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Abstract

Synthetic Aperture Radar (SAR) is a dedicated high-resolution sensor with imaging 

capability in all weather and day-night conditions and has been employed in several 

earth and interplanetary observation applications. A significant characteristic of this 

system is the generation of a large amount of data that involves major problems related 

to on-board data storage and downlink transmission. The near future SAR satellite 

missions planned would be pushing downlink data bandwidths to prohibitive levels, 

which dictate efficient on-board compression of raw data. Due to the limitation of the 

on-board resources in the satellite, it is desirable to have a computationally efficient 

encoder.

In this thesis, we address the compression of the complex-valued SAR raw data 

in the compressed sensing (CS) framework, in which the encoder is simple whereas the 

decoder is computational expensive. CS is an emerging technique for signal measure­ 

ment and reconstruction that takes advantage of the fact that many signals are sparse 

under some basis or frame. The measurement of the signal in the CS framework is 

obtained by taking a small number of projections of the signal onto an incoherent basis. 

For the SAR raw data compression here we have considered a simple encoder, with a 

2D-FFT followed by a random sampler. The reconstruction of the sparse coefficients of 

the signal from these projections is then based on the sparsity induced optimization 

techniques like Orthogonal Matching Pursuit (OMP) and iterative reconstruction meth­ 

ods.

We demonstrate empirically that the CS framework for compression of the com­ 

plex-valued SAR raw data is effective for the cases when the SAR image is sparse in the 

spatial domain. We also address the limitation of this framework while dealing with
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actual satellite images due to lack of good sparsifying transforms for the complex-valued 

data.

In this thesis, we present a new algorithm based on regularized iterative algo­ 

rithm for finding sparse solution for the complex-valued data in which the regularization 

parameter is adaptively computed in each iteration. The effectiveness of the new algo­ 

rithm is compared with existing methods like basis pursuit (BP), orthogonal matching 

pursuit (OMP), etc with both real-valued and complex-valued data set.
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Chapter 1

1. Introduction

This dissertation presents a new approach to the problem of synthetic aperture radar 

(SAR) raw data compression. SAR is an active sensor that has been extensively used for 

a variety of remote sensing applications. The purpose of this chapter is to: i) introduce 

the problem addressed and the motivation, ii) summarize the SAR technology and within 

this context discuss the needs for raw data compression and iii) provide a concise 

description of the approach taken in this work by highlighting the main contributions and 

an outline of the subsequent chapters.

1.1 Synthetic Aperture Radar

The optical and infrared sensing technologies have been used for several decades for 

remote sensing of the earth's surface. These passive sensors rely on the energy reflected 

or radiated from the earth's surface and thus depend upon the sun as a source of illumi­ 

nation. Microwave radar imaging has emerged as an alternative approach to remote earth 

observation, which generates reflectivity maps of an illuminated area through transmis­ 

sion and reception of electromagnetic energy. The use of microwave energy allows for 

the observation of the earth properties unique to the microwave region and not detectable 

with visible and infrared systems. Among other types of microwave sensor, special 

attention has been paid to synthetic aperture radar (SAR) because of its high spatial 

resolution and various modes of operations.

SAR sensors are active sensors with their own illumination source and are typically 

mounted on aircrafts and satellites. Being an active sensor, it can gather imagery equally 

well during the day and night. SAR sensors operate in the microwave region between 0.3 

- 30 GHz of the electromagnetic spectrum with typical wavelengths between 1 cm and a 

meter with various polarizations. The SAR sensor is independent of the solar illumina-

1



Introduction

tion and is generally unaffected by the cloud cover. Thus, SAR can operate even in the 

presence of clouds, fog, haze and rain with its own source of radiation, which are 

generally the limiting factor in the case of optical remote sensing. This weather inde­ 

pendence combined with the day and night operation capabilities make SAR an 

operational monitoring sensor for the earth and other planetary surfaces of Venus and 

Saturn, a task which cannot be achieved with optical sensors. These capabilities have 

made the SAR a natural choice for military surveillance and also for the inter-planetary 

imaging missions like Magellan, Cassine etc [1]. Earth planetary SAR applications 

include geographical information system (GIS), terrain mapping, crop estimation, 

geology, oceanography etc. Interferometric SAR campaigns are also conducted for 

generation of the digital elevation models (DEM) [2]. The SAR has a wide range of 

possible applications as various parameters like power, frequency, phase, polarization, 

incidence angle, spatial resolution and swath suited for various environments, can be 

controlled.

The earth orbital SAR satellite started with the SEASAT in 1978 followed by SIR- 

A/B/C, ERS-1/2, ALMAZ, RADARSAT-I, ENVISAT -I, TERRASAR, etc. The future 

Earth orbital satellites include RADARSAT-II, ENVISAT-II, etc. The interplanetary 

SAR missions include imaging Venus and Saturn by Magellan and Cassine [1].

SAR sensors are typically mounted on a moving platform such as aircraft or satel­ 

lite, which travels along a particular direction transmitting and receiving microwave 

pulses towards the ground, as illustrated in Figure 1.1. In SAR, the radar platform moves 

along the flight path usually with a constant velocity in a direction oblique to the target 

to be imaged as shown in Figure 1.1. The airborne SAR images have to be corrected for 

deviations from their nominal path, using inertial sensors and autofocus. SAR produces 

2-dimensional (range and cross-range) terrain reflectivity images by emitting sequence 

of closely spaced radio frequency pulses and by sampling the echoes scattered from the 

ground targets. The spatial resolution in the range direction is dependent upon the 

bandwidth of the transmitted waveform and is usually achieved by transmitting a wide­ 

band linear frequency modulated (LFM) waveform. In the direction orthogonal to the
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radar beam (also called cross range, azimuth, or along-track in broadband operation) the 

resolution is greatly enhanced by coherently integrating the return echoes, described 

later in chapter 2. The improved azimuth resolution for swath SAR thus obtained by 

processing the return, unlike real aperture radars (RAR), is independent of the range and 

proportional to the real antenna aperture [3]. This is described in details in Section 2.1 

of chapter 2.

AZIMUTH

RANGE 
RESOLUTION

AZIMUTH 
RESOLUTION

Figure 1.1 Illustration of the SAR data collection.

1.2 SAR Data Acquisition

The SAR image generation process consists of three distinctive stages : i) sensing the 

target area using the imaging radar, ii) sampling and compression of the scattered SAR 

signal for downlink to the ground, and iii) processing of the reconstructed SAR signal 

into image also known as focusing. A simplified block diagram of a typical SAR system 

is shown in Figure 1.2. The SAR system comprises of a pulsed transmitter, an antenna
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and a phase-coherent receiver. The transmitter transmits a wideband signal like a linear 

frequency modulated (LFM) at a regular interval, known as pulse repetition interval 

(PRI), in order to illuminate the terrain strip of interest. The PRI of SAR is constrained 

within bounds established by the geometry and signal ambiguity limits.

ON-BOARD 
STORAGE

TRANSMITTER RECEIVER SAMPLER

Q

ON-BOARD 
COMPRESSOR

Modes:
1. Stripmap
2. Spotlight
3. ScanSAR

LFM

1

\ r

ON-BOARD
IMAGE 

FORMATION

Figure 1.2 A simplified SAR on-board system.

Returned signals from the terrain strip (swath) are received via a coherent receiver 

and then are demodulated into I and Q for analog-to-digital (A/D) conversion. These 

received echoes are sampled into in-phase (I) and quadrature (Q) component to preserve 

both phase and magnitude of the return signal. These digitized complex data are referred 

to as raw SAR data. In satellite system, these raw data undergo data compression before 

being directly transmitted to the ground segment via a dedicated transmission link when 

in view with the ground segment or are stored on-board for later transmission to the 

ground.

The amount of data generated by the SAR system is proportional to the pulse repeti­ 

tion frequency (PRF), the sampling frequency, swath and the number of bits allocated to 

each sample. The limits on the PRF arise to avoid along track phase ambiguity whereas 

the sampling frequency is dependent upon the bandwidth of the transmitted waveform 

which in turn is dependent upon the range resolution. The classical methods of SAR raw 

data compression thus relied on reducing the no. of bits allocated to the data samples.
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1.3 The Need for SAR Raw Data Compression

The various modes of SAR like stripmap, scanSAR, spotlight, etc. [1] coupled with the 

high resolution and wide swath requirements result in a huge amount of data for process­ 

ing to generate high resolution images. The amount of data generated by these SAR 

systems will easily exceed the on-board storage and downlink bandwidth of the satellite. 

The data rate of the past satellites like ERS-1, Envisat and Radarsat is in order of hun­ 

dred Mbit/s and incorporated Block Adaptive Quantizer (BAQ) [4] to achieve 

compression factors from 2 to 8. The raw data rate will increase in future with increasing 

requirements on the resolution and wider swath. Thus, an efficient on-board SAR raw 

data compressor has become imperative for the future SAR satellite systems. Conversely 

the data compressor will provide a larger capacity for higher data rates to support higher 

resolution, wider coverage, multi-polarization and multi-frequency operations.

The research proposal focuses on the compression the SAR raw data for on-board 

storage and transmission from the satellite to the ground. The proposed work is moti­ 

vated by interest in compression algorithms and their efficient hardware implementation 

which when included in the design of future satellite missions will provide a sufficient 

data reduction without degrading the quality of the final images. Some of the perform­ 

ance measures of the quality of the final images are described in Section 2.6 of Chapter 

2. However, the compression of raw SAR data poses several challenges due to its noise 

like characteristics and high entropy [1].

1.4 Raw SAR Data Characteristics

The radar return from a SAR instrument is the result of the super-position of the re­ 

sponses of many small scatterers within the antenna beam footprint. Each scatterer 

within the view of antenna provides a contribution whose amplitude and phase are 

statistically independent of each other and of other scatterers. The phase of the scatterers 

are uniformly distributed in the angle between -n to +n. The raw SAR Data can be 

viewed as a complex random process, who's real and imaginary parts are Gaussian, with
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zero mean and same variance, and uncorrelated according to the Central Limit Theorem. 

The distribution of the real and imaginary samples (5-bits) for the case of Advance SAR 

payload (ASAR) of ERS-1 is shown is Figure 1.3. The amplitude distributions for both 

the components are found to be Gaussian with zero mean and same variance.

PDF ot teal Pan of SAR Raw Uau PDFotlRug Part ot SAR R»w Data

0 -C 0 6 10 15 20
SAMPLE VALUE

Figure 1.3 Amplitude Distribution of 5-bits Raw ASAR (ERS-1) Data (a) Real, (b) 
Imaginary.

In general, an analysis of raw SAR data from various airborne and satellite system 

indicates that the entropy is very high and is around H0 «6-7 bits/sample with a high

dynamic range of 40 dB [1]. This sets the upper limit of the quantizer to 8-bits. The 

reason for such large dynamic range of the return signals is the presence of corner shapes 

that are very common in man-made buildings and vehicles. The returns from such corner 

shaped objects are much stronger than the natural background areas. It is also observed 

that the raw SAR data exhibits a very poor correlation in the range and the azimuth 

directions. Another reason for uncorrelated returns from pulse to pulse is because of 

random returns from multiple scatterers present in the beamwidth of the antenna.

The data compression of SAR images also poses various challenges due to high en­ 

tropy of the SAR image and the relevant information is contained in both the low 

frequency and high frequency part of the spectrum [5]. Another important characteristic 

of the processed SAR display images is the presence of noise known as speckle noise 

which arises due to presence of multiple scatterers within a resolution cell [1]. This 

results in a lower pixel correlation than general images.
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Previous studies which exploit the correlation among adjacent samples have shown 

to have poor rate distortion performance. Researchers have tried various quantization 

like block adaptive quantization (BAQ) [4], vector quantization (VQ) [6], Trellis-coded 

quantization (TCQ) and of its vectorial version, referred to as Trellis-coded vector 

quantization (TCVQ) for raw data encoding to achieve interesting performance im­ 

provement [7]. The survey of the several compression algorithms for the raw SAR data 

can be found in [8]. The most popular technique that has been used in spaceborne SAR 

is the BAQ. The BAQ acts like an automatic gain control (AGC) in the digital domain. 

