
Wayne State University

Wayne State University Dissertations

1-1-2015

Building Computing-As-A-Service Mobile Cloud
System
Kun Wang
Wayne State University,

Follow this and additional works at: https://digitalcommons.wayne.edu/oa_dissertations

Part of the Computer Engineering Commons, Computer Sciences Commons, and the Electrical
and Computer Engineering Commons

This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in
Wayne State University Dissertations by an authorized administrator of DigitalCommons@WayneState.

Recommended Citation
Wang, Kun, "Building Computing-As-A-Service Mobile Cloud System" (2015). Wayne State University Dissertations. 1385.
https://digitalcommons.wayne.edu/oa_dissertations/1385

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital Commons@Wayne State University

https://core.ac.uk/display/56688072?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1385&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1385&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1385&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1385&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1385&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1385&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1385&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1385&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wayne.edu/oa_dissertations/1385?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1385&utm_medium=PDF&utm_campaign=PDFCoverPages

BUILDING A COMPUTING-AS-A-SERVICE MOBILE CLOUD
SYSTEM

by

KUN WANG

DISSERTATION

Submitted to the Graduate School

of Wayne State University,

Detroit, Michigan

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

2015

MAJOR: COMPUTER
ENGINEERING

Approved By:

Advisor Date

ACKNOWLEDGEMENTS

One of the most important decisions in my life was to pursue a PhD degree in the

US. The Ph.D. study is full of adventures and challenges. I could not have achieved

anything without the help from so many people in various ways. First and for formost,

I would like to thank my advisor, Dr. Cheng-Zhong Xu, for his invaluable guidance,

and encouragement through-out my PhD journey. I am also grateful to my committee

members: Dr. Song Jiang, Dr. Nabil Sarhan, and Dr. Lihao Xu for their time,

interest, and insightful suggestions to improve this work.

I would like to specially thank my peer friend Jia Rao and his family for their self-

less help through my PhD journey. I am also greatly thankful to my other colleagues

and friends, Jiayu Gong, Xiangping Bu, Bo Yu, Zhen Kong, Yudi Wei, Xuechen

Zhang, Yuehai Xu, Yizhe Wang, Ke Liu, Jianqiang Ou, Hao Zhou, Xingbo Wu and

so many others. There are so many unforgettable beautiful memories with all of you.

Thank you all and good luck with your future career.

Finally, this thesis would not be possible without the unconditional support from

my parents, my brother, and my girlfriend. They are always my solid backing. I am

deeply grateful for all their love, encouragement and understanding.

ii

TABLE OF CONTENTS

Acknowledgements . ii

List of Figures . vii

List of Tables . ix

Chapter 1 INTRODUCTION . 1

1.1 Background . 2

1.1.1 Virtualization and Cloud Computing 2

1.1.2 Mobile Virtualization and Mobile Cloud Computing 4

1.2 Motivations . 5

1.3 Substrate: Agile VM Deployment . 8

1.4 SBCO: Efficient SMP VM Co-Scheduling 9

1.5 AMPhone: Flexible Mobile Augmentation 10

1.6 Organization . 11

Chapter 2 RELATED WORK . 13

2.1 Agile VM Deployment . 13

2.2 SMP VM Co-Scheduling . 15

2.3 Flexible Mobile Augmentation . 19

Chapter 3 AGILE VIRTUAL MACHINE DEPLOYMENT 23

3.1 Introduction . 23

3.2 Background . 26

iii

3.2.1 Cost of VM Creation . 26

3.2.2 VM State Transition . 27

3.2.3 Challenges of Rapid VM Deployment 28

3.3 Design of VM Substrate . 29

3.3.1 VM Substrate and Pool . 30

3.3.2 VM Clone From Substrate 33

3.3.3 VM Substrate Generation . 34

3.3.4 VM Fork . 35

3.4 Implementation . 38

3.4.1 Resource Shrinking and Expanding 38

3.4.2 Substrate Multicast and Compression 49

3.5 Evaluation . 52

3.5.1 Overhead . 52

3.5.2 Performance Comparison . 54

3.6 Conclusions and Future Work . 56

Chapter 4 EFFICIENT SMP VIRTUAL MACHINE SCHEDULING 59

4.1 Introduction . 59

4.2 Background . 62

4.3 Challenges . 64

4.3.1 Dynamic vCPU Affinity . 64

4.3.2 Costly vCPU Context Switch 67

4.3.3 The Effect of Scheduling Distance 68

4.4 Self-Boosted Co-Scheduling . 71

4.4.1 Overview . 72

iv

4.4.2 Extending Red Black Tree . 73

4.4.3 SBCO Algorithm . 76

4.4.4 Performance Considerations 77

4.5 Implementation . 80

4.6 Evaluation . 82

4.6.1 Experiment Design . 82

4.6.2 Experimental Results . 84

4.7 Summary . 91

Chapter 5 FLEXIBLE MOBILE AUGMENTATION 93

5.1 Introduction . 93

5.2 Background and Challenges . 95

5.2.1 Mobile Computing and Cloud 95

5.2.2 Architecture Compatibility . 97

5.2.3 Cost of Communication and Computing 98

5.3 System Design . 100

5.3.1 Overview . 100

5.3.2 Whole System Replication . 101

5.3.3 Mobile Augmentation . 102

5.3.4 Incremental Synchronization 102

5.3.5 Limitations . 104

5.4 Implementation . 105

5.5 Evaluation . 106

5.5.1 Experimental Setup . 106

5.5.2 Evaluation Results . 108

v

5.6 Discusion and Summary . 111

Chapter 6 CONCLUSIONS . 114

6.1 Conclusions . 114

6.2 Future Directions . 115

References . 117

Abstract . 130

Autobiographical Statement . 132

vi

LIST OF FIGURES

Figure 3.1 VM State Transition. 28

Figure 3.2 Create VM from substrate. 32

Figure 3.3 VM dock to substrate. 36

Figure 3.4 VM’s memory footprint. 39

Figure 3.5 Vertical COW. 44

Figure 3.6 Linear COW. 44

Figure 3.7 IO sync. 46

Figure 3.8 Impact of shrinking degree. 48

Figure 3.9 Compression cost. 49

Figure 3.10 Effectiveness of multicast. 50

Figure 3.11 Time breakdown of VM creation. 54

Figure 3.12 Delay time of offloading checker. 55

Figure 3.13 Startup time comparison. 55

Figure 4.1 Cost of vCPU context switch w/ and w/o virtualization. 68

Figure 4.2 Cost of vCPU context switch w/ and w/o virtualization. 69

Figure 4.3 Scheduling distance sibling vCPUs. 72

Figure 4.4 CFS run queue snapshot. 73

Figure 4.5 Extended red black tree with index. 73

Figure 4.6 Average runtime of kernbench. 84

vii

Figure 4.7 Context switches numbers of kernbench in Log scale. 85

Figure 4.8 Parsec performance with average rq size is eight. 85

Figure 4.9 Parsec performance with average rq size is twelve. 86

Figure 4.10 Performance of SPECjbb benchmark. 89

Figure 4.11 Scalability of SBCO on Parsec workloads. 90

Figure 4.12 Relative Standard Deviation(RSD) of the Maximum Absolute Lag(MAL)
of each VM. 91

Figure 5.1 System Architecture. 101

Figure 5.2 Virtual Phone. 103

Figure 5.3 lmbench performance. 108

Figure 5.4 Octane performance. 109

Figure 5.5 Openssl performance. 111

viii

LIST OF TABLES

Table 3.1 Cost of creating VM from templates. 25

Table 4.1 Statistics of spin-lock Usage . 63

Table 4.2 Probability of stacking sibling vCPUs 67

Table 4.3 Probability of scheduling distance exceeds the threshold 72

ix

1

Chapter 1:INTRODUCTION

The last five years have witnessed the proliferation of smart mobile devices, the

explosion of various mobile applications and the rapid adoption of cloud computing in

business, governmental and educational IT deployment. There is also a growing trends

of combining mobile computing and cloud computing as a new popular computing

paradigm nowadays. This thesis envisions the future of mobile computing which

is primarily affected by following three trends: First, servers in cloud equipped with

high speed multi-core technology have been the main stream today. Meanwhile, ARM

processor powered servers is growingly became popular recently and the virtualization

on ARM systems is also gaining wide ranges of attentions nowadays. Second, high-

speed internet has been pervasive and highly available. Mobile devices are able to

connect to cloud anytime and anywhere. Third, cloud computing is reshaping the way

of using computing resources. The classic pay/scale-as-you-go model allows hardware

resources to be optimally allocated and well-managed.

These three trends lend credence to a new mobile computing model with the

combination of resource-rich cloud and less powerful mobile devices. In this model,

mobile devices run the core virtualization hypervisor with virtualized phone instances,

allowing for pervasive access to more powerful, highly-available phone clones in the

cloud. The centralized cloud, powered by rich computing and memory recourses,

hosts virtual phone clones and repeatedly synchronize the data changes with virtual

phone instances running on mobile devices. Mobile users can flexibly isolate different

computing environments. For example, mobile users are able to switch between a

personal phone and a corporate phone by trigger the migration of a virtual phone

2

instance to their devices or share their phone or media data by directly applying

the changes in the cloud. While sounding admittedly utopian, this mobile cloud

computing model has the capability to redefine the access scheme between mobile

devices and cloud. As a result, this vision endows users with flexible architecture for

the seamless access to ambient cloud resources to boost mobile applications, making

them fast and energy efficient.

In this chapter, we introduce the background of virtualization and cloud comput-

ing, as well as the the ongoing shifting virtualization to mobile devices. Then we

discuss the motivation of this dissertation work, present an overview of our solution

and outline the organization of this dissertation.

1.1 Background

1.1.1 Virtualization and Cloud Computing

Virtualization is one of the key enabling technology of cloud computing. It is a

combination of software and hardware aggregation and partitioning that creates sand-

box virtual machines(VMs) and multiplex hardware resources to present one or many

computing environments. The sandbox abstraction gives guest operating system(OS)

the illusion that is is running on top dedicated hardware. Virtualization endows users

with security, isolation features and full control of their own VM sandbox. It has been

widely used for server consolidation, supporting multiple operating systems, securing

cloud computing, system level development and debugging.

With virtualization, service providers offers great flexibility of using the data cen-

ter resources. There are three representative type of cloud services: Platform as a

Service (PaaS), Software as a Service (SaaS) and Infrastructure as a Service (IaaS).

3

PaaS offers the options for users to select preferable operating systems to deploy per-

sonal softwares in the cloud. SaaS allows users to access the software applications

services in the cloud without concerning hardware maintenance and system configura-

tion. In IaaS, raw data center hardware, such as CPU, memory, storage and network,

are offered to cloud users as configurable virtual machines on the fly. Thus cloud users

can start with small scale of VMs and expend to large scale on demand, giving users

the illusion of infinite, elastic and pay-per-use computing resources are available. In

this model, cloud users have more control on the available computing resources and

avoid the initial over-provisioning hardware resource, which is often needed during

the peak demand.

Besides the scale flexibility offered by cloud services, cloud providers can greatly

increase the data center resource utilization efficiency by consolidating multiple VMs

onto one physical machine, assuming that the interference between VMs has only

limited impact on applications in the base load. Many applications nowadays are

intrinsically designed with the capability for easy scale. Consequently, it is very com-

mon that one VM is running one specific application such as database or web server.

In order to avoid the overlap of same type of resource competition, cloud providers

can optimize VM consolidation based on the type of resources are consumed. For ex-

ample, a VM with memory intensive applications and a VM that runs CPU intensive

applications can be consolidated to the same physical machine. These VMs can also

be seamlessly migrated to other physical machines or even other data centers when

system upgrade or scale expansion is needed or in the cases when faults or failures

happen. To achieve such scale and location flexibility and improve resource utiliza-

tion, cloud providers need effective virtualized resource management mechanisms.

4

1.1.2 Mobile Virtualization and Mobile Cloud Computing

As the proliferation of mobile devices and the advances in mobile processor perfor-

mance, memory and storage capacities, there is a growing trend of applying many of

the previous desktop and server virtualization techniques to mobile virtualization on

ARM-based devices due to ARM CPUs is the dominating option in mobile devices.

Similar to the past revolutionary change in business, governmental and education IT

deployment due to X86 virtualization, virtualization on mobile devices is also chang-

ing the way mobile users exchange and consume data. Today’s mobile devices tends to

have PC like features and functions, thus many mobile users favor the bring your own

device(BYOD) model and tends carry multiple phones to accommodate work to ac-

cess privileged enterprise content maintained in the cloud or daily personal needs, by

convenience or by security restrictions imposed by corporate IT departments. Mobile

virtualization enables multiple mobile operating systems to run on the same device,

simultaneously addressing the security restrictions that required by the corporate en-

tities, as well as isolating the IP of open source OSes from proprietary offerings. The

virtualization of mobile devices offers significant potential in addressing the mobile

manageability, security, cost, compliance, application development and deployment

challenges that exist in the enterprise today.

With the advancement of 4G and LTE wireless network infrastructure, mobile

devices are able to access to cloud at any place and any time. Such convergence

of mobile computing and cloud computing emerges a new paradigm of mobile cloud

computing. The unlimited resources in cloud free mobile devices from the constrain

of processing power, memory and battery life. Mobile cloud computing was widely

referred as the combination of mobile and cloud in the early days [97, 37], in which

5

applications are running in a remote data center with abundant resources while mobile

devices acts like thin clients connecting to remote cloud via wireless network. For

example, there are many cloud service providers that offer online storage services to

mobile users to overcome the limitations of storage space on mobile devices. Another

popular definition of mobile cloud computing is to consider all mobile devices as

components of cloud offering resources to build a mesh network [98]. Therefore, the

connected mobile devices work as a cooperative computing unit to provide services

like collective sensing. The cloudlet concept [79] is another representative approach

of mobile cloud computing. In this model, mobile devices offload their workloads to

a local cloudlet comprised of several multi-core computers with connectivity to the

remote cloud servers.

Cloud computing is able to augment mobile devices’ computing capability via

remote execution or application offloading. For instance, the resource intensive com-

ponents of mobile applications can be offloaded, in whole or part, to the resource-rich

cloud [70, 24, 73, 18]. The efficiency of offloading approaches highly depends on the

partitioning of the components and the communication with the remote server. Due

to the sharp contrast of the processing power between cloud and mobile devices, such

execution offloading can significantly improve the performance for certain type of ap-

plications. In general, cloud computing extends traditional mobile cloud applications

with unlimited storage and computation resources as well as task-oriented services.

1.2 Motivations

Despite of continuous and still ongoing improvement in hardware computing capa-

bilities of mobile devices, there are still some computing requirements of mobile users,

6

especially enterprise users, are not achieved. Many intrinsic restrictions of mobile de-

vices encumber intense mobile computing. Mobile devices processing limitation due

to slow processing speed and limited memory space remains one of the major chal-

lenges in mobile computing [78]. In contrast, cloud has abundant computing power

in terms of CPU processing speed, memory size, and disk space. Therefore, leverag-

ing cloud resource to augment mobile computing is a nature evolution. Additionally,

most of mobile devices today are powered by replenishable lithium-ion battery that

may last only few hours if device is involved in intensive computation. Executing

mobile applications in cloud can significantly save the energy consumption on mobile

devices.

Leveraging cloud resources to augment mobile computing is tradeoff between sac-

rificing the communication cost involved in remote execution and the augmentation

gain when using cloud resources. The underlying assumption is that as long as execu-

tion in cloud is significantly more faster or more reliable than that on mobile devices,

the augmentation gain is more than the cost paid and remote execution is still worth

it. In practice, the cloud execution performance gain may vary with applications. In

general, our design pushes for specialized hardware that has the compatible architec-

ture with mobile devices to run virtualized mobile clones and customized software to

support the communication between cloud and mobile devices. Application develop-

ers are released from complicated application partitioning and mobile users have the

flexibility to isolate their computing environments and trigger remote execution in

cloud on the fly.

The lofty goals of designing a computing-as-a-service mobile cloud system include

a few aspects. First, the augmented virtual phone instances in cloud need to be

7

efficiently deployed and managed. Second, given that several virtual instances are co-

hosted on the same physical machines, sophisticated scheduling algorithm is desired

to optimize CPU scheduling to improve the physical hardware utilization efficiency.

Third, an effective communication model is expected to maximize the gain of adopting

cloud resources. In this thesis, we investigated these three building blocks of future

mobile cloud computing system and proposed solutions for each building block.

In this dissertation, we propose a new computing model for mobile devices to

access cloud resource. This thesis encompasses three main projects: Substrate, SBCO

and AMPhone. In Substrate, we study the scale and deployment flexibility of VMs

in shared data centers and introduce new techniques to manipulate intermediate VM

states and construct new VMs on the fly. The SBCO project explores multi-core

co-scheduling issues between consolidated virtual machines and proposes new vCPUs

scheduling algorithms to improve the hardware utilization efficiency. The AMPhone

project proposes a new computing model to augment mobile phone with the assistant

of virtualized mobile phone clones in cloud. In our design, virtualized phone clones in

cloud are deployed with our Substrate idea and managed with our SBCO approach.

AMPhone elaborates the access scheme between mobile devices and the clones in

cloud. Our motivation is to build a mobile cloud system in which cloud computing

resources are offered as a service and virtual phone instances can seamlessly run

on local phone natively or in cloud with augmented resources. In the remaining

chapters, we first further introduce these projects and then discuss the organization

of this dissertation.

8

1.3 Substrate: Agile VM Deployment

One major advantage of cloud computing is the capability of scale up on the fly

depending on the needs of the applications. Such flexibility becomes possible mainly

because the virtualization makes each component such as vCPU, memory size, storage

space, network bandwidth highly configurable and the changes can take effect even

without restarting a VM in the para-virtualization case. Many of today’s applications,

such as parallel computing, opportunistic job placement, call for agile instantiation

and quick deployment of state-ful VM workers in the cloud. Other applications like

short-term computing jobs even requires a new VM could be created in a real time

manner. However, the traditional template based VM creation involves time consum-

ing disk image copy, package installation, and system configuration, thus the total

creation usually takes a few minutes, depending the total number of packages need to

be deployed. This tedious process defeats the flexibility of the cloud computing and

limits the performance of VM deployment.

Aside from the performance limitation of existing VM deployment, another major

shortage of current deployment techniques is it does not preserve the intermediate re-

sult for the purpose of creating similar VM instances. Due to the intermediate changes

including patches of kernel or applications are not preserved for VM creation, a new

VM is often booted from a basic template with just enough OS(JeOS) and current

applications and their dependency or configurations have to explicitly repeated in

every new VM creation by duplicating virtual disk image, installing applications and

configuring services.

In this thesis, we analyze the cost of each step in the process of VM deployment

9

and introduce the primitive of retrofitting VM deployment by using VM substrate

to manage VMs in agile virtualized environment [93]. Our VM substrate-based VM

shrinking and expansion management allows VM creating, reconfiguration in a way

that is transparent to users and enables the instantiation of statefull VMs or VM

clusters with sub-seconds latency. The VM pool design is capable of greatly reducing

the latency of deploying new VMs and increasing the reusability of VM substrates.

It incurs small overhead on the creation of a single or a cluster of VMs. Experiment

results on the computation offloading from mobile devices show that the pool of VM

substrates is able to provide instantaneous response to user request in an interactive

job.

1.4 SBCO: Efficient SMP VM Co-Scheduling

Commodity OSes often use spin-locks for exclusive access to shared code or data.

Such spin-locks require running processes to frequently acquire and release locks,

while assuming only a short period of waiting time. In a virtualized environment,

it is hard to keep the assumption when a vCPU is preempted while still holding a

spin-lock and at the same time another sibling vCPU is still waiting for the spin-lock.

Thus the sibling vCPU has to wait until the preempted vCPU to be rescheduled

and releases the lock. Such issue is unique in multicore VM environments and often

referred to as lock holder preemption(LHP). Depending on the usage of spin-lock for

synchronization, the impact of LHP issue varies with applications.

In the thesis, we propose SBCO, a new scheduling scheme for performance op-

timization in virtualized SMP environment. SBCO first inherits the advantages of

traditional co-scheduling such as minimizing synchronization latency and speedup the

10

communication between vCPUs. Meanwhile, it avoids the scheduling fragmentation

and priority inversion issue because SBCO does not demand co-scheduling all the

sibling vCPUs precisely at the same time. Instead, it coarsely adjusts the sibling vC-

PUs position in their respective run queues for balance purpose and facilitate sibling

vCPUs to be scheduled coarsely at the same level. In other words, SBCO dynamically

adjusts the affinity of vCPUs to avoid sibling vCPUs to exist in the same run queue.

It also balances the sibling vCPUs in the different run queues. We implemented the

prototype of SBCO based on CFS scheduler and conducted evaluations with KVM

VM. Our experimental results show that SBCO brings more than 10% performance

improvement for many applications.

1.5 AMPhone: Flexible Mobile Augmentation

In this thesis, we propose an innovative solution to run virtualized phone instances

on both mobile devices and cloud. The virtualized instances on the mobile phone

isolate users’ different computing environments(including applications, user profiles,

contacts and data) and sync with the augmented mobile phone clone in the cloud.

The augmented copy has more computing power, more memory and disk space which

contains the phone instances on mobile devices as a subset. Through impromptu

launching augmented phone clones in the cloud, all time-consuming or resource hun-

gry applications are shifted to run remotely and synchronize the results back to the

phone instance on mobile devices. On the real phone instance, all the inputs, such as

event from keyboard, touch screen are recorded and then send to the cloud clone where

these these events get replayed by deterministic reply. The disk incremental updates

of augmented phone instance is synchronized back to mobile device repeatedly. In

11

this communication model, we are able to significantly increase the computing power

of mobile devices and reduce the energy consumption. Additionally, this model allows

mobile users for quickly exchanging data in the cloud over high speed network.

1.6 Organization

The rest contents of the thesis are organized as follows:

Chapter 2 reviews previous work related to this thesis. We start with introducing

some of the existing research work on promptly scale virtual machine deployment.

Then we discuss the approaches of efficiently scheduling virtual CPUs in a consol-

idated environment. In the end of this section, We present a historical survey of

mobile virtualization and compare a few different mobile computing models.

In Chapter 3, we first show that cost breakdown of tradition VM creation and

then introduce the motivation of prompt VM deployment on the fly. We propose VM

substrate concept as replacement of existing VM template and illustrate the processes

of VM deployment from a VM substrate. The design of managing VM substrate with

centralized pool as well as the implementation details are elaborated in the design

and implementation section. We evaluate the effectiveness of the approach in terms

of cost breakdown and show how efficient VM substrate can help online admission

control.

In Chapter 4, we start with investigating the probability spin lock holder stack

issue, which could significantly hurt the scheduling performance. Then we define the

VM scheduling distance concept and explain its relationship to SMP VM scheduling

performance with motivation examples. To address the issues, we propose a new way

to efficiently balance sibling vCPU scheduling distance, namely SBCO and elaborate

12

its implementation details. Finally, we present experiments with multiple applications

to show the effectiveness of SBCO comparing with other existing solutions.

In Chapter 5, we argue the case for mobile virtual machines as one promising so-

lution for augmenting mobile devices limit. We first introduce the state-of-art mobile

virtualization software and hardware. Then we discuss the challenges of shifting from

server virtualization to mobile virtualization and the motivations combining mobile

virtualization with cloud computing. We propose a new model, namely AMPhone,

to run a virtualized phone on both mobile device and cloud and synchronize the

meta changes regularly. Finally, we elaborate the benefit of this model and introduce

the implementation and evaluation details. We conclude by envisioning the future

direction of mobile cloud computing.

