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ABSTRACT

YANG CHEN. Support effective discovery management in visual analytics.
(Under the direction of DR. JING YANG)

Visual analytics promises to supply analysts with the means necessary to ana-

lyze complex datasets and make effective decisions in a timely manner. Although

significant progress has been made towards effective data exploration in existing vi-

sual analytics systems, few of them provide systematic solutions for managing the

vast amounts of discoveries generated in data exploration processes. Analysts have to

use off line tools to manually annotate, browse, retrieve, organize, and connect their

discoveries. In addition, they have no convenient access to the important discoveries

captured by collaborators. As a consequence, the lack of effective discovery manage-

ment approaches severely hinders the analysts from utilizing the discoveries to make

effective decisions.

In response to this challenge, this dissertation aims to support effective discov-

ery management in visual analytics. It contributes a general discovery manage-

ment framework which achieves its effectiveness surrounding the concept of patterns,

namely the results of users’ low-level analytic tasks. Patterns permit construction

of discoveries together with users’ mental models and evaluation. Different from the

mental models, the categories of patterns that can be discovered from data are pre-

dictable and application-independent. In addition, the same set of information is

often used to annotate patterns in the same category. Therefore, visual analytics sys-

tems can semi-automatically annotate patterns in a formalized format by predicting

what should be recorded for patterns in popular categories. Using the formalized an-

notations, the framework also enhances the automation and efficiency of a variety of

discovery management activities such as discovery browsing, retrieval, organization,

association, and sharing. The framework seamlessly integrates them with the visual

interactive explorations to support effective decision making.
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Guided by the discovery management framework, our second contribution lies

in proposing a variety of novel discovery management techniques for facilitating the

discovery management activities. The proposed techniques and framework are im-

plemented in a prototype system, ManyInsights, to facilitate discovery management

in multidimensional data exploration. To evaluate the prototype system, two long-

term case studies are presented. They investigated how the discovery management

techniques worked together to benefit exploratory data analysis and collaborative

analysis. The studies allowed us to understand the advantages, the limitations, and

design implications of ManyInsights and its underlying framework.
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CHAPTER 1: INTRODUCTION

Nowadays gigabits of digital data are generated per person per year. People need

to get information from the massive data to make decisions or solve problems. With

the rapid advancement in data storage, data integration, and data mining techniques,

people can effectively access and manage the data that was previously unavailable or

too difficult to process [1]. This presents tremendous opportunities to discover new

insights for making effective decisions and solving unexpected problems.

In response to these new opportunities, an emerging research area, known as visual

analytics, has been proposed to address the grand challenge of analyzing the massive

amounts of data [2]. Its basic approach is to create interactive visualizations so that

human perception abilities and domain knowledge can be exploited together with

computational powers to improve the reasoning process [3]. Consequently, people can

derive profound insights from massive, dynamic data and make effective decisions.

A number of visual analytics approaches have been developed in a wide range of

data analysis applications, such as health care, homeland security, terrorism detec-

tion, and financial market analysis. Many applications provide sophisticated forms of

visualizations to facilitate the exploration of massive structured data (e.g., multidi-

mensional data) and unstructured data (e.g., text collections). Examples include the

visual analysis of massive text documents with the ThemeView 3D visual landscape

in In-SPIRE [4] and ThemeRiver [5], large graph and tree analysis with Treemaps [6]

and TreeJuxtaposer [7], high dimensional tabular data analysis with Xmdv Tool [8]

and Polaris [9], and spatial and temporal data analysis with Oculus [4].

In addition, visual analytics can benefit from collaboration [10]. By partitioning

the tasks between multiple collaborative works across different time and locations,
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collaborative visual analytics offers greater analysis scalability and ensure richer an-

alytic outcomes. In practice, researchers in the visual analytics area have explored

co-located synchronous systems (e.g., large displays and shared workspaces [11]), re-

mote synchronous systems (e.g., real-time networked displays [12]), and asynchronous

collaborative visualizations (e.g., online visualization communities such as ManyEyes

[13] and sense.us [14]) to support different forms of collaboration.

With the advanced visualization and collaboration techniques, the scalability and

productivity of visual analytics have been significantly increased. People need to carry

out complex analytic tasks over days or even months and manage vast amounts of dis-

coveries generated from various datasets and collaborators. A report from ManyEyes,

a popular online visualization community, showed that the site received over 460 com-

ments about discoveries, regarding to 2,100 datasets from 1,463 registered users in

its first two months of life [13]. Information with such exploding volume and velocity

poses significant new challenges to effective discovery management. For example, how

can we easily record new discoveries and share them with collaborators? How can we

effectively search and browse useful information from a large collection of discoveries?

How can we flexibly organize the massive discoveries and explore their connections?

How can we integrate these discovery management activities into the data exploration

process to support decision making? Few of existing visual analytics systems provide

a general solution to addressing these problems.

Our belief is that significant progress can be made toward the emerging gap by

taking advantage of automated data analysis techniques, the wide bandwidth of hu-

man perception abilities, and human computer communication abilities enabled by

visualization and interaction techniques. In this dissertation, we investigate a general,

interactive visual exploration paradigm to address the discovery management chal-

lenges. In the reminder of this introductory section, we will formalize the problem

and highlight the contributions and outline of the dissertation.
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1.1 Research Problem and Approach

In this dissertation, we define a discovery as a piece of new knowledge that is

useful for solving problems and making decisions. We define the application domain

of discovery management techniques to be the applications where many individual

discoveries can be explored from data and multiple discoveries need to be managed,

i.e., to record, retrieve, organize, associate, and share among collaborative analysts for

decision making activities such as creating and evaluating hypotheses. In particular,

discovery management consists of two principles:

• Looking backward and looking forward: Decision making involves iterative in-

formation foraging and sense making loops. Users need to continuously gather

information during the exploration, dynamically adjust exploration foci accord-

ing to their new findings and new insights, and associate interrelated findings to

form hypotheses. We refer to this process as a dynamic knowledge construction

process. Looking backward supports the process by allowing users to retrieve

and recall discoveries from past analysis steps. As important discoveries are

retrieved, the users can associate them to build comprehensive, integrated in-

sights. The integrated insights are what to drive new hypotheses and future

analysis directions, namely looking forward. For instance, a financial analyst

who has been monitoring stock market data over months would frequently con-

nect previous patterns with the current market state to make predictions. Secu-

rity and law-enforcement organizations would build integrated views of emerging

threats and events from all available data sources to take timely actions.

• Constructing common ground: In collaborative visual analytics, many analysts

collaboratively investigate data with different visualization tools and various

types of expertise. In order to ground their analytic actions for making bet-

ter decisions, the analysts need to review, manipulate, organize each other’s

findings to reach a shared understanding of them [15]. This process is known
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as common ground construction [16]. Effective common ground construction

reduces the cost of collaboration by avoiding redundant discoveries and mini-

mizing the need to verbally confirm actions among the analysts [16]. This is

especially critical for asynchronous collaboration since verbal communications

between the collaborators are usually difficult or even impossible [10]. There-

fore, discovery management should support multiple users to construct common

ground in collaborative analysis.

The above two principles have been widely studied in the areas of social psychol-

ogy, knowledge management, and sensemaking (see Chapter 2). By synthesizing the

results from these studies, we argue that for effectively managing discoveries, analysts

must be able to:

• annotate the key information and rich context of discoveries for reusing them;

• retrieve and browse discoveries to get useful information from them;

• organize and associate discoveries to connect them for drawing hypotheses;

• exchange and share the discoveries and hypotheses with collaborators.

Figure 1.1: The workflow of discovery management activities in a decision making
process.
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Figure 1.1 shows a full picture of how the discovery management activities work

together to facilitate the decision making process. When analysts explore data using

interactive visualizations, they annotate their discoveries about the data. Later on,

the analysts retrieve and browse useful information from the annotations of individual

discoveries and use them for generating and evaluating hypotheses. The retrieved

discoveries are further organized and associated based on the current analysis needs

for new findings. The new findings are either used to evaluate the current hypotheses,

or guide the exploration towards a new direction that may lead to more interesting

discoveries and hypotheses. The analysts can also organize their discoveries and

engage in collaboration by sharing or presenting the discoveries to their collaborators.

By performing these management activities, the analysts can successfully evaluate

hypotheses and make effective decisions.

Therefore, in this dissertation, we mainly focus on the problem that how to en-

able analysts to effectively annotate, browse, retrieve, organize, associate, and share

discoveries in visual analytics processes.

1.2 Contributions

This dissertation contributes a general framework, novel techniques, and a system

to support effective discovery management in visual analytics:

• We propose a general framework that enhances the effectiveness of a variety

of discovery management activities and tightly integrates them in the visual

data exploration. The framework addresses the challenges of effective discovery

management surrounding the concept of pattern, namely the result of users’

low-level analytic tasks [17]. Patterns are essential components of discoveries

and convey the rich semantics of users’ analytic tasks. From our observations

in user studies, for the same type of data (e.g., multidimensional data), users

can effectively classify most patterns into a small number of categories, inde-

pendent from the domains/applications and visualization tools. In addition,
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the same set of information is often used to annotate patterns in the same

category. Therefore, visual analytics systems can semi-automatically annotate

patterns in a formalized format by predicting what to be recorded for patterns

in popular categories. Based on the formalized annotations, discoveries can be

browsed, retrieved, associated, organized, and shared effectively. These discov-

ery management activities are seamlessly integrated with the interactive visual

explorations to support the visual data exploration.

• We propose a set of novel discovery management techniques by integrating the

pattern taxonomy, automated data analysis techniques, state-of-the-art visual-

ization techniques, and novel interaction techniques. The techniques provide

support, both visually and computationally, for facilitating discovery annota-

tion, browsing, retrieve, organization, association, and sharing.

• ManyInsights is a multidimensional data exploration prototype we developed

using the proposed framework and discovery management techniques. The in-

dividual discovery management techniques of ManyInsights, such as annotation

and association, were evaluated through a set of formal user studies. In addi-

tion, experts from various application domains used ManyInsights to perform

long-term exploratory data analysis using real datasets and real analytic tasks.

The observations from these studies provided an in-depth understanding of how

the proposed discovery management techniques work together to facilitate real-

world exploratory data analysis.

1.3 Outline

The reminder of the dissertation begins by the following chapters:

• Chapter 2 discusses the background work related to the discovery management,

including its theoretical basis, experiment designs, and state-of-the-art discovery

management techniques. The limitations of the techniques are pointed out.

• Chapter 3 presents a general framework to support effective discovery manage-
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ment in visual analytics. The framework leverages the efficiency of discovery

management around the concept of pattern. It employs a pattern taxonomy

to enhance the automation and efficiency of different discovery management

activities. Based on the taxonomy, a visual exploration paradigm is provided

to integrate the discovery management with interactive visual exploration. We

also present ManyInsights, a multidimensional visual analytics prototype that

support the discovery management using the proposed framework.

Guided by the discovery management framework, Chapter 4 through 7 present a

set of novel techniques that are implemented in ManyInsights for managing discoveries

in multidimensional datasets:

• Chapter 4 presents a pattern taxonomy for multidimensional data as our first

step toward effective discovery management. The taxonomy characterizes the

vast number of patterns that could be discovered in multidimensional datasets

and defines the characteristics of each category of patterns.

• Chapter 5 introduces Click2Annotate, a semi-automatic discovery annotation

approach. The core component of Click2Annotate is a set of annotation tem-

plates generated based on the pattern taxonomy. For annotating a certain type

of discoveries, the template guides the system to retrieve the rich context infor-

mation of discoveries from data and encode it in highly formalized annotations.

We present a formal user study to prove the effectiveness of Click2Annotate.

• Chapter 6 introduces two novel techniques that utilize the rich context in anno-

tations to retrieve and browse discoveries. The faceted discovery search allows

users to search discoveries using custom navigation based on the context of

discoveries. The scented discovery browsing technique allows users to flexibly

access discoveries on data visualizations.

• Chapter 7 introduces a suite of toolkits to explore correlations among discov-

eries. We present an automatic technique to calculate discovery correlations
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based on formalized annotations. Next, we present two interactive views that

enables the exploration of correlations at different levels of detail. The dynamic

discovery clustering display provides an overview of discovery clusters, their

semantics, and their temporal evolution. The region graph enables the detail

exploration of correlations for visual decision making. Finally, we present a case

study and a user study to demonstrate the usefulness of the toolkits.

The system are evaluated and concluded in Chapter 8 and 9:

• Chapter 8 reports two long-term case studies of ManyInsights conducted by do-

main experts with real datasets and real research tasks. In the first case study, a

domain expert used ManyInsights to conduct a 8-week data exploration for his

own datasets and analytic tasks. In the second case study, a group of collabora-

tive workers used ManyInsights to explore datasets and share their discoveries

for collaborative reasoning. The studies provide an in-depth understanding of

how the discovery management techniques work together to facilitate real-world

exploratory data analysis.

• Chapter 9 concludes the dissertation and presents the remaining challenges for

effective discovery management.

Parts of this dissertation have been published before, including:

• Y. Chen, J. Yang, and W. Ribarsky. “Toward Effective Insight Management

in Visual Analytic Systems.” In IEEE Pacific Visualization Symposium, 2009,

pages 49-56.

• Y. Chen, J. Yang, S. Barlowe, and D.H. Jeong. “Touch2Annotate: Generating

Better Annotations with Less Human Efforts on Multi-touch Interfaces.” In

ACM Conference on Human Factors in Computing Systems (CHI) Extended

Abstracts, 2010, pages 3703-3708.

• Y. Chen, S. Barlowe, and J. Yang. “Click2Annotate: Automated Insight Ex-

ternalization with Rich Semantics.” In IEEE Conference on Visual Analytics

Science and Technology (VAST), 2010, pages 155-162.
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• Y. Chen, J. Alsakran, S. Barlowe, J. Yang, and Y. Zhao. “Supporting Effective

Common Ground Construction in Asynchronous Collaborative Visual Analyt-

ics.” In IEEE Conference on Visual Analytics Science and Technology (VAST),

2011, pages 23-28.



CHAPTER 2: RELATED WORK

The research of discovery management for effective decision making has long

resided in the realm of intelligent systems, organizational research, and social science.

Recently, it has been receiving more attention from the visual analytics community.

This chapter presents an in-depth survey of the related work in these areas. The sur-

vey begins with theories and empirical studies. They serve as the theory foundation

and design guidelines of this work. Then, we present the state-of-the-art in visual

analytics and discuss the limitations.

2.1 Multidimensional Data Visual Exploration

Visual analytics is an emerging research area that targets the grand challenge of

analyzing massive amounts of data [2]. It combines techniques from multi-disciplinary

fields, such as information visualization, statistics, machine learning, and cognitive

psychology, for facilitating analytical reasoning. Among the motivations of the gen-

eration of this field, the need for analyzing large-scale multidimensional datasets is

among the most significant ones since these datasets are standard in many application

domains such defense, health, governance, business, and cyberspace. In this disserta-

tion, we focus on the discovery management for multidimensional data and explore a

visual exploration paradigm to facilitate multidimensional data exploration.

A number of techniques can be used in the proposed paradigm for exploring mul-

tidimensional data and generating discoveries. For example, automatic knowledge

discovery techniques, such as subspace clustering algorithms [18], k-nearest neighbor

search algorithms [19], and k-nearest match algorithms [20], can be used to parti-

tion a high dimensional data space into multiple smaller divisions. As meaningful

divisions are constructed, they can be visually explored via less scalable visualization



11

techniques (e.g., parallel coordinates [21], scatterplot matrices [22]), categorical data

visualization techniques (e.g., parallel sets [23]), and geospatial and time series data

visualization techniques (e.g., GeoTime [24]). In addition, multiple view techniques

[25] can be used to handle divisions with mixed data characteristics, such as divisions

with mixed numeric, categorical, and geospatial attributes.

2.2 Discovery Management Theory

Discovery management and decision making are widely studied in areas such as in-

telligent systems and organizational research. The proposed work has been inspired by

various efforts from those areas. For example, Hori [26] found that knowledge evolves

dynamically depending on the context. Such dynamic nature requires information

workers to effectively manage their knowledge, such as capturing the knowledge, cat-

egorizing and linking information corresponding to the knowledge, and presenting

them in a meaningful way [27]. Gavetti and Levinthal [28] used computer simula-

tions to examine the role and interrelationship between search processes that were

forward-looking, based on the actors’ cognitive map of action-outcome linkages, and

those that were backward-looking, or experience-based. In sensemaking research, We-

ick and Sutcliffe [29] also pointed out that sensemaking is a mixture of retrospect and

prospect. These efforts provide a solid theory foundation to our “look forward and

look backward” paradigm for dynamic knowledge construction.

In social and organizational research, researchers have investigated how man-

agement activities benefit collaboration in a variety of collaborative tasks, such as

emergency task management [30], tactical operations planning [31], and collabora-

tive information synthesis [15]. Often, collaborative workers come into collaboration

only having completed their own individual work. They are unaware of what has been

done and found by others. Therefore, collaborative workers need to manage and share

their individual work to reach a common ground of the collaboration [16]. Effective

common ground construction minimizes the need to verbally confirm actions and re-
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duces the cost of collaborative effort [16]. Thus, our approach to support discovery

management in visual analytics also benefits the collaboration environment.

2.3 Empirical Study of Discovery Management

During a visual analytics process, discoveries are captured from interactive visual

exploration and used for supporting hypothesis generation and evaluation toward

problem solving and decision making. A significant challenge faced by analysts is that

large amounts of discoveries are often involved in the analysis process and need to be

handled in a timely manner. To explore this challenge, researchers have conducted a

set of empirical studies to examine how analysts manage their discoveries in different

analytic tasks and analysis environments.

For example, Saraiya et al. [32] conducted a two-month study to examine how an-

alysts use visualizations to gain insights into bioinformatics data. The study showed

that analysts started the analysis by capturing as many interesting patterns as pos-

sible from the data. As new insights were discovered, they were connected with past

analysis for additional questions and, hence, further directions [32]. In the later stage

of the analysis, the analysts focused on reviewing and exploring the insights that have

been captured. More specifically, they needed to create readable graphs to present

the correlations between the insights and used different data formatting methods to

detect their conflicts. The analysts considered the latter process equally important

to the formal, but were inadequately supported by visualization tools.

Kang et al. [33] conducted controlled experiments to compare the use of visual

analytics system Jigsaw with other three traditional text analysis tools in sensemaking

of small document collections. They observed that analysts frequently extracted

interesting entities from documents and added annotations to these entities. They also

needed to draw connections between the entities to reveal their correlations. Systems

missing these functionalities would hinder analysts from tracking and reusing entities.

An important analysis stage, named “schematize”, was also identified during the
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study. In this stage, the analysts used their preferred organizational scheme, such as

a timeline and map, to organize captured entities. They claimed that visual analytics

tools should enable flexibility and room for customizing organizational metaphors to

support this analysis stage [33].

Robinson [15] investigated how analysts collaboratively synthesized individual vi-

sual analytic results in a collaborative environment. In the study, ten geography and

disease biology analysts worked in pairs to synthesize analytic artifacts that were

created individually. Based on analysis of video coding results, he identified a set

of management activities commonly taken by the analysts, such as describing the

information development process, reviewing individual artifacts, grouping similar ar-

tifacts, and identifying the overlaps of the artifacts. The study also provided several

design implications for supporting collaborative synthesis, such as the use of multiple

visual metaphors for organizing analytic results and the support of role assignment

in collaboration.

Mahyar et al. [34] studied analysts’ note taking and note organization behaviors

in collocated collaboration. The results indicated that users often use multiple ap-

proaches (e.g., ordering by chronological history) to organize notes, which help them

better communicate and discuss with each other. Experimental evidence of these

studies, regardless of the specific tasks, resulted in parallel lists of tasks and design

implications critical for effective discovery management in visual analytics. These

tasks and implications, guide us in the design and implementation of the proposed

discovery management techniques.

2.4 State of the Art

To support effective decision making, initial efforts have been directed towards

managing discoveries in visual analytics approaches. In this section, we review a

number of discovery management approaches to annotate, retrieve, organize, asso-

ciate, and share discoveries in visual analytics.
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2.4.1 Taxonomy

There exists considerable work on information visualization taxonomies. For ex-

ample, Keim and Kriegel [35], Chuanh and Roth [36], Dix and Ellis [37], Ward and

Yang [38], and Yi et al. [39] propose taxonomies on visualization interaction tech-

niques. Card et al. [40], and Chi [41] present taxonomy on visualization models.

