342 research outputs found

    Coding of synthetic aperture radar data

    Get PDF

    Sparse Modeling for Image and Vision Processing

    Get PDF
    In recent years, a large amount of multi-disciplinary research has been conducted on sparse models and their applications. In statistics and machine learning, the sparsity principle is used to perform model selection---that is, automatically selecting a simple model among a large collection of them. In signal processing, sparse coding consists of representing data with linear combinations of a few dictionary elements. Subsequently, the corresponding tools have been widely adopted by several scientific communities such as neuroscience, bioinformatics, or computer vision. The goal of this monograph is to offer a self-contained view of sparse modeling for visual recognition and image processing. More specifically, we focus on applications where the dictionary is learned and adapted to data, yielding a compact representation that has been successful in various contexts.Comment: 205 pages, to appear in Foundations and Trends in Computer Graphics and Visio

    Proceedings of the second "international Traveling Workshop on Interactions between Sparse models and Technology" (iTWIST'14)

    Get PDF
    The implicit objective of the biennial "international - Traveling Workshop on Interactions between Sparse models and Technology" (iTWIST) is to foster collaboration between international scientific teams by disseminating ideas through both specific oral/poster presentations and free discussions. For its second edition, the iTWIST workshop took place in the medieval and picturesque town of Namur in Belgium, from Wednesday August 27th till Friday August 29th, 2014. The workshop was conveniently located in "The Arsenal" building within walking distance of both hotels and town center. iTWIST'14 has gathered about 70 international participants and has featured 9 invited talks, 10 oral presentations, and 14 posters on the following themes, all related to the theory, application and generalization of the "sparsity paradigm": Sparsity-driven data sensing and processing; Union of low dimensional subspaces; Beyond linear and convex inverse problem; Matrix/manifold/graph sensing/processing; Blind inverse problems and dictionary learning; Sparsity and computational neuroscience; Information theory, geometry and randomness; Complexity/accuracy tradeoffs in numerical methods; Sparsity? What's next?; Sparse machine learning and inference.Comment: 69 pages, 24 extended abstracts, iTWIST'14 website: http://sites.google.com/site/itwist1

    Sparse and Redundant Representations for Inverse Problems and Recognition

    Get PDF
    Sparse and redundant representation of data enables the description of signals as linear combinations of a few atoms from a dictionary. In this dissertation, we study applications of sparse and redundant representations in inverse problems and object recognition. Furthermore, we propose two novel imaging modalities based on the recently introduced theory of Compressed Sensing (CS). This dissertation consists of four major parts. In the first part of the dissertation, we study a new type of deconvolution algorithm that is based on estimating the image from a shearlet decomposition. Shearlets provide a multi-directional and multi-scale decomposition that has been mathematically shown to represent distributed discontinuities such as edges better than traditional wavelets. We develop a deconvolution algorithm that allows for the approximation inversion operator to be controlled on a multi-scale and multi-directional basis. Furthermore, we develop a method for the automatic determination of the threshold values for the noise shrinkage for each scale and direction without explicit knowledge of the noise variance using a generalized cross validation method. In the second part of the dissertation, we study a reconstruction method that recovers highly undersampled images assumed to have a sparse representation in a gradient domain by using partial measurement samples that are collected in the Fourier domain. Our method makes use of a robust generalized Poisson solver that greatly aids in achieving a significantly improved performance over similar proposed methods. We will demonstrate by experiments that this new technique is more flexible to work with either random or restricted sampling scenarios better than its competitors. In the third part of the dissertation, we introduce a novel Synthetic Aperture Radar (SAR) imaging modality which can provide a high resolution map of the spatial distribution of targets and terrain using a significantly reduced number of needed transmitted and/or received electromagnetic waveforms. We demonstrate that this new imaging scheme, requires no new hardware components and allows the aperture to be compressed. Also, it presents many new applications and advantages which include strong resistance to countermesasures and interception, imaging much wider swaths and reduced on-board storage requirements. The last part of the dissertation deals with object recognition based on learning dictionaries for simultaneous sparse signal approximations and feature extraction. A dictionary is learned for each object class based on given training examples which minimize the representation error with a sparseness constraint. A novel test image is then projected onto the span of the atoms in each learned dictionary. The residual vectors along with the coefficients are then used for recognition. Applications to illumination robust face recognition and automatic target recognition are presented

    Sparsity in Bayesian Signal Estimation

    Get PDF
    In this chapter, we describe different methods to estimate an unknown signal from its linear measurements. We focus on the underdetermined case where the number of measurements is less than the dimension of the unknown signal. We introduce the concept of signal sparsity and describe how it could be used as prior information for either regularized least squares or Bayesian signal estimation. We discuss compressed sensing and sparse signal representation as examples where these sparse signal estimation methods could be applied

    Multi-modal dictionary learning for image separation with application in art investigation