The incoming data is divided into consecutive disjoint blocks and variance of each block 

is calculated. The quantization step size for the block is then proportional to the esti­ 

mated variance. The blocked quantized data along with the variance i.e. the scale factor 

is stored for each block for transmission.

1.5 Contributions

The research objective is to design a low-complexity encoding scheme at low rates that 

could be easily implemented on-board a satellite. Previous methods relied on reducing 

the number of bits allocated to the sampled data. This thesis proposes a new framework 

for compressing the complex-valued SAR raw data by sampling the signal below the 

Nyquist rate, using the ideas from compressive or compressed sensing (CS). CS is an 

emerging technique for signal measurement in which the signal is sampled much below 

the Nyquist rate with the reconstruction algorithms taking advantage of the fact that 

many signals are sparse under some basis or frame. The measurement of the signal in the 

CS framework is obtained by taking a small number of projections of the signal onto an 

incoherent basis usually random sampling of the data. In this study of SAR raw data 

compression, we have considered a simple encoder with a 2D-FFT followed by a 

random sampler. The reconstruction of the sparse coefficients of the signal from these 

projections is then based on the sparsity induced optimization techniques which is much 

complex as compared to the encoder. These features of low complexity encoder with 

high complexity decoder of the CS framework make it an appropriate framework for on­ 

board SAR raw data compression. In this thesis, we thus have proposed a new approach
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of compressing the SAR raw data by reducing the number of samples by random sam­ 

pling the Fourier transformed data. In one of the experiments, we have used the complex 

wavelet transform (CWT) as a frame by decomposing both the negative and positive part 

of the spectrum of the input data.

In this thesis, we have demonstrated empirically that the CS framework for com­ 

pression of complex-valued SAR raw data is effective for the cases when the SAR image 

is sparse in the spatial domain. We also address the limitation of this framework while 

dealing with actual satellite images due to lack of good sparsifying transforms for the 

complex-valued data. The sparsity of the actual complex-valued SAR raw data in 

magnitude-phase domain, real-imaginary domain and by converting it to real-valued by 

shifting the frequency spectrum to all positive frequencies were tested and found to be 

ineffective to compress the data in CS framework. We believe that though this frame­ 

work is not effective for full SAR image reconstruction due to lack of a good sparsifying 

transform but it would be effectively used for applications like detection, classification 

and partial image reconstruction.

We also present a new algorithm based on regularized iterative algorithm for finding 

sparse solution for the complex-valued data in which the regularization parameter is 

adaptively computed in each iteration. The effectiveness of the new algorithm is com­ 

pared with existing methods like basis pursuit (BP) and orthogonal matching pursuit 

(OMP) with both real and complex data set.

1.6 Thesis Outline

This dissertation is organized as follows. In chapter 2, we review the principles of SAR 

and provide the necessary background information on SAR. The chapter also describes 

the signal processing steps involved in generating SAR images from the data collected 

by the SAR sensor. It also mentions the sources for the raw SAR data and the perform­ 

ance metric to evaluate the performance of SAR raw data compression. In chapter 3, we 

introduce the theory of compressive or compressed sensing (CS). We describe the theory

8
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of sparse approximation on which the compressed sensing framework is based. It is 

shown that the signal recovery in the compressed sensing framework can be formulated 

as solving the inverse problem with sparsity constraints. We also present several exam­ 

ples to show the recovery of signal from undersampled data in CS framework. In chapter 

4, we provide a brief overview of the inverse problems and associated regularization 

methods to get their solutions. This chapter also describes a new iterative algorithm to 

get a sparse solution to the inverse problems along with several examples of real and 

complex-valued data. In chapter 5, we describe a framework for compressing the SAR 

raw data by sampling the signal below the Nyquist rate using the ideas from compressed 

sensing. The chapter discussed the regularization based SAR image reconstruction from 

sub-sampled complex-valued raw data. We provide results both with simulated SAR raw 

data and actual satellite data and measure the reconstruction quality. Finally, in chapter 6 

we summaries the results that we have obtained and also suggest some future research 

directions as a continuation of the work presented here.
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Chapter 2

2. Principles of Synthetic Aperture 
Radar (SAR)

In this chapter, we provide the necessary background information on SAR that will be 

useful for the rest of the dissertation. We describe here the SAR geometry, the principles 

of SAR operation and also the signal processing steps involved in generating SAR 

images from the data collected by the SAR sensor. We also briefly describe the sources 

for the raw SAR data and the performance metric to evaluate the performance of SAR 

raw data compression.

There are three distinct modes of SAR imaging: stripmap-mode SAR, spotlight- 

mode SAR and scan-mode SAR. In the stripmap mode, the radar antenna remains fixed 

with respect to the platform, illuminating a sequence of ground patches that form a strip 

parallel to the flight path. In the spotlight-mode SAR, the antenna is steered mechani­ 

cally or electronically to continuously illuminate the same patch of terrain during its 

flight duration [9, 10]. The main advantage of the spotlight SAR imaging is increased 

resolution. Scan-mode effectively increases the swath with degraded azimuth resolution 

by allowing the look direction and illuminated ground patch both to vary during the 

flight duration. In this thesis, we focus on the stripmap-mode SAR which is widely used 

to generate large swath images.

2.1 Stripmap-mode SAR Geometry

The imaging geometry of the stripmap SAR is shown in Figure 2.1, in which the antenna 

is directed towards the ground at a fixed angle of elevation and normal to the flight path 

[1]. The co-ordinate along the line of flight of the radar is termed as azimuth and the co-

11



Principles of Synthetic Aperture Radar

ordinate perpendicular to the azimuth is called range. The radar which is mounted on the 

moving platform transmits pulses at a regular interval known as pulse-repetition-interval 

(PRI) and the backscattered signal is measured in order to reconstruct the continuous 

area illuminated also known as swath.

To obtain a high resolution along the range direction with the limited peak power 

available on-board, long linear frequency-modulated (LFM) pulses are transmitted. Pulse 
compression is used to achieve wide bandwidth pulses with high duty ratio and limited peak 

power. The range resolution which is inversely proportional to the bandwidth (BW) of 

the transmitted waveform is given by the formula:

= £TL = _£_
ra 2 2BW

where rc is the compressed pulse width. The wideband LFM return pulses are com­ 

pressed through a matched filter to give high resolution in the range direction.

The real-aperture-radar (RAR) azimuth footprint is as shown in Figure 2.2. The 

azimuth resolution of RAR is inversely proportional to the size of the aperture is given

by

s =  = _£^_ (2.2)
f!7. -w /» y- V X

/c^
az

12



Principles of Synthetic Aperture Radar

ELEVATION BEAMWIDTH = -
D

AZIMUTH BEAMWIDTH = -

Figure 2.1 Geometry of stripmap SAR [1],

where fc is the carrier frequency of transmission. From the above equation, we see that 

high resolution in the azimuth direction requires large antenna and short object distances.

13
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Figure 2.2 Real aperture radar azimuth footprint.

To demonstrate the requirement of small pulse duration for high range resolution 
and a large antenna size for high azimuth resolution, let us consider radar operating with 
the following requirements:

Parameter

Slant Range, R

Carrier frequency, fc

Range resolution, 8m

Azimuth resolution 6a

Value

10km

10 GHz

1m

1m

S = —— => BW = 150 MHz 
ra 2BW

= 6.7ns

*.= cR T - nn => Z = 300m
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The above example shows that fundamental problem of the classical real aperture radar 

imaging systems which require an impractically long antenna for acceptable azimuth 
resolution.

Synthetic aperture radar solves this problem by transmitting multiple pulses of large 

bandwidth from a number of observation points and then focusing the received signal 

coherently to obtain a high resolution 2-D image. SAR transmits a pulse with wide 

bandwidth such as LFM or chirps. The transmitter in such radar varies the frequency of 

the pulse linearly over a particular frequency range, which determines the bandwidth. 

The chirp length and the chirp rate are based on various radar hardware capabilities such 

as RF pulse power, PRF, ADC sampling rate, etc and also on the range resolution 

requirement [1]. The transmitted LFM is mathematically expressed as

p(t) = exp fj + Z- fOrectf-1 (2.3) 
IV 2 J\ ^T)

where a is the chirp rate in Hz/sec, T is the pulse duration in sec.

On the other hand, to improve the azimuth resolution, the SAR makes use of the 

motion of the platform to simulate an array of antennae and synthesize a long aperture. 

This technique, as shown in Figure 2.3, is based on the fact that a scatterer is observed 

by various locations (marked with black dots) along the azimuth direction. The aperture 

synthesized through this mechanism has a size of M whereas the real aperture is of the 

size L.
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Figure 2.3 Synthetic array formed due to moving platform.

The maximum synthesized aperture is given by

(2.4)

and the azimuth resolution for the full synthesized aperture is

§ = az ~ 2M 2 (2.5)

which is independent of the range and frequency of the radar and improves with smaller 

antenna aperture. The factor of 'two' is the result of the synthetic aperture, The phase 

difference between elements of the synthetic aperture result from a two-way path 

difference and are therefore, two times larger than in the case of a real antenna [1].

In the raw SAR data, the signal return of a scatterer is spread in both range and azi­ 

muth directions. The transmission of long pulses causes the contributions coming from a 

scatterer to spread along the range direction. Moreover, in the azimuth direction the 

return from the scatterer is spread by the duration it is illuminated by the beam, or the 

synthetic aperture. As a scatterer passes through the antenna beam, the range to the target 

changes. On the scale of the transmitted wavelength, this range variation causes a phase 

variation in the received signal as a function of the azimuth. High resolution in the 

azimuth direction can be obtained by processing the coherent phase history of the
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received signal over the radar illumination or integration time. The range variation to a 

scatterer can result in a variation in the range delay to the target that is larger than the 

range sampling spacing which is also know as range migration and is shown in Figure 
2.4.

Figure 2.4 Return of a scatterer to a moving platform.

2.2 SAR Stripmap Imaging Model

In the stripmap mode the radar maps the surface with the antenna pointing downward 

such that the boresight (centre) of the mainlobe of the real aperture radiation pattern is 

perpendicular of the flight path. The simplified model for the SAR stripmap mode is to 

consider the stationary imaging surface to consist of several point reflectors with reflec­ 

tivity an and located at the location (xn9 yn ) as shown in the Figure 2.5; with jc-axis 

denoting the range and y -axis denoting the azimuth direction with the scene centre at 

(Xc9 Yc ) [11]. It is also to be noted that the centre of the synthesized aperture M is at the
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4 V, r-

Figure 2.5 Geometry of SAR stripmap imaging model.

middle of the imaging surface. The radar located at (o,wn ) in the spatial domain trans­ 

mits wide bandwidth signal p(t) of duration T at regular interval T. Synthetic aperture

system models are generally developed based on the "start-stop" approximation i.e. the 

platform is considered stationary during the transmission of a pulse and the reception of

the echoes from this pulse; then the platform moves to the next location (o,ww ), and the

process repeats. This approximation is justified as the speed of light is considerably 

higher than the speed at with which the platform moves. The use of the start-stop ap­ 

proximation for spaceborne SAR imaging is described in [12]. The sensor trajectory is 

assumed to be in a prescribed path and the radar's radiation pattern omni-directional.
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A point target at location (xn ,yn ) is defined as an isolated point reflector with unit- 

impulse reflectivity, crn = S(x-xn9y-yn ) . The target function of such point targets 

within an imaging surface is given by:

for which the 2D-Fourier transform is given by

,ky ) = anQxp(-jkxxn - jkyyn ) (2.7)

Considering the roundtrip time delay for the n-th target as 2Rn /c,

where Rn = -y (xn2 +(yn - u) , the measured echoed signal for the scatterers for a trans­ 

mitted pulse of p(f) is given by:

2R»] on—— (2-8) 
c )

with / denoting the fast-time along the range direction and u denoting the slow-time 
along the azimuth direction. The variation of the amplitude function, which is related to 

the wave divergence, is absorbed in crn [13].