Chapter 6 concludes this thesis with summaries of our proposals and the potential

directions for future work.

13

Chapter 2:RELATED WORK

In this section, we introduce the state-of-art research efforts towards agile VM

deployment, SMP VM scheduling and mobile augmentation with cloud computing.

2.1 Agile VM Deployment

VM templates are widely used to create new VMs in the majority of system vir-

tualization platforms. Through preparing reusable templates, which are usually con-

figured to include a standardized set of hardware and software configuration settings,

the efficiency of deploying VM infrastructure could be significantly increased due to

the fact that many repetitive installation and configuration tasks are avoided. A base

VM template contains the essentials of server image so called Just-Enough-OS(JeOS)

and the base template can be extended by installing software application(s) in order

to generate new template. VM templates[64] can be either converted to virtual ma-

chines and powered on without deploying them. The conversion will either turn the

original template into VMs which means the template doesn’t exist anymore or clone

the templates to VMs through replication which involves time consuming disk copy.

Moreover, starting a new VM created from a VM template needs error prone booting

process.

The Amazon Elastic Compute Cloud (EC2) [29] is a widely used cloud computing

platform. EC2 allows users to create an Amazon Machine Image (AMI) containing

their applications, libraries, data and associated configuration settings or use pre-

configured, template images to get up and running immediately. Amazon’s EC2

claims to instantiate multiple VMs in ”minutes” is still not enough to meet require-

ment of some real time VM creation requests. RightScale [71] also provides scripts to

14

create and configure a basic VM from scratch. Although the installation and config-

uration are done automatically, it is often not applicable to on-demand VM creation

due to the time consuming installation.

Some recent research work explores the idea of process fork to VM level where a

running VM spawns child VMs that are clones of itself. The Potemkin project [91]

realized a VM fork scheme that creates lightweight VMs from a static template locally

within a single machine. Through aggressive memory sharing and COW techniques,

Potemkin allows quick VM forking by deferring the duplication of memory pages

until the contents of pages actually differ between VMs. It can support potentially

hundreds of short-lived VMs on physical honeyfarm servers. However, Potemkin does

not have the flexibility to create multiple VMs onto different hosts and does not of-

fer runtime statefull cloning. Snowflock [43] extends the concept of VM fork in a

distributed manner, enabling cloning a VM into multiple statefull replicas running

in a cluster of machines. Snowflock leverages the same COW technique used by

Potemkin and takes advantage of the high correlation of the children VM, providing

a immutable image of the parent VM and a demand-paging mechanism to let chil-

dren retrieve missing pages. Similar to process fork, VM fork is able to efficiently

share parent’s resources and swiftly create interim VM clones that run simultane-

ously in a real time manner. However, current VM fork implementations do not aim

to deploy longstanding independent VMs. VM substrate is different from Potemkin

or Snowflock in their purposes. Potemkin and Snowflock aim to provide on-demand

virtual clusters with “identical” and “temporary” VM children forked from a single

parent. VM substrate’s objective is to preserve and restore customized user working

space (VM’s with different running states) with minimal cost. The VMs in question

15

are heterogeneous and not necessarily belong to the same user.

The idea of a pool structure is widely used in the design of computer systems.

Most of early works focused on thread and process level pools [60, 14, 66, 53], or

processor level pool [101]. The popular Apache web server [14] uses a thread pool

to handle incoming request, but there is no resource reconfiguration for each thread.

Iran Pyarali et al. [66] proposed an optimization to improve the quality of thread pools

in real-time systems. They described the key patterns underlying common strategies

for implementing RT-CORBA thread pools and evaluated each thread pool strategy

from various aspects. In [53], Ling et al. characterized several system resource costs

associated with thread pool size and analytically determined the optimal thread pool

size to maximize the expected gain of using a thread and minimize the overhead of

run-time memory allocation and deallocation while creating and destroying a thread.

In [101], the authors proposed a class of scheduling algorithms based on a processor

level pool which is used to organize and manage a large number of processors to

improve performance.

2.2 SMP VM Co-Scheduling

While there are a number of research works to identify the performance overheads

of virtualized execution [33, 46, 82, 67, 47, 55, 83], most of them focus on the overhead

incurred by I/O operations or spinlock synchronization. The issue of preempting a

parallel process which holds a lock has also been studied intensively in the past,

see [13, 49, 83] for example. Virtualization makes the synchronization delay problem

even more challenging due to LHP of a vCPU. If a vCPU is preempted out while

holding a lock, then the lock waiter has to wait until the lock holder to be scheduled

16

again to release the lock. The LHP problem in a virtualized environment was first

studied in [83]. In general, there are two approaches to address this issue: hardware

assisted approaches and pure software scheduling solutions.

The hardware assisted approach detects lock holder with the low level hardware

and assistant scheduler to schedule in and out the proper vCPUs dynamically to miti-

gate LHP problem. Modern processors provide architectural support for heuristically

detecting contended spinlocks [8, 9]. For instance, PAUSE instruction is used by

commodity OSes(e.g. Windows) in the spin lock for power efficiency consideration,

therefore by identifying the execution of PAUSE instruction, the spin lock holder

can also be detected [9]. In [94], the authors proposed a hardware assisted spin-lock

mechanism to detect the cases in which a vCPU is not performing useful work and to

suggest scheduler to preempt that vCPU to run a different, more productive vCPU.

The heuristic lock-holder detection may cause frequent vCPU preemption. More-

over, this type of hardware assisted lock holder detection usually requires modifying

guest OS, which is only possible with para-virtualization. This solution is not always

feasible for guest OSes like Windows which is hard to instrument.

A typical software approach is co-scheduling, which was originally proposed to

schedule concurrent threads simultaneously [65, 23, 84, 69]. Previous works [16, 89, 95]

applied co-scheduling to SMP VMs to facilitate the vCPU communication and reduce

application synchronization latency. They alleviate the LHP issue because all sibling

vCPUs are scheduled simultaneously. However, classic co-scheduling algorithm has

its inborn drawbacks such as CPU fragmentation, priority inversion and execution

delay [48]. Moreover, co-scheduling is likely to cause more vCPU preemption for

context switching, which is costly in virtualized environment.

17

To avoid the disadvantages of classic co-scheduling, an improved co-scheduling

algorithm named balanced scheduling (BAL) was proposed in [81]. In stead of pre-

venting LHP, BAL alleviates the effect of LHP issue by distributing sibling vCPUs

to different pCPUs without forcing the vCPUs to be scheduled at the same time.

It never delays execution of a vCPU to synchronize with other sibling vCPUs. It

eliminates the drawbacks inherited from co-scheduling (CPU fragmentation, priority

inversion and execution delay). Our SBCO inherits the advantages of traditional

co-scheduling such as minimizing synchronization latency and speedup the commu-

nication between vCPUs. It coarsely re-adjusts the sibling vCPUs position in their

run queues and facilitate sibling vCPUs to be scheduled coarsely at the same level.

In another word, like the previously proposed BAL algorithm, SBCO dynamically

adjusts the affinity of vCPUs and avoid sibling vCPUs from being dispatched into

the same run queue. However, our SBCO is different from BAL because it balances

the sibling vCPUs in different run queues by shorten their scheduling distance. This

further reduces the synchronization latency in CPU over committed case. Our SBCO

requires no hardware support and can be easily implemented.

VMware developed a few versions of co-scheduling solution for ESX server. The

first version, referred to as strict co-scheduling, was designed for VMware ESX 2.x [89].

Later VMware created another relaxed co-scheduling (ESX 3.x) to moderate the se-

vere CPU fragmentation in the older version. In the relaxed co-scheudling, all vCPU

siblings are stopped but only the lagging vCPUs are started simultaneously when

they goes out of synchronization. Such relaxed co-scheduling was further refined in

ESX 4.x [87] stopping only advanced vCPUs, instead of all vCPUs. In all these co-

scheduling approaches, scheduler tends to forcibly start or stop some vCPUs which

18

incurs significant context switching cost. Our SBCO balances sibling vCPUs and

avoids arbitrary forcing vCPUs co-scheduling. Another hybrid co-scheduling frame-

work was proposed in [95] to solve the CPU fragmentation issue, especially in CPU

over-committed cases. It classified the VMs into concurrent VM when running con-

current workloads and co-scheduled all of its vCPUs. This co-schedule solution re-

quires to determine the VM type manually. It is not applicable to scenarios where

that knowledge is not available to system admins. In addition to these co-scheduling

approaches, PACMan [72] provided some insights for performance aware VM consoli-

dation. Matrix [22] proposed an approach to achieve predicable performance in cloud

with machine leaning. Difference from these works that considers multiple contribut-

ing factors to performance, our approach focused on the LHP issue and attempted to

alleviated its impact on performance and resource utilization. Gleaner [27] introduced

an interesting idea to solve the blocked waiter wakeup(BWW) problem. Our work

shares the same goal of reducing costly vCPU context switch. However, Gleaner con-

solidates short idle periods on multiple vCPUs into long idle periods on fewer cores,

thus reducing the frequency that vCPU enter/exit idle loops. This approach may

have limited improvement in heavy loaded cloud with CPU intensive applications. In

those cases, vCPUs are busy most of time and they get rescheduled mainly due to

running out of scheduling period other then entering idle loops. Our approach opti-

mizes vCPU scheduling especially in over loaded cloud with high VM consolidation

ratio.

There are other communication-aware CPU scheduling algorithms for collocated

multi-tier applications [32] or NUMA scheduling [68]. Without considering LHP

issue, this solution optimizes the default Xen scheduling to make VMM aware of

19

communication behavior of modern multi-tier applications. Besides these optimizing

scheduling approaches, there were recent works focusing on optimizing the way of

using spin-lock [34]. The authors proposed a new approach to manage the number of

active threads to separate possible contentions with a load control mechanism. This

contention isolation mechanism increases the efficiency of spin-lock and robustness of

blocking. Though it does not require OS level modifications, the contention separa-

tion is application dependent and challenging in a dynamic virtualized environment.

In contrast, our SBCO tends to optimize kernel level scheduler applicable to any

type of workload. Note there are other works attempting to redesign the spin-lock.

Raghavendra redesigned spin-lock and implemented para-virt spin-lock for KVM [40].

This approach does not prevent LHP. Instead, with the para-virt locks, the spin wait-

ing time is reduced even when a lock holder is preempted. Similar to the hardware

assisted approached, newly designed spin-lock requires guest VMs to be aware of the

para-virt spin-lock. This may limit the usability of the spin-lock.

2.3 Flexible Mobile Augmentation

Recently, research on leveraging cloud to augment mobile computing has gained

much attention. In this section, we present a few representative approaches towards

this research direction, particularly, remote execution [74] and computation offload-

ing [52]. Most of them focus on optimizing the power usage, augmenting performance

or proposing a new computing model. We have analyzed them and compared them

with our approach.

Remote execution was initially proposed to conserve the scare resources on mobile

devices in a few research work [15, 30, 75]. Remote execution requires moving com-

20

puting tasks from the mobile device to the server before task execution. The server

performs the task and sends back the results to the mobile device. In [75], authors

report that remote execution can save energy consumption if local execution is more

expensive than remote processing cost. In recent years, remote execution has been

adopted to boost the computing capability [70, 79, 24]. MAUI [70] proposed an mo-

bile application code offloading system. In this system, all the methods or classes that

could be executed remotely are identified by application developers and are offloaded

to be executed in cloud. Though offloading is capable of boosting performance, such

approach still has some limitations. The code that can be offloaded can not be the

code for interacting low-level I/O devices or internal resources of mobile devices.

Cloudlet [79] proposed another infrastructure for remote execution. In a cloudlet

system, mobile devices provide input to launch VMs in the cloudlet. These VMs

provides services according to the input and send the result back. Mobile devices

are connected to a cloudlets via high speed wireless network. The main motivation

of this proposal is to provide interactive communication between mobile device and

cloudlet. This model is essentially to make mobile devices as a terminal to access

local resources instead of directly using the resources available on mobile devices and

it is also limited to certain type of services that cloudlet can offer. Clonecloud [24]

further explores the feasibility of remote execution by proposing moving the whole

or part of the execution of resource expensive applications to smart phone clones in

more powerful computing infrastructure. The augmented phone clone is synchronized

with the mobile device via whole system replication which is tradeoff due to the

synchronization cost. The partial remote execution model in the proposal also requires

separating resource expensive code. Based on MAUI and CloneCloud, ThinkAir [39]

21

introduces a framework for code offloading with parallel processing capability for

mobile applications. It targets a commercial cloud cases with multiple mobile users

and considers the elasticity and scalability of the cloud for the dynamic demands of

customers. Unlike the existing remote execution approaches, we propose running a

augmented phone clone of a real phone in cloud. We focus on whole system replication

but incremental synchronization. The clones are running in a virtual cluster which

has the same CPU architecture with mobile devices. Thus there is no emulation

or code isolation. Our main target is saving power consumption and agumenting

applications’ performance.

Besides code offloading type of remote execution, thin-client [35, 45] offers an-

other option for remote execution of some applications. The initial thin client design

was proposed to reduce user delay experience due to remote exectuion. The remote

execution results are synced back to mobile devices with high speed network and the

execution process is transparent to mobile users. Applications like web browsing can

benefit from thin-client approach because the CPU intensive webpage parsing is done

remotely. Unlike this thin-client approach, our work involves both virtualization on

mobile phone and virtualization in cloud. The virtualization on mobile devices give

users more flexibility of running multiple environment concurrently.

Towards the direction of enhancing mobile devices’ computing capability, recent

research work [10, 76] proposed to isolate the computing intensive code and data

and them outside of mobile devices. Only the lightweight and less intensive code

and data are saved locally on mobile devices. Such isolation reduces the overhead

of identifying, partitioning and migrating resource intensive tasks and increases the

reusability of those isolated tasks. Although this isolation alleviates the overhead, it is

22

application dependent because programmers’ involvement is needed for the isolation.

Our proposal release application developer from this complicated isolation.

It has been proven that augmenting mobile devices with cloud can increase their

computing capabilities and conserve energy. Unlike most of the existing work, our

proposal has two main differences. First, the operating system on mobile devices is

virtualized and more than one instance can run concurrently. Such virtualization on

mobile devices gives users the flexibility to isolate different environments. Second,

the augmented clones are also running as VMs on the same CPU architecture as

mobile devices and there is no emulation. Application developers will have access to

a virtualized mobile platform that is very accurate to the real device.

23

Chapter 3:AGILE VIRTUAL MACHINE DEPLOYMENT

In this chaper we describe how we tackle the problem of agile virtual machine

deployment and virtual machine resource management.

3.1 Introduction

Cloud computing in its original form offers virtualized resources, and infrastruc-

ture in general, as a service over the Internet. A key requirement is resource provi-

sioning on-demand in a real-time manner. In the model of infrastructure-as-a-service,

applications are often run in virtual machines (VMs) and their performance relies

on effective management of the VMs in the whole life-cycle from creation, deploy-

ment, execution, to termination. Because of the nature of on-demand computing,

VM startup latency is a crucial performance factor in application responsiveness, in

particular for those that interactive, impromptu, and short-lived computing [44].

An example of such applications is server-based computing (SBC) [51], in which

resource-constrained client applications offload compute- or data-intensive tasks to

VMs running in a data center, e.g., through computation offloading or wrapping

mobile OS to VMs running in the cloud can significantly extends the computing

capability of mobile devices as well as saves the scarce battery resource. [24]. In

such case, the VMs may need to be created and deployed on the fly during the

execution time of the applications. Another example is virtual desktop infrastructure

(VDI) [85], in which clients would launch their VMs associated with their personalized

working environments and data on a remote client device upon request. In addition,

in virtualized parallel computing, the size of a VM cluster varies with the workload

which requires new VMs worker can be created instantaneously. Startup latency is

24

pivotal to the success of all these cloud computing usage cases.

VM creation from scratch requires to create a virtual hard drive image, configure

virtualized resources, install OS and initialize application services. This process would

take tens of minutes. To reduce the startup latency, in practice, public IaaS providers

like Amazon Web Services provide users an option to create VMs from template. A

VM template [86, 64] is a reusable image created from a clean VM and stored in

disk as a file. Although a VM can be created by booting from a template in tens of

second, the template become non-reusable by others. VM cloning from a template

would retain the reusability of the template but at the cost of expensive disk copy of

large image files. In either approach, there is no time-efficient way to create multiple

VMs simultaneously from the sample template, although such parallel deployment is

crucial to parallel computing and server clustering.

There were recent studies on reducing the startup latency and supporting parallel

deployment; see Potemkin [91] and Snowflock [43] for examples. Potemkin proposed

a delta virtualization technique for flash VM cloning. It relies a copy-on-write opti-

mization technique to have multiple VMs share memory pages as much as possible.

Snowflock proposed a process-fork like API to fork VMs for parallel processing during

the execution of a program. The VMs created inherit the software stack from their

parent VMs and can not exist without the presence of their parents.

In this work, we propose an abstraction of VM substrate as an alternative to

VM template for rapid deployment and parallel deployment of VMs. VMs created

from substrates have the same life cycle as template-based VMs and the VMs are

of independent by origin and can be deployed across different physical hosts. Unlike

templates that are stateless and stored in disk as an image file, substrates is a generic

25

Template Size 2G 5G 10G 20G

cp(local disk) 36.06s 58.75s 547.45s 1228.69s
cp(nfs) 46.16s 78.21s 640.28s 1412.42s

scp 43.31s 114.66s 749.97s 1589.35s
dd(single disk) 3.07s 45.55s 195.71s 515.17s

Table 3.1: Cost of creating VM from templates.

VM instance in miniature that docked in memory of a designated machine in an in-

active state. They can be present with or without application footprints and ready

to be powered on upon request. Creation of VMs from substrates saves time from

time-consuming disk-based booting and deployment. The substrate mechanism lever-

ages an array of techniques, including VM miniaturization, generalization, clone and

migration, page copy-on-write, and on-the-fly resource configuration, to save mem-

ory space, generalize substrate usages, and resolve resource configuration conflicts on

VMs to be created. The mechanism facilitates parallel VM deployment via multicast.

We have implemented a prototype on a Xen/Linux server cluster and tested the

system in two scenarios: on-demand deployment of VMs for cloud-assisted gam-

ing and parallel deployment of heterogeneous VM clusters like LAMP (Linux/A-

pache/MySQL/PHP). Experimental results showed the mechanism capable of creat-

ing VMs in subsecond, while retaining the flexibility of VM resource configuration.

The experiment results also show that the substrate mechanism makes it possible to

deploy a VM cluster in a few second or a speedup of more than 50 times in comparison

with default VM deployment from template.

26

3.2 Background

Deployment of a VM in a data center involves a number of steps: (1) VM creation

with virtual hard disk; (2) Installation of OS images and applications; (3) Deployment

with configuration (networking, etc) on selected host/cluster; (4) VM startup.

New VMs can be created either from scratch or from template. As the process of

VM creation from scratch takes tens of minutes, it is rarely used in cloud. On the

other hand, deploying a VM from templates, which removes the process of OS and

software installation, is widely used in practice. VM creation from templates involves

two steps: (1) create a copy of the template’s virtual disk image and (2) customize the

VM configuration as needed. Configuration customization includes parameter settings

for boot option, host name and network. VMs can be created from templates through

either cloning or conversion. VM templates are usually created for a specific purpose

such as a web server or a database server. Once booted, the VM which originates

from a template can be further extended by deploying more applications or run-time

libraries. In the following, we first discuss the cost of VM creation and then examine

the state transition of a VM. Next, we present the challenges of fast VM deployment.

3.2.1 Cost of VM Creation

The cost of template-based VM creation comes from different sources. First, de-

pending on the storage environment and VM template image size, the cost of VM

disk duplication varies. In order to support VM live migration [25], VM disk images

are usually stored in centralized storage servers. NFS and iSCSI are two popular

choices for the deployment of VM virtual disks. In either case, the duplication of the

template’s disk image is necessary for a new VM creation. Table Table 3.1 shows the

27

cost of disk duplication with different disk sizes and different methods. Regardless

the underlying storage organization and duplication methods, the cost increases sig-

nificantly with the VM disk size. A 5GB VM disk requires more than one minute to

be copied. The latency incurred by disk duplication is not acceptable to interactive

applications. Besides, according to the table, to clone a new VM from a template on

remote host (scp) takes tens of seconds or even a few minutes, consuming a significant

amount of network bandwidth in the data center. Note that although create a blank

disk image on local disks (dd) takes less time, but deploying root filesystem takes

even more time than directly duplicate a disk VM with root filesystem as a whole.

Second, the booting process of a VM includes booting the kernel and starting default

services. Kernel booting usually takes sub-seconds while starting different services

is both error-prone and costly. The general purpose OS installation activates many

services by default. RightScale [71] templates and Oracle VM templates [64] disable

most of the application unrelated services to minimize the cost. Third, traditional

JeOS templates are usually extended by installing more applications to generate new

application specific templates. The cost of maintaining various VM templates in-

creases with the diversity of application oriented templates. All these costs together

makes template based VM creation impractical for interactive applications.

3.2.2 VM State Transition

Starting from a template, a VM experiences multiple states in its life cycle. Fig-

ure Figure 3.1 shows state transition diagram for a VM. Each VM is initially halted

after being created from scratch or cloned from templates. Although each halted VM

is a static instance only consuming disk space, it still can be edited or customized

by installing new applications or changing the associated configuration. A VM is

28

Halted

Start

Running

StopCreate

Clone

Resume

Reboot

Migrate

Pause

Unpause
Paused

Suspended

Suspend

Inactive

VM Actions

VM status

VM status introduced

by substrate

VM action Introduced

by substrate

Activate Dock

Figure 3.1: VM State Transition.

changed to a running state when it is started and A VM can be paused or suspended

on local host or migrated to another host. We added one additional state and two

new actions to the conventional VM state diagram [64]. A new substrate is generated

from a running VM through docking. Docking can be done by converting or check-

pointing. Converting puts the running VM to an inactive state, while checkpointing

keeps the VM running. The tradeoff between these two solutions are discussed in

substrate design section. Note that an inactive state is different from a halted state.

An inactive VM consumes memory and maintains running status, but a halted VM

only consumes disk space.

3.2.3 Challenges of Rapid VM Deployment

Rapid VM deployment calls for minimal costs in each step of VM creation. How-

ever, as discussed above, virtual disk image duplication is time-consuming. It leads

to a large startup latency. Moreover, if multiple VMs need to be created at the same

29

time, disk duplication is the key impediment to fast VM deployment. In addition,

the automatic resource reconfiguration of new VMs is also challenging, especially in

a heterogeneous virtualized cluster of VMs with interactive applications.

Stateless VM creation has limited usage cases due to the fact that it creates brand

new VM every time without preserving runtime environment or intermediate result.

A brand new VM with necessary applications pre-installed is how the general VM

template is used. This is insufficient for many of the cloud applications like parallel

computing or mobile computation offloading. Thus the fast creation of statefull VMs

is necessary.

Rapid VM deployment also requires that the creating process should be transpar-

ent to users and applications. Because creating a new VM always takes time, in the

cases of user interactive applications or other request-driven VM creation, startup la-

tency caused by creating a new VM must be small enough so as to make the creating

process transparent to application. If the cost of creating process is negligible, from

applications’ perspective, VMs are always ready for use.