    Get PDF
    In support of art investigation, we propose a new source separation method that unmixes a single X-ray scan acquired from double-sided paintings. In this problem, the X-ray signals to be separated have similar morphological characteristics, which brings previous source separation methods to their limits. Our solution is to use photographs taken from the front and back-side of the panel to drive the separation process. The crux of our approach relies on the coupling of the two imaging modalities (photographs and X-rays) using a novel coupled dictionary learning framework able to capture both common and disparate features across the modalities using parsimonious representations; the common component models features shared by the multi-modal images, whereas the innovation component captures modality-specific information. As such, our model enables the formulation of appropriately regularized convex optimization procedures that lead to the accurate separation of the X-rays. Our dictionary learning framework can be tailored both to a single- and a multi-scale framework, with the latter leading to a significant performance improvement. Moreover, to improve further on the visual quality of the separated images, we propose to train coupled dictionaries that ignore certain parts of the painting corresponding to craquelure. Experimentation on synthetic and real data - taken from digital acquisition of the Ghent Altarpiece (1432) - confirms the superiority of our method against the state-of-the-art morphological component analysis technique that uses either fixed or trained dictionaries to perform image separation.Comment: submitted to IEEE Transactions on Images Processin

    Compressed sensing and finite rate of innovation for efficient data acquisition of quantitative acoustic microscopy images

    Get PDF
    La microscopie acoustique quantitative (MAQ) est une modalité d'imagerie bien établie qui donne accès à des cartes paramétriques 2D représentatives des propriétés mécaniques des tissus à une échelle microscopique. Dans la plupart des études sur MAQ, l'échantillons est scanné ligne par ligne (avec un pas de 2µm) à l'aide d'un transducteur à 250 MHz. Ce type d'acquisition permet d'obtenir un cube de données RF 3D, avec deux dimensions spatiales et une dimension temporelle. Chaque signal RF correspondant à une position spatiale dans l'échantillon permet d'estimer des paramètres acoustiques comme par exemple la vitesse du son ou l'impédance. Le temps d'acquisition en MAQ est directement proportionnel à la taille de l'échantillon et peut aller de quelques minutes à quelques dizaines de minutes. Afin d'assurer des conditions d'acquisition stables et étant donnée la sensibilité des échantillons à ces conditions, diminuer le temps d'acquisition est un des grand défis en MAQ. Afin de relever ce défi, ce travail de thèse propose plusieurs solutions basées sur l'échantillonnage compressé (EC) et la théories des signaux ayant un faible nombre de degré de liberté (finite rate of innovation - FRI, en anglais). Le principe de l'EC repose sur la parcimonie des données, sur l'échantillonnage incohérent de celles-ci et sur les algorithmes d'optimisation numérique. Dans cette thèse, les phénomènes physiques derrière la MAQ sont exploités afin de créer des modèles adaptés aux contraintes de l'EC et de la FRI. Plus particulièrement, ce travail propose plusieurs pistes d'application de l'EC en MAQ : un schéma d'acquisition spatiale innovant, un algorithme de reconstruction d'images exploitant les statistiques des coefficients en ondelettes des images paramétriques, un modèle FRI adapté aux signaux RF et un schéma d'acquisition compressée dans le domaine temporel.Quantitative acoustic microscopy (QAM) is a well-accepted modality for forming 2D parameter maps making use of mechanical properties of soft tissues at microscopic scales. In leading edge QAM studies, the sample is raster-scanned (spatial step size of 2µm) using a 250 MHz transducer resulting in a 3D RF data cube, and each RF signal for each spatial location is processed to obtain acoustic parameters, e.g., speed of sound or acoustic impedance. The scanning time directly depends on the sample size and can range from few minutes to tens of minutes. In order to maintain constant experimental conditions for the sensitive thin sectioned samples, the scanning time is an important practical issue. To deal with the current challenge, we propose the novel approach inspired by compressed sensing (CS) and finite rate of innovation (FRI). The success of CS relies on the sparsity of data under consideration, incoherent measurement and optimization technique. On the other hand, the idea behind FRI is supported by a signal model fully characterized as a limited number of parameters. From this perspective, taking into account the physics leading to data acquisition of QAM system, the QAM data can be regarded as an adequate application amenable to the state of the art technologies aforementioned. However, when it comes to the mechanical structure of QAM system which does not support canonical CS measurement manners on the one hand, and the compositions of the RF signal model unsuitable to existing FRI schemes on the other hand, the advanced frameworks are still not perfect methods to resolve the problems that we are facing. In this thesis, to overcome the limitations, a novel sensing framework for CS is presented in spatial domain: a recently proposed approximate message passing (AMP) algorithm is adapted to account for the underlying data statistics of samples sparsely collected by proposed scanning patterns. In time domain, as an approach for achieving an accurate recovery from a small set of samples of QAM RF signals, we employ sum of sincs (SoS) sampling kernel and autoregressive (AR) model estimator. The spiral scanning manner, introduced as an applicable sensing technique to QAM system, contributed to the significant reduction of the number of spatial samples when reconstructing speed of sound images of a human lymph node. Furthermore, the scanning time was also hugely saved due to the merit of the mechanical movement of the proposed sensing pattern. Together with the achievement in spatial domain, the introduction of SoS kernel and AR estimator responsible for an innovation rate sampling and a parameter estimation respectively led to dramatic reduction of the required number of samples per RF signal compared to a conventional approach. Finally, we showed that both data acquisition frameworks based on the CS and FRI can be combined into a single spatio-temporal solution to maximize the benefits stated above
    corecore