With the above system model, the point target returns for several scatterers were 

generated using the parameters tabulated in Table 2-1 and is as shown in Figure 2.6 [11]. 

LFM waveform is considered as a transmitted waveform for the simulation.
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Parameters

Speed of the platform, v

PRF

Range distance to centre of the target, Xc

Size of footprint in range direction, XQ

Range resolution, Sra

Azimuth resolution, Saz

Carrier frequency, fc

Pulse width, T

Values

77.73 m/sec

200Hz

500m

400m

1.5m

6m

100MHz

0.15ns

Table 2-1 Parameters for simulation of point targets

E
N

Range

Figure 2.6 Return signal of point targets.
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2.3 SAR Signal Processing and Image Formation

The return echoes, as shown in Figure 2.6, are dispersed both in the range direction and 

the azimuth direction. As mentioned earlier, the dispersion along the range direction is 

due to the wideband LFM signal transmitted of duration r, whereas the dispersion along 

the azimuth direction is due to the movement of the platform relative to the point targets. 

The range curvature is due to the variation of the range of the point target as the platform 

moves along the azimuth direction.

The processing steps required to get the desired target function from the return sig­ 

nal is shown in Figure 2.7, and is explained below.

Input 
Raw Data

i

c
---Range

Range 
Compression

\

Range 
Migration 
Correction

i r

Azimuth 
Compression

|— 1

c"

•

** — Azimuth — i

Figure 2.7 Basic processing steps for stripmap SAR.
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2.3.1 Range Compression

The large-bandwidth dispersion-energy return in range direction is processed so as to 

compress the energy into a much narrower pulse. The range resolution is then deter­ 

mined by the compressed pulse, as if it had been the transmitted waveform. The most 

commonly used method for the pulse compression is the matched filtering with the time- 

reversed complex conjugate of the signal and the deramp-FFT method [14], which is a 

form of matched filter implemented differently. It is well known that the optimal filter, 

in the sense of obtaining the maximum peak-signal-to-noise ratio in the presence of 

white noise, is the matched filter [1], The deramp-FFT is used generally in the case when 

the swath-width return duration is smaller compared to the transmitted waveform T .

2.3.1.1 Matched Filtering Method

The transmitted LFM pulse of duration T is given by:

p(t) = v4exp -j(o)t + nat2 ) rect —
L J \ c /J l^r^ (2.9)

where a>c = carrier frequency, a - Chirp rate

The measured echo for the transmitted waveform p (/) is

(2.10)

where xn is equal to the distance of the target from transmitter.

The matched filter output is given by

ssm(t, u) = ss(t, u) ® /?* (t) (2.11)
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where ® denotes convolution. The matched filter is the time-reversed complex conju­ 
gate of the signal [11].

The matched filter output of three targets simulated with the parameters: 

Xc = 2km, fc = IGHz, BW = 200MHz, r = 10us, is shown in Figure 2.8. The swath- 

width return duration in this case is 0.67 us.

1

0.8

CD
1 0.6

0) 
03
^

0.4

0.2

0 
19

Range Reconstruction Via Matched Filtering——————— i ———————————————————————

-

-

_J L^J

-

-

IK, —— - ———————
00 1950 2000 2050 2100

Range, meters

Figure 2.8 Matched filter output of three point targets.

2.3.1.2 Deramp-FFT Method

In this method the received echo signal is demodulated by the reference transmitted 
signal to directly acquire the Fourier transform of the reflectivity [14]. An estimate of the
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surface reflectivity is typically found from the output of the demodulator by Fourier 
transform.

The demodulated output is given by:

scb(t, u) = ss* (t, u) x p(t)

and the range compressed output is found by using the Fourier transform

(2.12)

fscb(o),u) = 3(scb(t,u)) (2.13) 
The deramp-FFT output of simulated three point targets of variable magnitude with

the following parameters: Xc - 2km, fc = IGHz, BW = 200MHz, T = O.lus, is shown in 

Figure 2.9. The swath-width return duration in this case is 0.67us.
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Figure 2.9 Deramp-FFT output of three point targets.
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2.3.2 Range Migration Correction and Azimuth Compression

The radar return signal is spread in the azimuth direction as the platform moves past the 

point targets on the surface. The change in the range due to the movement of the plat­ 

form causes a phase variation in the received echo signal. High resolution in the azimuth 

direction can be obtained by processing the coherent phase history of the received signal 

over the radar illumination or integration time. The range variation to point target can 

result in a variation in the range delay to the target that is larger than the range sample 

spacing, resulting in range migration. This range migration of the signal energy over 

several range bins must be corrected before azimuth compression is applied.

There are several algorithms which corrects this range migration along with the 

azimuth compression. The most accurate and inefficient of these algorithms being a 

point-by-point, brute force correlation of the recorded data with the appropriate point 

spread function for the point under consideration. This is known as exact reconstruction 

algorithm. The exact reconstruction algorithm is made more efficient by several ap­ 

proximations. An excellent survey of the existing SAR processing algorithms depending 

upon the type of approximation is presented in [15]. The paper [14] compares the 

performance of various algorithm viz. Range Doppler, SPECAN, Chirp Scaling, Polar 

Format, wavenumber, etc. Two of the most well known algorithms are the range - 
Doppler and the wavenumber reconstruction algorithms [16]. The range-Doppler algo­ 

rithm which is based on Fresnel approximation [17], performs this correction very 

efficiently in the range-time, azimuth-frequency domain. The wavenumber approxima­ 

tion, often termed as Omega-k algorithm, achieves the exact reconstruction [13]. In this 

thesis, we have used the Omega-k algorithm which is described in the next section with 

an example.

2.3.3 Omega-k Processing

The Fourier transform of the returned echo signal, as given in (2.8), with respect to the 

fast-time / is [11]
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Ss(o),u) =

where k = — is the wavenumber.

n2 + (yn - u}
(2.14)

Using the principle of the stationary phase [1], [11], the Fourier transform of (2.14) 
with respect to the slow-time u is found to be:

-ku 2 xn - jkuy\
(2.15)

where

The variable CD is the fast-time frequency domain. The variable ku corresponds to the 

spatial frequency domain of the synthetic aperture domain u . The spatial frequency 

variable ku is also referred to as the slow-time frequency or slow-time Doppler domain.

From (2.15) and (2.7) we have,

(2.17)

The fast-time matched filtered inversion for the (a>,ku ) domain SAR model is

FF(kx ,ky ) = P\a>)SS(<D,ku ) (2.18)

For the target with the scene centre (Xc ,Yc )the reference function for the inversion is 

generated for the target at the scene centre i.e.
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(2.19)
where

(2.20)

The reconstruction based on the above formulation is shown in Figure 2.10.

S o(w,ku)

s(t,u) Fourier Transform

(t,u)  * (w,ku)
Stolt Mapping

F(kx,ky)
Inverse 

Fourier Transform

v (kx, ky) -*(x,y)

f(x,y)

Matched 
Filtering

Figure 2.10 Reconstruction of target function through Omega-k algorithm.

After the 2D Fourier transform on the received data, the matched filtering with the 

reference signal is performed. The matched signal output is the Fourier domain response 

in the polar co-ordinate. The polar format data is converted to the rectangular format 

through "Stolt mapping" as indicated in (2.16). The Omega-k algorithm first focuses all 

the data by using the exact transfer function tuned to the centre(XC ,7C ). The Stolt

mapping takes care of the space-variance, i.e. eliminates aberration for all points other 

than the centre point.

2.4 Example of Stripmap SAR Processing

We take the example of reconstruction of the stripmap mode return signal simulated for 

five targets as shown in Figure 2.6. The matched filtered output of the return signal in 
the range direction is shown in Figure 2.11. The stripmap SAR reconstruction through 

Omega-k algorithm is shown in Figure 2.12 and the zoomed point targets is shown in 

Figure 2.13. The point target response due to the Omega-k algorithm is shown in Figure 

2.14.
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£

3

Range

Figure 2.11 Matched filtered output in range direction.

1

Range

Figure 2.12 Stripmap reconstruction through Omega-k algorithm (five targets).
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1'N

Range

Figure 2.13 Zoomed version of Figure 2.12 showing five point targets.

r/%

0 0

Figure 2.14 Point target impulse response.
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2.5 Generation of Test Data

The various methods for generation of the test data as required for the analysis of the 

imaging algorithm and also to test the performance of the SAR raw data compressing 
system are:

1. Point target simulator: A point target simulator is used to generate the point 

target response of several scatterers within the footprint of the antenna beam- 

width through (2.8). The position of the scatterers is uniformly distributed over 

the desired footprint and their amplitude distribution is Gaussian. The option of 

having multiple scatterers within a resolution cell to get the effect of the speckle 
noise is also available.

2. Actual satellite data: The actual satellite raw SAR data is acquired from various 

web repositories. These SAR data is obtained from various SAR sensors on vari­ 

ous remote sensing satellites taken over several terrains. The point target 

simulator can also be used along with the satellite data to get additional point tar­ 

gets on the final image.

3. Inverse SAR processing: The SAR raw data is generated from the SAR com­ 

plex image or SAR magnitude image through inverse SAR processing [18]. The 

block diagram of generating the complex raw data from the complex image 

through inverse Omega-k algorithm is shown in Figure 2.15. In case of SAR 

magnitude data the phase distribution is assumed to be uniformly distributed with 

the values between —n to n.
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f(x,y) Fourier Transform p/^

(x,y) -Mkx,ky)

S0(w,ku)

V J
Inverse Matched 

Filtering

^Inverse Fourier^ 
Transform

^ (w,ku) •* (t,u) j

s(t,u)

Figure 2.15 Inverse Omega-k algorithm, to generate raw data from complex SAR 
image.

2.6 Performance Measurement and Metric

The compression accuracy of the proposed algorithm will be measured by a number of 

qualitative and quantitative parameters. One of the important measures is the ratio of 

number of bits required to represent the original data to number of bits required to 

represent the compressed data which is known as compression ratio.

The following parameters are used to evaluate the performance of the compression 

system

1. Signal-to-Noise Ratio (SNR):
~M-\ N-l

with sm n = Original Data

umn - Reconstructed Data, MX N = size of the image

2. Integrated Sidelobe Ratio (ISLR): The point spread function (PSF) of a point 

target from the terrain is shown in Figure 2.16 which consists of a narrow, strong 

peak at the location of the scatterer called mainlobe, surrounded by smaller peaks 

called sidelobes. The ratio of the power in the sidelobes (shaded region in the Figure 

2.16) to the total power is the ISLR.
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Figure 2.16 Point spread function (PSF) of a point target.

3. Peak sidelobe ratio (PSLR): The ratio of the power in the mainlobe (unshaded 

region of Figure 2.16) to the total power is the PSLR.

4. Range and Azimuth Resolution: The measure of the spread of the PSF along the 

range and azimuth directions gives the range and azimuth resolution respectively.

2.7 Conclusions

In this chapter, we have briefly described the principles of synthetic aperture radar 

imaging. We have described the Omega-k algorithm used to process the SAR data in 

stripmap-mode of operation, which is the framework used in this thesis for the compres­ 

sion of SAR raw data. The sources and methods to generate SAR raw data are 

mentioned. The various performances metric to be used to evaluate the performance of 

the compressed data are also described.
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Chapter 3

3. Theory of Compressed Sensing

In this chapter, we describe an emerging technique for sampling signals based on their 

information content rather than their bandwidth. It is known as compressive or com­ 

pressed sensing (CS). Modern radar and various other measuring systems generate a 

huge amount of data and the size of the data generated is rapidly growing. However, the 

number of salient features required to reconstruct the object is usually much smaller than 

the size of the measured data. The compressibility of many signals arises due to their 

sparse representation i.e. fewer non-zero coefficients, in some orthogonal basis or frame. 

In the field of computational and harmonic analysis sparsity plays a fundamental role in 

(i) compression based on transform coding, (ii) estimating signals in the presence of 

noise by the methods of shrinkage and soft thresholding and (iii) reconstruction of signal 

through the solution of inverse problems.

