuming static energy, for an even longer period of time.

Finally, using "instructions executed" as a close approximation for the active en-

ergy of the core, Figure 6.11 shows that the active work required to compute the LU

benchmark scales quite poorly past 128 cores, with a huge amount of energy being

wasted for 512 cores. This is a reasonable approximation given the simple nature of

the core and the fact the same benchmark and as such instruction mix is being run in

all cases. Assuming the actual computational work remains constant, the extra energy

must be due to synchronisation and communication overheads between the threads.

Fortunately, the extra synchronisation energy can be easily addressed with some minor

modifications to the processor architecture and thread libraries, as discussed in detail

in Chapter 7. Doing so results in Figure 6.12, where it can be seen that the dynamic

energy for LU is mostly constant, with extra instructions only being required for 512

and 1024 cores, and not nearly to the same extent as the interconnect or static energy

has been seen to grow.
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Figure 6.11: Number of instructions executed by the LU benchmark.

Figure 6.12: Number of instructions executed by the LU benchmark with optimised

synchronisation.
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6.4.4 Request Latency

Of course growing the number of cores on a chip not only increases the latency to

LLC because of the greater hop distance, but the increased bandwidth demand for a

fixed bandwidth resources necessitates that latency will increase because of contention.

Looking at the distribution and 99th percentile of cache fetch requests gives another

good indication of how well the chip design is scaling. Figure 6.13 shows the latency

distributions for the same set of configurations as the other figures in this section,

with overall latency obviously increasing from 32 down to 1024 cores, with each line

representing the fraction of cache fill requests served within the time along the x-axis.

It is obvious that the increasing traffic demands are too great for the infrastructure;

adding more than 256 cores drastically increases the time taken to fulfil cache line

requests, to the point where performance becomes worse than using fewer cores with

less available parallelism.
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Figure 6.13: Distribution of times to fulfil data-caches requests for the LU benchmark.
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6.5 Page Tracking Results

Figure 6.14 shows the total volume of memory accesses to each type of memory region,

across a set of benchmarks and architecture sizes. It should be noted at this point

that results are shown with the Wake-on-Address instruction (presented in the next

chapter) enabled, this effectively removes excess memory instructions from spin-wait

behaviours, so the number of instructions accessing Shared R/W pages are not inflated

by locks and barriers. Looking first at the results from LU it can be seen can see that the

Shared Read-Only and Read-Write regions are almost constant as the architecture is

scaled up, while private access increase. This is expected in a workload where there is

a fixed amount of computation divided equally between the active processing elements,

as each element of computation requires an access to a fixed amount of Shared Read-

Only and Read-Write data, along with a fixed amount of Private thread local storage.

The private storage increases because each thread will have to do additional book-

keeping work on top of the actual element processing, which will scale linearly with

the number of active threads. This pattern is seen again with Barnes and Ocean, with

only different ratios between the different access types. The small fraction of accesses

shown with the filtering disabled are those produced by the TLB miss handler.

When looking at Figure 6.15, it can be see that cache misses are dominated by

Shared Read-Write accesses, meaning that unfortunately little traffic is immediately

saved by switching on page filtering. However the fact that that the number of ac-

cesses is almost constant when scaling from 32 up to 256 cores means that the total

data throughput required over the period of the benchmark is not increasing, and the

performance scaling results from Figure 6.5 show that the centralised directory can

provide the bandwidth to allow good performance scaling. Unfortunately the bench-

marks are reaching the limits of their scalability, with LU only algorithmically scal-

ing up to 1024 cores with the current data set; each processing element has very little

work to do and synchronisation and other non-computation accesses begin to dominate

above 256 cores. This means that LU is only scalable to 256 cores on the proposed

architecture, despite it being possible to partition the work further.

Bandwidth saving is not the only benefit however, as it turns out that without coher-

ence filtering, the small fraction of memory accesses to Private and Shared Read-Only

page types is very sensitive to the associativity of the directory. Blas et al. suggest that

around 57% of directory space can be saved for a 12 core system [67], and by bench-

marking performance across different directory size and associativity options with fil-
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Figure 6.14: Fraction of memory accesses to each page classification across the bench-

marks.

Figure 6.15: Fraction of cache misses to each page classification across the bench-

marks.
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tering enabled and disabled (by modifying the software handler to initialise pages into

the Shared Read/Write state), Figures 6.16-6.25 show that many benchmarks are much

less sensitive to directory associativity and size with MMU based page filtering.

LU Directory Associativity
Cache Performance

C
ac

he
 m

is
se

s 
(M

ill
io

ns
)

0
10

0
20

0
30

0
40

0
0

10
0

20
0

30
0

40
0

1 2 4 8 16 32 1 2 4 8 16 32 64 1 2 4 8 16 32 64 12
8 1 2 4 8 16 32 64 12
8

25
6

System Unfiltered Filtered: Shared R/W Shared R−O Private

32 64 128 256
Cores / Directory Associativity

Figure 6.16: Effect of directory size & associativity on LU cache performance for 32, 64,

128 and 256 cores, comparing filtered and unfiltered accesses.
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Figure 6.17: Effect of directory size & associativity on LU runtime for 32, 64, 128 and

256 cores, comparing filtered and unfiltered accesses.

Because each thread is performing similar work, the thread local stack behaviour

will be similar in each core, resulting in a a subset of memory accesses which would

require a directory of effective associativity the same as the number of active cores in
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Barnes Directory Associativity
Cache Performance
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Figure 6.18: Effect of directory size & associativity on Barnes cache performance for

32, 64, 128 and 256 cores, comparing filtered and unfiltered accesses.
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Figure 6.19: Effect of directory size & associativity on Barnes runtime for 32, 64, 128

and 256 cores, comparing filtered and unfiltered accesses.

the system to satisfy, or a coherence protocol which did not require a fully inclusive

directory. It can be seen in all performance figures, but especially in Figures 6.19,

6.21, and 6.23, that without coherence filtering the performance drops significantly

with less than this, and providing such a high associativity memory structure would be

impractical.

LU and Barnes for example show that using MMU based filtering, a directory of

only 1/16th the size and associativity of the full chip’s L1 cache system can provide
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Figure 6.20: Effect of directory size & associativity on Ocean cache performance for 32,

64, 128 and 256 cores, comparing filtered and unfiltered accesses.
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Figure 6.21: Effect of directory size & associativity on Ocean runtime for 32, 64, 128

and 256 cores, comparing filtered and unfiltered accesses.

almost the same performance as a directory which matches the capacity and associa-

tivity of the chip’s L1 caches when no filtering is used. If that is increased to 1/8th

then the performance exceeds the baseline unfiltered system even with full capacity

and associativity. Seeing this trend in other benchmarks suggests that a directory with

1/16th of the L1 associativity would be sufficient, and with 256 cores this gives a 16-

way associative directory, well within the limits of on-chip memory structures given

that current L3 caches range from 16 to 48-way associative (Core-i7 and Phenom-II
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Figure 6.22: Effect of directory size & associativity on FFT cache performance for 32,

64, 128 and 256 cores, comparing filtered and unfiltered accesses.
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Figure 6.23: Effect of directory size & associativity on FFT runtime for 32, 64, 128 and

256 cores, comparing filtered and unfiltered accesses.

processors). Associativity requirements could be further reduced by using a technique

such as with Cuckoo Caches discussed in Chapter 3 allowing larger systems or saving

energy in the directory.

Unfortunately the Radix results in Figures 6.24 and 6.25 show that most of the

shared Radix working set suffers from index-aliasing in the directory. This is clear

from the similarity between the filtered an non-filtered performance scaling, which

both increase linearly with the associativity of the directory. The relatively large frac-
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Figure 6.24: Effect of directory size & associativity on Radix cache performance for 32,

64, 128 and 256 cores, comparing filtered and unfiltered accesses.
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Figure 6.25: Effect of directory size & associativity on Radix runtime for 32, 64, 128 and

256 cores, comparing filtered and unfiltered accesses.

tion of non-coherent misses, shown in Figure 6.24 caused by capacity or conflict misses

in the L1 data cache, are the cause of the difference in performance between the filtered

and unfiltered results. Unlike most benchmarks, even at full associativity the filtered

results are significantly better performing due to the coherency overhead being avoided

for this large fraction of cache misses; the other benchmarks showed good L1 cache

performance for non-coherent data.
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6.6 Architectural Conclusions

The proposed architecture shows some scalability promise, but the performance de-

pends very much on the application characteristics. This should be expected from a

design which takes such an extreme compromise between core performance and in-

terconnect bandwidth, to offer the large number of cores at reasonable power and area

consideration. The proposed architecture is best suited to workloads with a high integer

compute to memory bandwidth ratio, lacking the floating point hardware for typical

scientific workloads. However, compared to GPGPU accelerator cards (which excel

at data-parallel computation) the true CMP architecture provides significantly better

support for algorithms with a high degree of control flow. The most suitable applica-

tions are probably cryptographic computations, where floating point hardware would

be a waste of silicon estate, and algorithms are becoming increasingly more compute

demanding for each data element processed. Cryptographic algorithms can also in-

clude conditional execution and complex control flow. Because the core architecture is

highly configurable and extensible, it would be possible to design accelerator instruc-

tions for the cores, either in a homogeneous or heterogeneous manner, to produce a

specialised accelerator for tasks such as encryption or video encoding.



Chapter 7

Saving Energy in Manycore

Processors

7.1 Introduction

This chapter presents the novel contributions made on top of the architecture described

in the previous chapter, designed to reduce energy use when running parallel programs.

It is imperative that common synchronisation primitives, such as mutex, barrier,

condition variables, and task farms can be implemented in an energy efficient manner.

Ideally one would like to be able to state the event conditions the program is waiting

for, as in Figure 7.1 with the core using no energy until that event occurs, and without

generating traffic about the event to any cores except those that need to know.

Additionally most applications, even parallel benchmarks, do not scale up to 1024

cores [139; 12], so it is more likely that such a processor would be used to run many

smaller parallel applications, with the cores partitioned between applications [140]. To

facilitate power scaling by turning off clusters of cores, and improve utilisation of the

cache hierarchy, it is also important that applications have their threads geographically

clustered on neighbouring processors. While the proposed architecture in this thesis

does not use an intermediate shared cache between L1 and the LLC, there is a high

probability that a real architecture would, along with a directory cache. It is also likely

that a system might implement cache line forwarding from neighbouring cores, which

is omitted from the presented architecture to simplify correctness guarantees, and re-

duce simulator development time. Both of these would require threads to be running

close together for best performance, and a good scheduler would ensure this.

151
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The main contributions of this chapter are:

1. An optimisation to the implementation of atomic instructions to reduce unnec-

essary cache line write-backs.

2. A new architecture-independent hint instruction Wait-on-Address to allow energy-

efficient synchronisation primitives using traditional coherency mechanisms.

3. A novel spatially-aware, multicastable, and space efficient coherency sharer en-

coding.

This chapter is divided into three main sections for each of the contributions: Sec-

tion 7 discusses a micro-architectural optimisation to the implementation of atomic

instructions. Section 7.3 introduces a new hint instruction, designed to significantly

reduce the energy spent on synchronisation, and discusses the ISA implementation

optimisation. Section 7.4 introduces a new storage-multicast encoding, called Conser-

vative Tree Encoding, and presents synthetic and scientific benchmark results.

It should be noted that, except where stated otherwise, the results presented in this

chapter do not use a simulated MMU or TLB, and do not implement the coherence fil-

tering presented in the previous chapter, due to time constraints. The simulated systems

included a full capacity and associativity directory, which minimises any effect of di-

rectory pressure. This means that multicast invalidations from the directory should be

almost entirely due to data modification, rather than directory capacity or conflict evic-

tions of read-only data, as they would be with the filtering applied. The proposed fea-

tures undergoing experiment in this section only involve cache lines which are shared

by multiple cores, so the results will not differ significantly from those where coher-

ence filtering had been performed.