Keim et al. [42] classify factors that differentiate various visualization techniques.

Among the existing taxonomic work, the taxonomies of users’ analytic activities

and tasks are closest to our work, since users often generate discoveries by performing

analytic tasks. Gotz and Zhou [43] propose a visual analytic activity taxonomy based

on Activity Theory [44] and observational experiments. In this taxonomy, users’ vi-

sual analytic activity is classified into four levels: tasks, sub-tasks, actions, and events.

They range in semantic richness and abstraction levels from high to low. Tasks corre-

spond to an analyst’s highest-level analytic goals, such as investigating the financial

market. They are often domain or application specific. Sub-tasks correspond to more

concrete analytic goals, such as detecting clusters, outliers, or correlations for multidi-

mensional data. They are also called low level analytic tasks in other literatures [17].

Actions represent individual executable analytic steps such as zooming and panning

a visualization view. Events correspond to the lowest-level of user interaction events,

such as mouse clicks and button presses.

Based on Gotz and Zhou’s taxonomy, we focus on managing discoveries at the

sub-task level. Among existing sub-task taxonomies, there are Shneiderman’s task

by data type taxonomy [45], Wehrend and Lewis’ cognitive task taxonomy [46], Zhou

and Feiner’s low level visualization system tasks [47], Lee et al.’s graph exploration

tasks [48], Amar and Stasko’s low level analytic task taxonomy for multidimensional

data with analytic goals [17].
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2.4.2 Discovery Annotation and Retrieval

Numerous visual analytics systems have been equipped with history mechanisms

to capture users’ low-level interaction events or parameter settings during a data ex-

ploration process. Users can revisit linear history using an undo-redo mechanism or

visually explore it in tree visualizations [49] and graph visualizations [50]. Exploring

the history records helps the users to infer the high-level logical constructs of the

analysis and track their findings [43]. However, it is difficult to scale up these ap-

proaches to handle the vast amounts of low-level interaction events generated in a

complex visual analytics process.

There is also a growing interests in recording analysts’ analytic activity at the

action level. Actions contain semantically meaningful behaviors. The management

of actions is more efficient than low-level interaction events. Gotz and Zhou [43]

identify three categories of actions common to different visual analytics tasks. Visual

analytics systems, such as HARVEST [43] and Aruvi [51], utilize the action categories

to automatically capture analysts’ actions in a data exploration process. In Aruvi, a

sequence of actions is visually conveyed by a horizontal-vertical tree, where nodes of

the tree represent visualization states, and edges between adjacent nodes indicate the

navigation resulted by actions. Users can revisit the visualization states sequentially

in the tree using the undo-redo mechanism.

Visual analytics researchers have suggested the use of augmenting visual represen-

tations with annotations to record analysis details and discoveries. Compared to the

analytic activity history, annotations summarize higher levels of knowledge and con-

tain richer context and semantic information about the discoveries [52]. Moreover,

annotations can be more easily shared and reviewed among collaborative workers.

Most existing visual analytics systems rely on human beings to manually generate

annotations. For example, Many Eyes [13] allows visualization users to share their

discoveries or free thoughts by posting comments in a discussion forum. A URL
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bookmarking mechanism is used to point back from the comments to the associated

visualizations so that users can revisit and review their discoveries. Aruvi [51] en-

ables users to create notes to record analytic artifacts such as findings, assumptions,

hypotheses, and causal relations. These notes are linked to a visualization state to

facilitate revisit and recall. They can also be organized into groups to form a highly

structured and systematic argumentation. Systems such as Sandbox [53] and sense.us

[54] allow users to jot down their observations and opinions into visualization views.

Ellis and Groth [55] propose using annotations to share discoveries among collabora-

tors in collaborative data analysis. Analysts need to manually create annotations in a

separate layer on top of data. Elias et al. [52] propose a “context aware” annotation

approach for complex visualization dashboards. In this approach, annotations are

transparent to data dimensions and data items so that users can browse and retrieve

the same annotation from multiple correlated dashboard charts.

Recently, a few preliminary efforts have been made to take advantage of automatic

analysis and visual exploration techniques to annotate discoveries. For example, the

Nugget Management System [56] allows users to extract, refine, and record nuggets

(subsets of multivariate data) with the help of automated analysis techniques. Use-

ful statistical information about the nugget is automatically attached in addition to

manual annotations given by users. Currently this system supports the annotation

of clusters in multivariate data.

The annotations generated from the above approaches contain rich context in-

formation surrounding the discoveries. The information can be used to efficiently

retrieve discoveries of specific visualizations or data. For example, Many Eyes [13]

and sense.us [54] utilize keyword search to retrieve discoveries with comments contain-

ing keywords of interest. The comments are indexed and attached to both datasets

and view parameters of visualization states so that all the comments associated with

a visualization view or dataset can be promptly retrieved. Aruvi [51] organizes ana-



17

lysts’ notes in a node-link diagram where the users can access the notes using keyword

searches and text similarity metrics. However, the effectiveness of discovery retrieval

in these approaches is highly depending on the quality of annotations.

2.4.3 Discovery Organization and Association

To make informed decisions, analysts often have to organize discoveries into co-

herent groups and reveal the interrelations between or within the groups [15]. A

common approach to organizing discoveries is to use annotations. For example, web-

based collaborative visualization systems such as sense.us [54] and Many Eyes [13]

allow users to link free comments and graphic annotations to specific visualization

views. The comments and annotations are usually manually generated by the users

and contain high level semantic information about the discoveries associated with the

views. The comments are frequently organized in a discussion forum where they can

be retrieved by other users through browsing or keyword searches. CommentSpace

[57] and Sandbox [53] go further by allowing users to tag discoveries and link them

for supporting or conflicting hypotheses. Using the tags, users can also easily group

and review discoveries for specific hypotheses. Nevertheless, these approaches rely on

human being’s effort to manually organize discoveries. Users often have to manually

examine lengthy annotations for grouping and relating discoveries.

Shrinivasan and Wijk [58] propose an automated discovery association approach

using exploration histories. Whenever users record a note about a discovery, the

relevant analytic action trail is automatically recorded to form a context description

of the note. Therefore, multiple notes can be grouped and associated by conducting

automatic analysis techniques on their associated context descriptions. Such a context

description also helps analysts to make inferences about their collaborators’ high-level

analysis strategies [58].

Many existing visualization systems provide highly formalized schemes, such as

graph and matrix, to visually organize discoveries and represent their correlations. For
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example, systems such as Aruvi [51], Analyst Notebook [59], and Nugget Management

System [60] allow users to manually organize and relate discoveries in a network

structure. Tree Trellis and Table Trellis [61] support aggregation and comparison

of linked free-text claims. Sandbox [53] allows analysts to jot down hypotheses and

evidence and organize them in an automatically generated concept map. Evidence

matrices [62] aggregate and make inferences according to analytic evidence. Rows

contain multiple hypotheses and columns contain collected evidence. The cells of

the matrix are populated with scores representing the degree to which the discovery

supports or disputes the hypothesis. Text visual analytics systems such as Jigsaw

[63] and CzSaw [64] provide a variety of organizational metaphors, such as network

and table, to explore the relationships between entities extracted from documents.

A shoebox is used to capture entities and documents, to record hypotheses, and to

organize them into groups.

2.4.4 Discovery Sharing and Exchange

In collaborative visual analytics, a number of approaches have been developed

to support sharing and exchanging discovery in both synchronous and asynchronous

settings. In synchronous collaboration, real time shared views and instant communi-

cation tools are often used for sharing discoveries. For example, VizCept [12] allows

users to keep track of each other’s findings and relations in a shared concept map.

Users can refer to such a shared view to ground their actions. Reality Instant Mes-

saging [65] integrates an online social tool into visualization systems, helping users to

coordinate their activities and interests in the decision making process.

In asynchronous collaboration, sharing and exchanging discoveries are challenging

tasks since there lacks instant communication among asynchronous users. It is diffi-

cult for them to collaboratively identify significant discoveries and capture relation-

ships among discoveries through face to face discussion or real-time communication

as in synchronous collaboration. As a consequence, users have to manually retrieve,
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review, and organize each other’s notes or annotations for sharing discoveries [13].

2.5 Summarization

In this chapter, we presented background work related to discovery management

and reviewed a number of discovery management approaches supported by existing

visual analytics systems. In summary, existing discovery management approaches

suffer from the following problems:

• Manual annotation is often required for capturing the rich semantics of dis-

coveries. Manual annotation is time-consuming and reduces users’ interests

in annotating discoveries. Moreover, manually generated annotations can be

incomplete, imprecise, and hard to understand, which leads to difficulties in

subsequent discovery management activities such as discovery retrieval and as-

sociation. Although a few efforts have been directed toward automatic discovery

annotation, the automation of these approaches is conducted at the action or

event level, based on based on Gotz and Zhou’s taxonomy [43]. Since infor-

mation captured from the action or event level has limited semantic meanings

to users, the generated annotations can be more difficult to retrieve and un-

derstand than the annotations generated at the sub-task level. To the best of

our knowledge, there exists no general annotation approach that conducts the

automation at the sub-task level.

• Most existing approaches require users to manually detect and organize corre-

lations among discoveries. It is difficult to use manual approaches to handle

complex sensemaking tasks where a large amount of discoveries and multiple

users are involved. Although a few efforts have been made to automatically

associate discoveries using exploratory histories, it can be difficult to organize

and summarize discoveries according to their high level semantic meaning, if the

exploration histories consist of exploration steps with little semantic meaning.

In addition, the large volume of exploratory steps toward each discovery may
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hinder a system of organizing and associating a large number of discoveries.

Moreover, existing visual analytics systems merely provide static views to or-

ganize and associate discoveries. They are difficult to scale to the fast growing

discoveries for users with diverse information needs.

• It is time consuming to search and browse recorded discoveries with existing

approaches, especially in an asynchronous collaboration environment. In such

environments, constructing queries to fetch stored discoveries is often challeng-

ing, since different users may use various terms to express similar meanings

when manually annotating discoveries. Users may also have difficulties in un-

derstanding discoveries recorded by others, since the annotation process is not

well regulated.

• Few, if any, existing approaches provide a general discovery management frame-

work that seamlessly integrates the discovery management activities to support

the dynamic knowledge construction process.

The above challenges need to be addressed to achieve effective and efficient dis-

covery management. Toward this goal, we propose a general discovery management

framework and a set of discovery management approaches based on this framework.

They are summarized in Chapter 3.



CHAPTER 3: A GENERAL DISCOVERY MANAGEMENT FRAMEWORK

Discovery management is an essential step in the process of transferring informa-

tion from massive data to the human mind for making effective decisions. However,

it is poorly supported in existing visual analytics systems. In this chapter, we pro-

pose a general framework that employs taxonomy and a visual exploration paradigm

to achieve effective discovery management. Based on the framework, we propose a

set of techniques to facilitate various discovery management activities, such as dis-

covery annotation, retrieval, browsing, organization, association, and sharing. The

framework and the techniques are integrates in a prototype system, ManyInsights,

to support the sensemaking of multidimensional data. A concrete scenario of visual

sense making on real datasets illustrates how the system works.

3.1 Introduction

Recently, numerous visual analytics approaches have been developed to facilitate

sensemaking of complex, massive data. A vast amount of discoveries is often captured

from the data using these approaches. To effectively support analytic activities such

as hypotheses evaluation and collaborative reasoning, discovery management, the

process of annotating, retrieving, associating, and organizing discoveries, becomes es-

sential in visual analytics approaches. We argue that effective discovery management

should allow users:

• To keep found things found [66], i.e., to allow users to capture, annotate, re-

trieve, and inspect discoveries;

• To reveal the correlations among discoveries and allow users to interactively

explore the correlations; and

• To aid collaborative workers in sharing and exchanging discoveries.
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A few efforts have been directed towards effective discovery management in visual

analytics systems. However, as we state in Chapter 2, existing approaches suffer from

several problems: (1) Manual discovery annotation is often required. It reduces users’

interests in annotating discoveries and leads to difficulties in subsequent discovery

activities, such as discovery browsing and retrieval; (2) Most existing approaches

require users to manually detect and organize relationships among discoveries. It is

difficult to use manual approaches to handle complex analytic tasks where a large

amount of discoveries and multiple users are involved; and (3) It is time consuming

to search and reuse recorded discoveries with existing approaches, especially in an

asynchronous collaboration environment.

In this chapter, we present a general discovery management framework to achieve

effective discovery management in visual analytics. The framework addresses the

above challenges surrounding the concept of pattern, namely the result of users’ low-

level analytic tasks. Patterns are essential components of discoveries and permit the

construction of discovery. The type of patterns that can be discovered from data

is predictable and application-independent. Thus, it is possible to develop general

approaches to allow users to effectively annotate, browse, retrieve, associate, and share

patterns. Toward this goal, we first propose pattern taxonomy to categorize various

patterns and capture their common features. Such taxonomy serves as the foundation

of the framework and enhances the automation and efficiency of a variety of discovery

management activities. Based on the taxonomy, we explore a visual exploration

paradigm that integrates the discovery management activities with interactive visual

exploration to support the dynamic knowledge construction process.

Guided by the framework, a variety of automated discovery management tech-

niques is developed, such as a semi-automatic discovery annotation technique, flexi-

ble discovery browsing and retrieval techniques, and automatic discovery correlation

exploration techniques. They are implemented and integrated in a multidimensional
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data exploration prototype, ManyInsights, to manage discoveries in multidimensional

data. In the following sections, we first provide a refined definition of discovery and

introduce the concept of pattern. Next, we present the discovery management frame-

work and its two essential components: the taxonomy and the visual exploration

paradigm. Finally, we introduce the ManyInsights and present a use case scenario to

demonstrate its usefulness.

3.2 Discovery - A Close Look

In visual analytics, discovery can be defined as a piece of new knowledge or insight

that is useful for solving problems and making decisions. Discovery can be “complex”

and “deep” [67] and have different levels of abstractions regarding to different data

and application domains [68]. In order to develop general and effective discovery

management approaches, a close look must be taken at what is a discovery and how

to present a discovery.

3.2.1 Definition

Researchers have made initial efforts towards defining and classifying users’ dis-

coveries in visual analytics processes. For example, Pousman et al. [69] identified four

types of insights that are commonly generated in visual analytics process: analytic

insight, awareness insight, social insight, and reflective insight. Among these types,

analytic insight is the most traditional sense of users’ discoveries supported in visual

analytics systems [69]. It comes from the exploratory analysis and consists of a body

of data that has been given meaning through users’ analytic tasks or activities [69].

The management of analytic insights is tightly coupled with data analysis techniques

and visualization techniques, and can benefit a variety of types of application do-

mains. Therefore, this dissertation focuses on addressing the challenge of discovery

management for analytic insights.

Since analytic insights are direct results from users’ analytic tasks and activities,

they can be characterized based on analytic activity taxonomies. Gotz and Zhou
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categorized user’s analytic activities into four abstraction levels: task, sub-task, ac-

tion, and event [43]. They range in semantic richness from high to low. Based on this

categorization, we argue that managing discoveries at sub-task level is a promising re-

search direction. First, information captured from sub-task level, such as clusters and

outliers, have higher semantic richness than action and event levels, such as zooming

and mouse clicks. Therefore, the former will be easier to understand and reuse than

the latter. Moreover, sub-tasks are less application-dependent than tasks. For ex-

ample, Wehrend and Lewis [46] identified 11 low-level analytic tasks (sub-tasks) that

can result in an analytic insight, such as classification and ranking. They are general

for a wide range of application domains. Therefore, we propose a general discovery

management approach for managing discoveries at the sub-task level.

3.2.2 Model

In real-world data analysis, a discovery contains information not only about data,

but also regarding to users’ mental model [70]. It is difficult to handle using a general

approach. Therefore, it is necessary to identify the component of discoveries that can

be effectively handled across different domains and users. For this, we propose a three-

components discovery model, as shown in Figure 3.1. The model consists of a data

pattern, pattern in short, extracted from data under analysis, such as the outliers and

clusters, a domain/application knowledge base against which the pattern is evaluated,

and objective and subjective evaluations of the pattern against the knowledge base.

In a typical case, an analyst discovers a pattern as a result of low-level analytic

task during an interactive visual exploration process. The analyst then evaluates the

pattern against the knowledge base to see if it is a significant and reliable piece of

evidence that can be used in the sensemaking process. The pattern, the knowledge

base applied, and the evaluations construct a discovery for the sensemaking process.

Among the three components, the knowledge base is difficult to handle using a

general approach, since it varies significantly between datasets, applications, and an-
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Figure 3.1: The three-component discovery model.

alysts. Subjective evaluations are dependent on users’ knowledge base. On the other

hand, the pattern composes the essence of discovery. The types of pattern that can

be discovered from data is predictable [17] and are independent from datasets, ap-

plications, and analysts. In addition, patterns are direct products of users’ analytic

tasks in the visual exploration process and thus their management can be tightly in-

tegrated into the visualization system. Therefore, we believe that general approaches

can be developed to allow visualization users to effectively and efficiently detect,

annotate, associate, retrieve, and share patterns using automatic or semi-automatic

approaches. A general discovery management framework is proposed based on this

idea. Since patterns are the fundamental components of discoveries and bridge the

visual exploration process and discovery management, it will be feasible to extend

the general approach in various visual analytics applications by adding real-world

knowledge and evaluation from mental model and thus lead to effective and efficient

discovery management.
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Figure 3.2: The general discovery management framework.

3.3 A General Discovery Management Framework

The general discovery management framework is shown in Figure 3.2. The foun-

dation of the framework is a pattern taxonomy that summarizes information about

pattern categories that can be discovered from data, pattern attributes, and the rela-

tions in which a discovery can be associated with another (Section 3.3.1). The taxon-

omy serves three important functions. First, it enhances the automation of discovery

annotation. After users discover a pattern from data and decide its category, the com-

puter can automatically collect and extract information about the pattern following

the taxonomy to capture its semantics. Users only need to provide the knowledge base

and the subjective evaluations to complete an annotation. Second, since the informa-

tion obtained for each category of patterns is predictable, annotations can be highly

formalized by the computer. This greatly enhances the automation of other discovery
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management activities. For example, the information can be automatically indexed

and stored for flexibly browsing and retrieval discoveries. Clusters of similar discov-

eries can be automatically constructed since the computer can capture correlations

among the formalized annotations following the taxonomy. Finally, formalized anno-

tations enable effective communication among multiple users and multiple systems to

share discoveries. Upon the taxonomy, the framework provides a visual exploration

paradigm that integrates discovery management with interactive visual exploration

to support visual exploration process. In the following sections, we introduce the

taxonomy and the exploration paradigm in detail.

3.3.1 Taxonomy

In visual analytics, researchers have identified a common set of low-level analytic

tasks that are repeatedly performed for data, regardless of the visualization tools

being used or specific application domains being involved [17]. Since patterns are

direct results of users’ low-level analytic tasks, it is feasible to construct a general

pattern taxonomy to categorize various patterns. Such a categorization is essential for

developing effective discovery management approaches. Without the categorization

of patterns, it is hard to answer what discoveries are to be captured and managed by

a general visual analytics system.

In our user experiments (Chapter 4), we observed that users often used a com-

mon set of information to annotate discoveries falling in the same category. The

information helped them to understand and recall their discoveries and enabled them

to search, organize, and associate discoveries. Based on this observation, capturing

the common characteristics for discoveries is essential for effectively annotating and

managing them. In particular, the following characteristics should be included:

• Data content information that describes the data related to discoveries to enable

access to the data;

• Context information to describe the context of discoveries to enable access to
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the context; and

• Interaction and visualization methods that lead to the discoveries.

In the proposed framework, the taxonomy will serve the following purposes:

• Providing a standard language among the users, the systems, and the automatic

analysis techniques for effectively communicating with discoveries;

• Enabling semi-automatic discovery annotation;

• Enabling flexible discovery searching and browsing; and

• Enabling automatic organization and association of discoveries generated by

different users and systems.

3.3.2 Visual Exploration Paradigm

Based on the taxonomy, the discovery management framework enables a visual

exploration paradigm that tightly integrates the following discovery management ac-

tivities with interactive visual exploration:

Discovery Annotation: effective discovery annotation summarizes the high-level

knowledge of discovery, such as the categories of the patterns, contents, and contexts.