In traditional data acquisition methods, the data is measured by sampling the signal 

at the Nyquist rate determined by the bandwidth. The sampled data is then compressed 

before storage and transmission. This results in an inefficient compression system in 

which the data is first captured at a very high rate followed by massive computation to 

get sparse representation like Fourier transform or Wavelet transform etc., before 

retaining fewer coefficients. Moreover, the present acquisition methods have several 

technological limitations arising due to faster sampling rate, large dynamic range and 

higher energy consumption.

In compressed sensing (CS) the measurements are acquired at a reduced rate so that 

no additional compression is necessary. However, the penalty is that more sophisticated 

recovery procedures become necessary to reconstruct the signal. CS is basically "spar­ 
based" sampling based on the proof that sparse or compressible signals can be
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accurately reconstructed from minimally redundant set of randomly sampled data under 

very general conditions [19, 20].

SAR images have been shown to be compressible in wavelet and complex wavelet 

basis [5, 21, 22]. This compressibility of SAR images along with the simplicity of the 

encoder in the CS framework form the basis of investigating the performance of the 

SAR raw data compression in this framework. In this chapter, we describe the CS 

framework including the measurement schemes and conditions by which compressible 

signals can be compressively sampled and reconstructed.

3.1 Transform Based Compression

The block diagram of the traditional compression paradigm based on transform coding is 

shown in Figure 3.1.

x(t)
Sample

x(n)
Transform

X(k)
Quantize

X(k)

Figure 3.1 Block diagram of transform base compression.

The steps involved in traditional transform based compression are:

Sampling: In traditional signal acquisition system, any signal x(t) is modeled as

bandlimited signal. The sampling for such signal are then based on the Shannon sam­ 

pling theorem which states that in order to reconstruct a bandlimited signal, it must be 

sampled at a rate fs > 2fmax , where fs is the sampling rate and fmax is the maximum
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frequency content of the signal x(t). The sampling rate at twice the maximum frequency 

present in a lowpass signal is usually called the Nyquist rate. The sampling in this case is 

uniform and the reconstruction of original signal, x(t), from the sampled signal, x(n),

is then achieved by linear sin(x)/x interpolation. The data is usually acquired for a 

fixed interval of time, resulting in N samples of x(n).

Transform: The next step is to apply a suitable transform to the sampled data for 

compaction of energy i.e. to have significant energies in fewer coefficients. In many 

natural and man made signals such as audio, video, image, geophysical data, SAR 

images, etc. it is observed that there exists a transform where the coefficients X(k) with 

significant energies are fewer. It is to be noted that one obtains exactly N coefficients of 

X(k) for ' critically-sampled' transforms and possibly more for redundant transforms 

when using frames.

Sparse signals are those signals whose transformed non-zero coefficients are fewer 

and much less in number than the original size of the signal. Mathematically, a signal is

R -sparse if only R coefficients of X(k) are non-zero, with R<g.N. Whereas, for

compressible signals we have just a few large coefficients and many small coefficients. 

Compressible signals are well approximated by R - sparse representation. The example 

for the most commonly used transform in case of JPEG 2000 is wavelet transform 

whereas JPEG uses local DCT to compress signals.

Quantization: The next step is to apply a quantization process to the transform coeffi­ 

cients X(k), such that we are left with a sparse representation consisting of

approximations to only R of the coefficients. The compression is thus obtained by 

retaining R -sparse coefficients (both value and its location) out of the N sampled 

signal. The Figure 3.2(a), shows an example of a synthetic data, Cusp, of size TV = 1024, 

which has a sparse representation in the Daubechies-8 wavelet domain [23] as shown in
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Figure 3.2(b). The decay of the ordered wavelet coefficients is shown in Figure 3.2(c), 

where the black vertical solid line represents the maximum number of wavelet coeffi­ 

cients retained for reconstruction. The reconstruction of the signal with only R = 171 

significant wavelet coefficients (i.e. those coefficients with values greater than 10"6 ) is 

shown in Figure 3.2(d) with the SNR of the reconstructed signal as 132.86 dB.

The major drawback for the classical transform based coding is that we have to ac­ 

quire N samples when only R<g.N coefficients are retained. The encoder first 

computes N coefficients and then only the locations and the values of R largest coeffi­ 

cients are encoded. The only major advantage of this method is that the reconstruction of 

the signal is linear and consists of performing inverse transformation on these R- 
encoded coefficients.

A natural question which arises by observing the inefficiency of sampling at higher 

rate and then compressing is that why to acquire data at such high rates and then discard 

most of it. Is there a possibility of compression of the data right at the acquisition stage? 

The answer to this is the new technique of sampling as given by compressed sensing 

(CS) in which the sampling is related to the information rather than the bandwidth of the 

signal. It improves the conventional compression method by providing mathematical 

tools that when coupled with specific acquisition methods reduces the acquired dataset 

sizes, without reducing the resolution or quality of the compressed signal.
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3.2 Compressed Sensing Formulation

It is shown in [19], that a signal which is sparse in time/ spatial domain can be recon­ 

structed from incomplete frequency samples by solving a convex optimisation problem. 

The size of data depends upon the sparsity of the signal and is much less that what is 

required by the Shannon sampling theorem. Also, it is shown in [20] that a signal which 

is sparse in frequency domain can be acquired by random sampling in the time domain. 

These initial papers laid a foundation to the compressed sensing framework where it was 

demonstrated that it is indeed possible to reconstruct sparse signals encoded by a small 

number of random linear projections. Since then, there has been widespread applications 

of CS in imaging [24, 25], bio-sensing [26], radar [27], astronomy [28], rapid MR 

imaging [29], missing data recovery [30] etc.

The new model for signals adapted in CS is based on sparse approximation and, 

what is termed, the incoherence of the measurement modality. Hence, we describe the 

sparse approximation theory background and incoherence before describing the com­ 

pressed sensing framework.

3.2.1 Sparse Approximation Theory

We describe here the discrete version of the CS in which the signal is represented

{ \ N 
•w. £ R j = form an orthogonal basis

for RN with w. _Lwy . In such as case, W = {w1 ,......,ww }eRAW^ denotes a dictionary

consisting of N real valued vectors w,, with WWr = I where Wr is the transpose of

as a

W.
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The signal x e RN is transformed by this dictionary, W , into a vectors of coeffi­ 

cients z , formed by inner products between x and vectors from W . Mathematically, by
N

the orthonormality of W , we have x = J] w/ z* = Wz with zt = (*/» w/)  

Let x* be the representation of x with k coefficients under W. The error of repre­ 

sentation x* is then defined as a sum squared difference between x* and x i.e.

||x* - x|| . The optimal k representation of x under W is to take the k coefficients

with the largest wt 's and is denoted as x^,. Thus, the error in representing the signal x 

in the compressed form using k coefficients from W is then given by
2 #

xjp, - x = X rf • ^ne vari°us models for the signals which are well represented by k
i=k+\

terms are

1. k -support : In this case, signals have most of the coefficients exactly zero i.e. k 

non-zero coefficients under W , where k «: N . Hence, the error is x,   x = 0 .

2. p -compressible: In this case, the coefficients of the signal when sorted by mag­ 

nitude have a power-law like decay i.e. wj = or^), for some /?e(0,l) and

for all / . In such cases, the error x^, - x < Cpkl~2/p for some constant Cp .

3. a -exponentially decaying: In this case, the coefficients decay faster than any 

polynomial. That is, for some a and all i, w,. =O\2~°").

4. General : For all other cases, where x is arbitrary, there is no assumptions on the

error llx0/7,-x
2

The k -support signals, where most of the coefficients are required to be exactly 

zero, are modeled as strong sparsity. Whereas, the p -compressible and a -exponentially
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decaying signals, where most of the coefficients are very small but need not be exactly 

zero, are modeled as weak sparsity. For real data, it is rare for transform coefficients to 

be exactly zero; hence in most practical cases weak sparsity is the better model. How­ 

ever, the theory of CS is better explained with strong sparsity model and then extended 

for the weak sparsity model.

3.2.2 Incoherence

The incoherence is an extension of duality of the time and frequency, which states that a 

signal compact in time domain is spread out in the frequency domain and vice versa. 

This idea is carried over for the CS sampling which implies that the objects having a 

sparse representation in W are to be captured through sampling waveforms which have 

an extremely dense representation in W .

Mathematically, suppose we have pair (<D, Y) of orthonormal bases of RN . The 

coherence between these two bases is then defined as

(3.1)

The coherence measures the largest correlation between any two elements of <D 

and *F i.e. how the two bases look alike. The coherence is large when <D and *P contain 

correlated elements. Otherwise, it is small. If the two bases are normalized, then the

mutual incoherence always obeys VN <//(<!>, *F)<1 [31]. For example, if <I> is the 

canonical or spike basis and T is the Fourier basis, then this time-frequency pair obeys 

= 1 , showing that they have maximal incoherence.

The next section describes the compressed sensing framework where the sparse/ 

compressible signal is measured by simply correlating with a small number of fixed 

waveforms that are incoherent with the sparsifying basis and also non-adaptive to the
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input signal. It also describes the numerical optimization techniques to reconstruct the 

full-length signal from the small amount of collected data.

3.3 Compressed Sensing Framework

Before discussing the framework, we need to generalize the notion of sampling a signal. 

In most practical cases, the information about a signal x(t) is obtained by linear func- 

tionals recording the values

yk =

This means, we simply calculate the inner product of the object we wish to acquire with 

the sensing waveform <pk (t) .

The choice of the sensing waveform q>k (/) allows us to choose in which domain the

information about the signal is gathered. For examples, (i) if the sensing waveform are 

indicator functions of pixels, then y is the image data typically collected from standard

digital cameras, (ii) if the sensing waveform are sinusoidal at different frequencies, we 

are collecting Fourier coefficients as in the case of magnetic resonance imaging (MRI) 

and (iii) if the sensing waveform are delta ridges, we are observing line integrals as in 

the case of tomography. Since the measurements yk are in some sense coded versions

of the original object rather than direct observations, we often refer to such system as 

coded signal acquisition system. In such system, the best way to minimize the number of 

measurements M to reconstruct x(t) faithfully is to match the sensing waveform to the

structure of signal. That is, we try to make the measurements in the same domain in 

which the signal is sparse by keeping only M significant coefficients as measurement. 

As these M significant coefficients are different for different input signal, we cannot 

have a fixed sensing waveform. Surprisingly, the theory of CS suggests that it is indeed 

possible to take fewer measurements with the sensing functions which are incoherent 

with the sparsifying functions. In other words, the sensing function should be completely
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unstructured and look more like random noise than any feature we would expect to see 
in the object.

Although the CS theory is developed for the continuous time/ space signals, we re­ 

strict our discussion to finite dimensional discrete signal xeE\ where N is the 

dimension of signal x. Let A denote the MxN sensing matrix with the vectors 

#>j ,^2 ,......,^ as rows, where a* is the complex transpose of a. The measurements are

then expressed as y = Ax, where y e RM . The sparse representation of the input signal 

x € E^ is obtained by expanding in an orthonormal basis (such as wavelet basis) 

W = {w,, w2 ,...., WN } as follows:

N
i

x =
/=!

where z is the coefficient sequence of x, z. - (x,w.). It is convenient to express x as 

x = Wz, where We ENx;v with w1 ,.....,ww as columns. When the input signal x is R- 

sparse under the sparsifying transform W, we have |z|0 < R<g.N. Such signals are

known as R-sparse signal w.r.t. the dictionary W. Note that the /°-norm, 

|z|o = #{/': zt & 0}, simply counts the number of non-zeros in z . The set of positions of

non-zeros coefficients in z is called the sparsity pattern and we define the sparsity ratio
as a - R/N.

The CS framework consisting of the encoder, decoder and the sparsifying process is 

shown in Figure 3.3 and described below.
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Sparse 
Coefficients ' I JVxl'l (ATxl)

Sparsifying 
Transform

Input 
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Figure 3.3 The compressed sensing framework - showing the encoder, decoder and 
the sparsifying process.