7.2 Reducing Cache Write-Back During Synchronisa-

tion

When synchronising a large number of cores with conventional memory operations,

most mutex code operates by waiting for a lock variable to change from locked to

unlocked, then attempting to perform an atomic operation on the variable to acquire

the lock (usually an atomic exchange, which returns the previous value of the variable,

while setting it to a new value); the acquire succeeds if it returns the unlocked state
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when setting it to locked. Unfortunately when this happens for a large number of cores,

all of them will attempt to execute an atomic exchange simultaneously, requiring the

coherency mechanism to transition each of them to exclusive and then modified in turn,

and each core will have to write back the now modified cache line before the next core

can read it (assuming cache line forwarding is not supported). The only core which

actually succeeds is the first core processed by the coherency mechanism, but the other

cores are not aware of this until they have attempted to acquire the lock themselves.

A simple modification to the implementation of atomic exchange can effectively

eliminate this excessive write-back traffic: when performing an exchange operation,

perform a bitwise xor between the previous and new values, and only change the cache

line state to dirty/modified if the state actually changed. This means that all of the

cores which fail to acquire the lock can simply discard their cache line and send an in-

validated acknowledgement message, without the time and energy overhead of writing

back the whole cache line. Although quantitative data on the reduction in interconnect

pressure has not been collected, it seems clear that the interconnect energy saved will

greatly outweigh the cost of the comparison, and the overall performance of the system

under lock contention will be improved significantly.

7.3 Wait-on-Address Hint Instruction

In almost all parallel programs, there are communication and synchronisation actions

which inherently depend upon one or more cores waiting for others to perform some

action. The simplest example for this is the mutex – while one core holds it, any other

cores which wish to operate on the protected structure must wait until the holding

core releases the lock. There is already an "efficient" solution to this problem, in that

network and coherence traffic can be negated by performing a "test and test-and-set"

series of operations, where the core will spin reading the local cached value of the lock

or signalling variable without generating coherence requests until the value is changed.

However, this only reduces interconnect traffic, and leaves the core in a power hungry

loop while it is waiting. This energy can be reduced by sleeping the core for a fixed

period of time between checking the value, for example the Intel x86 PAUSE [141]

instruction, but this can reduce performance since the processor might still be sleeping

when the value changes. This still requires periodic checking of the memory value –

there is still more energy to be saved.

To address this, a new hint instruction is proposed, referred to in this thesis as Wait-
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on-Address. This instruction puts the core into a sleep state until a coherence message

is received for the cache line indicated by the address argument to the instruction.

This means that the core sleeps exactly the correct length of time before waking to

deal with the change in memory value, providing the best energy efficiency possible

(short of completely powering down the core and caches) while sacrificing almost no

performance over a busy spin-loop. If the cache line is not valid in the L1 cache when

the instruction is issued then it does not sleep – since it must have been invalidated

between the last check and the issuing of the hint instruction. It is also perfectly valid

to wake the core up for other reasons such as timer interrupts, since this is simply a

hint instruction, and it is up to the programmer to check the new value and determine

if the core should continue waiting, or carry on with some new action.

This new instruction is trivially implemented in the pthread semantics for mutex,

barrier, and condition variables, as demonstrated in the code segments in Figure 7.1,

and can also form a useful component of any other wait-on-event scenario, such as a

task farm worker waiting on a new task, or waiting for a producer-consumer queue to

become non-empty or non-full. It is also used in the pthread runtime implementation

used in this work, to wait for a thread to be assigned to a core so that cores sleep

and wait until they are assigned a thread without performing a busy wait. This has

the secondary effect of improving simulation performance, since these instructions no

longer need to be simulated.

Unlike some hardware-provided signalling methods, such as ARM’s WFI or

WFE [142] instructions (which suspend the core until an external interrupt, or ded-

icated event signalling channel, respectively), the proposed mechanism provides an

essentially unlimited number of unique signals (one per cache line). These can be

used for any form of one-to-one, one-to-many, or (less efficiently) many-to-one sig-

nalling between threads, so long as all of the signals that are being waited on can be

stored in the same cache-line. For example the Cholesky benchmark involves a form of

task-farm, where each worker must watch two potential work sources simultaneously.

Because these, and their respective locks, all fit into the same cache line, it is possible

to wait efficiently for work allocations, despite it being semantically two separate sig-

nals. An extension of the proposed instruction could take a bit-vector of cache lines

instead, and wait for any given cache line to be invalidated to enable the monitoring of

more simultaneous signals.

It may appear at first that a simple "wait for coherency event", which is not tied

to an address or cache line could be sufficient, but this would miss the race condition
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mutex_ lock ( mutex_ t ∗m) {

/ / i n i t i a l l y assume t h e l o c k i s t a k e n

bool v a l = t rue ;

/ / s p i n w a i t u n t i l t h e exchange i n s t r u c t i o n r e t u r n s f a l s e

/ / i . e . ( t h e mutex was f r e e )

do {

bool t e s t v a l = t rue ;

/ / read−o n l y t e s t l oop a v o i d i n g e x c l u s i v e a c c e s s on e v e r y t e s t

whi le ( t e s t v a l ) {

t e s t v a l = m−>l o c k ;

i f ( t e s t v a l ) {

/ / t h e mutex i s l ocked , so w a i t u n t i l t h e v a l u e changes

wait_on_address (&m−>l o c k ) ;

}

} / / t h e mutex was f r e e , so a t t e m p t t o l o c k i t

v a l = atomic_exchg (&m−>lock , t rue ) ;

} whi le ( v a l ) ;

re turn ;

}

mutex_unlock ( mutex_ t ∗m) {

m −>l o c k = f a l s e ;

}

b a r r i e r _ w a i t ( b a r r i e r _ t ∗b ) {

mutex_ lock (&b−>l o c k ) ;

b−> p r e s e n t ++;

i f ( b−> p r e s e n t == b−> r e q u i r e d ) {

/ / r e s e t b a r r i e r c o u n t e r

b−> p r e s e n t = 0 ;

/ / s i g n a l e v e r y o n e t h a t i s w a i t i n g

b−> r e l e a s e ++;

mutex_unlock (&b−>l o c k ) ;

} e l s e {

unsigned i n t r e l e a s e = b−> r e l e a s e ;

unsigned i n t r e l e a s e _ t e s t = r e l e a s e ;

mutex_unlock (&b−>l o c k ) ;

/ / w a i t u n t i l f i n a l core r e l e a s e s us

whi le ( r e l e a s e == r e l e a s e _ t e s t ) {

wait_on_address (&b−> r e l e a s e ) ;

r e l e a s e _ t e s t = b−> r e l e a s e ;

}

}

re turn ;

}

Figure 7.1: Example use of Wait-on-Address.
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where the cache line is evicted between checking the current address value, and issuing

the wait instruction. There are two alternatives to WOA which could be imagined that

produce the desired behaviour, instead using a pair of imagined instructions. Firstly

(and most similarly) a load-linked operation (as is found on some architectures for

speculative atomic operations) followed by a wait-on-linked instruction, which uses

a existing instruction to encode the actual address of importance, and a subsequent

instruction which may have a much shorter encoding to supply the wait command.

Secondly, a "begin monitor" instruction, which instructs the processor to monitor the

data cache for self-invalidation or coherency events, followed by a wait-on-coherency

instruction. This second instruction pair allows the programmer to check as many ad-

dresses as required between the begin and wait instructions, but the wait will fail if any

cache line was evicted (due to capacity, conflict, or coherence) during the period since

the monitor instruction was issued. The core will awaken upon any coherency event

that affects entries in the data cache, even if they were not explicitly accessed by the in-

terim code. This allows multiple sparse memory locations to be monitored efficiently,

which is unsupported by the proposed WOA instruction. A further optimisation would

be to flag cache lines which were accessed during the monitor period, and only wake

up the core on accesses to these, although this would require an extra bit of storage per

cache line.

7.3.1 Results

The wait-on-address hint instruction was implemented in the simulated ISA, based on

the ARC700 instruction set, and the pthread runtime [12] was modified to make use of

it in all of the synchronisation primitives. Simulations were then run on the architecture

and benchmarks described in the previous chapter, collecting statistics such as data

accesses, instructions executed, and the time spent waiting on coherency events with

new instruction.

For Barnes, LU, and Ocean the measurements were conducted over only the paral-

lel portion of the benchmarks, with the full TLB based filtering enabled. Due to time

constraints FFT and Radix results are presented from simulations which do not include

this filtering and include a serial startup phase. As a result these two benchmarks may

under-represent the relative reduction in instruction count and cache accesses, given the

constant serial instruction count overhead. All cores not currently assigned work were

suspended, so the startup phase does not contribute to spin-wait instruction counts.
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Figure 7.2 shows the runtime profile of the average number of active cores for the

512 core Radix benchmark. The blue line represents average number of cores not

"waiting" on the hint instruction in each 100K cycle timeslice, while the greyscale

backdrop is a running histogram of the number of awake cores in each cycle of that

timeslice. It can be see in the first half of the graph that there is generally about

a hundred cores worth of parallelism, although all the cores are rapidly waking up

and returning to sleep. The other benchmarks in Figure 7.3 feature more pronounced

repeated barrier synchronisation, with the cores repeatedly being all active, then all

asleep. Both patterns indicate ample opportunity to save energy.
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Figure 7.2: Runtime profile of the number of cores active through 64- and 512-core

Radix. Blue line represents average number of cores active.
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Figure 7.3: Runtime profile of the number of cores active through 32-core LU and

Ocean. Blue line represents average number of cores active.
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Re-visiting the scalability issues highlighted in Section 6.4.3, Figure 7.4 presents

the number of instructions executed as each of the simulations is scaled up to larger

systems. The red lines, representing simulations without WoA support, clearly demon-

strate how synchronisation between application threads can rapidly grow to dominate

the dynamic core energy of the processor. Conversely the blue lines, representing sim-

ulations with WoA support, demonstrate that by suspending these cores during spin-

wait cycles the number of instructions executed – and as such computational work

performed – is almost constant as more cores are added. This gives a perfect dynamic

energy scalability result: adding more cores does not increase the dynamic core energy.

As an estimate for the dynamic core energy saved, Figures 7.5 and 7.6 present the num-

ber of instructions and number of data accesses saved as a fraction of the total when

not using the hint instruction, over the subset of Splash-2 benchmarks, and across a

range of core counts. Looking at these results it can be seen again that all benchmarks

spend an increasingly large proportion of their time waiting on synchronisation. The

geometric mean of the relative number of instructions executed with WoA, relative to

without WoA, was computed and subtracted from 100% to give an average saving in

executed instructions of 53%, and a reduction in data accesses by an average of 83%.

Figure 7.4: Scaling of instructions executed with and without WoA.
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Figure 7.5: Reduction in instructions executed using WoA.

Figure 7.6: Reduction in data accesses executed using WoA.
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7.3.2 Related Work

The Intel x86 architecture, for example, contains a "PAUSE" instruction [141] for use

in spin-locks, which acts as a memory fence and a short sleep instruction, in order

to save power. However, unlike the WoA hint instruction it does not take an address

or cache-line to watch, it simply suspends the core for a finite period of time, then

resumes to allow the program to continue, and then the programmer can check the

value again. WoA greatly improves upon this by waiting indefinitely, until the exact

moment that the value is changed, meaning the performance sacrifice is minimal, while

still remaining in a low power state as long as possible.

ARM provides a very different feature, a broadcast messaging system with wait

and send event (WFE, SVE) commands. This is a broadcast which could be imple-

mented as an efficient dedicated hardware resource, but suffers from a lack of process

isolation, and limited usability across multiple pieces of concurrently running code –

two simultaneously running programs, or parts of the same program, will interfere with

each other if they try to use it concurrently. The messaging is also out of band rela-

tive to the memory coherency and consistency model, so potentially extra coherency

synchronisation would still be required in a data sharing scenario.