3.3 Design of VM Substrate

Modern applications and libraries consume a considerable amount of disk space,

which makes the size of templates usually large. To address these limitations, a few

questions need to be answered. First, can image file be stored in memory instead

of disk? Although, solid-state-disk(SSD) attempts to increase the efficiency of data

transfer between disk and memory, it is still not fast enough to meet the requirement

of duplicating disk image on demand. Moreover, the size of traditional templates can

easily go beyond the limitation of the memory of a server or a common SSD. Thus it is

30

impractical to maintain templates in memory and only a limited number of templates

can be saved on SSD. Second, is it possible to avoid the booting process while still

maintaining previous running states when starting a VM? An AMI [29] or oracle VM

contains a minimal Linux installation with only essential Linux services, leaving the

installation of additional applications to package management tools. Thus the images

are much smaller than default Linux OS installation. However, it is a brand new OS

with only a limited number of services installed. Third, is it possible to deploy a

VM in a real-time manner? Real-time VM deployment allows VMs to be created on

demand and only be activated when in use. In the remaining section, we elaborate

the design of VM substrate and compare VM substrate with alternative approaches.

3.3.1 VM Substrate and Pool

The design of VM substrate aims to leverage existing virtualization techniques to

provide an agile cloud computing environment which allows users to create VMs or

VM clusters on demand. A VM substrate is a static reusable instance that can be

duplicated or reactivated for later use. VM substrates are categorized into three types.

Public substrates contain minimal clean JeOS and generic configuration. Restricted

substrates are the extensions of public substrates with specific applications and run-

time environment. Alternatively, private substrates include users’ personal data which

can only be reused under strict sharing policy. These types of substrates are designed

for different use cases, but they follow the same docking and reactivating process.

Saving the running states of VMs into in-memory VM substrates has many ad-

vantages over having VMs always run in full capacity. If a VM in full capacity is

paused or suspended to the local machine, the resulted memory footprint which con-

tains the VM’s running state is usually quite large, in proportion to the VM’s original

31

capacity. If the saved state is stored in local machine’s memory, the restarting of the

paused/suspended VM is instant but at a cost of wasted memory resources which can

be otherwise used by other running VMs. If the state is saved on local hard disk, the

time required to resume the VM is unacceptable. For example, it takes approximately

40 second to restore a VM with 2 GB memory from a 7200RPM SATA disk. In VM

substrates, we first trim the VM to its minimal capacity (minimal CPU and memory,

detached block and network devices) that preserve essential running states, and then

temporarily dock the VM to memory other than disk. After the final compression, the

resulted memory footprint which usually in a size of tens of megabytes is transferred

and consolidated to a dedicated substrate pool. Upon resuming, the corresponding

VM’s substrate is activated by expanding to its real capacity. The restoration latency

is comparable to the local in-memory restore but with a much less memory cost on

each local host.

A substrate pool is a centralized repository where all the substrates are main-

tained. Unlike traditional VM template pool, The substrate pool stays mainly in

memory and the backup substrates are stored on disk. The size of a substrate pool is

dynamically reconfigurable without affecting the existing substrates. Our preliminary

experiment results show that a substrate with minimal programming environment can

be as small as 16MB. With the similar substrate, we successfully hosted several hun-

dreds of substrates on a physical machine with a 4GB memory. However, the sizes

of the substrates depend on the running status of the hosted application. In order to

maintain a statefull substrate with manageable cost, we aim to embed only necessary

data into a substrate.

VM substrate is proposed to be an alternative effective VM administration solu-

32

T
im

e

Client
Cloud Manager

Substrate Pool
Target Host

1

2

3

New VM

4

5

6

7

8

1 Send VM create request 2
Calculate resource utilization

and send VM substrate

3
Allocate resources and
reply with resource info

4 Send default VM config

5 Start VM with default config 6 VM resource expansion

7 Update VM allocation info 8 Return ready-to-use VM

Figure 3.2: Create VM from substrate.

tion not only applicable to instant parallel workers creation, but also applicable to

standalone VM deployment, also taking the reusability and scalability into consid-

eration. Different from VM Descriptors proposed by Snowflock [43], VM substrate

doesn’t have heavy dependancy on any parent VM and has many varieties. VM De-

scriptors contain only the minimal critical metadata needed to start execution and

use Memory-On-Demand mechanism lazily fetch portions of VM sate over network

as it is accessed. In contrast, VM substrates are static VM abstraction resides in a

pool in memory. Activation, resource expansion and remapping are the typical three

steps to create a new VM from a substrate. In theory, it is possible to maintain a pool

of template parent VM and then fork child VMs on demand. However, this solution

can hardly get rid of the limitation of dependancy and hard to meet the requirement

of VM creation for long standing services. Moreover, due to the size of the parent

33

VM, the cost of maintaining template parent VMs is much higher than maintaining a

substrate pool. In addition, if the application is CPU intensive and requires minimal

updates to disk or the intermediate results can be discarded, an alternative way to

VM fork is to start multiple VMs on different hosts with the same disk image located

on a centralized server. But this solution has very limited usage cases.

The abstraction of VM substrate introduces two VM state transfer actions in the

life-cycle of a VM which are docking and activating. A VM substrate is constructed

by docking a running VM maintaining applications’ running status. There are two

ways of docking: intrusive converting of a running VM and live checkpointing of a

VM. In contrast, VM substrate activating includes dispatching substrate, launching

substrate and reconfiguring substrate’s resources. A new VM is created after the

activating process.

3.3.2 VM Clone From Substrate

We employ four steps to address the challenges in on-the-fly VM creation. First,

VM miniaturization and generalization. Before generating new VM substrate, the

parent VM is shrunk to a miniature state. A VM substrate has minimal memory

footprint, single vCPU core, detached network interface and reference to virtual disk.

Since the memory size is a major factor of the final size of a VM substrate, the memory

size needs to be shrunk to the greatest degree through either intrusive shrinking or

live checkpointing. In either case, the data in the system cache is synchronized to

disk first. Through predictive calculation, we reconfigure VM’s memory to a size that

only contains data necessary for the restoration. VM configuration generalization

assures the VM specific configuration of public or restricted VM. Configurations such

as host name, networking parameters are reset to the default value. The resources of

34

a private VM substrate is minimized while still maintaining its original configuration.

Second, raw VM substrate is generated right after the VM’s resource shrinking. A

snapshot of the minimal running VM is created and stored in local memory. Third,

raw substrates are compressed to be the final VM substrates before they are moved

to a substrate pool. Compression reduces the substrates to a size as small as tens

of megabytes which can be transfered over WAN. Fourth, the minimal VM substrate

on local memory is transfered to a centralized pool. Figure Figure 3.3 illustrates the

steps of docking a running VM to a substrate.

When a substrate is selected to create a new VM, as shown in Figure Figure 3.2,

it is duplicated to other physical hosts simultaneously via multicast. Each physical

host then decompresses the VM substrate and activates it from memory. Through

reconfiguration, newly created VMs on each host will be allocated more memory

and vCPU resources depending on application needs. New network interface with

predefined parameters is attached to the VM and the configuration takes effect im-

mediately. Depending on the type of a substrate, root disk is remapped and user’s

personal disk partitions can be attached to the VM.

3.3.3 VM Substrate Generation

Converting a VM to a substrate starts with reconfiguring a running VM’s resource

to minimal memory footprint and vCPU number, detaching the network card and

saving the disk states. The initial VM from which a substrate is constructed can be

a VM template or any VM with applications running. Intrusive conversion can be

initiated in the application level by administrators whenever the VM has no scheduled

work and is ready to be docked.

A VM substrate can also be created through live checkpointing in system level.

35

VM checkpointing has been widely used for various purpose like high availability [26],

VM migration [25, 58, 21, 92],fault-tolerant [57] or debugging [36]. We also leverage

checkpointing to create VM substrates without interrupting the running services.

Most of existing VM level checkpointing techniques tend to save the entire running

states(cpu,memory,disk) in a core dump where the resulted checkpoint size is the

VM’s memory size, and the checkpointing time is closely related to memory page dirty

rate. We employ two techniques to ensure that a VM can be correctly restored from a

substrate and the size of the resulted substrate is minimized. First is selective memory

checkpointing, through which only reusable memory pages are saved to substrates,

discarding the reconstructable or zero pages. Selective checkpointing memory is able

to reduce the size of raw substrates considerably. Second is the generalization of VM

configuration, which set all VM specific resource identifiers likevmid or uuid to default

values in a VM substrate. By using these two techniques, a checkpointing substrate

of existing running VM instance can be created any time without conflicting with the

original VM.

Compared with intrusive conversion, live checkpointing is able to create VM sub-

strate without interrupting user applications, but it requires the modification of the

VMM for selective memory dumping. In contrast, application level substrate conver-

sion is independent on the underlying VMM. It only requires that virtual hardware

resources of a guest VM can be configured dynamically without a restart.

3.3.4 VM Fork

We note that VM fork has been recently proved to be an efficient way to clone

a parent VM to multiple copies swiftly[43, 91]. Similar to process level fork, VM

fork allows a child VM to inherit all the states originated from its parent VM prior

36

T
im

e

Cloud Manager

Substrate PoolTarget Host

1

2

3

Running VM

4

1 VM docking request 2

shrinking VM:
 minimal mem
 single core
 detach NIC
 detach disk

3
snapshot the running VM
and save to memory

4 compress the raw substrate
move the compressed substrate to pool

Figure 3.3: VM dock to substrate.

to forking, enabling creating statefull computing instance rapidly. However, different

from process fork, VM fork is capable of creating VM clones across a set of physical

hosts. It can also work in a parallel manner where a single API call launches multiple

VMs. Each child VM has its own independent copy of resources and runs indepen-

dently from the parent VM. Once forked, and the changes made to each cloned VM

are maintained separately. We analyze the advantages and the disadvantages of VM

fork and compare it with VM dock and reactivate in the remaining of this section.

VM fork is capable of creating transient VMs whose virtual resources are discarded

once they exit. The intermediate states or values generated by the applications in

a child VM are lost unless being explicitly synchronized to the parent VM. Due to

the characteristic of a fork operation, VM fork has a few limitations. First, VM fork

is applicable to computation intensive applications with limited or disposable inter-

37

mediate results. Existing VM fork leverages disk Copy-On-Write(COW) techniques

to offer each child VM a COW slice of disk and all the disk updates or intermediate

values are preserved on the COW disk. The child VMs share the running environment

of the parent VM and the coordination between the parent and the children is mainly

limited to computation. In the case of IO intensive applications, each child VM needs

to make changes to their own disks which are actually COW slices. When the tasks

in children VMs finish the updates on each child may need to be synchronized back

to the parent. The integration of the updated data to the base disk incurs signifi-

cant cost. It is challenging to achieve consistent synchronization once several VMs

changed the same data. Second, sharing the same base disk partition between parent

and children VMs limits the scalability of VM multiplexing. With IO intensive appli-

cations, the disk bandwidth of the base partition can easily become the performance

bottleneck. Although multicast can be used to render memory pages concurrently to

all the children VMs and memory page prefetching can possibly speed up on-demand

paging, VMMs like Xen only grants the privileged domain direct access to the devices

and does not allow the guest domains to access them directly [62, 32]. If the number

of child VMs that request missing pages is large, the parent VM would receive a

considerably amount of page requests from network interface. The parent VM can

possibly become a hot-spot.

Third, current VM fork implementation remains at application level focusing on

parallel applications which need to re-spawn additional temporary workers. How-

ever, VM fork is not ideally suitable for deploying longstanding independent VMs

at cloud administration level. Server applications such as web hosting and database

warehousing usually run in loose coupled virtual clusters with minimal correlation.

38

Such applications often require persistent data storage for each virtual node. Another

drawback of the VM fork mechanism is its inability to create a heterogeneous VM

cluster at a time. The VM substrate approach proposed here tries to create a cluster

of heterogeneous VMs in a real time manner.

3.4 Implementation

We have implemented our VM substrate pool mechanism on the Xen platform.

Xen is capable of running two leading approaches for virtualization: para-virtualization(PV)

and full virtualization(FV). FV is designed to provide total abstraction of the underly-

ing physical system, in which guest OS or applications are not aware of the virtualized

environment. However, it incurs much performance overhead and can not be recon-

figured on the fly without reboot of the VM. In contrast, PV presents each VM an

abstraction of the hardware and requires modification of OS, allowing near-native

performance. The memory size and the number of vCPUs of a PV guest VM can be

reconfigured without restarting the VM. Thus, we select PV VMs in our prototype

implementation. Our implementation includes modifications to the hypervisor, the

libxc library, and the xend management daemon. In the remaining of this section, we

elaborate the implementation details and compare them with alternative approaches.

We also present micro-benchmark results to show the feasibility and effectiveness of

the VM substrate.

3.4.1 Resource Shrinking and Expanding

vCPU: vCPUs are what the guest sees as CPUs on which the guest OS schedules

applications processes or thread. The final size of a VM substrate is not affected by

the number of vCPU configured in a VM. In order to make each substrate be more

39

Machine Memory

VM Physical Memory

Staic

 Memory
...

Dynamic

Memory
... ... Cache

Unallocated

 Memory
...

�... �... �... �...

Figure 3.4: VM’s memory footprint.

generic and with minimal resources, each VM substrate has an default configuration

of a single vCPU core. In practice, vCPUs are usually pined to specific physical CPUs

for predictable performance. VM substrate is designed to be a generic mechanism

that does not assume any physical host information. Thus, CPU affinity information

is not maintained in the substrate. In a heterogeneous cluster, a VM substrate with

a single vCPU is able to be deployed on any physical machine. Since Xen VMM does

not allow the actual vCPU number to exceed the maximal number of vCPU specified

in the guest’s configuration file, we set the default maximal number of vCPU to be

the total number of physical CPU cores for each substrate. Any newly created VM

initially has single CPU core by default. More vCPUs can be allocated at a step of

one vCPU.

Memory:

Xen VMM is responsible for managing the allocation of physical memory to guest

domains and maintaining a triple indirection model(virtual memory, pseudo physical

memory and machine memory). Each VM runs in an illusory flat, continuous address

40

space. Xen reserves the top 64M of the virtual address space for every domain. The

remaining physical memory is available for allocation at a granularity of one phys-

ical page. Xen maintains a globally readable mapping table between PFN(Pseudo-

physical Frame Number) and MFN(Machine Frame Number). The OS running in a

VM maintains the mapping between virtual memory and pseudo physical memory.

As shown in Figure Figure 3.4, each VM’s physical memory is part of the machine

memory and can be divided to several parts including used pages and unallocated

free memory. The used pages can be further divided into static memory pages and

dynamic memory pages. The later one also includes disk cache. Note that although

the used pages are not available for reallocation, it is still possible that some of those

pages are zero pages either because they are set to zero by programs or they are

used as heap initialized by compiler. Traditional VM save xen save writes the VM’s

entire memory including zero pages, cache pages and free pages to a checkpoint file.

Including free and zero pages in the checkpoint file is likely to be a waste because

those pages store no information of the checkpointed states. In order to minimize

the size of a VM substrate, we only keep the reusable and minimal memory footprint

while still maintaining the integrity of a VM’s state.

A VM substrate which excludes free pages does not harm the correctness of VM

when it is relaunched because those free pages can be easily reconstructed by manip-

ulating the mapping table of MFN and PFN. Zero pages are still included in a VM

substrate for the following reasons: First, there is no more efficient way to extract

zero pages other than doing a bit by bit comparision. The cost rises as the size of

VM memory increases. Second, each VM substrate is compressed before going to a

substrate pool, the compression algorithm is capable of compressing the zero pages

41

with a large compression ratio which reduces the size of the substrates considerably.

Note that disk cache is used for performance optimization where recently accessed

data can be retrieved from memory without incurring disk IO. Before creating a pub-

lic or a restricted VM substrate, disk cached pages are synchronized to the disk which

yeilds more free pages and the final substrate size can be further reduced.

Most of existing Linux distributions enable many optional services by default

even for a base installation. Rightscale[71] uses bash scripts to disable those optional

services before building a template. In addition to kicking off disk cache pages, we

also release part of the memory occupied by killing user applications that are not

relavent to the main purpose of the substrate. For example, in a substrate dedicated

for web hosting applications, optional services like sendmail, nfs can be removed. We

customize the application level services before docking a VM.

Memory ballooning is used by VMMs like Xen to achieve memory over-commitment.

It provides the ability for the sum of the physical memory allocated to all active do-

mains to exceed the total actually physically available memory on the system. Recent

dynamic memory balancing work [100] proposed mathematical models to forecast

memory needs and dynamically adjust the memory for VMs. The objective of these

two memory adjustment approaches is to improve memory utilization. The later one

also considers applications’ throughput and performance. It is possible to instrument

Xen to track memory accesses with each VM through the use of shadow page table.

Shadow page tables are enabled during Xen’s VM migration to determine which pages

are dirtied during the migration. However, trapping each memory access results in a

significant application slowdown and is only acceptable during migration [25, 77].

After a new VM is created from a VM substrate, it will start running at the initial

42

state with minimal memory. It later expands to a larger size according to the setting

in the configuration file. Each VM has a maximum and current memory size. Current

memory size can be adjusted up to the maximum size. We configure the maximum

memory of each substrate to be the physical memory size. The total memory size is

extended dynamically. We implement an application level memory shrinking mech-

anism which is used to convert a VM to a substrate based on simple speculation in

our prototype. We use the Linux /proc interface (in particular /proc/meminfo) to

analyze the memory usage. Before docking a VM, we first kick all the cached data

back to disk and consider the remaining memory size being actively used. Then we

determine the minimal amount of memory the VM needs by adding a safe margin

preventing Out-of-Memory crashes when the VM is restarted from substrate. The

VM is set to the resulted memory size. The memory footprint of a guest VM will

directly influence the final size of the VM substrate. The effect will be evaluated at

the end of this subsection.

Network: The privileged domain in Xen VMM implements the network interface

driver and all other guest domains access the driver via virtual device abstractions.

Each domain is attached one or more virtual interfaces. Due to the fact that virtual

interfaces are not necessary for booting a VM, their configurations can be postponed

until rest of the guest OS ready to work. Conventional migration keeps network

connection status by maintaining all protocol states and keeping IP addresses and

MAC addresses in a record. Existing solutions used to manage network configuration

during migration are to generate an unsolicited ARP reply form the migrated host,

which lets the switch and other hosts know that the MAC is connected a new port [25].

However, even if the switch is configured not to block ARP broadcast, conflicts still

43

exist if multiple VMs are created from the same substrate because all the network

configurations of the new VMs are originated from the same substrate. In order to

avoid the conflicts, We detached the network interface before docking a VM and VMs

created from substrates do not have network interfaces initially.

The network parameters are configured when a new network interface is attached

to a VM. In our prototype implementation, we also developed a mechanism to iso-

late the network in order to prevent interference between unrelated VMs. First, the

networking mode (NAT,bridge or routing) can be dynamically configured with an

interface in a physical host. Besides, the IP, MAC addresses and even the network

mode can be determined within a physical host and transfered to guests as param-

eters. We implemented guest network configuration mechanism based on Xenstore

to provide agile and immediate configurations. Depending on the purpose of newly

created VMs. Especially when a virtual cluster is created, they are deployed with

private network addresses and only guests within the same subnet are visible to each

other.

A VM substrate is the snapshot of an original VM, and the memory and process

running status are preserved in the substrate. This may result in some conflicts if new

VMs are created based on one VM substrate because they share the same running

environment. It is possible that multiple processes in different VMs may need to

connect to the same socket or open the same file. In our prototype implementation,

docking VM can be done at administrative level when one phase of computation

is finished or before the application starts to run. Another solution is to create a

substrate directly from a running template.

Disk: Disk image files are commonly used as virtual disks by guest VMs. Because

44

Base Disk

OS/App

COW

Disk 1

OS/

App+App2
COW

Disk 2

OS/

App+App3
COW

Disk 3

OS/

App+App1

Time

Figure 3.5: Vertical COW.

Base Disk

OS/App
OS/

App+App1

COW Disk 1

OS/

App+App1+App2

COW Disk 2

Time

Figure 3.6: Linear COW.

the disk image files, which are usually in a size of tens of Gigabytes, stores the ap-

plication specific data, costly disk duplication is often unavoidable if new VMs are to

be created. Existing template-based VM creation simply distributes the virtual disk

image in a copy-and-paste manner to reconstruct the same VM without reinstalling

OS or applications. Thus any two VMs from the same template are independent from

each other, guaranteeing the isolation of VMs. However, the time spent on copying

virtual disks is unacceptable provided that the disk size is usually large. Disk copy-

on-write is often used to avoid unnecessary disk space waste. Multiple COW slices

can share the same read-only base image file and all the updates are directed to those

COW slices. Wide-area VM migration used disk COW to transfer VM disk state

over low bandwidth and high-latency links [77, 42]. To reduce the startup latency of

new VMs, disk COW is also used recently by Snowflock [43] and Potemkin [91] to

45

generate temporary disk slices for newly created VMs.

There are two different types of disk COW. Frist, a blocktap driver combined with a

qcow slice, which is supported by Xen VMM. Second, LVM supports creating writable

snapshots of logical volumes quickly and each snapshot can be used as a COW disk

slice by guest VMs. However, both of these two approaches have their limitations.

Traditional qcow based COW has a limit on the total number of slices created and

also has to make the tradeoff between the size of the COW disk and the depth of the

COW disk hierarchy. Deeper hierarchy leads to bigger image files. Figure Figure 3.5

and Figure Figure 3.6 illustrate two typical ways to create a COW disk partition.

The linear COW approach in Figure Figure 3.6 applies incremental COW slices onto

existing disk partitions. The existing disk partition can be an initial base partition

or a partition already having COW slices on it. The vertical hierarchy as shown

in Figure Figure 3.5 dedicates a VM to a single purpose with fewer applications

installed, thus it is able to limit the resulted partition size to a certain extent. In

order to avoid the high The root COW disk is the initial image file and usually

installed with the JeOS, then multiple child COW disks are created afterwards with

each taking the previously created root COW as its parent and install with different

kind of application. Due to the IO scheduling of virtualized disks, more COW slices

result in higher dependency and the more degradation of the performance in either

mode. Moreover, it is very challenging to merge multiple COW slices to the base

image because the order of updating disk file is usually not preserved. On the other

hand, LVM snapshots usually apprear as a physical partition and requires using tools

like ATA over ethernet(AoE) or iSCSI[56] to export COW slices when VMs need to

be deployed across multiple hosts. Each new slice requires an update to the running

46

user

Time

App

OS

Base

COW

New

ImageCommit

Merge

Buffer

2

1

4

6

5

87

3

Figure 3.7: IO sync.

AoE or iSCSI service to export a new disk partition. In addition, only recent LVM

version supports merging a COW back to the base and it also needs to use the latest

Linux kernel. In conclusion, disk COW slice is only applicable to temporary VM

creation.

Xen disk block device supports split driver model and the VMM provides a mech-

anism for device discovery and data movement between domains. The device drivers

are split across Domain 0 and guest domains which are also called back-end and front-

end respectively. Domain 0 is responsible for supporting hardware, running back-end

devices drivers and providing the administrative interface to Xen. This VM disk

model allows that a VM’s disk can be reconfigured. We leverage COW techniques

for substrate-based VM deployment with some modifications to the existing COW

mechanism. The objective of real time VM creation are two folds. First, in the long

run, VM substrate-based VM creation should guarantee the correctness and should

generate consistent application result compared to the VMs created from templates.

