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Abstract

Consolidating multiple workloads on the same physical machine is an effective measure
for utilizing resources efficiently and reducing costs. The main objective is to execute mul-
tiple demanding workloads using no more than necessary resources while simultaneously
maximizing performance. Conventional work-conserving resource managers are designed
for this purpose. However, without adequate control, the performance of consolidated
workloads may degrade dramatically or become unpredictable because of contention for
shared resources. Hence, resource isolation should be enforced according to a sharing pol-
icy when there is resource contention among workloads, i.e., each workload should obtain
a theoretical share of resources. In reality, it is challenging for state-of-the-art resource
managers to achieve both resource isolation and work conservation simultaneously due to
complex and dynamic workloads.

This thesis proposes adaptive resource allocation to address this sharing problem and
studies CPU management as an example. A novel feedback-based resource manager is
designed to perform adaptive allocation of CPU resources, taking into account each work-
load’s requirements. First, an application-agnostic metric is proposed as the feedback
signal, which can be used to measure the performance change of various applications in
a non-invasive and timely way. Second, two alternative feedback-based algorithms are
designed to search for the optimal resource allocation for each workload. The adaptive
allocation is modelled as a dynamic optimization problem. The algorithms solve this prob-
lem by assessing performance changes in response to a change in resource allocation. The
algorithms are demonstrated to be capable of handling complex and dynamic workloads.
The resource manager proposed in this thesis uses these algorithms to determine the CPU
allocation for multiple tenants. A prototype is implemented with four different sharing
policies. For three common policies, the experimental evaluation confirms that the re-
source manager can achieve resource isolation and work conservation simultaneously, while
the existing best-practice mechanisms cannot. Moreover, the resource manager can sup-
port a novel efficiency policy, which determines CPU sharing based on the overall system
efficiency. In addition, a preliminary study shows that the feedback-based methodology
for CPU management can be extended to control I/O bandwidth.
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Chapter 1

Introduction

1.1 Motivation

The operators of computing facilities, such as cloud service vendors, universities and high
performance computing centres need to continuously improve service as well as reduce costs.
Especially cloud service vendors are driven by a highly competitive business. Workload
consolidation, which combines multiple workloads onto fewer physical servers is an essential
path to utilizing more of the existing resources and to reducing the costs of infrastructure.
A major aim of workload consolidation is to keep resources busy by combining as many
workloads as possible onto a physical server. To better understand the importance of work
consolidation, it is helpful to recall how operating systems on a single machine schedule
tasks. CPU schedulers in operating systems consolidate threads on the machine’s CPU via
time-multiplexing to keep the CPU busy. If a CPU scheduler ensures that processors are
not idle when there are threads ready for execution, it is referred to as a work-conserving
scheduler. Work-conserving scheduling can be generalized to work-conserving CPU sharing,
i.e., not leaving idle CPU resources when the requirements of certain workloads are not
yet met.

Currently, single machines are arranged together into cloud infrastructure to serve a
large number of heterogeneous and dynamic workloads. Consolidating workloads and effec-
tively utilizing existing machines are still indispensable tasks. Despite the large quantity of
resources in the cloud, many of these resources are not utilized all the time. A significant
reason is that computing resources may be reserved for particular workloads but these
resources are not always being utilized. Several previous studies report that the average
server utilization in most data centres is less than 50%, and for Amazon Web Services,
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the utilization is even lower than 20% [5, 7, 17, 48, 63, 69]. Hardware infrastructure is
the largest fraction of total cost of ownership (TCO) for cloud service vendors. A recent
report reveals that increasing utilization by a few percentage points in a large data centre
can lower the TCO significantly [5].

Workload consolidation is not simply putting workloads onto the same machine. If too
many workloads are consolidated together, even though server utilization is improved, ap-
plication performance may degrade dramatically or become unpredictable because of con-
tention for shared resources. Resource managers control how resources are shared among
workloads by defining sharing policies. Each workload has a theoretical share based on the
sharing policy. For instance, with the proportional sharing policy, a workload’s theoretical
share is a fraction of the total CPU resources based on relative weights; with the strict
priority policy, the theoretical share of a high-priority workload is the same as its require-
ment. Here the CPU requirement of a workload refers to the CPU resources required by its
software system to achieve the optimal performance. An effective resource isolation must
meet two conditions: (i) when a workload’s CPU requirement is less than or equal to its
theoretical share determined by the sharing policy, the workload’s requirement must be
met; (ii) when a workload’s requirement is more than its theoretical share, the workload
should be able to consume at least its theoretical share of CPU resources. Thereby, when
multiple workloads require CPU resources in excess of their theoretical shares, and CPU
resources are not sufficient to meet all the requirements, resource managers should ensure
that no workload is degraded because its CPU share is occupied by other workloads. On
the other hand, if a resource manager stays work-conserving while enforcing resource iso-
lation, a workload can consume more CPU resources than its theoretical share when there
are otherwise idle CPU resources.

However, it is challenging for current work-conserving resource managers to enforce
resource isolation. The actual CPU resources each tenant workload can consume depend
on the presence and execution patterns of other co-located workloads [10, 67]. Some
sharing mechanisms limit the maximum CPU resources a workload can utilize. Via non-
overlapping limits, a resource manager can protect workloads from being affected by each
other. Unfortunately, a static limitation mechanism prevents workloads from utilizing idle
resources. In other words, a static limitation mechanism is not work-conserving.

An ideal solution to workload consolidation should be able to effectively restrict CPU
usage when contention occurs, and dynamically adjust the limits according to the actual
requirements of workloads. When resources are insufficient to meet all requirements, re-
source isolation should be enforced using the limits calculated based on the sharing policy.
Meanwhile, when some workloads’ requirements decrease, an ideal solution ought to allow
free resources to be utilized by other workloads that still require more resources.
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It is, nevertheless, difficult to determine the resource requirements of workloads given
their complexity and variety. Current resource managers rely on users such as job sub-
mitters and application operators to configure their resource requirements. The users’
configurations specify the type and quantity of resources needed. Once a configuration
is established, it rarely changes. In practice, users may not be able to accurately specify
resource requirements of their workloads, because real-world workloads are highly complex
and different [63]. Moreover, these real-world workloads are usually dynamic, and thus
a fixed resource configuration is not suitable all the time. Therefore, users are likely to
over-provision their workloads, which can lead to a waste of resources and a low utilization.

In this thesis, CPU resources are allocated to workloads based on real needs of the
workloads instead of user configurations. The proposed resource manager does not reserve
more CPU resources for workloads than their requirements. Idle CPU resources can be
utilized by unsatisfied workloads beyond their theoretical shares and thus work conservation
is achieved. Another goal of this work is to enforce resource isolation according to sharing
policies. If the requirement of each workload is known, an arbitrator can determine the
allocations based on a specific policy. Thereby no workload occupies resources that should
be used by others.

1.2 Contributions

CPU-management mechanisms in the widely used Linux system are investigated in this
thesis through an experimental study. The results show that these mechanisms cannot
simultaneously enforce resource isolation and support work conservation for consolidated
workloads. This thesis presents a feedback-based resource manager to address this sharing
problem. The resource manager automatically detects the CPU requirements of tenant
workloads, thereby dynamically adjusting CPU sharing based on the requirements and
sharing policies. The following specific contributions are made:

• An application-agnostic fine-grained metric is proposed for online feedback measurement.

A feedback-based solution needs to measure changes in application performance con-
sequent to changes in CPU allocation. This thesis proposes an application-agnostic fine-
grained metric named user-level instructions per time (UIPT). UIPT is calculated based
on hardware-level measurements, and not specific to any application. It has a good cor-
relation with various application-level performance metrics. The change in UIPT can be
used to estimate the change in these application-level metrics. The measurement of UIPT
does not require any software integration of applications or modification in the OS kernel.
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In addition, with UIPT, meaningful performance feedback can be measured even within
sub-second intervals, meaning that the adaptive allocation algorithm can adjust CPU al-
locations in a timely way.

• Two feedback-based algorithms are presented to dynamically allocate CPU resources to a
workload adaptive to the workload’s changeable requirement.

The algorithms are based on a simple generic performance model. For a stable workload
with a stable request rate and static characteristics, as CPU allocation increases, the
application performance first increases but levels off or even decreases after a certain point.
Moreover, since real-world workloads are often time-varying, the performance curve may
move over time. Therefore, the allocation problem is modelled as a dynamic optimization
problem. For a stable workload, the algorithms need to search for the best allocation, i.e.,
the workload’s requirement and overcome problematic regions in the performance curve,
e.g., a plateau area. It is also necessary for the algorithms to address dynamics with
different magnitudes and frequencies.

Two algorithms are proposed to solve this dynamic optimization problem. The first
algorithm measures average performance changes at two time-scales, and applies a simple
hill-climbing algorithm at each time-scale. The second algorithm uses a fuzzy control algo-
rithm to search for the best CPU allocation. The experiments with different applications
show that both algorithms can find proper allocations for stable workloads and adapt to
dynamic workload changes.

• A resource manager that supports multiple sharing policies is designed based on adaptive
CPU allocation.

Based on the UIPT metric and the allocation algorithms, this thesis presents the de-
sign and software prototype of a feedback-based resource manager. This resource manager
dynamically allocates CPU resources based on the workloads’ requirements and enforces
resource isolation according to sharing policies. Three sharing policies in reality - propor-
tional sharing, priority, and guarantee - are supported. In all three scenarios, the resource
manager ensures that no tenant workload uses excess CPU resources when competition
happens. Moreover, a novel policy supported only by this resource manager is introduced.
This policy allocates CPU resources to the most efficient application regardless of the ap-
plication type and workload dynamics. The prototype runs entirely outside the kernel and
needs neither kernel nor application modifications.

In addition, the methodology for adaptive CPU allocation is extended to control the
I/O bandwidth limit. UIPT is independent of resource types, and can be used to measure
the performance of I/O-bound workloads. This thesis applies the UIPT-based alloca-
tion algorithms to I/O bandwidth control. The preliminary investigation shows that the
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feedback-based methodology for CPU allocation can be extended to manage other types
of resources if there is an effective static allocation interface like Linux cgroups.

1.3 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 first surveys previous work
relevant to the topic of this thesis, and then investigates existing CPU management mecha-
nisms via an experimental study. The following three chapters show how a feedback-based
resource manager for consolidation of various workloads is built. Chapter 3 introduces the
application-agnostic metric UIPT to measure the application performance online, which
provides the basis for generic adaptive CPU allocation. Chapter 4 proposes two adaptive
CPU allocation algorithms based on UIPT and uses experiments to show their effectiveness.
The basic allocation algorithms are extended to a resource manager that simultaneously
achieves resource isolation and work conservation. Chapter 5 shows how the CPU man-
ager performs with four different sharing policies. In Chapter 6, the same methodology is
applied to I/O bandwidth control. Finally, Chapter 7 summaries this thesis and outlines
potential future research.
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Chapter 2

Related Work and Background

CPU management is an essential feature in resource managers1, yet current resource man-
agers struggle to properly support resource isolation and work conservation simultaneously.
This thesis proposes making use of adaptive CPU allocation to address this problem. Al-
though there have been various research efforts on adaptive resource allocation, most are
either not designed for the problem studied in this thesis or support specific applications
only. This chapter has two primary goals: 1. To survey previous work related to CPU
management and adaptive resource allocation. 2. To investigate the limitations of existing
CPU management systems experimentally.

2.1 Related Work

The thesis focus is on how to enforce resource isolation while making full use of available
resources. This section first surveys how CPU resources are managed in production envi-
ronments, especially how resource isolation is enforced. Next, previous studies on adaptive
CPU allocation based on workload requirements are reviewed.

1In some proposals, the CPU management system is called a CPU scheduler. This thesis uses resource
manager to refer to a CPU management system in general, but when specific work is discussed, the
terminology provided in the work is used.
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2.1.1 CPU Resource Management

This section provides a brief summary of the literature on CPU management to clarify
the positioning of this thesis. The schedulers and resource managers discussed in this
section are deployed in production environments to manage a single machine or a cluster
of machines. Particular focus is given to how these systems share CPU resources among
multiple workloads on each local machine.

CPU Scheduling

The Operating System (OS) is responsible for the resource management on a single com-
puter system. In an operating system, a CPU scheduler allocates CPU resources to work-
loads in the temporal and spatial dimensions. On a uniprocessor machine, a CPU sched-
uler allocates the sole CPU to tasks via time-multiplexing. When multiple CPU cores are
available, a CPU scheduler is also responsible for balancing load on these cores. A general-
purpose CPU scheduler aims to let runnable tasks have fair access to the CPU resources.
Meanwhile, it is also desirable for a CPU scheduler to be work-conserving, i.e., never leave
the CPU idle if there are runnable tasks.

Practical CPU schedulers attempt to approximate an ideal fair scheduling discipline
called Generalized Processor Sharing (GPS) [60]. GPS shares CPU or network resources
in perfect proportion to tasks’ or flows’ weights. Nevertheless, GPS cannot be implemented
in reality. Different categories of algorithms have been developed to approximate GPS, such
as round robin and fair queueing [18, 37, 46]. These fair scheduling algorithms show two
common characteristics. First, each task is given a CPU time slice, after which the task is
scheduled again. Second, if a task does not use up its time slice because of, e.g., waiting
for an I/O operation or being blocked by a synchronization function, unused CPU time
will not be compensated later.

On a multi-core system, a CPU scheduler can run an instance of the GPS-based schedul-
ing algorithm on each core separately to avoid scalability issues. Yet fairly allocating CPU
on a per-core basis does not necessarily result in global fairness, and thus these schedulers
must rely on load balancing to evenly distribute threads over multiple cores [57, 79]. The
global fairness among threads is undermined if load is unbalanced. Threads on a core with
higher load obtain less CPU than those on another core with less load even if they have
the same weight.

A practical example of the approximation algorithm is the Completely Fair Scheduler
(CFS) in the Linux system [57]. CFS employs a work-conserving scheduling algorithm
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which sorts all runnable tasks by their virtual runtime in a red-black tree (called a run-
queue). Here the virtual runtime is the weighted amount of time a task has spent on a
processor. In CFS, the input task priority is converted to a weight to calculate virtual run-
time. The leftmost task in the runqueue has the smallest virtual runtime. Each running
task obtains a CPU time slice. Each time slice is a fraction of the configured scheduling
period, and the fraction is determined by each task’s weight over the total weight of all
tasks in the same runqueue. When a running task’s time slice expires, if another runnable
task becomes the leftmost task, the scheduler picks up this new task and preempts the
current task. If a task yields the CPU before its time slice expires, it can get an advanced
position in the runqueue due to its relatively shorter virtual runtime. However, unused
CPU time will not be compensated.

CFS prevents a task from having a virtual runtime much lower than the virtual runtime
of other tasks waiting to be scheduled. If that were to happen, the task with the low virtual
runtime could run for a long time and starve other tasks. Therefore, when a task is created,
the task starts with a virtual runtime equal to the maximum virtual runtime of the tasks
waiting in the runqueue. When a task wakes up after sleeping, its virtual runtime is
updated to be at least equal to the minimum virtual runtime of all other waiting tasks.
Nevertheless, the CFS design still has a potential fairness issue. CFS tends to favour
programs with a higher number of tasks, because the allocation is based on distributing
the CPU time equally among tasks (threads) in the system instead of among programs.
This issue is demonstrated by another experimental study [74].

On multi-core platforms, CFS is more complex than the basic algorithm. It keeps a local
runqueue for each core due to scalability concerns. In the presence of per-core runqueues,
tasks in each runqueue must be kept balanced for the scheduling algorithm to work properly.
Without load balancing, for example, if two high-priority tasks were occasionally on the
same core while a single low-priority task were on another core, these high-priority tasks
would get less CPU time than the low-priority task. Therefore, CFS periodically runs
a load-balancing algorithm that keeps the queues roughly balanced. Additionally, on a
multi-core platform, while tasks can access all the CPU cores by default, Linux can set
CPU affinity of tasks to restrict the specific cores they can use. CFS checks the CPU
affinity when it places a task into a runqueue.

Besides CPU schedulers, Linux provides an interface that controls allocation and iso-
lation of resources among user-defined groups of tasks [9]. This Linux cgroups (control
groups) system is widely used in resource managers. A cgroup in the Linux cgroups sys-
tem is a set of tasks, and the system defines each cgroup’s access to different resources
through different subsystems. Currently Linux cgroups can manage CPU, main mem-
ory, disk I/O, network, and combinations of these resources. The cgroups system can be
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used to control resources for natively executing processes, containers, and virtual machines
(VMs). The resource configuration of the tasks in a control group can be modified through
parameters in subsystems.

The Linux cgroups system has two subsystems, cpuset and cpu2, to control CPU allo-
cation. The cpuset subsystem assigns individual CPU cores and NUMA memory nodes to
cgroups. The parameter cpus in the cpuset subsystem specifies the physical cores that can
be used by tasks in a cgroup. The core allocation can be non-exclusive or exclusive.

The cpu subsystem provides two different mechanisms, quota and weight to manage the
sharing of CPU time among groups of tasks. The quota mechanism defines the maximum
amount of CPU time that a cgroup can consume during a reference period. The quota
mechanism uses two parameters in the cpu subsystem, cfs quota us and cfs period us, to
define the maximum amount of CPU time and the reference period. Once the tasks in a
cgroup have used up all the time specified by the quota, they are not allowed to run during
the remainder of the period. When the quota is larger than the period, the tasks can use
multiple cores. For example, when cpu.cfs quota us is 200,000 and cpu.cfs period us is
100,000, tasks in this cgroup can utilize CPU time equivalent to two full cores during each
period. The quota mechanism limits the CPU usage of a workload strictly even though
there are idle CPU resources. Hence this mechanism is not work-conserving.

The weight mechanism allocates CPU time to each cgroup proportional to their relative
weights. An integer parameter, shares, specifies the relative share of CPU time available
to a cgroup. For example, tasks in a cgroup that has cpu.shares set to 2048 can receive
twice as much CPU time as tasks in a cgroup whose cpu.shares is set to 1024. When the
tasks are in a cgroup under both cpu and cpuset subsystems, the relative share of CPU
time applies to cores which are specified in the cpuset. Otherwise, this parameter applies
to all cores in the system. The weight mechanism determines the share of each workload.
Yet this mechanism is work-conserving. A workload can use more CPU resources than its
share when there are otherwise idle CPU resources.

Theoretically, weighted fair scheduling is designed to support resource isolation and
work conservation simultaneously. However, real-world OS schedulers have non-trivial
overhead in practice, especially when taking into account fairness and effectiveness across
multiple cores. Discretization (time-slice-based scheduling) is used to limit the computa-
tional overhead. Linux CFS implements weighted fair scheduling in principle, but practical
experiments (c.f. Section 2.2.2) show the issues of this scheduler with respect to propor-
tional sharing, which are potentially caused by the cumulative effect of discretization errors.

2This thesis uses terminology from cgroups version 1, but the same mechanisms are still used in cgroups
version 2.
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Another popular OS scheduler, FreeBSD’s ULE scheduler [65] does not implement weighted
fair scheduling at all.

In contrast, an upper bound on resource usage is relatively easy to implement. The
quota mechanism introduced above is the implementation of usage limit in the Linux kernel.
FreeBSD has a similar mechanism for resource usage limit [64]. This study is based on
the effective usage limit. This thesis does not attempt to improve the inherent capabilities
of a multi-core scheduler, but explores techniques to attain desirable resource allocation
properties while accepting the limitations of real-world schedulers.

Cluster Management

For large-scale distributed computing, resource managers are designed to manage a cluster
that consists of a large number of compute nodes (physical machines). The workloads run-
ning on a cluster vary from long-running computations over days to many short tasks taking
minutes or seconds. Technologies, such as batch jobs, virtual machines, and containers are
used for these workloads to share physical resources. Generally speaking, resource man-
agers have a component that schedules tasks based on configurations and selects specific
compute nodes for the tasks. After a task is launched on a compute node, another com-
ponent deployed on each node performs local scheduling and enforces resource isolation.
There have been quite a few studies on the scheduling and node assignment at the cluster
level. Batch job schedulers calculate an overall priority for each job based on different
policies, and then execute jobs in the priority order to fulfill cluster-wide goals such as fair-
ness and utilization [27, 35, 77]. Resource managers in VM or container environments first
filter out ineligible compute nodes based on conditions in requests describing resources and
policies, and then rank nodes that survived filtering by calculating node scores according to
certain global goals [26, 54, 72]. Cluster-level resource management is beyond the scope of
this thesis. The focus of this thesis is on the local resource management, particularly how
to share CPU resources in a work-conserving manner while enforcing resource isolation.

Next this section introduces how the local resource management is done in cluster
resource managers. To start with, a batch job scheduler harnesses massive computing
infrastructure to process various types of jobs. The resources each job requires are specified
by a user request. A job scheduler assigns each job to a node with sufficient available
resources. Resource usage limits are defined to constrain the amount of different resources
a given job can consume. These limits are generally proportional to the resources requested.
Each job scheduler has a component to track the resource usage of jobs on each node. When
a resource usage limit is violated, a pre-defined action is taken. The pre-defined actions
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include suspending, cancelling or requeueing the job [35]. Some job schedulers kill the job
immediately [27, 77].

Virtualization technologies are commonly used to host emulated servers on a large
cluster of physical machines. Each VM specifies a bundle of resources requested by a
user. OpenStack is a widely-used open source orchestration system for VMs [55]. Its
compute scheduler Nova is responsible for managing CPU resources [54]. Theoretically, a
virtual CPU core in a VM corresponds to a physical core, but CPU resources are usually
overcommitted to achieve a higher utilization. CPU scheduling and resource isolation on
each physical node depend on the local operating system or hypervisor. Technologies in
an operating system like Linux CFS and cgroups are discussed above. A hypervisor (also
named virtual machine monitor) is responsible for creating and running VMs. Hypervisors
use technologies similar to those in operating systems. For example, the default credit
scheduler in the open source Xen hypervisor allocates CPU time slices to virtual CPUs,
assigns relative weights to different VMs, and sets up usage “caps” of VMs [10]. Another
example of VM technology is libvirt, which is a toolkit supporting multiple hypervisors to
manage VMs [29]. The libvirt API employs Linux cgroups or a similar limiting mechanism
on other operating systems to isolate resources.

Containers are another type of widely used virtualization technology. The container is
based on OS kernel features, and provides an OS-level isolated virtual environment without
hardware emulation. Some container technologies such as the Docker platform [19] and
Linux containers (LXC) [11] are designed to execute long-running applications. Based
on Docker, the open source Kubernetes system [26] automates application deployment
and scaling. Kubernetes uses Linux cgroups for resource isolation on each host. With
Kubernetes, users can configure three quality of service (QoS) classes for applications.
These QoS classes are actually three priority levels, which are defined by resource “requests”
and “limits” in the Kubernetes configuration. These priorities are implemented via the
weighted time-based allocation mechanism in the cpu subsystem of Linux cgroups.

