3,893 research outputs found

    SUPPORT EFFECTIVE DISCOVERY MANAGEMENT IN VISUAL ANALYTICS

    Get PDF
    Visual analytics promises to supply analysts with the means necessary to ana- lyze complex datasets and make effective decisions in a timely manner. Although significant progress has been made towards effective data exploration in existing vi- sual analytics systems, few of them provide systematic solutions for managing the vast amounts of discoveries generated in data exploration processes. Analysts have to use off line tools to manually annotate, browse, retrieve, organize, and connect their discoveries. In addition, they have no convenient access to the important discoveries captured by collaborators. As a consequence, the lack of effective discovery manage- ment approaches severely hinders the analysts from utilizing the discoveries to make effective decisions. In response to this challenge, this dissertation aims to support effective discov- ery management in visual analytics. It contributes a general discovery manage- ment framework which achieves its effectiveness surrounding the concept of patterns, namely the results of users’ low-level analytic tasks. Patterns permit construction of discoveries together with users’ mental models and evaluation. Different from the mental models, the categories of patterns that can be discovered from data are pre- dictable and application-independent. In addition, the same set of information is often used to annotate patterns in the same category. Therefore, visual analytics sys- tems can semi-automatically annotate patterns in a formalized format by predicting what should be recorded for patterns in popular categories. Using the formalized an- notations, the framework also enhances the automation and efficiency of a variety of discovery management activities such as discovery browsing, retrieval, organization, association, and sharing. The framework seamlessly integrates them with the visual interactive explorations to support effective decision making. Guided by the discovery management framework, our second contribution lies in proposing a variety of novel discovery management techniques for facilitating the discovery management activities. The proposed techniques and framework are im- plemented in a prototype system, ManyInsights, to facilitate discovery management in multidimensional data exploration. To evaluate the prototype system, two long- term case studies are presented. They investigated how the discovery management techniques worked together to benefit exploratory data analysis and collaborative analysis. The studies allowed us to understand the advantages, the limitations, and design implications of ManyInsights and its underlying framework

    Socially-augmented argumentation tools: rationale, design and evaluation of a debate dashboard

    Get PDF
    Collaborative Computer-Supported Argument Visualization (CCSAV) is a technical methodology that offers support for online collective deliberation over complex dilemmas. As compared with more traditional conversational technologies, like wikis and forums, CCSAV is designed to promote more critical thinking and evidence-based reasoning, by using representations that highlight conceptual relationships between contributions, and through computational analytics that assess the structural integrity of the network. However, to date, CCSAV tools have achieved adoption primarily in small-scale educational contexts, and only to a limited degree in real world applications. We hypothesise that by reifying conversations as logical maps to address the shortcomings of chronological streams, CCSAV tools underestimate the importance of participation and interaction in enhancing collaborative knowledge-building. We argue, therefore, that CCSAV platforms should be socially augmented in order to improve their mediation capability. Drawing on Clark and Brennan’s influential Common Ground theory, we designed a Debate Dashboard, which augmented a CCSAV tool with a set of widgets that deliver meta-information about participants and the interaction process. An empirical study simulating a moderately sized collective deliberation scenario provides evidence that this experimental version outperformed the control version on a range of indicators, including usability, mutual understanding, quality of perceived collaboration, and accuracy of individual decisions. No evidence was found that the addition of the Debate Dashboard impeded the quality of the argumentation or the richness of content

    Immersive Telepresence: A framework for training and rehearsal in a postdigital age

    Get PDF

    Collaborative geographic visualization

    Get PDF
    Dissertação apresentada na Faculdade de CiĂȘncias e Tecnologia da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Engenharia do Ambiente, perfil GestĂŁo e Sistemas AmbientaisThe present document is a revision of essential references to take into account when developing ubiquitous Geographical Information Systems (GIS) with collaborative visualization purposes. Its chapters focus, respectively, on general principles of GIS, its multimedia components and ubiquitous practices; geo-referenced information visualization and its graphical components of virtual and augmented reality; collaborative environments, its technological requirements, architectural specificities, and models for collective information management; and some final considerations about the future and challenges of collaborative visualization of GIS in ubiquitous environment

    Spatio-Temporal Discussion Board

    Get PDF

    An Affordance-Based Framework for Human Computation and Human-Computer Collaboration

    Get PDF
    Visual Analytics is “the science of analytical reasoning facilitated by visual interactive interfaces” [70]. The goal of this field is to develop tools and methodologies for approaching problems whose size and complexity render them intractable without the close coupling of both human and machine analysis. Researchers have explored this coupling in many venues: VAST, Vis, InfoVis, CHI, KDD, IUI, and more. While there have been myriad promising examples of human-computer collaboration, there exists no common language for comparing systems or describing the benefits afforded by designing for such collaboration. We argue that this area would benefit significantly from consensus about the design attributes that define and distinguish existing techniques. In this work, we have reviewed 1,271 papers from many of the top-ranking conferences in visual analytics, human-computer interaction, and visualization. From these, we have identified 49 papers that are representative of the study of human-computer collaborative problem-solving, and provide a thorough overview of the current state-of-the-art. Our analysis has uncovered key patterns of design hinging on human- and machine-intelligence affordances, and also indicates unexplored avenues in the study of this area. The results of this analysis provide a common framework for understanding these seemingly disparate branches of inquiry, which we hope will motivate future work in the field

    Geovisual analytics for spatial decision support: Setting the research agenda

    Get PDF
    This article summarizes the results of the workshop on Visualization, Analytics & Spatial Decision Support, which took place at the GIScience conference in September 2006. The discussions at the workshop and analysis of the state of the art have revealed a need in concerted cross‐disciplinary efforts to achieve substantial progress in supporting space‐related decision making. The size and complexity of real‐life problems together with their ill‐defined nature call for a true synergy between the power of computational techniques and the human capabilities to analyze, envision, reason, and deliberate. Existing methods and tools are yet far from enabling this synergy. Appropriate methods can only appear as a result of a focused research based on the achievements in the fields of geovisualization and information visualization, human‐computer interaction, geographic information science, operations research, data mining and machine learning, decision science, cognitive science, and other disciplines. The name ‘Geovisual Analytics for Spatial Decision Support’ suggested for this new research direction emphasizes the importance of visualization and interactive visual interfaces and the link with the emerging research discipline of Visual Analytics. This article, as well as the whole special issue, is meant to attract the attention of scientists with relevant expertise and interests to the major challenges requiring multidisciplinary efforts and to promote the establishment of a dedicated research community where an appropriate range of competences is combined with an appropriate breadth of thinking

    Analytic provenance for sensemaking: a research agenda

    Get PDF
    Sensemaking is a process of find meaning from information, and often involves activities such as information foraging and hypothesis generation. It can be valuable to maintain a history of the data and reasoning involved, commonly known as provenance information. Provenance information can be a resource for “reflection-in-action” during analysis, supporting collaboration between analysts, and help trace data quality and uncertainty through analysis process. Currently, there is limited work of utilizing analytic provenance, which captures the interactive data exploration and human reasoning process, to support sensemaking. In this article, we present and extend the research challenges discussed in a IEEE VIS 2014 workshop in order to provide an agenda for sensemaking analytic provenance
    • 

    corecore