A third related concept is the design of the Propeller micro-controllers, which host

a number of cores with each intended to be dedicated to a task. Rather than time multi-

plex a single core based on interrupts, each interrupt line can be assigned to an individ-

ual core, which is then put into a low power sleep state until awoken by its respective

interrupt line. In this sense it embraces the physical task distribution ethos of the pro-

posed manycore design, where one wants to be able to give a physical core to every

thread, while also supporting a low energy wait-for-work state like the proposed hint

instruction enables via the coherency mechanism. The similarities end here however,

because this is a micro-controller architecture rather than a large scale cache coherent

general purpose processor. ARM also supports a similar wait for interrupt (WFI) in-

struction along with the wait for event instruction, but this still does not enable a task

isolated efficient messaging system.

The Rigel architecture paper hints at an efficient barrier implementation through

their "update broadcast" support, but it reads like this simply replaces the coherency

mechanism and allows the cores to spin on local cache, rather than use the global cache

in their incoherent architecture [73].

In addition to the x86 WAIT, and ARM WFI and WFE instructions already men-
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tioned, a very similar operation to the proposed load-linked and wait-on-linked pairing

is mentioned in the design of the Alpha 21464 [143] in order to put SMT threads to

sleep and avoid a waiting thread from consuming unnecessary resources in the shared

pipeline. Although the functionality is similar, the motivation is quite different, with

the Alpha design existing to improve performance (through improving efficient use

of shared compute resources) while the proposed mechanism is to reduce power con-

sumption in modern power and thermally constrained manycore designs. The analysis

of thread sleeping performed in this thesis is significantly more extensive than that

published with regards to the Alpha processor and highlights it’s relevance for large

scale CMP designs, not just for SMT systems.

Another processor design with this feature is the SMT-CMP PowerEN architec-

ture [144] which provides a "wrlos" instruction: wait until reservation lost. This

is exactly the WOA implementation described previously with the load-linked wait-

linked pair, where "reserved" is the Power architecture term for the "linked" cache

line state, and wrlos is the wait-linked instruction. Pasetto et al. [144] make a much

more detailed analysis of the wrlos instruction in popular inter-thread communica-

tion, synchronisation, and work distribution algorithms on the heavily multithreaded

PowerEN architecture, which provides 16-cores and a total of 64-threads. Their work

demonstrates that for SMT architectures wrlos (equivalent to WOA) can provide sig-

nificant performance benefits. While it also clearly demonstrates that the WOA in-

struction is not a novel concept, this thesis introduces the drastic energy savings which

can be realised by using WOA. Unlike the discussed performance gains, which apply

only to SMT architectures, these energy savings are applicable to all multi-threaded

shared-memory architectures, from CMP, to multi-socket, and even distributed shared-

memory architectures, regardless of their SMT support. For thermally constrained high

density CMP architectures the energy savings can also translate into additional perfor-

mance gains, making the importance of WOA clear for server environments where

SMT-CMP processors are packed in a high-density environment. Pasetto et al.’s anal-

ysis of many of the popular inter-thread communication techniques extends not only to

the impact of the wrlos instruction, but comparing many different algorithms on both

PowerEN and x86 architectures, with different architectural atomic operation support.

The work demonstrates that the simple algorithms used in this thesis for synchronisa-

tion and communication are sub-optimal, so better scalability results could probably

be achieved for the proposed manycore architecture. However inter-thread communi-

cation algorithms themselves are not the focus of this thesis.
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Tullsen et al. [145] make a similar analysis of thread synchronisation for an 8-

way SMT architecture, demonstrating that the close coupling of the thread execution

in the processor allows for much faster thread synchronisation than traditional multi-

socket SMP systems, enabling a new class of algorithms to be effectively parallelised.

Loops with inter-iteration dependencies and similar algorithms with short lived par-

allelism are unsuitable to thread level parallelisation when the synchronisation cost is

as high as is common with inter-chip communications, so previously parallel bench-

marks and applications have been focussed around more embarrassingly-parallel appli-

cations, where there is significant computation between synchronisation events. Their

work shows clearly that integrated multi-thread architectures are capable of significant

parallel speedup even when executing tightly synchronised parallel sections through

techniques such as pipeline speculation. This new class of parallelism is something

that should be exploited to make full use of high-density manycore architectures, so

low-latency inter-thread communication is critical.

Li et al. [146] and Wells it et al. [147] describe methods for detecting spin-wait be-

haviour in hardware without explicit instructions such as WOA. While they use these

to influence scheduler policies and power management, among other things, the same

techniques could be used to substitute a classic spin-wait instruction stream with a

WOA style spin-wait on-the-fly, giving most of the benefit, without the need to recom-

pile existing applications. Similarly, using the WOA style instructions would enable

much of the other work proposed in these two pieces of research without the effort of

dynamically identifying core spinning.

The MIPS MT architecture, implemented in the MIPS32 34K core [148], defines

a different mechanism for efficient inter-thread communication, using a "gating stor-

age" called the Inter-thread Communication store (ITC). The ITC comprises of mem-

ory cells, each 16x64 bits long, which each contain a 64-bit memory element and a

full/empty state bit. The each of the 16 possible 64-bit aligned indexes into this mem-

ory element implements a different access semantic, although the MIPS MT architec-

ture leaves 10 of these reserved for future use. Between these 6 available "views" of

the memory cell various synchronisation primitives such as semaphores, FIFOs and

protected variables can be implemented without spin-wait behaviour. Instead of the

pipeline-stall behaviour being handled by the core as in WOA, the ITC has blocking

load and store semantics on some of the views, which cause the processor pipeline to

stall because the memory operation has not completed.

Unlike WOA, which relies on the coherency protocol’s tracking of the interested
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core’s "shared" cache line state, the ITC memory must be able to track outstanding

operations from all possible cores, or deny requests (resulting in high traffic and active

power while the core re-issues the request) or block the interconnect. This blocking

is undesirable because it could lead to significantly reduced interconnect performance

or even deadlock if the protocol is not designed well. Being able to track pending

requests for all possible cores is wasteful however, and would grow linearly with the

number of cores in the system. It might be possible for a single ITC to provide a

single transaction tracker for a large number of cells, on the assumption that cores

may not have a pending request on more than a single cell. Even if this could be

addressed, the ITC limits the available shared storage for synchronisation primitives,

unlike WOA, and is not easily mapped to existing software which is written with spin-

wait behaviour. Because the ITC must be located on the physical address space it

is also a shared resource between multiple concurrent applications, and this precious

resource must be managed by operating system calls, potentially incurring overheads,

and enabling one application to starve others of access to the required ITC resources.

7.4 Conservative Tree Encoding

Existing sharer representations discussed in Chapters 2 and 3 suffer from a number

of shortcoming. When there are either a small, medium or large number of sharers

the sharer encoding produces a sub-optimal result. Pointer based systems such as

Dirk[N]B, AckWise and SCI either require drastically growing storage for the sharer

state, or have to resort to broadcast evictions once the storage space is fully consumed.

Even if a large storage area is used to continue growing the pointer set, then a large

number of invalidations must be sent one by one, as there is no convenient multicast

mechanism. For lossy compression schemes there are other problems. For example,

with coarse vector the large size of the sharer clusters results in many excess cores be-

ing sent invalidations when there are either a small number of sharers, or the sharer set

is not well aligned to the clusters. Tristate/DirX has many pathological cases and soft-

ware based Gray-coded Tristate results in sharer patterns with poor physical locality.

Hierarchical coarse vectors suffer a similar, but less pronounced, growth problem to

pointer based systems, but require an excessive degree of associativity in the directory,

and also do not obviously provide a multicast scheme, although a multi-phase multi-

cast can be constructed. To address the shortcomings this chapter presents a new sharer

compression scheme, called Conservative Tree Encoding (CTE), which uses lossy tree
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path encoding to make a best effort representation of the tree of sharers. This scheme

can be scaled to the precision required, like the coarse vector representation, requiring

2log2(N) bits to be able to accurately represent a single sharer, in the same way as

Tristate, but gradually degrading in spatial locality to full broadcast as more sharers

are added. Adding more symbols (2 bits per symbol) will reduce the false invalida-

tion rate, and even with only 2log2(N) bits will accurately represent power of 2 sized

clusters of cores, aligned to the cluster size, with no false invalidation. This makes the

proposed scheme a balanced trade off between the coarse vector and Tristate, with a

configurable accuracy like the coarse vector, but with no minimum invalidation area.

Symbol Meaning

10 left branch only

01 right branch only

11 left & right branch interleaved

00 right & left branch interleaved

Table 7.1: CTE Encoding symbols.

The encoding uses all four available states from the two bit symbol, listed in Ta-

ble 7.1. To naively encode the tree, walk down from the sharing leaves, keeping a

separate copy for each leaf, and at each node take the encoding so far, and prepend

the relevant symbol for this node to the head of the encoding. If a shared node is

encountered then the encodings for each subtree are interleaved, and the symbol 11

or 00 is used to indicate if the interleaving was left-right, or right-left alternating. To

decide which to use the current head symbol on each subtree is examined, and if one

of them has a 11 or 00 symbol the encoding that puts this on the right, or lower, in the

interleaving pattern, is used. Eventually a limit on the available number of symbols

is reached, and the encoding must be truncated, discarding the bottom symbols; it is

for this reason that there are two encodings for a split in the tree. When symbols are

discarded that whole subtree is lost, so it must be encoded with a fork node (00 or

11) when reconstructing on multicast, to produce a local broadcast on this tree. It is

possible by using the 11 and 00 interleaving modes that one can chose to discard a 11

or 00 symbol in preference to a 10 or 01 symbol, reducing the amount of information

discarded, and in doing so minimising the number of false invalidations sent. This

selection between 00 and 11 is simply an optimisation that can be performed during
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the encoding, it is not required to produce a "correct" encoding, but it helps address

the asymmetry in encoding efficiency between left biased and right biased trees that

otherwise occurs. A more advanced encoder could analyse beyond the next symbol to

truly minimise the information loss, but most of the benefit can be achieved through

the much simpler and less costly examining of only the next symbol.

To better explain the encoding a short example is presented, taking a 16-core sys-

tem, and using 8 bits, i.e. 4 symbols, to store the sharer vector. This example walks

through a series of insertions into the sharer vector, with core-2 making the initial re-

quest.

0 0 1 0

0 0 1 0

~ ~ ~ ~

11 10

Core-2 is now initialised as the first sharer, the symbols trivially produced from

the binary core-id. The upper boxes, in white, represent the core-id of the processor

in standard binary notation, with the most significant bit on the left (core-0 is leftmost

on the tree). By passing this through a series of logic inverters represented by the ’ ’

symbol the tree-encoding for this core-id is produced, with each symbol corresponding

to a single bit of the core-id, with the left digit the inverse, and the right a direct copy.

The tree diagram on the right demonstrates how this would be decoded climbing the

tree, reading the symbols from left to right. The path to core-2 is represented in red for

the remaining diagrams. Core-0 is added second, represented in blue, and will result

in an overflow of the available symbol space.

0 0 0 0

0 0 0 0

~ ~ ~ ~

11 11

0 0 1 011 10
...

Walking the tree encoding, the first two symbols match, but the third takes the al-

ternative branch. This means that the rest of the encodings must be interleaved. Since

neither contains a 11 or 00 symbol in the next field, interleaving is performed left-
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right, and truncates the path towards core-2. The sharer vector now conservatively

must cover all cores on that subtree. The portion of the tree "owned" by each bit in the

encoding is indicated by a curved arrow from this bit, either directly to the child nodes,

or to an over-bar which extends over the node children. The symbols are shaded in

a combination of colours to represent all of the sharers which contribute the that part

of the encoding; because core-0 and core-2 share the bottom three levels of the tree

in common (the root node counts as a level) the first two symbols are shared red-blue.

After the split at the level three node the fourth symbol is entirely owned by the blue

route to core-0, while the red route to core-2 has extended beyond the available space.

Because this symbol is not available to store the ’0’ symbol filtering out core-3, it has

become aliased into the encoding. Aliased cores are marked with a strike-through, and

coloured with the sharer path which caused the aliasing. Truncated symbols are kept

but represented with dashed boxes, to help with understanding the encoding and show

where accuracy could be traded against encoding space.