Google presents a commercial cluster scheduler named Borg for container management
in [72]. Borg is a logically centralized controller. Tasks are assigned different priorities,
and tasks with higher priorities can preempt those with lower priorities. Borg has its own
implementation of application containers [49]. An agent process runs on each machine
to execute tasks in containers. This kind of container is based on Linux cgroups. The
Borg paper reports two interesting facts. First, Linux CFS requires substantial tuning to
support both latency-sensitive workloads and server consolidation. Second, the weight is
insufficient to emulate multiple priority levels in practice. This paper mentions that Borg
has a mechanism that dynamically adjusts the resource limits of latency-sensitive tasks to
avoid the starvation of batch tasks, but no details are given about how this mechanism is
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implemented.

Specialized resource managers are designed for containers in big data systems. Big data
workloads need a large number of short computations taking seconds or minutes to process
enormous quantities of data. Big data systems, which are distributed systems, run these
short tasks in containers. Mesos [31] and YARN [70] are two popular open source resource
managers of this kind. Mesos slaves on each node run tasks in containers, and monitor the
execution and resource usage. Mesos slaves employ Linux cgroups or POSIX rlimits [64]
as resource isolators to limit CPU usage of tasks. YARN has a similar component named
NodeManager. When tasks are running in containers on nodes, the NodeManager employs
the quota mechanism in Linux cgroups to limit CPU usage of each container. The quota
value is calculated based on the ratio of the virtual cores of the container and the available
physical cores on the machine.

To sum up, the design of cluster resource managers in practice has tended to focus
on node selection rather than local resource isolation on each node. CPU resources are
managed using weighted time-based allocation to support proportional sharing and priority.
The underlying OS schedulers and time-based allocation mechanisms are usually work-
conserving, but resource usage limits are necessary to enforce resource isolation [67]. The
resource usage limits depend on resource requirements configured by users. However, users
do not necessarily understand the resource requirements of complex applications and the
variations of their workloads.

2.1.2 Adaptive Resource Allocation

This thesis studies CPU management among multiple tenants based on dynamically allo-
cating CPU resources to tenants according to their requirements. In reality, the resource
requirements of most tenant applications do change over time. Static usage constraints are
not feasible all the time and may result in underutilized resources. There have been multi-
ple previous attempts to dynamically adjust resource allocations to match the time-varying
requirements of workloads. This section discusses common methods and typical papers on
adaptive CPU allocation in the literature. Most of these studies aim to achieve the target
performance of primary applications in the form of service level objectives (SLOs) or QoS
guarantees, while leaving as many resources as possible to other secondary applications.
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Prediction-based Approaches

Predictive modelling has been used in the context of adaptive resource allocation. For in-
stance, some proposals train a performance model to predict the application performance
with a given workload when resource allocation varies [43, 76]. With such a model, resource
managers can determine resource allocation based on the target performance of applica-
tions. This kind of approach usually does not monitor application performance during
runtime.

SmartSLA [76] employs adaptive resource allocation to minimize the total SLA (service
level agreements) penalty costs. This work applies mature regression techniques to train a
system model for predicting the performance of database systems with different resource
allocations. The method requires preparatory experiments with different configurations
and offline training. Different workloads may have different models even though the mod-
elling process is the same. With the models, a decision module determines the necessary
allocations and solves resource conflicts between tenants based on predicted SLA penalty
costs.

Predictive system models can be constructed based on historical system logs and statis-
tics. An automatic job provisioning system called AROMA has been developed for Hadoop
in this way [43]. In the offline phase, AROMA analyzes Hadoop log files and resource uti-
lization data and classifies past jobs into different groups. Jobs in the same group exhibit
similar resource utilization patterns. Next AROMA applies the support vector machine
(SVM) technique [68] to learn the performance model for each group of jobs. The model
estimates the completion time of jobs with different input data sizes, resource allocations
and configuration parameters. In the online phase, AROMA first measures the resource
utilization signature of a newly submitted job by running it in a staging cluster of small
VMs with default configuration parameters. AROMA matches the signature with known
utilization patterns and finds the best fit model to use. Based on the model, AROMA cal-
culates the number and type of VMs to be allocated, and chooses appropriate configuration
parameters to meet the completion deadline of a job at the minimum cost.

These systems based on performance models perform well in their respective particular
experiments. However, the models are specific to a particular application or workload,
such as a query set or a Hadoop job. Moreover, the training process of these models tends
to take a long time before a sufficiently accurate model is learned. Several attempts have
been made to reduce the modelling cost, but the model accuracy is traded off.

A resource manager, Quasar [17], first profiles workloads on a few servers for a short
period of time and then uses fast classification techniques to estimate the influence of

13



resource allocation and server assignment on performance. The result of classification is a
prediction of application performance with different resource allocations, server types and
the interference from other workloads. Based on such a performance model, Quasar makes
allocation decisions to meet the performance constraints provided by users. This system
still needs to adjust classifications to fit different workload types. Quasar not only uses the
performance predictions, but also monitors actual performance to detect prediction errors
and workload changes. When its monitoring detects performance deviations from the given
constraints, Quasar does a reclassification and adjusts resource allocation and assignment.

Ernest is another study of low-overhead performance prediction [71]. The goal of this
work is to determine the number and type of machines for large-scale analytical workloads
based on performance predictions. Quasar profiles workloads using the first few tasks, while
Ernest runs the entire job on small sample datasets and uses the training data to create
a performance model. According to the paper, the prediction accuracy is not sufficient to
enforce strict SLOs.

As an alternative to training performance models, time-series-based approaches use
historical data to build black-box models to forecast resource requirements of applications.
CloudScale [66] employs resource-usage time series to predict the resources required to
enforce SLO conformance. In CloudScale, historical traces and online usage measurements
are fed into the online prediction scheme developed in [25]. Signal processing techniques
are used to extract the signature of current usage measurements. If the signature matches
any signature of repeating patterns, the predication is performed based on that pattern.
For workloads without repeating patterns, this system uses a discrete-time Markov chain
with a finite number of states to predict the resource usage in the short term. CloudScale
avoids under-estimation errors by adding a small extra value to the predicted resource
requirement, and adjusts this padding value based on application-level SLO feedback.
Thereby, this system requires each tenant’s SLO as input and monitors application-level
performance to detect SLO violations. When there are scaling conflicts between tenants,
CloudScale uses virtual machine migration to solve them.

A time-series model can be adjusted recursively based on online measurements. How-
ever, to make accurate predictions for a short time scale, time-series-based approaches
usually require that specific patterns are present in the historical data at that time scale,
which may not be the case. The lack of such patterns impacts the accuracy or even basic
effectiveness of this kind of approach.

In summary, the creation of performance models and time-series models is based on
concrete historical data. Thereby one models is usually specific to one application, and even
when the workload is different, a specific model is required[17, 43, 71, 76]. The training
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process requires considerable extra online or offline efforts, especially for an accurate model.
Otherwise, the prediction accuracy may be unacceptable for applications with strict SLO
constraints. Runtime monitoring may be needed for model updates or feedback-based error
correction.

Feedback-based Approaches

In contrast to prediction-based approaches, feedback-based resource allocation measures
the system performance online and adjusts the allocation based on the performance mea-
surements. A feedback-based allocation system has three important aspects: the perfor-
mance metrics to monitor, the decision mechanism, and the action to change resource
allocations. For CPU resource management, the action is changing the CPU allocation.
The decision mechanism still requires a model that describes the relationship between per-
formance and CPU resource allocation. Nevertheless, the model is usually not built using
machine learning techniques.

Control theory has been used in the literature to regulate resource allocation to meet
the target performance of applications. Padala et al. propose such a control system that
automatically adapts to dynamic workload changes to achieve application SLOs [58]. The
relationship between application performance and resource allocation cannot be repre-
sented by a simple linear model since application behaviours are non-linear and workload-
dependent. In the paper, it is assumed that the application in the neighbourhood of an
operating point can be approximated by a linear model. For every control interval, an
online model estimator re-computes a linear model that approximates the quantitative re-
lationship between resource allocations and normalized application performance using the
auto-regressive-moving-average (ARMA) filter. With the model, an optimizer determines
the resources allocated to an application by minimizing a cost function which includes both
the performance cost and control cost. Performance cost refers to a penalty for the devia-
tion of the measured application performance from the SLO. Control cost is higher when
the controller makes a larger change in the resource allocation in an interval. Moreover,
this system has a NodeController that allocates resources among applications based on the
resource request made by each optimizer. When the available resources are insufficient, this
NodeController picks an allocation that locally minimizes the error between the resulting
normalized application performance and its target value.

Kalyvianaki et al. design controllers to provision a multi-tier web application with
CPU resources to adequately serve incoming requests from a varying number of clients
[36]. The application is first run offline with the total CPU capacity to derive a model that
describes the relationship between the CPU utilization and the allocation that maintains
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the target performance. In this model, the allocation is the mean utilization augmented
by an additional extra value. When the model is ready, the Kalman filter technique is
used to design three feedback controllers to adjust CPU allocation based on the mea-
sured utilization. A basic Single-Input-Single-Output (SISO) controller is designed for a
single component in the application. The basic controller is extended to a Multiple-Input-
Multiple-Output (MIMO) controller that allocates CPU resources between components.
With this controller, the allocation for each component is adjusted based on the error
of the current component plus the errors caused by other components. Only stationary
process and measurement noises are considered in the two controllers. The third MIMO
controller is designed to adapt resource allocation to unpredictable time-varying workloads
by considering non-stationary noise. Utilization is easily measured at the server side with
negligible overhead and widely applicable across applications. This work does not inves-
tigate the relationship between utilization and application performance, but uses a linear
model between allocation and utilization.

A self-aware programming framework named SEEC is proposed in [34]. SEEC em-
ploys an adaptive control system and can be applied to resource management. The SEEC
framework clearly defines three phases: observation, decision, and action. In the observa-
tion phase, applications need to define their performance metrics to monitor as ‘heartbeats’
and express their performance goals in terms of their heartbeats [33]. Applications need to
be modified to support the heartbeat measurement. In the action phase, system program-
mers can define a set of actions with benefits and costs through a SEEC API. The action
for each control interval is determined by the decision mechanism. Changing the CPU
allocation can be a type of action. The decision phase has three adaptation levels. Level
0 controls the action applied to the application to reduce the error between the heartbeat
goal and the observed heartbeat via a basic classical controller. Level 1 extends the basic
control system with an adaptive control system which estimates the application workload
online. Level 2 models system behaviours and fixes any errors about the input benefits
and costs of actions. The three different controllers have multiple parameters. It is not
clear whether these parameters depend on the type of target application.

Fuzzy control shows a strong capability of incorporating domain knowledge to deal with
the inherent nonlinearities of computing systems [30]. For instance, a resource management
framework based on feedback fuzzy control, FC2Q is presented in [2]. The purpose of FC2Q
is allocating the minimum CPU resources to applications running on a physical server
without violating their SLOs. Therefore, this system monitors application performance
and compares the measurements with user-specified SLOs. FC2Q does not use a model of
system behaviours, but bases the fuzzy controller on a general relationship between CPU
utilization and application performance. The rules about when and how to change the
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Table 2.1: FC2Q Control Rules

full utilization high utilization low utilization
SLO violated large increase small increase no change
SLO met (far) small increase small decrease large decrease

SLO met (near) small increase no change small decrease

CPU allocation in the fuzzy controller are shown in Table 2.1. In the implementation, the
CPU allocation is changed by updating the cap value in the Xen credit scheduler. However,
FC2Q does not find a practical way to measure application performance at the server side.
In its evaluation, FC2Q gathers performance measurements from a specific application by
interacting with the workload driver used to generate its workload.

Lo et al. present a dynamic control system named Heracles using intuitive rules rather
than the control theory [51]. This system ensures that latency-critical (LC) tasks meet
their SLOs and maximizes the resources allocated to best-effort (BE) tasks. Heracles
dynamically adjusts resource allocation based on the difference between the measured
latency and the SLO latency (called latency slack). Similar to the FC2Q system discussed
above, a SLO latency is needed as the reference input in Heracles. The system is organized
as three subcontrollers (cores & memory, power, and network traffic) coordinated by a
top-level controller. The top-level controller disables and enables BE tasks based on the
latency slack of the LC workload, and instructs subcontractors to change the resources
allocated to BE tasks. Heracles uses a single subcontroller to manage CPU and memory.
The first constraint for the subcontroller is to avoid memory bandwidth saturation. When
the top-level controller signals more resources for the BE workload and there is no DRAM
bandwidth saturation, the subcontroller uses gradient descent to find the maximum number
of cores that can be allocated to BE tasks. Every time the subcontroller increases the CPU
allocation to the BE workload, it checks DRAM bandwidth saturation and SLO violations
for the LC workload. The cpuset subsystem of Linux cgroups is used in Heracles to enforce
CPU allocation. The controller measures the actual task latencies from the client side.
Heracles is not a general-purpose resource manager. It is designed for this specific scenario
for tasks with short latencies and certain best-effort workloads.

Arachne is another system based on intuitive rules [62]. It is a core-aware user-level
thread management system and contains a feedback-based core arbiter to allocate CPU
cores among applications. The core arbiter uses the cpuset system of Linux cgroups to
allocate specific cores to specific applications. The core arbiter adjusts the core allocations
as application requirements change. The advantage of Arachne is that its core arbiter
determines CPU allocation based on two application-agnostic metrics. The system requests
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one more core for an application when the average load factor across all cores allocated
to that application reaches a threshold. Here the load factor is the average number of
runnable user threads on a core. When the CPU utilization is less than the allocation
by some extent, the system reduces an application’s requested number of cores by one.
Utilization is not used for scaling up because the best utilization for scaling up depends on
the burstiness and overall volume of the workload. The core arbiter collects requests from
each application about how many cores it needs and uses a simple priority mechanism to
divide the available cores among competing applications.

Besides CPU allocation, resource managers can vary CPU states to pursue power ef-
ficiency. A feedback-based algorithm, POLARIS, is designed to control CPU frequency
scaling for transactional database systems in [41]. Each workload known to POLARIS
is associated with a latency target. The objective of this algorithm is to minimize CPU
power consumption while ensuring that each transaction is completed within the latency
target. POLARIS estimates the queueing time and execution time of a transaction at a
certain CPU frequency, and then adjusts the CPU frequency correspondingly. POLARIS
tracks the 95th percentile of measured execution times over a sliding window of the most
recent transactions that run at a given frequency. The tracked value is used as the esti-
mated execution time at this frequency. The measurement of transaction latency needs
modification in the database systems. The methodology in this thesis can also be used for
power management, yet this direction is not explored in this thesis.

In summary, most existing feedback-based systems for multi-tenancy resource alloca-
tion require some level of integration with the target system. Some proposals rely on
application- or workload-specific performance modelling in their control system [36, 58].
Some systems require modifications in applications to measure application performance as
feedback [34, 41, 58]. Because it is difficult to measure application performance at the
server side, some papers escape this problem by measuring application performance at
the client side [2, 51]. Thereby, application-agnostic metrics such as CPU utilization are
considered [62].

The CPU resource manager in this thesis uses an application- and workload-agnostic
metric to measure application performance, and does not require explicit performance
objectives for each application. It does not require offline training, but performs online
measurements and feedback control to allocate resources with substantially less complexity
than the systems described above.
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2.2 Background

This section presents two experimental studies that investigate how existing CPU shar-
ing mechanisms perform. These studies provide the background for the work on CPU
management in this thesis. First, when multiple CPU cores are available, CPU resources
can be allocated to a workload in two different ways, which are referred to as partitioning
and time-based allocation in this thesis. The first study explores the impact of the two
approaches on application performance. Second, a CPU sharing mechanism determines
a theoretical share of CPU resources that each workload can consume. When workloads
compete with each other for CPU resources, an effective CPU sharing mechanism should
guarantee that each workload can obtain its theoretical share of CPU resources. The sec-
ond study investigates whether existing CPU sharing mechanisms can enforce such resource
isolation.

As introduced in Section 2.1, many current resource managers choose Linux cgroups
for resource sharing [26, 31, 51, 62, 70, 72], while some other systems like Xen [10] use
mechanisms similar to Linux cgroups. Therefore this section analyzes the performance of
Linux cgroups as a typical case.

2.2.1 Partitioning and Time-based Allocation

This section compares the two different ways to allocate CPU cores. In this thesis, the term
time-based allocation is used to refer to the traditional way of sharing CPU cores among
multiple threads using time multiplexing. Time-based allocation considers CPU resources
as time slices, but does not restrict threads to specific cores. For a single-core CPU, this
is the only option to build a multiprocessing system at all. However, modern servers have
many cores at their disposal, which opens a new direction for CPU provisioning. The
availability of multiple cores allows partitioning the set of cores rather than sharing all
the cores. This alternative option is referred to as partitioning in this work. Partitioning
exclusively allocates certain cores to different groups of threads.

When multiple cores are available, CPU resources should not simply be considered as
time slices. For complex parallel software systems, e.g., database systems, the number of
cores determines the number of threads running simultaneously. Too many threads from
the same system running at the same time may increase contention in the software system.
Since a time-based allocation mechanism does not restrict which CPU cores can be used
simultaneously by an application, the maximum parallelism (i.e., the number of threads
running simultaneously on multiple cores) of an application is not restricted. Partitioning
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limits the number of cores available to each application, thus largely avoiding the drawbacks
associated with the excessive parallelism.

As introduced in Section 2.1, the cpuset and cpu subsystems of Linux cgroups are used
in practice for partitioning and time-based allocation respectively. The cpuset subsystem
specifies the physical cores allocated to a cgroup. This work uses only exclusive allocation
in the cpuset subsystem to implement partitioning. The cpu subsystem provides two
time-based allocation mechanisms (quota and weight). The quota mechanism limits the
maximum amount of CPU time that a cgroup can consume during a reference period. The
weight mechanism determines the fraction of CPU time each cgroup can obtain based on
relative weights of the cgroups. The two subsystems of Linux cgroups are used to conduct
a series of experiments to verify drawback of excessive parallelism.

The testbed machine has 4 AMD Opteron processors (4x16 cores) and 512 GB mem-
ory. The operating system is Ubuntu Server 16.04 with Linux kernel 4.4.0-137-generic.
Applications use memory interleaved across NUMA nodes on the sockets. Thus the mem-
ory interference is balanced for workloads. In the following experiments in this section,
each case is executed 20 times. Only the average results are shown in figures because the
coefficients of variation for the result sets are all less than 0.04.

The first experiment uses a representative transactional database workload with the
MariaDB system [23] and transactions from the TPC-E benchmark [12]. The total size of
the database is about 8 GB. To reduce the impact of disk I/O, the buffer pool size is set to
16 GB and the innodb log file size is increased to 4 GB. The benchmark program has 50
client threads, and each thread submits a new transaction after the previous transaction
is completed. In the database experiments, the database server can use up to 32 cores
exclusively. Another 16 cores on the same machine are used for clients to generate requests.
Clients connect to the database server via the local network interface.

The stable TPC-E workload is repeated with core partitioning and the quota mechanism
to facilitate a comparison. With partitioning, the numbers of physical cores is varied from
1 to 32. Figure 2.1 shows the performance curve of this workload. Increasing the number
of CPU cores initially increases the throughput of the database system. However, if too
many cores are used, the throughput does not increase anymore but slightly declines. The
number of CPU cores determines the number of threads running simultaneously. When the
number of cores is greater than the ideal level of parallelism (18 in this case), contention can
make a parallel system less efficient, because CPU cycles are spent on solving contention
among threads without corresponding work progress. Therefore, CPU cycles are wasted
while the application performance does not improve.

When CPU allocation is changed via the quota mechanism, the database server can
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Figure 2.1: Performance Difference of TPC-E Workload with Partitioning and Quota

access all 32 physical cores. The quota time is varied, equivalent to 1 to 32 effective cores.
For simplicity, “N effective cores” is used to represent the CPU time which is equivalent
to N CPU cores during a period of time in this thesis. As Figure 2.1 indicates, the system
performance is quite different. With the same number of cores, the performance with the
quota mechanism is worse than that with partitioning in most cases. With the quota
mechanism, the potential system parallelism is 32, and the performance of a saturated
system increases with the quota time. The best throughput with the quota mechanism
is achieved when all the CPU time is allocated to this workload. Yet 32 is not the ideal
level of parallelism for this database workload, so even the best result with a quota of 32
effective cores is worse than the result with a partitioning of 18 physical cores.

Additional metrics about the TPC-E database workload are measured to analyze the
parallelism issue. Figure 2.2 shows the overall performance of this workload, measured
as transaction throughput, in comparison to the number of CPU cycles that are spent
processing the workload. As the number of cores increases via partitioning, the number of
CPU cycles keeps increasing linearly, independently of the stalled and declining transaction
throughput. This result demonstrates that CPU cycles are wasted when parallelism exceeds
the ideal level. An efficiency loss of this kind can be an issue for time-based allocation
mechanisms. When running across a large number of cores, an application may execute
with excessive parallelism.
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Figure 2.2: Cycle Usage with TPC-E Workload

A significant fraction of the inefficiency is caused by resource arbitration and contended
synchronization primitives. For instance, multiple threads can use a spin lock or a blocking
lock for synchronization. With a spin lock, a thread spins on looping memory reads, and
continuously utilizes CPU resources. Similarly, the primitives in lock-free programming are
usually performed in a loop to make repeated attempts, and thus the CPU is kept busy.
The MariaDB server used in the experiments above uses spin locks for synchronization and
atomic operations in its b-tree search and log writing functions. Contemporary processors
use atomic machine instructions to facilitate synchronization. For example, this kind of
atomic instruction is characterized by the LOCK prefix on AMD/Intel processors. Using
hardware performance monitoring units, it is possible to count both the number of atomic
instructions retired, as well as the CPU cycles spent on these instructions. The correspond-
ing measurements during the experiment presented above are also collected. The results
are shown in Figure 2.3. Similar to the previous observation, the growth of the number
of atomic instructions gradually slows down with increasing parallelism, while the number
of cycles spent on atomic instructions increases linearly with the number of cores. When
more than 20 cores are allocated to the database server, for each core added, about 20% -
50% of the increased cycles are spent on atomic instructions.
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Figure 2.3: Atomic Instruction Overhead with TPC-E Workload

A similar experiment is conducted with an in-memory key-value store Memcached [52]
to confirm the impact of parallelism. The Memcached server starts with 24 threads and
50 GB memory, and 24 CPU cores are used by this server exclusively. A load generator
Mutilate [53] is used to recreate the Facebook ”ETC” request stream from [4]. Two different
workloads are generated by varying the number of records and the ratio of updates. A
normal caching workload has 1,000,000 records and only 10% of the operations are updates.
In contrast, another synthetic workload has 500,000 records and 50% of the operations are
updates. The conflicts among operations are increased on purpose to study the impact of
parallelism.