The generated annotations allow users to organize, browse, retrieve, associate, and

exchange discoveries using the information contained in them. Based on the tax-

onomy, we propose a semi-automatic discovery annotation approach that is tightly

coupled with existing visualization techniques and enables annotation efficiency. In

particular, after a pattern is distinguished by visualization through interactions (such

as brushing) and its pattern category is decided (manually or automatically), the sys-

tem will know what needs to be extracted from the data according to the attributes

of the specific pattern category listed in the taxonomy. The automatically extracted

information will be used to annotate the pattern and visually present to users in a for-

malized format. The users will be allowed to interactively improve the automatically

generated annotations for more flexibility. For example, they can attach personal

tags to record their domain knowledge or evaluations in an annotation.
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Discovery Browsing and Retrieval: When annotations are automatically gener-

ated, the same vocabulary will be used for all patterns and thus the discoveries can

be easily indexed, browsed, and retrieved using keywords in their annotations, as if

the way that tags are used in YouTube [71]. For example, we can allow users to

search discoveries by using rich context information contained in their annotations

and browse them using document visualization techniques by treating the annotations

as documents. Moreover, users can flexibly browse and retrieve discoveries on the vi-

sualizations being explored. Visual indicators can be attached to the visualizations

to represent discoveries and allow users to effectively browse them without cluttering

the visualizations and flexibly drill down to detailed explorations.

Discovery Organization and Association: Users need to organize and associate dis-

coveries to reveal their correlations. In the framework, the same vocabulary is used

in annotations so that the discoveries, either generated by different users or different

systems, can be automatically associated through these information. For example,

discoveries can be associated according to the dimensions or the data elements they

contain. Based on this, discovery clusters and discovery network can be automatically

constructed according to the correlations among the discoveries. Dynamic visualiza-

tion techniques can be used to visually convey the discovery clusters and help users

to track their evolution over time. Graph visualization techniques can be applied

to help users interactively navigate in the network and browse the discoveries using

graph interactions.

Discovery Sharing and Exchange: Standard discovery exchange requests can be

generated to allow efficient discovery exchange in collaborative visual analytics. For

example, when a user wants to get information from other users, she first requests an

automatically generated form listing attributes of a pattern in a desired type. The

user fills part of the form to express her information need and leave the attributes

she wants to learn from her collaborators empty. She then sends the form to her
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collaborators so that they can complete the form, either manually or automatically,

and send it back to her.

3.4 Multidimensional Data Exploration Prototype

The ManyInsights is a fully working prototype of the general discovery manage-

ment framework for multidimensional datasets. Similar to existing online visualiza-

tion applications such as Many Eyes [13], ManyInsights is a web based visual analyt-

ics system that supports both individual and collaborative visual analysis. Individual

users can upload multidimensional datasets, create visualizations (e.g., scatter plot

and parallel coordinates), and share the datasets and visualizations with colleagues.

Beyond these commonly supported tasks, ManyInsights provides rich discovery man-

agement functions.

3.4.1 System Implementation

(1) (2)

Figure 3.3: The data visualization interface. ManyInsights allows users to create
multiple coordinated visualizations for exploring datasets. (a) A parallel coordinates
view. (2) A scatter plot view.

ManyInsights is implemented in Flex [72], a web-based application and UI frame-

work. The implementation architecture is based on a client-server architecture and

consists of three important modules: data and visualization module,discovery man-
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agement module, and visual interfaces (see Figure 3.4). They are described in the

following sections.

Figure 3.4: The implementation architecture of ManyInsights. The architecture con-
sists of three modules: data and visualization module, discovery management module,
and visual interface.

3.4.1.1 Data and Visualization Module

The data and visualization module processes datasets and generates visualiza-

tions for them. Multidimensional datasets serve as the input of the module. The

data module provides necessary preprocessing functions, such as data normalization,

data transformation, dimensionality reduction, to make the datasets suitable to vi-

sualize. Metadata, such as the size of dimensions and statistical information, is also

extracted and stored. Afterwards, the processed datasets and metadata are fed into

the visualization module.

The visualization module generates the suitable visualizations in response to users’

analysis queries. An abstract visualization class is implemented to house the common
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attributes for all visualizations, such as the rendering, color-coding, and interactions.

Each type of visualizations is implemented separately with minimal dependency on

each other, allowing users to add more types of visualizations to the system. When

multiple visualizations are requested, the layout manager controls their layouts and

coordinates them using linking and brushing techniques [73].

3.4.1.2 Discovery Management Module

The discovery management module is a central element of the system’s overall

design. It monitors users’ data exploration actions in the client visual interface,

manages the discovery generated from the interface, and communicates with back-

end databases to store and retrieve discoveries. The taxonomic information, such

as the discovery categories and attributes, is organized and stored in a database

accessible by all the components of the module for automated discovery management

as required.

When users capture a discovery on the client visualizations, the annotation gen-

erator handles the annotation request by semi-automatically generating annotations

using the taxonomic information. The generated annotations are fed into the dis-

covery network constructor, where the correlations between the new discoveries and

the stored discoveries are calculated. In addition, when users search for discoveries

in the client visualizations, the discovery retrieval component retrieves the related

information from the database and restores the annotations using the information.

The clustering component computes the clusters for a collection of discoveries based

on their correlations. The correlations are also mapped to physical force between

the discoveries which will be used to visually present them in the client visual inter-

face. The clustering component is optimized to achieve real time computation, which

provides the instant feedback for the dynamic clustering request. Finally, the hy-

pothesis generator generates annotations for hypotheses, links them with associated

discoveries, and stores them in the database.
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3.4.1.3 Visual Interface

Guided by the visual exploration paradigm, ManyInsights provides a variety of vi-

sual interfaces to support users in effectively performing discovery management tasks.

The following scenario describes how they work together to facilitate a sensemaking

process

• Users visually explore one or more datasets in the visualization for discover-

ies. After they find a discovery, they highlight the data of interest, select the

type of the pattern, and enter the knowledge base and subject evaluations.

ManyInsights will automatically collect content and contextual information of

the pattern and use them together with other user input to generate a formal-

ized discovery annotation. The annotation is stored in the database, which can

be shared by many users in a collaborative analysis environment. Pair-wise

discovery correlations are calculated between two formalized discovery annota-

tions.

• Later on, the users retrieve and browse discoveries annotated by themselves or

other users from the database via a faceted search interface. They can also

browse the discoveries in related visualizations using scented insight browsing.

• After the users retrieve discoveries of interest, they can interactively explore

them in an automatically generated dynamic discovery clustering display. This

view reveals discovery clusters consisting of closely related discoveries, the dis-

covery history of these clusters, and their semantics. According to the drifting

interest of the users, correlations among the discoveries can be calculated dif-

ferently to reveal different clusters.

• The users create hypotheses and associate the discoveries with the hypotheses.

Discoveries associated with one or more hypotheses can be examined in detail

in the region graph for visual sensemaking.

• The users annotate their key findings and hypotheses for future exploration.
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3.4.2 Use Case Scenario

We provide a scenario of how ManyInsights and its underling discovery manage-

ment framework work in visual analytics process. In this scenario, Mary and Tom are

two analysts that work on the task of detecting the relationship between carbon diox-

ide emission and global warming in an asynchronous collaboration. The datasets used

in this scenario are real data sets uploaded to Many Eyes for an ongoing discussion

of a similar topic.

First, Mary uploads the dataset “USA emissions per capita by state” to ManyIn-

sights and creates a scatterplot view to visualize it. From this view, Mary discovers

the pattern that the Wyoming has the highest emissions per person among all the

states. According to this pattern, Mary suspects that Wyoming might contribute

more to global warming than the other states and she decides to record this discov-

ery. She selects the rank category for the discovery and the system automatically

creates an annotation form with most information filled. Mary manually records her

hypothesis and stores the annotation into the database.

A few days later, Tom wants to know which states make significant contributions

to weather warming. He logs into ManyInsights and submits a search in the faceted

discovery search for discoveries in the ranking category and with the keyword “emis-

sions” in dimension names. The system returns him some discoveries, including the

discoveries Mary generated.

Tom reviews Mary’s discovery. Since Tom knows that Wyoming has an extremely

low population, he suspects that Mary might have ignored the overall emission amount

of the states when she made her judgment. Thus, Tom loads the dataset “USA overall

emissions by state” and creates a bar chart on it. From the bar chart, he discovers the

pattern that Texas, Florida, Ohio and New York have much higher overall emissions

than Wyoming. He thus records this pattern as a difference and attaches it to Mary’s

discovery.
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Later, Mary gets a notification about the new finding captured by Tom and reviews

it in the system. She remembers that she has discovered some interesting findings

about New York and Texas before. To review how these findings relate to the discov-

ery, she submits a search in the faceted discovery search to retrieve all her previous

discoveries and groups them by data items in the dynamic discovery clustering dis-

play. By browsing the semantics for each group, she observes a cluster of discoveries

about Texas. Mary sends the discovery cluster to the region graph, highlights the

Tom’s discovery in the graph, and examines the links between her discoveries and the

highlighted discovery. Finally, she records her findings and hypotheses and shares

them to Tom.

3.5 Conclusion

In this chapter, we presented a general discovery management framework to sup-

port effective discovery management in visual analytics. The framework leverages

the efficiency of discovery management around the concept of pattern, and provides

systematic taxonomy and exploration paradigm to facilitate different discovery man-

agement activities. Using this framework, users can generate formalized annotations

to capture the rich context of discoveries. They can flexibly search discoveries and in-

teractively browse them during the data exploration. The framework also allows users

to flexibly organize and associate discoveries to explore their correlations. Finally, it

allows collaborative workers to effectively share and browse each other’s discoveries.

Guided by the framework, a set of novel discovery management techniques is devel-

oped and integrated in a multidimensional data exploration prototype, ManyInsights.

In the following chapters, we will present these techniques in detail. In Chapter 4, we

present a pattern taxonomy that categorizes and characterizes patterns in multidi-

mensional data. In Chapter 5, we present Click2Annotate, a semi-automatic discovery

annotation approach based on the taxonomy. In Chapter 6, we introduce two tech-

niques to effectively retrieve and browse discoveries. In Chapter 7, we introduce a
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suite of visual analytic toolkits to explore the correlations of discoveries.



CHAPTER 4: PATTERN TAXONOMY FOR MULTIDIMENSIONAL DATA

In Chapter 3, we propose a general discovery management framework to achieve

the effectiveness of discovery management surrounding the concept of pattern. Our

assumption was that the type of pattern that can be discovered from data is pre-

dictable and application-independent. Therefore, categorizing patterns and summa-

rizing their essential attributes will greatly enhance the automation and efficiency of

discovery annotation, which ultimately benefit other management activities, such as

discovery retrieval and organization. In this chapter, we present a pattern taxonomy

for multidimensional data as a proof of the approach. The taxonomy is integrated in

ManyInsights, serving as a foundation for all the discovery management techniques.

4.1 Introduction

With the explosion of new information visualization techniques and the increasing

complexity of visual analysis process, taxonomy is playing an important role in com-

prehensively understanding the new techniques and the flow of human reasoning. In

practice, researchers have intensively produced taxonomies for users’ visual analytic

tasks [17], analytic activities [43], and interaction techniques [39]. However, there

are few, if any, general taxonomies for users’ discoveries in visual analytics. Without

taxonomy of discoveries, it is impossible to build effective discovery management ap-

proaches. For example, without a categorization of discoveries, it is hard to answer

what is to be managed by a general visual analytics system.

However, it is often non-trivial to construct general taxonomy for discoveries. A

significant challenge is that discovery is a complex concept that is associated with

not only data under analysis, but also objective and subjective evaluations and real-

world knowledge, which are stored in users’ mental model. They vary significantly
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from different application domains, data, and users [70]. For examples, an economists

and an environmentalist might have varied, or even opposing views toward a country

that is considered as an outlier of greenhouse gas emission.

To address this challenge, we propose a three-component discovery model (Chap-

ter 3). In this model, we identify pattern as the domain-independent component that

captures the essential semantics of a discovery. Characterizing patterns for a certain

type of data provides methods to access the data and context of discoveries across

different applications, different visualizations, and different users. Therefore, pattern

taxonomy forms the foundation of the general discovery management framework, en-

abling the automation of a variety of discovery management activities.

This chapter presents our work towards constructing such general pattern taxon-

omy for multidimensional data. Our goal is to categorize the vast number of patterns

that are frequently discovered from multidimensional data and define the character-

istics of each category of patterns. Different from existing taxonomy construction ap-

proaches, we adopt a multi-stages approach that includes extensive literature surveys,

user experiments, and domain expert interviews. The resulted taxonomy provides a

solid basis for the discovery management framework and enables the development of

a variety of discovery management techniques.

4.2 Taxonomy Construction

A pattern taxonomy for multidimensional data categorizes various patterns that

can be discovered from multidimensional data and describes their essential attributes.

We argue that a general pattern taxonomy needs to meet the following criteria:

• Completeness: the taxonomy should cover the majority of patterns that can

be discovered using various visualization tools and from multidimensional data

sets of various sizes and dimensionalities in different application domains;

• Unambiguous: the taxonomy should accurately and clearly distinguish different

types of patterns;
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• Independence: the taxonomy should be independent from the application do-

mains that generate the multidimensional data sets, the visualization and in-

teraction techniques that are used to discover the patterns, and the users who

discover the patterns; and

• Utility: the taxonomy should be feasible to use in pattern and discovery man-

agement.

Toward the above goals, we used a multi-stages process to construct pattern tax-

onomy for multidimensional data, which is described as follows:

• A literature survey on existing visualization taxonomy work and visualization

techniques was conducted to generate an initial pattern categorization;

• The initial categorization was evaluated and refined through an experiment and

a user study using real discoveries from real users;

• Interviews of domain experts were conducted to further evaluate the categoriza-

tion and to learn the attributes of patterns that are essential in their discovery

management tasks; and

• A literature survey on existing statistical and data mining work was conducted

to summarize essential attributes for each category of patterns.

4.2.1 Literature Survey for Categorizing Patterns

We constructed an initial pattern categorization by conducting a literature survey

of existing visualization taxonomy work and existing visualization techniques. We

noticed that the taxonomy of visual analytic tasks is the most related to our pattern

taxonomy among all taxonomy work since there is a strong tie between patterns and

visual analytic tasks: users often discover patterns from visualizations by perform-

ing visual analytic tasks, i.e., visual analytic tasks are the analytical processes and

patterns are the consequences.

Besides examining existing task taxonomies, we also reviewed 98 papers on multi-

dimensional visualization from 00-07 IEEE InfoVis and VAST conferences and sym-

posiums, which are the main avenues of information visualization techniques. These
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papers either present new or evaluate existing multidimensional visualization and in-

teraction techniques. We examined these papers for patterns that can be discovered

using the techniques under discussion in them.

After this turn of literature review, we constructed an initial pattern categorization

that captures the results of most tasks considered in the task taxonomies and covers

most patterns discovered from the technique and evaluation papers. In the initial

categorization, there are ten big categories, namely value/derived value, distribution,

difference, extreme, rank, categories, cluster, outliers, association, and trend. After

our user experiment and user study (see Section 4.2.2 for more details), two other

categories, namely compound pattern and meta pattern, were added. We define rows in

a multidimensional dataset as items and columns in it as dimensions. Most categories

of patterns exist in both the item space and the dimension space. For each category

we gave a formal definition, along with examples extracted from real user discoveries

posed in Many Eyes [13].

4.2.2 User Study for Evaluating Pattern Categorization

Although we conducted an extensive literature survey, the completeness and un-

ambiguousness of the initial categorization are still in doubt. First, few existing task

taxonomies have been evaluated in diverse real applications involving real users, real

data, and real tasks. Second, few existing visualization and interaction techniques

were designed for discovering all kinds of patterns. As a consequence, the initial pat-

tern categorization needs to be evaluated and refined with patterns from a diversity

of real users, real data sets, and real tasks. Toward this goal, we sampled patterns

discovered by users of Many Eyes [13] and conducted an experiment and a user study.

Many Eyes [13] is a pubic collaborative information visualization web site where

users visually explore data sets contributed by themselves or others and share their

findings by posting comments in a discussion forum. Since Many Eyes is quite popu-

lar, a large number of discoveries are reported daily as comments by a large number
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of users ranging from scientists, managers, to sports fans [13]. These discoveries come

from a wide range of data sets, most of which are real data sets from real application

domains. In addition, the quality of the discoveries can be examined since visualiza-

tion is attached to each comment. We thus considered Many Eyes comments as a

good source of patterns from real users, real data sets, and real tasks.

For our experiment and user study, we collected all comments posted to Many

Eyes between January 2007 and January 2008 and manually picked out patterns

embedded in them. For duplicative patterns that have same data elements and same

categories, we just picked out one of them. Patterns about data types other than

multidimensional data were also removed. As the result, we got a sample containing

215 patterns which were collected from 56 multidimensional data sets. Some data

sets contained temporal and geographical dimensions.

4.2.2.1 Experiment for Completeness Testing

An experiment was conducted to examine if the initial categorization covered

the majority of the patterns contained in the Many Eyes sample. In particular, we

reviewed all 215 patterns and tried to fit them into the pattern categorization. For

example, the pattern “big drop in males becoming eye doctors in the past ten years”

was classified into the trend category and the pattern that “relatively fewer number

of females are going into business school than male” was classified into the difference

category. We also counted the number of patterns falling into each category.

Among the 215 patterns, there were 63 patterns that did not fit into any categories

in the initial categorization. They fell into one of the following situations:

• Compound patterns: there were 46 patterns that were patterns about patterns.

For example, the pattern “it’s interesting how different the second letter distri-

bution is from the first letter distribution” contains a difference pattern about

two distribution patterns.

• Patterns about meta data: there were 17 patterns about data itself such as

missing values or errors in the data sets, appearance or disappearance of di-
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Table 4.1: The result of comments classification.

Knowledge type Number of com-
ments

Percentage

Trend 55 25.6%
Compound pattern 46 21.4%
Outliers 41 19.1%
Difference 31 14.4%
Association 27 12.6%
Extreme 25 11.6%
Meta pattern 17 7.9%
Value/Derived value 16 7.4%
Categories 9 4.2%
Cluster 7 3.3%
Distribution 5 2.3%
Rank 3 1.3%

mensions, and meanings of labels. For example, the pattern that “a change

happened between 1999 and 2000 when a bunch of new categories showed up”

was about the appearance of new dimensions. The pattern that “the Soviet

Union has no action movies? Can that be right?” was about data quality.

As a consequence, we added two additional categories into the initial categoriza-

tion, namely compound pattern and meta pattern to fit those patterns in. In addi-

tion, we decomposed each compound pattern into multiple elementary patterns and

counted them not only in the compound pattern category, but also in the elementary

pattern categories. Table 2 shows the final result. In this table, categories are sorted

according to the total number of related patterns in the Many Eyes sample.

4.2.2.2 User Study for Unambiguous Testing

A formal user study was conducted to evaluate the improved categorization for

its ambiguity. In this user study, subjects were asked to classify Many Eyes patterns

into the pattern categories and their classification results were compared with the

classification we did in the above experiment, with the assumption that mismatching

indicated ambiguity of the categorization.

Five graduate students of computer science major (3 males and 2 females) partic-

ipated in the user study. Three students studied in the field of visualization and two
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students studied in the field of data mining. The subjects took the user study one

by one on the same computer in the same office following the same process. First, a

pre-test training was given. The definition of each pattern category was explained and

pattern examples were given. After the training, each subject was asked to select a

category from the 12 categories in our categorization for each of 60 patterns that were

randomly sampled from the Many Eyes patterns one after another. The classification

results and the time spent for each pattern were automatically recorded.

The classification results were compared against the classification we did in the

experiment. The comparison showed that there were only 5 conflicts. Two of them

were between the categories extreme and rank. Three of them were between the

categories difference and outliers. Although it seemed that the category rank could

cover extreme according to their definitions, we decided not to merge them since the

latter is a significant category according to our previous experiment (see Table 8.1).

For difference and outliers, we reduced the ambiguity by modifying the definition of

outliers to emphasize that the difference between the sizes of the sets in comparison

should be big.

The average and maximum time the subjects used to classify a pattern was 223

seconds and 360 seconds respectively. It indicated that the subjects were able to make

the classification without much effort.

4.2.3 Domain Expert Interview

We conducted interviews with domain experts from a variety of research fields

for the following goals: (1) to evaluate the generalized categorization using patterns

sampled from specific application domains, and (2) to determine which information

about patterns is essential for visual sense making in real applications.