Second, from the users’ perspective, a VM can be created on the fly in a real time

47

manner with small latency. Inspired by [59], We create a temporary COW slices and

remap it to a newly created VM from substrate, giving users near realtime responses

to the VM creation requests. The temporary COW slices work as the root partitions

in order to speed up the booting process. At the same time, we duplicate the base

image in the background. Once duplication of the base image finishes, instead of

merging COW slice back to the original base, we merge the COW slice to the dupli-

cation of the base, removing the dependencies between the parent’s base image and

children’s COW slices. We changed existing qcow to work as a buffer of disk updates

supporting dynamically merging to any duplicated copy of its original base. Thus,

the time-consuming disk duplication can be hidden as a background job. An exter-

nally synchronous file system has been proposed by Edmund et al. [59] to amortize

modifications across a single commit where only external output will trigger file mod-

ifications to be committed. Similarly, our COW slice can be regarded as the buffer

of modifications, the commit will be triggered when the duplication of base image is

done. Figure Figure 3.7 shows the synchronization of disk IOs when a new VM is

created from a substrate. Each VM is assigned a COW slice initially, but will have its

own independent disk partition in the long run. Step 1 groups multiple modifications

before committing the changes to the disk. Step 2 and step 4 represent retrieving

data from the base image and the COW slice respectively. Step 3 and Step 5 show

that disk changes are synchronized to the COW slice. When a request of creating

a new VM is received by a cloud manager, the duplication of the base image file is

started as a background job. Other than synchronizing the COW slice to original

base image, we synchronize the changes to new base image which is shown in step 6.

After merging COW slices to the new base image. VM starts to read and write data

48

 0

 1

 2

 3

 4

 5

 6

 7

128M 256M 512M 1024M 2048M

T
im

e
 (

s
)

Memory Footprint(MB)

137M
265M

521M

1.1G

2.1GDocking
Reactivate

Figure 3.8: Impact of shrinking degree.

directly from and to the new image as shown in step 7 and step 8. After step 8, the

VM creation process finishes and the VM works just as the VMs created from a static

templates. Note that the VMs created from substrates are online whenever the COW

slices are ready (step 1), which gives almost real time responses to users’ requests. In

practice, the intermediate COW slices turn to be very small after merging, thus can

be discarded with minimal cost. The original base image still remains reusable.

Evaluation To understand the impact of shrinking degree on generating VM

substrates and reactivating substrates, we shrunk a VM’s memory from different sizes.

We experimented with various memory sizes from 128M to 2GB and verified the time

spent on preparing raw VM substrates and the time reactivating them. All the cached

data was synchronized back to disk before docking. As shown in Figure Figure 3.8, the

49

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

128M 256M 512M 1024M 2048M

T
im

e
(s

)

Raw Substrate Footprint

23M
40M

73M

124M

130MCompress
Decompress

Figure 3.9: Compression cost.

sizes of a raw substrate are slightly larger than the memory footprint. If VM’s memory

can be shrunk to around 128M, the docking or reactivating can be done within 0.875

seconds. In our test, a VM with some applications like Webserver, MySQL database

or program development environment installed could further be compressed, leading

to a final VM substrate as small as 16MB.

3.4.2 Substrate Multicast and Compression

In our prototype implementation, we use multicast to dispatch VM substrates in

parallel to other physical hosts. Traditional point-to-point communication has the

drawback of inefficiency if a substrate needs to be sent to multiple hosts simultane-

ously. The transferring of VM substrates consumes considerable network bandwidth.

In order to make sure that all the VM substrates are only transfered within the data

50

 0.1

 1

 10

 100

 1000

 10000

 0 1 2 3 4 5 6 7

T
im

e
 (

s
)

Number of Clones

Multicast(25M)
Multicast(1G)
Unicast(25M)

Unicast(1G)
NFS

Figure 3.10: Effectiveness of multicast.

center, we set the time-to-live (TTL) value of all multicast packets to be 1. Since the

size of VM substrates can be as small as 16MB, the multicast packets can be encap-

sulated into the payload of TCP packets and can be sent quickly to another node in

a LAN environment. Due to the small footprint of the substrates, our current im-

plementation can alse be extended to a WAN environment connecting different data

centers.

The raw VM substrates are compressed before moved to a pool. The objective of

the compression is to make each VM substrate as small as possible. In our prototype

implementation, we used the gzip algorithm to compress raw VM substrates. In order

to reduce the cost of compression, the compression is done in memory and the resulted

compressed substrates are also stored in memory temporarily before they are moved

51

to the substrate pool. In our experiment, a VM with a development environment

installed leads to a size of 16MB after compression. Compression of a substrate is

more costly than decompression. Decompression usually takes less than half of the

time than compression. The small cost incurred by decompression further speed up

the launching process of a VM from the substrate pool.

Evaluation. To evaluate the effectiveness of multicast, we compared the time

spent on deploying multiple VMs from the same VM substrate. Figure Figure 3.10

shows the strength of multicast, especially when the number of clones increases. In

this experiment, we sent two different substrates with sizes of 25MB and 1GB to

different physical hosts in order to create a group of new VMs. As shown in Fig-

ure Figure 3.10, multicasting a 25MB substrate to different hosts took less than 1

second while sending the 1GB substrate took around 30 seconds. These are two ex-

treme cases. In the more general case, VM’s memory should be able to be shrunk to

between 128MB and 1GB, most VMs with barely application environment installed

could be shrunk to less than 200MB memory. Thus, the total time on multicast is in

the magnitude of several seconds. On the other hand, in the case of unicast without

using multicast, the total time of sending the substrates to the others would increase

with the number of required clones. Figure Figure 3.10 also plots the time of prop-

agating the VM substrate by duplicating the saved state in a networked file system

(NFS).

We also evaluated the cost of compression and decompression on the VM startup

latency. We compared the time spent on conversion between raw substrate and final

substrate when the size of raw substrate varied from 128MB to 2048MB. As shown in

Figure Figure 3.9, compression is more costly than decompression. The final size of

52

each raw substrate is shown in the figure. For a raw substrate of 256M, which is the

size for a typical VM after selective memory dumping, the decompression only took

about one second. The startup laterncy incurred by the decompression algorithm

does not significantly affect the users’ experiences. Although compression is time

consuming especially for large size of raw substrates, the compression is usually done

before docking to prepare new VM substrate for future use which does not affect

VMs’ startup.

3.5 Evaluation

In this section, we examine the overhead and design a set of experiments to verify

the effectiveness of VM substrate. We begin by examining the overhead of using a

substrate to create new VMs, and then go on to explore one typical usage case of

offloading mobile computation to a cloud environment. At the end of this section, we

compare the cost of launching a VM with different methods.

The machines used in the experiments consist of a server dedicated to the VM

pool and a client machine. All the experiments were conducted in a LAN environment

connected by a Gigabit Ethernet switch. The physical hosts for the VM pool is a

Dell PowerEdge 1950 server with two quad-core Intel Xeon CPU and 8GB memory.

The client machine is a PC with dual CPU cores. We used Xen version 3.4.1 as our

virtualization platform. Both dom0 and the guest VMs were running CentOS Linux

5.3 with kernel 2.6.18.

3.5.1 Overhead

We began our evaluation by examining the overhead of VM substrate. We study

the latency of preparing a VM or VM cluster on demand. Figure Figure 3.11 draws

53

the time needed to create different number of VMs through VM substrate pool. In this

experiment, we prepared several different VM substrates for each type of applications.

Whenever a new VM is needed, in order to minimize the time spent on preparing

virtual disks, we created a new VM using a temporary COW slice. The root partition

of each VM is 4GB and the partition which is used to store the modification is set to

1GB.

In this experiment, we created different numbers of VMs from the same VM

substrate and evaluated the absolute cost. The memory size of a raw substrate in

this experiment was shrunk to 118MB, leading to the final compressed substrate of

16MB. This is the smallest size we can achieve with minimal installation of the guest

OS and necessary running environment. We intend to answer the following questions

in this experiment: (a) What is the optimal speedup VM substrate can achieve? (b)

Where is the time spent on VM creation? (c) What is the scalability of the VM

substrate approach?

Figure Figure 3.11 shows the time for creating new VMs on demand from the VM

substrate pool. The time is broken down into four parts: preparing the disk, mul-

ticasting substrate over local network, decompressing VM substrate, and activating

VM. From this figure, we can see that the total time of creating a single VM from

substrate is as small as 2.5 seconds. This time does not contain the time to generate

VM substrates. It assumes that the substrate is always available in the pool. This

figure shows VM substrate pool is capable of providing prompt response to laterncy

sensitive VM creation requests. When the number of VMs to be created increases,

the total latency of the VM creation does not increases significantly. This is due to

the use of multicast, which does not incur proportional overhead when the scale in-

54

 0

 1

 2

 3

 4

 5

1 2 4 8

T
im

e
(s

)

Number of Clones

Disk
Network

Decompress
Activation

Figure 3.11: Time breakdown of VM creation.

creases. Similarly, the cost of transferring substrates to more than one physical host

is almost the same as transferring to a single host. However, the cost of disk creation

increases with the number of VMs. Note that the absolute creation time for a single

disk is less than a second, given enough storage bandwidth, the disk creation part is

not the limiting factor of the scalability of our VM substrate approach.

3.5.2 Performance Comparison

In practice, there are a few different options to start a new VM. These options

includes suspend and resume [80], migrating VM from other hosts [25], creating VM

from scratch and our VM creation from VM substrate Among these options, creating

VM from scratch involves the whole OS installation process and takes a significant

amount of time, which is not considered for comparison.

In this experiment, we created three new VMs containing a web server, a database

server and a VM with development environment respectively in the above three dif-

55

 6

 8

 10

 12

 14

 16

 18

 20

Depth 7 Depth 5 Depth 3 Depth 1

S
p
e

e
d

u
p

Ready to use
Using VM Substrate

Figure 3.12: Delay time of offloading checker.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

Web Server Database Dev and MPI

T
im

e
(s

)

Using VM pool
Resume from disk

Migration

Figure 3.13: Startup time comparison.

56

ferent ways. Figure Figure 3.13 draws the the startup time of these methods. The

startup time is the time between the creation , migration or resume request is received

and the time the VM is ready. A VM is considered ready when it is responsive to

user’s other request like launching a program. Technically, it is when all the virtual

CPUs are back online, memory is ballooned back and network interfaces are attached.

As shown in Figure Figure 3.13, VM creation from substrate is almost as fast as VM

migration. Note that VM migration need to maintain the VM running in its full ca-

pacity, which consumes a significant amount of resources limiting the scalability. In

contrast, VM substrate maintains a large pool of substrates with mininal footprints.

In our testbed with 8GB memory, we were able to host as many as 230 substrates.

As expected, the suspend and resume approach incurred considerable startup time

because the resume process needs to load a large state file from hard disk.

3.6 Conclusions and Future Work

In this section, we briefly discuss a number of directions that we intend to explore

in the future to improve and extend our VM substrate framework. As we have

discussed in the previous sections, VM substrate based VM deployment is able to

deploy diverse VM within seconds. The idea is preliminary and we plan to further

investigate the following areas.

VM streaming. Our current implementation decompress the VM substrate to

get the raw substrate and then start new VMs from the raw substrate. Although from

Figure Figure 3.9, we can see that decompression takes less time than compression, it

is still costly to decompress the substrate when the memory footprint is large. Thus,

a mechanism that allows a VM to boot while the decompression is in process will

57

further reduce the startup latency.

Dynamically linked storage. Because VMs’ resources such as vCPU num-

ber, memory size and network bandwidth are configurable, it makes the charge of

VM resources in pay-as-you-go manner possible. However, storage is not so easily

reconfigured as other resources. First, the change of disk size can not take effect

without reboot even when LVM is used. Second, running VM’s root disk is unable

to be altered. Both of these two factors affect the agility of deploying VMs. On the

other hand, if each VM can use dynamically linked storage, the actual physical disk

partition can be dynamically changed.

Improved memory metering. As discussed in the previous sections, memory

footprint is closely related to the final size of VM substrate. The smaller the memory

footprint, the smaller the substrate. Our current implementation leverages the proc

interface under Linux to get the memory utilization. Only the used memory pages

need to be dumped in the VM substrate. Identification of unused memory pages

or calculation of the memory utilization of a running VM is not trivial. Different

from free pages, unused pages refer to those that once touched but not actively being

accessed by the system. It can be calculated as the total memory minus the system

working set. One possible direction is to integrate more accurate memory metering

in VMM level.

In closing, we introduce the primitive of retrofitting VM deployment by using

VM substrate and present the design, implementation, and evaluation of a novel

approach to manage VMs in agile virtualized environment. Our VM substrate-based

VM shrinking and expansion management allows VM creating, reconfiguration in a

way that is transparent to users and enables the instantiation of statefull VMs or VM

58

clusters with sub-seconds latency. Our VM pool architecture is effective in reducing

the latency of preparing new VMs and increasing the reusability of VM substrates.

It incurs small overhead on the creation of a single or a cluster of VMs. Experiment

results on the computation offloading from mobile devices show that the pool of VM

substrates is able to provide instantaneous response to user request in an interactive

job.

59

Chapter 4:EFFICIENT SMP VIRTUAL MACHINE SCHEDUL-

ING

4.1 Introduction

SMP VMs are ubiquitous in today’s scientific computing clusters, modern data

centers and cloud computing infrastructures. By consolidating multiple applications

on the same underlying physical hardware, cloud service providers benefit from in-

creased hardware resource utilization and the cloud infrastructure management cost.

Meanwhile, endusers get the flexibility to pay the cloud services as they scale the VM

cluster size base on their workload on-the-fly. Public infrastructure-as-as-a-service

(IaaS) providers like Amazon’s EC2 provides extra large instances each with as many

as 16 virtual cores [1]. Though modern OSes can be seamlessly running inside a

VM with techniques like para or full virtualization [90, 88] and endusers are able to

run their applications as if they are running on native OSes, cloud providers are still

facing the challenge of consolidating more VMs to reduce the cost and scheduling all

these vCPU resource to achieve overall the best performance.

SMP VM blurs the distinction between a virtualized environment with multi-core

vCPUs and a physical multi-processor system, imposing a great challenge to vCPU

scheduling. Commodity OSes often use spin-locks for exclusive access to shared code

or data [83]. Such spin-locks require running processes to frequently acquire and

release locks, while assuming only a short period of waiting time. They save the

latency cost in circumstances such as interrupt service routines when yielding pCPU

for context switch [81] is needed. However, in a virtualized environment, it is hard to

60

keep the assumption when a vCPU is preempted while still holding a spin-lock and at

the same time another sibling vCPU is still waiting for the spin-lock. Thus the sibling

vCPU has to wait until the preempted vCPU to be rescheduled and releases the lock.

Such switch between sibling vCPUs wastes large amounts of CPU cycles(usually in the

order of a few milliseconds) and causes severe performance degradation, particularly

when the waiting vCPU has been scheduled multiple times before the release of the

lock. Such phenomenon is unique in multicore VM environments and often referred

to as lock holder preemption(LHP) [83].

To solve the LHP issue, one solution is to detect the lock holder and avoid preemp-

tion. Lock holder could be detected by instrumenting guest OS’s spin-lock primitives

in para-virtualization [83] or by leveraging hardware techniques [94]. Once lock holder

is detected, hypervisor’s scheduler either avoids preempting lock holder or delays the

lock waiter for the purpose of minimizing the synchronization latency [28]. This lock

holder detection and avoidance technique is beneficial to the cases where spin-lock

is infrequently involved. However, it still requires either the change of the guest OS

itself or the support from low-level hardware. The lock holder detection itself also

cause VM’s response latency.

The VM LHP issue could be addressed by co-scheduling [65, 89]. In SMP VM

co-scheduling, the sibling vCPUs are co-scheduled on pCPUs simultaneously. This

gives the guest OS an illusion of running on a dedicated server with the same number

of processors. Co-scheduling improves performance by facilitating prompt communi-

cation and reducing synchronization delay between sibling vCPUs. For example, if

one vCPU A is spinning on a lock waiting for another vCPU B to release the lock,

co-scheduling A and B allows the spinning vCPU A to proceed as soon as B releases

61

the lock without waiting for the preempted vCPU to get rescheduled. A few re-

cent work applied co-scheduling to SMP VMs running concurrent tasks [16, 84]. Such

proactive solutions are favorable to applications heavily relying on spin-lock and their

performance gain outweighs the overhead of co-scheduling. However, co-scheduling

often comes with side effects, such as CPU utilization fragmentation, execution delay

and priority inversion [81]. These potential effects limit the massive use of SMP VM

co-scheduling.

In this work, we propose a new approach called SBCO for performance optimiza-

tion in virtualized SMP environments. SBCO inherits the advantages of traditional

co-scheduling such as minimizing synchronization latency and accelerating commu-

nication between vCPUs without the side effects of scheduling fragmentation and

priority inversion. SBCO does not force simultaneously co-scheduling all the sib-

ling vCPUs. Instead, it re-adjusts the sibling vCPUs positions in their respective

run queues and facilitates sibling vCPUs to be scheduled at the same time window.

Specifically, SBCO first dynamically adjusts the affinity between vCPUs and pCPUs

to prevent sibling vCPUs from being assigned to the same run queue. By distributing

sibling vCPUs evenly to different run queues, it significantly reduces the chance of

stacking sibling vCPUs. Then through minimizing the scheduling distance of sibling

vCPUs defined in Section 4.3.3, our approach reduces the maximal scheduling dis-

tance and further reduces synchronization latency. We have implemented SBCO in

KVM, and performed extensive evaluations with both micro-benchmarks and real-

world workloads. The experimental results show that SBCO can significantly reduce

the number of vCPU context switches and achieves an overall performance improve-

ment by more than 10%.

62

4.2 Background

An SMP VM is able to leverage the multicore processors to execute multiple inde-

pendent workloads simultaneously. Thus, SMP VMs are widely used by cloud service

providers. The vCPUs of a SMP VM are usually attached to processes or threads on

a physical host and they execute codes by direct code execution or instruction em-

ulation [88]. vCPUs are scheduled as processes or threads on a host OS. Therefore,

there are two layers of scheduling, where the hypervisor schedules vCPU threads on

pCPUs and a guest OS schedules tasks on vCPUs. vCPUs are usually dynamically

mapped to pCPUs and the co-scheduling of sibling vCPUs is essentially co-scheduling

of vCPU threads on pCPUs. Such dynamic mapping improves hardware utilization by

balancing workloads between pCPUs. However, it also causes sibling vCPU stacking

issue, elaborated in Section 4.3.

In a parallel program, a lock primitive is needed to provide synchronization and

guarantee atomic and consistent state changes in a multiprocessor system. There

are typically two types of lock primitives: semaphore/mutex and spin-lock [65]. The

former lock primitive blocks the running process until the required resources or locks

become available. The scheduler swaps out the running process(unless specifically

stated, we use the term process, thread and task interchangeably) and immediately

schedules the next runnable process so as to avoid wasting CPU cycles. It needs

process context switches to wake up the sleeping process, thus degrading system per-

formance. In contrast, spin-lock allows the thread waiting for the required resource

to keep occupying the processor and repeatedly check the lock status. It works ef-

ficiently when synchronization only takes a small amount of time(usually dozens of

63

Table 4.1: Statistics of spin-lock Usage

Lock Metric SPECjbb SupperPI KernBench

spin lock
M1 0.160 µs 0.191µs 0.650µs

M2 7,256,276 1,821,548 371,309,982

spin lock irq
M1 0.115 µs 0.150µs 0.164µs

M2 5,312,485 1,305,679 146,834,593

M1: avg lock holding time M2: num of total call

or hundreds of microseconds). Because the lock efficiency directly affects system

performance and capability, spin-lock is widely used in modern OSes.

Spin-lock poses challenges in SMP VM scheduling. It works effectively in the cases

that the lock holder only holds the lock for a very short period of time and the target

resources become available soon. This is satisfied in physical environments where

OS itself has control over the resources and the way of scheduling via determining

whether or not to preempt out a process. However, in a virtualized environment, it is

the virtual machine monitor(VMM) that retains ultimate control of the resources and

vCPUs scheduling usually based on time slices. Thus the current spin-lock design may

not be effecient. For instance, if a vCPU is trying to acquire a spin-lock, it has to wait

until the preempted vCPU is scheduled back and release the lock. Such phenomena,

referred to as LHP issue, significantly increases the lock holding time and may even

waste a vCPU’s time slice, especially in CPU over-committed cases. The high vCPU

contention from a preempted lock leads to significant waste of CPU cycles [83].

To study the cost of spin-lock in a virtualized environment, we ran three different

workloads, SPECjbb, SupperPI and KernBench(see Section 4.6.1 for workload spec-

ifications) in a VM and instrumented host machine’s Linux kernel(version 2.6.34.4)

with a kernel tracing tool Ftrace [20] to track lock usage statistics. Based on our ex-

periment, raw spin lock and raw spin lock irq are the two lock functions contributing

64

to the majority of the total busy-waiting lock holding time. We sampled the execution

time of these two lock functions in a three second period, repeated the experiment

for five times and summarized the results as follow. As shown in Table Table 4.1,

metrics 1(M1) represents the lock holding time and metrics 2(M2) is total number of

call of these lock functions. We observe spin lock is heavily used in all workloads, and

the average lock holding time ranges from 0.160µs to 0.650µs. spin lock consumes

8.05% of the whole execution time in KBench case. Different from raw spin lock,

raw spin lock irq requires disabling interrupt before holding the lock. Though the

operation has less lock holding time than the former, based on the numbers showing

in the table, it still leads to wasting almost 1% of the total execution time on locks.

Another observation is that the CPU-intensive workload SupperPI involves less locks

and less average lock holding time compared with the mixed kernel compile workload.

These results suggest that some scheme to reduce spin-lock cost is deemed necessary.

Our tentative solution is introduced in Section 4.4.

4.3 Challenges

In this section, we first elaborate a few challenges of SMP VM scheduling caused by

virtualization abstraction layer. Then, we introduce a new concept called scheduling

distance, analyze its effect on synchronization latency and present a few motivation

examples for our new approach.

4.3.1 Dynamic vCPU Affinity

A VM’s vCPU affinity configuration is one of factors complicating SMP VM

scheduling. In a typical physical environment, there are generally two types of CPU

affinity: strict affinity and soft affinity. Strict affinity tends to keep a process on the

65

same CPU as long as possible by exclusively limiting the options of CPUs a pro-

cess can run on. Enforcing hard affinity is crucial to cache performance, especially

in performance-critical situations like a large database or a multithread java server,

because data can be maintained in only one processor’s cache at a time. Otherwise,

if a process is executed among multiple processors, whenever a processor updates its

local cache, the rest processors with the same copy of the data have to invalidate

that cache or update depending on the cache coherence protocol. Such cache syn-

chronization among processors become costly when a process keeps bouncing between

processors and cause frequent cache invalidations or updates. In contrast, soft affinity

tends to balance the load between CPUs and migrate a process to a less busy CPU.

It avoids imbalanced scheduling and greatly increases CPU utilization. In a dynamic

multithreaded environment, it is impractical to manually or programmatically bind

a thread to a CPU without jeopardizing overall system utilization efficiency.

VMM controls the scheduling of vCPUs to balance vCPUs among pCPUs. It is the

guest OS that decides the scheduling of the processes inside a VM with the objective

of balancing them between vCPUs. VMM usually does not distinguish vCPUs from

different VMs and the default scheduler often employs a global load balance policy by

scheduling processes to less busy pCPUs. Such policy keeps the balance of utilization

between different pCPUs because of no limit of default affinity. The randomness

of affinity is likely to have one or more sibling vCPUs scheduled in the same run

queue. This is usually referred to as vCPU stacking issue [81]. In addition, if a

VM process changes its processor, it only changes its vCPU and does not guarantee

the change of low-level pCPU. Many of today’s hypervisor like KVM [41], Xen [96]

or VMware ESX [6] allows statically configuring the mapping between vCPUs on

66

pCPUs. However, due to the dynamics inside a guest VM, such affinity configuration

on the host is commonly used for CPU resource reservation and VM isolation, rather

than for the purpose of applications’ performance or resource utilization efficiency.