Figure 2.4(a) shows the queries per second (QPS) of the normal caching workload with
core partitioning and the quota mechanism. Because parallelism has negligible impact
on this read-heavy workload, the throughput keeps increasing with more CPU resources
regardless of the allocation method. In contrast, Figure 2.4(b) shows that for the write-
heavy workload, core partitioning and the quota mechanism result in different performance
even with the same number of cores. When core partitioning is used, the throughput of
the server first increases with the number of physical cores and then becomes steady.

The throughput results in Figure 2.4(b) indicate that the excessive parallelism impact
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(a) Throughput of Typical Memcached Workload
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Figure 2.4: Memcached Performance with Quota and Partitioning
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Figure 2.5: CPU Utilization with Write-heavy Memcached Workload

the efficiency of the Memcached server when there is contention among threads in the
write-heavy workload. The Memcached server does not use as many atomic operations
as MariaDB, but it uses blocking locks for synchronization. The blocking synchroniza-
tion prevents the Memcached server from fully utilizing CPU cores and improving the
throughput.

With a blocking lock, a thread releases its CPU, puts itself in a waiting queue and
blocks. Hence serious thread contention reduces CPU usage. Figure 2.5 shows the CPU
usage of the write-heavy Memcached workload with a varying number of physical cores.
The number of allocated cores is plotted in this figure as a baseline. With fewer than
12 cores, the Memcached server is very efficient and almost fully utilizes all the allocated
cores. However, the CPU usage of this workload does not increase linearly. The difference
between the utilized CPU resources and the available CPU resources becomes larger when
the parallelism increases. Threads in the Memcached server yield more CPU resources as
the thread contention intensifies.

Moreover, blocking locks also result in extra costs of CPU resources. Based on the
profiling result of the write-heavy workload, the functions for blocking synchronization in
Memcached consume a higher ratio of cycles when more physical cores are allocated via par-
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Figure 2.6: Estimated Cycles in a Linux Spin Lock Function
with Write-heavy Memcached Workload

titioning. A typical example is a kernel function named native queued spin lock slowpath,
which is used for a blocking lock called futex in Linux. While with a single core, this
function uses less than 2% CPU cycles, with 24 cores, it uses more than 15% of cycles
and becomes the function using the most cycles. The percentage of cycle samples spent
in each function is measured by the OProfile tool [56]. Figure 2.6 presents the estimated
cycles used by this function with different number of cores calculated from the measured
total cycles multiplying the profiled percentage. It can be observed that with an increasing
number of cores, the number of cycles used by this function increases in a super-linear
manner.

In the last experiment, the difference between the weight mechanism and partitioning
is investigated. The weight mechanism is also a time-based allocation mechanism. This
experiment confirms that the parallelism issue does not only exist in the quota mechanism.
The weight mechanism is designed to share CPU resources among multiple workloads
instead of limiting the usage of a single workload, so two identical TPC-E workloads are
used in this experiment. The total number of cores is the same for the two sharing methods.
With partitioning, each workload can obtain only half of the cores for database servers.
With the weight mechanism, each workload can access all cores but the workloads compete
with each other equally. The CFS scheduler schedules threads to cores. This experiment

26



is repeated with a total of 32, 16 and 8 server cores respectively.

Figure 2.7 presents the average throughput of the two identical workloads with parti-
tioning and the weight mechanism respectively. With either mechanism, both workloads
consume about half of the CPU resources and achieve similar performance. However,
the figure clearly shows that partitioning delivers better application performance than the
weight mechanism. The performance improvement with partitioning is 45% for 32 cores,
18% for 16 cores, and 9% for the 8-core case. This symmetric experiment illustrates the
impact of parallelism on application performance when time-based allocation is used for
CPU sharing.
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Figure 2.7: DBMS Performance with Weight vs. Partitioning

2.2.2 Resource Isolation

This section examines whether the two time-based allocation mechanisms enforce resource
isolation in typical proportional sharing scenarios. The weight mechanism in Linux cgroups
is designed for proportional sharing. In a real-world resource manager, this mechanism is
also used to emulate multiple priority levels [26]. The quota mechanism is designed to
address the isolation problem of the weight mechanism [67]. The quota mechanism can
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also support proportional sharing. Given the total number of CPU cores, the quota of each
cgroup can be calculated based on their weights. For example, with a total of 16 cores and
a 3:1 weight ratio, if the quota for one workload is equivalent to 12 cores, then a minimum
of 4 cores would be available for the other workload.

This experimental study chooses two different multi-threaded programs. First, a multi-
threaded program named cpuhog is developed to represent CPU-intensive workloads. This
program keeps CPUs busy doing computations. The second program is the MariaDB
database server and the TPC-E workload in the previous study is used. To establish the
experiment conditions, the workloads are tuned to require more CPU resources than the
quantity allocated to them, thereby creating CPU resource contention between workloads.
A total of 16 physical cores are used by the workloads. The cpuhog program uses the same
number of threads as cores. The database server has a fixed number of 50 threads to handle
requests. The database client uses other separate cores. When the cpuhog program runs
in isolation with 16 cores, it fully utilizes all the cores. When the transactional database
workload is executed in isolation with 16 cores, its CPU usage is 13.48 cores by average.

In the experiments, the time for each run is 180 seconds. CPU usage of each workload is
measured using the Linux perf event interface [73]. The measured CPU time is converted
into a number of CPU cores in the results. Every result shown in this section is based on
20 samples, and the coefficient of variation of samples is less than 0.05 if not specified.

In the first experiment, 16 cores are shared by two identical cpuhog workloads. Different
weight ratios are assigned to the two workloads. The CPU usage results of the cpuhog
workload with the lower weight are shown in Figure 2.8. The weight ratios are also shown
in the figure. In addition, the theoretical CPU allocation to the lower-weight workload
is depicted as the ideal baseline. What can be clearly seen from this figure is that the
quota mechanism can effectively enforce resource isolation. With the weight mechanism,
the CPU usage of the two cpuhog workload basically matches their theoretical allocation,
but there are aberrations from the ideal values in certain cases.

In the second experiment, two identical TPC-E database workloads are executed si-
multaneously with 16 cores. Figure 2.9 shows the CPU usage results of the lower-weight
database workload with different weight ratios. With the weight mechanism, the lower-
weight database workload uses more CPU resources than the amount it should obtain ex-
cept in the equal weight scenario. Hence, the share of CPU resources for the higher-weight
workload cannot be guaranteed even when the same workloads are running simultaneously.
Such a result is due to how the underlying Linux scheduler manages CPU time. The Linux
CFS scheduler allocates time slices to each thread based on their weights. Threads in the
database server may yield the CPU before using up a time slice. Their unused CPU time
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Figure 2.8: CPU Usage of the CPUhog Workload with the Lower Weight

is not carried over to the next time slice (see Section 2.1.1). The two database workloads
in this experiment yield CPU resources to each other. With Linux CFS, the higher-weight
workload has more threads running while the lower-weight workload has more threads
waiting. Therefore, the lower-weight workload obtains extra time compared to its theoret-
ical allocation. As an exception, when the two database workloads have the same weight,
their CPU usage is similar. Neither of the workloads uses up to 8 cores. The TPC-E work-
load cannot fully utilize 8 cores due to serious thread contention. Similar to the previous
experiment, the quota mechanism restricts the CPU usage of the lower-weight workload,
and thus guarantees that the higher-weight workload can obtain its theoretical share.

A combination of two different workloads is tested in the third experiment. Specifi-
cally, the database workload and the cpuhog workload are executed at the same time with
different weight ratios. This experiment chooses an extreme weight ratio of 2:10240, which
is used in the container management system Kubernetes [26]. Kubernetes uses the cpu
subsystem of Linux cgroups to control CPU allocation among containers with different
priorities. Kubernetes has three priority classes: ‘Guaranteed’, ‘Burstable’ and ‘BestEf-
fort’. A ‘BestEffort’ workload does not have any quality of service guarantee, and should
give up resources to other workloads when other workloads have requirements. ‘Guaran-
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Figure 2.9: CPU Usage of the TPC-E Workload with the Lower Weight

teed’ and ‘Burstable’ workloads are assigned 10240 shares of CPU time while ‘BestEffort’
workloads can obtain only 2 shares.

The CPU usage results of the cpuhog workload with different configurations are shown
in Figure 2.10(a). What stands out in this figure is that with the weight mechanism,
the cpuhog workload can consume more CPU resources than its theoretical allocation.
The cpuhog program gets more chances to run when the database server yields the CPU.
Threads in cpuhog are CPU-intensive and always use up the time slice allocated to them.
Even an extreme weight configuration like 2:10240 cannot suppress the cpuhog program.

Figure 2.10(b) shows the throughput of the database server with the two mechanisms
in the corresponding experiments. The throughput with the weight mechanism is lower
than that with the quota mechanism, because the weight mechanism fails to provide the
proper share of CPU resources to this workload. In contrast, the quota mechanism enforces
the resource isolation based on the configured weights. Even when the database workload
does not use all its quota CPU time because of thread contention, the neighbour cpuhog
program cannot use more idle resources than its quota.

Taken together, the results of the three experiments show that the weight mechanism
in Linux cgroups cannot consistently enforce CPU resource isolation. Workloads do not
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Figure 2.10: Results with Different Workloads
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always obtain their theoretical shares of CPU resources based on their weights. Workloads
with lower weights, especially CPU-intensive workloads, may be allowed to filch CPU time
from other workloads.

Most existing proposals for resource sharing among multiple tenants compute CPU
allocation as a fraction of the overall CPU capacity and share all the available physical
cores via the weight mechanism [16, 58, 76]. The main benefit is that general purpose OS
schedulers are typically work-conserving. Thus, idle resources are automatically available
for other workloads. Although the static quota mechanism can enforce resource isolation,
it is not work-conserving. Given the dynamic nature of real-world workloads, a static quota
configuration will not fit all the time. When the CPU requirement of one workload shrinks
and some CPU resources become available, other workloads are still not allowed to cross
the quota limit and utilize the idle CPU resources. Statically partitioning a set of cores is
not work-conserving either. Partitioning does not allow applications to access each other’s
cores. The resource isolation is thus effectively enforced in this way. If quota values or
core partitioning were adaptive to workload requirements, idle CPU resources could be
utilized by other workloads, and thus both resource isolation and work conservation could
be achieved.
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Chapter 3

Metrics for Online Performance
Measurement

A feedback-based solution is investigated in this thesis to address the problem of adaptive
resource allocation. A feedback-based system is driven by changes in application perfor-
mance that happen in response to changes in resource allocation. An online performance
metric is required by such a feedback-based system as the feedback signal. Two features are
beneficial for a feedback-based resource management system. First, different types of ap-
plications should be supported at the same time. Second, measurements and adjustments
should be made in a timely manner to handle workload dynamics.

This chapter first discusses metrics used in the literature, and then introduces a new
generic metric for online performance measurement. The new metric is application-agnostic
and presents a uniform performance assessment for different types of applications. Mea-
surements for this metric are non-invasive and can be obtained using hardware performance
monitoring units (PMUs) without modifying the OS or application software. Meaningful
data can be collected in a short time interval, which permits quick adjustments to CPU
allocations.
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3.1 Existing Performance Metrics

3.1.1 Application-Level Metrics

Application-level metrics can show performance changes and facilitate feedback-based al-
gorithms. Previous studies in the field of adaptive resource allocation have used specific
application-level metrics as feedback, or calculated service level agreement (SLA) values
based on these specific metrics [3, 36, 51, 62, 76]. However, different applications may have
different quantitative metrics to measure their performance of interest.

One application’s performance metric may not be suitable for other applications. Some
applications’ performance is measured using throughput, some applications are latency-
sensitive, and some care about both. For example, the transactions per second (TPS)
metric is usually used to judge the performance of an online transaction processing (OLTP)
database system. However, TPS is not suitable for performance measurement of an online
analytical processing (OLAP) system. The performance metric of interest for an OLAP
system is typically query execution time instead of throughput. Analytical queries can
have widely varying execution times, from seconds to hours. Therefore, queries per second
or queries per minute cannot reflect the real-time progress of an analytical workload. When
a system needs to run various applications, the resource manager has to support all the
different application-level performance metrics.

Moreover, the length of the measurement interval determines how fast a feedback-based
management system can make adjustments. When using performance measurements as
feedback, a resource manager requires each measurement to have a short interval. For
instance, TPS can be measured over a short period of time, so a resource manager can
take several measurements quickly and compare performance changes of a database server.
Conversely, if an application-level metric needs to be measured over a long period of time,
e.g, queries per hour for an OLAP database workload, the resource manager can only
make an adjustment after a long time. Hence this kind of metric is not suitable for timely
feedback measurement. Taking the measurement interval into account, certain workloads,
e.g., OLAP database workloads, do not have a suitable application-level metric for online
performance measurement at all.

Another drawback of application-level metrics is that their measurement typically re-
quires instrumentation in applications. The instrumentation may need modification in
the application source code and introduce extra costs to the execution of workloads. For
example, to measure the throughput of a database system, the number of transactions
completed across all the connections must be recorded inside the database system. In this
way, the measurement of application-level metrics can be costly in practice.
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3.1.2 CPU Usage

Certain application-agnostic metrics for resource management have been suggested in the
literature [36, 62, 78]. This section considers an important application-agnostic metric,
CPU usage. CPU usage is the total CPU time used by a program during a period. This
metric is usually converted to another format by comparing to the elapsed CPU time on
a CPU core during the same period. For example, in the Linux perf tool, the usage is
converted to the number of effective cores [73], while in the default mode of the Linux top
tool, the usage is presented as a percentage which may be greater than 100% [24].

The advantage of CPU usage is that this metric is not specific to any application. When
CPU usage is used in an allocation algorithm, no application information is required.
Moreover, it is easy to measure CPU usage because operating systems already provide
necessary measurements. For example, Linux records the statistics about CPU time used
by each individual process in the /proc/[pid]/stat file.

However, CPU usage cannot accurately show how application performance changes. In
a multi-threaded software system, multiple threads are coordinated via synchronization
primitives. The resulting instructions spend CPU time, but do not directly process the
workload. The experiment with the write-heavy Memcached workload in Section 2.2.1
shows such an example. The CPU usage continues to increase regardless of whether the
application performance increases or remains unchanged (see Figure 2.5 on Page 25). More-
over, when the allocated CPU resources is reduced, a workload’s CPU usage may also
decrease. It is impossible to judge whether the CPU requirement of a workload decreases
based on only CPU usage under this circumstance.

This work also investigates CPU utilization of an application. CPU utilization does
not have a clear definition and may be calculated in different ways for different purposes.
In this thesis, CPU utilization refers to the ratio of the CPU time used by an application
and the total CPU time available to this application. This metric compares CPU usage to
allocated CPU resources. Some previous resource management systems employ a similar
utilization metric as the feedback to control CPU allocation [15, 36, 45, 62].

CPU utilization is also application-agnostic. Only measurements of CPU usage are
required to calculate this metric. Moreover, from the perspective of resources, when the
CPU utilization of an application is low, this application does not require all the allocated
CPU time to process its workload. Accordingly, it is reasonable to reduce the CPU re-
sources allocated to this application. However, similar to CPU usage, CPU utilization does
not accurately reflect application performance. In the experiment mentioned above (see
Figure 2.5 on Page 25), when more than 14 cores are allocated to the Memcached server,
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the difference between the used CPU time and the available CPU time increases, i.e., the
CPU utilization declines regardless of whether the application performance changes or not.
Therefore, even for a stable workload, it is difficult to determine whether to increase the
CPU allocation and when to stop allocating more resources to a workload. A previous
paper indicates that CPU utilization is inaccurate to reflect application performance and
guarantee that the SLO of an application is met [50].

For a dynamic workload, CPU utilization can indicate when the CPU requirement of
a workload decreases, since the CPU utilization of a workload decreases as a consequence
of the decrease in that workload’s CPU requirement. Nevertheless, with a high CPU
utilization, even if the requirement of a workload increases further, the CPU utilization
will not change dramatically. Thereby, this metric cannot always indicate whether the
CPU requirement of a workload increases when the CPU allocation does not change.

3.2 User-level Instructions Per Time

This section proposes a new metric user-level instructions per time (UIPT) as a real-time
indicator of system performance. UIPT is calculated as

User-level Retired Instructions

Measurement Interval

Here the number of user-level retired instructions is a hardware event. A low-level metric
based on hardware events is suitable for online feedback measurement. This kind of metric
has three advantages. First, a low-level metric is application-agnostic and can be used
to estimate the performance of various workloads simultaneously. Thereby, a resource
manager does not need to instrument different applications or individually handle various
application-level metrics. Second, a low-level metric can be measured conveniently without
modifying any application or OS kernel. Most modern microprocessors provide PMUs that
can be used to monitor hardware events. Operating systems like Linux already provide
an interface to read the PMUs, and the extra measurement overhead is negligible [73].
Third, this metric is fine-grained and can provide meaningful information in a short time
interval. With frequent performance measurements, a resource manager can provide timely
and accurate reactions. More importantly, performance changes can be measured in the
process of workload execution. Thereby, the UIPT metric is suitable for measuring the
performance of an application that processes a long running workload, e.g., an OLAP
database workload.
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However, low-level metrics based on hardware events proposed so far are not well stud-
ied in the context of online performance measurement for adaptive resource allocation.
Instructions per cycle (IPC) or its reciprocal cycles per instruction (CPI) is the most used
low-level system performance metric. UIPT has a ratio structure similar to IPC, but UIPT
is a better measurement of workload progress than IPC because of their differences in two
important aspects.

First, UIPT is calculated using wall-clock time instead of CPU clock cycles, whereas
IPC is the ratio of instructions to CPU cycles. An absolute timing metric is required to
calculate the progress speed of a workload. However, CPU cycles do not represent the
absolute length of time. A cycle is determined by the processor’s hardware signals. CPU
frequencies may (independently for individual cores) change while a program is executed.
UIPT uses absolute timing independent of the changes in CPU frequency. Moreover,
hardware performance counters only count cycles when the CPU is not in a halted state
due to a STPCLK or HLT instruction. If an OS halts the CPU when the system is idle,
the idle time is factored out of the IPC calculation, which thereby potentially overstates
the progress speed of a workload. Otherwise, if an OS runs an idle loop instead of halting,
the workload IPC must be influenced by the IPC of the idle loop. Finally, for a multi-
core machine, it is not clear whether the total or average number of cycles across cores
should be used in the calculation. The Linux perf tool uses the total number of cycles
to calculate IPC when it measures multiple cores. For example, in the experiment with
TPC-E database workload in Section 2.2.1, the number of cycles continues to increase
with the number of cores. The number of retired instructions and application performance
stops increasing when the core allocation exceeds a certain value. Thereby, with excessive
core allocation, IPC continues to decrease regardless of how the application performance
changes. In this case, IPC reflects only the efficiency of multi-core platforms, but is not
meaningful as a progress metric. In contrast, UIPT is calculated using wall-clock time,
hence the inaccuracy due to cycle measurement can thus be avoided.

Second, only user-level instructions are counted in UIPT, whereas kernel-level instruc-
tions are excluded. Not all the retired instructions should be counted when workload
progress is accessed. Multithreaded applications, such as database servers, typically use
OS-level threads to utilize hardware parallelism. With a highly concurrent workload, these
threads might wait for synchronization primitives, and the resulting operations typically
happen in the OS kernel. These operations do not process actual work in the application
and thus the number of their instructions does not correlate with application performance.
In UIPT, the number of user-level instructions is used to estimate the number of instruc-
tions that make progress in the workload. The result using user-level instructions is better
than or at least equal to that using total instructions.
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Only when a considerable number of instructions are retired in user-level synchroniza-
tion routines (thus not productive), UIPT fails to accurately reflect the workload progress.
However, under this circumstance, alternatives such as the total instructions and kernel-
level instructions have the same problem and user-level instructions are still better. More-
over, UIPT can indicate the change in execution speed of an application using user-level
synchronization. For instance, lock-free programming relies on atomic instructions rather
than synchronization primitives in the kernel. When the parallelism of a lock-free pro-
gram increases, the CPU cycles spent on atomic instructions increase (e.g., as shown in
Figure 2.3). Therefore, the workload progress slows down and UIPT also decreases. The
Canneal benchmark program from the Parsec suite [6] uses a lock-free algorithm. The
evaluation result shows that there is a strong correlation between the changes in UIPT and
the execution time of this program (see Table 3.1 in Section 3.4).

UIPT represents low-level workload throughput itself. Meanwhile, it can also reflect
the progress speed of a workload, therefore UIPT can also be used to indirectly estimate
workload execution time. While IPC is a general measure of computational efficiency, it is
not meaningful as a progress metric on modern multi-core platforms. Previous studies in
the literature report that the classical IPC metric may inaccurately reflect performance and
lead to incorrect or misleading conclusions for multithreaded programs on multi-processor
systems [1]. IPC or its reciprocal CPI may be used to detect the changes in application
performance, but does not show a strong correlation with application-level metrics. Zhang
et al. propose a tool based on CPI to detect the interference between tasks on Google’s
clusters [78]. However, they do not evaluate the correlation between CPI and other per-
formance metrics. Instead, in their paper, they show that TPS of a batch job has a strong
correlation with IPS (instructions per second). IPS and CPI should be considered as two
different metrics because IPS uses wall-clock time. Actually the idea of IPS is similar to
that of UIPT, but IPS is not studied further in their paper.

3.3 Relative Change

The feedback-based allocation algorithms proposed in this thesis do not rely on the absolute
value of a metric to find the optimal CPU allocation. The best application performance
depends on the specific workload. Typically, an allocation algorithm has no knowledge
about the possible best application performance. This thesis assumes that every application
has a concave performance curve with different CPU allocations. The proposed algorithms
estimate the application’s current position in the curve and search for the optimal CPU
allocation based on performance changes caused by changes in CPU allocation.
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Moreover, the algorithms need to take different actions based on to what extent the
application performance changes. Relative change is employed to describe the extent. The
relative change between two values x and xreference is defined as

RelativeChange(x, xreference) =
x− xreference
xreference

Here xreference is the metric value before the CPU allocation changes. For instance, when
one more core is allocated to the application, the relative change of a metric is calculated
as

V alue with N + 1 cores − V alue with N cores

V alue with N cores

The algorithms need to estimate the changes in application performance based on the
changes in UIPT or other measured metrics. There must be a strong correlation between
the relative change in the measured metric and the relative change in application perfor-
mance. More details about the proposed algorithms will be introduced in Chapter 4. This
chapter mainly evaluates whether a metric is a good proxy for another metric based on the
correlation between the relative changes in different metrics.