0 0 1 011 11 01

Finally core-7 is added, represented in green, which will be followed by an expla-

nation on how the tree gets easily decoded by the routers in the tree.

0 1 1 1

0 1 1 1

~ ~ ~ ~

01 00
...

0 0 1 011 11
...

Core-7 only matches the first symbol, so once again interleaving is performed on

the lower parts of the two encodings. This time the existing code has a branch symbol,

11, at the same level as the newly inserted 01 symbol. The encoding rules suggest

that the next symbol on each branch should be compared, so that the interleaving order

with the least information lost can be used. In this instance it might be beneficial to use

the 00 encoding for this fork, because this places the existing 11 symbol further right

in the encoding, preserving as much of the core-7 path as possible.
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0 0 1 101 10 01 0101

In this instance there are no additional savings using this interleaving, because only

one symbol of each sub-tree will fit. However, if only three symbols were available

in the first case, it would not have harmed the encoding to lose the 11 branch symbol,

while it would have resulted in wasted traffic due to the significantly increased aliasing

if the 01 symbol had been lost.

To decode this, each router in the tree needs to look at only the leftmost "head" symbol

they receive, and does not need to do any processing of the remaining tail to determine

what to do. The symbols 10 and 01 are simply interpreted as send the whole tail left

or right, discarding the head symbol, while 11 and 00 tell it to reconstruct a left and

a right message. This is done by concatenating every second symbol (e.g. 11 implies

2nd, 4th, 6th for left, 3rd, 5th, 7th for right), padding any remaining symbols with 00.

7.4.1 Advanced Insertion and Further Extensions

So far only inserting branch symbols has been discussed, but not how to easily insert

into an encoding which has a branch as the first symbol that does not "match" the one

being inserted. When walking the encoding to insert a new sharer, a branch symbol still

counts as a match, but the stride is now doubled, to walk the interleaved path it is now

inserting on, leaving the other branch intact. If another branch symbol is encountered,

the stride increases to 4 symbols, and so on until there is no more available symbol

space, or a difference is detected, requiring re-writing the path from this point onwards

along the interleaved branch.

Insertion in this fashion is always O(N) where N is the number of symbols allocated

in the sharer vector. This means that the directory could take N cycles to insert a

new sharer, but can send the AckS message before it has completed. The insertion is

also simple enough that more than one symbol could probably be walked in a single

cycle, and there is always the possibility to provide multiple instances of the insertion

hardware into the directory logic, to handle multiple entries in parallel.
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It is also possible to use CTE in a higher radix tree, for example a quad-tree could

be encoded using 4-bit symbols, but the complexity increases with the need to handle

2, 3 and 4-way interleaved tails.

7.4.2 Synthetic Results

To better explore the proposed encoding, a set of synthetic tests were run using Tris-

tate, Coarse Vector (CV), and CTE on a 1024-core tree, across a range of available

encoding space. Tristate was only tested with 20-bits of storage as it requires precisely

2 log2 n bits, where the scalable Course Vector and CTE encodings were tested with

16, 32, and 64, and 20, 32, and 64 bits respectively. The smaller comparison is slightly

unfair as CTE and Tristate are allocated 25% more space than CV. However for 1024

cores CTE and Tristate can both identify a unique sharer with 20-bits, and CV makes

the most sense implemented as powers of two, for extremely simple insertion and de-

coding, making 16-bits the closest encoding. With this power of two encoding CV

provides exactly k equal coherency regions of size N/k, where k is the number of bits

allocated and N is the number of processors. For each encoding and size combina-

tion two different tests were run: clustered, and random. The clustered pattern iterates

through all possible contiguous sharer vectors, adding them one at a time then com-

puting the number of cores which would receive a message upon invalidating them, to

give 1024 data points for each of the 1024 possible numbers of sharers.

The random pattern operates similarly, except that for each number of sharers, 1-

1024, 1024 random distributions of the sharers were generated, and the same multicast

test performed as with clustered. The random pattern is the same for every test con-

figuration. These two tests gives us a good picture of how the encoding will fare on

programs of all sizes with both good and poor spatial sharer locality.

The graphs take two forms, a linear graph of true-sharers versus invalidations, and

a log plotted (on the x-axis only) graph of the residual invalidations, i.e. those invali-

dations that occurred in addition to the expected true sharers. For the former the ideal

result is a straight line of gradient one, from the bottom left to the top right, and for

the latter a flat line along the x-axis. The residual plots are especially useful for com-

parisons of encoding quality, and the log transformed plot allows us to see detail for

smaller sharer sets. Figure 7.7 summarises the poor Tristate results, with a linear plot

of the clustered results at the top left already showing its failings, followed top right by

a residual plot for easy comparison with the graphs in Figures 7.8-7.12. The bottom
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Figure 7.7: Tristate summary for 1024-core synthetic sharer simulations, each single

result is an alpha-blended point giving a grey-scale density of the possible outcomes.

Top-left: clustered, top-right: clustered residual, bottom-left: random residual 1-64,

bottom-right: random residual 1-1024.

two graphs are a zoomed (1-64 sharers) and full (1-1024 sharers) view of the residual

graphs for the random sharers. It is quickly apparent that a naive Tristate encoding

is not a robust solution, and the nature of the encoding means it cannot be improved

through additional encoding space.

A most contrasting summary of the differences between CTE and CV are to follow,

but first it is good to get an overview of how each performs in absolute terms. The

graphs in Figures 7.8–7.12 are arranged in paired columns, on the left are the CTE

encoded results, and on the right are the equivalent CV results for direct comparison.

Beginning with Figures 7.8 and 7.9 the clustered results for 20 and 32-bit CTE are

presented, alongside 16 and 32-bit CV, with Figure 7.8 showing the linear plot of

sharers versus invalidations. The initial impression is that CTE conforms much closer

to the ideal line than CV for up to approximately 384 sharers, where the worst case

performance for CTE begins to degrade. This is repeated in the 32-bit results, except

with both encodings conforming much closer than their more constrained counterparts.
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Switching to the residual graphs in Figure 7.9 gives a clearer picture of the performance

with smaller sharer counts. CV’s bipolar performance is due to the cluster alignment

resulting in the cluster fitting either in the minimum number of CV regions, or the

minimum plus an extra region as some sharers slightly spill into the next. This means

that the worse case excess for CV is always two whole regions, minus the number

of sharers modulo the number of cores in each region. This can be good for a large

number of sharers, where it outperforms CTE, but the alternative solution, the best case

for CV, is a whole region of cores minus the number of sharers modulo the number of

sharers per region. This only provides a good result when the number of sharers is

close to the size of a cluster, and must be well aligned to avoid transitioning to the

worst case. For less than 64 sharers the 20-bit CTE is significantly better than 16-bit

CV, and due to the 64-core cluster size of 16-bit CV up to approximately 20 sharers

there are no contiguous sharer patterns where CV provides a better solution. Moving

to look at the 32-bit results, take note that the Y-axes range has been halved with this

increase in precision (and will be halved again for the later 64-bit results summary).

Here it can be seen that while the CV results are twice as good across the board (to be

expected from halving the size of the coherency regions), the CTE results for under 64

sharers are almost four times as good, degrading to only twice as good for the larger

numbers of sharers. This shows that for smaller numbers of sharers (<100 on a 1024-

core system) CTE not only provides much better tracking accuracy than CV for the

same number of encoding bits, its accuracy improves at a much greater rate than CV

when increasing the provision of more space. Unlike CV, the CTE encoding can be

easily extended two bits at a time with minimal change, where CV makes most sense

using power of two encodings. It should be noted that CV can be used with an arbitrary

number of bits (as was done do for the real-world benchmark results) with a encoding

scheme still slightly less complex than CTE.

The excellent small sharer performance scaling of CTE is exemplified by the almost

perfect results for up to 10 cores with a 32-bit sharer vector (otherwise capable of only

holding three core-pointers), and looking ahead to Figure 7.12, using 64-bits of sharer

state allows any number of sharers, up to almost 64 cores, in any contiguous placement

on the processor network, to be represented with negligible excess messages. This is

not possible with any other fixed size sharer encoding other than full-map (requiring

1024 bits of storage) or Dirk[N]B with k = 64 for 64 core-pointers, using 640 bits of

storage (10× that required by CTE) and lacking any multicast support.

Moving Down to Figure 7.10 and 7.11, the results of random sharer distributions
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are compared. Beginning with a linear plot of invalidations versus sharers again it can

be seen that neither encoding handles random sharer distributions well, and this will be

an inherent problem of all compressed sharer formats – random data is incompressible.

Again CTE is shown to perform better for small numbers of sharers, but above 5 sharers

coarse vector begins to perform better, and although adding more bits of state sees

CTE take a clearer lead for small numbers of sharers, coarse vector gets even better

for a large number of random sharers. The trends continue with the 64-bit results

of Figure 7.12, with CTE performing better for clustered sharers and small numbers

of random sharers, while coarse vector performs best for more than a few randomly

distributed sharers.
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Figure 7.8: Clustered invalidations received on a 1024-core tree.



7.4. Conservative Tree Encoding 175

Figure 7.9: Excess clustered invalidations received on a 1024-core tree.
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Figure 7.10: Random invalidations received for small sharer encoding space.
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Figure 7.11: Random invalidations received for 32-bit encoding space.
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Figure 7.12: Clustered and random invalidations received for 64-bit encoding space.
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Following the context provided by the absolute compression performance, the next

series of figures focus on directly comparing 32 and 64-bit CTE and CV on a sample-

by-sample basis. As with the previous figures, for each number of sharers (1-1024),

1024 simulated sharer additions and invalidations were performed, with the same

sharer patterns used for all experiments of the same distribution. For each size-dis-

tribution combination the number of invalidations made by the CV encoding was sub-

tracted form the number of invalidations made by the corresponding CTE encoding.

This provided a distribution of the relative difference in effectiveness between CTE

and CV for each number of true-sharers. Figures 7.13 and 7.14 show these distribu-

tions in terms of the percentage of sharer combinations in which CTE outperformed

CV by the number of invalidations shown on the y-axis, or CV outperformed CTE on

the negative axis. For example for 32-core clustered, 100% of two-sharer patterns had

at least 30 extra invalidations for CV compared to CTE, while approximately 10% of

these had 62 extra invalidations.

These results are further summarized in Figure 7.15 which plots the median differ-

ences from Figures 7.13 and 7.14. It is clear from these figures that the CTE encoding

is superior for clustered sharer groups involving less that 512-cores, with little differ-

ence between the encoding above this, but random distributions are less clear cut. For

the 64-bit encoding CTE performs best up to nine sharers, but beyond this CV proves

to be much more robust, while with 32-bits CTE is even worse, losing out after only

five sharers. As such the best choice of encoding really depends on the sharer distri-

butions present in the target application. Figure 7.16, which shows the difference as

a proportion of the true sharers rather than an absolute, shows that the advantage of

CV is less pronounced when the excess invalidations are considered as a proportion of

those being invalidated.
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Figure 7.13: Distribution of the difference in false invalidations between CTE and CV for

clustered sharers. Distribution represents the percentage of sharer combinations with at

least as much difference as indicated on the y-axis. Positive difference represents how

much better CTE has performed, negative represents CV. The median performance

passes through the green band at approximately 50%.
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Figure 7.14: Distribution of the difference in false invalidations between CTE and CV for

random sharers. Distribution represents the percentage of sharer combinations with at

least as much difference as indicated on the y-axis. Positive difference represents how

much better CTE has performed, negative represents CV. The median performance

passes through the green band at approximately 50%.
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Median difference in CTE and CV false invalidation rates
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Figure 7.15: Median difference in excess invalidations between CTE and CV, positive

numbers indicate that CV has a greater number of false invalidations.
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Figure 7.16: Median difference in excess invalidations between CTE and CV, as a pro-

portion of the number of true sharers. Positive numbers indicate that CV has a greater

number of false invalidations.
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7.4.3 Benchmarks

Due to limits on architecture support, scalability of benchmarks, and available time

for simulation, experiments were performed on a small subset of the Splash2 [137]

benchmark suite which had previously indicated that they might support running on

up to 1024 cores, and which indicated performance scalability at least as far as 32

cores [12]. The selected benchmarks and their configurations can be found in Table 7.2.