Though stacking of sibling vCPUs is a probability type of issue, it greatly in-

creases the lock synchronization latency in a virtualized environment. If stacked

sibling vCPUs are competing for the same resource using spin-lock, the sequential

vCPU execution would waste significant amounts of CPU cycles [81]. The probabil-

ity of stacking sibling vCPUs in CPU intensive workload case was studied in [81].

Their experimental results reveal that the chance of more than one sibling vCPU in

the same run queue reaches as high as 45% when three CPU intensive VMs were con-

solidated on the same server [81]. We further conducted complementary experiments

to examine the vCPU stacking issue with IO intensive and CPU-I/O mixed workloads

such as SPECjbb and Kernbench. The details of these workloads are introduced in

Section 4.6.1. We implemented an independent kernel thread to periodically examine

each pCPU run queue with an interval of one second. Then, we ran an kernel compile

benchmark and SPECjbb in a number of VMs and counted the number of samples

when more than one vCPU sibling exists in the same run queue. Table Table 4.2

shows the accumulated probability of stacking vCPUs can be higher than 20% for

both workloads. In the case with three VMs, the probability can go beyond 42% with

the Kernbench workload. Stacking sibling vCPUs can greatly increase the chance of

having LHP issue. Such high stacking ratio can even break an illusion of synchronous

progress of vCPUs, which is expected from a guest OS [88]. Without this illusion,

synchronization latency significantly degrades applications’ performance.

67

Table 4.2: Probability of stacking sibling vCPUs

Apps 2 VMs 3VMs
SPECjbb 20.25% 31.63%

Kernbench 33.19% 42.84%

4.3.2 Costly vCPU Context Switch

vCPU context switch is another challenge of SMP VM scheduling. In parallel

system, multiple processes may share a pCPU and frequently involve context switches.

In each context switch, a pCPU needs to save and restore its state; the TLB entries

need to be reloaded; and processor pipeline must be flushed; the OS kernel scheduler

must execute [50]. Besides these unavoidable cost for each context switch, due to

pollution of processors’ cache, virtual memory maps need to be re-synced, which

results in some indirect penalty of performance when cache miss happens. This

indirect cost varies for different workloads with different memory access patterns.

Due to the fact that each vCPU is associated with additional data structures to

maintain information like the status of virtual registers, scheduling a vCPU thread

causes uncertainties to the indirect cost. Even if a vCPU thread is scheduled back

to the original pCPU, inside the guest VM, the vCPU may be serving a different

task, which results in invalidation of pCPU cache. To evaluate the additional cost

of context switching in a virtualized environment, we ran a context switch micro

benchmark [7] in a KVM guest VM and examine the average cost of context switch

and system call. As shown in Figure Figure 4.2, on average, vCPU context switch

costs 2.5 to 3 times more in a virtualized environment compared with the a physical

environment. Therefore, effective vCPU context switch is one of the design goals of

our SBCO approach.

68

SysCall Process Thread

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

N
o

rm
a

liz
e

d
 c

o
s
t

Without VM
With VM

Figure 4.1: Cost of vCPU context switch w/ and w/o virtualization.

4.3.3 The Effect of Scheduling Distance

A commodity scheduler commonly splits up pCPU time between runnable pro-

cesses in a fine-grained way in the order of nanosecond accurate time slices. Recall

that sibling vCPUs could be stacked in the same run queue of a pCPU. Let Prun

denote the current total number of processes in a run queue and Tw be a process’s

dynamic priority, also referred as the weight. Twi is the weight of process i in a run

queue. Let Smin be sched min granularity, the minimum time a task will be allowed

to run on CPU before being forcibly preempted out. Let Slatency be sched latency, the

default scheduling period in which all run queue processes are scheduled once. Smin

and S latency are configurable parameters in the default scheduler. Tslice is the time

slice of a process with the weight of Tw. Assuming all the processes in a pCPU run

queue have the same weight, then each process also has the same time slice Tslice.

The actual scheduling period Tp, which is the total time all run queue processes are

scheduled once, is calculated in the following formula. Tp is also the maximum time

69

SysCall Process Thread

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

N
o

rm
a

liz
e

d
 c

o
s
t

Without VM
With VM

Figure 4.2: Cost of vCPU context switch w/ and w/o virtualization.

one process has to wait until all other process to yield pCPU. For instance, if a VM

has two vCPUs A and B stacked in the same pCPU run queue. Assuming A is at

the front of the run queue and B is at the tail of the run queue, in the worst CPU

intensive workload case, B has to wait for Tp after A gets the chance to be scheduled.

Ptotal = Slatency/Smin;

Tp =

 Slatency Prun ≤ Ptotal;

Prun ∗ Smin Otherwise.

Tslice = Tp ∗ (Tw/
n∑
1

Twi), i ∈ [1, Prun].

The scheduling time can be viewed as an axis with the time to schedule a vCPU

as the origin, and time slots when vCPUs will be scheduled as scheduling ordinates.

We define a VM’s schedule distance as the maximal difference of sibling vCPUs’

scheduling ordinate. The latter is also the relative position in pCPU run queues. As

70

the illustration example shown in Figure Figure 4.3, VM1 and VM2 are running on

a physical machine with two pCPUs. At T0, both of VM1’s vCPUs are in a pCPU’s

run queue and are ready to run. Moreover, VM1’s vCPU0 is the next candidate to

be run on pCPU0 and will be scheduled immediately when pCPU0 becomes available.

However, VM1’s vCPU1 is currently at the bottom of pCPU1’s run queue and does

not start to run until Tn. Let Pos(t) denote process t’s position in its run queue and

L(n) as the length of pCPUn’s run queue. We define delta, also denoted as D(VM1)in

Figure Figure 4.3, as the maximum difference of scheduling distance disparity between

sibling vCPUs as follows:

Pos(vCPU0) = 1;

Pos(vCPU1) = L(pCPU1);

delta = |Pos(vCPU0)− Pos(vCPU1)|.

Though vCPU1 is runnable in this case, if vCPU0 is waiting for vCPU1 to release

the lock, then vCPU0 has to wait for pCPU1 to reschedule task vCPU1. At the same

time, vCPU1 has to wait for processes before it to acquire pCPU, execute for Tslice

and then yield pCPU for reasons like waiting for IO or using up its own time slice.

The waiting time could be as long as Tp in the worst case, which is often the order

of tens of milliseconds. Depending on the length of the run queue and how long

a task typically run before getting switched out again, it can considerably degrade

performance, especially in the dense consolidation of CPU intensive workloads, in

which the average run queue size is usually large. A VM’s scheduling distance can

greatly increase synchronization latency even if the sibling vCPUs are dispatched to

different run queues without stacking vCPU.

71

Dthreshold = α ∗Qsize, α ∈ (0, 1).

We investigated VM’s scheduling distance by running a few VMs with the average

run queue size as six and ten respectively. We implemented an independent kernel

thread to periodically check each pCPU’s run queue and simply count the cases that a

vCPU is ready to be scheduled but with one or more sibling vCPUs having Dthreshold

distance in the respective run queue. Dthreshold is equal to α times of a pCPU run

queue length, denoted as Qsize in the above formula. Note that a big α value leads to

large Dthreshold, and less probability of exceeding the threshold. In contrast, a small

α may cause frequent adjustment for balancing sibling vCPUs. We ran Kernbench

and NPB benchmarks(refer to Section 4.6.1 for detailed benchmark introduction)

and computed the probabilities for sibling vCPUs to exceed different Dthreshold. As

As shown in Table Table 4.3, the probability of exceeding Dthreshold with α as 2/3 is

between 40% and 50% for both workloads when the average run queue size is six and

ten respectively. This result suggests that α as 2/3 is a good tradeoff. To alleviate

the synchronization latency problem from the LHP issue, we propose SBCO which

leverages the scheduling distance information to make scheduling decisions.

4.4 Self-Boosted Co-Scheduling

Unlike conventional VM co-scheduling in which sibling vCPUs are scheduled at

precisely the same time, SBCO shortens the scheduling distance between sibling vC-

PUs. SBCO preservers the flexibility of dynamic vCPU affinity and reduces the costly

vCPU context switch. In this section, we elaborate the design details, and discuss a

few optimization techniques of the design.

72

pCPU0

pCPU1

vCPU0 vCPU0 XXX

vCPU1XXX XXX

.…

.…

.…

vCPU(x)

T0 T1 T2 T3 Tn

vCPU of VM1 vCPU of VM2

vCPU1

vCPU(x)

Time Progress

XXX Other thread

D(VM1)

Figure 4.3: Scheduling distance sibling vCPUs.

Table 4.3: Probability of scheduling distance exceeds the threshold

RQ size
Probability of exceeding Dthreshold

Kernbech Parsec
6 42.36% 40.75%
10 48.21% 45.13%

4.4.1 Overview

As studied in Section 4.3, excessive busy-waiting spin-lock holder preemption

and vCPU stacking lead to parallel applications’ performance slowdown. Classic co-

scheduling incurs heavy context switches due to forcibly preempting pCPUs to sched-

ule vCPUs from the same VM. Our SBCO is designed to reduce costly vCPU context

switching and shorten the synchronization latency caused by spin-lock holder. It

maintains a balance between a fast vCPU with a large scheduling ordinate and a

slow sibling vCPU with a small scheduling ordinate. Therefore, we try to answer the

following questions when designing SBCO. 1) How to avoid stacking sibling vCPUs?

2) How to flexibly balance a fast vCPU and a slow sibling vCPU? 3) How to avoid

forcibly preemption and reduce vCPU context switches? 4) How to control SBCO’s

overhead while keeping its efficiency? In the following section, we first further clarify

a few new concepts mentioned this work with some illustration examples, then we

discuss the details of the design of extended RB tree, SBCO algorithm as well as some

73

RBINDEX PID VRUMTIME PARENT_VRUN COMMAND ORDER

 <0> 3173 [5556.399127] --> [5556.792013] qemu-kvm ((0))

 <0> 3161 [5556.620530] --> [5556.399127] cpuhog ((1))

 <2> 3177 [5556.792013] --> [0] cpuhog ((2))

 <0> 3164 [5557.007206] --> [5557.192115] qemu-kvm ((3))

 <1> 3159 [5557.192115] --> [5556.792013] cpuhog ((4))

 <0> 3181 [5557.198289] --> [5559.010627] qemu-kvm ((5))

 <1> 3168 [5559.010627] --> [5557.192115] cpuhog ((6))

 <0> 3187 [5560.140783] --> [5559.010627] qemu-kvm ((7))

Figure 4.4: CFS run queue snapshot.

3177

3173 3159

3161 3164 3168

2

31873181

0

0

1

1

0

0

0

((1))

((0))

((2))

((4))

((6))

((7))((5))

((3))

Figure 4.5: Extended red black tree with index.

performance optimization considerations.

4.4.2 Extending Red Black Tree

In existing Completely Fair Scheduler(CFS) scheduler, each pCPU has an inde-

pendent run queue. All the processes in a pCPU run queue are managed with a

self-balanced binary search tree called read black tree(RB tree) [2]. The process with

the smallest vruntime (virtual runtime in nanoseconds), which corresponds to the left

most node in the RB tree, is chosen by the scheduler as the next candidate to run.

The default RB tree is constructed starting from the arrival of the first process in a

run queue. New processes with smaller vruntime will be placed before the left most

74

child and the tree will rotate itself to keep balanced. When a process finishes running,

its vruntime with the total execution time weighted by its priority is updated. Once

a process leaves its run queue, the associated node will be removed from the RB tree

of that run queue and the RB tree will also rotate to keep balanced.

The default RB tree does not maintain processes’ relative positions in a run queue.

Instead, it simply sorts processes according to their vruntime. Therefore, it involves

RB tree traversal in order to calculate how many processes in a run queue are ahead

of a process, which is contradicting to the simple but efficient design philosophy of

scheduler design. We solve this dilemma by extending the default RB tree data struc-

ture by adding RB index when constructing a RB tree. The RB index of a RB tree

node is defined as the total number of nodes in the left child sub-tree of this node.

We summarize all the terms we mentioned as following:

RB index: The total number of nodes in the left child sub-tree of a node in a RB

tree. It is updated with RB tree balance rotation when there is a node added into or

removed from a run queue.

Scheduling ordinate: A vCPU process’s position in its run queue. It reflects the

maximum number of processes ahead before a process gets scheduled.

Scheduling distance: The difference between of the fastest vCPU’s scheduling

ordinate and the slowest vCPU’s scheduling ordinate in a VM. Figure Figure 4.4

gives a snapshot of a pCPU run queue. To demonstrate the RB tree of a run queue,

we run a four vCPUs KVM VM with CPU intensive workloads to keep all vCPUs

busy. Meanwhile, we ran a four threads application(cpuhog) on the host machine

to represent non-vCPU threads in the pCPU run queue. In reality, these non-vCPU

threads could be kernel threads or any applications running together with a VM hy-

75

Algorithm 1 SBCO Main Algorithm

1: procedure SBCO(void)
2: a← leftmost task inRB tree
3: n← a
4: if Task a is a vCPU task then
5: orda← SCHED ORDINATE(a)
6: for all Task t’s sibling task b do
7: if Task b’s dirty flag is set then
8: continue
9: end if
10: ordb← SCHED ORDINATE(b)
11: delta← abs(orda- ordb)
12: if delta ≥ Dthreshold then
13: n← Task a′s successor in the run queue
14: SCHED BLANCE(t, b)
15: break
16: end if
17: end for
18: end if
19: return n
20: end procedure

76

pervisor. All the processes’s information, including process name(command column),

process id(pid column), virtual runtime(vruntime column) and parent process’s vir-

tual runtime, are listed in the figure. All the vCPUs in a KVM VM have the same

process name(qemu-kvm) . Based on the virtual runtime relationship between child

process and parent process in the figure, a RB tree is constructed in Figure Fig-

ure 4.5. The RB index column in Figure Figure 4.4 and each number in the small

circles in Figure Figure 4.5 represents the total number of nodes in the left child

sub-tree of a process. Based on RB index, scheduling ordinate of a task in its run

queue is calculated by Algorithm 4.4.3 and printed out in the right most column in

Figure Figure 4.4 and in the brackets under each tree node in Figure Figure 4.5.

In conclusion, by introducing RB index, the scheduling ordinate of a process is

calculated with O(log (n)) complexity. The scheduler can spend minimal amount of

time on choosing next vCPU process to run while taking sibling vCPUs’ schedul-

ing ordinate into consideration. The details of complexity analysis and performance

considerations are provided in the following subsections.

4.4.3 SBCO Algorithm

Algorithm 1 shows the pseudo code of SBCO. For each scheduling period, SBCO

first chooses a task with the smallest vruntime in a run queue as the default candidate

to run (line 2). If the current candidate is a vCPU process, which is implied by

the process’s name, SBCO then calculates this vCPU’s scheduling ordinate (line 5),

iterates other sibling vCPUs to identify if there is any runnable sibling vCPU with

large scheduling distance and decide if it is necessary to balance the fast and slow

sibling vCPUs. If the scheduling distance between two sibling vCPUs, calculated in

line 11, exceeds the Dthreshold, which indicates the candidate vCPU runs too fast,

77

then there is a need to enforce adjustment to delay the fast vCPU and speed up the

slow one(line 13). As a result, the previously selected candidate vCPU, the default

left most node, is no longer the next task to run. Instead, the scheduler chooses the

candidate’s next successor process in the RB tree to run.

Note that each vCPU process is guaranteed one time to be scheduled in a schedul-

ing period Tp, defined in Section 4.3.3, we design two approaches to eliminate repet-

itive adjustment on one vCPU and ensure each vCPU being scheduled once in Tp

respectively. First, we mark those sibling vCPUs that have been already adjusted

as dirty. This dirty tag aims to prevent a vCPU thread from repeatedly yielding its

pCPU. The adjustment is realized as follows: the vCPU with the smallest scheduling

ordinate lends certain amount of vruntime to the sibling vCPU with largest schedul-

ing ordinate, causing both move towards the center of their respective run queues.

When the scheduler decides a task to run, it first checks a vCPU’s dirty tag and it

will not re-balance with the sibling vCPU marked as dirty. Second, as shown in func-

tion SCHED DISPATCH, each VM’s sibling vCPUs are dispatched to different pCPU

run queues, preventing them from the stacking issue. But we let the default load

balancing to take over the control of the mapping between a pCPUs and a vCPUs.

This still maintains the physical resources utilization efficiency.

4.4.4 Performance Considerations

We have following design considerations to minimize the overhead of SBCO: 1)

maintain the RB index for each vCPU. 2) set dirty tag for balanced vCPUs. 3)

maintain a debt list for the adjustment between sibling vCPUs. In the following

section, we analyze these design considerations and their tradeoff.

78

RB index. Instead of directly keep each vCPU process’s scheduling ordination in

pCPU run queues, SBCO seamlessly inserts RB index information into the existing

tree structure. Due to the fact that each vCPU process is swapped in to or be swapped

out from a run queue frequently during the execution, the scheduling ordinate of a

vCPU is constantly updated with the change of its position in its resident run queue.

There are two advantages to introduce RB index. First, RB index can be used to ef-

ficiently calculate the scheduling ordinate. As show in function SCHED ORDINATE

in Algorithm 2, the calculation of a vCPU’s scheduling ordinate only involves RB tree

traversal from root to vCPU’s corresponding node and the complexity is bounded to

O(log(n)). Second, a vCPU’s RB index is updated dynamically with the RB tree

rotation. This update only involves the change of the nodes on the path from root

to the node. The additional cost on operating RB index is only limited to assigning

value to the rb index in the data structure without any extra lock.

Debt list. It is very costly for the scheduler to hold the locks of two run queues

while changing one of them, such as migrating processes. In order to avoid locking

two run queues at the same time when conducting the adjustment, we maintain an

independent debt list for each pCPU run queue. Therefore, changing a debt list does

not require to acquire that run queue’s lock. As shown in function SCHED BLANCE

in Algorithm 2, when balancing task Ta and Tb, Ta’s vruntime is adjusted and its

location in its tree is updated immediately. However, Tb’s vruntime and location

are recorded in the associated pCPU debt list temporarily. The change is delayed

to the time when the scheduler needs to choose a process from Tb’s resident pCPU

run queue. As a result, the actual balancing is conducted in two different times,

which avoids locking two run queue simultaneously. In addition, since the scheduler

79

Algorithm 2 SBCO balance and RB ordinate algorithm

1: procedure SCHED DISPATCH(Ta)
2: cpus← all pCPUs
3: if Ta is a vCPU then
4: for all Task t’s sibling task b do
5: cpu occupied← b′s pCPU
6: cpus← cpus− cpu occupied
7: end for
8: end if
9: return cpus
10: end procedure

11: procedure SCHED BLANCE(Ta, Tb)
12: if Ta is clean then
13: Adjust T ′

as vruntime
14: Reposition Ta in itsRB tree
15: Update the debit list of T ′

bs run queue
16: end if
17: end procedure

18: procedure SCHED ORDINATE(Ta)
19: parent← T ′

as parent task in rb tree
20: n← RBindexTa

21: while parent 6= null do
22: if Ta is parent′s right child then
23: n← n+RBindexparent + 1
24: end if
25: Ta ← parent
26: parent← T ′

as parent
27: end while
28: return n
29: end procedure

80

has to check its debt list and apply the changes to Tb before it chooses a process

candidate to run, SBCO incurs the additional marginal cost, mainly on updating

data structure. The default scheduler does not distinguish a vCPU process from other

normal tasks, SBCO always checks a task’s name when making scheduling decisions,

and only balances qemu-kvm processes, which are KVM vCPUs. Other non-vCPU

processes are ignored for balancing.

Dirty tag. To prevent repeatedly adjusting the same vCPU in the same balance

round, which may cause starvation, we mark the changes when a vCPU is adjusted

but the changes has not been applied yet, either in the case of being given vruntime

by or lending vruntime to other siblings. For instance, as shown in Algorithm 1

line 7, if a sibling vCPU has been adjusted before, SBCO passes that sibling vCPU

and continues to check if there is any other available sibling for balancing. After

the change recorded in a debt list is applied to a vCPU, this vCPU’s dirty flag is

cleared and the vCPU becomes available again for future balancing. The detailed

cost analysis is provided in the evaluation section.

4.5 Implementation

We implemented the prototype of SBCO algorithm in KVM with Linux kernel

2.6.34.4. KVM is a user friendly virtualization solution seamlessly integrated into

Linux kernel. In KVM, there are two kinds of important threads which are QEMU

threads and vCPU threads. The QEMU threads share the responsibility for the

actual disk I/O by emulating the hardware devices. The vCPU threads execute the

real code. KVM relies on existing Linux scheduler for the scheduling of vCPUs and

each vCPU is treated as a normal task in host OS.

81

Our SBCO algorithm is implemented based on CFS scheduler. We extended the

default RB tree to carry RB index and implemented associated APIs to calculate

scheduling ordinates. We added new rb index and rb dirty to each node of the RB

tree. The rb index keeps the number of nodes on the left side of a node in the RB

tree. It is updated during self rotation of a RB tree when a new task is enqueued or

an existing task is dequeued. In addition, the rb dirty records if a process is needed

to be adjusted. To avoid repeatedly yielding the same process in one balance round,

when rb dirty is set, the process is ignored for balancing with its sibling.

Note that a vCPU’s run queue is changed in three cases: 1) a vCPU process is

created and then inserted to a run queue. 2) a vCPU process wakes up from sleep

and needs to enter a run queue. 3) a vCPU is migrated between two pCPUs. We

instrumented the scheduler to avoid stacking sibling vCPUs in all these cases. We

first modified CFS scheduler to dynamically set a task’s cpus allowed field which is a

set of pCPUs that a task can run on. It is set before choosing a run queue for a vCPU.

This medication solves the first two cases. Then, we changed the scheduler’s default

load balance function can migration by limiting the options of migration destination

pCPUs. Therefore, no sibling vCPUs co-exist in the same run queue even after load

balance. In our evaluation, we limited the the number of vCPUs of a VM to be less

than or equal to the total number of pCPUs. However, in the implementation, if

the number of vCPUs is more than pCPU number, we allowed the rest of vCPUs to

randomly select their pCPUs.

For comparison, we also implemented the idea of balanced scheduling and two

conventional co-scheduling approaches [81]. The balanced scheduling simply puts

sibling vCPUs to different pCPU run queues by adjusting cpus allowed field of their

82

process structure. In addition, we developed two more co-scheduling approaches.

First, when vCPU0 of a VM is scheduled, the rest of sibling vCPUs are forcibly

scheduled on other pCPUs concurrently. Second, let pCPU0 decide to co-schedule

all the vCPUs of a VM depending on which vCPU the first pCPU will run. We

refer these two co-scheduling approaches as PROCCO and CPUCO respectively in

our evaluation. In both cases, an inter-processor interrupt (IPI) request is sent to the

related pCPU to force context switch and pick a sibling vCPU instead of the default

lowest vruntime task to run. Given all sibling vCPUs are dispatched to different

run queues, we assume that each pCPU run queue size is close to each other. In our

prototype, we define the scheduling distance threshold to be 2/3 times of the size of

each run queue, as suggested in Section 4.3.3.