3.3.1 Encoder

The encoding process consists of obtaining M measurement y from linear projection

onto a sensing matrix A. The sensing and sparsifying matrices must be incoherent and 

also the sensing matrix should be non-adaptive to the input signal. A key assumption in 

the theory of CS is that the sampling process determined by matrix A and the sparsity 

transform W are incoherent. This means that if a signal has a sparse representation in 

one, then it must have a dense representation in the other and vice versa; but a signal 

cannot have a sparse representation in both. This also implies that the vectors w, cannot

sparsely represent the vectors ^ and vice versa. The desirable properties of the sensing 

operator include:
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1. Optimal performance: This dictates the requirement of minimum number of 

compressed measurement to get an acceptable SNR of the reconstructed signal 

depending upon the application.

2. Universality: This implies that the measurement operator should be non-adaptive 

to the input signal i.e. independent of the input signal and incoherent to various 

sparsifying transforms.

3. Practicality: This means that the sensing operator should be fast enough to be 

implemented in practice, easy to implement in hardware and sometimes desirable 

that it possess streaming capabilities.

Various sensing matrices, which satisfy the above properties, have been reported in 

CS related papers [32-34]. The major types of sensing matrices are:

1. Uniform spherical ensemble. The columns of A are independent and identically 

distributed (i.i.d.) random uniform on the sphere S^"1 . Generate normalised entry 

from A/" (0,l). Then with high probability, the coherence between A and most

of W is about

2. Random signs ensemble: Independently select each entry of A to be 

±l/vJV with equal probability (Bernoulli, normalized). These are also largely in­ 

coherent with any fixed basis W.

3. Partial Fourier ensemble: Select at random M rows out of NX. N Fourier ma­ 

trix, getting MxN partial Fourier matrix. The spikes and sinusoids are not only 

maximally incoherent in one dimension but in any dimension.

4. Partial Hadamard ensemble: Select at random M rows out of NX N Hadamard 

matrix, getting MxN partial Hadamard matrix.

5. Noiselets: Defined in [35] it comes with very fast algorithms and takes O(N) 

time to run. Moreover, the noiselets matrix does not need to be stored to be ap-
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plied to a vector. They are maximally incoherent with spikes and incoherent with 
the Fourier basis.

One of the important problems in encoding the signal is the designing of a stable 
sensing matrix A such that the salient features in any R -sparse or compressible signal 

is not damaged by dimensionality reduction from x e RN to y E E.M . The construction 

of the sensing/ measurement matrix has been studied in [36], which suggests that the 

linear projections that mix the signal can be designed such that the average mutual 
coherence of the effective dictionary becomes favourable. For a dictionary A, its mutual 
coherence is defined as the maximum of the off-diagonal elements of the normalized 

inner products between different columns in A (when columns of A are normalized to 

/2 -norm). Put formally,

i i i i

(3.4)

It has been shown in [20, 37] that x can be recovered from the observation y = Ax by

solving the linear program x = arg min (x^ , if ||x||n <   | 1 +   | with //A > 0.
L*A

3.3.2 Decoder

The acquisition of the input signal x is represented as a linear transformation by the 

sensing matrix A yielding a measurement sample vector y = Ax. When the input signal 

x is R - sparse with respect to the sparsifying basis W, we can write the measurement 

vector in terms of its sparse coefficients z as

(3.5) 
= AWz = Kz

where K = AW is a holographic basis.
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A decoder must recover x e M* from the measurement samples y e RM knowing 

A and W, but not necessarily the sparsity pattern of the unknown signal z . When the 

no. of measurements M is equal to size of the input signal N, decoding simply entails 

solving a linear system of equations i.e. x = A"*y. When M < N, the linear system 

y = Ax is under-determined and permits infinitely many solutions. This is because if 

Ax = y then A(x+s) = y for any vector s in the null-space A/*(A) of A. In the

absence of any other information, no solution to (3.5) is to be preferred over any other. If 

we know that the measurement y is from a highly sparse signal with very few non-zero 

coefficients, then a reasonably decoding model is to look for the sparest signal among all 

those that produce the measurement y.

Since, z is R - sparse, it must belong to one of the subspaces of EN . For all
\ R J

As with M ^ R + l, the recovery of the signal's sparsity pattern and values is possible 

by an exhaustive search through the subspaces to determine which subspace x belongs 

to. This exhaustive search is unfortunately not tractable for reasonable sizes of problems

(N} 
since the number of spaces to search , can be enormous. Mathematically, searching

\ R J 

for the sparsest set of coefficients z in the basis K that matches the sensed values y, as

given in (3.5), leads to the following 70 -optimization problem

z = arg min ||z||o subject to y = Kz (3.6)

The objective function enforces the sparsity whereas the constraint enforces data consis­ 

tency.

As stated previously that the problem of recovery of z e RN from the measurement 

samples y e RM , where M < N , is ill-posed without the sparseness assumption. With
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sparseness assumption, the /0 -optimization problem is well-posed but computationally 

intractable. Although, the ^-optimization problem for such under-determined system of 

equations

z = argmin z subject to y = Kz (3.7)

has a convenient closed form solution z = Kr (KKr ) y , but never finds a # -sparse 

solution, returning instead a non-sparse z with many non-zero elements.

The two most common approaches to solve the sparse /0 approximation problem are

convex relaxation methods and greedy methods. The convex relaxation replaces the 

combinatorial sparse /0 approximation problems with a related convex program /t  

known as basis pursuit (BP) [38] and it can be solved using linear programming tech­ 

niques whose computational complexities are polynomial in N [39]. Most of the 

existing work on CS [19, 20] has concentrated on optimization based on l{ minimisation

which is recast either as linear program (LP) or as a second order cone program (SOCPs) 

and can be attacked with variety of methods, such as the classical simplex method or 

more recent interior point methods that yield polynomial time algorithms. The /j ap­

proach seeks a sparse coefficient x by solving the linear program [38]:

= argmin||z|| i subject to y = Kz (3.8)

where ||z|| =
N

Greedy reconstruction algorithms, on the other hand, build a sparse approximation 

iteratively by selecting the basis most strongly correlated with the residual part of the 

signal and use it to update the current approximation. The two most prevalent greedy 

techniques are the matching pursuit (MP) and orthogonal matching pursuit (OMP) [40, 

41]. These techniques are adapted in CS framework in [20, 32, 42].
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Before describing the robustness of the recovery of undersampled signal and the de­ 

tails of the reconstruction algorithms, we present a geometric intuition for why /, is

better than /2 for finding the sparse solution to (3.5) in Figure 3.4. Part (a) shows the l} 

ball in R2 of certain radius r, which contains all x e R2 such that |jc, +\x2 <r .It is to 

be noted that the ^ ball is anisotropic i.e. it is "pointy" along the axes whereas the 

standard Euclidean /2 ball, which is spherical and thus completely isotropic. Part (b) 

shows the recovery obtained through l{ -optimization (3.8), which correctly finds the 

sparse solution i, . The action of (3.8), for finding the sparse solution, can be imagined 

as increasing the radius of a small /j-ball gradually until it bumps into space 

H = {x: Ax = y} . The first intersection point is the sparse solution, x, , and is unique 

due to anisotropy of the lv -ball and the flatness of the space H. Part (c) shows the 

intersection of the /2 -ball, which is spherical and perfect isotropic, with H. The point of 

first intersection point, x, , of H and the expanding /2 -ball does not have to be sparse at 

all.

H = (x: Ax = y}

(a) (b) (c)

Figure 3.4 Geometry of /, recovery, (a) /, ball of radius r, containing all 
xeR2 such that jCj| + |x2 |<r, (b) recovery of sparse solution x/ through /,- 

optimization (3.8), (c) minimizing the /2 norm of x through (3.7) gives x/ , which 
in general will not be sparse at all.
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3.4 Robust Signal Recovery

It is imperative that the CS framework should be able to deal with both nearly sparse 

signal i.e. compressible signal and also noise. As mentioned earlier, most of the practical 

signals are not exactly sparse but approximately sparse. We will see later in this section 

that it is possible to obtain accurate reconstruction of such compressible signals from 

highly undersampled measurements. Also, in any practical application measured data is 

invariably corrupted with noise. The CS framework is shown to work for such cases as 

well, where small perturbations in data cause small perturbations in the reconstruction.

This section deals with the recovery the compressible signals z e RN from the 

measurement data y e RM corrupted with noise e i.e.

y = Kz + e (3.9)

where K e RMx7V is the holographic matrix. Adaptations to deal with additive noise in 

y or z include basis pursuit with denoising (BPDN) [38], complexity-based regulariza- 

tion [33] and the Dantzig selector [43].

Here we introduce an important property called restricted isometry property (RIP) 

which has proved to be very useful to study the general robustness of CS [44, 45]

DEFINITION 1.

For each integer R = 1,2,...., define the isometry constant 8R of a matrix K as the

smallest number such that

2 (3.10)

holds for all R -sparse vectors z
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A matrix K is said to have RIP of order R if SD is not too close to one. WhenK

SR < 1, these inequalities imply that each collection of R columns from K is non- 

singular, which is the minimum requirement for acquiring R/2 -sparse signals. The RIP 

property ensures that the matrix K approximately preserves the Euclidean length of R - 
sparse signals, which means that R -sparse vectors cannot be in the null space of K. The 

RIP ensures that the matrix K does not map any non-zero R -sparse signal z to zero 

measurement data i.e. y = Kz = 0 and also does not map two distinct R -sparse signals 

say z and z' to the same compressed data i.e. y = Kz = Kz'. The RIP is so named 

because it describes matrices that impose a near-isometry i.e. approximate length preser­ 

vation on a restricted set of subspace i.e. the subspace of R -sparse vectors. The RIP is 

sometimes also referred to as uniform uncertainty principles (UUP) [32, 44].

The general signal recovery for the noiseless case from undersampled data is then 

based on the following theorems.

THEOREM 1 (Noiseless recovery) [37]

Assume that 52R < V2 -1. Then the solution z to (3.8) obeys

z-z <C0 h-zR \[NR and
112 ° II K Hi/ (3111

for some constant C0 , where Z R is the vector z with all but the largest R components 

set to 0.

The above theorem shows that if the solution to (3.8) contains a R -sparse vector, 

and if K has RIP of order 2R with S2R <^/2-l, then that R -sparse vector is unique
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and is the unique /j minimizer of (3.8) i.e. the convex relaxation is exact. In general 

when 82R «: 1 the sampling operator very nearly maintains the /2 distance between each

pair of R - sparse signals. In consequence, it is possible to invert the sampling process 
stably.

The above theorem is extended for the noisy measurement case as given by (3.9). 

One of the reconstruction algorithms for this case is the 7j minimization with relaxed 

constraints

z = argmin|z| 1 subject to |Kz -y|| < s (3.12)

where s bounds the amount of noise in the data. The above formulation (3.12) is a 

quadratically constrained linear program (QCLP) and is often referred to as basis 

pursuit denoising (BPDN) [38], which is a convex problem. Another ways to express the 

/! minimization with relaxed constraints is

z = argmin ||Kz - y|| subject to |z|| < t (3.13)

The above formulation (3.13) is a quadratic program (QP) and is often referred to as 

least absolute shrinkage and selector operator (LASSO) [38, 46], which is also a convex 

problem and can be solved efficiently.

THEOREM 2 (Noisy recovery) [37]

Assume that S7R <^2-\. Then the solution z to (3.12) obeys
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for some constant C0 and C,.

The theorem suggests that the reconstruction error is bounded by the sum of two 

terms. The first term corresponds to the noiseless case while the second term is just 

proportional to the noise term. Also, the constants C0 and Q are typically small e.g. for 

82R = 0.25, we have C0 < 5.5 and C, < 6 [45].

The last two theorems establish that CS framework is robust and can handle both 

compressible signals and noisy measurements when the sensing matrices obey the RIP 

conditions. The most widely used matrices that satisfy the RIP conditions are the ones 

whose rows are formed from the realization of Gaussian noise or a sequence of Bernoulli 

random variables taking values ±1 with equal probability. It has been shown in [20, 32, 

42, 44, 47] that taking random measurements is in some sense an optimal strategy for 

acquiring sparse/ compressible signals, where M measurements can recover signals

with sparsity R — M/\og^N/M^. Similar bounds have been obtained using greedy [42] 

and complexity-based [33] recovery algorithms in place of /j minimization.