3.4 Experimental Evaluation

In this section, a group of experiments with various workloads are used to evaluate the
metrics discussed in this chapter, and whether these metrics are suitable for online perfor-
mance measurement is investigated. First, the limitations of CPU usage and utilization are
verified. Next whether UIPT can be used to estimate different application-level metrics is
tested.

The testbed machine introduced in Section 2.2 is used for the experiments in this
section. With a total of 64 CPU cores, applications use up to 32 cores exclusively, while
the other 32 cores are used for clients to generate requests. The cpuset subsystem of
Linux cgroups is used to control which cores the applications can use. Applications use
memory interleaving across NUMA nodes. Thus the memory interference is balanced for
the workloads.
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3.4.1 Evaluation of CPU Usage

This section evaluates whether CPU usage and CPU utilization can be used as a proxy
for application-level performance metrics. Two different database workloads are used in
the experiments. The database server and its system configuration used in this section
is the same as that used in Section 2.2. The first workload is the transactional workload
used in Section 2.2 and its performance metric is transactions per second. The database
and transactions are from the TPC-E benchmark [12]. The second workload is a synthetic
analytical workload based on queries from the TPC-H benchmark [13]. The application-
level performance metric of this workload is the workload execution time. The database size
is 1 GB1. TPC-H contains 22 queries of a business decision support system. These queries
process large volumes of data, and each takes different time. The synthetic workload has
20 concurrent clients. Each client submits all 22 queries to the database server serially, but
in a different random order. The concurrent client sessions do not complete at the same
time. Therefore, at the end of each experiment run, some cores become idle while some
are still busy. The average completion time of all the 20 client sessions is used to evaluate
the correlation between metrics.

These workloads are repeated with the number of physical cores being varied from 1
to 32. CPU usage and the application performance with different numbers of cores are
measured. CPU utilization is calculated from CPU usage divided by the number of allo-
cated cores. For the TPC-E workload, each run in the experiment lasts for 240 seconds
to collect measurement samples. TPS and CPU usage are measured every 10 seconds.
For the TPC-H workload, execution time can only be measured when the workload is fin-
ished. Therefore this workload is repeated 20 times for each CPU allocation to observe the
variation. With a static core allocation, the measurements of CPU usage and application
performance are stable. The results shown in the following figures are the mean of 20
samples. The coefficient of variation (CV) of all results (application performance, CPU
usage and CPU allocation) are less than 0.06.

The Pearson product-moment correlation coefficient [61] is used to measure the associ-
ation between different metrics in this section. It has a value between +1 and −1 where
+1 is in the case of a perfect direct linear correlation, while −1 is a perfect inverse linear
correlation. Besides the correlation coefficient between the values of metrics, this study
also calculates the correlation coefficient between the relative changes in different metrics

1The TPC-H workload is also used in the experiments with multiple workloads in Chapter 5, in which
1GB database size provides a proper length of experiment time. The experiment in this section uses this
size for a consistent presentation. With a larger database size, UIPT also has a good correlation with the
execution time of this workload [28]
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when the number of cores is increased from 1 to 32.

Figure 3.1 presents the average CPU usage and average application performance for
the TPC-E and TPC-H workloads. The CPU usage result is presented using the number
of equivalent effective cores. For the TPC-E workload, the correlation coefficient between
TPS and CPU usage is 0.78. CPU usage keeps increasing regardless of the change in TPS.
When the CPU allocation is more than the optimal point, extra CPU resources are not
directly used to process the work from clients.

When the number of cores is increased from 1 to 32, the relative change in CPU usage
shows a good correlation with the relative change in TPS. The coefficient is 0.96. However,
the good correlation between relative changes stems from the results with 1 to 16 cores.
Considering only the results with 15 to 32 cores, the correlation coefficient is 0.38. As a
consequence, it is difficult to find the optimal CPU allocation (18 cores for this workload)
in the range of 15 to 32 cores based on the changes in CPU usage.

The TPC-H workload employs only 20 clients and uses at most 20 effective cores (see
Figure 3.1(b)). The average execution time of 20 client sessions is used to calculate the
correlation coefficient, but the minimum and maximum execution time are also depicted
in the figure. The correlation coefficient between execution time and CPU usage is -0.40.
The correlation is weak. The shortest execution time is not achieved when the CPU usage
reaches the peak.

The correlation coefficient between the relative changes in the two metrics is -0.71
when the cores are increased from 1 to 32. With more than 20 cores, the execution time
continues to change when the CPU usage does not change. Similar to the TPC-E case,
the change in CPU usage cannot provide an accurate estimation of performance change in
the experiment with the TPC-H workload. CPU usage is not a good proxy for the two
application-level metrics.

The relationship between CPU utilization and application-level performance metrics
is studied in the same way using the two database workloads. For the TPC-E workload,
the results of average TPS and average CPU utilization are shown in Figure 3.2(a). The
correlation coefficient between the average TPS and the average CPU utilization is -0.94,
which shows an inverse linear correlation.

However, the correlation coefficient between relative changes in the two metrics is only
-0.09. There is almost no correlation between the relative changes. From the curves
in Figure 3.2(a), it is apparent that when the TPS results change dramatically, CPU
utilization sometimes does not change correspondingly, e.g., when the number of cores is
changed from 8 to 10. Hence it is difficult to estimate the changes in TPS based on the
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Figure 3.1: CPU Usage for Database Workloads
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Figure 3.2: CPU Utilization for Database Workloads

43



changes in CPU utilization. CPU utilization cannot provide a solid foundation to decide
whether to increase the CPU allocation to the TPC-E workload.

For the TPC-H workload, what can be clearly seen in Figure 3.2(b) is the weak cor-
relation between the average execution time and the CPU utilization. The correlation
coefficient between the two metrics is only -0.01. The correlation coefficient between rela-
tive changes in the two metrics is -0.14. The relationship between the relative changes is
irregular. For example, with 1 - 8 cores, the CPU utilization is high (close to 100%), while
the execution time is very different. Hence it is hard to estimate how the execution time
changes based on the change in CPU utilization. In summary, CPU utilization is not a
good proxy for the two application-level metrics either.

3.4.2 Evaluation of UIPT

The relationship between UIPT and application-level performance metrics is evaluated
using the same two database workloads. In the experiments, UIPT is measured every
second while the database server is processing the workloads. The coefficient of variation
of UIPT results with a fixed number of cores is at most 0.07.

The results of average TPS and average UIPT with 1 to 32 cores are illustrated in Figure
3.3. It can be seen that the two metrics show the same trend. The correlation coefficient
between UIPT and TPS is 0.99. More importantly, The turning of the two curves occur
simultaneously. The correlation coefficient between the relative changes in UIPT and the
relative changes in TPS is also 0.99. As a comparison to CPU usage, if considering only
the results with 15 to 32 cores, the correlation coefficient between the relative changes in
TPS and UIPT is 0.87. Such a strong correlation makes UIPT a good proxy of TPS for
this kind of transactional workload.

For the TPC-H workload, the execution time and UIPT with different numbers of cores
are presented in Figure 3.4. The two curves clearly show an inverse correlation. When the
UIPT value is higher, the average execution time is shorter. The correlation coefficient
between average execution time and UIPT is -0.84. More vital is the correlation between
the relative changes in the two metrics. The coefficient is -0.94, which shows a strong
inverse linear correlation. Thus, UIPT is also a good metric to estimate the performance
changes of this analytical database workload.

When the TPC-E and TPC-H workloads achieve their best performance, they do not
have the same absolute value of UIPT. However, a resource manager can search for the best
CPU allocation based on the relative changes in UIPT regardless of the specific workload,
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Figure 3.3: UIPT for TPC-E Workload
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Figure 3.4: UIPT for TPC-H Workload
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Figure 3.5: UIPT for Memcached Workload

because there exists a strong correlation between relative changes in UIPT and relative
changes in application-level metrics.

UIPT also performs well for other software systems. In Section 2.2.1, a write-heavy
Memcached workload is employed to study the impact of excessive parallelism. In this
section, UIPT and the system throughput QPS are measured with the same workload.
The core allocation is varied from 1 to 24 via the cpuset subsystem of Linux cgroups. This
workload is repeated 20 times with each core allocation. Only the average results are shown
in Figure 3.5, since the coefficient of variation is less than 0.01 for QPS, and less than 0.04
for UIPT. UIPT has a strong correlation with QPS for this Memcached workload, and the
coefficient is greater than 0.99. The correlation coefficient between the relative changes in
the two metrics also reaches 0.99.

The evaluation is then expanded to other parallel programs. The PARSEC benchmark
suite consists of 13 programs from a wide range of areas, such as computer vision, video
encoding, financial analytics, animation physics and image processing [6]. This group of
experiments use a fixed number of threads while varying numbers of cores. All programs
are executed with 256 threads, except that blackscholes runs with 128 threads2. The native
input data set for execution on real machines is used in the experiments. The number of

2When the number of threads is 256, the blackscholes program crashes on the testbed machine.
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Table 3.1: Parsec Correlation Results

Correlation Correlation
Program between between

Time and UIPT Relative Changes
blackscholes -0.86 -0.99
bodytrack -0.95 -0.99

canneal -0.97 -0.99
dedup -0.99 -0.99
facesim -0.99 -0.99
ferret -0.80 -0.99

fluidanimate -0.89 -0.99
freqmine -0.84 -0.99
raytrace -0.96 -0.99

streamcluster -0.96 -0.98
swaptions -0.99 -0.99

vips -0.86 -0.99
x264 -0.89 -0.98

cores is varied from 1 to 32. The correlation results are shown in Table 3.1. In most cases
the negative correlation between execution time and UIPT is very clear. More importantly,
the strong correlation between the relative changes in the two metrics means that changes in
UIPT can be used to estimate the performance changes of these typical parallel programs.

In cloud computing, applications may run in a virtual machine or a container. UIPT
of applications can be measured outside the virtualisation layer. The evaluation is thus
expanded to virtualisation environments. First, a virtual machine using KVM [42] and
libvirt [29] is tested. An original MariaDB server is launched in the virtual machine.
CPU allocation is controlled by the cpuset subsystem of Linux cgroups. The same TPC-E
workload is measured with a varying number of cores. Figure 3.6 shows the average TPS
and average UIPT results with 1 to 32 cores. The correlation coefficient between UIPT
and TPS is higher than 0.99, and the correlation coefficient between the relative changes
in the two metrics is also higher than 0.99. Second, the same experiment is conducted
using a Docker container [19]. The docker image of MariaDB (tag 10.0) from Docker Hub
is used [20]. UIPT still shows a strong correlation (coefficient > 0.99) with the throughput
of this database workload. The correlation coefficient between the relative changes in
the two metrics is higher than 0.99. The measurements of the two metrics with different
core allocations are shown in Figure 3.7. The results of the two experiments confirm
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Figure 3.6: UIPT for TPC-E Workload in a VM

that UIPT can be used to estimate the performance of applications in these virtualisation
environments.

The measurement of UIPT is independent of the way how CPU resources are allocated.
The Linux perf event interface [73] can track the user-level instructions retired by threads
in a cgroup. Therefore, even when CPU resources are allocated to multiple tenants with
the quota mechanism in Linux cgroups, UIPT can still be used to estimate the changes
in application performance. For example, in the experiments with the TPC-E database
workload mentioned above, if the CPU allocation is adjusted via the quota mechanism, the
correlation between UIPT and application-level metrics is still higher than 0.99. Figure 3.8
illustrates that the average TPS and the average UIPT have the same trend with varying
quota values. The correlation coefficient between the relative changes in the two metrics
is higher than 0.99.
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Figure 3.7: UIPT for TPC-E Workload in a Docker container
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Figure 3.8: UIPT for TPC-E Workload with Different Quota Values
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Chapter 4

Adaptive CPU Allocation

This chapter studies adaptive CPU resource allocation based on the UIPT metric as a
feedback signal. Adaptive CPU allocation enables a resource manager to simultaneously
achieve resource isolation and work conservation. On the one hand, the resource manager
enforces CPU resource isolation by restricting the maximum amount of CPU resources
available to each workload. On the other hand, the restriction is relaxed according to
requirements of other workloads to make full use of otherwise idle CPU resources.

Adaptive CPU allocation requires an allocation algorithm to detect the CPU require-
ment of a workload automatically. Real-world workloads are highly dynamic, so it is im-
practical for users to determine the resource requirements manually. The adaptive resource
allocation problem is modelled as a dynamic optimization problem in this thesis. Two al-
gorithms are proposed in this chapter to track the movement of the optimal allocation.
Both of these algorithms allocate CPU resources based on how the application perfor-
mance changes with different CPU allocations. The application performance is measured
via UIPT, so the algorithms can support various applications and make timely adjustments.

4.1 Problem Definition

4.1.1 Performance Curve of A Stable Workload

There is no perfectly scalable software system. Allocating more CPU resources to an
application does not necessarily result in better performance. Beyond a certain point,
the marginal change in application performance becomes relatively small or even negative.
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There are two possible reasons for this phenomenon. First, the software system may be
unsaturated. No more work needs to be done in parallel, and thus the system does not
consume more CPU resources. Second, it is also possible that certain bottlenecks in the
system prevent many threads from running in parallel. Thereby the system is not scalable
any more when CPU allocation is more than a certain amount. If an application has
achieved its target performance, there is no need to allocate more CPU resources to this
application. In a multi-tenancy scenario, multiple tenant workloads are consolidated on
the same infrastructure. Idle CPU resources can be utilized by other workloads, thereby
increasing the output of the whole infrastructure. Even if there is no other workload
demanding more CPU resources, the frequency of idle CPU cores can be scaled down to
reduce power consumption.

However, certain parallel software systems, e.g., database systems, are highly complex
and dynamic, making it challenging to allocate appropriate hardware resources for these
systems to achieve optimal performance. The manual tuning process is usually time con-
suming and skills intensive for system administrators. More importantly, a static configu-
ration hardly meets the time-varying requirement of a workload. Therefore, the problem
addressed in this chapter is how to automatically and dynamically allocate CPU resources
to a workload according to its requirement.

For a stable workload, as the CPU allocation increases, the system performance initially
improves, but the trend gradually stops or even reverses. This trend is verified by the
experimental results in previous sections. For instance, Figure 2.1 and Figure 2.4(b) in
Section 2.2.1 show how the throughput of two different systems changes with the number
of cores, and Figure 3.4 in Section 3.4 shows how the execution time of an analytical
workload changes with varying cores. In these experiments, every software system uses a
static system configuration. Every workload has a stable request arrival rate and static
characteristics, e.g., the same queries. The number of cores is assumed to be the only
independent variable, and thus the system performance can be modelled as a function of
CPU allocation for a stable workload.

The performance function f(x) of the number of cores x can be approximated by a
concave-downward curve whose derivative f ′(x) monotonically decreases with increment in
the number of cores. The allocation problem for a stable workload is to find the stationary
point of f , which is the solution to f ′(x) = 0, also known as the root of the derivative.
As the derivative monotonically decreases, a simple local search strategy can be used to
find the stationary point. The search strategy is to increase x when f ′(x) > 0 while
decreasing x when f ′(x) < 0. Instead of modelling the unknown f(x) and solving the
equation f ′(x) = 0, the approach in this proposal uses ∆f

∆x
to estimate whether f ′(x) is

positive or negative. In the search, if adding cores by ∆x causes ∆f to become negative,
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the number of cores must be decreased by ∆x; otherwise more cores ought to be added.
The search from the opposite direction is similar. When the number of cores is discrete,
the exact stationary point may not be reached. The searching procedure will stop at the
integer point closest to the stationary point. The search step (∆x) can adapt to the value
of the derivative, i.e., ∆x can be changed to a larger value when |∆f | is large, because a
large |∆f | implies that the system is far from the stationary point.

The performance curve of a real-world complex system is not a perfectly smooth concave
curve like a parabola. For example, the throughput of a database system may not decline
dramatically when the number of cores is larger than the stationary point, but fluctuate
with a downward trend. This thesis assumes that the performance curve is essentially
concave, but also takes possible anomalies into consideration. The two most common
anomaly states are plateau and local optimum.

In the plateau state, all the neighbouring points have similar performance values when
the number of CPU cores is larger than the stationary point. Therefore, it is unclear
how to choose the next step by making local comparisons. This state means more CPU
resources do not result in better system performance, because the system is unsaturated
or not further scalable with respect to CPU resources.

Local optimum refers to the state in which a point has a better performance than all
neighbours, but this point is not the point having the best performance. For example,
in certain cases, the throughput of a database server does not increase apparently with
one more core, but if more cores continue to be allocated, the throughput will eventually
increase to a higher level.

4.1.2 Problem Model for Dynamics

Application workloads are highly dynamic in the real world [63]. At each moment the
relationship between application performance and CPU allocations can still be modelled
as a concave curve. However, when the temporal dimension is taken into account, some
elements of the underlying model change in the process of searching for the optimal CPU
allocation. In this thesis, finding the optimal CPU allocation for a dynamic workload is
modelled as a dynamic optimization problem (DOP). A DOP is an optimization problem
in which the objective function or the restrictions change over time. The general definition
of a DOP is shown in Equation 4.1 [14].

DOP =

{
optimizef(x, t)
s.t. x ∈ F (t) ⊆ S, t ∈ T (4.1)
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where:

- S ∈ Rn, S is the search space

- t is time

- f : S×T −→ R, f is the objective function that assigns a numerical value to each possible
solution x (x ∈ S) at time t.

- F(t) is the set of feasible solutions, x ∈ F (t) ⊆ S at time t

In the adaptive CPU allocation problem, S is the available CPU resources; f is the perfor-
mance function of CPU allocations, and f will change over time; F is the feasible set, for
example, a CPU allocation x can be only an integer when core partitioning is used, but F
does not change over time in this adaptive allocation problem.

The goal of solving a DOP is no longer to find a stationary optimal solution but
to have a mechanism to efficiently keep track of the movement of the function f . An
evolutionary algorithm is the most common approach to this kind of dynamic optimization
problem because it does not make any assumption about the underlying problem landscape.
An evolutionary algorithm needs a fitness function to determine the quality of different
solutions. In a real-world application, the disadvantage of an evolutionary algorithm is
the cost of its fitness function. For the adaptive CPU allocation problem, an evolutionary
algorithm determines the effect of a CPU allocation by applying this allocation. However,
if an evolutionary algorithm changes CPU allocation randomly and drastically, the whole
system becomes unstable and the application performance is unpredictable. Therefore, a
gradual local search is preferred in this work to solve the adaptive CPU allocation problem,
meaning that only a small modification is introduced every time.

The two allocation algorithms proposed in this chapter consider each workload change
as the arrival of a new optimization problem and re-optimize. This study assumes there is
no direct information about workload changes. The two algorithms keep searching along
the performance curve based on performance changes and never enter a stable state. This
search strategy is effective for the adaptive CPU allocation problem. The details about
how the algorithms handle workload changes will be introduced in the following sections.

4.1.3 Regulation Problem

The allocation problem can also be modelled as a regulation problem. As introduced above,
the allocation problem for a stable workload is to find the point where the derivative is
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zero. The classical proportional-integral-derivative (PID) controller is a typical method
to regulate the derivative to zero. However, a PID controller requires extensive tuning
based on its target system. A real application or the application’s performance curve is
needed for the tuning [30]. Hence the resulting parameters are specific to an application
or workload. These controller parameters impact rise time, overshoot and settling time.
Preliminary investigations for this thesis have indicated that different applications require
substantially different parameters. This study looks for a robust uniform mechanism that
can handle different application simultaneously, and hence investigates simpler local search
algorithms.

4.2 Hill Climbing

As shown in Figure 4.1, the whole allocation algorithm consists of two parts, an inner
controller and an outer corrector. The inner controller is designed to search for the optimal
allocation for a stable workload. The inner controller is simple and stable, while the outer
corrector overwrites the output of the inner controller in response to workload changes.
The whole algorithm has two inputs: the change in CPU allocation (du(k)) and the change
in measured output (dy(k)) between the current and previous measurement intervals. The
output of the algorithm is the CPU allocation to the target system in the next interval
(du(k + 1)). The output of the target system is measured in each interval and used to
calculate dy(k). In this work, the measured output is the low-level system throughput
UIPT because this metric shows a strong correlation with application-level performance
metrics (cf. Section 3.4).

This section proposes a hill-climbing algorithm as the inner controller. Hill climbing
attempts to maximize (or minimize) a target function by making comparisons between
results from different solutions. A straightforward hill-climbing algorithm starts with an
arbitrary solution to a problem, and then attempts to find a better solution by incremen-
tally changing a single element of the solution. If the change produces a better solution, an
incremental change is made to the new solution, and this process repeats until no further
improvements can be achieved.

In this thesis, the hill-climbing algorithm searches for the optimal CPU allocation for a
stable workload. The design is based on the assumption that the performance function f(x)
of CPU allocation x has a concave curve. This algorithm implements the search strategy in
the previous section, which changes x according to the value of ∆f

∆x
. The algorithm is based

on the relative change rather than the absolute change ∆f so that the parameters in the
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Figure 4.1: Architecture of the Allocation System

algorithm are independent of the absolute measurements. The CPU allocation is repeatedly
adjusted based on the relative change in UIPT compared to the last measurement.

In the algorithm descriptions in this and the next section, CPU allocation is changed
by the number of cores. With core partitioning, the allocation change must be an integer
number of physical cores. With quota-based CPU allocation, the change is a number of
effective cores, which is calculated by the quota value over the allocation period. The
number of effective cores can be an integer or a fraction. Theoretically, the algorithm can
change CPU allocation by a fraction of effective core.

The basic hill-climbing algorithm is shown in Algorithm 1. It uses a threshold thsearch
to determine whether the previous relative change in UIPT is significant enough to request
a change in CPU allocation during the next round. The thsearch is set to 0.04 based on the
results of preliminary experiments. This value performs well in the evaluation experiments
with different workloads.

A simple hill-climbing algorithm does not guarantee to find the global optimum. If the
curve is not perfectly concave, such an algorithm may converge to an inappropriate state.
In practice, even a stable workload does not necessarily have a perfect performance curve,
and a workload change makes the curve change. The hill-climbing algorithm is driven by
changes in application performance that occur in response to changes in CPU allocation.
However, changes in application performance may also be caused by workload changes.