Benchmark Configuration

Radix 524288 Keys

FFT* 220 points

LU (contiguous) 512x512 Matrix

Ocean (contiguous) 258x258 Ocean

Table 7.2: Benchmark Configurations (*FFT was modified to parallelise the dataset

initialisation, and a buffer of random numbers was pre-computed to further reduce this

phase).

7.4.4 Benchmark Results

The final test comes with the simulated results from the four Splash2 benchmarks listed

in Section 7.4.3. Simulations were run using 2log2(N) bits of sharer state for both CTE

and coarse vector, although since these are not all even powers of two, the coarse vector

represents a balanced tree distribution of the available bits, with each fork in the tree

taking half the remaining bits (where there is one extra it always gets allocated to the

left branch, towards lower numbered cores).

From these simulations traffic statistics were collected for all multicast packets,

which represent shared line invalidations. From Figure 7.17 you can see CTE can

reduce the multicast traffic by up to 12.7%, for 32-core Ocean, but the results are

extremely benchmark specific, both LU and FFT suffer increased traffic, indicating

many sparse sharers.

To combat this problem a hybrid scheme was devised, which on inserting a new

sharer into a CTE vector, will determine if the new sharer state would be better suited

to coarse vector. The current implementation does this by using the current CTE to

construct a coarse vector representation of the current sharer list, then inserting the
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new sharer into both; the number of cores which would be invalidated in a multicast is

calculated, and the encoding with the lowest value is selected. Once the representation

has switched to coarse vector it does not switch back, working on the assumption that

coarse vector handles large numbers of sharers better. The only instance where it may

be beneficial to switch back is 32-core Ocean, where CTE beats the hybrid scheme,

however this difference is well worth the prevention of cases where CTE is outper-

formed by coarse vector. On average (geometric mean) the hybrid scheme reduces

multicast traffic by 7.7% over coarse vector alone, and almost always outperforms

both CTE and coarse vector alone.

Reduction in Multicast Packets Routed
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Figure 7.17: Reduction in multicast packets using CTE and hybrid CTE-CV over coarse

vector alone.

7.5 Further Work

There are many potential extensions of this work which merit investigation. For ex-

ample the CTE multicast can be applied to virtual trees, allowing the directory to be

split out across the mesh, sacrificing the need for Ack messages in return for allowing

the directory to initiate a memory request for the core, rather than delegating that to

the core after it has received permission from the directory. This trades off bandwidth

and energy in one part of the protocol, for bandwidth and energy in another. Perhaps
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the most interesting and important future work will be evaluating the multicast CTE

support with a multi-program workload, as its biggest advantage is with small groups

of geographically clustered cores.

An additional piece of work which could be investigated is another take on "tag-

less" directories. Currently the nature of L1 caches means that a directory must be

highly associative, or have some means of spilling into a secondary data structure to

maintain a scalable coherency protocol [34]. Instead, one could have a very large

direct mapped directory, without address tags ("tagless" but not in the same sense as

Zebchuk [64] proposes). By indexing into the directory with just the lower address bits

(as in a simple direct mapped cache) the lookup is extremely cheap, with no tag check

required, and the set of all mapped addresses can be easily reconstructed by prefixing

a "match-all" state to the index bits. This structure would have very cheap indexing, at

the expense of an invalidation being aliased to not just multiple cores, but to multiple

addresses too. When a directory line must be evicted to satisfy an exclusive request

the set of all cores stored as sharing the directory line must be messaged with a multi-

address invalidation, which matches all potential addresses mapped by the directory

line. Since the directory should have a greater number of lines than any individual set

in a processor L1 cache, the processor can uniquely map the request to a single index,

and then must compare the lower tag bits with the request address bits formed from

the directory index. This large multi-processor multi-address aliasing is easiest to han-

dle with a silent eviction protocol such as the one presented in this thesis, where upon

multicasting the invalidations the directory does not need to know how many acknowl-

edgement messages to wait for, and can immediately continue processing the request.

Predominantly read only data can be aliased quite safely, but private write-heavy data

could be problematic. Two potential solutions to this are: to make good use of page-

tracking to exclude both private and read-only pages, and/or have a small associative

tagged backup directory which high-contention entries switch over to under patholog-

ical conditions. This proposed directory could provide significantly more tracking for

the same given silicon area, due to the absence of tag RAM, nor the need for multiple

parallel-lookup sets required for associative systems. These benefits would also reduce

the time and energy required to service a request. In general the aliasing problem will

be reduced by over-provisioning, but it is still likely that a mechanism for handling

pathological cases would be required to get the best performance.





Chapter 8

A Machine Learning Based Approach

to MPSoC Design

8.1 Foreword

This chapter was originally produced as a collaborative work with Dr. Oscar Almer.

Inspired by his previous work on predicting interconnect features [121; 46] we worked

together to integrate the simulation infrastructure developed in Chapter 4 into the ma-

chine learning techniques Almer had used previously. In this work the MPSoC design

space and benchmark configurations were based upon the previous work, but decided

upon and developed by myself. Simulation orchestration was entirely my responsibil-

ity, along with feature selection to be provided to the machine learning models. Almer

took responsibility for running the machine learning models, due to his experience with

them already, and produced the initial regression figures, however the subsequent his-

togram based analysis and ranking analysis was my own work. Almer also contributed

to the related work section of this work, which has been collated with the other related

work sections in Chapter 3.

8.2 Introduction

Increasingly capable MPSoC (Multi-Processor System-on-Chip) devices are powering

much of the social revolution in computing. The scope of these devices does not stop

there; MPSoC devices are increasingly being used as the paradigm of choice for deliv-

ering new products. Whether shrinking existing multi-chip designs into a single chip

or expanding from a single processor on a die, the MPSoC trend is currently prevalent

187
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throughout the electronics industry.

With the integration of multiple compute cores and IO devices on a single die, the

configuration and joint capabilities of the system as a whole become first-class con-

cerns for designers. Unfortunately, the sheer size of MPSoC devices preclude exhaus-

tive evaluation of the design options, even for relatively modest designs. In addition,

many MPSoC designs are manufactured for specific tasks, and are intended to run

only specific software, something which traditional partitioned optimisation does not

address. The space of MPSoC designs for even a single task is larger than can be

effectively evaluated.

At the same time, power has become a primary design constraint, giving another

goal for the optimisation of MPSoC systems along with area, functionality, perfor-

mance and cost. Achieving optimality on all these metrics simultaneously is becoming

increasingly difficult with increasing on-chip resources and configurability. The only

way to address all these constraints at once is to co-design hardware and software to

achieve an efficient application-specific MPSoC design. As software is considerably

more mutable than hardware, and can be changed significantly in shorter time, it is

imperative to be able to quickly find a good MPSoC hardware design given some soft-

ware. Changing the hardware to suit the software reactively in this manner enables

software development to go ahead with less regard to the hardware architecture, know-

ing that an efficient hardware solution can be found given the software implementation.

This chapter addresses the problem of exploring the multitude of hardware options

available for even a single new piece of software. The ultimate goal is to have an

automated system which can be given a new piece of software, analyse it, and quickly

suggest an optimal hardware MPSoC based on learned heuristics about the hardware

design space. To this end, this chapter discusses machine learning methods for finding

optimal hardware design points for new programs given incomplete data about the

hardware design space. This work evaluates several methods of machine learning over

a generated set of MPSoC designs drawn from a large design space by attempting to

predict the performance of new programs both in terms of runtime and approximate

power consumption.

It is concluded that machine learning is applicable to this problem, and that Ran-

dom Forest is the most appropriate for the task of those algorithms investigated. This

work also concludes that by using machine learning for this task, solving the design-

selection problem can be efficiently automated.

Section 8.3 and 3.4 discuss this work’s relationship to other work in this area.
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Section 8.4 outlines this work’s approach to the problem in detail and discusses the ex-

ample design space used. Section 8.5 describes the experiments performed in applying

the approach to the MPSoC design space. Section 8.6 discusses the results of applying

this methodology to the example design space. Section 8.7 contains the conclusions.

8.3 Related work

One of the main differences between the previous discussed in Section 3.4, especially

the work of Almer et al. [121; 46], and this work is the platform used to run the

simulations, and the scale of the design space covered. While targeting a similar NoC

architecture to Almer et al., a pure software simulation approach is used, allowing the

computational work to be scaled out to a compute cluster to cover a larger portion

of the design space (1025 designs rather than 71). In using software simulation this

work is also not constrained to the size of designs which can be synthesised to a single

FPGA, allowing exploration of designs up to 64 cores. Although fewer workloads

are simulated in this thesis (64 rather than 82), a greater range of workload size is

covered, ranging from 1 to 64 tasks, and greater emphasis is placed on memory heavy

workloads, by providing a workload which taxes one of the IO devices on the target

platform, and an extremely traffic-heavy memory-thrashing benchmark. This work

achieves slightly better average accuracy predicting when the best designs for runtime

and EDP, with fewer results being especially badly predicted. It also presents results

across a variety of machine learning techniques, and gives a better insight into the

distribution of the design space in Figure ??.

8.4 Methodology

To address the problem of finding methods for predicting the performance of MP-

SoC designs, a data set correlating design features to performance is required. Such

comprehensive data sets are not readily available, and consequently one was gener-

ated using own using the hardware-calibrated multi-threaded fast MPSoC simulator

presented in Chapter 4.

The simulator has been verified against MPSoC systems implemented in FPGA

hardware, and has been found to generate runtime and interconnect switching counts

within 3% of the actual MPSoC designs. It is therefore considered as accurate for the

purposes of this work. The main benefit of the simulator over the FPGA implementa-
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tions is in synthesis speed; the simulator can be reconfigured significantly faster than

the test devices, fractions of a second relative to several hours, and therefore leads to

faster evaluations. The second is that training data can be generated in parallel on a

compute cluster, providing significantly greater design throughput than a limited num-

ber of FPGAs.

To address the hypothesis that the proposed approach is applicable to any new

software, a large number of computational benchmarks were generated and run on the

calibrated MPSoC simulator.

Section 8.4.1 describes the design space parameters used for the MPSoC design

space as well as for the benchmarks. Section 8.4.2 describes the design space parame-

ters used for benchmarking these MPSoC designs. Section 8.4.3 discusses the machine

learning methods evaluated for predicting performance.

8.4.1 Hardware Configurations

For this work the design space of MPSoC configurations ranging from 1 to 64 cores,

with an binary-router based NoC architecture is considered. As in the previous work

by Almer et al. [121], the cores are grouped into clusters on the interconnect, through

a cluster level arbiter. To confine the design space it is restricted to homogeneous

designs, those with the same number of cores in each cluster. The configurable param-

eters are:

• The number of cores per cluster (1 to 8).

• The number of clusters (1 to 8).

• The number of RAM banks (1, 2 or 4).

• The core to interconnect clock frequency ratio.

• The FIFO buffer size in the interconnect switches.

• The interconnect “complexity” – the depth of the interconnect network connect-

ing the cores to memories and devices.

This gives a design space of 12288 unique hardware configurations, from which 1025

designs were chosen randomly, and with uniform distribution, to use for evaluations.

The design parameters of the MPSoC are identical to those presented in Chapter 4,

summarised again in Table 8.1
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Design Parameter Possible Configurations

Core Architecture ARC700 32-bit RISC

Pipeline 3-stage in-order

D-Cache Size 4 KB

D-Cache Associativity Direct Mapped, 2-Way

I-Cache Size 4 KB

I-Cache Associativity Direct Mapped, 2-Way

Cache line size 32 Bytes

Interconnect Protocol AMBA AXI

Interconnect Topology 32-bit wide binary-routing network

Coherency Protocol None – Cache-Incoherent

Cores per cluster 1 – 8

Clusters 1 – 8

Block RAMs 1, 2, 4, 8

Total Block RAM Size 2 MB

Complexity 1, 2, 4, 8, 16

Fifo Depth 2, 16

Core Freq(MHz) 12.5, 25, 50

NoC Freq(MHz) 12.5, 25, 50, 100

Table 8.1: MPSoC design configurations.
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8.4.2 Benchmark Configurations

To evaluate the machine learning methods on this design space a set of multipro-

grammed embedded benchmarks was generated.