4.6 Evaluation

In this section, we study the performance and present a comprehensive experimen-

tal evaluation of SBCO algorithm using micro-benchmark, real-world concurrent and

non-concurrent workloads. We first introduce our experiment environment and bench-

marks selected, and then evaluate results and compare the performance of SBCO with

the default scheduler as well as other representative solutions.

4.6.1 Experiment Design

We ran all experiments on Dell PowerEdge1950 physical machines with two quad-

core Intel Xeon CPU and 8GB memory, running Linux kernel 2.6.34.4. The guest

VMs run CentOS 5.4 without any modification, and unless specially stated, all VMs

are configured with 4 vCPUs, thus each VM’s vCPU number is equal to the pCPU

number. Note that it is the vertical length of a pCPU run queue that affects a VM’s

83

scheduling distance, instead of the horizontal total number of run queues. Inside

a guest VM, we selected following workloads to saturate vCPUs. Meanwhile, on a

physical server, besides consolidating more than one VMs so that there are vCPUs

processes in each run queue, we also ran CPU intensive workloads to saturate pCPUs

to increase the size of run queues. The detailed specifications of the benchmarks we

used to measured the SBCO’s performance and overhead are listed as follows:

Parsec Parsec is a benchmark suite for Chip-Multiprocessors (CMPs) that fo-

cuses on emerging applications. It includes a diverse set of workloads from different

domains such as interactive animation or systems applications that mimic large-scale

commercial workloads [19]. We used the pthread implementation of the benchmarks

which uses spin-lock for synchronization.

SuperPI SuperPI [5] is a CPU-bound workload to calculate the digits of PI. We

run SuperPI in a few VM as CPU intensive workload and also use it as disturbance

workload.

NPB NAS parallel benchmarks [17] contain 9 parallel programs derived from

computational fluid dynamics applications. We activate the environment variable

OMP WAIT POLICY to allow benchmarks using busy-waiting synchronization.

Kernbench We use the parallel make benchmark, Kernbench [3], to compile

Linux 2.6.34.4 kernel source with 16 threads (make -j 16) and use the kernel com-

pile completion time as the performance metric. The VMs running Kernbench are

configured with enough memory to avoid swap storms.

SPECjbb We use SPECjbb2005 [4] v1.07 and BEA JRockit 6.0 JVM. It emulates

a three tier client/server system by spawning multiple java threads to simulate users

transaction requests in multiple warehouses. Synchronization is required when user

84

DFT BAL CPUCO SBCO PROCCO

250

500

750

1000

1250

1500

A
v
e
ra

g
e
 r

u
n
ti
m

e

4VM
2VM

Figure 4.6: Average runtime of kernbench.

requests and server side management operations need to access the same database

table. We start with one warehouse(thread) and stop at 16, and report the average

business operations per second(bops) from 8 to 16 warehouses.

4.6.2 Experimental Results

Performance

We ran Kernbench in one 4-vCPU VM with other one or three VMs running

CPU-intensive SuperPI workload and measure the completion time of KernBench.

To avoid swap storms and eliminate uncertainties, we assigned about 2G memory

to each VM to allow KernBench caches all the Linux kernel source in the RAM.

KernBench frequently reads files or links through Linux VFS layer, thus incurring

file system’s inode lock contentions, which is protected by spin-lock in kernel space.

We compare the completion time of KernBench due to following different scheduling

approaches: the default CFS scheduler (DFT), balanced scheduler (BAL), process

85

DFT BAL CPUCO SBCO PROCCO

4.5

4.6

4.7

4.8

4.9

C
o
n
te

x
t
s
w

it
c
h
 c

o
u
n
t

4VM

2VM

Figure 4.7: Context switches numbers of kernbench in Log scale.

x264 facesim dedup vips ferret scluster

0

0.2

0.4

0.6

0.8

1.0

1.2

N
o
rm

a
liz

e
d
 r

u
n
ti
m

e

DFT
BAL

PROCCO
SBCO

Figure 4.8: Parsec performance with average rq size is eight.

86

x264 facesim dedup vips ferret scluster

0

0.2

0.4

0.6

0.8

1.0

1.2

N
o
rm

a
liz

e
d
 r

u
n
ti
m

e

DFT
BAL

PROCCO
SBCO

Figure 4.9: Parsec performance with average rq size is twelve.

based co-scheduling (PROCCO), CPU based co-scheduling (CPUCO) and our SBCO.

Figure Figure 4.6 shows that, due to the heavy lock contention, the default CFS

scheduler performs worst compared with BAL and SBCO, both of which split vCPUs

to different run queues to reduce the overhead of LHP. SBCO achieves 14% perfor-

mance improvement over DFT and 6% over BAL. From Figure Figure 4.6, we also

observe CPUCO leads to performance degradation significantly. This demonstrates

that allow one pCPU to lead other pCPUs to co-schedule sibling vCPUs is not neces-

sarily feasible as expected, thus we remove CPUCO for comparison in our remaining

evaluation. Kerbench also provides the count number of context switches during the

execution. Figure Figure 4.7 shows SBCO is capable of reducing the number of con-

text switches by at least 3%, that is equivalent to a large amount of context switches

given SBCO cause as many as 76400 context switches. CPUCO leads to performance

loss due to the tremendous increase of the number of context switches.

Figure Figure 4.8 shows the normalized performance of Parsec benchmark due to

87

different scheduling approaches in one VM. We also ran three other CPU-intensive

SuperPI VMs to make the average queue size of each pCPU length stays at eight.

Though different workloads have different average runtimes, SBCO outperforms DFT

as well as other approaches in all test cases. More specifically, for the dedup and

scluster workloads, SBCO improves performance by up to 68% and 52% respectively

compared with the DFT case. At the same time, SBCO outperforms BAL by 7%

and 9% respectively. Note that the dedup benchmark uses a pipelined programming

model to parallelize the compression to mimic real-world implementations [19]. Both

SBCO and BAL avoids the LHP issue resulted from frequency synchronization be-

tween pipeline steps. Similarly, scluster gains benefit from SBCO while processing

large amounts of continuously produced data. We also observed BAL performs closely

to our SBCO with workloads such as x264, facesim, ferret. There are two reasons

for such close performance improvement. First, SBCO is also built on distribut-

ing sibling vCPUs to different pCPUs, which is the core of BAL. Therefore, SBCO

works like BAL unless there is large scheduling distance detected. Second, SBCO

involves marginal additional cost to minimize the scheduling distance between sib-

ling vCPUs(analyzed in 4.6.2). If the workload itself does not have large amount of

synchronization between threads, the balancing only affects short-term fairness. In

Figure Figure 4.9, we ran four more VMs running CPU-intensive workload so as to

increase the average run queue size to be twelve. dedup achieved even higher per-

formance gain (up to 70% over DFT) compared with its performance gain in four

VMs case in Figure Figure 4.8. Such phenomenon demonstrates scheduling distance

can contribute to significant performance loss when the average pCPU run queue size

increases.

88

Throuhput

To evaluate the effect of SBCO on applications’ throughput, we kept one VM

running SPECjbb benchmark and compared the average throughput due to different

scheduling approaches. Meanwhile, we increase the number of disturbing VMs from

one to five. All VMs was configured with four vCPUs, the same as the total number

of pCPUs. Each disturbing VM ran the CPU-intensive Supper PI workload to keep

pCPUs busy so as to maintain the same amount of average run queue size. These

CPU-intensive applications usually keep occupying CPU resource and get preempted

by the scheduler once they use up their time slices. Therefore the more the disturbing

VMs, the longer the run queue, resulting in large waiting time due to large scheduling

distance. We used one single JVM instance for SPECjbb benchmark and gradually

increased SPECjbb workload by increasing the its warehouses numbers. The average

throughput is shown in Figure Figure 4.10. It can be seen that PROCCO, BAL and

SBCO outperform the default CFS due to their alleviation of the synchronization

latency problem. SBCO achieves about 6% higher throughput than the PROCCO

due to the reduction of context switching cost. It also yields 4% higher throughput

compared with BAL because of the mitigation effect of scheduling distance. From

Figure Figure 4.10, we can also observe SBCO’s performance gain is higher in the five

disturbing VMs case compared with there is only one disturbing VM. It is because

long run queue tends to incur relatively high synchronization delay.

Scalability

To study the scalability of SBCO, we ran different Parsec workloads in one VM

and increased the average pCPU run queue size by launching more CPU-intensive

89

1 2 3 4 5

Number of VMs

250

450

650

850

1050

1250

1450

A
v
e
ra

g
e
 T

h
ro

u
g
h
p
u
t
(b

o
p
s
)

DFT
BAL

PROCCO
SBCO

Figure 4.10: Performance of SPECjbb benchmark.

applications on the physical host. SBCO identifies a vCPU process by checking the

name of a thread. It always dispatch sibling qemu-kvm processes to different run

queues. In our experiment, we note that running a large amount of disturbing VMs

requires huge physical memory space. Instead, we ran multiple four threads CPU-

intensive applications and assign threads’ name to be qemu-kvm. Therefore these

disturbing threads are also treated like vCPUs and they are dispatched to different

run queues. The average run queue size is increased gradually with more disturb-

ing threads being launched . Figure Figure 4.11 shows the normalized completion

time of different Parsec workloads with respect to the default DFT. As suggested by

the normalized numbers in the figure, SBCO is able to improve the performance by

61% with dedup. The cost of iterating a vCPU’s sibling vCPUs and calculating the

scheduling distance remains unchanged in all the cases. dedup benefits from SBCO

most due to its heavy synchronization overhead.

90

4 8 12 16 24

Average run queue size

0.2

0.4

0.6

0.8

1.0

1.2

N
o

rm
a

liz
e

d
 c

o
m

p
le

ti
o

n
 t

im
e

x264
dedup

scluter
ferret

Figure 4.11: Scalability of SBCO on Parsec workloads.

Fairness

In this section, we show the effectiveness of SBCO in VM level fairness. We ran

four VMs with multithreaded CPU intensive NPB workload to saturate vCPUs. On

the physical host, we implemented a kernel thread to periodically sample the total

execution time of each VM by summing up each vCPU’s execution time. The sam-

pling period varies from 1s, 5s, to 120s and each sample calculates the maximum

difference, referred as lag, between VMs. The configurable sample period is open

to user applications through Linux’s sysctl interface, and the sampling thread is as-

signed with highest priority to avoid competing CPU resource with vCPUs. Let Tvm

represent the sum of all vCPUs’ execution time in a VM and Lagt be the maximum

difference of the execution time of all the VMs at time t, denoted as maximum ab-

solute lag(MAL). We repeated the experiment for five times and present the average

lag value in Figure Figure 4.12.

Tvm =
n∑
1

TvCPUi
, n = 4;

91

1 5 30 60 120

Sampling interval(seconds)

5

10

15

20

25

30

M
a
x
im

u
m

 a
b
s
o
lu

te
 l
a
g
(m

s
)

1 5 30 60 120

Sampling interval(seconds)

0

4

8

12

16

20

R
e
la

ti
v
e
 s

ta
n
d
a
rd

 d
e
v
ia

ti
o
n
(%

)

Figure 4.12: Relative Standard Deviation(RSD) of the Maximum Absolute Lag(MAL)
of each VM.

Lagt = Max(Tvmi
)−Min(Tvmj

), i, j ∈ [1, 4].

Recall that each VM’s vCPUs are distributed into different run queues, thus each

pCPU run queue only has one vCPU thread of every VM. Figure Figure 4.12 shows

the MAL and the relative standard deviation(RSD) with respect to different sam-

ple intervals. As shown in Figure Figure 4.12, the lag varies a little with different

sample periods. More specifically, when the period goes from 1s to 120s, the aver-

age maximum absolute lag varies from 15ms to 25ms. Compared with the average

20ms maximum lag with default CFS scheduler, our SBCO has a negligible impact on

scheduling fairness between VMs. According to the RSD, the variation ranges from

7% to around 14% and the overall RSDs are bounded to 15%.

4.7 Summary

In this work, we propose SBCO, a new scheduling scheme for performance op-

timization in virtualized SMP environment. SBCO first inherits the advantages of

92

traditional co-scheduling such as minimizing synchronization latency and speedup the

communication between vCPUs. Meanwhile, it avoids the scheduling fragmentation

and priority inversion issue because SBCO does not demand co-scheduling all the

sibling vCPUs precisely at the same time. Instead, it coarsely adjusts the sibling vC-

PUs position in their respective run queues for balance purpose and facilitate sibling

vCPUs to be scheduled coarsely at the same level. In other words, SBCO dynami-

cally adjusts the affinity of vCPUs to avoid sibling vCPUs to exist in the same run

queue, like the previously proposed balance scheduling algorithm. It also balances the

sibling vCPUs in the different run queues. We implemented the prototype of SBCO

based on CFS scheduler and conducted evaluations with KVM VM. Our experimental

results show that SBCO brings more than 10% performance improvement for many

applications.

The LHP may have different effects on distinct applications, depending on the

usage of spin-lock for synchronization. The impact of scheduling distance may also

vary with the characteristics of applications. In the future, we plan to further study

applications’ sensitivity to the scheduling distance of sibling vCPUs and propose

an online adaptive threshold for the purpose of dynamically balance sibling vCPUs

with different granularity. If such threshold is restricted to zero, then all the sibling

vCPUs should be expected to run at the same time, and SBCO reduces itself to be

the conventional strict co-start and co-stop co-scheduling.

93

Chapter 5:FLEXIBLE MOBILE AUGMENTATION

5.1 Introduction

Mobile devices, such as smartphones or tablets are getting more and more pop-

ular. Meanwhile, many of today’s smartphones, with full sized screens, advanced

features like camera(s), GPS and accelerometers, are competing with existing lap-

tops and desktops for the market popularity. At the same time, mobile application

developers are building even more complex applications, such as gaming, video edit-

ing, augmented reality, navigation, and speech recognition, which are used to be only

on PCs and require considerable computing power and energy. These applications

greatly extend the functionalities of mobile devices and provide excellent mobility and

user experiences. However, these applications also pose new challenges to the hard-

ware computing capability, storage space and battery life. Many mobile devices have

significant limitations imposed upon them due to the desirability of portable sizes,

lower weights, longer battery life and other features. This often severely constrains

software and hardware developments for these mobile devices.

The combination of cloud resources with mobile computation is an appealing

solution for augmenting the computing capability of mobile devices and improve user

experience. There are a few ways of using cloud computing for mobile phones. First,

the computation can be partially processed outside mobile devices [38, 24, 70]. In

this case, a mobile application can be split in the traditional client-server paradigm

and lets the resource-intensive tasks be performed in the cloud syncing the results

back to mobile devices. Such execution offloading turns mobile devices to be simply

thin clients accessing abundant computing resources in cloud, providing a convenient

94

way of boosting mobile applications’ performances. Another popular approach of

integrating cloud is that the computation is carried out on mobile devices, while cloud

serves as an unlimited storage server. Additionally, another mobile cloud model could

be leveraging the cloud to process data [61]. In an in-cloud antivirus system, mobile

devices can send the suspicious files to the antivirus service in the cloud for scanning

to avoid performing resource consuming scanning applications locally on a phone.

Among all these models, mobile computation offloading usually requires application

developers to manually or programmatically separate the resource intensive functions

or methods of the application from the source code. The possible partitioning also

varies with computing environments. For example, partitioning on low-end mobile

devices with intermittent connectivity may not be optimal for high-end devices with

good connectivity.

To avoid the cumbersome application partitioning, a few recent research works [99,

24] proposed to use VM to provide a clone for computing environments of mobile

phones. The clones are usually hosted in a VM, which running on a x86 server that

emulates ARM architecture. However, ARM is known for excellent power consump-

tion, and compact code. Recent CPUs based on the ARM architecture are also quite

powerful, and are being incorporated into a wide range of products including both

mobile devices and servers. Recent advancements in software and hardware facilitate

the virtualization on ARM architectures. Mobile users today are able to run multiple

phone instances on the same mobile device at the same time. Since, ARM-based

server has been a new option for the classic x86 server for deploying data-centers

[12], ARM-based cloud can run all the mobile applications without emulation and

the computing capability gap between mobile devices and cloud can be minimized by

95

running the virtual phone instance in ARM-based cloud.

In this work, we proposed a new framework to maintain an augmented virtual

mobile phone clone in the ARM-based cloud. Such augmented clone has more com-

puting power, more memory and disk space, which contains the real phone as a subset.

Meanwhile, mobile devices run virtualized phone instances to isolate the computing

environments. The time consuming or resource hungry applications are shifted to

run remotely in the clone in cloud and synchronize the results back to the phone

instance on the phone. The input events from keyboard, touch screen are recorded

and then sent to the augmented clone. All of users interactive events are replayed

with deterministic reply and all the disk changes are incrementally synchronized with

the phone instance on mobile devices. In this communication model, we are able to

significantly increase the computing power of mobile devices and reduce the energy

consumption. Additionally, this model allows mobile users to quickly exchange data

in the cloud over a high speed network.

5.2 Background and Challenges

In this section, we first introduce a few mobile cloud computing models. Then we

discuss the differences between classic server cloud and mobile cloud and elaborate

some of the challenges of achieving mobile cloud computing.

5.2.1 Mobile Computing and Cloud

The early definition of mobile cloud computing lies on the basic mobile plus cloud

approach. In this model, cloud, usually equipped with abundant hardware resources

runs applications to provide certain type of services such as email or storage services.

Mobile devices play a role of a cloud access terminal or a thin client. The inborn

96

mobility of mobile devices greatly increases the accessibility of cloud services. In

addition, to this ”mobile access to cloud” model, another form of mobile cloud uses

each mobile devices as collective sensing components in a mobile network. Each

component acts like a data collector node, collecting environmental metrics or location

and reporting back to the cloud. Mobile devices in this case act as peripheral device

of the cloud. Similar to this cooperative data collection, mobile devices can also be

configured as one computing unit, as referred as crowd computing. For example, a

mobile cluster can be formed with a few low energy consumption mobile devices and

configured as a Hadoop cluster for big data processing.

Recent research Cloudlets[79] proposed another way to integrating cloud resources.

Cloudlets are defined as decentralized and widely-dispersed internet infrastructure

whose computing cycles and storage resources can be leveraged by nearby mobile

devices. In this model, mobile devices offload their workloads to a local cloudlet,

which has the connectivity to the remote cloud servers. The cloudlets usually have

the same general architecture as a normal computer, but are smaller, less powerful,

less power hungry and less expensive. These cloudlets could be installed in common

areas such as coffee shops so that mobile devices can act like a thin client to connect

to the cloudlet rather than directly to a remote cloud server which has bandwidth

and latency issues. CloneCloud[24] proposed similar offloading approach to seamlessly

leverage cloud to execute resource expensive applications. It augments the capabilities

of smartphones by moving, in whole or in part, the execution of the applications

to cloud. The partition resource expensive applications is determined by a static

program analyzer followed by dynamic program profiling. The mobile device clone is

the duplication of the whole mobile device.

97

The classic server virtual machine consolidation and live migration greatly in-

creases hardware resource utilization and allows cloud users to pay for cloud resource

on the go. None of the above models involves ARM based mobile virtualization. Mo-

bile cloud computing should differ from simple computation offloading in the sense

that the cloud can offer services other than computing for mobile clients. In this

work, we explored the possibility of leveraging mobile virtualization to build ARM

based mobile cloud. In the remaining section, we discuss a few challenges of mobile

cloud.

5.2.2 Architecture Compatibility

Server virtualization technology exists for years and has been mature. However,

virtualization on mobile devices has been evolving relatively slow. Hardware vendors

are gradually embracing virtualization and developing new features to simplify virtu-

alization technology. They enhanced hardware chips by providing hardware-assisted

x86 virtualization technologies such as Intel VT19 and AMD-VTM20. These tech-

nologies allow virtual machine monitor(VMM) efficiently virtualize all the instruc-

tion sets by handling sensitive instructions using a classic trap-and-emulate model

running at privileged level. Besides the hardware assisted instruction trapping, mod-

ern x86 CPU also have a memory management unit(MMU) and translation looked

buffer(TLB) to coordinate and optimize virtual memory management in VMM. Due

to the majority of today’s mobile devices are using reduced instruction set computer

(RISC) architecture like ARM, ARM chip vendors started to support virtualization

in recent years. ARM v7-A introduced ARM Virtualization Extensions and System

Memory Management Unit(SMMU) architecture. These ARM virtualization exten-

sions allow for a new hypervisor execution mode and enables the VMM to run at

98

a higher privilege level than the guest mobile OS. It also provides the mechanisms

to simplify interrupt handling. The SMMU supports multiple page translation con-

texts and two levels of address translation as well as hardware acceleration. These

hardware features facilities the shifting of virtualization from servers to mobile de-

vices. However, majority of cloud infrastructure today are still built with Complex

Instruction Set Computer architecture. Since running mobile application in the cloud

or partially offloading certain functions to the cloud requires the execution the same

instruction set. This architecture compatibility issue limits the integration of cloud

with mobile devices. Moreover, mobile devices are usually shipped with hardware

components such as wifi, camera, GPS and various sensors. Thus traditional server

VM consolidation or live migrations between mobile device and cloud tends to be

hard to achieve. Classic computation offloading loses the strength when interacting

with all these low-level hardware components.

5.2.3 Cost of Communication and Computing

Due to the limited computing power and battery life, local computing on mobile

devices usually have lower performance and shorter battery time compare with in-

volving remote execution in the cloud. However, mobile cloud incurs additional cost

of communication and also requires strong internet accessibility. Thus, the balance

between local and remote computing is a trade-off commonly between communication

cost and computation gain. For certain tasks that do not need to be performed im-

mediately, such as virus checking or indexing files, the communication cost involved

by moving them to the cloud is far smaller than the performance improvement that

will gain. On the other hand, there are some tasks whose computing intensive parts

could be separated from less intensive parts. Thus the former parts, such as speech

99

recognition or video indexing, can be promoted to the cloud while leaving less inten-

sive tasks to still be executed on the mobile devices. In this case, performance gain

still outperform the communication cost. In contrast, some interactive applications

require only minimal computing power but may incur significant communication cost

if they are moved to the cloud. The remote execution in cloud needs to be carefully

designed in order to avoid introducing long latencies which impacts the interactive

user experience.

The communication pattern between mobile devices and cloud is another con-

tributing factor to the performance and impacts the feasibility of remote execution.

Due to data transferring through Wifi or 3G consumes unneglectable amount of the

battery life, the granularity of the communication directly decides the communication

cost. Interactive applications which usually requires frequent data exchange between

mobile devices and cloud could use bulk data transfers. If immediate response is not

required, the data transfer can be accumulated and postponed to deliver in paral-

lel with other data later. This type of communication pattern is often application

dependent. Consequently, the remote execution model is only preferable for certain

applications that the cost and computing gain is balanced. In general, the underlying

assumption for leveraging cloud to augment mobile devices lies in the assumption

that it is worthy of integrating cloud as long as the performance of mobile devices

can significantly improved or the mobile application can run more reliable or secure

in the cloud. In most cases, such balance or worthiness is application dependent. In

this work, we explored a general approach of using cloud resources.

100

5.3 System Design

Though today’s mobile devices has been improved in both CPU frequency and

memory space significantly in recent years, the computing requirements of mobile

users, especially enterprise users, is still not fully achieved. A few intrinsic limita-

tions of mobile devices hinder the feasibility of intense mobile computing and motivate

the natural integration of cloud. In this section, we discuss the design of our AM-

Phone and introduce the system components as well as the communication mechanism

between these components.