How a feedback-based allocation algorithm handles a workload change depends on the
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Algorithm 1 HillClimbing(dy, du)

dy: change in performance (UIPT)
du: change in cores in the previous round
thsearch: change threshold

1: if dy > thsearch then
2: dC ← sign(du) ∗ 1
3: else if dy < −thsearch then
4: dC ← sign(du) ∗ −1
5: else
6: dC ← 0
7: end if
8: return dC

magnitude and frequency of the measured performance change arising from the workload
change. When the measured performance change is very small, the workload change is neg-
ligible meaning that no algorithm response is required. When the measured performance
change is very large, the performance change should be caused by a workload change rather
than by a change in CPU allocation. When neither of the above two cases applies, the
magnitude of the measured performance change caused by the workload change is close to
that caused by the change in CPU allocation. In this case, a hill-climbing algorithm (or any
other feedback-based algorithm) cannot tell whether the measured performance change is
caused by the change in CPU allocation. If this kind of workload changes happen at the
frequency of measurement, and the spurious performance changes are continuously mea-
sured, a feedback-based algorithm will be disrupted and incapable of performing properly.
To deal with these curve anomalies and workload changes, the outer corrector incorporates
several fixes. The complete allocation algorithm is shown in Algorithm 2.

The algorithm uses a change threshold thsearch to determine whether the performance
change is small enough and uses a demand change detection threshold thdemand to determine
whether the performance change is large enough. When the measured change in UIPT is
higher than the thsearch threshold but does not exceed the thdemand threshold, the hill-
climbing algorithm cannot distinguish whether the UIPT change is caused by a change in
workload or a change in CPU allocation. Meanwhile, if the frequency of these workload
changes is close to the frequency of feedback measurements, spurious UIPT changes will
be measured successively. The highly frequent UIPT changes continuously keep the hill-
climbing algorithm searching in a sub-optimal range without converging to the optimal
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Algorithm 2 Allocate(du)

du: change in cores in the previous round
Pt: Performance (UIPT) measured in interval t
Ct: core allocation in interval t
w: number of intervals of multi-interval hill climbing
thgreedy: greedy core reduction threshold
thdemand: demand change detection threshold

1: if (t mod w) = 0 then
2: /* averages U and C computed over last two w periods */
3: dy ← (P t − P t−w)/(P t−w)
4: dC ← HillClimbing(dy, Ct − Ct−w)
5: else
6: if Ct = Ct−1 then
7: dC ← random from {−1, 0, 1}
8: else
9: dy ← (Pt − Pt−1)/(Pt−1)

10: dC ← HillClimbing(dy, Ct − Ct−1)
11: if dC = 0 and Ct < Ct−1 and dy > thgreedy then
12: dC ← −1
13: end if
14: end if
15: end if
16: if du > thdemand then
17: dC ← 2
18: else if du < −thdemand then
19: dC ← −Ct/2
20: end if
21: return dC
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allocation. Typical techniques that randomly restart hill climbing in another range bring
instability to CPU allocation and make application performance unpredictable. This work
proposes a multi-timescale design to handle high-frequency workload changes. A basic
hill-climbing algorithm allocates cores according to the UIPT measured every interval. A
second hill-climbing instance operates on the average UIPT and average core allocation
over multiple measurement intervals to make adjustments at a larger timescale (Lines 1-4
in Algorithm 2). The second hill-climbing instance at a larger timescale is named multi-
interval corrector in this design. The adjustments from the multi-interval corrector happen
less frequently, but take precedence over the inner basic algorithm. This multi-timescale
mechanism also keeps the inner algorithm constantly searching, which makes the whole
algorithm adaptive to workload changes. The two timescales do not need to be far apart.
In the evaluation experiments in Section 4.4, a combination of 1- and 3-second timescales
already achieves satisfactory results.

In contrast, if the interval between successive workload changes is much longer than the
feedback measurement interval, the basic agility of the feedback loop will typically handle
the change and adjust the CPU allocation accordingly. To further support this agility,
the allocation algorithm never enters a stable state for a long period of time. If the CPU
allocation does not change in one step (Ct = Ct−1), the hill climbing does not work, and
then the next step is chosen randomly (Lines 6-7 in Algorithm 2).

Moreover, an additive increase multiplicative decrease (AIMD) strategy is used to deal
with significant workload changes (Lines 16-20 in Algorithm 2). Specifically, if the absolute
value of the relative change in UIPT exceeds the thdemand threshold (typically chosen as
0.5), this change is considered to be caused by a workload change rather than the recent
adjustment of CPU allocation. When the relative change is positive, two more cores will
be allocated to this workload. Otherwise half of the current allocation will be reduced.
The AIMD mechanism makes it possible for the algorithm to react quickly to a significant
workload change.

In addition, certain applications exhibit a plateau in their performance curve, where
their performance does not change significantly when additional cores are allocated. To
improve the system efficiency, i.e., to use as few CPU resources as possible, the algorithm
tries to find the knee point of the plateau. After the removal of one core, if the change
in UIPT is between ±thsearch, the basic hill-climbing algorithm does not take any action.
Meanwhile if the change is greater than a lower bound thgreedy (typically −0.01), the pre-
vious removal does not result in a considerable performance degradation, so the algorithm
continues removing another core (Lines 11-13 in Algorithm 2).
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4.3 Fuzzy Control

This section introduces an alternative feedback-based algorithm to search for the best CPU
allocation for a stable workload. In particular, this work uses an optimization algorithm
based on fuzzy control, because the inherent nonlinearity of a computing system makes the
design of a classical model-based feedback controller very challenging [30]. Such a classical
controller is typically used for regulatory control, that is, to keep the performance metric
at a desired reference value.

In contrast, the advantage of fuzzy control is that an accurate model of the target
system is not required. Fuzzy control uses qualitative variables to describe the target
system and controller actions, so it is easier to incorporate human expert knowledge on
resource management in the form of fuzzy rules. Fuzzy control handles the uncertainty
caused by measurement noise and system disturbances in a natural way via multiple fuzzy
sets. The control objective for fuzzy control can be optimization instead of regulation [30].
Since a reference input is not necessary in fuzzy control, fuzzy control is suitable for an
optimization problem.

The overall architecture of the fuzzy controller is the same as the architecture of the
hill-climbing algorithm in Section 4.2. Specifically, the inner controller uses the fuzzy-
control algorithm proposed in this section to replace the hill-climbing algorithm, while the
outer corrector does not change (see Figure 4.2). The feedback loop operates in discrete
time. The fuzzy controller has the same two inputs: the change in control input (du(k))
and the change in measured output (dy(k)) between the current and previous intervals.

The inner controller has three important steps as shown in Figure 4.2. Fuzzy rules
are central to fuzzy control. Fuzzy rules are expressed using linguistic variables in the
“IF-THEN” form. These qualitative rules do not contain numeric values. Therefore a
fuzzification process first converts numeric inputs into fuzzy sets that quantify the rules.
Fuzzy sets are associated with membership functions that quantify the certainty that input
values may be classified as linguistic values. Inference in the second step determines which
rules are relevant and to what extent, and draws a conclusion using the rules. Finally,
a defuzzification method aggregates the outcomes of all implied fuzzy rules and inversely
translates the resulting fuzzy set to a single numeric value.

The algorithm details are illustrated in Algorithm 3. When the control system initial-
izes, the inner controller based on fuzzy control starts searching for the optimal number
of cores for the target system. The outer corrector handles the plateau area and various
workload changes. The multi-interval adjustment in the corrector prevents the algorithm
from stopping at any stable state.
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Figure 4.2: Architecture of the Controller

Algorithm 4 presents the basic components of the inner fuzzy controller. A Fuzzification
function translates numeric measurements into inference results with certainty values. The
inferences are made based on predefined fuzzy rules. Last, an AVG function combines the
inference results to get a conclusion. The design details are explained as follows.

First of all, three linguistic variables are used to describe two discrete inputs and one
output of the inner controller. The variable change-in-cores describes how the number of
cores changes in the current interval (refer to du(k) in Figure 4.2), and it takes on the two
values: decrease and increase, in spite of how many cores decrease or increase. Another
variable change-in-throughput, as the name implies, is the relative change in UIPT be-
tween the current and previous intervals (dy(k)). To describe to what extent the through-
put changes, this variable employs four values: decrease, decrease large, increase, and
increase large. The third variable next-change-in-cores is the change in CPU allocation to
the target system, i.e., du(k + 1). Like change-in-throughput, it also has four values. The
actual change in cores may be zero as a result of multiple rules.

Table 4.1 shows the “IF-THEN” form fuzzy rules applied in the controller. The first
four fuzzy rules are basic rules that search for the optimal point in a curve. They cover the
four situations described in the search procedure in Section 4.1. The last four rules just
enlarge the search step ∆ when change-in-throughput is large and the system is far from
the optimal point.

Membership functions are used to quantify all three linguistic variables. As shown in
Figure 4.3, triangular membership functions are used in this design. To get rid of the im-
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Algorithm 3 Allocate(du)

Pt: performance (UIPT) measured in interval t
Ct: core allocation in interval t
du: previous change in cores
dy: relative change in UIPT
dC: change in cores
thgreedy: greedy core reduction threshold
thdemand: demand change detection threshold

1: if (t mod w) = 0 then
2: dy ← (P t − P t−w)/(P t−w)
3: dC ← HillClimbing(dy, Ct − Ct−w)
4: else
5: dy ← (Pt − Pt−1)/(Pt−1)
6: dC ← Fuzzy(dy, du)
7: if du < 0 and dC = 0 and dy > thgreedy then
8: dC ← −1
9: end if

10: if dy > thdemand then
11: dC ← 2
12: else if dy < −thdemand then
13: dC ← −Ct/2
14: end if
15: end if
16: return dC

Algorithm 4 Fuzzy(dy, du)

FS: consequents of control rules
PS: certainty of consequents
gdu: gain factor for du
gdy: gain factor for dy
gdC: gain factor for dC

1: Fuzzification(du*gdu, dy*gdy, FS, PS)
2: dC ← AV G(FS, PS)
3: return Round(dC*gdC)
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Table 4.1: Fuzzy Rules

Rule
IF THEN

change-in-cores (du) change-in-UIPT (dy) next-change-in-cores (dC)
1 increase increase increase
2 increase decrease decrease
3 decrease decrease increase
4 decrease increase decrease
5 increase increase large increase large
6 increase decrease large decrease large
7 decrease decrease large increase large
8 decrease increase large decrease large

(a) change-in-cores (b) change-in-throughput (c) next-change-in-cores

Figure 4.3: Membership Functions

pact of measurement noise and system disturbances, uncertainty is introduced to describe
to what extent the change in throughput is caused by the change in cores. The membership
functions characterize this certainty/uncertainty. For example, in Figure 4.3(a), when the
actual change-in-cores is 0, it is considered as both “increase” and “decrease”. In Fig-
ure 4.3(b), if dy = 0.5 then µincrease(0.5) = 0.75 and µdecrease(0.5) = 0.25, so the controller
is more certain that the throughput increases. After getting the certainty of each premise
term in a rule via the membership functions, the minimum function is used to calculate the
certainty of the conclusion of a rule, i.e., µconclusion = min(µchange−in−cores, µchange−in−UIPT ).

The input values to the membership functions are not the measurements from the
system. All the input measurements are normalized before the membership functions are
applied. The measured values are multiplied by normalizing factors called gains. There are
three gains in the fuzzy controller, for du, dy and C, respectively. Here C is the notation
for next-change-in-cores, i.e., du(k + 1) in Figure 4.2. The gains are denoted by gdu, gdy
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and gC , and have a significant impact on the system performance. For example, if gdy is
10, change-in-throughput is one hundred percent considered as “increase large” when the
measured change is larger than 20% (see Figure 4.3(b)). If gdy is 20, the threshold of one
hundred percent “increase large” becomes 10%, and the controller will be more sensitive to
change-in-throughput. Besides the three normalizing gains, the control interval is also an
important parameter. With a shorter control interval, the system responds more quickly,
but the system may become more fluctuating.

The final output of next-change-in-cores is the combination of the consequents of all
the involved rules. The weighted average method, i.e., the AVG function in Algorithm 4,
is used for defuzzification. The equation to calculate the final output value is

u∗ =

∑
µC(u) · u∑
µC(u)

(4.2)

where u is the centre value of each membership function in Figure 4.3(c) (±1,±2), and
µC(u) is the respective certainty of each consequent.

Last, a complete example is given to walk through the whole fuzzy-control algorithm.
Assume that after one more core is allocated to an application, the measured UIPT in-
creases by 17.5% compared to the last measurement, i.e., du = 1, dy = 0.175. The three
gain factors are gdu = 1, gdy = 10, and gdC = 1. Based on the two membership functions
shown in Figure 4.3(a) and Figure 4.3(b):

du ∗ gdu = 1 =⇒ µcores−increase = 1.0, µcores−decrease = 0

dy ∗ gdy = 1.75 =⇒ µUIPT−increase large = 0.75, µUIPT−increase = 0.25

Based on the fuzzy rules in Table 4.1:

µcores−increase−next = min(µcores−increase, µUIPT−increase) = 0.25

µcores−increase large−next = min(µcores−increase, µUIPT−increase large) = 0.75

Based on the AVG function in Equation 4.2

dC =
µcores−increase−next ∗ 1 + µcores−increase large−next ∗ 2

µcores−increase−next + µcores−increase large−next
= 1.75
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where 1 and 2 are the centre values in Figure 4.3(c).

When the core allocation is an integer, the final output is round(dC∗gdC) = 2, so two more
cores will be allocated to this application in the next interval. This example shows how
the controller determines the CPU allocation based on two inference results with different
certainties. Because the change in UIPT is significant (0.175 or 17.5%), the controller will
use a large search step in the next interval. By comparison, the hill-climbing algorithm in
the previous section uses the same search step in different situations.

4.4 Evaluation of Allocation Algorithms

This section presents an experimental study that evaluates the two allocation algorithms.
Four types of workloads with different characteristics are generated to examine how the
algorithms perform with different performance curves and workload changes. There is
no standard benchmark for adaptive CPU allocation in the literature, so this research
compares the experiment results to the best results with static allocations. In the exper-
iments, the algorithms can find the best CPU allocation for stable workloads, and adjust
the allocations with respect to the requirements of dynamic workloads.

The Linux machine introduced in Section 3.4 is used for experiments in this section.
The allocation program allocates and isolates CPU resources via Linux cgroups. If a client
program is used to generate requests to a server application, this client program is assigned
to a separate set of CPU cores. The allocation algorithms do not rely on any particular way
to allocate CPU resources. Both partitioning and time-based allocation mechanisms are
tested in the following experiments. The core partitioning is based on the cpuset subsystem
of Linux cgroups, while the time-based allocation is based on the quota mechanism in the
cpu subsystem.

The algorithms use the same parameters throughout all the experiments in this section.
The configuration is shown in Table 4.2 (see Algorithm 2 and Algorithm 3 for the meaning
of these parameters). These parameters are not determined through fine-tuning and may
not be optimal for each workload. The objective of the experiments using these parameters
is to evaluate the feasibility of the overall methodology. Evaluation results show that
these values are robust for a wide range of workloads. Different workloads are not very
sensitive to the change thresholds in the two algorithms. The measurement interval affects
measurement noise and controller stability. When the interval is too short, the target
workload may also suffer, because frequent changes to the CPU set cause execution with
cold caches. Finding the optimal parameters for a given workload is another interesting
problem and should be considered in future work.
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Table 4.2: Algorithm Parameters

Common Parameters
measurement interval 1 sec

greedy core reduction threshold -0.01
demand change detection threshold 0.5

Hill Climbing Parameters
change threshold 0.04

Fuzzy Control Parameters
gain factor for relative change in UIPT (gdy) 12
gain factor for previous change in cores (gdu) 1
gain factor for change in core allocation (gdC) 1
Multi-interval Corrector Parameters

CPU adjustment 2 cores
multi-interval window 3 intervals

change threshold 0.1

4.4.1 Stable Workload

The first experiment in this section examines whether the multi-timescale hill-climbing
algorithm can find a proper CPU allocation for a stable workload. The TPC-E workload
used in Section 3.4 is used in this experiment. The same MariaDB server and system con-
figurations are used. The server is warmed up using this workload before the experiments.
The client program has 50 concurrent threads to generate requests. For each client thread,
requests are sent to the database server immediately when the previous one is finished.
With a static CPU allocation, the throughput of the database server does not fluctuate
because similar transactions are being processed. With core partitioning, this workload is
a stable workload with a concave performance curve. The best static CPU allocation for
this workload is 18 cores (see Figure 3.3 on Page 45).

In this experiment, the algorithm is executed repeatedly with two different initial core
allocations, 20 times each. One is lower than the ideal static allocation, while the other
one is higher. Each run lasts for 180 seconds to observe whether the allocation algorithm
can reach the ideal core allocation (18 cores) and how stable the algorithm is after reaching
the ideal core allocation.

Figure 4.4 illustrates the detailed core allocations during two sample experiment runs.
Without any prior knowledge about the optimal number of cores, the hill-climbing algo-
rithm can converge toward the ideal core allocation regardless of the initial core allocation.
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Figure 4.4: Core Allocation with Hill Climbing for Stable TPC-E Workload

The time for the algorithm to reach the ideal allocation depends on the initial core allo-
cation. When starting from 12 cores, the convergence takes 8.33 intervals on average. In
contrast, it takes longer to search from the other side. When starting from 24 cores, the
average time is 17.7 intervals.

After convergence, the performance of the hill-climbing algorithm is stable. This study
considers the average number of cores after convergence in each run as a sample mean.
When the initial allocation is 12 cores, the mean of 20 sample means is 17.26, and the
coefficient of variation is 0.01. When the initial allocation is 24 cores, the mean of 20
sample means is 17.30, and the coefficient of variation is 0.02. In the following experiments,
the average number of cores after convergence is also computed in this way.

The measurements of TPS and UIPT during the same experiment runs are depicted in
Figure 4.5. The baseline measurements with 18 cores are also plotted in the same figure
as a reference. The hill-climbing algorithm achieves performance close to the baseline at
both the application level and the instruction level. The average throughput of 40 runs
reaches 97.4% of the baseline performance. The coefficient of variation is only 0.03, so this
algorithm performs consistently for the stable TPC-E workload.

As a comparison, the same experiment is repeated with the fuzzy-control algorithm.
The average throughput is 96.8% of the baseline result. The coefficient of variation of the
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Figure 4.5: Results with Hill Climbing for Stable TPC-E Workload
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throughput result is 0.03. The average numbers of cores after convergence with the two
different initial allocations are 17.26 and 17.40 respectively. The coefficients of variation
in the two cases are both less than 0.02. Because the results with the two algorithms
are quite close, the detailed results with the fuzzy-control algorithm in this and following
experiments are presented in Appendix A.

4.4.2 Unsaturated Workload

In the second experiment, the two algorithms are evaluated using an unsaturated workload.
When CPU allocation is higher than the requirement of this workload, CPU cores do
not always find threads to run, and the application performance almost does not change.
Thereby the performance curve is not downward concave as in the first experiment, but
contains a plateau. Moreover, this experiment shows that the algorithms in this work are
not specific to database systems and core partitioning.

The Canneal benchmark program from the Parsec suite [6] is chosen for this experiment.
This Canneal program employs cache-aware simulated annealing to minimize the routing
cost of a chip design. Different from database systems that use locks for synchronization,
Canneal uses fine-grained parallelism with a lock-free algorithm. Its aggressive synchro-
nization strategy is based on data race recovery instead of avoidance. The performance
metric of interest for this program is execution time. In this experiment, the number of
threads in the program is set to 64, the number of “temperature steps” in the Canneal
algorithm is set to 30,000, and the native input data set is used.

The quota mechanism in Linux cgroups is used to allocate CPU resources in this ex-
periment. The Canneal program can access 32 physical cores but with a time limit. The
allocation program in this experiment adjusts CPU allocations by changing the quota value
of effective cores. For this workload, the optimal static CPU allocation is 22 effective cores.
When the quota of CPU time is equivalent to 22 effective cores or more, the execution time
of this workload almost does not decrease. Similar to the first experiment, two different
initial quota values are tested in this experiment, 15 and 30 effective cores.

Figure 4.6(a) shows that after the CPU allocation reaches the ideal allocation of 22
effective cores and the hill-climbing algorithm keeps a steady CPU allocation until the
Canneal program finishes. The average quota value of 20 runs with 15 and 30 initial
cores are 21.87 and 22.07 respectively, very close to the ideal allocation. The coefficient of
variation in either case is less than 0.03.

Figure 4.6(b) shows the execution time and UIPT measurements with the hill-climbing
algorithm. The baseline measurements with 22 effective cores are also plotted in this figure.
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The average execution time of 20 runs is 5% longer than the baseline execution time when
the initial allocation is 15 effective cores. When the initial allocation is 30 effective cores,
the average execution time of 20 runs is only 2% longer than the same baseline result.
In both the cases, the hill-climbing algorithm still performs consistently. The coefficient
of variation of the average execution time is less than 0.02 in either case. It can be seen
from Figure 4.6(b) that the offered load is low during the first 28 seconds. Therefore, the
allocation algorithm keeps reducing the quota value (refer to Figure 4.6(a)). When the in-
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Figure 4.6: Results with Hill Climbing for Canneal Benchmark
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itial allocation is 15 effective cores, the allocation is gradually reduced to a small number.
When the workload increases later, it takes more time for the algorithm to increase the
CPU allocation to the ideal level compared to the experiment starting with 30 effective
cores. That is why the average execution time is about 3% longer when the initial allocation
is 15 effective cores. In addition, the AIMD mechanism (see Algorithm 2) is triggered at
the beginning and end of the experiment because of the substantial changes in workload.

The fuzzy-control algorithm performs as well as the hill-climbing algorithm in this
experiment. When the initial allocation is 15 effective cores, the average execution time
is 6% longer than baseline result, and the average quota value after convergence is 20.67.
When the initial allocation is 30 effective cores, the average execution time is only 2%
longer than the baseline result, and the average quota value after convergence is 20.68. In
the two cases, the coefficients of variation of the execution time are less than 0.01. The
coefficients of variation of the quota value are not greater than 0.04. The details are shown
in Appendix A.

4.4.3 High-Frequency Dynamic Workload

A workload in practice may have highly frequent changes which bring interference to a
feedback-based algorithm. The multi-timescale mechanism in this work is used to overcome
this kind of interference. The third experiment validates this design by applying the two
algorithms to such a workload.

The workload in this experiment is based on the TPC-E workload used above. Each
client thread implements a think-time mechanism between requests to vary the offered
load for the server. Each think time is a random integer between 0 and 200 ms generated
according to a uniform distribution, and thus the mean is 100 ms. The workload changes
can be measured at the frequency of feedback measurements. The magnitude of the con-
sequent performance changes is close to the performance change arising from a change in
CPU allocation, and thus affects the judgment of the algorithms. This workload is also
unsaturated because CPU cores do not always have work to do. Partitioning allocation is
used in this experiment. The best static allocation for this workload is 7 cores. With more
than 7 cores, the performance improvement of this workload is negligible.