As in the verification section of Chapter 4, the components of these benchmarks

were chosen from:

• 5 EEMBC benchmarks: AutCor, Conven, FBital, FFT and Viterbi.

• CoreMark.

• Two in-house synthetic workloads: a cache-thrashing benchmark which gener-

ates a dirty cache miss every two out of three instructions, and a panning image

benchmark.

The panning image benchmark not only generates significantly higher cache miss rates

than the EEMBC benchmarks, but also produces uncached IO to the on-chip display

controller.

Four workloads were generated each for 1, 2, 3, 4, 6, 8, 12, 16, 20, 24, 28, 32, 36,

48, 56 and 64 tasks, making 64 workloads in total. The workloads were generated with

a two-phase random selection algorithm. For any workload size, the first phase selects

a subset of 2, 4, 6 or 8 tasks from the full set of tasks at random. For each of the cho-

sen subsets a workload is then generated using only the tasks in that subset. For each

size of workload, this method generates both workloads that contain little variation

between tasks (more homogeneous workloads as might be found in a parallelised sig-

nal processing application), and workloads with many different tasks (heterogeneous

workloads as might be found in a process controller for a realtime system or the main

processor in a multi-media device). This provided a diverse set of workloads for good

training coverage while ensuring that there are no duplicate workloads.

The runtime scheduling of tasks to cores was done statically on each simulated

MPSoC system, so that each core in the system was assigned a fair number of bench-

marks to run. This means that the maximum runtime of the system depends on the

core(s) with the most and/or longest tasks. The task selection method therefore gener-

ates varying runtime from relatively similar benchmarks, exposing the complexity in

predicting runtime for arbitrary software.

It is important to get a set of workloads which feature a good mix of compute heavy

and memory and I/O heavy benchmarks, because these features can drastically alter

the ideal MPSoC selection. A workload with all threads performing compute tasks
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will favour a design with a high core frequency, while one with high memory band-

width requirements will favour a higher bus and memory frequency. Similarly an I/O

intensive application may favour lower latency to memory even if overall throughput

is sacrificed, compared to a streaming memory application where latency is amortized.

On their own the design choice for each is fairly straight-forward, but with a mixed

workload the trade-off must be made between each of the threads to find the best bal-

ance. The workloads used are designed so that on an average system they all execute

within approximately the same length of time. This is to ensure that the problem is not

dominated by accelerating a single thread which runs for much longer than the oth-

ers, but enough variation is ensured so that some mixtures will favour different design

points. The design space is intentionally constructed so that maximum core speed is

only possible with minimum interconnect speed, and vice versa. Homogeneous work-

loads are likely to favour one extreme or the other, while heterogeneous workloads will

have to find a balance to suite all workload threads, else risk leaving a poorly matched

thread to dominate runtime.

8.4.3 Machine Learning Methods

The main interest of this work lies in identifying suitable machine learning methods for

predicting performance metrics of MPSoC systems. As a baseline for comparison, an

empirically random prediction method is used, that simply returns a random value from

the training set as the prediction. This method has the upside that the prediction(s) will

match the distribution of the training data, but is otherwise random. It can therefore

be regarded as a worst-case useful predictor, in that it does not actually use any of the

features of the design space, but still returns results of the right distributions.

For actual predictions the following methods were chosen for evaluation:

• A standard linear model in N dimensions, to ascertain if results can be obtained

even with so simple a model.

• A wkNN model, calibrated through internal cross-validation in the training data

set.

• A Multivariate Adaptive Regression Splines (MARS) model built from the train-

ing set.

• An Artificial Neural Network tuned for regression. ANNs are calibrated through

internal weight adjustments using the training set.
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• A Decision Tree model in regression mode. This method has implicit internal

feature selection.

• Random Forests of decision trees, again internally calibrated through cross-

validation over the training set.

The linear, wkNN, MARS and ANN methods do not have internal feature selection,

so for these methods, external feature selection is required.

To evaluate each machine learning technique leave-one-cross-validation was used:

for each workload all data from this workload was excluded from the simulation data

to provide a training set, which was then used to train the machine learning algorithm.

Predictions were then made for each design for which data was available for the ex-

cluded benchmark, and the predicted result compared against the simulation result.

This process is repeated for each workload and machine learning technique.

8.5 Empirical Evaluation

To evaluate the design space the benchmarks, discussed above, were simulated run-

ning on the 1025 MPSoC designs. This section discusses the generation of the MPSoC

performance data through simulation in Section 8.5.1 and the machine-learning imple-

mentations used in Section 8.5.2.

8.5.1 Data Set Generation and Features

Due to constraints in the scheduler on the systems the simulator was executed on,

simulated benchmarks with a small number of tasks were favoured over those with

higher task-counts. This led to particularly simplistic benchmarks featuring more often

in the evaluation data than may be expected.

A constraint added to help manage the time taken in generating training data was

that workloads would not be run on designs that would result in more than 4 tasks

being scheduled on a single core of the target design. The reasoning was that an engi-

neer would make this decision anyway because the design would be unlikely to meet

the real-time constraints of the task. Similarly, if the simulator detects that a simu-

lation has executed for four billion core cycles on the design it will time out for the

same reasoning – this design fails to meet the required performance for this workload.

Unfortunately this means the machine learning system does not see this training data,
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so must predict based upon designs that pass these requirements; it also means that

during cross validation to evaluate the results the testing set is limited, because only

predictions that have been simulated to completion can be verified.

In total 18602 different benchmark runs were generated, over 1025 simulated hard-

ware designs. (This is different to Chapter 4 because additional design configurations

were simulated in parallel with the compute cluster on other available workstations,

in order to increase the design coverage as much as possible. However the compute

cluster continued to run after the research for this chapter concluded, so eventually it

produced more simulation runs, but over a slightly reduced number of designs. The

extra results from these other simulations were not included in the simulation per-

formance analysis in Chapter 4). The design space explored for each benchmark is

therefore a subset of the 1025 chosen MPSoC designs discussed previously, but the

constraints meant that not all MPSoC designs ran all benchmarks. One cannot say

how large a part of the whole design space this explores, as the workloads used are

effectively unbounded; any program that can be run using the presented system could

be considered another benchmark. Taking only the narrow definition of workloads

constructed as there were generated in this work, however, only 64 out of around 1037

possible benchmarks were used, and 1025 out of 12288 MPSoC designs, covering a

minute fraction of the combined design space.

Training data generation time was on the order of a few weeks real-time, but as

each simulation is independent from each other simulation, more data could easily be

generated in parallel, subject to computing resource availability. The simulation time

of the presented approach can therefore be very short, if parallel simulation infrastruc-

ture is available.

The features collected and provided to the feature selection algorithm (or machine

learning algorithm directly for those with internal feature selection) were the follow-

ing design features: clusters, cores per cluster, RAMs, complexity, fifo depth, core

multiplier, interconnect multiplier, cores, and threads.

Along with the following runtime statistics collected from the workload run on two

representative designs which form the input feature for prediction: max runtime, min

runtime, average runtime, total runtime, max IPC, min IPC, average IPC, max IO ratio,

min IO ratio, average IO ratio, max read request flits (AR), min AR, average AR, total

AR, max write request flits (AW), min AW, average AW, total AW, max write data flits

(W), min W, average W, total W, max read data flits (R), min R, average R, total R,

max write acknowledge flits (B), min B, average B, total B, total switching events (sum
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of flits×bus-width for all flits).

And along with the static frequency of each of the major instructions from the

ARC700 ISA found in the binary: abs.f, add, add1, add1.n, add2, add2.c, add3, add3.n,

add.c, add.f, add.nz, add_s, add.z, and, and.f, asl, asl.f, asl_s, asr, asr.f, asr.lt, b, bbit1,

bc.d, b.d, bge, bge.d, bgt, bgt.d, bhi, bhi.d, bic, bl, bl.d, ble, ble.d, bls, bls.d, blt,

blt.d, bmsk, bnc.d, bnz, bnz.d, breq, breq.d, breq_s, brge, brge.d, brhs, brhs.d, brlo,

brlo.d, brlt, brlt.d, brne, brne.d, brne_s, bset, bxor.f, bz, bz.d, cmp, cmp_s, extb, extb_s,

extw, file, flag, j, j.d, jeq_s, jl, jl.d, j_s, j_s.d, ld, ld.a, ld.ab, ld.as, ldb, ldb.a, ldb.ab,

ldb.di, ldb_s, ldb.x, ld.di, ld_s, ldw, ldw.ab, ldw.as, ldw.x, ldw.x.ab, ldw.x.as, lp, lr, lsr,

lsr.f, lsr.nz, lsr_s, lsr.z, max, min, mov, mov.f, mov.ge, mov.gt, mov.hi, mov.le, mov.ls,

mov.lt, mov.nc, mov.nz, mov_s, mov.z, nop, nop_s, not, or, or_s, pop_s, push_s, ror.f,

rsub, rsub.hi, rsub.lt, rsub.nz, rtie, sexw, sexw.f, sleep, sr, st, st.a, st.ab, st.as, stb, stb.ab,

stb.di, stb_s, st.di, st_s, stw, stw.a, stw.ab, stw.as, stw.di, stw_s, sub, sub1, sub2, sub.f,

sub.ge, sub.ls, sub_s, tst, tst_s, xor, and xor.lt.

The instructions frequencies were extracted with the following shell code:

objdump −d −−no−show−raw−i n s n e x e c u t a b l e

| sed " s / ^ . ∗ \ : / / "

| awk ’{ p r i n t \ $1 } ’

| p e r l −e ’ whi le ( < >){

chomp ; $ l { $_ }++;

} ;

foreach $ i ( keys %l ) {

p r i n t " $ i −> $ l { $ i } \ n " ;

} ’

8.5.2 Machine Learning Execution

Implementations of the machine learning methods from the R [149] packages ‘kknn’,

‘nnet’, ‘earth’, ‘rpart’, ‘randomForest’ and ‘e1071’, were used, as well as feature selec-

tion using the package ‘FSelector’. These packages are available as downloadable and

installable libraries from within R itself, and each package is publicly available code.

As such these packages are considered to be accurate and efficient implementations of

their respective machine learning methods.

The feature vector for each simulated program consisted of information about

the MPSoC system used, i.e. the hardware configuration, together with benchmark-

specific information. For each benchmark generated data from two runs of the bench-
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mark on sample designs were used as features, together with data about the instruction

mix in the benchmark. Taken together these features formed a feature vector of some

200 individual features.

Feature selection was performed by computing Spearman’s correlation over the

training set, obtaining scores for the linear dependence of features against the regres-

sion target. A cutoff in this ranking was then chosen as the point of largest difference

between scores, and features above this cutoff were used to build the models. This

means that only features that are well-related to the regression target are used. In

general, and depending on the training subset used, feature selection chose to utilise

around 70% of the features present, omitting primarily instruction mix features.

For Decision Tree and Random Forest methods the machine learning algorithms

provide their own internal feature selection, so this was used directly without apply-

ing Spearman’s correlation and cuttof. The algorithms were provided with the whole

feature vector in all instances.

8.5.3 Design Space Transformation

Initially the simulations and machine learning were performed on core and intercon-

nect frequencies of 12.5, 25, and 50 MHz core, with 12.5, 25, 50, and 100 MHz in-

terconnect, paired up as core:interconnect ratios 50:12.5, 25:12.5, 12.5:12.5, 12.5:25,

12.5:50, and 12.5:100, for relative ratios 4:1, 2:1, 1:1, 1:2, 1:4, and 1:8. This design

space obviously has two best design choices, either maximum interconnect or maxi-

mum core frequency, there is no benefit to choosing any of the intermediate changes.