Sixteen participants (10 male and 6 female) were interviewed, including 7 PhD

students, 5 research scientists, and 4 analysts working in companies. They were work-

ing on a wide variety of research fields including neurology, biology, bioinformatics,
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cytology, GIS, remote sensing, financial analysis, telecom planning and designing, civil

designing, economics, biology, and networking. All participants had self-identified as

having experience of sense making with the help of visualization in their research.

All of them analyzed multidimensional data sets in their research. Six participants

claimed that their data had temporal dimensions and four claimed that their data

contained geographical dimensions.

The interviews were conducted person by person in July 2008, including 9 phone

interviews and 7 face-to-face interviews. Each interview took about 20 to 30 minutes,

following a structured interview guide. An interview began by collecting the partic-

ipant’s background information such as analytic goals, data, and visualization tools.

Then the participant was asked to provide specific examples of patterns collected in

their analytic tasks. The participant was also asked to provide a list of attributes

about the patterns that were important for their analytic tasks. Towards the end of

the interview, our existing pattern categorization was explained and the participant

was asked to classify his/her reported patterns into existing categories. When the

participant encountered any patterns that did not fit, the patterns were placed in a

list for future analysis. Extensive field notes were taken during the interview. Some

participants provided screenshots to example patterns after the interview.

After the interviews, the patterns and attribute lists were analyzed. Eighty-one

domain specific patterns were collected from the interviews and sixty-eight of them

fitted into our categories. The thirteen patterns that did not fit into any categories fall

into one of the following categories: (1) Patterns about other data structures derived

from the multidimensional data, such as a pattern about the hierarchical structure

derived from the multidimensional data; (2) Patterns about high level knowledge

that were not directly related to the multidimensional data, such as the pattern

that ”K means clustering is much better than SOM in sorting out the dynamics of

data”. Since these patterns were either beyond the range of multidimensional data
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or about high level knowledge, we exclude them from categorization and claim that

our categorization covered the majority of domain specific patterns we collected.

For the attributes in the list, we divided them into two categories:

• Content: this category includes information characterizing the content of pat-

terns, such as sizes and averages of clusters, values of anomalies, and names of

correlated dimensions.

• Context: this category includes information capturing the context of patterns.

For example, the distribution of the whole data sets provides a context to an

outliers pattern. The significance of most patterns can only be evaluated among

their contexts. Quality is a special context attribute of patterns. Many partici-

pants suggested that quality information is important since it helps them index,

retrieve, and filter patterns.

The above study showed that the content and context attributes are essential in

discovery management. We thus decided to summarize them for each pattern category

and include them into our pattern taxonomy. We conducted the following literature

survey for this purpose.

4.2.4 Literature Survey for Summarizing Pattern Attributes

A literature survey has been conducted on statistics and data mining textbooks

[74, 75, 76, 77] to learn what information should be captured as content and context

attributes for different categories of patterns. The attribute lists collected from the

domain expert interviews were also referenced. The essential content and context

attributes for each category are listed.

4.3 Resulting Pattern Taxonomy

The constructed pattern taxonomy, which includes the categorization, formal def-

inition, examples, content attributes, and context attributes, is presented in Table

4.2. In this table, X indicates a set of all elements. For a pattern in the item space, it

refers to the set of all items. For a pattern in the dimension space, it refers to the set
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of all dimensions. D indicates a set of all attributes. For a pattern in the item space,

it refers to the set of all dimensions. For a pattern in the dimension space, it is the set

of all items. V indicates values of elements on their attributes. Xi indicates a subset

of X. Dj indicates a subset of D. xi indicates a element in X. dj indicates a element

in D. f indicates distance calculation function. ∂ indicates user defined constant.

Table 4.2 also shows tasks related to each pattern category for users’ reference.

4.4 Conclusion

In this chapter, we presented the construction of pattern taxonomy for multidi-

mensional data. The taxonomy is the basis of the discovery management framework

and enables significant automaticity in different management activities such as pat-

tern annotation, retrieval, organization, association. In the future, we will construct

pattern taxonomies for other data types such as trees and graphs and extend the

discovery management framework to those data types. We will also explore more

pattern categories that are essential for specific application domains, such as network

analysis and bioinformatics. We will compare the domain specific discovery categories

with the general taxonomy presented in this chapter, which helps us to understand

users information needs and extend the discovery management framework to fulfill

the needs.
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CHAPTER 5: SEMI-AUTOMATIC DISCOVERY ANNOTATION

During a complex visual analytics process, users need to annotate their discoveries

for reusing them, organizing them, or presenting them to others [51]. Often, auto-

mated annotation techniques are desired to reduce human beings’ efforts for annotat-

ing discoveries. Most existing discovery annotation approaches achieve the annotation

automation through an automatic record of users’ interaction events (e.g., clicks and

key presses) or analysis actions (e.g., panning and zooming). In this chapter, we

present a novel automated discovery annotation approach, named Click2Annotate.

It allows semi-automatic discovery annotation that captures low-level analytics task

results (e.g., clusters and outliers), which have higher semantic richness and abstrac-

tion levels than actions and interaction events. Therefore, Click2Annotate reduces

human effort required in annotation and generates annotations easy to understand.

We also present a formal user study to prove this benefit.

5.1 Introduction

During a complex visual analytics process, capturing discoveries from data and

using them as evidence for the hypothesis generation and evaluation are important

steps for decision making and problem solving. Since a visual analytics process may

involve a large number of discoveries, discovery annotation, namely the process of

capturing and recording the semantics of discoveries [51], is important for discovery

revisiting, association, comparison, and exchange.

Discovery annotation in most existing visual analytics systems, such as Many

Eyes [13] and Name Voyagers [54], requires users to type notes, draw marks, or

connect associated discoveries manually. When the number of discoveries grows larger,

these manual approaches become tedious, inefficient, inaccurate, and time consuming



53

[43]. To address these problems, initial efforts have been made towards automatically

annotating discoveries.

Existing automated approaches can be classified according to the four-tier visual

analytic activity model proposed by Gotz and Zhou [43]. In this model, visual analytic

activities are abstracted into four levels namely tasks, sub-tasks, actions, and events.

They range in semantic richness and abstraction levels from high to low. Tasks

correspond to a user’s highest-level analytic goals. Sub-tasks correspond to more

objective, concrete analytic goals, such as finding clusters, outliers, or correlations.

They are also called low level analytic tasks in other literatures [17]. Actions refer to

atomic analytic steps such as zooming and panning. Events correspond to the lowest-

level of interaction events, such as mouse clicks and button presses. Automation in

most existing discovery annotation approaches is conducted at the action level or

event level. To the best of our knowledge, there exists no general approach that

conducts the automation at the sub-task level.

We argue that conducting automated discovery annotation at the sub-task level

is a promising research direction. The reasons are:

• Sub-tasks are less application-dependent than tasks. For example, according to

Amar and Stasko [17], there exists a set of low-level analytic tasks (sub-tasks)

that are common to most multidimensional datasets. Therefore, it is possible to

develop automated annotation approach independent from particular domains

and applications at the sub-task level.

• Information captured from the sub-task level, such as clusters and outliers for

multidimensional datasets, can have higher semantic richness and abstraction

levels than that from the action and event levels, such as zooming and mouse

clicks. The former will be easier to understand, recall, retrieve, and reuse in the

visual analytics process than the latter.

• Annotations with information from the sub-task level can be decoupled from the
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low level user exploration behaviors. For example, we can annotate a discovery

as a cluster without recording how this cluster is found. As a consequence,

the annotations are independent from the visualization platforms on which the

discoveries are captured. Thus the share and exchange of discoveries among

different visualization systems can be enabled. In addition, the implementation

of the discovery management approach can be made simpler by not capturing

the exploration process. For example, the storage of the generated annotations

can also be more efficient without the exploration process captured.

In this chapter, we propose a novel semi-automatic discovery annotation approach,

Click2Annotate, which conducts the automation at the sub-task level. Guided by the

proposed pattern taxonomy (Chapter 4), Click2Annotate can semi-automatically an-

notate patterns in a formalized format by predicting what should be recorded for

facts in popular categories, and allow users to annotate knowledge bases and evalua-

tions with light human effort. Click2Annotate has been integrated in ManyInsights

to annotate discoveries from different multidimensional visualizations, such as scat-

ter plot and parallel coordinates. The user evaluation of ManyInsights proved that

Click2Annotate could enhance annotation efficiency and the annotations generated

could be easy to understand. Besides, the semantic-rich information automatically

captured at the sub-task level by Click2Annotate facilitates different discovery man-

agement techniques in ManyInsights.

5.2 Approach

Based on the proposed discovery model, Click2Annotate enhances the automation

in pattern annotation, and allows users to annotate knowledge bases and evaluations

with light human efforts. The automation of Click2Annotate in pattern annotation

is based on the following observations reported from our user experiments and expert

interviews (see Chapter 4). First, most patterns extracted from multidimensional

data fall into multiple categories independent from the domains/applications and



55

Figure 5.1: Semi-automatic annotation generation using Click2Annotate. (a) A scat-
terplot with a cluster in it and the annotation process. (b) The automatically gen-
erated annotation for the cluster. (c) The annotation generated for a compound
pattern.
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visualization tools. Second, users can effectively and efficiently classify patterns into

these categories. Third, the same set of context and content information is often used

to annotate patterns falling into the same category.

According to the above observations, the core components of Click2Annotate are

annotation templates, each of which guides the semi-automatic annotation of a certain

type of patterns. They are either pre-defined for popular pattern types or interactively

created by users. During the annotation process, the users only need to highlight data

composing a pattern, to decide the type of the pattern, and to select the corresponding

annotation template. The system will automatically follow the template to fetch

information, to encode it, and to generate a narrative annotation for the discovery.

We briefly describe how users use Click2Annotate to annotate an discovery in

a scatter plot view. When a user discovers a pattern of interest during the visual

exploration, such as the cluster shown in Figure 5.1(a), she brushes the relevant data

(see Figure 5.1(a-1)), specifies the dimensions (see Figure 5.1(a-2)), judges the type of

the pattern, and selects the template for this type by a mouse click (see Figure 5.1(a-

3)). The system will then automatically create an annotation based on the template

and present the annotation to the user (see Figure 5.1(b)). The user reviews the

annotation and interactively improves it, such as typing domain-related information

and her evaluations (this step can be customized for individual applications to increase

the level of automation). Since mouse clicks rather than intensive typing effort are

required from the user to accomplish the majority of the annotation process, our

approach is named Click2Annotate.

5.3 Annotation Templates

Annotation templates are the key components of Click2Annotate. Each annota-

tion template is associated with a pattern type. It tells the system what information

needs to be retrieved from the data and how to generate a semantic-rich annotation

for this type of pattern. A template can be either pre-defined or user-defined.
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5.3.1 Pre-Defined Templates

Click2Annotate provides pre-defined templates for popular pattern types detected

from the taxonomy presented in Chapter 4. The templates are generated with the

following steps. Determining Popular Pattern Types: Six pattern types, namely clus-

Figure 5.2: The frequencies of attributes used in cluster annotations.

ter, outlier, rank, difference, correlation, and compound pattern, are determined to be

popular pattern types. Patterns of these types were frequently posted on Many Eyes

[13] as revealed by our experiments in constructing the taxonomy. Their definitions

are self-explained by the type names. These pattern types are further classified into

three categories, namely dimension-oriented patterns, data item-oriented patterns,

and compound patterns. Pattern types within the same category share common

features. Dimension-oriented patterns, such as correlation, describe relationships of

dimensions. Data item-oriented pattern, such as cluster, outlier, rank, and difference,

describe clusters, anomalies, patterns, and relationships of data items. Compound

pattern describe relationships among multiple pattern, such as that the pattern A is

related to the pattern B. The type hierarchy guides the generation of the templates

by extracting the common features among the types in the same category. It also

guides the use of annotations in other discovery management activities.
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Table 5.1: Content attributes, context attributes, and narrative sentences for popular
pattern types. The attributes with “I” are about the data inside the pattern. The
attributes with “O” are about the data outside the pattern.

Type Content Attributes Context At-
tributes

Narrative Sentences

Cluster Type, Dimensions, Size,
Extreme(I), Radius,
Mean(I)

Dataset This is a group of xx items that have
(extremely/very/slightly) similar val-
ues in dimensions xx in dataset xx.

Outlier Type, Dimensions, Size,
Items, Mean(I)

Dataset, Mean(O),
Distance

This is a group of xx items that are (ex-
tremely/very/slightly) different from
the others in dimensions xx.

Rank Type, Dimensions, Items,
Value, Rank

Dataset Item xx ranks xx in dimension xx in
dataset xx from highest to lowest.

Difference Type, Dimensions Items,
Difference, Distance

Dataset There is an/a (extremely
large/large/slightly) difference be-
tween item xx and item xx in
dimension xx. The value of item xx is
higher by xx.

Correlation Type, Dimensions Coeffi-
cient

Dataset For xx percent of data items in dataset
xx, the higher their value in dimension
xx, the (higher/lower) their values in
dimension xx.

Compound Pointers to the related pat-
terns

N/A This is about the pattern xx.

Predicting Information in Annotations: The templates tell the system what in-

formation needs to be retrieved from the data for generating an annotation. We

predict such information for each pre-defined template based on the results of our

domain expert interviews from the taxonomy construction process. In these inter-

views, the experts reported what information they used to annotate the patterns. We

summarized the results and got an attribute list for each popular pattern type. The

percentage of the experts that used an attribute to annotate each type of patterns

was calculated. For example, Figure 5.2 shows how often the attributes listed were

used to annotate a cluster by the experts.

As shown in Figure 5.2, an annotation of a cluster often consists of the following

attributes, in descending order of their frequency: Type (the type of the pattern,

such as “cluster” in this example); Time (when the cluster was discovered); Dataset

(the dataset where the cluster was discovered); Title (the title of the annotation);

Dimensions (the dimension names of the subspace where the cluster existed ); Size

(the number of items in the cluster); Rate (users’ subjective evaluation); Author (who
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discovered the cluster); Extreme(I) (the extreme of data inside the cluster); Radius

(the radius of the cluster); Mean(I) (the mean of data inside the cluster); Items (the

data item names of the cluster); Value (the data values of the cluster); and Mean(O)

(the mean of data outside the cluster).

According to the statistics, we identify three categories of attributes for each pop-

ular pattern type (shown in yellow, blue, and green in Figure 5.2). They include:

general attributes, such as Author, Time, Title, and Rate, which are important infor-

mation for all types of patterns and they are not directly related to the data; context

attributes, such as Size, Items, and Mean(I), which are frequently used to describe

the content of a certain type of discoveries; and context attributes, such as Mean(O),

which are frequently used to capture the context of a certain type of patterns.

Table 5.1 summarizes the frequently used content and context attributes (with

percentage ≥ 50%) of the popular pattern types. They are semantic-rich information

widely used by the experts to describe patterns. We include them into the templates

of the types together with all the general attributes. Users can customize a template

(refer to Section 5.3.2) if the information they desire is not included in the template.

Shaping the Templates: From the previous step, a fairly large amount of attributes

are determined to be included into the templates. How should they be presented to

users so that the users can enjoy reading the annotations and grasp their content

effectively and efficiently? To address this problem, we conducted a user study.

First, we designed three template interface prototypes with the following goals: (1)

Completeness: all attributes should be represented; (2) Clearness: the information

should be easy to read and understand; and (3) Briefness: key information of the

attributes should be easily accessed. In Prototype A, each attribute was represented

as a form entry, such as “cluster radius: 0.1” for the radius of a cluster. Prototype

B employed a narrative annotation that represents information textually [80]. All

the attributes were presented in sentences that described the attributes using natural
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Figure 5.3: Examples of prototypes A and B.

language. For example, the entry “cluster radius: 0.1” in the previous example was

expressed as “The items in this group have very similar values”. Prototype C used

a mixed design. The general attributes were represented as form entries while the

content and context attributes were represented textually. Two annotations were

generated for each of the pattern types, including cluster, outlier, and correlation

following each prototype. A total of 18 annotations were generated. Figure 5.3 shows

examples of the generated cluster annotations for prototype A and B. The annotation

of the same content for prototype C is shown in Figure 1(b).

Twenty users who had good experiences with reading annotations in visualizations

participated in the study one by one. The subject was asked to grade prototypes A,

B, and C according to the following three criteria: (1) the annotations are pleasant

to read; (2) the values of the attributes in the annotations can be quickly perceived;

and (3) it is easy to compare patterns of the same type and pattern of different types.

A 7-point scale was used for the rating (0=strongly disagree, 6=strongly agree). User

feedbacks were also collected.
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The results showed a stronger preference to Prototype C. In particular, the average

scores of Prototype A, B, and C in the first criterion were 2.8, 3.4, and 4.8, respec-

tively; the average scores in the second criterion were 3.8, 3.2, and 4.4, respectively;

and the average scores in the third criterion were 4.4, 3.0, and 4.2, respectively.

According to user feedback, Prototype C had the following advantages: First,

it represented the general attributes as form entries and thus reduced the number

of sentences in the narrative annotation. Users had no difficulty in understanding

general attributes, such as author and dataset name, in the form entries. Second,

it represented context and content attributes using natural language, which makes

them easy to understand by users who were not familiar with terms such as cluster

radius. Therefore, Prototype C is used in Click2Annotate for shaping the templates.

Encoding Attributes Using Natural Language: The context and content attributes

are encoded into human-readable sentences in the templates to compose narrative

annotations. Our encoding process is similar to the one described in [80] but improved

from three aspects: First, multiple context and content attributes can be encoded in

one sentence. This produces a less wordy annotation. Second, the numerical attribute

values (e.g., the radius value) are explained in an easy to understand manner (e.g.,

“very similar”). Third, the key information in the sentences, such as dimension

names, is automatically highlighted and hyperlinked so that users easily browser and

retrieve related discoveries sharing the common content in the search interface (see

Chapter 6). For example, the narrative of a cluster may start by a sentence that

describes the size, the quality (indicated by radius), the dimension labels, and the

dataset of the cluster: this is a group of 8 data items that have extremely

similar values in dimensions A and B in dataset NFL. The information in

pink is automatically extracted by the system after a user selected the data and the

template. We summarize examples of narrative sentences in Table 5.1.
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Figure 5.4: Interactive generation of a user-defined template.

5.3.2 User-Defined Templates

Although a set of templates is pre-defined for most popular pattern types, it is

impossible to predict all useful pattern types as well as all possible attributes for

each pattern type. Therefore, Click2Annotate allows users to interactively modify

pre-defined templates or create new templates from scratch.

Figure 5.4 shows an example of how to create a new template for a user-defined

pattern type named extreme. In this window, there a lists of available attributes

(see Figure 5.4(1)), including all possible context and content attributes reported by

the domain experts in the interviews from the taxonomy construction. They can

be added to the template attributes list (see Figure 5.4(2)). In this example, the

general attributes are automatically included and the maximum and minimum of the

relevant dimension are manually added into the template. The narrative sentences of

these attributes are represented in the annotation area, providing a preview for the

annotations generated by this template (see Figure 5.4(3)). Users can interactively

modify these sentences or change their order. The modification of an existing template
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can be accomplished in the same interface.

5.4 Semi-Automatic Annotation Generation

Click2Annotate semi-automatically generates annotations based on pre-defined

or user-defined templates. To generate an annotation, users brush the relevant data

items and dimensions and select a template according to the type of the pattern. To

allow quick access to the templates, a list of buttons are provided in a separated panel

(see Figure 5.1(a-3)), which is shared by all created views. Each button corresponds

to a template. Users can add or remove buttons from the panel so that it only contains

the buttons for templates they need. The users click on a button to select a template.

After the template is selected, the system will automatically fetch information from

the data and encode it to fill the incomplete information in the template. Thus, an

annotation is automatically generated.

The above process does not apply to compound patterns because they contain

pointers to other patterns. To annotate a compound pattern, an interactive approach

is employed. In particular, users first open a compound pattern annotation dialog

(see Figure 5.1(c)) by clicking on a “compound” button and then use drag-and-drop

interactions to add the flags of desired discoveries to the dialog. After a discovery is

added, its title will be displayed in the dialog (see Figure 5.1(c-4)). It is hyperlinked

to the related annotation so that users can click on it to examine the annotation in

detail (see Figure 5.1(c-5)). Users can add discoveries into the dialog and type their

notes to complete the annotation.

5.5 Annotation Review and Modification

After an annotation is generated by the system, it will be presented to users in an

annotation window (see Figure 5.5(a)) within which the annotation can be reviewed

and improved by the users.