3.5 Recovery Techniques for CS

In this section we review the existing techniques and algorithms to recover signal from 

the undersampled data. The recovery methods in general are classified as 1) l\ minimiza­ 

tion, 2) iterative thresholding and 3) greedy methods.

3.5.1 /, - Minimization Methods

The constrained /, -minimization problem, as given in (3.8), can formulated as uncon­ 

strained / -minimization problem as
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= arginini||y -Kz||2 + r||z||1 (3.15)

where r e R+ .

This unconstrained /j-minimization approach consists in minimizing an objective 

function which includes a quadratic (squared /2 ) error term combined with sparseness 

inducing ^ -regularization term. Basis pursuit (BP), least absolute shrinkage and selec­ 

tion operator (LASSO), wavelet-based deconvolution, gradient, homotopy methods, 

projection algorithm [48], etc. are known examples of this approach.

Basis pursuit (BP) and basis pursuit denoising (BPDN) [38] solve the convex repre­ 

sentation as given in (3.15) and approximation problem as given in (3.12) by using 

interior-point methods. The wavelet based deconvolution involves the recovery of the 

piece-wise smooth functions from a noisy observation, by solving a convex relaxation 

problem using the appropriate wavelet basis and a value of the T parameter related to 

the variance of the noise [47]. Homotopy algorithms [49-51] trace all solutions of basis 

pursuit for all non-negative values of the scalar parameters in the various formulations T 
as in (3.15), s as in (3.12) and t in (3.13). These homotopy methods perform pivoting 

operations involving sub-matrices of K or KrK at certain critical values of the corre­ 

sponding parameter (T in (3.15), s in (3.12) and t (3.13)). The least angle regression 

(LARS) [49] can be adapted to solve the LASSO formulation as in (3.13).

The gradient projection is applied to a quadratic programming formulation of (3.15) 

in which the search path from each iterate is obtained by projecting the negative gradient 

direction onto the feasible set [48].

It is also possible to use intermediate quasi-norms i.e. 0 < p < 1 by the following 

regularisation [52-54]
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(3.16)

These norms do not lead to convex cost functions and therefore the global optimum is 

difficult to calculate. It is to be noted that the minimum value of norm for which the 

above cost function is convex is p - 1.

3.5.2 Iterative Thresholding

Iterative thresholding algorithms have been proposed recently to solve this problem in 

[55-61]. A similar algorithm to solve the / optimization problem had been previously

proposed in [62] and more recently in [63]. All of these methods address particular 

instances of a more general class of iterative algorithms based on expectation- maximi­ 

zation (EM) technique [64, 65] . A good overview of the iterative thresholding methods 

can be found in [66] with the convergence results in [67]. More details of the iterative 

thresholding algorithms and its use in the CS framework is described in the Chapter 4 of 

this thesis.

3.5.3 Greedy Methods

It is shown that the iterative greedy algorithms such as matching pursuit (MP) [40, 68] 

and orthogonal matching pursuit (OMP) [68] can be used for recovery problem at the 

expense of slightly more measurements as compared to BP. MP provides a low- 

complexity alternative to BP and has been proven to achieve an accurate decomposition 

of the signal but requires an unbounded number of iterations for convergence. OMP 

converges in a fixed number of iterations but requires the additional orthogonalisation at 

each step. Various variations of the matching pursuit for the compressed sensing applica­ 

tions includes regularized orthogonal matching pursuit (ROMP) [69, 70], subspace 

pursuit [71], stagewise orthogonal matching pursuit (StOMP) [72], tree matching pursuit 

[73-75] and compressive sampling matching pursuit (CoSaMP) [76].

55



Theory of Compressed Sensing

We have used the orthogonal matching pursuit (OMP) in Section 3.6 of this chapter 

to demonstrate the CS in action and also used it for recovery of complex-valued SAR 

sparse signals in the CS framework as it was easily adapted for the complex-valued 

signal. OMP converges in a fixed number of iterations and is faster than the BP method 

though it requires slightly more measurements.

OMP is an iterative greedy algorithm which attempts to identify the most significant 

element of the dictionary by guaranteeing that the residue is orthogonal to all previously 

chosen atom. The pseudo-code of OMP is shown in Table 3-1.

1.7 = 1, set residual vector r, = y, index set I, = 4>

2. Find index At , that yields the maximum correlation with the residue

3. Augment I, = I,[J /lt
4. Form new signal estimate by solving the least square equation 

z, = arg min y - Kj c

5. Set the new residual rt = y - K, z,

6. / = t + l and stop when |rJ ̂  e or t > P

Table 3-1 Pseudo-code of Orthogonal Matching Pursuit.

The convergence criteria is when the residue has reached a minimum fixed value of s or 

the loop has reached a pre-defined no. of iterations P. The least square solution in the 

step 4 is obtained by using the conjugate gradient (CG) method [77].

3.6 Compressed Sensing in Action

We now present several examples to show the recovery of signal from undersampled 

data.
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Example 1:

We start with a ID example by constructing a true sparse signal of length N = 

with a fixed number R = 20, located in random positions in the time domain, all of equal 

amplitude and random signs as shown in Figure 3.5(a). The signal is sparse in time- 

domain. We form the measurement matrix A of size 128x1024 by randomly selecting 

the entries from a Gaussian distribution with zero mean and unit variance and then 

orthogonalizing the rows. Figure 3.5(b) shows the measurements signal of size 

M = 128. Note that the sparsifying basis W in this example is an identity matrix i.e. 

W = I. Figure 3.5(c) shows the /2 reconstruction which is not sparse at all. This corre­ 

sponds to the minimum energy solution which is vector in {x: Ax = y} that is closest to

the origin. Figure 3.5(d) displays the recovered signal from the incomplete measure­ 

ments using the OMP reconstruction method. The reconstructed signal is almost same as 

the original signal with the mean square error (MSB) equal to 6.6033x10"16 .

Example 2:

We take the case of the compressible signal by considering a test signal, Doppler, from 

Donoho-Johnstone [78] collection of synthetic test signals. The test signal, Doppler, of 

length N = 1024 is shown in Figure 3.6(a). This signal is compressible in Daubechies-8 
(D8) wavelet basis which is shown in Figure 3.6(b). The measurement matrix A of size 

380x1024 is formed by randomly selecting the entries from a Gaussian distribution 

with zero mean and unit variance followed by orthogonalization. This results in the 

measurement signal of size M = 380. Figure 3.6(c) shows the recovery with the /2

minimization. The recovery of 304 wavelet coefficients based on OMP is shown in 

Figure 3.6(d) with the mean square error (MSB) equal to 1.89 xlO"6 .

Example 3

In this example, we consider a 2D example of 256x256 Shepp-Logan phantom as 

shown in Figure 3.7(a), which is a dummy image of MRI scan of human brain. The 2D 

Haar wavelet transform is shown in Figure 3.7(b) and the ordered wavelet coefficients is
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shown in Figure 3.7(c). The compressibility of the test signal in the Haar wavelet 

domain is evident from these figures. The MRI measurement is usually carried out in the 

Fourier domain as shown in Figure 3.7(d). We under sample this 2D Fourier plane 

taking M = 5481 samples through the sampling pattern (radial lines) as shown in Figure 

3.8(a). The measurement signal is shown in Figure 3.8(b). The minimum norm /2

solution is shown in Figure 3.8(c) and the recovered phantom with 3800 wavelet coeffi­ 

cients is shown in Figure 3.8(d).
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3.7 Conclusions

In this chapter we presented an emerging paradigm to recovery sparse signals from 

highly undersampled signals. We have reviewed the conventional sampling and trans­ 

form based compression. The disadvantages of higher sampling rate followed by high 

computation required in conventional compression are taken care in the compressed 

sensing framework. The major components in this framework are the encoder, the 

measurement process and the decoder. A compressible signal is captured (encoded) from 

a small number of random linear projections onto a measurement basis. The measure­ 

ment process is non-adaptive. The essential properties like mutual coherence and 

restricted isometric properties of the measurement matrices are discussed. The random­ 

ized measurement ensemble drawn from Gaussian i.i.d. or Bernoulli's distribution 

succeeds for all signals, with high probability over the random choices in its construc­ 

tion. We have seen that the reconstruction problem in compressed sensing is essentially 

the classical linear inverse problem with the number of variables N much greater than 

the number of observations M. The signal can be reconstructed (decoded) through a 

non-linear decoding scheme that uses the sparsity as a-priori information.

This framework where the encoder is simple and the decoder is computationally ex­ 

tensive is ideally suitable for on-board compression of SAR raw data due to the limited 

computational resources on a satellite. Before discussing the compression of SAR raw 

data and its performance in the compressed sensing framework in chapter 5, we present 

in Chapter 4 a new iterative algorithm to recover the sparse solution of a linear inverse 

problem.
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Chapter 4

4. Inverse Problems and 
Regularization Methods

In this chapter, we provide a brief overview of the inverse problems and associated 

regularization methods to get their solutions. In Chapter 3, it is shown that the signal 

recovery in the Compressed Sensing framework can be formulated as solving the inverse 

problem with sparsity constraints. The major contribution of this chapter is the develop­ 

ment of new iterative algorithm to get a sparse solution to the inverse problems. Often, it 

has been proposed to use regularization of ill-posed linear inverse problems via /, -

penalization when the solution is sparse. The regularization parameter controls the trade 

off between fidelity to the data and smoothness of the solution and hence the choice of 

the regularization parameter is crucial and is either manually set or estimated. The 

proposed algorithm, which is based on iterative soft-thresholding, adaptively estimates 

the regularization parameter in each iteration. The new algorithm is tested with several 

real and complex data and is compared with standard algorithms like Basis Pursuit (BP) 

and Orthogonal Matching Pursuit (OMP).

4.1 Inverse Problems and Mathematical Formulation

One of the most important problems in signal processing has been the recovery or the 

restoration of the signal from its degraded version. Such problems are described as 

inverse problems, where one makes indirect observations of a quantity of interest. 

Examples of inverse problems are deconvolution i.e. recovery of the input to a linear 

time-invariant system from its output, restoration of signal from its projection, recovery 

of inputs from a time variant system, recovery of signal from incomplete measurements 

(Compressed Sensing), signal denoising, overcomplete representation of signals and
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extrapolation of data from a given length of data. In all such cases, an appropriate 

mathematical representation is the Fredholm equation of first kind [79],

y = Ax (4.1)

where x is the unknown input signal, y is the known measurement and A is the known 

distortion operator or transformation. Mathematically, xe^, yeK, and 

A: 'H, -> ^ a compact operator with 'H,,?^ as separable Hilbert spaces of finite or 

infinite dimensions. The problem of signal reconstruction is to recover x given y and 

A. The direct solution to (4.1) by computing x = A~*y often leads to catastrophic results 

due to inappropriate computation of inverse operator or due to error in the measurement

y-

In practical cases, the measurement y is often corrupted by noise e, i.e.:

y = Ax + e (4.2)

In such cases, we find an estimate of x as x from the measurement y by minimizing 

the discrepancy function /(x) [55],

) = |Ax-y|2 (4.3)

where ||«| denotes the regular Euclidean norm. Any solution of this variational problem 

is called a least-squares solution.

The above equation has a unique minimizer, given by x = (A*A)' 1 A*y, where A* 

is the adjoint operator, when the operator A has a trivial null space i.e. 

A^(A) = {xe'H1 :Ax = 0} = {0}. If the null space of A, A/"(A)*{0), we find the
i

generalized solution of the inverse problem that is the least squares one with minimum
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norm i.e. xf = arg min j|x||: x minimizes f(x)}. The generalized inverse operator of A,

A , may be unbounded for ill-posed problems or may have a very large norm for ill- 
conditioned problems. In order to get a numerically stable solutions and a meaningful 

approximation of the true solution, a regularization technique is required which take 

advantage of the prior knowledge of the solution x. The classical regularization methods 

include (1) the Tikhonov regularization, (2) regularization by singular value truncation 

and (3) regularization by truncated iterative methods [79]. Here, we discuss the Tikhonov 
regularisation and also show that the regularization by truncated iterative method is a 

particular case of generalized Tikhonov regularization.