First, the criticality of the multi-timescale mechanism is verified by confirming that
the single-timescale hill-climbing algorithm in Algorithm 1 does not reliably converge to
the ideal allocation for this high-frequency dynamic workload. Figure 4.7 shows the core
allocation in two sample runs with this algorithm when the initial allocation is 3 or 12
cores. When the initial allocation is 3 cores, the algorithm finds the optimal allocation
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Figure 4.7: Core Allocation with Single-Timescale Hill Climbing
for Stable TPC-E Workload

in the first place but is misled to a wrong range later. When the initial is 12 cores, the
algorithm continuously searches in a wrong range. With only the single-timescale hill-
climbing algorithm, the core allocation does not have a stable pattern. The experiment is
repeated 20 times with two different initial allocations respectively. The results shown in
the figure are two examples. When the initial allocation is 3, the coefficient of variation of
the average core allocation is 0.38. With an initial allocation of 20 cores, the coefficient of
variation is 0.46.

In contrast, the hill-climbing algorithm with the multi-timescale mechanism controls
the CPU allocation within a reasonable range even when a total of 32 cores are provided.
Figure 4.8 shows the detailed CPU allocation in two sample runs with different initial core
allocations. When the initial allocation is 3 cores, after the algorithm finds the proper
allocation, the average number of cores is 6.71. Each run takes 180 measurement intervals,
and the CPU allocation never deviates from the baseline too much. More importantly,
when the initial allocation is more than the ideal 7 cores, the algorithm overcomes the
interference of highly frequent workload changes, and successfully reduces the allocation
to a reasonable level. In this case, the average core allocation after the convergence is
6.72. The coefficient of variation of the average core allocation is larger than that in other
experiments, reaching about 0.14 with either 3 or 12 cores. This is because the mean of
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Figure 4.8: Core Allocation with Hill Climbing
for High-Frequency Dynamic TPC-E Workload

core allocation is not a large number. The actual core allocation in each run is not much
different from each other.

Figure 4.9 presents the TPS and UIPT measurements with the hill-climbing algorithm
during two experiment runs with different initial allocations, 3 and 12 cores. The mean
TPS of 20 runs in the two cases both reach 97% of the baseline result with 7 cores, and the
coefficient of variation is only 0.01. Figure 4.9(b) illustrates that even with a static CPU
allocation, small changes in UIPT are constantly measured. The multi-interval corrector
in the algorithm design is required to eliminate the interference from these fluctuations.

Similarly, the fuzzy-control algorithm achieves 95% of the baseline throughput with
an initial allocation of 3 or 12 cores. The average numbers of cores after convergence are
7.16 and 7.25 respectively in the two cases. The multi-timescale mechanism still plays an
important role in dealing with high-frequency workload changes. The details are shown in
Appendix A.
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Figure 4.9: Results with Hill Climbing for High-Frequency Dynamic TPC-E Workload
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4.4.4 Low-Frequency and Large-Magnitude Dynamic Workload

The last experiment examines whether the algorithms can adapt to a dynamic workload
with infrequent substantial changes, and find the respective optimal static allocations. Two
TPC-E workloads with different think times are combined to generate a dynamic workload
in this experiment. This dynamic workload is changed from high-demand to low-demand
and back to high-demand alternately with each phase being 60 seconds. The high-demand
phase is identical to the stable workload with no think time. The low-demand phase is
the high-frequency dynamic workload with an average think time of 100 ms. Compared
to the measurement frequency, the change between the two workloads does not happen
frequently, but the magnitude is large.

The changes in core allocation and TPS in Figure 4.10 show how the two algorithms
perform during the whole 180-second experiment. Initially 12 cores are allocated to the
database server. The vertical dashed lines indicate when the workload changes. Fig-
ure 4.10(a) shows the detailed core allocations controlled by the two algorithms. What
can be clearly seen from this figure is that the algorithms perform very well in each phase.
Moreover, both the algorithms react quickly to the workload changes. The AIMD mecha-
nism speeds up the adjustments when the workload changes dramatically.

Figure 4.10(b) shows the throughput results with the two algorithms. As a compar-
ison, Figure 4.10(b) includes a synthetic but unreachable optimum result comprised of
the throughput observed with respective optimal static allocations, i.e., 18 cores for the
high-demand phase and 7 cores for the low-demand phase.

The performance of algorithms is evaluated by an average score through the high-
demand and low-demand phases. First, a score in each phase is calculated respectively
by dividing the average TPS using the optimal result of that phase. The overall score
through the two phases is the mean of the two scores in each phase. The same experiment
is repeated 20 times. For both the hill-climbing and fuzzy-control algorithms, the overall
score is 0.98 on average compared to the baseline optimal result. For either algorithm,
the coefficient of variation of the throughput result is less than 0.02. To sum up, this
experiment confirms that the allocation algorithms can automatically adapt to a dynamic
workload with substantial changes and deliver performance that is close to the theoretical
(but unattainable) optimum.
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Figure 4.10: Results for Low-Frequency Dynamic TPC-E Workload
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Chapter 5

CPU Resource Manager for Multiple
Tenants

This chapter studies how to dynamically share CPU resources among multiple tenants
in a work-conserving manner and enforce resource isolation at the same time. The multi-
tenancy in the resource sharing context means multiple workloads share the same resources.
The UIPT metric and the adaptive allocation algorithms described in the previous chap-
ters provide the foundation for the resource manager presented in this chapter. The UIPT
metric enables the resource manager to handle various applications regardless of their spe-
cific performance metrics. The adaptive allocation algorithms are responsible for detecting
the CPU requirement of each tenant workload. In this thesis, the CPU requirement of a
tenant refers to the CPU resources required for its software system to achieve the optimal
performance.

This chapter presents a resource manager that allocates CPU resources to multiple
tenants based on predefined sharing policies and tenant requirements. The sharing policy
employed by the resource manager determines the theoretical share of each tenant. When a
tenant’s CPU requirement is less than its theoretical share, the resource manager ensures
that this tenant’s requirement is met. When a tenant’s requirement is more than its
theoretical share, the resource manager ensures that this tenant can consume at least
its theoretical share of CPU resources. When multiple tenants require CPU resources in
excess of their theoretical shares, and there are no idle CPU resources, the resource manager
enforces resource isolation and ensures that no tenant is degraded because its CPU share is
occupied by other tenants. Meanwhile, the resource manager is work-conserving, so when
there are otherwise idle CPU resources, a tenant can consume more CPU resources than
its theoretical share subject to a certain policy.
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Figure 5.1: Resource Manager Architecture

The resource manager supports various sharing policies and is extensible. A prototype
of the resource manager is implemented with four different sharing policies: proportional
sharing, strict priority, guarantee, and efficiency. This chapter first presents the overall
architecture of the CPU resource manager, and then introduces how the four policies are
implemented based on feedback measurements. The last section shows the evaluation
results regarding these sharing policies.

5.1 System Overview

The resource manager uses the two-level architecture shown in Figure 5.1. Each tenant con-
troller measures UIPT changes of a tenant workload, determines its resource requirements,
and reports resource requests to the master manager periodically. The master manager
makes the allocation decision after collecting resource requests from all the tenant con-
trollers. Then the master manager adjusts the CPU allocation to each tenant workload
and notifies their tenant controllers accordingly. The resource manager is responsible for
managing CPU resources on a single machine, so it is a concurrent system, but not a
distributed system.

A tenant controller determines the CPU requirement of a workload based on recent
CPU allocations and consequential performance changes (see Section 4.1). Application
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performance is estimated via UIPT. The tenant controller can use either of the algorithms
introduced in Chapter 4. A perennial weakness of this kind of feedback-based system is that
the system reaction may lag when the workload changes. The resource manager reduces
the impact of this disadvantage by using UIPT. UIPT is a low-level and generic metric
that can be measured in sub-seconds, so the adjustment of resource allocation can be done
in a short time interval. Another issue of previous feedback-based resource management
systems is that when application-level performance is measured by task completion time,
there is no appropriate metric for online feedback measurement. The resource manager
presented here does not have this problem, because UIPT is a good proxy of application
performance even while the workload is still running.

When the available resources are not sufficient to meet all requests from tenant con-
trollers, the master manager must arbitrate between competing requests based on a sharing
policy. Tenants that share a set of resources must also adopt the same sharing policy. For
example, with a proportional sharing policy, each tenant can obtain only a fraction of the
total available resources proportional to its weight; with a strict priority policy, the tenant
with the highest priority has its CPU requirement met first. The resource manager is able
to support multiple different sharing policies.

A prototype of the resource manager is implemented using C++. The prototype oper-
ates independently from the application software and workload-specific performance met-
rics, and does not require modifications in the OS kernel or tenant applications. In the
prototype, each tenant controller is a separate thread and the main process works as the
master manager. The prototype relies on Linux-specific interfaces. First, UIPT is mea-
sured via Linux system calls for performance monitoring. Moreover, in the prototype, CPU
resources are allocated using the partitioning or the quota mechanism in Linux cgroups.
The partitioning mechanism refers to the cpuset subsystem of Linux cgroups. The quota
mechanism, which is in the cpu subsystem, sets an upper limit on the CPU time that
tasks in a control group can use. Each tenant application is placed in a sub-group, and the
group name is an input to the resource manager. The prototype does not require users to
specify CPU requirements for their applications. CPU allocation is adjusted automatically
according to tenant requirements. The evaluation experiments in this chapter are based
on the hill-climbing algorithm in Section 4.2. Three commonly used sharing policies and
one novel policy are evaluated with this prototype.

When using core partitioning, the resource manager allocates at least one CPU core to
each tenant for two reasons: one, the prototype must keep each tenant application running
and measure UIPT changes; two, the parameter in the cgroup configuration cannot be
blank. When using the quota mechanism, the allocation granularity can be less than one
core, but the prototype still needs to keep a minimum amount of CPU resources for each
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tenant. This minimum allocation may violate the sharing policy in certain cases. For
example, when two workloads share a total of 16 cores under the priority policy, and the
high-priority workload requires all 16 cores, it can obtain only 15 cores. This is a limitation
of the resource manager.

5.2 Sharing Policies

5.2.1 Proportional CPU Sharing

With proportional CPU sharing, every tenant has a weight and receives a theoretical share
of the available resources proportional to its weight. With a work-conserving resource
management system, a tenant is allowed to use more resources than its theoretical share.
The proportional sharing policy defines how idle CPU resources should be shared among
tenants that have requirements in excess of their theoretical shares, i.e., still proportional
to their weights.

The resource manager in this thesis can use core partitioning or the quota mechanism
to restrict each tenant from consuming more CPU resources than its fraction when there
is CPU contention, and adjusts the limit adaptively. In particular, tenant controllers
determine CPU requests based on the hill-climbing algorithm in Chapter 4, and the master
manager employs a weighted max-min fairness algorithm [38] to determine CPU allocation
among tenants.

The algorithm shown in Algorithm 5 maximizes the minimum share of a tenant whose
demand is not fully satisfied. First of all, the fair share unit is calculated using the current
total weight to divide the total residual CPU resources (Line 13 in Algorithm 5). In each
iteration, the quantity of CPU resources a tenant can obtain is its weight times the share
unit. If the tenant does not require that many CPU resources, only the quantity specified
in the request is allocated to the tenant (Lines 15 - 19 in Algorithm 5). The residual
amount is allocated in the next iteration to the remaining unsatisfied tenants until there
is no residual resource or unsatisfied tenant (Lines 3, 10 - 12 in Algorithm 5). If core
partitioning is used for CPU allocation, the CPU cores are considered as indivisible, so the
allocation numbers returned by this algorithm need to be rounded to the nearest integer.
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Algorithm 5 WeightedMaxMin(requests)

Configuration:
total: the total available CPU resources
tn: the number of tenants
weights: the array of weights of tenants
Input:
requests: the array of CPU requests from tenant controllers
Output:
allocations: the array of CPU allocations to tenants

1: available← total
2: allocations[1 .. tn]← 0
3: while available > 0 do
4: sum weight← 0
5: for t← 1 to tn do
6: if allocations[t] < requests[t] then
7: sum weight← sum weight+ weights[t]
8: end if
9: end for

10: if sum weight = 0 then
11: break while
12: end if
13: unit← available/sum weight
14: for t← 1 to tn do
15: if allocations[t] < requests[t] then
16: delta←Min(unit ∗ weight[t], request[t]− allocation[t])
17: allocations[t]← allocations[t] + delta
18: available← available− delta
19: end if
20: end for
21: end while
22: return allocations
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5.2.2 Priority-Based CPU Sharing

Another fundamental sharing policies in practice is priority-based allocation among multi-
ple tenant applications. With this policy, the tenant with the highest priority can obtain
a CPU allocation equal to its requirement unless the available resources are not sufficient.
Provided there are still enough resources remaining, the next highest priority tenant is able
to have its requirement met, and so on.

With this sharing policy, the goal of CPU allocation is to guarantee the best-possible
performance for high-priority workloads, while improving the performance of low-priority
workloads as much as possible, corresponding to resource isolation and work conservation
respectively. A typical example scenario is given by a database system tasked to process
online transactional requests in near-realtime with high priority, such as account updates
or purchasing requests. At the same time, analytical queries are also being executed at
lower priority, but their completion time is still important for the overall outcome of the
system operation.

The implementation of the priority policy is straightforward. Each tenant controller
locally determines the CPU requirement of its tenant workload based on the feedback
of UIPT changes. After that, the tenant controller reports the CPU requirement to the
master manager as a resource request. Strict priorities are assigned to tenants and the
master manager meets the requests of tenant controllers in the priority order. Thus, the
requirement of low-priority workloads may be unfulfilled when the total CPU resources are
not sufficient.

5.2.3 Resource Guarantee for Multiple Tenants

Another common sharing policy in practice is allocating a specific quantity of CPU re-
sources to each tenant and guaranteeing that the tenant can use at least these CPU re-
sources. With this policy, the guaranteed quantity is the theoretical share for each tenant
when there is resource contention. Different from the proportional sharing or priority pol-
icy, the theoretical share with the guarantee policy is absolute, i.e., independent of other
tenants. In reality, e.g., in a cloud environment, a virtual machine may be exclusively
allocated a certain number of CPU cores to assure its quality of service. To deliver the
guarantee, the CPU cores are partitioned, and all the tenant workloads need to be pinned
to specific cores. Another common practice is setting an upper limit for the CPU time
each tenant can use. These static mechanisms guarantee the quantity of CPU resources
one tenant can utilize by restricting the maximum CPU resources that other tenants can
utilize.
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However, the static mechanisms are not work-conserving. If there are residual CPU
resources, the work-conserving resource manager allows an unsatisfied tenant to utilize
more CPU resources than its guaranteed quantity. Given that the guarantee policy does
not define how residual CPU capacity is shared among unsatisfied tenants, another policy
is required to determine the sharing, e.g., the proportional sharing or priority policy. When
two policies are used together, the guarantee policy can be considered as a supplement to
the other policy acting to ensure that the absolute minimum guaranteed resources are
always present.

The implementation of this policy in the resource manager is based on the requests
from tenant controllers. After receiving the requests, the master manager first subtracts
the minimum value between each tenant’s request and the guaranteed quantity from the
total available CPU resources. Proportional sharing is used by the prototype together with
the guarantee policy. The weighted max-min fairness algorithm in Algorithm 5 is used to
share the remaining CPU resources among unsatisfied tenants. The guaranteed quantity
of each tenant is employed as its weight in this algorithm.

5.2.4 Efficiency-Based CPU Sharing

In the first three policies, the CPU allocation among multiple tenants is based on each
tenant’s predefined weight, priority or guarantee instead of a metric describing the overall
system. This section introduces a novel CPU sharing policy aiming to achieve the highest
overall system efficiency.

The system efficiency is measured based on application performance. When the CPU
allocation among multiple tenant applications changes, applications’ performance may in-
crease or decrease respectively. If the performance of different applications is normalized
to a uniform score, the gains and losses can be compared. In this research, the CPU
allocation that achieves the highest total normalized score is considered to be the most
efficient allocation for the underlying infrastructure. In other words, the sharing policy in
this section aims to obtain the best normalized performance from the whole system.

To support the efficiency-based sharing policy, the resource manager adjusts CPU al-
location by comparing which tenant can obtain a higher (normalized) score with one more
CPU core or equivalent quota time. At the application level, the normalized score is cal-
culated as shown in Equation 5.1. In the resource manager, the baseline performance is
the application performance with a single CPU core. This means that the efficiency policy
intends to allocate CPU resources to the tenant application that is more scalable.
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Normalized Score =
Application Performance

Baseline Performance
× Efficiency Factor (5.1)

Moreover, because different tenants may have different merits for the infrastructure
owner, an efficiency factor is used in the normalization. The efficiency factor is not the
same as the weight in proportional sharing. In proportional sharing, each tenant’s weight
can be used to quantify its importance, but the proportional sharing policy does not take
the runtime efficiency of applications into account. Allocating more CPU resources to the
tenant with a higher weight does not always result in a better overall outcome.

For this efficiency policy, tenant controllers do not request CPU resources from the
master manager. The adaptive allocation algorithms in Chapter 4 are not used here.
Instead each tenant controller reports the change rate of UIPT with one more CPU core
being allocated to its tenant application, and the master manager uses the change rates
to estimate the score change. To calculate the change rate of UIPT, the change in UIPT
when one core is added or reduced is divided by the average UIPT when the workload is
executed with a single core. When the CPU allocation is changed, the UIPT measured
in the current interval is compared with the previous average UIPT value. If the CPU
allocation to a tenant does not change in a measurement interval, the measurement in this
interval is used to calculate a new average UIPT of this tenant. The average UIPT with
a single core needs to be measured in advance and passed to the tenant controller as an
input.

The algorithm used in the master manager is shown in Algorithm 6. In every mea-
surement interval, the master manager calculates the potential change of each tenant’s
normalized score with one more core based on the tenant’s efficiency factor times the
change rate of UIPT reported by its tenant controller (Line 7 in Algorithm 6). The change
of each tenant’s normalized score is pushed into a priority queue and the queue is sorted
by the change values (Line 8 in Algorithm 6). The master manager first reduces one core
from every tenant with a negative change value because these tenants will benefit from the
reduction of CPU allocation (Lines 9 - 12 in Algorithm 6). Next if there are no idle CPU
resources, it means that all the tenants have a positive change of normalized score. The
resource manager takes one core from the tenant with the minimum change and gives the
core to the one with the maximum change, because the gain is greater than the loss and
the overall efficiency still improves (Lines 15 - 20 in Algorithm 6). While there are still
remaining CPU resources, the master manager pops the next tenant with the maximum
positive change from the queue and allocates one more core to this tenant (Lines 22 - 26
in Algorithm 6.
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Algorithm 6 EfficiencyAllocate(rates)

total: the total available CPU resources
tn: the number of tenants
rates: the array of change rates of UIPT from tenant controllers
factors: the efficiency factors for tenants
allocations: the array of CPU allocations to tenants in last interval

1: available← total
2: for t← 1 to tn do
3: available← available− allocations[t]
4: end for
5: /* score queue is the priority queue used to sort the score changes */
6: for t← 1 to tn do
7: score change← factors[t] ∗ rates[t]
8: Push(score queue, {score change, t})
9: if rates[t] < 0 then

10: allocation[t]← allocation[t]− 1
11: available← available+ 1
12: end if
13: end for
14: {max change,max index} ← PopMax(score queue)
15: if available = 0 then
16: if max change > 0 then
17: {min change,min index} ← GetMin(score queue)
18: allocation[min index]← allocation[min index]− 1
19: allocation[max index]← allocation[max index] + 1
20: end if
21: else
22: while available > 0 AND max change > 0 do
23: available← available− 1
24: allocation[max index]← allocation[max index] + 1
25: {max change,max index} ← PopMax(score queue)
26: end while
27: end if
28: return allocations
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There are different ways to calculate the normalized score based on application per-
formance. This thesis presents only one of the meaningful possibilities. For example, the
initial application performance when a tenant controller starts can also be used as the
baseline performance in Equation 5.1 for normalization. The initial UIPT can be mea-
sured by each tenant controller directly. Therefore, tenant controllers do not require any
input UIPT as a baseline value. If this is the case, the meaning of the normalized score
is different. How to calculate the normalized score or how to define the overall efficiency
depends on the concrete purpose of resource management.

5.3 Evaluation of Resource Manager

5.3.1 Experiment Design

The experiments in this section are used to evaluate the resource manager with respect
to four different sharing policies. The policies are not specific to the resource manager.
Thus, there are other ways to implement the policies. The resource manager is compared
with various existing state-of-the-art mechanisms in terms of application performance and
resource isolation.

For each policy, an experiment with two stable workloads is conducted to test whether
the resource manager can enforce the sharing policy. In the experiments with stable work-
loads, there exists an ideal static allocation between two workloads. The purpose of the
experiments is to test whether the resource manager can allocate CPU resources in the
ideal way. Moreover, the best application performance with corresponding static allocation
is measured as a reference to evaluate the application performance under the control of
the resource manager. For the proportional-sharing and guarantee policies, the ideal static
allocation is pre-specified. For the priority and efficiency policies, the ideal static allocation
is based on application performance and can be found through preparatory experiments.
The results with the current best-practice mechanisms that implement the same policy are
also measured as a comparison.

Second, an experiment with a dynamic workload and a stable workload is used to
verify the effectiveness of the resource manager in more complex scenarios. With a static
allocation, CPU resources are not fully utilized if the requirements of workloads are time-
varying. The experiment results with the resource manager are compared with the results
with current best-practice mechanisms that implement the same sharing policies. The
application performance is measured to show the gain resulting from the work-conserving
feature of the resource manager.
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Table 5.1: Current and Baseline Mechanisms for Different Policies

proportional-
sharing

priority guarantee efficiency

Static/Reference static
partitioning

(cpuset), static
usage limit

(quota)

static
partitioning

(cpuset)

static usage
limit (quota),
weighted-fair

(weight)

static usage
limit (quota),
weighted-fair

(weight)

Best-practice weighted-fair
(weight)

emulated
priority

static usage
limit (quota)

N/A

Table 5.1 lists the static reference and best-practice mechanisms used in the experi-
ments. The concrete mechanisms in Linux cgroups used in the experiments are indicated
in the parentheses. The priority policy is usually emulated via weighted time-based allo-
cation in reality. Since currently no other system supports the efficiency policy in practice,
the best-practice mechanism in this case is not available.

In the evaluation of the proportional-sharing policy, both the partitioning mechanism
and the quota mechanism in Linux cgroups are used by the prototype to allocate CPU
resources. The resource manager is effective with different CPU allocation methods. Only
the partitioning mechanism is used in the evaluation of the priority policy. With the
partitioning mechanism, the primary workload in the experiment does not require all the
cores to achieve its best performance. In contrast, with the quota mechanism, all CPU
resources are required. (The performance curve is shown in Figure 2.1 on Page 21.) Hence
the effectiveness of the resource manager in the priority scenario can only be shown when
using partitioning. The quota mechanism is employed in the evaluation of guarantee and
efficiency policies, since the quota mechanism is more generic than the partitioning mech-
anism. In the experiments, the allocation unit of quota time is an effective core. As in
Section 2.2.1, the CPU time that is equivalent to one CPU core during a period of time is
considered as an effective core.