5.3.1 Overview

Running a mobile phone virtualized clone in the cloud is conducive to conserve

the scare battery life and overcome the limitation due to the memory size or CPU

power which leads to better application performance. Such mobile cloud computing

model can significantly reduce on-device resource consumption. Our AMPhone does

not require any modification on the applications. The clone in cloud and the real

physical device can run identical binaries. Consequently, mobile applications are not

constrained by the computing capabilities of mobile devices and can be configured

with multiple CPU cores or big memory space. In essence, traditional computing on

mobile devices is transformed into a distributed execution in cloud powered by high

speed network connection and high processing capability. On the other hand, the

whole mobile system replication releases programmers from manually or pragmati-

cally partition the applications into the parts that run on the mobile phone and the

parts that will run in the cloud. Such partitioning requires programmer to pay extra

attention to the resource(CPU or memory) intensive pieces of code and limits the

101

Real Phone

Augmented

Phone

Dummy

Xen VMM

HW

OS Loger

 VM

App

 VM

App

Virutal HW

OS Replayer

 VM

App

 VM

App

HW

Cloud

Figure 5.1: System Architecture.

flexibility of creating mobile applications. In addition, mobile users have the option

to isolate their personal device and corporate device and have better privacy and

security protection. For instance, malicious software or virus detection, which are

unlikely feasible on mobile devices due to the limitations of hardware and battery

resources, could be conducted in cloud efficiently and end users do not need to main-

tain or update their virus database. Corporate also can have better protection over

their business related information.

5.3.2 Whole System Replication

One of the design goals of our AMPhone is to avoid traditional application parti-

tioning. It is time inefficient and challenging to require programmers to isolate all the

potentially resource intensive chucks of source code from those will be ran on mobile

devices. Programmatic partitioning seems less cumbersome, but unlikely to produce

highly optimized source code. As a result, AMPhone is designed with whole system

replication. As shown in Figure 5.2, each mobile device runs one or more isolated

virtual phone instances. In the cloud, the servers have the same ARM architecture as

mobile devices and host a virtual phone instances pool. As shown in Figure 5.1, in-

102

stead of creating thread lever VM for an application, we wrap the entire environment

and deploy an additional copy in cloud to run the same application binary. Thus

there is no need of partitioning applications.

5.3.3 Mobile Augmentation

Mobile computation augmentation enables mobile devices to increase, enhance,

and optimize computing capabilities by leveraging various software or hardware ap-

proaches. Hardware approaches include improving the capability of physical com-

ponents, such as CPU, memory, storage, and battery. Software approaches contain

computation offloading, remote data storage, remote execution, etc. Mobile aug-

mentation is able to increase computing capabilities of mobile devices and conserve

energy, especially for computing-intensive applications. Our AMPhone inherits the

nature scale-on-demand feature of cloud computing. In our design, a virtual phone

instance in cloud can be configured with more CPU cores, more memory or storage

space upon the applications’ demand. Unlike classic application level computation

offloading or remote execution, these virtual phone instances encapsulate all the ap-

plications running on the mobile phone and boost their execution capability at the

same time.

5.3.4 Incremental Synchronization

In the process of augmentation, the native applications on mobile devices need to

synchronize their data with the cloud to ensure the consistency and integrity between

mobile device and the cloud. The communication cost of such synchronization can

counteract the performance gain of the cloud. The data synchronization can signif-

icantly increase the communication traffic and hurt the execution time and energy

efficiency, especially for data or communication intensive applications, where frequent

103

Personal Phone

VMM

OS

 VM

App

 VM

App

Work Phone

 OS

 VM

App

 VM

App

HW

Figure 5.2: Virtual Phone.

synchronization is desired. To address this dilemma, we designed AMPhone to incre-

mentally synchronize the data changes between mobile devices and cloud. We first

capture the keyboard input on the actually mobile devices, accumulate the keystroke

events and then send to cloud to reply these events on the virtual phone instance.

After the execution of virtual mobile instance, storage changes are accumulated and

incrementally synchronized to mobile devices in a batch. Complex applications that

access large amount of data can just synchronize the execution results back to mobile

devices and leave the input data in cloud. This flexibility also simplifies the data

sharing between mobile users.

Another design option is to lively migrate mobile VMs between mobile phone and

cloud. The live migration technology has been widely adopted in server virtualization

to lively reorganize VM cluster for maintenance or for updating the scale of the cluster.

As a result, it can also reduce service downtime while seamlessly moving the VMs

between hosts. However, live migration usually requires the destination host and the

original host share the same centralized storage servers to avoid moving large volume

104

data. Considering the wireless network bandwidth, intermittency, and the fact that

most mobile devices are not offering backend services that may expect strict service

down time, live migration may simply increase the cost and defeat the benefits of

integrating cloud. In this work, we design AMPhone to use the classic suspend-

and-resume model. The mobile clones doesn’t share the data storage with mobile

devices. Once the mobile os is suspended, the system states are check-pointed and all

the changes made from last checkpoint are synchronize to cloud and user input are

recorded and replayed in the cloud. To trigger a checkpoint, the application notifies

the local VMM to identify and record the input events.

5.3.5 Limitations

Mobile devices today are no longer just another type of computing unit. They

are usually equipped with GPS, camera or various sensors. All of these low-level

hardwares pose challenges to mobile virtualization and mobile cloud computing. The

applications in a virtual phone clone that have to access the physical hardware, for

example an application needs to access GPS location or an application requires blue-

tooth interface communication, then have to frequently synchronize the low-level

input with the cloud clone. Due to the communication cost, these types of applica-

tion may not be the idea applications that can benefit from running the virtual clone.

In addition, since all the information on the phone including user’s applications and

personal data has a duplication in cloud, this complicate virtual phone instances man-

agement, especially when user data security protection and data privacy have to be

enforced. Cloud providers may have to take the responsibility to isolate a user’s data

from others and secure all the access to the data in cloud. Since data security and

data protection are independent research topics of cloud computing, our prototype

105

design only considers the data security during transferring data.

5.4 Implementation

We implemented AMPhone prototype on Xen 4.4 and a development board pow-

ered with AllWinner A20 chip, which is ARM Cortex-A7 32bits RISC CPU. The A20

processor is an SoC with dual Cortex A7 CPU cores which delivers decent computing

capability while consuming less power. It also integrates the Mali400 MP2 GPU and

supports the ARM virtualization extensions. A20 is one of the ARM CPUs with

hardware virtualization support. On mobile devices, we added a kernel module to

monitor the key stroke event and repeatedly record the events. In the backend cloud,

we changed the VMM to correspond the data synchronization from mobile devices

and control the running status of the augmented clone.

Event Monitoring and Reply In order to capture the input from mobile de-

vices, we implemented a kernel module to keep tracking all the keystroke event on

mobile devices, buffer the stream of events and then forward the events to cloud. This

module contains two components. One is running on mobile devices to constantly

capture user’s input. When mobile device is suspended, only the input is captured

and forwarded, the mobile stops running any applications or changes the files on the

storage device. The other module is running in the virtualized clone after the clone

is resumed in cloud. The accumulated events from the mobile devices are replayed in

the virtualized clone. To reproduce a deterministic replay of interleaved execution of

native applications on mobile devices and the execution of virtualized phone, we en-

force that the virtual clone in the cloud is activated after the mobile OS is suspended

and the data changes are synchronized to cloud.

106

Incremental Synchronization To keep the mobile phone always synchronized

with the virtual clone in cloud, we implemented a daemon to constantly monitor

the changes of the mobile phone and update the changes with the cloud. On the

other hand, when the mobile clone is updated, the changes have to be pushed to

the mobile side. To simply the data transfer under different wireless connections, we

assume the mobile phone is connected to the cloud through wifi and the data change

is synchronized in mutual direction with very fine granularity. Due to the typical

storage space of mobile device ranges from 16GB to 64GB and the fact that most

of the mobile applications are designed to run inside a sandbox which means each

application can only update the files or folders within the storage space owned by that

application, the total maximal synchronization size is very limited. One optimization

of current implementation is to adjust the synchronization frequency by setting a

threshold for the size of changes to trigger the synchronization.

5.5 Evaluation

In this section, we first describe our experimental setup and our benchmarks.

Then we present some experimental results and our observations.

5.5.1 Experimental Setup

Mobile device performance measurements were obtained using Cubieboard2 [11]

with a dual core 1GHz CPU on a AllWinner A20 SoC. We use Cubieboard2 [11] to

run two virtualized mobile phone instances and use Dell PowerEdge1950 which has

two quad-core Intel Xeon CPU and 8GB memory to simulate the ARM server [12].

Based on the configuration of one of the representative ARM server [12], we con-

figure the virtual VMs in cloud with the same CPU and memory resource as the

107

ARM server. The virtual phone instances on Cubieboard2 are connected to cloud

through WiFi. We present some experimental results that quantify the performance

of a few benchmarks on both mobile devices and cloud. We evaluate the virtualiza-

tion overhead of running two virtualized phone instances comparing to running one

instance with native execution with micro-benchmarks. We measure and compare the

performance of applications running in virtualized phone and cloud to demonstrate

the feasibility of flexible mobile computing augmentation. Due to the differences in

hardware architecture and the simulation of ARM server, we present the relative per-

formance difference between virtualized instance on mobile device and cloud instead

of the absolute application performance. Following are the benchmarks we used in

the evaluations.

lmbench micro-benchmarks. lmbench [54] is a portable micro-benchmark suite

designed to measure important aspects of system performance such as process creation

cost, context switching cost, single handling cost etc. Our AMPhone proposes to run

multiple phone instances on the same mobile device via mobile virtualization. We

use the lmbench benchmarking suite to measure overheads of virtualization on mobile

devices and compare these various basic cost on mobile devices with that in cloud.

Octane Octane [31] is a benchmark suite that measures a JavaScript engine’s

performance by running a suite of tests representing today’s complex and demanding

web applications. Octane is designed to measure the performance of JavaScript code

found in large, real-world web applications, running on modern mobile and desktop

browsers. Due to a large amount of objects like flash or javascript code embedded in

modern web sites, mobile Web page loads are usually very slow. In our evaluation,

we measure the performance comparison between rendering websites in virtualized

108

fork exec pipe ctxsw tcp pagefaultfork exec pipe ctxsw tcp pagefault

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
N

o
rm

a
liz

e
d
 p

e
rf

o
rm

a
n
c
e

Phone without Virt
Phone with Virt
Cloud

Figure 5.3: lmbench performance.

mobile instance on mobile device and augmented instance in cloud.

Openssl speed The OpenSSL project provides an open source implementation

of the SSL/TLS protocols, and is widely deployed on mobile devices and servers. The

SSL/TLS protocols have two phases: an initial session-initiation/handshake phase,

and a bulk data transfer phase. The session initiation cost directly tie to applications’

performance. We measured the performance of OpenSSL using the built-in speed test

tool [63] with different algorithms. Each test was run a few times and an average was

taken for each data point.

5.5.2 Evaluation Results

We first measure the performance impact of mobile virtualization with lmbench

by evaluating the slowdown of some primitive operating system operations. Fig-

ure 5.3 shows the normalized performance for running lmbench in a virtual phone

109

Richards

Crypto

Regexp

Splay

Pdf.js

Box2DWeb

Zlib

Typescript

Richards

Crypto

Regexp

Splay

Pdf.js

Box2DWeb

Zlib

Typescript

0

0.6

1.2

1.8

2.4

3.0

3.6

N
o

rm
a

liz
e

d
 p

e
rf

o
rm

a
n

c
e

Mobile without Virt
Mobile with Virt
Cloud

Figure 5.4: Octane performance.

instance versus running directly on a mobile device. For comparison, we also show

the performance of running lmbench in a VM in simulated ARM cloud. From the

figure, virtualization incurs from 5% to 8% additional overhead for fork, exec and tcp

benchmarks. In addition, according to Figure 5.3, the overhead in cloud is higher

than that in a virtualized phone instance. This is due to server in cloud has higher

IPI overhead than ARM architecture and both context and pipe operations involve

repeatedly sending IPI. Although these individual operations cost more in cloud, it

doesn’t contradict the purpose of mobile augmentation because cloud usually has

much more hardware resources and mobile devices. In the remaining section, we

evaluate the performance improvement with browser related benchmarks and real

applications.

Figure 5.4 shows the the performance comparison of running Octane benchmark

110

in all cases. For testing web browsing performance, we used Chrome to run the Oc-

tane Javascript benchmark. Cloud VM running Octane received 5400 overall score

and the mobile device without virtualization had only 917 score, nearly one fifth of

the performance in cloud. Such contrast is also reflected by different benchmarks. As

shown in the figure, cloud VM has ranging from five to ten times better performance

than the default no VM on mobile device case. Richards benchmark is an OS kernel

simulation benchmark focusing on property load and store, function or method calls.

This benchmark got 10 time performance improvement by leveraging more powerful

CPU in cloud. Considering mobile web browsing is one of the main activities hap-

pening on mobile devices and also one of activities that drains battery life. According

to the evaluation results, besides the suspend and resume model used by AMPhone,

current AMPhone model could also be extended for browser specific applications.

In the extended model, mobile browsers can selectively execute portions of the page

loading process in cloud. In this way, the time consuming javascript loading and page

rendering can be conducted in cloud first and only the final html pages are sent to

mobile phone.

Figure 5.5 shows the the normalized performance comparison of running OpenSSL

speed test with different algorithms. Y-axis represents the log scale of performance

speed up. According to the figure, virtualization layer only incurs less than 5% per-

cent performance degradation comparing with none-virtualized case. In contrast to

the potential performance gain due to running applications in cloud, this performance

impact is marginal. DSA 512 bits signature verification algorithm can boost perfor-

mance 12x than running on mobile devices. This is mainly because this algorithm

requires both memory and CPU. Running OpenSSL in cloud can generally improve

111

md5
rsa512

dsa512

hmac
sha1

blowfish

aes
md5

rsa512

dsa512

hmac
sha1

blowfish

aes

0

0.6

1.2

1.8

2.4

3.0

3.6

N
o

rm
a
liz

e
d

 p
e
rf

o
rm

a
n
c
e

Mobile Without Virt
Mobile With Virt
Cloud

Figure 5.5: Openssl performance.

performance from five to twelve times.

5.6 Discusion and Summary

Due to the outstanding performance and low energy consumption, ARM proces-

sors have been dominating the mobile devices. Recently, there is also a growing trend

that ARM processors are becoming a strong competitor to x86 processors on severs.

At the same time, ARM processors have gradually started to support virtualiza-

tion and classic server virtualization technology has been adopted on mobile devices

recently. Our proposal envisions the future of mobile cloud computing with the con-

fluence of the advancement of mobile hardware and mobile software virtualization.

In this vision, mobile devices run more than one virtualized phone instances and are

connect to ARM based cloud servers powered with abundant CPU cores, memory

and storage space. The virtual instances on mobile devices can be seamlessly moved

112

to run in the ARM based cloud. In this design, service providers such as AT&T

or Verizon can offer the cloud infrastructure to mobile phone users. Given the high

speed wireless connection available on mobile phone, mobile users can dynamically

run their applications in augmented clones without the manual efforts of application

partitioning.

Mobile devices augmentation by leveraging cloud infrastructures has been an

emerging research topic. The ultimate motivation of mobile augmentation is to boost

applications’ performance, save power consumption, and break the restriction of the

limited resources on mobile devices. In this paper, we described the challenges of

current mobile cloud computing and presented a new model for augmenting the ca-

pability of mobile devices. Comparing with most existing mobile cloud solutions, our

system proposed a new mobile augmentation model to run virtualized phone instances

on both mobile devices and cloud. In this design, mobile devices run multiple phone

instances to provide isolated computing environment and each virtualized instance

is also connected to an augmented duplicated phone clone running in cloud. Mo-

bile applications runs in the virtualized clone in cloud and synchronize the changes

back to the instance on mobile phone. This model offers users flexible augmented

remote execution without the requirement of application partitioning. Our prototype

experiment results show that this model is capable of both improving applications’

performance.

Our AMPhone prototype provides the basic framework of augmented mobile cloud

computing. Besides the performance improvement, AMPhone also provides different

isolate phone instances, for example, users’ personal phone instance and corporate

phone instance are separated. Thus important corporate data could also be separated

113

from personal data and be protected with additional access rules. The current proto-

type hasn’t encrypted the event message transferring between a local phone instance

and a remote virtualized phone instance in the cloud. This might cause some secu-

rity issues for applications that require strong security protection. In addition, all

the meta data could be compressed before synchronizing to cloud. The compression

minimizes the footprints and saves the power consumption during transferring.

114

Chapter 6:CONCLUSIONS

This dissertation aims to build agile mobile cloud system. In this chapter, we

summarize our approaches presented in this dissertation and give the directions for

potential future work.

6.1 Conclusions

In this dissertation, we have demonstrated that cloud resources can be used to

boost the mobile computing capability and secure computing isolations. We intro-

duced three building blocks of future mobile cloud computing: agile virtual phone

clone deployment, efficient resource management in the cloud and flexible mobile

augmentation. Under this vision, mobile users runs multiple virtualized phone in-

stances on their mobile devices to isolate their computing environments. Each virtual

instance also has an associated augmented clone in the cloud.

To effectively leverage cloud resources to augment mobile computing, we first ana-

lyzed the cost of each step in the process of VM deployment, and then we introduced

the primitive of retrofitting VM deployment by using VM substrate to manage VMs

in agile virtualized environment. We then presented pool based substrate manage-

ment mechanism to efficiently manage virtual clones. With VM substrate, statefull

VMs or VM clusters can be instantiated within sub-seconds and a virtualized phone

clone can be also deployed in cloud on demand.

To effectively scheduling co-hosted virtual instances, we studied the classic LHP is-

sue among consolidated virtual machines. We then proposed SBCO, a new scheduling

scheme to improve performance and resource utilization in virtualized SMP environ-

ment. In particular, we optimize the CPU scheduling in the cases that many VMs are

115

consolidated on the same physical machine. With SBCO, many consolidated virtual

phone instances can be efficiently scheduled in cloud.

With Substrate and SBCO, cloud side resources can be efficiently managed for

mobile computing. Additionally, we proposed the AMPhone as a new mobile cloud

model. In this model, virtualization technology is used on both mobile devices and

cloud. A virtualized phone instance can be seamlessly suspended and resumed in

the remote cloud where ample hardware resource is available. This model frees mo-

bile devices from the limitation of computing capability. We presented the design,

implementation and evaluations for each of those building blocks in this dissertation.

6.2 Future Directions

Mobile virtualization and mobile cloud computing have been very hot research

topics recently. Along the line of this dissertation, there are a few other interesting

issues and new directions deserve future exploring. In this dissertation work, we

assume one to one model which implies each virtual phone instance on mobile device

is associated to one augmented instance in cloud. In reality, for certain applications, it

is possible to scale up the processing power by lunching more than virtual instances in

cloud for one task. This one to many model could further utilize cloud resources and

enable desktop application models such as MapReduce and other parallel programs.

There is another type of mobile and cloud interaction mechanism, VM migration,

could be further explored. In this dissertation, although we explained mobile devices

are usually not acting as a backend server to serve incoming requests and service down

time should not be crucial to mobile applications, the downtime of not responsible

user interface still directly impact mobile user experience. Mobile virtual VM migra-

116

tion might still be an option for backend tasks requires long execution and less user

interactions. Thus the feasibility and potential optimization of classic live migration

deserves future tuning for mobile cloud case.

117

REFERENCES

[1] EC2 instance type. http://aws.amazon.com/ec2/instance-types/.

[2] Inside the Linux 2.6 Completely Fair Scheduler. http://www.ibm.com/

developerworks/linux/library/l-completely-fair-scheduler/.

[3] Kernbench Benchmark. http://freecode.com/projects/kernbench.

[4] SPECjbb. http://www.spec.org/jbb2005/.

[5] SuperPI. http://www.superpi.net/.

[6] The VMware ESX Server. http://www.vmware.com/products/esx/.

[7] lmbench. http://lmbench.sourceforge.net/, 2001.

[8] Support Pause Filter in AMD processors. https://patchwork.kernel.org/

patch/48624/, 2001.

[9] Intel 64 and ia-32 architectures software developer’s manual volume 3., Decem-

ber 2011.

[10] S. Abolfazli, Z. Sanaei, A. Gani, and M. Shiraz. Momcc: Market-oriented

architecture for mobile cloud computing based on service oriented architecture.

CoRR, abs/1206.6209, 2012.

[11] AllWinner. http://linux-sunxi.org/Cubietech_Cubieboard2.

[12] AMD. http://www.amd.com/en-us/press-releases/Pages/

64-bit-developer-kit-2014jul30.aspx.

http://aws.amazon.com/ec2/instance-types/
http://www.ibm.com/developerworks/linux/library/l-completely-fair-scheduler/
http://www.ibm.com/developerworks/linux/library/l-completely-fair-scheduler/
http://freecode.com/projects/kernbench
http://www.spec.org/jbb2005/
http://www.superpi.net/
http://www.vmware.com/products/esx/
http://lmbench.sourceforge.net/
https://patchwork.kernel.org/patch/48624/
https://patchwork.kernel.org/patch/48624/
http://linux-sunxi.org/Cubietech_Cubieboard2
http://www.amd.com/en-us/press-releases/Pages/64-bit-developer-kit-2014jul30.aspx
http://www.amd.com/en-us/press-releases/Pages/64-bit-developer-kit-2014jul30.aspx

118

[13] T. E. Anderson, B. N. Bershad, E. D. Lazowska, and H. M. Levy. Scheduler ac-

tivations: Effective kernel support for the user-level management of parallelism.

ACM Transactions on Computer Systems, 10:95–109, 1992.

[14] Apache thread pool. http://commons.apache.org/sandbox/threadpool.

[15] A. Athan and D. Duchamp. Agent-mediated message passing for constrained en-

vironments. In Mobile & Location-Independent Computing Symposium on Mo-

bile & Location-Independent Computing Symposium, MLCS, pages 9–9, Berke-

ley, CA, USA, 1993. USENIX Association.

[16] Y. Bai, C. Xu, and Z. Li. Task-aware based co-scheduling for virtual machine

system. In Proceedings of the 2010 ACM Symposium on Applied Computing,

SAC ’10, pages 181–188, New York, NY, USA, 2010.

[17] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, L. Dagum,

R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S. Schreiber, H. D. Si-

mon, V. Venkatakrishnan, and S. K. Weeratunga. The nas parallel bench-

marks—summary and preliminary results. In Proceedings of the 1991

ACM/IEEE Conference on Supercomputing, Supercomputing ’91, pages 158–

165, New York, NY, USA, 1991.

[18] R. K. Balan, M. Satyanarayanan, S. Y. Park, and T. Okoshi. Tactics-based

remote execution for mobile computing. In Proceedings of the 1st international

conference on Mobile systems, applications and services, MobiSys ’03, pages

273–286, New York, NY, USA, 2003. ACM.

[19] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The parsec benchmark suite: char-

acterization and architectural implications. In Proceedings of the 17th interna-

http://commons.apache.org/sandbox/threadpool

119

tional conference on Parallel architectures and compilation techniques, PACT

’08, pages 72–81, New York, NY, USA, 2008.

[20] T. Bird. Measuring function duration with ftrace. In in Ottawa Linux Sympo-

sium, 2009.

[21] R. Bradford, E. Kotsovinos, A. Feldmann, and H. Schiöberg. Live wide-area

migration of virtual machines including local persistent state. In VEE, 2007.