4.1.1 Tikhonov Regularization

The Tikhonov regularization tries to find a solution by balancing the fidelity of the data 

with the smoothness of the solution. Mathematically, the fidelity of the data is expressed 

as the norm of the residual r = Ax-y and the smoothness of the solution is expressed as

the norm of the approximate solution x . The Tikhonov regularized solution x   Ti. isII II - J^ *•

the minimizer of the functional

F,(i) = |Ai-yI2 + A||if (4.4)

The parameter A, > 0 is called the regularization parameter which balances the fidelity of 

the data and the smoothness of the solution, which is generally known a priori. The first 

part of the above equation is the fidelity term and the second term is the penalty term. 

Perfect fidelity to the data is achieved if A, = 0, whereas perfect fidelity to the priors is 

achieved if /I = oo. Figure 4.1 shows the Tikhonov solution to lie at the intersection of 

ellipse corresponding to the minimum of the discrepancy, eata , and surface of the /2 ball

of the solution size E. The L -ball of radius E for x e R2 is formed by points on

lx* + x* - £ . It is shown in [79], that if A: 'H, -» ?£, be a compact operator, the 

Tikhonov regularised solution exists, is unique, and is given by the formula
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"Ay
(4.5)

which also corresponds to the solution of the regularized normal equations

= A*y (4.6)

The above set of normal equations (4.6) is obtained by taking the gradient of (4.4) with 

respect to x, and setting it equal to zero.

Figure 4.1 Example for xeR2 i.e. x = (jc19 jc2 ) showing the solution of 

the Tikhonov regularization, where xf is the solution to min ||Ax-y|[ .

4.1.2 Non-Quadratic Regularization

The optimality condition (4.6) is a linear function of x, as the Tikhonov cost function 

(4.4) is a quadratic function of x. This results in the linear processing of data x for
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signal recovery. But the major drawback of minimizing the discrepancy function with a 

penalty on the /2 -norm is that it does not encourage sparsity and the resulting solution 

typically have non-zero values associated with all coefficients. It is shown in [80], that 

better results are obtained if non-linear methods are used. The Tikhonov regularization 

can be generalized by replacing a linear operator A by a non-linear one and also with a 

different choice of the penalty term. The generalized Tikhonov regularization deals with 

finding a solution which minimizes a functional of type

(4.7)

where G: 'H,  > R is a non-negative functional. To get a smooth solution, often the

highly oscillating components, which are most sensitive to noise, are penalized. The 

formulation of (4.7) includes well known regularization approaches such as maximum 

entropy and total variation methods [81].

Amongst several methods of non-quadratic regularization, we focus on the problems 

where the signal representation and linear inverse problems are expressed as underde- 

termined system of equations that uses an over-complete dictionary and the solution can 

be represented by a sparse expansion. This is related to the compression of the signal in 

the compressed sensing framework as described in chapter 3. The solution to such 

underdetermined problems is not unique. The non-uniqueness of the underdetermined 

system is commonly addressed by using the sparseness as a criteria to select from 

among the (many) possible representations. Sparseness constraint refers to the require­ 

ment that the vector or solution being sought or optimized must have a small number of 

large coefficients with respect to an orthogonal basis or frame. The sparsity promoting 

feature of the solution to the underdetermined system of equations has been explored 

extensively in various signal processing applications including image, audio, video 

compression and recently in the framework of compressed sensing (CS) [19, 20]. In CS,
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a non-adaptive, low dimensional linear projector is used to acquire an efficient represen­ 

tation of a sparse or compressible signal directly using just a few measurements.

4.2 Sparse Representation Problem

Let us consider a MX TV measurement matrix A with M <c N and rank(A) = M . Then, 

for an observation y e CM the system of equations, y = Ax , has infinite solutions in 

x e C^ . Any solution for this underdetermined system of equations can be expressed as

(4.8)

where XLS is the minimum norm solution (i.e. solution which has the smallest /2 norm

N

defined as |x|2 = ^T xf ) and is given by xI5 = Afy, where Af denotes the Moore-

Penrose pseudo-inverse of A. The vector v is any vector that lies in the null space of 

A, A/*(A) . In this case of underdetermined system of equations, the null space is non- 

trivial. The least square solution, \LS , has many non-zero coefficients and hence not

sparse. Another drawback of the least square solution is their lack of robustness i.e. their 

strong sensitivity to the errors in a data set. To overcome these drawbacks various 

algorithms to find the sparse solution to the problem have been undertaken as described 

below.

Suppose that the solution x has the sparsity index R in the orthogonal basis or 

frame W = {#>, }^ i.e. ||Wx||0 = |z||0 = # {i: |z, # 0} = R , where the function 

#{/: \zi & 0} is simply the number of non-zero terms in the candidate vector z . When

z is sparse we have R « N . The overall sparse representation problem is as shown in 

Figure 4.2.
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Nx\

y = Ax = AWz = Kz

wNxN

Nxl AMxN Mxl

Figure 4.2 Overall Sparse representation problem.

The sparse recovery of the signal z is made possible by solving the combinatorial 

optimization problem

z 0w = arg min |z|0 s.t. y = Kz (4.9) 

where K = AW* is the holographic basis.

The /0 -norm term leads to non-smooth and non-convex problem which is NP-hard

to solve and several alternate methods to find a solution like greedy algorithms [40], 

gradient descent , linear programming [38] and global optimization were devised.

In the case of CS framework, the above non-convex combinatorial problem is re­ 

laxed by minimizing the /, - norm. Under suitable conditions, minimization of the /j -

norm is equivalent to minimization of /0 - norm [44]. The CS theory shows that when the 

matrix K has the restricted isometric property (RIP) [44], then it is possible to recover 

R sparse coefficients from measurement of size M = O\C \og^/^\, where C is a 

positive constant. When the RIP holds, the signal z can be recovered exactly in the
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absence of any noise from y by solving the /j minimization or Basis Pursuit (BP) 

problem [38],

z la = arg min z I s.t. y = Kz (4.10)

N

where \\z\[ = ^ zt is the ^ - norm.

However, if there is noise in the measurement y , the sparse solution is obtained 

through the Basis Pursuit Denoising (BPDN) problem [38]

z lc = arg min j -|Kz -yf + T\\Z\[ j- (4.11)

where T e E+ . It is to be noted that the above equation is an unconstrained convex 

optimization problem in terms of z but non-differentiable when z, = 0 for any zt and

thus there exists no closed form solution for the global minimum in the same way that 

we have in case of Tikhonov regularization (/2 penalty). This drawback has led to the

introduction of techniques which use equivalent unconstrained formulation as least 

absolute shrinkage and selector operator (LASSO) problem [46]

zu = arg min |Kz - y || s.t. \\z\( < t (4.12)

which is equivalent to (4.11) under appropriate constants rand /eR+ . In all these 

cases, the /, term encourages small components of z to become exactly zero, thus 

promoting sparse solutions.
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4.3 Iterative Soft-Thresholding Algorithms

Several authors have proposed an iterative soft-threshold algorithm to approximate the 

sparse solution z(r) [57, 65, 82] for equation (4.11). The connection between a mini­ 

mum /rnorm penalty and soft shrinkage was also pointed out in [83]. More precisely, 

z(r) is the limit of sequences z(w) defined recursively by gradient based solution as

z(n+1) = S r [z (w) + K* (y - Kz(w) )] (4.13)

starting from an arbitrary z(0) , where * denotes Hermitian transpose and Sr is the vector 

soft-thresholding operation defined by component-wise shrinkage, ST , of each element 

of the vector as

'g-T g>T

0 \g\ZT (4.14)
g + T g<~T

where the scalar g e R, ( ) denotes the positive part operator defined as 

(g)+ = max(g,0), and sign(») is the sign function defined as 

sign(g) = 1 if g > 0, and sign(g) = -1 if g < 0. The convergence of this algorithm is

proved in [55]. The above iteration with fixed T is often called as the iterative soft- 
thresholding algorithm or the thresholded Landweber iteration [84]. The Landweber 
method is an example of the so-called gradient methods, i.e. of the methods where, at 

each step, the new approximation is obtained by modifying the old one in the direction 

of the gradient of the discrepancy function /(x) as defined in (4.3) [85]. The conver­ 

gence of the above recursion (4.13) to a fixed point occurs for K with norm strictly 

bounded by 1 and with trivial null space. We can always assume without the loss of 

generality that |JK|| < 1, which is the largest singular value of K; if necessary, this can be 

achieved by a suitable re-scaling of K and y.
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The soft thresholding in (4.14) is defined for the complex signal geCN , also 

known as complex thresholding operator, as Sr (re iff ) = ST (r)et0 [55]. The soft- 

thresholding operation is as shown in Figure 4.3.

g

Figure 4.3 Soft-thresholding operation.

The non-linear thresholding of the Landweber iteration 

z<w+i) = z<"> + K*(y-Kz(w) J, which is a gradient descent algorithm with a fixed step 

size, converges quite slowly [84]. This algorithm would converge faster, if the solution 

in each iteration is restricted to the /j -ball BR := (z | \\z\^ <> R\ , with R := |z(r) | where

z(r) = lim z(w) . This could be achieved by projecting the Landweber iterates z^"' on the

/j -ball BR . We thus obtain the following algorithm, which is also known as projected 

Landweber iteration,

(4.15)

74



Inverse Problems and Regularization Methods

where P^ is an non-expansive /2 -projection operator in the sense that 

|Pfiu - PRv\ < ||u - v|| for all u, v e CN .

The following lemma shows that the /2 -projection P^(a) can be obtained by a 

suitable thresholding of a .

Lemma 1 [84] : If Ja^ > R, then the l2 -projection of a on the l^-ball with radius R is 

given by P^ (a) = Sr (a) where T (depending on a and R) is chosen such that

Thus, the orthogonal projection P^ onto the /,-norm ball is re-interpreted as the 

problem of finding a suitable soft-threshold value, t. The projection on the /j-ball can 

then be computed by the following steps:

1. Sort the absolute values b, of the components of a, which results in the rear­ 

ranged sequence \b\ with bj > bj+l > 0 for all j , where bj =

2. Perform a search to find k such that

k-\ 
where mb (b) =

1 7=1

3. Set v - [R- Sb (b)| J k and r = ak + v, where the scalar k

4. Complete the projection by soft-thresholding a as S r (a) .
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The projected Landweber iteration in (4.15) can now be expressed as

z(w+1) =Sr [z(w) +K*(y-Kz(w) )] (4.16)

where the thresholding parameter T depends upon the radius of the /j -ball on which the 

iterate is projected. The above procedure is the projected Landweber, which we are 

contrasting with the earlier thresholded Landweber where the thresholding parameter, 

T , is fixed in all iteration.

Similar method of projection onto convex sets is used for getting the sparse solution of 

the inverse problems and is discussed below.

4.4 Projection on Convex Sets

It is shown in [57] that, if in addition to the measurement values y, if we are also given 

the /j-norm of the true solution, a, we can recover the sparse solution by projecting on

two convex sets H = {z | y = Kz} and B^ := Jz | Jzl ^ a\ i.e. by iterating the solution as

Projection onto H:

P = z(n) + K* (KK*)"' (y - Kz(w) ) (4.17)

It is to be noted that when K is orthogonal we have /? = z(n) + K* (y - Kz(w) ) .

Projection onto B^:

(4.18)
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where Sr (/?) is defined in (4.14). The threshold T is determined by sorting the coeffi­ 

cients by magnitude and perform a linear search such that |z("+1) <, a, as described in

the projected Landweber algorithm. It is shown in [85] that for projections onto convex 

sets (POCS) based algorithms, every known a-priori property about the solution can be 

formulated as a corresponding convex set in a Hilbert space H. Given n closed convex

C0 = fY^C, * 0, the iterationset

zk+i ~

with

> £ = 0,1,2...... where P. is the corresponding projection operators

defined by jjz - P^\ = min jjz - h|| and h is the projection of z onto C, , will converge to

a point in C0 for any initial z0 . The projection on two convex sets is illustrated in Figure 

4.4.