To make the design space more interesting, the resulting run-times were scaled by the

square root of the larger side of the clock ratio, (divided then by two for more real-

istic clock frequencies), giving effective clock ratios of 50:12.5, 35:17, 25:25, 17:35,

12.5:50, and 8.9:71. This transformation has been applied after the prediction, but

should not drastically affect the prediction accuracy because the transformation is lin-

ear for each clock ratio configuration, and applied to both the predicted and measured

run-time values. The transformation is visualised in Figure 8.1.

8.6 Results

Figure 8.2(b) presents the accuracy of the best prediction method, Random Forest,

at predicting the runtime for an unseen benchmark across all explored points of the
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Figure 8.1: Transformation of the operating frequencies used in the design space. The

transformation exposed the trade-off between core and interconnect performance, and

design points which would otherwise have never been optimal choices.

design space; Random Empirical results are presented alongside for comparison to

demonstrate that the accuracy is not due to the design space being condensed to a

small performance distribution. Results presented are normalised to the maximum ac-

tual value measured for each variable, runtime and number of switching events, so

numbers are relative to this. The Random Empirical results are included as the base-

line for observations, and the performance of Random Forest should be viewed in light

of this baseline. The relative standard deviations of 29.6% and 119% respectively,

as annotated on the figures, are presented in Table 8.2 along with the results for the

other machine learning techniques. Figure 8.3(b) depicts the capacity for the Random

Forest to predict the best design choice for a given benchmark. Each vertical col-

umn represents the performance distribution of the (explored) design space for a single

benchmark, normalised to the performance of the best design for that benchmark; the

best performing design is at 1 on the Y axis, and a design which takes infinite time

would be at 0. Darker regions indicate a concentration of designs at that performance

point, while lighter regions have few to no designs in that region. This condensed form

of “population” density is provided to give the reader a sense of the performance dis-

tribution exhibited by each benchmark, and to give the data presented by the points on

the graph a greater context.
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Figure 8.2: Empirical Random and Random Forest prediction accuracy when predicting

for runtime of a new application.
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Figure 8.3: Prediction quality of Random Forest versus Random Empirical. Each col-

umn represents one benchmark. The greyscale background shows the distribution of

designs within each benchmark; white dots show the predicted designs.
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These points are the performance of the design which the presented machine learn-

ing techniques have identified as the best performing design for that benchmark, by

generating a performance prediction for every design point and selecting the best de-

sign. For benchmarks which have multiple best predictions, the selection which corre-

sponds to the worst possible choice from those selected was plotted.

Although it would probably be feasible for a designer to evaluate all of the choices,

it was felt that presenting the worst was the fairest representation of the machine learn-

ing’s capabilities, given it still on average predicts a design with at least 89% of the

performance of the best design, even in benchmarks where almost the entire design

space is below 40% of the maximum performance.

Figure 8.4 presents corresponding bar graphs for the points in Figure 8.3, repre-

senting the fraction of the design space which, for that benchmark, are worse than or

equal to the performance of the design which performed the best. From these it can be

ML Technique

RE RF DT NN wkNN MARS

Runtime relative std-dev (%) 92.6 29.6 43.3 42.0 46.2 41.8

Switching relative std-dev (%) 261 119 293 105 130 113

Best Runtime as % of actual best 60 89 60 61 79 52

Best Runtime better than % 62 93 60 59 81 45

Best EDP as % of actual best 39 82 42 37 69 26

Best EDP better than % 55 93 53 49 86 34

Best Area×Delay as % of actual bes 69 93 85 88 89 83

Best ADP better than % 85 97 93 93 95 90

Best Area×EDP as % of actual best 69 93 85 88 89 83

Best AEDP better than % 85 97 93 93 95 90

Table 8.2: Numerical results for Random Empirical (RE) baseline, Random Forest (RF),

Decision Trees (DT), Neural Network (NN), wkNN and MARS. Linear Regression is

omitted as it behaves worse than RE, with a relative standard deviation of over 101̂07%

for runtime and 101̂38% for switching.
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Figure 8.4: Prediction performance of Random Forest versus Random Empirical show-

ing the proportion of the designs that are the same or worse than the predicted value

for each benchmark. 100% indicates that no designs are better than the predicted.
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seen that on average this work is able to select a design in the top 7% of the explored

design space for a given benchmark. Conversely the Random Empirical predictor does

poorly, picking designs about half way through the design space, close to the median

performing design as expected.

To evaluate how the methods would fare when predicting for energy, a similar en-

ergy model to Almer et al. [121] is used, predicting dynamic energy based upon the

the total number of switching events in the interconnect. The standard deviation for

switching event predictions is somewhat lower than total runtime, results also pre-

sented in Table 8.2. To evaluate this work’s capacity to pick the design with the best

EDP a similar prediction is performed across the design space to that used to generate

8.3, but predicted both switching events and runtime, selecting the design which was

predicted to have the minimum product of the two. The final results of these are present

in the results table, and show that Random Forest is still the best choice of prediction

method, achieving on average an EDP within 82% of the optimal design, and in the

top 7% of the design space.

The final concern for an MPSoC designer is the total silicon area, which largely

dictates the cost of the device. As an approximate measure for area the number of

cores in the design is used, as they will often dominate the silicon area used. When

factoring in area, energy and performance the design space shows obvious changes

in the trade-offs for benchmarks with greater task counts in Figure 8.6, where the

presented technique is demonstrated to achieve 93% of the area-energy-delay product

of the best design, selecting designs which are on average in the top 3% of the design

space.

When optimising for an equation containing the area, any prediction which can

identify the other parameters (runtime or energy) in the right order of magnitude will

perform reasonably at excluding the larger designs. This is because unlike perfor-

mance or energy, the area is not guessed by a machine learning algorithm, it’s a known

fact, and it is possible to perfectly weight the results based upon this. Because designs

with small thread counts run well on all designs, guessing constant runtime and scal-

ing by the area will produce a ranking with the best design correctly out-performing

almost the entire design space in the metric. Because of this, the metric assessing the

fraction of the design space that is worse than the selected is less meaningful, instead

consideration should be given to what fraction of the maximum metric is achieved, as

in Figure 8.5, which still relies on a strong prediction for the other metrics involved.

It is probably worth taking a closer look at the sort of predictions that the machine
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learning is making. For simplicity’s sake the analysis is restricted to the first three

single-threaded benchmarks where the trade-off between different resources is easily

reasoned about, and the final benchmark as the most diverse and complex. Among

the design options, for a single thread the FIFO depth and number of RAMs will have

negligible impact, because a single core cannot produce parallel requests to introduce

contention or to leverage any increase in bandwidth. This leaves the number of cores

(having too many cores will require the interconnect complexity to grow beyond that

specified by the complexity parameter, increasing the distance between the core and

the RAM and increasing memory latency), the interconnect complexity (increasing

the memory latency), and the core and interconnect operating frequencies as variables

worth consideration.

The first three benchmarks are image_display, the panning image benchmark, and

Fbital and Conven from the EEMBC suite. Since the image benchmark requires a lot

of IO, as well as compute to perform a greyscale transformation and dithering, while

the Fbital and Conven benchamrks have been shown to be quite cache efficient in

Chapter 4.

From Figure 8.3 it is already known the the prediction for the first two benchmarks

are sub-optimal, but not terrible, but the third is close to ideal. Table 8.3 shows that for

the compute/IO balanced image benchmark ideal configurations have a balanced 1:1

core:interconnect frequency ratio, with a low interconnect complexity and core count

to keep the memory latency as low as possible. The machine learning misses the mark

slightly and allocates a little bit too much compute relative to the memory performance,

but only by a single decision point, and it keeps the core count and interconnect com-

plexity low. Training with more examples of workloads which tax the interconnect,

or on the transformed design space initially rather than transforming post-training and

prediction, may have helped the machine learning do better at this workload. Moving

on to Table 8.4, Fbital clearly favours compute over interconnect, with the best designs

employing maximum core frequency, but still keeping complexity and core count low.

The machine learning fails to recognise the compute potential, and suggests solutions

one design point back towards a core:interconnect frequency balance, at the expense

of pure compute performance. It does manage to keep complexity low, but not as low

as the ideal design, and with more cores than necessary (although area is not a con-

sideration for this design selection). The third benchmark, Conven, is one which the

machine learning manages to predict extremely well for. In Table 8.5 it can be seen

once again that the idea configuration has low core count and complexity, but most
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Predicted Result

Cores 3 6 3 4 6 4 5 4 4 6 5 7 4 8 5

Complexity 1 2 1 2 2 1 1 1 4 4 4 2 4 2 4

Core MHz 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35

NoC MHz 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17

Correct Result

Cores 1 1 1 1 2 2 2 1 2 2 3 2 2 2 4

Complexity 1 2 1 2 1 1 1 4 1 1 2 1 4 4 2

Core MHz 25 25 25 17 25 25 25 17 17 17 25 25 25 25 25

NoC MHz 25 25 25 35 25 25 25 35 35 35 25 25 25 25 25

Table 8.3: Image Display benchmark top 15 predicted designs, compared with the cor-

rect top 15 designs.

importantly puts all of the emphasis on compute performance again. This time the ma-

chine learning gets it right, and suggests designs in line with the true best performing

designs.

Perhaps most impressively, the 64-thread workload, which consists of a mixture

of Autocor, Conven, Coremark, Fbital, Viterb and image_display instances. Although

there were only ten configurations produced by the training data simulations, all ten

designs were ranked perfectly by the Random Forest predictor. As seen in Table 8.6,

despite the ranking aligning neither perfectly with the number of cores, not the ratio

between compute and memory performance.
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Predicted Result

Cores 8 7 14 8 7 7 7 12 12 21 21 12 12 12 8

Complexity 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1

Core MHz 35 35 35 35 35 35 35 35 35 35 35 50 50 35 35

NoC MHz 17 17 17 17 17 17 17 17 17 17 17 13 13 17 17

Correct Result

Cores 3 7 7 12 2 2 15 3 3 4 5 10 6 6 8

Complexity 1 1 1 1 1 2 1 2 1 2 2 2 2 2 2

Core MHz 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50

NoC MHz 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13

Table 8.4: Fbital benchmark top 15 predicted designs, compared with the correct top

15 designs.

Predicted Result

Cores 10 6 10 12 6 6 12 3 6 10 6 12 2 9 18

Complexity 2 1 4 2 8 2 2 2 8 1 2 2 1 4 2

Core MHz 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50

NoC MHz 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13

Correct Result

Cores 3 7 7 2 2 12 3 3 4 5 6 6 8 8 10

Complexity 1 1 1 2 1 1 1 2 2 2 2 2 2 1 2

Core MHz 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50

NoC MHz 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13

Table 8.5: Conven benchmark top 15 predicted designs, compared with the correct top

15 designs.
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Predicted Result

Cores 32 42 42 16 32 21 35 36 35 20

Complexity 2 4 2 8 8 8 8 4 1 1

Core MHz 35 35 17 25 17 13 13 9 9 9

NoC MHz 17 17 35 25 35 50 50 71 71 71

RAMs 4 2 4 2 2 2 4 8 2 1

FIFO Depth 2 2 2 2 2 2 2 2 16 16

Correct Result

Cores 32 42 42 16 32 21 35 36 35 20

Complexity 2 4 2 8 8 8 8 4 1 1

Core MHz 35 35 17 25 17 13 13 9 9 9

NoC MHz 17 17 35 25 35 50 50 71 71 71

RAMs 4 2 4 2 2 2 4 8 2 1

FIFO Depth 2 2 2 2 2 2 2 2 16 16

Table 8.6: All 10 predicted designs for 64-thread workload ranked left to right, compared

with the correct ranked 10 designs.
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Figure 8.5: Prediction quality of Random Forest versus Random Empirical. Each col-

umn represents one benchmark. The greyscale background shows the distribution of

designs within each benchmark; white dots show the predicted designs.
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Figure 8.6: Random Forest and Random Empirical results when predicting for best

Area-Energy-Delay product.
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8.7 Discussion and Conclusions

From the results it is obvious that not all machine learning methods are as useful at

predicting runtime or switching counts on the proposed design space. However Ran-

dom Forest does a reasonable job of predicting the runtime for this difficult design

space, with an average error of about 30%. Unlike the work of Ipek et al. [120] the

work presented here is predicting for runtime, rather than IPC, and with the multipro-

grammed workloads the task that dominates the runtime can shift depending upon the

characteristics of the platform. A compute-heavy benchmark mixed with an IO-heavy

benchmark will perform badly on a design with high core speed but low interconnect

speed, and similarly badly on a design with high interconnect speed but low core speed.