[22] R. C. Chiang, J. Hwang, H. H. Huang, and T. Wood. Matrix: Achieving

predictable virtual machine performance in the clouds. In 11th International

Conference on Autonomic Computing (ICAC 14), pages 45–56, Philadelphia,

PA, June 2014. USENIX Association.

[23] G. S. Choi, J.-H. Kim, D. Ersoz, A. B. Yoo, and C. R. Das. Coscheduling

in clusters: Is it a viable alternative? In Proceedings of the 2004 ACM/IEEE

conference on Supercomputing, SC ’04, pages 16–, Washington, DC, USA, 2004.

IEEE Computer Society.

[24] B.-G. Chun and P. Maniatis. Augmented smartphone applications through

clone cloud execution. In HotOS, 2009.

[25] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt, and

A. Warfield. Live migration of virtual machines. In NSDI, 2005.

[26] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson, and A. Warfield.

Remus: high availability via asynchronous virtual machine replication. In NSDI,

2008.

[27] X. Ding, P. B. Gibbons, M. A. Kozuch, and J. Shan. Gleaner: Mitigating

the blocked-waiter wakeup problem for virtualized multicore applications. In

120

2014 USENIX Annual Technical Conference (USENIX ATC 14), pages 73–84,

Philadelphia, PA, June 2014. USENIX Association.

[28] Y. Dong, X. Zheng, X. Zhang, J. Dai, J. Li, X. Li, G. Zhai, and H. Guan.

Improving virtualization performance and scalability with advanced hardware

accelerations. In Workload Characterization (IISWC), 2010 IEEE International

Symposium on, pages 1 –10, dec. 2010.

[29] EC2. http://aws.amazon.com/ec2.

[30] M. Gooderum, D. Mason, and J. Wrabetz. An integrated remote execution

system for a heterogenous computer network environment, Oct. 14 1993. WO

Patent App. PCT/US1993/003,106.

[31] Google. https://developers.google.com/octane/.

[32] S. Govindan, J. Choi, A. R. Nath, A. Das, B. Urgaonkar, and A. Sivasubra-

maniam. Xen and co.: Communication-aware cpu management in consolidated

xen-based hosting platforms. Jan 2009.

[33] N. Har’El, A. Gordon, A. Landau, M. Ben-Yehuda, A. Traeger, and R. Ladelsky.

Efficient and scalable paravirtual i/o system. In USENIX Annual Technical

Conference (ATC), 2013.

[34] F. R. Johnson, R. Stoica, A. Ailamaki, and T. C. Mowry. Decoupling contention

management from scheduling. SIGPLAN Not., 45(3):117–128, Mar. 2010.

[35] J. Kim, R. A. Baratto, and J. Nieh. pthinc: A thin-client architecture for mobile

wireless web. In Proceedings of the 15th International Conference on World

Wide Web, WWW ’06, pages 143–152, New York, NY, USA, 2006. ACM.

http://aws.amazon.com/ec2
https://developers.google.com/octane/

121

[36] S. T. King, G. W. Dunlap, and P. M. Chen. Debugging operating systems with

time-traveling virtual machines. pages 1–15, 2005.

[37] A. Klein, C. Mannweiler, J. Schneider, and H. Schotten. Access schemes for

mobile cloud computing. In Mobile Data Management (MDM), 2010 Eleventh

International Conference on, pages 387–392, May 2010.

[38] A. Klein, C. Mannweiler, J. Schneider, and H. D. Schotten. Access schemes

for mobile cloud computing. Mobile Data Management, IEEE International

Conference on, 0:387–392, 2010.

[39] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang. Thinkair: Dynamic

resource allocation and parallel execution in the cloud for mobile code offloading.

In A. G. Greenberg and K. Sohraby, editors, INFOCOM, pages 945–953. IEEE,

2012.

[40] R. KT. KVM: Paravirt-spinlock support for KVM guests. http://lwn.net/

Articles/469918, 2001.

[41] KVM. http://www.linux-kvm.org/page/Main-Page.

[42] H. A. Lagar-Cavilla, N. Tolia, E. de Lara, M. Satyanarayanan, and

D. O’Hallaron. Interactive resource-intensive applications made easy. In Middle-

ware ’07: Proceedings of the ACM/IFIP/USENIX 2007 International Confer-

ence on Middleware, pages 143–163, New York, NY, USA, 2007. Springer-Verlag

New York, Inc.

[43] H. A. Lagar-Cavilla, J. Whitney, A. Scannell, P. Patchin, S. M. Rumble,

E. de Lara, M. Brudno, and M. Satyanarayanan. Snowflock: Rapid virtual

machine cloning for cloud computing. In Eurosys, 2009.

http://lwn.net/Articles/469918
http://lwn.net/Articles/469918
http://www.linux-kvm.org/page/Main-Page

122

[44] H. A. Lagar-Cavilla, J. Whitney, A. Scannell, S. M. Rumble, E. de Lara,

M. Brudno, and M. Satyanarayanan. Impromptu clusters for near-interactive

cloud-based services. Technical Report CSRG-TR578, Department of Computer

Science, University of Toronto, 2008.

[45] A. M. Lai, J. Nieh, B. Bohra, V. Nandikonda, A. P. Surana, and S. Varshneya.

Improving web browsing performance on wireless pdas using thin-client com-

puting. In Proceedings of the 13th International Conference on World Wide

Web, WWW ’04, pages 143–154, New York, NY, USA, 2004. ACM.

[46] A. Landau, M. Ben-Yehuda, and A. Gordon. SplitX: Split guest/hypervisor

execution on multi-core. In WIOV ’11: 3rd Workshop on I/O Virtualization,

Portland, Oregon, June 2011.

[47] J. R. Lange, K. Pedretti, P. Dinda, P. G. Bridges, C. Bae, P. Soltero, and

A. Merritt. Minimal-overhead virtualization of a large scale supercomputer.

In Proceedings of the 7th ACM SIGPLAN/SIGOPS International Conference

on Virtual Execution Environments, VEE ’11, pages 169–180, New York, NY,

USA, 2011. ACM.

[48] W. Lee, M. Frank, V. Lee, K. Mackenzie, and L. Rudolph. Implications of i/o

for gang scheduled workloads, 1997.

[49] S. T. Leutenegger and M. K. Vernon. The performance of multiprogrammed

multiprocessor scheduling algorithms. In Proceedings of the 1990 ACM SIG-

METRICS conference on Measurement and modeling of computer systems, SIG-

METRICS ’90, pages 226–236, New York, NY, USA, 1990.

123

[50] C. Li, C. Ding, and K. Shen. Quantifying the cost of context switch. In

Proceedings of the 2007 workshop on Experimental computer science, ExpCS

’07, New York, NY, USA, 2007.

[51] F. Li and J. Nieh. Optimal linear interpolation coding for server-based com-

puting. In ICC, 2002.

[52] Z. Li, C. Wang, and R. Xu. Computation offloading to save energy on handheld

devices: A partition scheme. In Proceedings of the 2001 International Confer-

ence on Compilers, Architecture, and Synthesis for Embedded Systems, CASES

’01, pages 238–246, New York, NY, USA, 2001. ACM.

[53] Y. Ling, T. Mullen, and X. Lin. Analysis of optimal thread pool size. SIGOPS

Operating System Review, 2000.

[54] L. McVoy and C. Staelin. Lmbench: Portable tools for performance analysis.

In Proceedings of the 1996 Annual Conference on USENIX Annual Technical

Conference, ATEC ’96, pages 23–23, Berkeley, CA, USA, 1996. USENIX Asso-

ciation.

[55] A. Menon, J. R. Santos, Y. Turner, G. J. Janakiraman, and W. Zwaenepoel.

Diagnosing performance overheads in the xen virtual machine environment.

In Proceedings of the 1st ACM/USENIX International Conference on Virtual

Execution Environments, VEE ’05, pages 13–23, New York, NY, USA, 2005.

ACM.

[56] K. Z. Meth and J. Satran. Design of the iscsi protocol. In MSS, 2003.

[57] A. B. Nagarajan and F. Mueller. Proactive fault tolerance for hpc with xen

virtualization. In In Proceedings of the 21st Annual International Conference

124

on Supercomputing (ICS’07, pages 23–32. ACM Press, 2007.

[58] M. Nelson, B.-H. Lim, and G. Hutchins. Fast transparent migration for virtual

machines. In USENIX Annual Technical Conference, 2005.

[59] E. B. Nightingale, K. Veeraraghavan, P. M. Chen, and J. Flinn. Rethink the

sync. In In Proc. OSDI, pages 1–14, 2006.

[60] S. Oaks and H. Wong. Java Threads. O’Reilly Media, Inc., 2004.

[61] J. Oberheide, K. Veeraraghavan, E. Cooke, J. Flinn, and F. Jahanian. Virtu-

alized in-cloud security services for mobile devices. In Proceedings of the First

Workshop on Virtualization in Mobile Computing, MobiVirt ’08, pages 31–35,

New York, NY, USA, 2008. ACM.

[62] D. Ongaro, A. L. Cox, and S. Rixner. Scheduling i/o in virtual machine mon-

itors. In VEE ’08: Proceedings of the fourth ACM SIGPLAN/SIGOPS inter-

national conference on Virtual execution environments, pages 1–10, New York,

NY, USA, 2008. ACM.

[63] OpenSSL. https://www.openssl.org/docs/apps/speed.html.

[64] Oracle VM Templates. http://www.oracle.com/technology/products/vm/

templates/index.html.

[65] J. K. Ousterhout. Scheduling techniques for concurrent systems. In In Proc.

of the 3rd International Conference on Distributed Computing Systems,, Ft.

Lauderdale, FL, USA, October 1982.

[66] I. Pyarali, M. Spivak, R. Cytron, and D. C. Schmidt. Evaluating and optimizing

thread pool strategies for real-time corba. In LCTES, 2001.

https://www.openssl.org/docs/apps/speed.html
http://www.oracle.com/technology/products/vm/templates/index.html
http://www.oracle.com/technology/products/vm/templates/index.html

125

[67] A. Ranadive, M. Kesavan, A. Gavrilovska, and K. Schwan. Performance implica-

tions of virtualizing multicore cluster machines. In Proceedings of the 2Nd Work-

shop on System-level Virtualization for High Performance Computing, HPCVirt

’08, pages 1–8, New York, NY, USA, 2008. ACM.

[68] J. Rao, K. Wang, X. Zhou, and C.-Z. Xu. Optimizing virtual machine schedul-

ing in numa multicore systems. In Proceedings of 19th IEEE International

Symposium on High Performance Computer Architecture, HPCA ’13. IEEE,

2013.

[69] J. Rao and X. Zhou. Towards fair and efficient smp virtual machine scheduling.

In Proceedings of 19th ACM SIGPLAN Symposium on Principles and Practice

of Parallel Programming, PPoPP ’14. ACM, 2014.

[70] S. Research and D. Group. http://supercluster.org/maui.

[71] RightScale VM Templates. http://blog.rightscale.com/2010/03/22/

rightscale-servertemplates-explained/.

[72] A. Roytman, A. Kansal, S. Govindan, J. Liu, and S. Nath. Pacman: Perfor-

mance aware virtual machine consolidation. In 10th International Conference

on Autonomic Computing (ICAC). USENIX, June 2013.

[73] A. Rudenko, P. Reiher, G. J. Popek, and G. H. Kuenning. Saving portable

computer battery power through remote process execution. SIGMOBILE Mob.

Comput. Commun. Rev., 2(1):19–26, Jan. 1998.

[74] A. Rudenko, P. Reiher, G. J. Popek, and G. H. Kuenning. Saving portable

computer battery power through remote process execution. SIGMOBILE Mob.

Comput. Commun. Rev., 2(1):19–26, Jan. 1998.

http://supercluster.org/maui
http://blog.rightscale.com/2010/03/22/rightscale-servertemplates-explained/
http://blog.rightscale.com/2010/03/22/rightscale-servertemplates-explained/

126

[75] A. Rudenko, P. Reiher, G. J. Popek, and G. H. Kuenning. Saving portable

computer battery power through remote process execution. SIGMOBILE Mob.

Comput. Commun. Rev., 2(1):19–26, Jan. 1998.

[76] Z. Sanaei, S. Abolfazli, A. Gani, and M. Shiraz. Sami: Service-based arbitrated

multi-tier infrastructure for mobile cloud computing. CoRR, abs/1206.6219,

2012.

[77] C. P. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow, M. S. Lam, and M. Rosen-

blum. Optimizing the migration of virtual computers. SIGOPS Operating Sys-

tem Review, 2002.

[78] M. Satyanarayanan. Mobile computing: The next decade. In Proceedings of

the 1st ACM Workshop on Mobile Cloud Computing & Services: Social

Networks and Beyond, MCS ’10, pages 5:1–5:6, New York, NY, USA, 2010.

ACM.

[79] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies. The case for vm-based

cloudlets in mobile computing. IEEE Pervasive Computing, 8:14–23, 2009.

[80] M. Satyanarayanan, B. Gilbert, M. Toups, N. Tolia, A. Surie, D. R. O’Hallaron,

A. Wolbach, J. Harkes, A. Perrig, D. J. Farber, M. A. Kozuch, C. J. Helfrich,

P. Nath, and H. A. Lagar-Cavilla. Pervasive personal computing in an internet

suspend/resume system. In IEEE Internet Computing, 2007.

[81] O. Sukwong and H. S. Kim. Is co-scheduling too expensive for smp vms? In

Proceedings of the sixth conference on Computer systems, EuroSys ’11, pages

257–272, New York, NY, USA, 2011.

127

[82] O. Tickoo, R. Iyer, R. Illikkal, and D. Newell. Modeling virtual machine per-

formance: Challenges and approaches. SIGMETRICS Perform. Eval. Rev.,

37(3):55–60, Jan. 2010.

[83] V. Uhlig, J. LeVasseur, E. Skoglund, and U. Dannowski. Towards scalable

multiprocessor virtual machines. In Proceedings of the 3rd conference on Virtual

Machine Research And Technology Symposium - Volume 3, pages 4–4, Berkeley,

CA, USA, 2004. USENIX Association.

[84] S. Vaddagiri, B. B Rao, V. Srinivasan, B. P Janakiraman Singh, and V. K Suk-

thankar. Scaling software on multi-core through co-scheduling of related tasks.

In in Ottawa Linux Symposium, 2009.

[85] VDI. http://www.vmware.com/pdf/virtual-desktop-infrastructure-wp.

pdf.

[86] VMware. http://www.vmware.com/pdf/vc_2_templates_usage_best_

practices_wp.pdf.

[87] VMware. Performance best practices for VMware vSphere 4.0,

VMware ESX 4.0 and ESXi 4.0. http://www.vmware.com/pdf/

Perf-Best-Practices-vSphere4.0.pdf, 2010.

[88] VMware. VMWare vSphere 4: The CPU Scheduler in VMWare ESX 4

White Paper. http://www.vmware.com/pdf/perf-vsphere-cpu-scheduler.

pdf, 2010.

[89] VMWare. Co-scheduling SMP VMs in VMware ESX server, May,2008.

http://www.vmware.com/pdf/virtual-desktop-infrastructure-wp.pdf
http://www.vmware.com/pdf/virtual-desktop-infrastructure-wp.pdf
http://www.vmware.com/pdf/vc_2_templates_usage_best_practices_wp.pdf
http://www.vmware.com/pdf/vc_2_templates_usage_best_practices_wp.pdf
http://www.vmware.com/pdf/Perf-Best-Practices-vSphere4.0.pdf
http://www.vmware.com/pdf/Perf-Best-Practices-vSphere4.0.pdf
http://www.vmware.com/pdf/perf-vsphere-cpu-scheduler.pdf
http://www.vmware.com/pdf/perf-vsphere-cpu-scheduler.pdf

128

[90] VMWare. Understanding Full Virtualization, Paravirtualization, and Hardware

Assist. ”http://www.vmware.com/files/pdf/VMware-paravirtualization.

pdf”, May,2009.

[91] M. Vrable, J. Ma, J. Chen, D. Moore, E. Vandekieft, A. C. Snoeren, G. M.

Voelker, and S. Savage. Scalability, fidelity, and containment in the potemkin

virtual honeyfarm. In SOSP, 2005.

[92] C. Wang, F. Mueller, C. Engelmann, and S. L. Scott. Proactive process-level

live migration in hpc environments. In SC, 2008.

[93] K. Wang, J. Rao, and C.-Z. Xu. Rethink the virtual machine template. SIG-

PLAN Not., 46:39–50, Mar. 2011.

[94] P. M. Wells, K. Chakraborty, and G. S. Sohi. Hardware support for spin man-

agement in overcommitted virtual machines. In Proceedings of the 15th interna-

tional conference on Parallel architectures and compilation techniques, PACT

’06, pages 124–133, New York, NY, USA, 2006.

[95] C. Weng, Z. Wang, M. Li, and X. Lu. The hybrid scheduling framework for

virtual machine systems. In Proceedings of the 2009 ACM SIGPLAN/SIGOPS

international conference on Virtual execution environments, VEE ’09, pages

111–120, New York, NY, USA, 2009.

[96] Xen. http://www.xen.org.

[97] L. Yang, J. Cao, Y. Yuan, T. Li, A. Han, and A. Chan. A framework for parti-

tioning and execution of data stream applications in mobile cloud computing.

SIGMETRICS Perform. Eval. Rev., 40(4):23–32, Apr. 2013.

http://www.vmware.com/files/pdf/VMware-paravirtualization.pdf
http://www.vmware.com/files/pdf/VMware-paravirtualization.pdf
http://www.xen.org

129

[98] S. Zachariadis, C. Mascolo, and W. Emmerich. satin: A component model for

mobile self organisation. In R. Meersman and Z. Tari, editors, On the Move

to Meaningful Internet Systems 2004: CoopIS, DOA, and ODBASE, volume

3291 of Lecture Notes in Computer Science, pages 1303–1321. Springer Berlin

Heidelberg, 2004.

[99] B. Zhao, B. C. Tak, and G. Cao. Reducing the delay and power consumption

of web browsing on smartphones in 3g networks. In Proceedings of the 2011

31st International Conference on Distributed Computing Systems, ICDCS ’11,

pages 413–422, Washington, DC, USA, 2011. IEEE Computer Society.

[100] W. Zhao and Z. Wang. Dynamic memory balancing for virtual machines. In

VEE, 2009.

[101] S. Zhou and T. Brecht. Processor-pool-based scheduling for large-scale numa

multiprocessors. In SIGMETRICS, 1991.

130

ABSTRACT

BUILDING A COMPUTING-AS-A-SERVICE MOBILE CLOUD
SYSTEM

by

KUN WANG

December 2015

Advisor:

Major:

Degree:

Dr. Chengzhong Xu

Computer Engineering

Doctor of Philosophy

The last five years have witnessed the proliferation of smart mobile devices, the

explosion of various mobile applications and the rapid adoption of cloud computing

in business, governmental and educational IT deployment. There is also a growing

trends of combining mobile computing and cloud computing as a new popular com-

puting paradigm nowadays. This thesis envisions the future of mobile computing

which is primarily affected by following three trends: First, servers in cloud equipped

with high speed multi-core technology have been the main stream today. Meanwhile,

ARM processor powered servers is growingly became popular recently and the virtu-

alization on ARM systems is also gaining wide ranges of attentions recently. Second,

high-speed internet has been pervasive and highly available. Mobile devices are able

to connect to cloud anytime and anywhere. Third, cloud computing is reshaping

the way of using computing resources. The classic pay/scale-as-you-go model allows

hardware resources to be optimally allocated and well-managed. These three trends

lend credence to a new mobile computing model with the combination of resource-rich

cloud and less powerful mobile devices. In this model, mobile devices run the core vir-

131

tualization hypervisor with virtualized phone instances, allowing for pervasive access

to more powerful, highly-available virtual phone clones in the cloud. The centralized

cloud, powered by rich computing and memory recourses, hosts virtual phone clones

and repeatedly synchronize the data changes with virtual phone instances running on

mobile devices. Users can flexibly isolate different computing environments.

In this dissertation, we explored the opportunity of leveraging cloud resources for

mobile computing for the purpose of energy saving, performance augmentation as well

as secure computing enviroment isolation. We proposed a framework that allows mo-

bile users to seamlessly leverage cloud to augment the computing capability of mobile

devices and also makes it simpler for application developers to run their smartphone

applications in the cloud without tedious application partitioning. This framework

was built with virtualization on both server side and mobile devices. It has three

building blocks including agile virtual machine deployment, efficient virtual resource

management, and seamless mobile augmentation. We presented the design, imple-

mentation and evaluation of these three components and demonstrated the feasibility

of the proposed mobile cloud model.

132

AUTOBIOGRAPHICAL STATEMENT

KUN WANG

Kun Wang is a graduate student in the Department of Electrical and Computer

Engineering at Wayne State University. He is a member of the Cloud and Internet

Computing group, led by Dr. Chengzhong Xu. Prior to joining Wayne State Univer-

sity, he received his B.S. degrees from Huazhong University of Science and Technology

in Hubei China. His research interests include virtualization, operating system, and

mobile system. He has published several papers in conferences in these areas. He has

also served as a peer reviewer for a few conferences and journals. Besides the academic

research, he has done two internships with VMWare VMKernel team. He was one of

the three best intern poster competition winners during the internship. He also served

as a lab instructor for the undergraduate course Introducing Microcomputers for four

consecutive semesters. He was nominated as the Outstanding Teaching Assistant of

the Year in 2013.

	Wayne State University
	1-1-2015
	Building Computing-As-A-Service Mobile Cloud System
	Kun Wang
	Recommended Citation

	Acknowledgements
	List of Figures
	List of Tables
	Chapter INTRODUCTION
	Background
	Virtualization and Cloud Computing
	Mobile Virtualization and Mobile Cloud Computing

	Motivations
	Substrate: Agile VM Deployment
	SBCO: Efficient SMP VM Co-Scheduling
	AMPhone: Flexible Mobile Augmentation
	Organization

	Chapter RELATED WORK
	Agile VM Deployment
	SMP VM Co-Scheduling
	Flexible Mobile Augmentation

	Chapter AGILE VIRTUAL MACHINE DEPLOYMENT
	Introduction
	Background
	Cost of VM Creation
	VM State Transition
	Challenges of Rapid VM Deployment

	Design of VM Substrate
	VM Substrate and Pool
	VM Clone From Substrate
	VM Substrate Generation
	VM Fork

	Implementation
	Resource Shrinking and Expanding
	Substrate Multicast and Compression

	Evaluation
	Overhead
	Performance Comparison

	Conclusions and Future Work

	Chapter EFFICIENT SMP VIRTUAL MACHINE SCHEDULING
	Introduction
	Background
	Challenges
	Dynamic vCPU Affinity
	Costly vCPU Context Switch
	The Effect of Scheduling Distance

	Self-Boosted Co-Scheduling
	Overview
	Extending Red Black Tree
	SBCO Algorithm
	Performance Considerations

	Implementation
	Evaluation
	Experiment Design
	Experimental Results

	Summary

	Chapter FLEXIBLE MOBILE AUGMENTATION
	Introduction
	Background and Challenges
	Mobile Computing and Cloud
	Architecture Compatibility
	Cost of Communication and Computing

	System Design
	Overview
	Whole System Replication
	Mobile Augmentation
	Incremental Synchronization
	Limitations

	Implementation
	Evaluation
	Experimental Setup
	Evaluation Results

	Discusion and Summary

	Chapter CONCLUSIONS
	Conclusions
	Future Directions

	References
	Abstract
	Autobiographical Statement