The annotation window directly mimics the design of Prototype C with a thumb-

nail added. The thumbnail is a screenshot that captures the visualization at the
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moment when the pattern was discovered to help users recall this discovery. The

general attributes are represented below the thumbnail, followed by a set of sentences

that textually represent the context and content attributes.

If users are not satisfied with the automatically generated annotation, they can

interactively improve it. In particular, the users can open a statistics window (see

Figure 5.5(c)) which presents a list of all available statistics about the pattern and

the whole dataset, and a list of the information that has already been included in

the current annotation. Users can use drag-and-drop interactions to add or remove

statistics into or from the annotation and adjust the order of their presentations in the

annotation. The statistics in the annotation is represented textually according to pre-

defined templates. Users can manually customize the text representations if they are

not satisfied with the pre-defined ones. For example, in Figure 5.5(c), a user drags and

drops the mean value of the dimension population density to the annotation. A new

sentence that conveys this mean value is then automatically added to the annotation,

as shown in the sentence with the red underline in Figure 5.5(a).

The automatically generated annotation only captures the pattern of a discovery.

To allow users to record the knowledge base and subjective evaluations of the discov-

ery, an interactive tagging function is supported. In particular, a user can click on

a button in the annotation window to trigger a tagging interface (see Figure 5.5(b)).

Through the interface, the user can create tags or select existing tags to annotate

the discovery. A tag is generated once and reused later on. Thus users can type

frequently used information once, save it as a tag, and reuse the tag in the future

with light human effort.

5.6 User Study of Click2Annotate

A formal user study has been conducted to evaluate how Click2Annotate helped

users to generate annotations and if the generated annotations were understandable.

The study was a 2×2 (system types×datasets) between-subjects design. We com-
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Figure 5.5: The review, tagging, and modification of generated annotations. (a) A
modified annotation. (b) The tagging interface. (c) The statistics window.

pared two systems: ManyInsights, which supported Click2Annotate, and a simple

system, which provided users a text editor similar to those commonly found in many

visualization systems to manually type notes for annotating discoveries. Our hy-

potheses were: (1) Click2Annotate will reduce the time spent on annotating; and

(2) annotations generated by Click2Annotate will reduce the time-cost and errors for

understanding the annotations.

5.6.1 Datasets and Discoveries

Two datasets were used in the user study: a small dataset (51 items, 4 dimensions)

on state health measures and a large dataset (279 items, 10 dimensions) on the US

census data. Before the user study, we manually extracted six discoveries, including a

cluster, an outlier, a rank, a difference, a correlation, and a compound pattern, from

each dataset. The compound pattern was about the difference between two clusters.

All extracted discoveries were used in the user tasks described in the next section.
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The numbers of data items and dimensions involved in the discoveries were controlled

according to the size of dataset. For example, a cluster in the large dataset had

more data items and dimensions involved. This made annotating and comprehending

discoveries in the large dataset more difficult.

5.6.2 Tasks

The experiment included two sessions.

Annotation session: Each participant was asked to annotate the six discoveries

for each dataset on a computer. The discovery was annotated one by one. For

each discovery, the type was explicated and the relevant data was highlighted in a

parallel coordinates or scatterplot view of the dataset according to the number of

dimensions involved in the discovery. The participant was asked to record all possible

information that could help them comprehend the discovery. The task completion

time was recorded.

Comprehension session: Each participant was asked to understand the annota-

tions generated by other participants. There were six tasks to complete for each

dataset, each of which for a discovery used in the annotation session. In each task, an

annotation (randomly picked from annotations generated by other participants and

text only) was provided along with four images on paper. One image was the screen-

shot of the view with the discovery described by the annotation highlighted, namely

the original view provided to the participants when the discovery was annotated. The

other three images presented different views, such as the same display with other data

highlighted or a different display with a similar pattern. The participant was asked

to find the view with the discovery described by the highlighted annotation. The task

completion time was recorded.

5.6.3 Analysis Condition and Procedure

A total of 8 subjects (5 male and 3 female) participated in the study. All of them

were graduate students and had strong English writing and reading abilities. Before
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the study, the subjects were evenly divided into two groups. One group of subjects

used ManyInsights and the other group used the simple system. The same datasets

and tasks were used in both groups. The subjects took the experiment one by one

on the same computer following the same process.

In the annotation session, the same views were used in both groups. When making

annotations, participants were allowed to read dimension names, data names, and

data values on the visualizations. In the simple system, participants used the text

editor to type notes for annotating discoveries. In ManyInsights, participants were

allowed to edit existing templates and interactively modify generated annotations.

At the beginning of the study, a tutorial was provided by an instructor to explain

the definition of each pattern type and show examples of how to annotate a discovery.

The annotation session was conducted right after the tutorial. The comprehension

session was conducted three months after the annotation session. In each session,

there were first practical tasks, second experimental tasks (the small dataset followed

by the large dataset), and then survey questions specific to that session.

5.6.4 Results

We present two types of results from the study, namely quantitative data (comple-

tion time and correctness) captured through the system and the subjective preferences

reported from survey questions, in the following sections respectively.

5.6.4.1 Task Completion Time and Correctness

The comparisons of the average completion time for annotating discoveries are

shown in Figure 5.6(a) (for the small dataset) and 5.6(b) (for the large dataset).

Figure 5.6(b) reveals the difficulty the subjects encountered in making annotations in

the large dataset using the simple system, especially when annotating the cluster and

rank. We observed that subjects had difficulty in manually summarizing information

from complex data, such as estimating the size of a big cluster and the rank of a data

item in a large dataset. Besides, in the simple system, the time the participants spent
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on determining the information to be recorded was often more than the time they

spent on typing the note. Click2Annotate showed its strength in pre-defining the most

essential information for discoveries and automatically capturing this information.

Therefore, our first hypothesis was validated.

Figure 5.6: The result of annotation sessions.

The comparisons of the average completion time for the comprehension tasks are

shown in Figure 5.7(a) (for the small dataset) and 5.7(b) (for the large dataset). The

figures show that the participants were faster in selecting the views when reading

the annotations generated by Click2Annotate, especially for the large dataset. The

average correct answer rate for all tasks was 89.6% for ManyInsights (with standard

deviation 7%) and only 75.0% for the simple system (with standard deviation 11%).

The result suggested that the subjects understood the Click2Annotate annotations

faster and better than the manually generated annotations. Thus our second hypoth-

esis was validated.
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Figure 5.7: The result of comprehension sessions.

5.6.4.2 Subjective Preferences

At the end of each session, the participant was asked to answer a set of survey

questions each of which was answered in a 7-point Likert scale (0=strongly disagree,

6=strongly agree). A total of 10 questions were provided. The average score for

ManyInsights was 4.8 and only 2.7 for the simple system. Table 2 summarizes the

pair-wise comparisons of the questions where significant differences were detected.

The significant differences indicate that Click2Annotate was judged to be more

Table 5.2: The average ratings for four survey questions that have significant differ-
ences (difference≥2.5).

Questions ManyInsights Simple system
Q1. This tool helped me make anno-
tations in the large dataset.

4.8 1.3

Q2. I enjoy using this tool to make
annotations.

5.0 2.3

Q3. The content of annotations is
accurate.

5.3 2.3

Q4. The annotations were helpful to
me in understanding discoveries.

5.0 2.5
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helpful than the simple system in annotating discoveries. Annotations generated by

Click2Annotate were judged to be more helpful in understanding discoveries.

5.7 Conclusion

Discovery annotation is a critical requirement for an effective decision making

and problem solving process. In this chapter, we introduced a novel approach that

allows users to conduct semi-automatic discovery annotation at sub-task level. We

also presented a fully working prototype of the approach named Click2Annotate. The

approach has two significant benefits. First, it reduces human effort and generates

annotations easy to understand. Second, the rich semantic information encoded in

the annotations enables various discovery management activities, such as discovery

browsing and retrieval. We presented a formal user study that proved the first benefit.

We will illustrate the second benefit by presenting the novel discovery management

approaches based on Click2Annotate, namely scented discovery browsing and faceted

discovery search, in the next chapter.

The future work includes a semi-automatic discovery tagging approaches to in-

crease annotation efficiency. In such an approach, a user interactively creates a tag

with criterion and then the system automatically assigns the tag to all discoveries

meeting the criterion. Also, we will encourage users to tag discoveries by providing tag

suggestions. Different approaches to generating the suggested tag lists, such as using

dimension names, nominal values, statistic information, relevance to other discover-

ies, as well as the exploration task being executed, will be explored and compared.

To support a wider range of data types, we will also extend Click2Annotate to trees,

graphs, text, and geospatial data. In addition, more user studies and experiments

will be conducted to investigate the advantages and limitations of Click2Annotate.

For example, we will compare the performance of users who are familiar/unfamiliar

with the datasets visualized. We will also investigate the effectiveness and efficiency

of Click2Annotate with different design options in real analytical reasoning processes.



CHAPTER 6: DISCOVERY BROWSING AND RETRIEVAL

In Chapter 5, we presented a semi-automatic discovery annotation approach which

is capable to capture the rich context information of discoveries in visual analytics.

The information is potentially useful for enhancing the automation and efficiency of

different discovery management activities. In this chapter, we present two concrete

examples that utilize the rich context of discoveries to facilitate discovery browsing

and retrieval.

6.1 Introduction

The purpose of capturing discoveries is to use them for making decisions. During

a complex visual analytics process, successful decision making requires the ability

to retrieve useful information from large collections of discoveries. To this, users

would like to pose queries containing rich context from different aspects, and find

relevant discoveries to those queries. For instance, a user should be able to search for

discoveries about a specific dataset, involving multiple data dimensions, or created

by a collaborator. Such flexible queries are difficult to conduct in visual analytics

systems that manually generate annotations since they usually contain unformalized

and unstructured information difficult to search.

Moreover, when users want to continue an analysis performed in the past, they

need to browse and review the relevant discoveries, either generated by their own or

collaborators. Often, they need substantial flexibility to access the discoveries, such

as browsing and exploring them in any visualizations where the relevant context,

such as data items or dimensions, can be observed. Such flexibility, however, is not

adequately supported in most visual analytics systems because of the lack of accuracy

and formalization of manually generated annotations.
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In this chapter, we present two techniques, faceted discovery search and scented

discovery browsing, to address the aforementioned challenges. The efficiency of the

approaches is achieved by utilizing the context-rich information semi-automatically

captured by Click2Annotate (Chapter 5). In particular, the faceted discovery search

allows users to create their own custom queries by combining the rich context informa-

tion of discoveries. The scented discovery approach utilizes the context of discoveries

to make the annotations transparent to data and visualizations [52].

6.2 Faceted Discovery Search

Figure 6.1: The faceted discovery search interface.

Faceted search [81], a popular searching approach used in mass online markets,

has shown its efficiency and flexibility in finding items using custom navigation based

on various perspectives, rather than through a specific path. Since the annotations

generated by Click2Annotate can also be aggregated based on multiple attributes,

faceted search can be applied to help users retrieve discoveries according to their

specific analysis interest. In particular, a set of common attributes shared by multiple
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templates, including author, time, rate, title, discovery type, dataset, dimensions, and

tags, are used as faceted filters for searching discoveries in ManyInsights. Users can

search discoveries in any order using these filters through the faceted search interface

provided by ManyInsights (see Figure 6.1).

For example, Figure 6.1 shows how a user retrieves a annotated cluster using

the faceted search interface. First, she uses the pattern type “cluster” to filter out

discoveries that are not clusters. Second, she narrows down the results using the

dataset name “census”. The search results dynamically roll over the screen from left

to right. Besides, keyword search is also provided in the interface.

Inspired by the document card approach [82], we use an annotation card to repre-

sent each discovery, showing a preview of the content in the retrieval interface. The

annotation card summarizes the discovery using a visualization thumbnail and a short

sentence that captures the essential information of the discovery. It allows the user to

quickly capture the main content of the discovery. The user can sort the search results

by different criteria, such as rate and title. When the user clicks on an annotation

card, the annotation will be presented in full detail in an annotation pop-up window.

Once the user finds interesting discoveries, she can either export them to XML files

for sharing or further group and associate them in the discovery network.

6.3 Scented Discovery Browsing

We propose a scented discovery browsing approach (see Figure 6.2). If a user

turns on the scented browsing mode, discovery flags are attached to the visualizations,

not only the views where the discoveries were captured, but also other views where

the relevant data items/dimensions of the discoveries can be observed. Users can

retrieve a discovery from any view where its flag is displayed by clicking on the flag.

Compared to existing approaches that require users to manually mark discoveries on

the visualizations [54], our approach has several benefits.

First, based on the pre-defined essential information for different pattern types,
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Figure 6.2: The scented discovery browsing.

our approach automatically marks different types of discoveries in different ways to

avoid cluttering the display. For example, Figure 6.2 shows a scatterplot with multiple

annotated discoveries flagged. In this figure, the flags of data item-oriented discoveries

are attached to their data items (see Figure 6.2(1)) while the flags of dimension-

oriented discoveries are attached to their dimensions (see Figure 6.2(2)). To reduce

the displayed objects, users have options to expand and collapse an annotation in

pop-up window by clicking on the corresponding flag. In systems with manually

generated annotations, users have to draw marks carefully to achieve similar effects.

Second, discoveries can be flagged in any display where the relevant data items/di-

mensions of them can be observed, not only the visualization where the discoveries

were discovered. Thus it is an “annotate once, appear anywhere” approach [83]. For

example, an discovery of dimension correlation can be marked in any of the visual-

izations where any of the dimensions involved is displayed. This feature allows the

users to access relevant discoveries anywhere during their visual exploration process,

without going back to the previous views or re-annotating them in the new view.

Moreover, by making the annotations transparent to the visualizations, the users can
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use the annotated dimensions and data items as a focus point from which to find

related annotations and visualizations. Thus the visual exploration becomes more

convenient and flexible. Such an “annotate once, appear anywhere” approach is not

easily supported by manual annotation approaches because of the lack of accuracy

and formalization of manually generated annotations.

In addition, the scented discovery browsing approach can work together with the

faceted discovery retrieval approach as described in Section 6.2. In particular, users

can interactively select the discoveries they want to flag using criteria such as the

discovery types and the dimensions involved (see Figure 6.2(3)). In this way the

users can display only flags of discoveries of interest in the display to reduce clutter.

Again, this benefit is brought by the accuracy and formalization of the automatically

generated semantic-rich annotations.

6.4 Conclusion

In this chapter, we presented two techniques to support discovery retrieval and

browsing in a visual analytics process. The effectiveness and efficiency of the tech-

niques are achieved by utilizing the rich context of discoveries captured in annota-

tions. As a group of interesting discoveries is retrieved, users need to further organize

and associate them to explore their correlations. In the next chapter, we describe a

suite of visual analytics approaches to explore the correlations among the retrieved

discoveries.



CHAPTER 7: DISCOVERY CORRELATION EXPLORATION

Effective decision making requires users to connect interrelated discoveries to make

sense out of them, and to form hypotheses about how these discoveries are correlated

[64]. Exploring discovery correlations is a challenging task due to the scale of complex

visual analytics, and becomes more difficult for the collaborative visual analysis since

users need to associate not only their personal discoveries, but also the discoveries

found by others. In this chapter, we present a novel visual analytics approach that

automatically organizes, summarizes, and associate discoveries to explore their cor-

relations for hypothesis generation and evaluation. We also present a case study and

a user study to demonstrate the effectiveness of the approach.

7.1 Introduction

Decision making involves iterative information forging and sense making loops.

Users need to continuously gather information from data, dynamically retrieve and

organize the information based on their drifting analysis needs, and associate the

interrelated discoveries to form hypotheses. Organizing and associating discoveries

allows the users to derive unknown information or new hypotheses, and guides their

exploration towards a direction that might lead to more discoveries relevant to the

information or hypotheses [64]. In collaborative visual analytics, collaborative workers

often experience an initial analysis stage, where they need to browse, organize, and

associate each other’s individual discoveries to reach a common ground [15]. Effective

common ground construction minimizes the need to verbally confirm actions among

collaborators, and reduces the cost of collaborative effort [16].

Organzine discoveries and revealing their correlations are essential steps for driving

effective decisions and facilitating collaboration. However, users often face significant



77

challenges in conducting these tasks during a complex visual analytics process, where

vast amounts of discoveries could be generated from diverse collaborative workers

and many datasets. Browsing, organizing, and associating information in such high

volume and great variety are challenging tasks. To make it worse, it is often difficult

for users to collaboratively manage their discoveries through effective communication

methods such as face-to-face discussion. Thus, there is an urgent need for effective

and efficient visual analytics approaches for organizing and associating discoveries,

especially the following tasks:

Requirement 1 - Generating Organizational Overview: Exploring discovery cor-

relation usually starts from forming an overview of the discoveries that have been

recorded and gathered [15]. The overview presents the overall structure, key aspects,

and evolution of the discoveries to help the users gauge the context and determine

future direction [84]. Existing visual analytics systems provide limited capability with

manual inspection and organization, which hinders users’ efforts on quickly forming a

mental map of existing analysis. New approaches for overview generation that satisfy

the following requirements must be developed:

• Collecting information effectively and efficiently: Rich semantic information

about discoveries is needed for automated discovery organization, retrieval, and

association according to varying user interests. Collecting such information

should not impose extra burden to users, i.e., their ongoing visual exploration

process should not be disturbed or diverted.

• Employing automatic discovery analysis: Manual discovery association and

grouping are not realistic for a fast growing pool of discoveries in dynamic

knowledge construction and collaboration process. Development and integra-

tion of automatic discovery analysis techniques, such as automated discovery

correlation, clustering, and summarization, is direly needed in the framework

for fast and operative overview generation.
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• Supporting dynamic overview construction: In a complex visual analytics pro-

cess, analysts usually have diverse information needs. Dynamic overview con-

struction should be supported in the framework so that the analysts can explore

the discovery space according to their specific needs. Moreover, the approach

should allow the users to dynamically manipulate visualization results according

to their changing interests and developing understanding.

• Providing a rich set of views and interactions: Multiple coordinated views should

be provided to allow users to examine discoveries from different aspects. For ex-

ample, temporal visualization helps users track and employ temporal evolution

of discoveries, so that they can keep awareness of timing and preserve histori-

cal contents of discoveries [54, 15]. Furthermore, proximity-based projections,

where closely related discoveries are visually presented as clusters, facilitate

users’ ability to browse many discoveries at a glance. In addition, interactions

should be provided so that users can effectively navigate within the discovery

space, retrieve discoveries of interest, and manage overview construction.

Requirement 2 - Supporting Sensemaking: After the users identify interesting dis-

coveries from the overview, they need to closely explore these discoveries for forming

hypotheses. The following tasks are important in the sensemaking process:

• Comparison: Scalable comparison among discoveries should be supported. The

comparison can be among discoveries generated by different analysts, from dif-

ferent datasets, during different time periods, or discoveries contributing to con-

flicting or relevant hypotheses. Overlapping information identified from com-

parison helps analysts to associate discoveries captured in different analysis

steps or by different analysts and to acquire additional evidence for develop-

ing hypotheses [15]. It also helps analysts to retrieve contextual information,

to examine the historical evolution of the reasoning process, and to evaluate

conflicting hypotheses.
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• Revisiting and refining: Sensemaking is an iterative process. The system should

allow analysts to revisit the sources of existing discoveries and refine them with-

out disturbing the ongoing analytic process. This function is important in pro-

moting new discoveries and hypotheses.

• Result outreach: A crucial function of sensemaking is to ensure that analysis

results can be preserved and shared among groups [15]. Hence, the approach

should provide solutions for this task.

In this chapter, we propose a novel visual analytics toolkit to address these criti-

cal tasks. The toolkit automatically retrieves important semantic information about

discoveries, such as what they are (e.g., clusters, outliers, ranks, etc.), relevant data

information (e.g., dimension names, data item names, etc.), and meta information

(e.g., authors, timestamps, etc.), from semi-automatically generated, formalized dis-

covery annotations (Chapter 5). A rich set of views and interactions built upon

automatic discovery analysis is then provided. This allows users to browse semantics

and identify clusters from a large collection of discoveries, to track their temporal

evolutions, to retrieve and compare groups of discoveries, and to preserve and share

results for hypothesis generation and collaboration. We demonstrate the effectiveness

of the toolkit through a case study and a user study.

7.2 Approach

The semi-automatic discovery annotation approach, named Click2Annotate (see

Chapter ), is a basis of the proposed toolkit. The pipeline of the toolkit consists of

the following steps:

• The system collects semantic information of discoveries when users semi-automatically

annotate discovery using Click2Annotate (see Chapter ). The contents are

stored in a discovery database, upon which correlations between the discoveries

can be calculated using the approach presented in Section 7.3.