Conversely the homogeneous parallel workloads in the work of Ipek et al. [120] will

have all cores affected in the same manner when design configurations are changed.

One of the most common use cases for the prediction methods presented is for an

engineer to identify good candidate design choices for a new application, so it is im-

portant that the prediction scheme can at least rank the designs correctly – even if the

actual prediction is incorrect – to allow the engineer to correctly select designs that

perform well. Testing this by evaluating the best performing prediction reveals that

most machine learning techniques are quite bad at this, with under-predicted outliers

providing suggested designs which are far worse than the true best design, often on-par

or worse than a random selection from the design space (Random Empirical). Fortu-

nately Random Forest also does a reasonable job at this too, providing designs that

give provide an average performance of 89% of the optimal design, that is at least as

good or better than 93% of tested designs for that benchmark.

Since prediction results are also similar when energy and area are considered, the

technique is a viable method for enabling engineers to rapidly identify a suitable choice

of MPSoC, whether the requirements call for performance, energy efficiency, or cost

minimisation, without the time-consuming, computation-intensive design space explo-

ration traditionally required. It is also clear that Random Forest clearly performs the

best for the explored design space, and should be considered a strong contender in any

similar machine learning experiments.



Chapter 9

Conclusions

An engineer designing a modern MPSoC or CMP faces many challenges and difficult

design decisions. This thesis has described and evaluated several tools and innovations

that have been developed and proposed to make this designer’s job easier, and provide

them with design options to combat some of the primary challenges of large scale

multicore processor design.

Chapter 4 presented novel simulation techniques enabling extremely accurate, high

performance simulation of embedded MPSoCs. If implemented in a suitable simula-

tor this could be a powerful, multifaceted tool that could be used throughout their

design process. The high accuracy and simulation speed, coupled with almost instan-

taneous reconfiguration, would allow an engineer designing an embedded MPSoC to

rapidly simulate many different designs under consideration. This could be performed

in parallel on a large compute cluster to give the designer a detailed picture of the

design space. Provided that their benchmark application was suitably representative

of the final software targeting the platform, the simulations would not only be able to

provide runtime performance estimates, but would also provide internal and external

communication link statistics, giving insight into bottle-necks and power estimates.

The modularity of the simulator design would also enable the engineer to add models

for new components and quickly see how these would affect the runtime and inter-

connect performance. The high simulation speed of up to 383 MIPS, more commonly

associated with functional only or un-timed models, provides an infrastructure to allow

developers to begin software development while hardware design is ongoing, with a

performance model which can be easily tuned to match the final hardware design as

development progresses. Typical un-timed "Virtual Prototype" simulations do not give

the developers any feedback about performance, which can be critical in embedded

211



212 Chapter 9. Conclusions

systems, using the proposed simulation techniques allows the developers to estimate

performance well ahead of hardware availability, with minimal impact on their pro-

ductivity.

The main take-away from the simulator development has been that good simula-

tion performance is only achievable through careful consideration and design, with

care taken to perform processing in a cache friendly manner and taking care to avoid

unnecessary computation where ever possible. Exploiting parallelism is important for

high performance simulation, but doing it naively will result in sub-par performance;

care must be taken to prevent part of the simulation becoming a severe bottleneck, to

minimise synchronisation overheads, and to ensure that all threads have useful compu-

tational work to do at all times.

Chapter 5 demonstrates that the techniques from Chapter 4 enable a simulation

infrastructure for fully cache-coherent manycore systems, that is fast enough for large-

scale design space exploration. The simulation results presented in Chapter 5 support

the claim that fast simulation models are able to deliver more detailed performance

data, and in less time, compared with previous systems, such as GEM5, SystemC and

FPGA-based systems. This includes the ability to deliver greater accuracy, improved

micro-architectural visibility, better statistics gathering capabilities, increased flexibil-

ity, and higher performance. In contrast GEM5, COTSon, and Sniper lack the accuracy

of the fast models presented in this thesis, SystemC has much lower simulation speed,

and FPGA-based systems lack both the visibility of the presented models, and the

capacity to simulate large scale systems.

Again the take-away is that it is possible to construct high performance multi-

core simulations with as much detail as desired, so long as care is taken to design the

work distribution and processing efficiently. When threads must stall it is important to

switch the core to another thread which can do useful work as quickly and efficiently

as possible, so that the host cores can continue to be fully utilised – so long as all cores

are doing useful work the simulation is progressing efficiently, the goal is to maintain

this state of maximum computation. Cooperative user-space scheduling is an effective

way to implement this, and careful clustering of work queues can keep instruction

and data cache contents hot between thread switches. For example by allocating the

data structures for cores 0-3 together and assigning them to the same work queue, the

instructions for running the core simulation will still be in the instruction cache, and

it’s likely that the data structures are still in one of the data cache hierarchies (certainly

they won’t have to be invalidated from another processor, or have been invalidated by
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one).

Chapters 6 and 7 demonstrate how this simulator can be used to perform exper-

iments into detailed micro-architectural issues relating to the scalability of manycore

processors. In Chapter 6 it is used to assess the performance and energy scalability of a

proposed novel manycore architecture, scaled from 32 to 1024 cores, and demonstrate

the effectiveness of using software based coherency techniques to address one of the

many scalability challenges of manycore processors – the associativity of the coher-

ence directory. This chapter also proposes the use of a uni-directional non-blocking

multicast channel to simplify coherency protocols and significantly reduce traffic in-

volved in multicast invalidations, providing two techniques for an engineer to consider

when designing a scalable architecture.

Chapter 7 introduces another three contributions to the engineer’s scalability tool-

box, aimed at reducing the energy consumed by the processor. The first of these ad-

dresses the cascade of atomic write accesses which occur after a contended lock is re-

leased, where all waiting cores see the lock freed simultaneously, and attempt to gain

access through an operation such as atomic exchange. After the first core succeeds, all

other cores will fail, but only after taking turns serially to load the cache line exclu-

sively, modify it, making the cache line dirty, and then upon request from the next core,

write it back to shared cache. This thesis suggests that introducing a comparison check

on atomic exchange instructions – to test if modification took place, or the same value

was written and stored – could remove all of these write-back operations. Although

the coherency messages would still have to take place, a cache line write-back requires

significantly more energy, although the trade-off against the energy of performing the

check on every atomic exchange operation must be confirmed by more detailed power

simulation. Secondly a new instruction is proposed, to address wasted energy per-

formed during the spin-wait phase of many synchronisation events. By putting the core

into a low power state until a monitored cache line is modified, it is possible to remove

over 97% of instructions, and an even greater fraction of the instructions which activate

the L1 d-cache, for synchronisation heavy benchmarks. All applications benefit by a

large margin (on average 53% reduction in instructions executed) – which increases

drastically as the number of cores is increased. This is because synchronisation is one

of the problems which grows as an architecture is scaled, and this new technique has

been shown in Figure 7.4 to effectively remove the associated in-core energy over-

head (although not the communication overhead). The final contribution to scalability

problems is a new sharer encoding scheme. Existing coherency protocols and sharer



214 Chapter 9. Conclusions

encoding schemes often require either a large amount of storage space, broadcasting to

many sharers indiscriminately, sending a large volume of unicast messages, or many

or even all of the above. The new proposed protocol never requires more than one in-

validation to be sent from the directory, by supporting multicast operations directly in

the sharer encoding. The new scheme provides better than state-of-the-art support for

tracking small to medium sharer clusters in large manycore architectures, degrading

gracefully from multicast to broadcast as the sharer pattern becomes less compress-

ible. The proposed encoding is the first to support exact tracking of sharer clusters

from a single core to a medium number of sharers (depending on storage allocation)

at any location in the processor, with a fixed number of encoding bits. For example

64-bits of storage can exactly represent any cluster of 1-32 cores, located anywhere on

the processor, without an invalidation being received outside of this cluster. Because

the encoding performs worse than alternatives which can also be used in the same mul-

ticast environment under certain randomised sharer distributions – like those found in

some highly parallel benchmarks, a hybrid encoding is proposed. When it is detected

that inserting a new sharer degrades the novel CTE representation below that offered

by the CV alternative, the encoding is transitioned and CV is used for this cache line

until it is invalidated. By using this hybrid scheme false invalidations can be reduced

by around 7% across a range of scientific benchmarks.

The final chapter of this thesis addresses the fact that not all engineers want to

design their target MPSoC from scratch, and perform hours of detailed simulations to

evaluate their decisions. The short time-to-market pressure of embedded designs, such

as those for high-demand consumer products, requires a tool to enable designers to

rapidly identify a best candidate design, without the delay of simulation driven design

space exploration. Previous work has identified the potential for machine learning to

guide an engineer towards the best design choice, and Chapter 8 demonstrates that

using the accurate, high speed simulations enabled by the work in Chapter 4, existing

work can be extended to much larger designs than had previously been attempted.

Using the techniques presented an EDA company could provide the upfront simulation

time investment, and develop a tool capable of predicting designs for an engineer, on

average, within the top 3% of the available design space. The engineer need only spend

the time to run two short software simulations.

There are several areas of this thesis which could be expanded with future work.

The addition of hierarchical caching of both data and directory information, and the

associated caching policies and data migration policies present an interesting and com-
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plex space for innovation, and should significantly improve the architecture scalabil-

ity. The platform also presents a platform for algorithmic experimentation and de-

velopment, where existing synchronisation and work-distribution algorithms can be

compared, and further developments investigated. Further work to benchmark the per-

formance against real world architectures will also be valuable once further tuning

has been performed in the synchronisation libraries, as the existing implementations

are known to be sub-optimal. It would be of most interest to either focus on integer

and fixed-point based benchmarks, or to add floating point support to the simulator to

emulate an FPU, recompiling the benchmarks to target this.

The large number of simulated cores provides a good infrastructure for designing

and investigating coherency scalability of novel protocols, but would require enhance-

ments to the core simulation to enable the out-of-order effects that would tax a relaxed

coherency protocol such as TSO. This simulation extension itself would be an area of

work which could put the simulator closer to GEM5 in terms of simulation capability,

although the limited ISA support is a further problem to be addressed.

In summary, this thesis has advanced the state of the art in multiple frontiers impor-

tant to the design of future manycore processors; addressing problems with scalability,

energy consumption, and design effort. It also highlights how important careful design

is to the scalability of both simulators and physical architectures.
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Appendix

A.1 Architecture Scalability

This section provides extra figures for extended architecture scalability analysis from

Chapter 6. While discussion has already been provides for the LU benchmark, the

equivalent figures from the remaining benchmarks are provided here for interest and

further analysis on the part of the reader. Please refer to the equivalent figure captions

in Chapter 6 for more details on each.
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A.2 Machine Learning

This section provides an extended set of figures for all of the machine learning methods

in Chapter 8. Figures are provided for prediction of runtime and switching accuracy, as

scatter-plots of predicted vs actual results, along with prediction quality figures for best

runtime prediction, as a fraction of the performance of the best design and as a measure

of the percentage of the design space which the prediction is better than. These two

figure types relating to the “best prediction” are then provided again for energy-delay

product, and again for energy-area-delay product. This provides the reader with a

better insight into the performance of those methods not discussed in detail in Chapter 8

itself. Please refer to the associated figure captions in the source chapter for details on

each figure type.
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