The same machine and Linux system used in the previous chapters are used in the
experiments. The concrete workloads and setups are introduced in the following subsections
for each policy respectively.

In addition to the experiments in this chapter, the experiments in Section 2.2.2 are re-
peated using the resource manager proposed here. These experiments are used to compare
resource isolation of different mechanisms. The results show that the resource manager
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can enforce resource isolation in different proportional sharing scenarios as presented in
Appendix B.

5.3.2 Proportional Sharing Policy

This section evaluates how the resource manager supports the proportional sharing policy.
In Section 2.2.2, resource isolation of existing mechanisms with different weight ratios is
studied. A weight ratio of 3:1 is chosen in the present section to verify that the resource
manager can achieve resource isolation and work conservation simultaneously. Moreover,
a representative CPU-intensive program is used to replace the cpuhog micro-benchmark
used in Section 2.2.2. How the resource manager performs with other weight ratios and
workload combinations is shown in Appendix B.

The first experiment in this section examines whether the resource manager can ef-
fectively isolate the CPU resources when there is CPU contention between two stable
workloads. Specifically, in such a contention scenario, the resource manager needs to en-
sure that the fraction of resources that each tenant can utilize is proportional to its weight.
Second, the resource manager is work-conserving, so a dynamic workload and a stable
workload are executed together to verify the benefit of this feature.

A multithreaded benchmark program named swaptions from the Parsec benchmark
suite [6] is used in this section. This benchmark is a CPU-intensive workload which uses
the Heath-Jarrow-Morton (HJM) framework [32] to price a portfolio of swaptions. This
program employs a Monte Carlo simulation to compute the prices. The stable and dynamic
TPC-E workloads in Section 4.4 are co-located with the swaptions workload. In the stable
workload, the clients submit transactions continuously with no think time. The dynamic
workload executes multiple 120-second cycles. The 60 seconds high-demand phase uses the
stable workload, while in the 60 seconds low-demand phase, each client inserts a random
think time (0 to 200 ms) between transactions.

A total of 16 CPU cores are available in the experiments. In both the experiments, the
weight of the static or dynamic TPC-E workload is 3, while the weight of the swaptions
workload is 1. The experiments evaluate different versions of the resource manager that use
two different mechanisms to allocate CPU resources (partitioning and quota). In addition,
the application performance with static partitioning is measured, in which case the static
or dynamic TPC-E workload is allocated 12 physical cores, while the swaptions program
is allocated 4 cores. The quota mechanism in Linux cgroups is also tested as a reference.
The static quota values for the two workloads are 1,200,000 and 400,000 microseconds
respectively. Given the period of 100,000 microseconds in the cpu subsystem, these quota

88



values are equivalent to 12 and 4 effective cores. These static allocations follow the weight
setting of 3:1.

Stable Workloads

The purpose of this experiment with two stable workloads is to test whether the resource
manager can enforce the proportional sharing policy. The total 16 cores cannot meet the
CPU requirements of the two workloads at the same time. Ideally, the TPC-E workload
with a weight of 3 should obtain 12 cores, while the swaptions workload should obtain 4
cores. This experiment checks if the resource manager and the weight mechanism in Linux
cgroups can allocate CPU resources in this ideal way. Because there is no way to directly
measure the actual CPU allocation when using the weight mechanism in Linux cgroups,
CPU usage of workloads is measured in this experiment instead. The perf event interface
in Linux [73] is used to measure the CPU usage of each workload during the experiments.

Figure 5.2(a) shows the CPU usage of the two workloads with different mechanisms.
The measured CPU time is converted to the number of effective cores during the experiment
and each result is the mean of 20 samples. The results with ideal static partitioning and
static quota are also presented in this figure. It can be clearly seen that the CPU usage
results with the resource manager is close to the results with static partitioning or static
quota.

When core partitioning is used in the resource manager, the CPU usage of the TPC-E
workload is 9.91 effective cores, while the CPU usage of the swaptions workload is 4.21
effective cores. When the resource manager controls the quota limits, the CPU usage
results of the two workloads are 9.66 and 4.37 effective cores respectively. In contrast, with
the weight mechanism in Linux cgroups, the CPU usage of the TPC-E workload is only
5.49 effective cores, whereas the CPU usage of the swaptions workload is 10.01 effective
cores. Obviously, CPU time is not shared based on the 3:1 weight ratio with the weight
mechanism, and this result is consistent with the findings in Section 2.2.2.

Figure 5.2(b) and Figure 5.2(c) show how the resource manager adjusts core partitioning
or quota limits between stable workloads. At the beginning, the two workloads have
equal resources. The resource manager quickly adjusts the CPU allocation according to
the weight ratio and keeps a stable allocation afterwards. The average allocation to the
TPC-E workload is close to 12 physical or effective cores, but because of the workload
characteristics, the database server does not fully utilize the allocated CPU resources.
Even with static partitioning, the TPC-E workload uses only 10.33 effective cores out of
the 12 physical cores. With a static quota of 12 effective cores, CPU usage of the TPC-E

89



workload is only 10.02. The same experiments are repeated 20 times with the resource
manager. For the average physical cores or quota time allocated to the TPC-E workload,
the coefficient of variation is less than 0.02, showing that the resource manager perform
consistently.

Figure 5.3 shows the throughput of the TPC-E workload with a weight of 3. When
core partitioning is used, the average throughput of the TPC-E workload with the resource
manager reaches 98.2% of the average throughput with static partitioning. When the quota
mechanism is used, the average throughput of the TPC-E workload with the resource
manager is 97.9% of the average throughput with static quota. This result confirms that
the CPU allocation with the resource manager is close to the ideal allocation. Table 5.2
shows the execution time of the swaptions benchmark. With the weight mechanism, the
execution time of the swaptions benchmark is shortest, because this benchmark workload
consumes more CPU resources than its theoretical share.

The CPU usage of the two workloads with static quota is close to that with static
partitioning. The execution time of the swaptions workload is also similar. Nevertheless the
throughput of the TPC-E workload with a static quota is 15.1% lower than the throughput
with static partitioning because of the excessive parallelism (see also Section 2.2.1). With
the resource manager, the difference caused by the two mechanisms still exists.

Dynamic Workloads

The experiment with the dynamic TPC-E workload and the stable swaptions workload is
used to verify that the resource manager can maintain work conservation while enforcing
resource isolation. The weights of the two workloads are still 3:1. The dynamic TPC-
E workload does not require all the 12 cores in the low-demand phase, so the resource
manager adaptively adjusts CPU allocation and allows the swaptions workload to use
those otherwise idle CPU cores.

Figure 5.4 shows that the resource manager changes core allocation or quota limits
as the TPC-E workload changes. When the CPU requirement of the TPC-E workload is
high, and there is contention between the two workloads, the CPU allocation still follows
the weight ratio of 3:1. When the requirement of the TPC-E workload decreases, the
swaptions workload can consume more than its fraction (4 physical or effective cores).
With 20 repeats of each experiment, the coefficient of variation of CPU allocation to the
two workloads is less than 0.03 with either core partitioning or the quota mechanism. The
resource manager stably achieves both resource isolation and work conservation.
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Figure 5.2: CPU Usage and Allocation between Stable Workloads with Weights of 3:1
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Table 5.2: Swaptions Execution Time with A Stable TPC-E Workload

manager/partitioning static partitioning manager/quota static quota cgroups weight
Time 788.34s 825.63s 747.57s 819.15s 343.17s
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Table 5.3 shows the completion time of the swaptions benchmark with different allo-
cation mechanisms. With the resource manager, the dynamic partitioning result is 38.3%
shorter than the result with static partitioning, and the dynamic quota result is 28.5%
shorter than the result with static quota. The static allocation mechanisms are not work-
conserving. The CPU resources are not fully utilized because the most CPU resources each
workload can consume is restricted by physical cores or quota limits.

The weight mechanism is work-conserving, and thus the execution time of the swap-
tions benchmark with this mechanism is much shorter than other results. However, this
mechanism cannot enforce the resource isolation based on weights. It can be seen from
Figure 5.5 that, with the weight mechanism, the TPS result of the TPC-E workload de-
clines significantly compared to the results in other cases, because the TPC-E workload
cannot get its fraction of CPU resources even when its requirement is high. In contrast,
the resource manager ensures that the CPU allocation follows the weight ratio when the
requirement of the TPC-E workload is high. During the experiments, the TPS result with
the resource manager is close to that with static partitioning or static quota. In both
high-demand and low-demand phases, with either partitioning or quota, the average TPS
with the resource manager is about 97% of the result with static allocation.

To sum up, the evaluation results show that the resource manager can achieve resource
isolation and work conservation simultaneously with the proportional sharing policy. In
contrast, static partitioning and static quota can enforce resource isolation but are not
work-conserving. The weight mechanism in Linux cgroups is work-conserving but it does
not ensure resource isolation. Moreover, the resource manager can work with both core
partitioning and the quota mechanism.

5.3.3 Priority Policy

The evaluation of the resource manager with respect to the priority policy is divided
into two steps. First, the effectiveness of the resource manager is demonstrated using
a pair of symmetric stable workloads with different priorities. In the second step, two
different workloads are used, and the high-priority workload is time-varying. This scenario
is investigated with limited CPU resources to illustrate the possible performance gains
with the work-conserving resource manager. In this section, the workload with a higher
priority is referred to as the primary workload, while the lower priority one is referred to
as the secondary workload. The experiments in this section uses the TPC-E and TPC-H
database workloads introduced before in Section 3.4.

In the experiments, the resource manager employs core partitioning to allocate CPU
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(b) Core Allocation with the Quota Mechanism

Figure 5.4: CPU Allocation between Dynamic Workloads with Weights of 3:1
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Table 5.3: Swaptions Completion Time with A Dynamic TPC-E Workload

manager/partitioning static partitioning manager/quota static quota cgroups weight
Time 530.08s 859.65s 605.85 847.40s 315.05s
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resources. The results with the best static partitioning are examined as a comparison.
With the same CPU resources, if the quota mechanism is used for allocation, the primary
TPC-E workload requires all the resources to achieve its best performance (as shown in
Figure 2.1 in Section 2.2.1). Hence the quota mechanism is not suitable to illustrate how the
resource manager works in the two experiments. Different from the proportional sharing
experiments, the two mechanisms are not compared in the same experiments.

In current CPU schedulers and resource managers, priorities are usually emulated via
weighted time-based allocation [26, 57, 67]. Google’s open-source Kubernetes system [26] is
a typical example of emulated priority. Therefore, in the two experiments, the results with
the resource manager are also compared with the results with a Kubernetes setup. Through
different Kubernetes configurations, the primary workload is assigned to the ‘Burstable’
priority class, while the secondary workload belongs to the ‘BestEffort’ class. It can be
observed that Kubernetes creates sub-groups for the containers in cpuset and cpu subsys-
tem of Linux cgroups. The cpu.shares of the sub-groups in the ‘Burstable’ class is 10240,
while the value of cpu.shares of the sub-groups in the ‘BestEffort’ class is 2. Meanwhile,
any configured limit of CPU resources is implemented by the quota limit. Kubernetes
runs applications in Docker containers. For the sake of fairness, the workloads are also
executed in Docker containers in the experiments with static partitioning and the resource
manager. In the experiments for the other three policies, the applications do not run in
Docker containers. In those experiments, it does not matter whether the applications run
in Docker containers.

Stable Workloads

The first experiment is used to illustrate that the resource manager can find the proper
CPU allocation for two stable workloads based on their priorities. The stable TPC-E
workload described in the previous section is used in this experiment. In a preparatory
experiment, the throughput of two TPC-E workloads with all the possible static partition-
ing combinations is measured. When running in parallel with a secondary workload, the
throughput of the primary TPC-E workload reaches its peak value when 16 cores are allo-
cated. The two database servers share 24 cores in total in this experiment, which ideally
leaves 8 cores for the secondary workload.

Figure 5.6(a) shows the detailed CPU core allocation during the experiment. At the
beginning, the primary workload and the secondary workload are both allocated 12 cores.
The resource manager quickly converges to the proper partitioning and keeps the allocation
around that point. The spikes in the figure are trial allocations from the multi-timescale
mechanism in the tenant controllers. The average number of cores allocated by the resource
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Figure 5.6: Results for Stable Workloads with Different Priorities
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manager to the primary workload is 16.2, which is close to the best static allocation. The
experiment with the resource manager is repeated 20 times to study the repeatability of
the results. The coefficient of variation of the average core allocation is 0.02 for the primary
workload, and 0.05 for the secondary workload.

The throughput results of the primary TPC-E workload with different allocation meth-
ods are presented in Figure 5.6(b), while the results for the secondary workload are shown
in Figure 5.6(c). Each experiment run lasts for 180 seconds. It can be seen that for both
the primary and secondary workloads, the resource manager performs almost the same as
the best static partitioning. With the resource manager, the average throughput of the
primary workload is 98.6% of the result with the best static partitioning. Emulated prior-
ity in Kubernetes also performs very well for the primary workload. As for the secondary
workload, the average throughput with the resource manager is 94.5% of the result with the
best static allocation. However, with emulated priority, the throughput of the secondary
workload is much lower, only about 40.1% of the throughput with the best static parti-
tioning (also shown in Figure 5.6(c)). As discussed in Section 2.2.1, when too many CPU
cores are allocated to the TPC-E workload, the excessive parallelism causes CPU cycles to
be wasted. Dynamic partitioning in the resource manager can effectively limit the paral-
lelism. By comparison, with the emulated priority (i.e., weighted time-based allocation),
the primary workload can use all the available cores in parallel. Therefore, a considerable
number of CPU cycles are wasted, which are then not available for the secondary workload.
These results demonstrate that the resource manager can find the proper core allocation to
guarantee the performance of the primary workload, while achieving a better performance
of the secondary workload compared to the emulated priority in Kubernetes.

Dynamic Workloads

This experiment creates a setup comprised of OLTP and OLAP workloads that mimics a
practical scenario where a multi-tenancy system handles front-end business transactions as
well as back-end analytical queries. The performance of the transactional workload must
be guaranteed, while the analytical queries are also expected to finish as soon as possible.
In this experiment, the primary TPC-E workload has a higher priority and time-varying
requirements. The primary dynamic TPC-E workload is the same as in the proportional
sharing experiment. This workload has a high-demand phase and a low-demand phase
alternatively. The secondary OLAP workload is the TPC-H workload introduced in Sec-
tion 3.4, which is stable and runs until completion.

To show the performance improvement resulting from the work-conserving resource
manager, a resource-constrained scenario is created. The total number of cores for both
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workloads is set to 22. The best static allocation in the two phases of the TPC-E workload
is 16 and 7 cores respectively. The best static allocation for the TPC-H workload is 15
cores. To guarantee the throughput of the primary workload during the high-demand
phases, the reference static allocation is 16 cores for the primary TPC-E workload and 6
cores for the secondary TPC-H workload. The emulated priority configuration is set up
using Kubernetes, as before, and both tenants can access all the 22 cores.

Figure 5.7 shows how the resource manager allocates cores to the two workloads. The
average number of cores allocated to the TPC-E workload is 15.57 in the high-demand
phase and 6.77 in the low-demand phase, close to the ideal static allocation. The average
number of cores allocated to the TPC-H workload is 9.87, almost 4 more cores than the
static partitioning. Therefore, this workload is able to finish more quickly. With the same
experiment repeated 20 times, the coefficient of variation of the average number of cores
allocated to the TPC-E workload is 0.04.

The TPS of the TPC-E workload is calculated and plotted every 10 seconds. As shown
in Figure 5.8, the resource manager can find a proper core allocation within the first 10
seconds. After that, the throughput of the primary workload is as good as the result
using static allocation. In the experiment run shown in this figure, the average throughput
during the high-demand phases reaches 96.8% of the average throughput with the static
allocation. In this scenario, emulated priority in Kubernetes can also guarantee that the
primary workload has enough CPU time. The average throughput is also as good as that
with static allocation.

Table 5.4 shows the TPC-H completion time with the three different resource alloca-
tion methods. In this scenario, the resource manager reduces the completion time of the
secondary OLAP workload by 27.1% compared to the static allocation and 45.2% com-
pared to emulated priority (Kubernetes). The results show that both static partitioning
and emulated priority limit the performance of the low-priority tenant, while the resource
manager allows the secondary workload to access CPU resources not currently being used
by the primary workload.

In summary, the resource manager can still achieve both resource isolation and work
conservation with the priority policy. Moreover, the experiments in this section shows that
the resource manager can make use of partitioning to avoid the impact of excessive paral-
lelism. Conversely, emulated priority suffers from the parallelism issue in the experiments.
CPU resources are wasted rather than used for the secondary workload.
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Table 5.4: Secondary MariaDB/TPC-H Completion Time

resource manager static partitioning emulated priority
Time 474.68s 651.57s 866.41s
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5.3.4 Guarantee Policy

This section presents the two evaluation experiments for the guarantee policy. In the
first experiment, a stable Memcached workload without any rate limit is co-located with
the same swaptions benchmark as in Section 5.3.2. The Memcached workload generated
by the Mutilate generator [53] is a read-heavy workload with an update ratio of 0.1 (cf.
Section 2.2.1). In the second experiment, a dynamic Memcached workload consisting of
multiple 120-second cycles is employed. In each cycle, there are a 60 seconds high-demand
phase that has no rate limit and a 60 seconds low-demand phase that has a rate limit of
400,000 queries per second.

In the experiments, the resource manager uses the quota mechanism in Linux cgroups
to allocate CPU resources. In each experiment, two applications can access 32 physical
cores, but the sum of their quota limits is no more than 20 effective cores. The guaranteed
quantity for the static or dynamic Memcached workload is set to 12 effective cores, while
the swaptions workload is guaranteed to obtain CPU resources equivalent to 8 cores. When
the stable Memcached workload is executed in isolation, it requires 20 effective cores. In
the low-demand phase, the dynamic Memcached workload requires only 6 effective cores.
The swaptions workload requires 26 effective cores when it runs in isolation.

The resource manager is compared with the static quota mechanism in this section.
Static quota is widely used in practice to restrict the CPU usage of tenants, but the quota
values are fixed. As a comparison, the experiments are also conducted with the weight
mechanism in Linux cgroups using a weight ratio of 12:8, because this mechanism is work-
conserving and usually used for dynamic workloads.

Stable Workloads

This experiment shows that the resource manager can enforce the guaranteed quantity as
well as static quota. The guaranteed CPU allocation for each of the workloads is chosen
to be smaller then their respective requirements. According to the guarantee policy, the
resource manager should allocate 12 effective cores to the Memcached workload and 8
effective cores to the swaptions workload. As a comparison, the static quota values for the
two workloads are directly set to 12 and 8 effective cores.

Figure 5.9 shows the CPU allocation from the resource manager. The initial allocation
is that each workload obtains 10 effective cores. The resource manager finds the ideal
allocation quickly. The average number of effective cores allocated to the stable Memcached
workload is 11.75. The swaptions workload obtains 7.89 effective cores. The resource
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manager basically enforces the guaranteed quantity of each workload. The same experiment
is repeated 20 times. For the two workloads, the coefficients of variation of CPU allocation
are both less than 0.01.

Figure 5.10 illustrates the throughput results of the Memcached workload with three
different mechanisms. The result with the resource manager is 96.7% of that with the
ideal static quota. In contrast, the weight mechanism cannot guarantee the CPU resources
allocated to the Memcached workload. The throughput result with this mechanism is
about 25% lower than the result with static quota until the swaptions workload completes.
Table 5.5 presents the completion time of the swaptions workload with three different
mechanisms. The result with the resource manager is close to that with static quota. With
the weight mechanism, the swaptions workload consumes more than 8 effective cores, which
completes sooner but influences the performance of the Memcached server.

Dynamic Workloads

This experiment shows how the resource manager ensures the guaranteed CPU resources as
well as keeping its work-conserving property. The experiment uses a dynamic Memcached
workload and a stable swaptions workload, while the two workloads are still guaranteed to
obtain 12 and 8 effective cores respectively. The dynamic Memcached workload requires
less than 12 effective cores during the low-demand phase. Hence the swaptions workload
can utilize more resources than 8 effective cores during that phase. The prototype uses
the proportional sharing policy for the sharing of idle CPU resources from the Memcached
workload. The swaptions workload is the only unsatisfied tenant in this experiment, so it
can obtain all the extra resources.

Figure 5.11 shows the detailed CPU allocation during the whole experiment. When the
workloads both require more CPU resources than their guaranteed quantity, they obtain
respective guaranteed quantity of CPU resources. In the high-demand phase, on average
there are 11.57 effective cores allocated to the Memcached workload and 7.99 effective
cores allocated to the swaptions workload. The swaptions workload only consumes more
than 8 effective cores when the requirement of the Memcached workload declines to about
6 effective cores in the low-demand phase. The CPU time allocated to the Memcached
workload is not more than 12 effective cores except at the end of the experiment when the
requirement of the swaptions workload declines. The same experiment is also repeated 20
times. Regrading the CPU allocation to the two workloads, the coefficient of variation is
0.03 and 0.02 respectively.

Figure 5.12 illustrates the throughput result of the Memcached workload with different
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Table 5.5: Swaptions Completion Time with Stable Memcached/Mutilate
Workload

resource manager static quota cgroups weight
Time 813.79s 830.97s 641.94s
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allocation mechanisms. The average QPS in the high-demand phase with the resource
manager is 96.4% of that with static quota. The average QPS with the weight mechanism
is only 82.8% of that with static quota. In the low-demand phase, the QPS results with
different mechanisms are almost the same. The corresponding completion times of the
swaptions workload are presented in Table 5.6. The time result with the resource manager
is 23% shorter than the result with static quota because the resource manager is work-
conserving. The time result with the weight mechanism is shortest because the guaranteed
quantity of the Memcached workload is not enforced, and the swaptions workload consumes
extra CPU resources.

5.3.5 Efficiency Policy

This section evaluates how the resource manager performs under the efficiency policy. A
total of 20 effective cores are shared by two tenants. The CPU resources are allocated
via the quota mechanism. Two scalable workloads are chosen to illustrate the effect of the
resource manager with respect to efficiency. Two different server applications MariaDB and
Memcached are used in this section. The workload for the MariaDB server is the Sysbench
OLTP benchmark [40], which is designed to test MySQL/MariaDB. The workload for
the Memcached server is the same read-heavy workload generated by Mutilate [53] in the
previous section.