• After the users retrieve a collection of discoveries, the discoveries are automati-
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cally clustered based on the correlations. The clustering results are represented

in an automatically generated dynamic organization view (see Section 7.4.2).

The view intends to support the requirements of generating overview (R1). It

provides multiple organizational metaphors, coordinated analysis components,

and animations to help the users to explore discovery clusters, their major se-

mantics, and their temporal evolution.

• The users iteratively refine the discovery clusters on the dynamic organization

view to reflect their aims and concentrations. They can dynamically adjust the

weights of different contents in the discovery correlation calculation (see Section

7.3) to change the clusters, or refine the search with instant visual feedbacks.

• The users select discoveries of interest from the dynamic view. The selected

discoveries are compared and examined in detail in the region graph (see Section

7.4.5), which intends to support the requirements of sensemaking (R2).

• The users preserve and share their key findings and hypotheses for future use

by other collaborators (see Section 7.4.7).

7.3 Discovery Correlation Calculation

Using the Click2Annotate technique (Chapter 5), the following information is

recorded for each discovery: (1) data contents, such as dataset names, types of insights

(e.g., clusters, outliers, rank, correlation, and etc.), relevant dimensions and data

items, and essential characteristics of the insights (such as the mean of clusters); (2)

user-generated semantic information, such as hypotheses associated with the insights

and tags given by users; (3) meta information, such as the name of the author who

annotated an insight and a timestamp recording when the insight was annotated.

The rich annotated information is used for modeling and calculating the complex

interrelationships of discoveries, which forms the foundation of our approach. The

correlation between two discoveries is calculated as a weighted sum of the following

similarity measures. The measures are normalized to the range 0 to 1 and their
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weights can be interactively adjusted by users:

• Closeness in data space: We use data similarity (Simdata) to capture the close-

ness of two discoveries in the data space. It is calculated using Exact Trans-

formation Measure (ETM) (please refer to [60] for details). ETM is based on

transform cost and can handle subsets with different data populations efficiently,

which makes it suitable in our application to calculate the closeness between dis-

coveries of different types (e.g., an outlier and a large cluster). If two discoveries

are not in the same dataset, their data similarity is set to 0.

• Shared dimensions and data items: We use dimension similarity (Simdim) and

data item similarity (Simitem) to capture the relationships between two discov-

eries involving the same dimensions and data items, respectively. Note that the

two discoveries can be about different datasets that share dimensions and data

items. By considering each dimension as a weighted keyword and an discovery

as a document, we use an improved cosine similarity measure [85] to calculate

Simdim:

Simdim(Ii, Ij) =

∑K
k=1(log2

N
nk
Wk)(log2

N
nk
Wk)√∑K
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N
nk
Wk)2.
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k=1(log2

N
nk
Wk)2

(7.1)

where Ii and Ij are two discoveries, Wk is the importance of a shared dimen-

sion k, K is the total number of shared dimensions, N is the total number of

discoveries, and nk is the number of discoveries sharing the dimension k inside

N . Data item similarity (Simitem) is computed in a similar way.

Each dimension or data item is assigned an importance in the above calculation.

We allow users to interactively set the importance of individual dimensions and

data items according to their exploration focus. For example, by assigning a

high importance to a dimension of interest, discoveries containing this dimension

are considered closely related.
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• Shared pattern type: People may want to examine and compare discoveries of

the same type, such as all discoveries about ranks, at the same time. Type

similarity (Simtype) allows users to conduct this task. Simtype(Ii,Ij) is 1 if

discovery Ii and Ij have the same type and 0 otherwise.

• Shared hypotheses: In collaborative visual analytics, users often use discoveries

as evidence to support or refute their hypotheses [15]. Discoveries that are asso-

ciated with the same hypothesis may have semantic relationships. Hypothesis

similarity Simhypo(Ii,Ij) is 1 if discovery Ii and Ij are associated with the same

hypothesis and 0 otherwise.

• Shared tags: Tags with descriptive text can be attached to a discovery to ex-

press user interest, record their evaluations, and convey the semantic properties

of that discovery [57]. They are manually generated by users and shared among

discoveries in ManyInsights. Sharing tags indicates semantic relationships be-

tween discoveries. Tag similarity (Simtag) is used to capture such relationships.

In particular, each tag is considered a keyword and Simtag is also calculated

using Equation 7.1 with user-specified importance.

• Author: Users often want to examine discoveries from the same author. We

define author similarity Simauthor(Ii,Ij) as 1 if discoveries Ii and Ij are created

by the same user and 0 otherwise.

We calculate discovery correlation (Cordiscovery) between any pair of discoveries Ii

and Ij using the similarity measures described above:

Cordiscovery(Ii, Ij) = wdataSimdata(Ii, Ij) + wdimSimdim(Ii, Ij)

+witemSimitem(Ii, Ij) + wtypeSimtype(Ii, Ij)

+ . . . + wauthorSimauthor(Ii, Ij)
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where wdata, wdim. . .wauthor are user-controllable weights. The sum of all weights

equals 1. By adjusting the weights, users can organize and associate discoveries

according to a variety of interests. For example, if the users are interested in authors,

they can set wauthor to 1 and other weights to 0. Then the discoveries will be grouped

by their authors in the visualization. Section 7.4.2 presents how users interactively

adjust the weights and receive instant feedbacks in detail.

Among the similarity measures, the most computationally heavy ones are the

data closeness, dimension, data item, and tag similarity calculations. They are either

O(N2) or O(N3) approaches. However, once the calculation is performed, an individ-

ual measure is stored and only re-calculated when users adjust the importance (e.g.

changing the importance of a dimension in dimension similarity). Hence, the modifi-

cation of weights in discovery correlation calculation can be performed efficiently.

7.4 Visualization

Multiple coordinated views are provided in our system to support the require-

ments of discovery cor. To generate overviews (R1), the dynamic discovery clustering

display, the content cloud, the timeline, and the discovery table are provided. The dy-

namic discovery clustering display (see Figure 7.1(1)) reveals the correlations among

the discoveries by placing related discoveries close to each other. It can also reveal

the temporal evolution of the discoveries through controllable animations. The con-

tent cloud visually summarizes the most significant semantic contents of an discovery

group (see Figure 7.2(a)(b)). The timeline allows users to examine the discoveries

along a time axis (see Figure 7.1(2)). The discovery table allows users to access the

discoveries in a familiar table metaphor(see Figure 7.1(6)).

Our system also allows users to compare groups of discoveries, examine them in

detail, and preserve and share the findings they derived (R2). The region graph (see

Figure 7.3) presents the relationships among a group of discoveries in detail. It also

allows the users to compare two groups of discoveries for shared or distinct informa-
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Figure 7.1: The dynamic discovery clustering display interface. The left part includes
label and group controls and search interfaces. The center part is the dynamic dis-
covery clustering display and the timeline (bottom). The right part includes weight
controller, keyword tables, and discovery tables. In the dynamic discovery clustering
display, each discovery is represented by a shaped particle, colored according to the
keywords it contains (“health” - yellow, “income” - red, and “crime” - blue). Discov-
eries containing the keyword “Texas” are selected and highlighted by orange halos.
The weight of tag similarity is set to 1 and others are set to 0.
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tion (see Figure 7.4). The users can further examine a discovery in an annotation

window (see Figure 7.2(c)) or revisit the data in a multidimensional display for more

discoveries (see Figure 7.5). They can also preserve and share their exploration re-

sults by creating new discoveries. In the following sections, we present the views and

interactions in detail.

7.4.1 Content Cloud

Figure 7.2(a) shows a content cloud of 179 discoveries. Each tag is a frequently

shared keyword in the discovery annotations. Keywords from the same type of con-

tents are grouped together with the same color. For example, the blue keywords are

all from dimension names. The size of a keyword indicates its frequency of occurrence

in all discoveries or the importance of the keyword assigned by users. In a cloud of

all discoveries in an overview (see Figure 7.2(a)), the tags are ordered according to

descending frequencies. In a cloud of a group of discoveries selected from the overview

interface (see Figure 7.2(b)), the tags are ordered by their TF-IDF weights [86] to

emphasize salient features of the group. The TF-IDF weights are calculated using an

improved TF-IDF weighting algorithm described in [87]. In Figure 7.2(b), keyword

“smoke” is ranked high since it is significant in this group, despite that its global

frequency is low.

Interactions: The content cloud provides users a convenient way to start exploring

a set of unknown discoveries. In particular, by clicking a keyword in a cloud, users

can select all discoveries with this keyword in their contents. They can also set the

colors or importance of keywords to control the dynamic discovery clustering display

from the content cloud.

7.4.2 Dynamic Clustering View

The dynamic discovery clustering display reveals correlations among discoveries by

placing related discoveries close to each other. It also reveals the temporal evolution

of the annotation activities through controllable animations. Figure 7.1(1) shows 90
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discoveries in the dynamic discovery clustering display. Discoveries are represented as

particles with a variety of shapes indicating their pattern types (see the shape legend

in Figure 7.1(1))). The luminance of the particles indicates the age of the discoveries

(the darker, the older). Discoveries are automatically clustered according to their

correlations (refer to [85] for details of the underlying force-based dynamic system).

Figure 7.2: (a) A content cloud shows the most significant contents of 179 discoveries.
(b) A content cloud shows the most significant contents of a group of discoveries
selected from the 179 discoveries. Content colors: tag - pink, dimension - blue, data
item - yellow, and type - red. (c) An annotation window, showing the visualization
and contents of a discovery in detail.

Labels are automatically generated to convey the semantics of the discovery clus-

ters (see Figure 7.1(3) for an example). Users can interactively control which types

of discovery contents to be included in the labels. To avoid lengthy labels, we only

use the top-N most frequent keywords.

Dynamic clustering: Users can dynamically cluster the discoveries in this view to

reflect their current exploration interest. For example, by setting the tag weight to 1
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through the star glyph (see Figure7.1(4)), discoveries are grouped by their tags. Users

can also interactively adjust the importance of keywords from the keyword table 1

(see Figure 7.1(5)) to cluster the discoveries by keywords, as shown in Figure 7.1(1).

Animation: Users can play animations to examine temporal evolution of the dis-

coveries. During the animation, discoveries are continuously injected into the display

in chronological order. The layout gradually evolves to reveal how clusters are formed

and evolving over time. Users can use play and stop buttons to pause and resume the

animation. They can jump to a particular moment using the timeline (see Section

7.4.3).

Tracking keywords: To track discoveries with keywords of interest, users can assign

colors to them from the keyword table (see Figure 7.1(5)). An discovery can have

multiple colors if it contains multiple keywords of interest (see Figure 7.6(a-1)).

Grouping and tracking discoveries: The system can automatically divide the dis-

coveries into groups according to a user-defined dissimilarity threshold. In Figure

7.1(1), the automatically generated groups are highlighted in different background

colors. The groups are stored in a group table for further operations, such as com-

parison, viewing content clouds, and etc.. During an animation, users can highlight

groups using colored halos for tracking their evolution (see Figure 7.6(a-1)).

7.4.3 Timeline

According to the experimental evidence reported in [34], users can easily un-

derstand the development of discoveries by organizing them in chronological order.

Following this, the timeline represents discoveries as bars along a time axis (see Figure

7.1(2)), whose distribution reflects the temporal distribution of the discoveries.

Interaction: The timeline is coordinated with the dynamic discovery clustering

display. Clicking a bar will navigate to that particular moment in an animation.

Bars in blue are discoveries yet to be displayed in the dynamic discovery clustering

1Keywords stored in this table are discovery contents, such as dimension names, data item names,
tags, authors, and etc..
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display.

7.4.4 Discovery Table

Users can examine a group of discoveries, all displayed discoveries, or the entire

discovery collection from the discovery table (see Figure 7.1(6)). They can sort the

discoveries by different contents and manually construct discoveries groups.

7.4.5 Region Graph

A region graph, inspired by the substrate graph [88], presents the relationships

among a group of discoveries in detail. It also allows the users to compare two groups

of discoveries for shared or distinct information. The region graph can have one or

two columns, each for a discovery group to be examined. In Figure 7.3, the details

and the relations among discoveries in the same group are examined. In Figure 7.4,

two groups of discoveries are compared and associated. Nodes displayed in the region

graphs represent discoveries, which have the same visual representations (e.g., shapes

and colors) with the discovery particles in the dynamic discovery clustering display.

Layouts: In the region graph, discoveries are represented as particles in the same

way as the dynamic discovery clustering display. They are placed in nonoverlapping,

user-defined content substrates based on their contents. For example, in Figure 7.3,

each substrate is a rectangle with a distinct color. It represents a dataset whose

name is displayed underneath it. A substrate is evenly divided into rows, each of

which presents a dimension of the dataset appearing in the discoveries. The labels

of the dimensions are placed on the left of the rows. Only datasets and dimensions

appearing in the discoveries are displayed. Users can also map other contents to rows

(e.g., tags and authors). Each discovery is displayed in one or more rows according

to the dataset and the dimensions it is related to. Its horizontal position is tied to its

age. The oldest discoveries are on the right and the newest ones are on the left. When

a discovery is displayed in multiple rows (it happens when the discovery is related to

multiple datasets or multiple dimensions), the topmost particle is drawn in solid and
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the others are drawn with a blurring effect.

Users can learn the basic semantics of a discovery by its spatial location and

shape without reading its annotation. They can also easily identify how discoveries

are temporally related. Another advantage is that the proportionally-sized regions

indicate the relative cardinality of each region. For example, in Figure 7.3, users can

quickly identify that the dataset “smoking among adults by state” (see Figure 7.3(1))

has more dimensions involved in the discoveries than other datasets.

Figure 7.3: The region graph. The left part shows discoveries and their relationships.
The right part includes layout controls, link visibility controls, and discovery tables.
Nodes with “health” are yellow and nodes with “income” are red. Data item links
are blue.

Links: The region graph represents discovery relationships using directed links

between nodes. Discoveries could have multiple relationships, such as shared tags

and shared data items. They are distinguished using colors of the links. To reduce

clutter, users can interactively turn on/off a type of relationship. The thickness of a



90

link indicates the corresponding similarity measure. Users can hover their mouse over

a link to examine the relationship in detail. For example, in Figure 7.3(2), two nodes

are connected with a data item link since they share the same data item “Mississippi”.

Alignment for two groups: To compare two discovery groups, the region graph

horizontally places them in two columns (see Figure 7.4). To help users identify shared

regions and rows (they indicate shared contents), we consider two goals when laying

out the graphs: (1) any pairwise shared regions/rows should be placed closely to each

other; and (2) all shared regions/rows should be grouped and placed in prominent

positions (e.g., the topmost position). To achieve these goals, the following iterative,

greedy algorithm is used (we assume that both columns use dataset-dimension layouts

in the description):

Step 1: we denote a pairwise shared regions that represent the same dataset

between two columns as PRcommon. We denote the difference of the height between

PRcommon as Diffpr. Identify all PRcommon between two columns and put them into

a sorted queue (denoted as Qpr) where the one with the smallest Diffpr is first. For

each column, the rest of the regions (denoted as Runcommon) are placed into a sorted

queue (denoted as Qr) where the one with smallest height is first.

Step 2: take the PRcommon at the front of Qpr. Place each region of PRcommon

at the topmost position of the corresponding column. For each column, compute the

total height of regions that have been placed. Then compute the difference of total

height between two columns (denoted as Difftr). For the column with the smaller

total height, take the Runcommon at the front of its Qr and place it at the topmost

position and update Difftr. Repeat this step until Difftr reaches the minimum

value.

Step 3: repeat Step 2 until the Qpr is empty.

Step 4: for each column, take the Runcommon at the front of its Qr and place it at

the topmost position of the column. Repeat this step until the Qr is empty.
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Step 5: for each PRcommon, sort their rows by identifying overlaping rows and

place them on the topmost position of the region.

Figure 7.4 shows a result of the graph alignment. Links crossing two graphs

represent discovery relationships between the groups. If a discovery is contained in

both groups, the corresponding nodes in each column are connected by red, undirected

dot links (see Figure 7.4(1)).

Figure 7.4: Compare and associate two discovery groups using a region graph. Each
column represents a discovery group. Shared regions are indicated by the same colors
and labels. Shared discoveries are connected by red, undirected dot links. Nodes with
“Texas” are green and nodes with “California” are yellow. Data item links are blue
and tag links are green.

Changing layout: Users can change the contents mapped to the regions and rows

through a control panel, and hence organize the discoveries in different ways. They

can also manually adjust the order of vertical placement of the regions for a graph to

place regions of interest in prominent positions.

Filtering links: Users have multiple options to control the visibility of links to

reduce clutter.

Visualizing data: Users can select dimensions from the region graph to open a
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multidimensional display (see Figure 7.5). Within the display the related discoveries

will be highlighted, with flags indicating their types (see Chapter 6). In this way, users

can explore the visualization for new discoveries or examine existing discoveries for

refinement. This function is important in promoting new discoveries and hypotheses.

7.4.6 Other Interactions

Search: Users can search discoveries by a variety of discovery contents (see Figure

7.1(7)).

Manual selection: Users can manually select discoveries from any view by clicking

a discovery.

Annotation card: Users can hover their mouse over a discovery to examine its

annotation card (see Figure 7.1(8)). It provides a preview of the discovery by sum-

marizing its essential information using descriptive language (see Chapter 6). Key-

words in the annotation card are highlighted. The keywords with high importance

are enlarged.

7.4.7 Preserving and Sharing Results

In collaborative visual analytics, collaborators need to preserve and share their

analytic results, in term of organized discoveries and hypotheses, in a shared work

space. Users with different interests may want to organize discoveries in different

ways. In addition, a static view is not suitable for the dynamic nature of visual

analytics. Therefore, rather than providing a shared work space for persevering and

sharing analytic results, we allow users to record their results through a special type of

discoveries, namely the hypothesis discoveries. A hypothesis discovery contains a tag

given by users. The tag is also assigned to discoveries related to it as their hypothesis

contents. A screenshot of the common ground view is attached to the discoveries and

users can also make free notes. To review the work of other users, a user can search

for hypothesis discoveries. Furthermore, they can organize the discoveries by their

hypotheses (see Section 7.3).
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7.5 Use Case

To demonstrate how the system can be used to explore a large number of dis-

coveries generated by a diverse set of real users from real datasets, we imported 239

discoveries of 102 datasets from Many Eyes [89] to ManyInsights. Many Eyes [89] is a

popular web-based collaborative visual analytics system, where users visually explore

datasets contributed by themselves or others. They share their discoveries by posting

comments linked to specific visualization displays. A large number of discoveries are

reported daily by users from a variety of domains [13]. These discoveries come from

a wide range of datasets.

All the discoveries we imported were generated from multidimensional visualiza-

tion displays. They all contain one of two popular tags: “US” and “world”. Most

of them were generated from users’ comments linked to visualization displays. We

reviewed the comments and displays to extract their semantic contents, and manually

generated a formalized annotation for each discovery.

Consider Mary and Tom, two graduate students majoring in sociology in different

universities, are both investigating the quality of living by state in America. To

acquire information, they search Many Eyes for comments on related data. A large

number of comments are returned and it is time consuming to read them one by one.

Therefore, they use our system to explore these discoveries.

Identifying Clusters: One day, Mary logs into the system and searches discoveries

with the tag “US” (see Figure 7.1(7)). 179 discoveries are returned and displayed in

the overview interface. From the content cloud (see Figure 7.2(a)), she immediately

identifies three tags - “health”, “income”, and “crime”, which are important factors

related to the quality of living. To cluster the discoveries by these factors, she increases

the weight of the tag similarity to 0.9 and sets the importance of these three tags to a

value much higher than the remaining tags. She also assigns colors to discoveries with

the three tags, for example, yellow for discoveries with the tag “health”. She starts
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(2)

(1)

Figure 7.5: Revisit the visualization of the dataset “obesity by state”. An annotated
discovery is displayed in the visualization.

an animation in the dynamic discovery clustering display, and soon notices several

clusters (see Figure 7.1(1)). She is interested in the group of discoveries with the

tag “health” (see Figure 7.1(3)). She pauses the animation and selects this group for

further exploration.

Examining a cluster in detail: Mary opens a content cloud for this group, as shown

in Figure 7.2(b). The data item “Texas” in this figure catches her attention since it is

significant in this cloud. Mary then examines the group in a region graph (see Figure

7.3). She quickly locates a dataset, named “smoking among adults by state” (see

Figure 7.3(3)), involving more dimensions and discoveries than others. She thinks

that the smoking population is highly related to the quality of living, so she focuses

her exploration on this dataset. Based on the shapes and the annotation cards of

the nodes, she quickly learns the essential content of discoveries in this dataset. To

further investigate how discoveries about smoking are related to other discoveries, she

displays their links to others. An discovery about a cluster (see Figure 7.3(3)) catches

her attention since it has many links to other discoveries. She clicks the discovery to
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explore it in the annotation window (see Figure 7.2(c)). By reading the annotation,

she realizes that “Mississippi”, “Texas”, and other two states have similar high values

in percentage of smoking people. Mary finds many interesting links from this discovery

to other discoveries. For example, “Texas” is highly ranked in percentage of smoking

people (see Figure 7.3(3)) and is ranked low in health systems (see Figure 7.3(4)).

Hypothesis generation and validation: Following the link between (3) and (5) in

Figure 7.3, Mary observes that “Mississippi” is also highly ranked in percentage of

obesity (see Figure 7.3(5)). Mary thus makes a hypothesis that “Texas” is also high

in obesity. To validate her hypothesis, she selects the dataset “obesity by state”

and the dimension “percentage” from the graph to create a visualization (see Figure

7.5). From the visualization, she easily discovers that “Texas” (see Figure 7.5(2)) is

ranked the second highest in obesity percentage just behind “Mississippi” (see Figure

7.5(1)). Therefore, her hypothesis is confirmed. Mary makes an annotation for this

new discovery.

Mary then highlights all discoveries with “Texas” in the dynamic discovery clus-

tering display (see Figure 7.1(1)). She observes that several other discovery clusters

also contain discoveries about “Texas”. By examining them she collects more dis-

coveries showing low quality of living in “Texas”. She saves this result in a new

hypothesis discovery “living quality in Texas is low” and posts it in ManyDiscoveries.

The hypothesis is also attached to the relevant discoveries Mary found.

Comparing discovery groups: Later on, Tom logs into the system and organizes the

discoveries by their hypotheses in the dynamic discovery clustering display. He finds

the group of discoveries showing low quality of living in “Texas”, which was discovered

previously by Mary. Tom has investigated the quality of living in “California”, so he

is interested in continuing Mary’s investigation to compare discoveries about “Texas”

and “California”. He does so by making a discovery group for “Texas” and another

for “California” and compares them in the region graph. He quickly locates several
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shared discoveries, datasets, and dimensions on the top positions of the region graph

(see Figure 7.4). For example, he finds that “Texas” and “California” are extremely

high in prison population (see Figure 7.4(1)) and illegal immigration population (see

Figure 7.4(2)). Tom then selects two interesting discoveries in the “California” group

(left column) and examines their links to the “Texas” group (right column). Here, he

chooses to display the tag and data item links and filters out links that contain general

terms such as “US” and “Texas”. While examining this display, he realizes that

the discoveries about “unemployment population” (see Figure 7.4(3)) are related to

discoveries about “uninsured population” (see Figure 7.4(4)) and “prison population”

(see Figure 7.4(1)) because they share the same tags.

(1)

(a)

(2)

(3)

(b)

Figure 7.6: (a) A total of 97 discoveries are displayed in the dynamic discovery
clustering display (Jan. 2010). (b) 169 discoveries in the dynamic discovery clustering
display (Nov. 2010). Data item keyword colors: “Texas” - green and “California” -
yellow. Content weights: data item - 0.6 and tag - 0.4. (3) is a cluster of discoveries
with both keywords “Texas” and “California”.

Tracking discovery evolution: Tom examines the temporal trends by playing the

animation in the dynamic discovery clustering display. Figure 7.6(a) and Figure

7.6(b) show two screenshots during the animation, where the discoveries about both

“Texas” and “California” Tom has explored are highlighted in blue halos. During the

animation, Tom notices that the highlighted group shown in Figure 7.6(a-1) gets much



97

bigger by adding several outliers about “Texas” and “California”. He also notices a

newly formed discovery group (indicated by lighter colors, see Figure 7.6(b-2)). He

quickly learns that this group is about “unemployment” and “job” issues according to

the label and the content cloud. He highlights discoveries with these keywords. From

the timeline view (see Figure 7.6(b-3)), he finds that most highlighted discoveries

(they are in orange) were developed after Jul. 2009. Based on this pattern, Tom

thinks that more and more people are concerned about how “unemployment” affects

their quality of living after the economic crisis. Therefore, “unemployment” and “job”

should be important topics for his further investigation of quality of living.

7.6 User Study

A controlled experiment has been conducted to evaluate the effectiveness and

efficiency of the region graph. The study was a 3×8 (system types×data) between-

subjects design. We compared the region graph with two baseline tools in individual

analysis and asynchronous collaboration analysis situations. Participants were asked

to use tools to associate and compare discoveries in these two situations. We hypoth-

esized that in both of the situations, subjects could spend the least time and make

the highest accuracy using the region graph, and would express a preference for the

region graph over the baseline tools.

7.6.1 Baseline Tools

Two baseline tools were compared with the region graph (see Figure 7.7 (a)). The

first baseline tool was used to simulate the manual association approaches used in

online visualization systems such as Many Eyes [13] and sense.us [54]. It requires

users to manually inspect, associate, and compare discoveries in a faceted discovery

search interface (Chapter 6). Users can search discoveries using keyword search and

faceted search and browse their semantics in annotation cards. When comparing two

discovery groups, two search interfaces were provided.

The second baseline tool automatically associates discoveries and represents their
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Figure 7.7: The visualizations used in the user study. The same discovery annotation
is selected and highlighted in two visualizations. (a) A region graph. (b) A node-link
diagram graph.

correlations in a node-link diagram (see Figure 7.7 (b)), similar to the existing struc-

tured organization tools (e.g., [51] and [60]). The layout was based on force-directed

layout [90]. Each label shows an Id of a discovery. Users can click on a node to explore

the discovery in an annotation card. The tool also supports basic graph interactions

such as link selection and node filtering. When comparing two discovery groups, two

graphs were constructed.

7.6.2 Analytic Settings and Tasks

We considered two analytic situations: individual analysis situation which in-

tended to simulate individual dynamic knowledge construction process, and asyn-

chronous collaboration situation which intended to simulate collaborative analysis.

In the individual analysis situation, we assumed that subjects were about to review

and explore the discoveries created by their own so that they had been familiar with

both the datasets and the discoveries being explored. In the asynchronous collabora-

tion situation, we assumed that subjects were about to explore the discoveries that

had been created by their collaborators. Therefore, they had no prior knowledge
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about the discoveries.

In each analytic situation, two evaluation sessions were conducted: an association

session and a comparison session. Each session contained three task groups with four

tasks each. The tasks included the general network exploration tasks described in

[88] as well as tasks specific to discovery exploration.

Association session: subjects were asked to explore a single discovery group. The

session had three task groups:

• Basic association explored the basic structure and relationships in the discovery

group. For example, given a discovery, find all the associated discoveries, find

the strongest links, and find the links with a given attribute.

• Attribute based association made a deeper understanding by considering the

attributes of the discoveries. For example, find the links of the discoveries of

the given datasets, dimensions, and types or find the proportion of the links

from a discovery that goes to others with the given dimensions.

• Attribute aggregation obtained an aggregation of the attributes for the discov-

ery group, which helped to make sense of the datasets and analysis process

for adjusting future exploration directions. For example, find the datasets or

dimensions associated with the most links.

Comparison session: subjects were asked to compare two discovery groups. The

session had three task groups:

• Basic comparison compared the basic structure and relationships for the two

discovery groups. For example, find the shared discoveries between the groups

or the links across the groups.

• Attribute based comparison compared the two groups regarding to specific dis-

covery attributes. For example, find the shared discoveries with given datasets

and dimensions.

• Attribute aggregation compared the aggregation of attributes between the two

discovery groups. For example, find the dimensions associated with the most/least
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links across the two discovery groups or finds the datasets containing the most

shared discoveries.

7.6.3 Datasets and Discoveries

To generate data for the user study, we collected 174 real users’ discoveries from

Many Eyes [13]. The discoveries were captured from users’ comments linked to mul-

tidimensional visualizations. We reviewed each comment, extracted its essential in-

formation about the discovery, and manually generated a formalized annotation for

it (Chapter 5). The collected discoveries were generated from 49 datasets containing

the tag “U.S.” and involved at least one of the states in U.S.. Therefore, most of the

collected discoveries can be associated by their tags and data items.

For each task session, we manually generated two discovery groups: a small group

(15 discoveries) and a large group (30 discoveries). The discoveries in each group

were randomly selected from semantically correlated datasets that shared at least

two tags. For example, discoveries generated from the datasets “Prison Population

by State”, “Overall Violent Crime Rate”, and “Murder by State” were grouped in the

same group since all the datasets contained the tags “U.S.” and “criminal”. In the

comparison session, each discovery group was further divided into two sub-groups.

Pairs of the sub-groups had similar sizes and shared at least one discoveries. Figure

7.1 summarizes the number of discoveries and datasets used in the user study.

7.6.4 Analysis Condition and Procedure

A total of 15 subjects (12 males and 3 females) participated in the study. The

subjects included 9 graduate students majoring in computer science and statistics and

6 data analysts working in various domains such as financial analysis and bioinfor-

matics. All the subjects were self-identified as having data analysis and visualization

experience and had strong English reading ability. Before the user study, the subjects

were evenly divided into three groups: one group used the region graph, one group

used the search interface, and one group used the simple system. The same discover-
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Table 7.1: The design of the region graph evaluation.

Situation Session Discovery Size Dataset
Size

Individual
exploration

Association
Small: 15 3

Large: 30 7

Comparison
Small: 15 (sub1: 8, sub2: 7) 5

Large: 30 (sub1: 16, sub2:
14)

8

Asynchronous
collaboration

Association
Small: 15 5

Large: 30 9

Comparison
Small: 15 (sub1: 9, sub2: 8) 5

Large: 30 (sub1: 19, sub2:
17)

7

ies and tasks were used for all the groups. The subjects took the experiment one by

one on the same laptop following the same process.

At the beginning of the study, a 40-minute tutorial was provided by an instructor

to explain the discovery annotations and show examples of how to associate the

discoveries using the tool. The subjects were also instructed to explore the datasets

of the discoveries using parallel coordinates and scatter plot. The individual analysis

was conducted right after the tutorial, followed by the asynchronous collaboration.

At the beginning of the individual analysis, the subjects were asked to browse and

review the discoveries for 30 minutes to understand them. In each situation, the

association session was first conducted, followed by the comparison session. In each

task group, there were first practical tasks, second experimental tasks (the small-size

discovery group was first provided, followed by the large-size discovery group), and

survey questions. In each task, we recorded the task results and completion time.

7.6.5 Results

We recorded two types of results: quantitative results (completion time and cor-

rectness) which were captured on the tools and the subjective preferences which were

captured via survey questions. They were reported in the following sections.
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7.6.5.1 Task Completion Time and Correctness

The comparisons of average completion time of the three task groups in individual

analysis situation are shown in Figure 7.8(a) for small-size discovery groups and in

Figure 7.8(b) for large-size discovery groups. The same comparisons for asynchronous

collaboration situation are shown in Figure 7.9(a) and Figure 7.9(b).
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Figure 7.8: The results of individual analysis situation. The task groups with “A” are
in the association session. The task groups with “C” are in the comparison session.
(a) Using small discovery groups. (b) Using large discovery groups.

In all the situations, the region graph achieved less completion time than the

search interface and node-link diagram graph, which confirmed the first hypothesis.
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Figure 7.9: The results of asynchronous collaboration situation. The task groups with
“A” are in the association session. The task groups with “C” are in the comparison
session. (a) Using small discovery groups. (b) Using large discovery groups.

In particular, significant differences can be observed from:

• Average completion time for attribute based tasks and aggregation tasks. The

region graph showed the strength in exploring the discovery attributes, which

were achieved by the new features such as a novel node layout and representation

techniques.

• Average task completion time for large discovery group. The region graph

showed its strength in supporting large scale exploration.



104

• Average task completion time for comparison sessions. The region graph pro-

vided advanced visual interface to support the visual comparison between dif-

ferent discovery groups.

• Average task completion time for asynchronous collaboration. The new feature

of the region graph allowed the subjects to more quickly understand and reveal

the hidden information in their unfamiliar discoveries.

The average accuracy rate for all the sessions in individual analysis was 84.5% for

the region graph, 68.2% for graph, and 47.4 % for the faceted discovery search. The

average accuracy rate for all the sessions in asynchronous collaboration was 80.5% for

the region graph, 64.8% for graph, and 40.5 % for the faceted discovery search. The

results suggested that subjects with the region graph could associate and compare

discoveries with highest accurcy. The second hypothesis was validated.

Table 7.2: The average ratings of survey questions.
Situation Session Task

Group
Region
Graph

Graph Search

Individual exploration

Association
Basic 5.2 4.4 2.4

Attribute 5.6 3.0 1.8

Aggregation 5.4 2.4 1.8

Comparison
Basic 5.6 2.8 1.4

Attribute 5.2 1.6 0.6

Aggregation 4.8 1.4 0.8

Asynchronous
collaboration

Association
Basic 5.0 4.0 2.0

Attribute 5.0 1.6 1.6

Aggregation 5.2 1.4 0.8

Comparison
Basic 5.2 2.2 0.4

Attribute 4.8 1.4 0.6

Aggregation 4.6 1.2 0.8

7.6.5.2 Subjective Preferences

At the end of each task group, the subjects were asked to answer survey questions

with a 7-point Likert scale (0=strongly disagree, 6=strongly agree) to rate the use-

fulness and confusedness of the tools. General survey questions were also provided at

the end of the user study. A total of 32 questions were provided. The average score
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for the region graph was 5.1, 2.4 for the node-link diagram graph, and only 1.2 for

the simple search interface. Overall, the subjects found the region graph more helpful

and less confusing than the other two tools. Table 7.2 summarizes the comparisons

of the average score for each task group. Significant differences are observed in at-

tribute based tasks and aggregation tasks in all the analysis sessions and situations.

The results prove the benefits of the region graph and confirms our third hypothesis.

7.7 Conclusion

The visual analytics toolkit presented in this chapter is among the first efforts

on supporting flexible discovery correlation exploration in visual analytics. The case

study and user study suggested that the toolkit greatly reduces human efforts and

enhances the visual sense making process by allowing analysts to quickly construct

exploratory overviews for a large amount of evolving discoveries, flexibly study their

relations and patterns, as well as effectively share and exchange discoveries. We

argue that such features are essential and should be supported by all visual analytics

systems. In addition, our approach, namely the semi-automatic annotation combined

with semi-automatic discovery correlation, is general enough to be extended to other

data types, such as geospatial data and graph data. The approach is independent

from the visualization platforms where the discoveries are captured and thus it can

be used in a wide range of visual analytics applications.

In the future, we plan to extend the toolkit to support the exploration of discover-

ies generated from miscellaneous data sources and different visualization tools. Such

a generalized approach accommodating various datasets and scenarios will benefit a

diverse range of communities across scientific and social domains.



CHAPTER 8: CASE STUDY

Although the individual components of ManyInsights, such as the Clicck2Annotate

and the region graph, have been evaluated through formal user studies, it is also nec-

essary to understand how these components work together to benefit complex analytic

tasks. In this chapter, we present two long-term case studies of ManyInsights con-

ducted by domain experts with real datasets and real analytic tasks. The case stud-

ies provided an in-depth understanding of how the proposed discovery management

framework and targeted techniques facilitate exploratory data analysis.

8.1 Introduction

In the previous chapters, we have shown the effectiveness and efficiency of the in-

dividual components of ManyInsights through controlled user studies. During these

studies, the participants were asked to perform predefined tasks (e.g., annotating dis-

coveries) on preselected data. The performance time and accuracy of the participants’

response were recorded and analyzed. However, our controlled studies had inherent

problems such as the lack of real-use context [32]. In contrast, a real-world analysis

scenario with less guide and more in-depth could provide stronger endorsement for our

discovery management approaches. Moreover, it is necessary to provide a full picture

of the discovery management framework, understanding how the individual discovery

management components work together to support the visual reasoning process.

Bearing these needs in mind, we conducted two long-term studies to examine

the uses of ManyInsights in two real-world analysis scenarios: a single user analy-

sis scenario and an asynchronous collaborative analysis scenarios. The first scenario

intended to understand how the system can impacts the dynamic knowledge con-

struction process, while the second scenario intended to understand how the system
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can benefit the common ground construction in collaboration. The studies were es-

sentially longitudinal studies with real analytic tasks and real datasets. During the

studies, we worked closely with the domain experts to understand their discoveries

and analysis strategies. Our observations and interviews provided strong support for

the usefulness of ManyInsights and its underlying discovery management framework.

The limitation of the system is also discussed.

8.2 Individual Analysis Case Study

We have conducted a long-term case study with a domain expert using real

datasets and real analytic tasks. The study was focused on the domain expert’s

discover management activities in a long-term data exploration process. More specif-

ically, the study intended to answer the following questions:

• How do the proposed discovery management framework impact domain experts’

visual analytics process?

• How do the different discovery management functions supported in ManyIn-

sights benefit domain experts’ long term analytic tasks?

• What improvements are further anticipated for ManyInsights?

A researcher with over 6 year research experience on environmental policy par-

ticipated in the study. He was interested in analyzing energy-related carbon dioxide

emissions in U.S., so he used ManyInsights to perform an 8-week data analysis on

relevant datasets.

8.2.1 Problem, Tasks, and Datasets

The carbon dioxide emissions from energy production (e.g., electricity and trans-

portation) are primarily responsible for the global anthropogenic climate change.

Therefore, understanding and reducing energy-related carbon dioxide emissions has

become a critical global issue. In the case study, the researcher conducted two specific

analytic tasks to analyze energy-related carbon dioxide emissions in U.S.. The first

task was to identify which states have the highest CO2 per capita emissions and why
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Table 8.1: A partial list of datasets used in the case study.

Dataset Example dimensions
U.S. per capita carbon dioxide emis-
sion (2005)

Per capita emissions

U.S. census (2005) Population, Income per capita,
Age, Educational attainment,
Housing units, Area, Density

U.S. transportation fuel (2005) Highway use, Non-highway use, To-
tal use

U.S. transportation fuel use and emis-
sion (2005)

Transportation fuel emission, Fuel
consumption

U.S. average electric power emissions
(2005)

Electricity emission, Generation

U.S. electricity consumption by sector
(2005)

Residential, Commercial, Industrial

U.S. average household emission by
state (2005)

Household fuel emission, Residen-
tial

U.S. electricity generation by state
(2005)

Source, Generation

U.S. annual heating degree days:
(2005)

Apr., Jan.

U.S. average electricity price per kWh
(2005)

Residential, Commercial, Industrial

U.S. average gasoline price per gallon
(2005)

Gasoline prices by formulation,
Grade, Sales type

they are higher than other states. The second task was to provide recommendations

to reduce the emissions for the states with high CO2 emissions.

The researcher came up with his own data which included 22 multidimensional

datasets. The number of their dimensions ranged from 4 to 32. Table 8.1 provides a

partial list of these datasets as well as their key dimensions.

8.2.2 Method

The main methods of the case study were participatory observations and inter-

views. During the 8-week case study, weekly meetings were conducted between the

researcher and an instructor, each of which included a 2-hour data exploration ses-

sion. A training session was conducted before the data exploration session in the

first meeting, in which the instructor introduced ManyInsights to the researcher and

taught him how to use it. In each data exploration session, the researcher was asked
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to use ManyInsights to conduct the two tasks. Four visualizations (parallel coordi-

nates, scatter plot, bar chart, and pie chart) were used for data exploration based

on the researcher’s request. The instructor observed the process and provided in-

structions when the researcher encountered any problems. The analytical artifacts

generated by the researcher, such as insight annotations, hypotheses, and screenshots

of important visualizations, were collected, such as insight annotations, hypotheses,

and screenshots of important visualizations. After each data exploration session, the

instructor interviewed the researcher to collect his feedback regarding the system and

to understand his analysis process and findings.

8.2.3 Observed Analysis Procedure

The researcher began by exploring the 2005 U.S. per capita CO2 emissions dataset.

He identified several states with extremely high per capita emission, such as “Alaska”

and “Wyoming” (see Figure 8.1 (1)). He used the outlier and rank templates to

record them. The researcher also noticed a significant difference for per capita emis-

sion between “California” and “Texas”, the two largest states in U.S. (see Figure 8.1

(2)). He thought this was an interesting pattern and used the difference template to

annotate the discovery.