The first experiment aims to test whether the resource manager can find the most
efficient allocation between two stable workloads in terms of the total normalized score.
Because both the workloads are fairly scalable, the total normalized score will be higher
when more CPU resources are allocated to the workload with a larger efficiency factor.
Without any rate limit in the workload generators, the most efficient CPU allocation is
extreme like 19 cores for one workload and 1 core for the other workload. When a rate limit
is introduced to one workload generator, this workload’s scalability changes, and thus the
distribution of the total normalized score shifts towards the middle. In this experiment,
a rate limit of 1,000,000 queries per second is set in the Mutilate workload generator to
verify that the resource manager can find the most efficient allocation that is manually set.

The purpose of the second experiment is to show the benefit of adaptive CPU allocation
with respect to efficiency. In this experiment, a dynamic Mutilate workload is executed
with the stable Sysbench workload above. The dynamic Mutilate workloads consists of two
120-second cycles. There is no rate limit in the first 60 seconds of each cycle, while in the
next 60 seconds, the workload generator has a rate limit of 220,000 queries per second. In
this experiment, the efficiency factors of the Mutilate workload and the Sysbench workload
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Table 5.6: Swaptions Completion Time with Dynamic Memcached/Mutilate
Workload

resource manager static quota cgroups weight
Time 669.71s 872.30s 555.26s
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are set to 2 and 1 respectively. As the Mutilate workload changes during the experiment,
the most efficient CPU allocation also changes. The work-conserving resource manager
employed here can monitor the changes of runtime performance and adjust CPU allocation
accordingly.

The two experiments are also repeated with the weight mechanism in Linux cgroups.
The weight ratio is the same as the ratio of efficiency factors. The results are presented in
the following sections as a comparison.

Stable Workloads

In this experiment, the performance of the two workloads is measured with different static
CPU allocations, and then the normalized scores are calculated. In the first group, the
efficiency factor of the Sysbench workload is 1, while the efficiency factor of the Mutilate
workload is 2. In the second group, the factor setting is reversed. Figure 5.13 shows
total normalized scores with different static allocations. A static allocation m+n in this
figure means m effective cores are allocated to the Sysbench workload and n effective cores
are allocated to the Mutilate workload. Generally speaking, the total normalized score is
higher when more CPU resources are allocated to the workload with an efficiency factor
of 2. In Figure 5.13(a), because of the rate limit in the Mutilate workload, the best static
allocation is 4 effective cores for the Sysbench workload and 16 effective cores for the
Mutilate workload. In Figure 5.13(b), the best static allocation is 19 effective cores for the
Sysbench workload and 1 effective core for the Mutilate workload. The resource manager
can find the proper allocation in both cases. By comparison, with the weight mechanism,
every workload gets about half of the CPU resources regardless of its efficiency factor.
Thereby the total normalized score is lower than the result with the resource manager.
The weight mechanism is not suitable for the implementation of the efficiency policy. The
resource manager performs consistently with these stable workloads. With a set of 20
samples, the coefficient of variation of the total normalized score is less than 0.01 when the
factor ratio is either 1:2 or 2:1.

Dynamic Workloads

The second experiment verifies that when the most efficient allocation dynamically changes,
the resource manager can adjust its CPU allocation accordingly. In this experiment, the
efficiency factor of the Mutilate workload is 2. In the high-demand phase of the Muti-
late workload, it is more efficient to allocate CPU resources to the Mutilate workload. In
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Figure 5.13: Efficiency with Stable Workloads

107



the low-demand phase, however, the most efficient allocation is 4 effective cores for the
Mutilate workload and 16 effective cores for the Sysbench workload. No static alloca-
tion is suitable for this kind of dynamic workload. The total normalized scores shown in
Figure 5.14(a) confirm that the resource manager achieves a much better result based on
online performance measurement. The total normalized score is 18.3% higher than the
best result with static allocations. The weight mechanism is also work-conserving, so the
Sysbench workload can obtain more CPU resources. The score with the weight mechanism
is higher than the best result with static allocations, but lower than the result with the
resource manager.

Figure 5.14(b) shows the CPU allocation in different phases. The efficiency-based
allocation algorithm supports adaptive CPU resource allocation. When the requirement
of the Mutilate workload decreases, the algorithm successfully finds the new efficient CPU
allocation. The algorithm still performs consistently with dynamic workloads. With the
same experiment repeated 20 times, the coefficient of variation of the total normalized
score is only 0.01.
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Chapter 6

I/O Bandwidth Management

The previous chapters in this thesis study how to achieve both resource isolation and work
conservation with respect to CPU resource management. CPU is not the only resource
required by applications, and other types of resources may also become a bottleneck. When
multiple applications share resources, resource isolation and work conservation are also
desirable in the management of non-CPU resources.

This chapter studies whether the same feedback-based methodology introduced above
is useful for the management of other types of resources. UIPT can be used to estimate
application performance regardless of the resource type, as long as there is a good corre-
lation between UIPT and the application-level metric. The adaptive allocation algorithms
may need to be tuned with respect to concrete resources. In addition, the methodology
in this thesis is based on an assumption that there is an existing mechanism to effectively
restrict the resources available to a workload.

The management of I/O bandwidth is studied as an example in this chapter. Nowadays
an enormous volume of data is generated and used in real world applications. Data-
intensive applications compete fiercely for access to large volumes of data on secondary
storage such as hard disk drives (HDD) and solid state disks (SSD). I/O contention has
a significant impact on application performance [39]. I/O bandwidth management must
address problems similar to those of CPU management. This preliminary study shows that
the methodology presented in this thesis is a promising approach for a better management
of I/O bandwidth.

While it is possible to design a resource manager that manages different types of re-
sources, currently the I/O bandwidth manager in this chapter is not integrated with the
CPU manager. UIPT provides a feedback independent of resource types, and facilitates
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a uniform interface to manage different types of resources. Yet the adaptive allocation
algorithms proposed in this thesis only search along one dimension. There are two poten-
tial solutions to this limitation. First, in one stage, an application usually has only one
bottleneck resource. For example, CPU is not a constraint when an I/O-intensive appli-
cation spends plenty of time waiting for I/O operations to finish. Therefore, the adaptive
allocation algorithms can be used to manage different types of resources at different times.
Alternatively, a multi-dimensional search algorithm is another possible solution. The search
space of the resource allocation problem is not very large, and sampling techniques may
help reduce the search time. Future research needs to be carried out to manage multiple
types of resources based on feedback.

6.1 I/O Bandwidth Control

To manage I/O requests to diverse underlying devices, operating systems employ a generic
layer between file systems (or other libraries) and the specific device drivers. This layer
provides a level of abstraction for the hardware responsible for retrieving and storing data.
Block devices are a common abstraction used in the I/O management layer. In block I/O,
data are buffered first and then an entire block of data are read or written. This research
focuses on Linux block I/O because this system is mature and widely used.

The Linux block layer provides a uniform way for applications to access storage devices.
I/O requests from applications are buffered in a request queue, and device drivers receive
requests from the head of the queue. While requests are in the queue, the block layer
performs I/O scheduling to improve the overall I/O performance. For instance, requests can
be sorted to minimize seek operations; requests for adjacent sectors can be merged; fairness
policies and bandwidth limits can be applied. This single-queue block layer has several
different I/O schedulers. The Complete Fairness Queuing (CFQ) scheduler is the default
I/O scheduler [8]. This scheduler separates I/O requests according to their processes and
allocates time slices to each process based on their weights. The single-queue block layer
was designed many years ago and optimized for HDD performance. With the development
of high speed modern devices with internal data parallelism, a new generation multi-queue
block layer with a submission queue per core is introduced into Linux. The I/O schedulers
are also redesigned for the multi-queue layer.

The main objective of I/O schedulers is to optimize the overall performance of block
I/O. When multiple I/O-intensive applications run simultaneously, their I/O requests com-
pete for the request queue in the block layer and impact the performance of each other.
Current I/O schedulers do not provide effective resource isolation. Proportional sharing is
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only supported in the CFQ scheduler. CFQ assigns dedicated time slices to processes based
on their weights. However, this scheduler is not work-conserving. It does not dynamically
adjust the time slice according to the level of disk contention or the characteristics of re-
quests. Even when a task has an underload, the time slice is reserved for the task, and
thus the I/O bandwidth is wasted.

It is challenging to tune I/O scheduling algorithms for accurate bandwidth sharing
among tasks. The blkio subsystem of Linux cgroups has a weight mechanism for propor-
tional I/O bandwidth sharing. This mechanism only works when the CFQ I/O scheduler
is used in the block layer, and may cause waste of I/O bandwidth because CFQ is based on
time reservation. Similar to CPU management, I/O bandwidth isolation relies on throttling
in practice. I/O bandwidth throttling in the blkio subsystem can set an upper limit on the
read and write operations that a task can perform. The limit is specified in operations per
second or bytes per second. This I/O throttling mechanism is similar to the quota mech-
anism in the cpu subsystem of Linux cgroups. A constant limit is not work-conserving,
and may result in poor I/O performance due to the changing resource requirements of
applications.

The feedback-based methodology presented in this thesis is suitable for the control of
I/O bandwidth. The limit of I/O bandwidth for an application can be dynamically adjusted
according to its requirement. UIPT can be used to estimate the application performance
regardless of the type of bottleneck resource. For an I/O-intensive application, when I/O
requests cannot be finished quickly, the execution speed of the application will decrease,
and UIPT will decrease as well. In contrast, an application-specific performance metric is
used in a previous study to reduce the impact of I/O contention by automatically tuning
the thread pool in Spark executors [39]. Such a method is specific to Spark and does not
work for a generic resource manager.

The algorithms introduced in Chapter 4 can also be used to adaptively adjust I/O
bandwidth limits. Excessive CPU resources may increase application parallelism, i.e., the
number of threads running in parallel, and aggravate contention on shared resources, and
thus cause a decline in performance. Different from CPU resources, I/O bandwidth does
not directly affect application parallelism. When the bandwidth limit is greater than
the application requirement, the application performance does not decline. Thereby, the
performance curve with I/O bandwidth as the X axis first shows an increase and then
becomes flat. The adaptive allocation algorithms are able to handle this kind of curve
with a plateau (cf. Chapter 4).

A prototype for I/O bandwidth control is developed based on the hill-climbing algorithm
described in Section 4.2. The I/O bandwidth allocation is done via the blkio subsystem of
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Linux cgroups. The prototype employs the throttling mechanism. However, the prototype
here only shows the effectiveness of the methodology in the block layer, because the blkio
subsystem does not manage the OS buffer cache. I/O contention in the OS buffer cache
significantly affects the performance of I/O-intensive applications, but there is no existing
mechanism that can effectively restrict I/O operations in both the block layer and the
buffer cache.

6.2 Experimental Evaluation

This section evaluates whether the UIPT metric and the hill-climbing algorithm work for
an I/O-intensive application. The system employed in the experiments is a persistent
key-value store called etcd (version 3.3.10) [21]. In etcd, the fsync system call is invoked
frequently, especially as part of its implementation of Raft protocol. According to the
documentation [22], etcd is very sensitive to the performance of disk writes. In the experi-
ments, the I/O throttling mechanism is used to control the bandwidth available to the etcd
server, and the rate of the write operations is specified in bytes per second. The workload
employed in the experiments is the “put” workload generated using the benchmark tool
included with etcd. The generator uses 256 connections and inserts a total of 3,000,000
records. The key size and the value size in each record are both 256 bytes. The machine
and Linux system introduced in previous chapters are used for experiments in this section.
One processor with 16 cores and 2 NUMA nodes are allocated to the etcd server exclu-
sively. CPU and memory resources are sufficient for this workload, and the bottleneck is
I/O bandwidth.

6.2.1 UIPT

The application-level performance metric of the etcd put workload is requests per second
(RPS). This experiment evaluates the correlation between UIPT and RPS. In the exper-
iments, the bandwidth limit of write operations is varied from 2 to 50 Mbps. UIPT is
measured every second while the etcd server is processing the workload. RPS is the aver-
age result of the whole process. The average RPS and average UIPT results with different
bandwidth limits are illustrated in Figure 6.1. The bars show 95% confidence interval of
UIPT results. The two metrics clearly show the same trend in the figure. The correlation
coefficient between the average UIPT and the average RPS is 0.99. More importantly, the
relative change in each metric when 2 Mbps are added to the bandwidth limit is calculated.
The correlation coefficient between the relative changes in average UIPT and the relative
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Figure 6.1: UIPT for Etcd Put Workload

changes in average RPS is also 0.99. There exists a strong correlation between the two
metrics. UIPT is a good proxy of RPS for this kind of I/O-intensive workload. This figure
also confirms that the performance curve contains a plateau area. Moreover, even with a
static write bandwidth limit, the variation of the UIPT change is large, which increases
the difficulty of the adaptive allocation problem.

6.2.2 Adaptive I/O Bandwidth Throttling

This experiment examines whether the controller based on the hill-climbing algorithm can
find the proper limit of write operations. The same etcd put workload used in the previous
experiment is used here. The ideal (smallest) bandwidth limit to achieve the highest
throughput is 34 Mbps. The controller changes the write bandwidth limit by 2 Mbps in
each interval. The experiment is repeated 20 times respectively with two different initial
bandwidth limits. One is lower than the ideal static allocation (10 Mbps), while the other
one is higher (60 Mbps).

The application performance with the controller is close to the baseline performance
at both the application level and the instruction level. The average throughput of 40 runs
reaches 97.5% of the baseline performance. The coefficient of variation is only 0.02, so the
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Figure 6.2: Etcd Workload: Start from 10 Mbps

controller consistently guarantees the throughput of the etcd workload. The measurements
of UIPT during two experiment runs are depicted in Figure 6.2(a) and Figure 6.3(a).
The baseline UIPT with a limit of 34 Mbps is also plotted in the figures as a reference.
Although the UIPT of this workload has highly frequent fluctuations even with a fixed
limit of write bandwidth, the controller finds the ideal bandwidth limit and effectively
keeps the throughput of the workload within a reasonable range.

Figure 6.2(b) illustrates the detailed bandwidth limits during the experiment with an
initial allocation of 10 Mbps. Without any prior knowledge about the ideal bandwidth
limit, the controller can converge toward the ideal allocation. The time for the controller
to reach the ideal allocation depends on the initial limit. In the experiments starting from
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10 Mbps, the search process takes 22 intervals on average. In contrast, as shown in Fig-
ure 6.3(b), it takes longer for the controller to search in the other direction. When starting
from 60 Mbps, the controller takes 46 intervals on average to find the ideal bandwidth limit.
The highly frequent fluctuations of UIPT may interfere with the hill-climbing algorithm.
The algorithm cannot distinguish whether the change in UIPT is caused by the change in
bandwidth limit or the change in workload.

The average write bandwidth limit after convergence in each run is considered as a
sample mean. In the experiments with an initial allocation of 10 Mbps, the mean of 20
sample means is 32.08 Mbps, and the coefficient of variation is 0.05. When starting from 60
Mbps, the mean of 20 sample means is 34.12 Mbps, and the coefficient of variation is 0.07.
The controller does not perform as stably as in the CPU resource management, but still
achieves a satisfactory result. As shown in Figure 6.1, when the bandwidth limit increases
from 22 Mbps to 34 Mbps, the measured UIPT increases on average but the extent of
increase is insignificant. The controller lingers in this sub-optimal range. Aside from the
fluctuations of UIPT, this is another reason why the controller is not as stable as for the
CPU resource management.
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Chapter 7

Conclusion

7.1 Summary

The goal of this thesis is to find a general methodology for CPU sharing among multiple
tenants, which enforces resource isolation and keeps the work-conserving property as well.
This research solves a primary concern of workload consolidation. On the one hand, the
effective resource isolation can protect workloads from being affected by each other. On the
other hand, resource waste due to overprovisioning can be avoided. An experimental study
in this thesis confirms that it is challenging for current general-purpose CPU management
systems to achieve the two objectives simultaneously.

Previous research has typically proposed systems that require integration of specific ap-
plications. Some proposals build performance models for specific applications or workloads
[36, 43, 58, 76]. Some designs need the target performance of specific applications as in-
put, and measure application-level metrics by modifying the applications [34, 41, 58]. The
resource manager in this thesis is not specific to any application. This feedback-based sys-
tem can support various workloads via a uniform application-agnostic performance metric.
The UIPT metric can be measured without modifications in the OS kernel or applications.
The measurement can provide meaningful information in a short interval to make up for
the shortcoming of lagging reaction in feedback-based systems.

This thesis does not rely on any complex system model, but proposes two simple
feedback-based solutions to the dynamic optimization problem of adaptive resource al-
location. The two algorithms proposed can help detect the CPU requirements that enable
applications to achieve their best performance. Because the algorithms do not require any
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performance target of specific applications, the resource manager can be used for general-
purpose CPU sharing. This thesis presents how the resource manager supports three
common sharing policies in practice and a novel policy for general system efficiency. Ex-
periments with representative real-world workloads show the effectiveness of the resource
manager in these different scenarios.

7.2 Future Work

First, from the allocation algorithm experiments, the most difficult issue to handle is
highly frequent workload changes with a moderate magnitude. When the magnitude of
measured UIPT change caused by a workload change is close to that caused by a change in
CPU allocation, it is difficult for the feedback-based algorithms to distinguish whether the
UIPT change is caused by a change in CPU allocation. If such spurious UIPT changes are
measured successively, they will mislead the feedback-based algorithms and slow down the
convergence. Although the multi-interval adjustment proposed in this thesis is effective,
there is still room for improvement in this aspect. For example, if the multi-interval
window in Algorithm 2 is short, the algorithm is not very stable even when the workload is
stable. However, if this window is long, the convergence becomes slow. There may be other
algorithms to filter out the disturbance from the highly frequent dynamics, for example
time series algorithms [58, 66]. The resource manager can be improved if a better adaptive
allocation algorithm is designed in the future.

Second, the experimental study in Section 2.2.1 shows the impact of excessive paral-
lelism. With core partitioning, the resource manager can effectively restrict the parallelism.
With the quota mechanism, conversely, the resource manager does not control the paral-
lelism directly. However, the quota mechanism is a more generic allocation method since
the allocation unit can be a fraction. Only with the quota mechanism, the resource man-
ager can support an arbitrary weight ratio in the proportional sharing scenario. How to
combine the two allocation methods is an interesting question. Ideally, the resource man-
ager uses core partitioning to avoid excessive parallelism and uses the quota mechanism to
implement the fractional part of CPU allocation.

The third direction is to connect the generic UIPT metric to application-level system
goals and make use of the feedback of UIPT changes to fulfill overall system goals. The
overall system goal can simply be a specific performance target. It is a useful feature in
reality to keep the performance of applications at a target level. Given the UIPT value
corresponding to the target application performance, it is straightforward to modify the
allocation algorithms, especially the fuzzy controller to regulate the CPU allocation to
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meet a performance target of applications. The target UIPT value can be measured either
online or offline. The overall system goal can also be the maximum utility or revenue. The
relationship between the application performance and the overall utility/revenue can be
determined by a S-shaped utility function or a piecewise SLA revenue function. A research
direction is enhancing the resource manager to support CPU sharing based on various
utility/SLA functions. Section 5.2.4 introduces a sharing policy which uses UIPT changes
to estimate the overall system efficiency. In this efficiency policy, there is an assumption
that the system utility has a linear relationship with the application performance (cf.
Equation 5.1). It requires more effort to convert application-level utility functions or SLA
functions to a low-level function of UIPT, so that the resource manager can support a
sharing policy based on complex performance trade-offs.

Moreover, as shown in Chapter 6, the methodology in this thesis can be used to man-
age other types of resources. Yet the prerequisite is that there is an effective and flexible
interface to limit the usage of that resource. For example, there is no flexible mechanism
in the current Linux system to limit memory usage. Some mechanisms, like the memory
subsystem of Linux cgroups, kill a task immediately if the task uses more memory than a
defined limit. This kind of mechanism cannot be used for feedback-based control. Further,
UIPT can provide a uniform feedback for a resource manager to potentially manage mul-
tiple types of resources simultaneously. Such a resource manager requires an algorithm to
automatically detect the type of bottleneck resources or search the best resource allocation
in a multi-dimensional space.
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Appendix A

Evaluation of the Fuzzy Control
Algorithm

A.1 Experiment Results

This appendix presents the detailed performance of the fuzzy-control algorithm with three
different workloads. The three workloads are the same as those in Section 4.4. This
appendix complements the results presented in Section 4.4, where A.1.1 corresponds to
4.4.1, and A.1.2 to 4.4.2, and A.1.3 to 4.4.3 for full comparison purposes. The fuzzy-
control results with a low-frequency and large-magnitude dynamic workload have been
shown in Section 4.4.4.

A.1.1 Stable Workload

The results with the fuzzy-control algorithm are similar to the results with the hill-climbing
algorithm in Section 4.4.1. The average throughput is 96.8% of the baseline result. The
coefficient of variation of the throughput result is 0.03. The average numbers of cores after
convergence with the two different initial allocations are 17.26 and 17.40 respectively. The
coefficients of variation in the two cases are both less than 0.02.
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Figure A.2: Results with Fuzzy Control for Stable TPC-E Workload
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A.1.2 Unsaturated Workload

With the Canneal workload, the results with the fuzzy-control algorithm are also similar
to that with the hill-climbing algorithm in Section 4.4.2. When the initial allocation is
15 effective cores, the average execution time is 6% longer than baseline result, and the
average quota value after convergence is 20.67. When the initial allocation is 30 effective
cores, the average execution time is only 2% longer than the baseline result, and the average
quota value after convergence is 20.68. In the two cases, the coefficients of variation of the
execution time are less than 0.01. The coefficients of variation of the quota value are not
greater than 0.04.
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Figure A.3: Results with Fuzzy Control for Canneal Benchmark
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A.1.3 High-Frequency Dynamic Workload

The following figures show how the fuzzy-control algorithm performs with the workload in
Section 4.4.3. Similar to the hill-climbing algorithm, the fuzzy-control algorithm achieves
95% of the baseline throughput with an initial allocation of 3 or 12 cores. The average
numbers of cores after convergence are 7.16 and 7.25 respectively in the two cases.
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Appendix B

Evaluation of the Resource Manager

B.1 Proportional Sharing with Different Workloads

The experiments in Section 2.2.2 are repeated with the resource manager designed in this
thesis. The proportional sharing policy is used in these experiments. As in Section 2.2.2,
three experiments use two cpuhog workloads, two database workloads, and a combination
of cpuhog and database workloads respectively. The three figures B.1, B.2 and B.3 cor-
respond to those found in Section 2.2.2 respectively. The results show that the resource
manager can effectively enforce resource isolation with different weight ratios while the
weight mechanism in Linux cgroups cannot in the same experiments (cf. Section 2.2.2).
The ideal results and the results with the quota mechanism are also shown in the following
figures as a reference.
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Two CPUhog Workloads

This experiment corresponds to that shown in Figure 2.8.
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Two Database Workloads

The following figure corresponds to Figure 2.9.
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CPUhog and Database Workloads

The following results are associated with the results shown in Figure 2.10
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