Next, the researcher focused on the visual exploration of three datasets, namely

transportation fuel use and emission, electric power emissions, and average house-

hold emission. They contained important energy consuming information. For each

dataset, the researcher identified the states that ranked the highest and the lowest

in a variety of dimensions and annotated them accordingly. The captured discoveries

were then visually explored in the region graph. The researcher quickly identified

several dimensions of interest from the energy consuming datasets, such as “trans-

portation fuel emission” and “household fuel emission”. The discoveries about these

dimensions included states that also appeared in the discoveries about high per capita

overall emission. The researcher called these dimensions the key emission categories.
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(1)

(2)

Figure 8.1: The visualization of the 2005 U.S. per capita CO2 emissions dataset.
Several interesting patterns were identified from the visualization. (a) “Alaska” and
“Wyoming” had extremely high per capita emissions. (b) “California” and “Texas”
had big variation in per capita emission.

After identifying the key emission categories, the researcher explored more datasets

related to each category to investigate the factors that caused the emission. In this

process, he focused on discoveries about dimension correlations and explored these

discoveries using the region graph, as shown in Fig. 8.2. The region graph helped

the researcher to develop a global picture of the factors from multiple datasets. For

example, the researcher captured several strong correlations in the transportation fuel

use and emission dataset (e.g., “fuel consumption” and “transportation emission”)’,

the census dataset (e.g., “population density” and “per capital fuel consumption”),

and the transportation fuel dataset (e.g., “fuel price” and “fuel consumption”). By

associating these discoveries in the region graph (see Fig. 8.2) and examining the

relationships in detail, the researcher concluded that low population density area and

low fuel price may cause more highway driving and fuel use, which would account for

higher transportation emissions. He commented that the region graph clearly sum-

marized the dimension relationships and allowed him to reach conclusions quickly.

As the data exploration continued, many discoveries were captured and anno-

tated. The researcher extensively used the faceted discovery search and the dynamic
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discovery clustering display to keep the awareness of these previous analysis results

and guide the current exploration. More specifically, when exploring a new dataset,

the researcher frequently used the faceted discovery search to identify the dimensions,

data items, and tags most frequently captured in the previous analysis sessions. This

important information was then used to aid the analysis of the current data for new

hypotheses. He also grouped discoveries in the dynamic discovery clustering display.

He often assigned high importance to the popular items identified from the cluster

labels in clustering. In this way, the researcher could easily inspect the discoveries

related to these important items and revisit their visualizations for new discoveries.

(1)

(2)

(3)

Figure 8.2: Explore the dimension correlations in the region graph.

Toward the end of the study, the researcher utilized the dynamic discovery cluster-

ing display and the region graph to review the captured discoveries and find evidence

that could explain the high emissions of the states. The dynamic discovery clustering
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Figure 8.3: Compare two discovery groups about “Texas” (left) and “California”
(right) in the region graph. All the discoveries contain the keyword “transportation”.

display allowed the researcher to explore the vast amount of discoveries in a divide-

and-conquer manner. More specifically, the researcher first grouped the discoveries

by the states they involved. After several clusters were observed, he adjusted the

attribute importance to find subsets that contained interesting dimensions or tags

within each cluster. By partitioning the clusters into smaller groups, the researcher

could flexibly explore and compare them in the region graph, in which the differences

between states in various dimensions could be easily identified. Fig. 8.3 shows an ex-

ample where a subset about “Texas” and a subset about “California” were compared

side-by-side. All the discoveries were related to transportation. By exploring the links

and revisiting the discoveries in the visualization, the researcher easily identified the

big difference between “Texas” and “California” in “registered vehicles” and “public

transportation”. He also quickly captured the difference of “fuel price” in “Texas”

and “California”. As a result, the researcher concluded that these factors could ex-

plain why “Texas” had much higher transportation emission than “California” even

though they had similar population.

To conduct the second task, the researcher first reviewed all the correlation discov-

eries in the region graph and identified controllable factors among them. For example,
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“average gas price” and “share of public transportation” were important factors af-

fecting transportation emission and could be controlled by policies. The researcher

grouped all the correlation discoveries that contained the controllable factors and as-

sociated them with the discoveries of states with high emission in the region graph.

In this way, the researcher quickly determined the controllable emission factors for

these states and made the recommendation accordingly. For example, if a state with

high transportation emission had very low fuel price, the researcher would suggest

increasing the fuel price to reduce the transportation emission for this state. In this

case study, the researcher annotated 147 discoveries and created 15 hypotheses.

8.2.4 Feedback

Overall, the researcher reported that he had enjoyed the case study. He also

showed enthusiasm for ManyInsights. He commented that the discovery management

functions provided in ManyInsights incorporated well into his natural analysis flow

and that they helped drive him to perform in-depth analyses. He particularly liked

the ease with which he was able to conduct semi-automatic discovery annotation,

grouping, and association in a single system. He commented that previously he

had to use multiple tools, such as a text editor, tables, and organization charts to

manually record and manage discoveries. It was time-consuming to transform and

share the results among these tools. ManyInsights freed him from these tedious tasks

so that he could spend more time on analyzing important discoveries, detecting the

hidden relationships, and conducting reasoning tasks. Moreover, the researcher was

impressed by the interactivity and visual interfaces of ManyInsights, such as visually

grouping, associating, and interactively browsing discoveries. He thought they were

very useful for integrating the discoveries and drawing hypotheses.

Regarding to the specific components and functions, the researcher commented

that the semi-automatic annotation approach was very useful and the predefined

templates could fulfill his annotation needs. The researcher particularly liked the
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hypothesis generation function. He commented, “Previously, I would have to use the

text editor to record the hypotheses and manually associate the findings to the hy-

potheses. It required much more efforts and I could easily lose track of the associated

findings.” Moreover, the researcher pointed out that the tag function was extremely

useful, especially for searching and organizing discoveries.

The researcher commented that the faceted discovery search was very intuitive and

enjoyable to use. In the training session, he showed a great interest to the interface

and grasped it with little instruction. In the analysis process, the researcher was able

to examine the most frequent items of each attributes through the interface, which

offered great convenience. He commented, “It helps me quickly keep an awareness

of the analysis state at the moment, such as which datasets had been explored a

lot and which one requires more explorations. Manually obtaining this information

could require many efforts and distract me from the ongoing analysis.” The scented

discovery browsing was similarly useful, “Every time I revisited a visualization I would

first examine the small indicators to check what I had [discovered]. The function led

to many unexpected findings and prevented me from making redundant annotations.”

The researcher pointed out that the region graph was incredibly useful and it was

among the most frequently used tools during the study. He commented, “Overall,

the region graph is a wonderful tool for summarizing large numbers of discoveries and

drawing conclusions from them. The layout, the node placement and representation,

and the links help me easily interpret the interrelationships and form a comprehen-

sive understanding of the discoveries I captured.” The researcher was thrilled by the

feature of simultaneously comparing the insight groups. He said, “The visual compar-

ison is extremely useful for conducting the state-to-state comparison task. It allowed

me to identify the differences and similarities quickly and effectively.”

The researcher also suggested potential future improvements. For example, he em-

phasized the importance of associating discoveries involving dimensions at different
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levels of a dimension hierarchy. For example, a yearly emission trend might provide

important context for analyzing monthly or quarterly emissions. The researcher also

desired a dynamic update function for the region graph so that the newly captured

discoveries can be dynamically displayed and associated with existing discoveries.

Other suggestions included more flexible data management functions such as split-

ing/merging datasets.

8.3 Asynchronous Collaboration Case Study

An important goal of managing discoveries is to facilitate collaborative analysis.

To better understand the use of the proposed approaches in collaboration, we con-

ducted a preliminary user study for asynchronous collaboration using ManyInsights.

The study focused on the common ground construction and had the following spe-

cific goals: (1) to understand how users construct common ground using the discovery

management functions in ManyInsights; and (2) to learn how well the various func-

tions support their efforts in this process. The study was essentially a longitudinal

analysis that was focused on small numbers of users (both experts and novice users)

over long time periods. In particular, the case study consisted of two sessions, namely

an individual analysis session and an asynchronous collaborative session. They were

designed to simulate real world collaborative analytic procedures.

8.3.1 Procedure

We first ran a 2-week individual analysis session with 5 graduate students, all of

whom were Computer Science majors and had participated in our previous user study

with Click2Annotate. They were asked to explore two datasets individually using

either scatterplot or parallel coordinates, and annotate their discoveries using the

Click2Annotate tool. The first dataset is the NFL football season data (75 dimensions

and 32 data items). Participants were instructed to discover discoveries about key

factors for a football team to win more games. The second dataset is the fast food

nutrition data (9 dimensions and 274 data items). Participants were instructed to
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discover discoveries that determine the healthiest fast food restaurant. The tools

and data were installed in portable laptops so participants could perform the tasks

whenever convenient. They tagged discoveries with predefined keywords or those

created by themselves. The generated annotations were automatically collected. After

the first session, we collected 43 discoveries for the NFL football season data and 67

discoveries for the fast food nutrition data.

Next, the asynchronous collaborative session was conducted. Participants were

instructed to use the system separately to review the discoveries created in the first

session. Seven graduate students attended this session, including five existing students

(experts) and two novice students not participating in the first session. After training,

participants were instructed to review the entire discovery collections for each dataset,

followed by free exploration in which they queried and reviewed discoveries of interest.

There was no time limit but all the participants completed their work within 3 hours.

We observed and recorded the screen of the whole process and conducted interviews

after the session.

8.3.2 Findings

Our key findings were derived from the asynchronous collaborative session with

observations and users’ feedback. First, we observed that author information was

commonly used to organize discoveries in the initial period of common ground con-

struction. In particular, three participants used authors to group discoveries at the

beginning. Thereafter, they used region graphs looking for shared information be-

tween authors. Four participants used color encodings to distinguish discoveries gen-

erated by different authors. One participant grouped discoveries by dimensions and

colored them by authors, when reviewing fast food nutrition data. He then divided

five authors into three groups according to their exploration focuses. This finding

answers the call for supporting role assignment in collaborative visual analysis [15].

Second, during the free exploration process, we observed that the rich set of views
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provided by our system allowed experts and novice users to use different exploration

strategies. Most experts first searched discoveries generated by themselves and se-

lected them on the timeline. Then, they used the timeline to navigate to a particular

moment, created a group for the selected discoveries, and highlighted the group. By

tracking the evolution of this group and manipulating the visual structure, they con-

tinuously added correlated discoveries into the group. They further investigated the

group using either annotation cards or the region graph to browse and relate them.

In this process, searching and sorting on discovery or keyword tables are the most fre-

quent actions taken by the experts. In contrast, we noticed that novice users mostly

relied on content clouds to manipulate and organize discoveries. They would spend a

longer amount of time on the clouds and find important items to guide them in further

exploration. However, both novice users and experts used content clouds intensively

in exploring individual groups.

The feedbacks from the participants indicated that the system helped them under-

stand and manipulate each other’ discoveries, and was useful in complex collaborative

tasks. When asked about specific features, participants were greatly impressed by the

dynamic organization of discoveries, the abundant interactions (e.g., color coding, an-

notation card, and multiple selection tools), and the ability of comparing discovery

groups with region graphs. One participant with Many Eyes experiences compared

our system to Many Eyes, “I really like the way to visually present and group discov-

eries. Even more I can change the group at will. In Many Eyes, I have to endlessly

search keywords and read hundreds of posts. It is really boring”. Regarding spe-

cific tasks, one participant emphasized that grouping discoveries by data similarity

was particularly powerful in understanding NFL football data, “When I originally

explored this data, It really messed me up since there is more than 70 dimensions!

But after I grouped discoveries and reviewed them, I suddenly got some interesting

correlations about dimensions. It really helps”.
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8.4 Conclusion

In this chapter, we presented long-term case studies to evaluate the ManyInsights

and its underlying framework in real-world exploratory data analysis. The study pro-

vided strong support for the usefulness of ManyInsights and its underlying discovery

management framework. Two aspects of ManyInsights turned out to be particularly

helpful: semi-automatic discovery annotation and flexible correlation exploration.

The studies also inspired the improvements and future directions of our work, which

are summarized in Chapter 9.

We also recognize the limitation of the case studies: they did not compare per-

formance against other systems or more traditional methods. In the future, we will

conduct more concrete comparison to previous methods (manually recording and as-

sociating the discoveries etc.). Benchmark datasets, such as the terrorism detection

data provided by IEEE VAST contests [91], and synthesized datasets with embedded

discoveries and hypotheses will be used for controlled result comparison. Since the

discovery management has a very broad application domain, we will involve more

experts from different application domains in long-term evaluation of ManyInsihts.

Choosing more applications would increase the confidence in the results and provide

a deeper understanding of the impacts of the framework. Finally, we will publish

ManyInsights online for public tests. We will collect user feedbacks to evaluate its

utility, usability, and scalability, and thus refine the system.



CHAPTER 9: CONCLUSION

This final chapter contains concluding remarks about the work presented in this

dissertation. First, we review the main contributions of this dissertation. Secondly,

we discuss opportunities for future work.

9.1 Review of Dissertation Contributions

This dissertation identifies an emerging gap between existing visual analytics sys-

tems and effective decision making: decision making often involves the annotation,

browsing, retrieval, organization, association, and sharing of large amounts of discov-

eries; few of visual analytics systems provide general and scalable solutions to support

these discovery management activities. In response, this dissertation contributes a

general framework, novel techniques, and a system to bridge this gap.

The key principles of discovery management, introduced in Chapter 1, were look-

ing forward and looking backward and constructing common ground. They aimed to

support dynamic knowledge construction and collaborative visual analytics, respec-

tively. We also identified a set of discovery management activities that are essential

for supporting the principles, including discovery annotation, browsing, retrieval, or-

ganization, association, and sharing.

To support these activities, we contributed a general discovery management frame-

work in Chapter 3. In this framework, we introduced the pattern as core concept to

achieve the effectiveness and efficiency of discovery management. We contributed the

core idea of using pattern taxonomy to enhance the automation and effectiveness of

different discovery management activities. Based on this idea, we explored a visual

exploration paradigm to integrate the discovery management activities with interac-

tive visual exploration. Using this taxonomy and the paradigm, we contributed a
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variety of discovery management techniques:

Taxonomy: We constructed a pattern taxonomy for multidimensional data (Chap-

ter 4). The taxonomy provides a categorization for the vast number of discoveries

in multidimensional datasets and defines their common characteristics. It provides a

solid foundation for all the discovery management techniques.

Annotation: We proposed a novel discovery annotation approach Click2Annotate

(Chapter 5) which allows users to generate high quality discovery annotations with

reduced efforts. We contributed annotation template techniques for automatically

retrieving context of discoveries from data and generating highly formalized and se-

mantically rich annotations based on the information. We also contributed multiple

interactive techniques to modify and refine the annotations. Finally, we conducted a

user study to evaluate Click2Annotate and found that it could enhance annotation

efficiency and improve the quality of annotations.

Browsing and Retrieval: We developed two techniques to support flexible dis-

covery browsing and retrieval (Chapter 6). The faceted discovery search which was

informed by the faceted search allows users to flexibly search discoveries using their

rich context and visually explored their semantics. The scented discovery brows-

ing seamlessly integrates discoveries with interactive data visualization and provides

substantial flexibility to browse and explore them.

Correlation Exploration and Sensemaking: We also contributed a visual analytics

approach to help users explore the correlations among discoveries. Our approach en-

ables automatic discovery gathering, organization, and association (Chapter 7) and

provides a rich set of visualization and interaction techniques to help users review,

explore, and compare discoveries in detail. In addition, hypothesis generation tech-

niques was introduced to facilitate sensemaking and common ground construction

tasks. We also conducted user studies to evaluate the effectiveness and efficiency of

the approach in different analysis environments using different datasets.
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The above techniques were implemented in a prototype system, ManyInsights,

for managing discoveries in multidimensional data. We contributed two long-term

case studies to evaluate ManyInsights using real analytic tasks and and real datasets

(Chapter 8). The case studies focused on understanding the collaboration among the

discovery management techniques in dynamic knowledge construction process and

asynchronous collaborative visual analysis. The results provided strong support for

the usefulness of ManyInsights and its underlying discovery management framework.

In conclusion, this dissertation is significant in the fields of information visualiza-

tion and visual analytics due to the following reasons:

• It provides a general framework that explores taxonomy + exploration paradigm

+scalable techniques discovery management solution to bridge the gap between

existing visual analytics systems and decision making;

• The proposed taxonomy is among the first taxonomies of patterns in the fields

of information visualization and visual analytics. It provides a foundation for

future search of discovery management;

• The looking forward and looking backward and constructing common ground

principles break new ground in large-scale data exploration research. It has the

potential to be used in a wide range of applications;

• The dissertation contains many standalone, innovative ideas such as semi-automatic

discovery annotation and automatic discovery correlation calculation;

• The prototype ManyInsights is among the first efforts towards effective and

efficient discovery management in multidimensional data exploration; and

• The long-term case studies suggest new evaluation metrics and methods for

conducting experiments for discovery management.

9.2 Future Work

Based on the contributions of the work, this dissertation also promises new re-

search opportunities for current visual analytics research. As suggested by our liter-
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ature survey in Chapter 2 and domain expert study in Chapter 8, there is a great

deal of future work that can be done to enrich and improve the functionality of the

discovery management framework. Here we elaborate some of the limitations of this

dissertation and corresponding future work:

Division Construction: In this dissertation, we assume that high dimensional

datasets have been partitioned to multiple subsets small enough to be explored by

existing visualization techniques for detecting patterns. However, in real-world ap-

plications, this is often a challenging work, especially when combining the existing

subspace construction techniques (e.g., [92]) with the proposed discovery management

activities. For example, partitioning a high dimensional data might break a discov-

ery or its context into pieces. Missing any of these pieces might lead users to draw

incomplete conclusions or wrong hypotheses. Moreover, current division construction

approaches might prevent users from grasping an overview of datasets, resulting the

unawareness of the interrelations between discoveries in different generated divisions.

To address these problems, new division construction approaches will be explored.

The new approaches will combine the advanced data mining techniques, such as fea-

ture selection [93], with the proposed pattern taxonomy to automatically partition

the dataset according to the characteristics of the discoveries. As a result, the in-

formation loss is reduced and the completeness of the discoveries is maintained. It

will also employ state-of-art visualization techniques to help users dynamically con-

struct divisions according to their diverse exploration focuses and visually convey the

interrelations of discoveries in different divisions.

Guided Pattern Discovery: Recommendation and subscribe/publish mechanisms

have been widely used in online systems for online shopping [94] and broadcast ser-

vices [71]. However, few of these ideas have been used in the area of multidimensional

data exploration. We argue that integrating these innovative ideas into the proposed

discovery management framework will benefit the dynamic knowledge construction
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from massive, high dimensional datasets. In particular, we propose guided pattern

discovery in discovery management framework which is supported by two specific

techniques. Pattern notification services can be provided to automatically keep track

of patterns registered by users so that they do not need to keep the discoveries in

mind. The users will be notified if a new pattern is discovered that is related to a reg-

istered pattern. In addition, when a user meets a potential pattern, such as a brushed

data cluster, which is related to a registered pattern, the system will automatically

notify the user about the situation. During the visual exploration process, pattern

recommendation services automatically or semi-automatically recommend views con-

taining potential patterns of interest to users according to registered patterns or user

requirements.

New Application and Evaluation: Finally, the proposed multidimensional explo-

ration system, ManyInsights, will be developed in parallel with a wide variety of do-

main specific applications, such as health and food, census, and stock analysis. Upon

the knowledge of these domains, external ontologies will be introduced to enhance the

automation of various discovery management activities. The effectiveness of ManyIn-

sights will be investigated through case studies in the various applications. Since one

of the primary goals of the framework is to support collaboration in visual analytics,

we will publish ManyInsights online for public tests. We will collect user feedbacks to

evaluate its utility, usability, and scalability, and thus refine our system. Eventually,

we will promote it to a variety of realistic applications. Although the focus of our

current research is discovery management in multidimensional data exploration, we

realize that there are urgent needs for supporting dynamic knowledge construction in

a wide range of massive data exploration domains, such as text, graph, and geospatial

data. Therefore, we will also extend the discovery management framework to support

a wider range of data types. For example, pattern taxonomy for graph visualization

will be constructed to facilitate effective discovery management in graph analysis.
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