Figure 4.4 Alternating projection between two convex sets with non-empty intersec­ 
tion results in convergence to a fixed point z^ e B fl C from the initial point z0 .

The success of the above method relies on the fact that the /j-norm of the true solu­ 

tion, a , is known beforehand. In contrast, the alternative of using one of the many 

algorithms which solve the unconstrained problem of the form (4.11) requires the 

determination of the regularization parameter. This could be quite challenging as this
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parameter is often either assigned manually or determined iteratively using computa­ 

tional expensive estimation techniques such as generalized cross validation [85].

Here an algorithm is proposed that solves the BPDN problem (4.11) and does not 

require any priori knowledge of the ^ -norm of the true solution, a, or the regularization

parameter, T , but instead projects the solution onto a sequence of convex set of increas­ 

ing /j-norm.

4.5 Proposed Algorithm Ll_Adapt

The proposed algorithm works by projecting the solution onto two convex set as in 

equations (4.17) and (4.18). The value of /j norm or"' for determining the threshold T in

equation (4.18) is gradually increased in each iteration. The pseudo-code of the proposed 

algorithm Ll_Adapt is shown in Table 4-1.

Initialise

L = l,z(l) = 0,*! = Ie~5 ,s2 = = 0,« = 1

2. a = sort(|p|) such that at > fl/+1 ,V/

3.

4.
5. Find k such that

a (a)|| < a<"> < |K Mlak V /Id || %n V 7||j

A  1

where S = fl - fl
7=1

6. v = -

7. z (w+1) = S

(w+1)8. If y - Kz w+ > e2 , if = w + 1, go to step 1

Table 4-1 Pseudo-code of Ll_Adapt.
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The description of the algorithm Ll_Adapt is as follows:

1. Initialisation: The algorithm begins with the initialization of the iteration no. n , 

the index L for computation of /, -norm, the initial guess z^ = 0 , the conver­ 

gence factor £j for incrementing the index L and the convergence factor £2 for 

the algorithm to terminate.

2. Gradient Descent Step: This step computes the gradient of the function and 

finds a new value by moving in the opposite direction of the computed gradient

asp = z (w) + K*(y-Kz(M) ).

3. Computation of /j-norm: The value of the /j-norm to which the inner iteration 

has to converge is computed by first sorting the coefficients in the descending

order and then computing the /j -norm as a(n) - aj . The Figure 4.5 illustrates

the computation of the /} -norm.

a

I =<*"

/
k

J

Figure 4.5 Plot of /, -norm and its associated parameters.
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4. The index, L, for estimating the a^ value in step 3. of the pseudo-code is in­ 

creased stepwise whenever the solution has converged to the previous reference 

of /! -norm. It is to be noted that because of the shrinkage, the number of terms,

k, used to form a norm of size a^ after thresholding will always be greater 

than or equal to the number L before thresholding.

5. Computation of Soft-thresholding value: The step 5 and 6 computes the value 

T , which is used for soft-thresholding. A search is performed to find the index k

such that k (a)| 1 a<"> < ||s^ (a)| where fa (a)| = g (a, - at ). Then we

set v = I cr' - Sa/f (a) J k and compute r = ak +v.

6. Projection onto /,-ball: The projection onto the /j-ball is computed via the soft- 

thresholding as z(w+1) = S r (p) as per (4.14) with the value T as computed in the 

earlier step.

The algorithm iterates till the /2 -norm of the residue y -Kz'"' is below the threshold s2 . 

Generally, s2 is the estimated noise level.

The pictorial representation of the algorithm, Ll_Adapt, is as shown in Figure 4.6. 

The 2D problem, illustrated in this figure, is to obtain the point constrained to lie on a 

given straight line y = Kx, which is closest to the /j -ball. This algorithm solves the

problem by "expanding" the /j norm until it touches the hyperplane y = Kx. The 

proposed algorithm converges to a solution which has a minimum /j norm.
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Figure 4.6 Minimization of /, norm under a linear constraint.

The convergence of Ll_Adapt is accelerated by introducing a standard descent step in 

(4.16) as

= Sr [z ( "> + ^">K* (y - Kz(w) (4.19)

where 8 = 2 , with r = yK*r and o is the standard descent step as calcu-

lated in steepest descent algorithm. The pseudo-code of this algorithm Ll_Adapt_SD is 

shown in Table 4-2.

81



Inverse Problems and Regularization Methods

Initialise

1. r = y-Kz(M)

e \

2.

= 0,n =

llKri

3 D «_(w) • c(w)-iv* IB ^ T -4- /i ̂  ' Iv 1* » I' ** T C/ .^V I

4. a = sort(|p|) such that a. > flj+1 ,V/

C /v<"> - D, CX

7=1

6. If a(M) - a(n~l) < s l *a(n) , then L = I + 1

7. Find A: such that

7=1

8. v = ^)-

9.

10. If y-Kz L, go to step 1

Table 4-2 Pseudo-code of Ll_Adapt_SD.

The convergence of such algorithm with the step size fr' > 1 is proved in [84]. It is
/ %

also shown in [85] that the convergence of (4.19) is assured, if and only if 0 < <r"' <
°T

where <TJ is the largest singular value and of = K*K . The block diagram of the 

proposed algorithm Ll_Adapt_SD is as shown in Figure 4.7.
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Figure 4.7 Block Diagram of Ll_Adapt.

The paths, in the Ji^ vs ||Kx-y|| plane, followed by the Ll_Adapt_SD with the 

descent step and the projected Landweber iterations are shown in the Figure 4.8. It is

seen in the Figure 4.8 that the Ll_Adapt_SD with the descent step, <r"', soon catches up 

with the projected Landweber iterations and also converges faster than the projected 
Landweber iterations as shown in Figure 4.9. The graph is obtained by running an 

experiment with a sparse signal of length 128 samples with 20 as the sparsity index. The 

measurement signal of length 50 samples was obtained with a measurement matrix of 

Gaussian i.i.d.

The proposed algorithms, Ll_Adapt and Ll_Adapt_SD, work for both real and 

complex vectors and are more flexible as compared to the BP algorithm solved through 

interior-point methods as it is possible to include a-priori knowledge about the original 

signal expressed in form of deterministic constraints. Examples of the deterministic 

constraints include non-negativity or restricted bounded range of signal intensity values 

and finite support by defining particular region in the signal. This algorithm is also 

tailored for the matrices that are formed by rows taken from orthonormal matrices 

corresponding to fast transforms so that Kx and K*x can be computed by fast trans­ 

forms.
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Path in the llxll, vs. |]Kx-y||2

10"

10'2

KT5

10"

9.5

= = = b ~ = =

10 10.5 11.5 12 12.5

IWh

Figure 4.8 Path in the ^ vs ||Kx-y| plane.

Path in the ||x||, vs. ||Kx-y||2

10.804 10.806 10.808 10.81 10.812 10.814 10.816 10.818 10.82 10.822

Figure 4.9 Zoomed portion of Figure 4.8.
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Iterative algorithms offer interesting advantages like the possibility of developing 

adaptive procedures, easier ways to include constraints e.g. positivity, monitoring of the 

solution process and also the parameters determining the solution can be updated as the 

iteration progresses. The various extensions of proposed algorithm are discussed in 

subsequent section.

4.6 Results of Ll_Adapt

The Ll_Adapt algorithm is tested with four ID examples with N = 1024 from Donoho- 

Johnstone [78] collection of synthetic test signals namely, 'Cusp\ 'Heavisine' and 

'Doppler'. The other two test cases are 'Piecewise Polynomial"* and 'Piecewise Regular', 

as shown in Figure 4.10. These test signals are compressible in the wavelet domain and 

are imitation of spatially variable functions arising in imaging, spectroscopy and other 

scientific signal processing applications.

\
/ \

'' f 

,J

Jl

«t KV ecu loc

Figure 4.10 Test signals: Cusp, Hevisine, Doppler, Piece_Polynomial, Piece_Regular.
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An experiment was performed with the measurement matrix A obtained by sam­ 

pling a matrix with Gaussian i.i.d. entries which are then orthonormalized. The 

sparsifying transform used here is Daubechies-8 (D8) wavelet of level 1. The results for 

several values of M (the size of measurement vector) in comparison with SolveBP [86] 

for 100 runs of each experiment and are shown in Table 4-3. The mean and standard 

deviation of SNR and /rnorm are tabulated as Std_SNR and Std_Ll respectively in

Table 2. In the first row of each table we have the mean value of the SNR obtained by 

running the experiment 100 times both for the Ll_Adapt and BP algorithm. The second 

row in each table consists of the mean value of the /, -norm to which these both algo­ 

rithms have converged to. The third and the fourth rows of each table capture the 

standard deviation of the SNR and /j-norm respectively of 100 runs of the experiment

for Ll_Adapt algorithm. These extensive numerical results suggest that the Ll_Adapt 

algorithm converges to the minimum /j -norm as the SolveBP converges to.

In another experiment, the test signal Cusp of length 1024 with the sparsity of 

around 171 in the Daubechies-8 (DS)-wavelet basis is captured through the measurement 

matrix A . The signal measurement length of 250 samples is captured through a meas­ 

urement matrix consisting of Gaussian i.i.d. As mentioned earlier, Ll_Adapt has the 

flavour of decreasing soft-thresholding value, T with increasing iteration no. and 

corresponding increase in /j -norm of the solution which is shown in Figure 4.11 for the

same test signal Cusp.
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Measurement Length M = 100

SNR

LI

Std_SNR

Std_Ll

Cusp

Li- 

Adapt

24.52

35.18

BP

24.57

35.19

2.93

0.09

Heavisine

Li- 

Adapt

16.92

308.21

BP

16.84

308.35

3.47

1.43

Doppler

Li- 

Adapt

4.77

36.41

BP

4.86

36.45

1.84

0.49

Piece_Poly

Li- 

Adapt

3.55

6431

BP

3.65

6439

1.60

88.62

Piece_Regular

Li- 

Adapt

4.48

2238

BP

4.60

2240

2.04

30.17

Measurement Length M = 200

SNR

LI

Std_SNR

StdJLl

Cusp

Li- 

Adapt

42.52

36.48

BP

42.31

36.49

4.31

0.01

Heavisine

Li- 

Adapt

31.67

327.81

BP

31.63

327.82

2.81

0.20

Doppler

Li- 

Adapt

12.72

46.58

BP

12.81

46.59

1.83

0.15

Piece_Poly

Li- 

Adapt

9.28

8518

BP

9.36

8522

1.34

35.97

Piece_Regular

Li- 

Adapt

11.32

2874

BP

11.38

2875

1.31

10.06

Measurement Length M = 300

SNR

LI

Std_SNR

StdJLl

Cusp

Li- 

Adapt

79.80

36.58

BP

78.35

36.58

18.16

0.00

Heavisine

Li- 

Adapt

58.74

330.33

BP

58.60

330.33

3.47

0.01

Doppler

Li- 

Adapt

22.16

49.69

BP

22.22

49.69

1.58

0.04

Piece_Poly

Li- 

Adapt

15.20

9550

BP

15.27

9551

1.17

15.45

Piece_Regular

Li- 

Adapt

19.11

3144

BP

19.18

3145

1.46

3.31

Table 4-3 Results of Ll_Adapt and SolveBP for various measurement size M
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Figure 4.11 Showing increasing /,-norm of solution and the decrease in the Soft 
threshold value, T , for the first 100 iterations (Test case : Cusp)

The test signal and its recovery result are shown in Figure 4.12. The test signal 

Cusp of length 1024 is shown in Figure 4.12(a). The D8 wavelet transformed coeffi­ 

cients with sparsity index of 171 coefficients are shown in Figure 4.12(b). The 

measurement signal of length 256 obtained by using a measurement matrix of Gaussian 

i.i.d. is shown in Figure 4.12(c). The Ll_Adapt algorithm recovers the sparse solution 

from these 256 measurement signal with a SNR of 110.24 dB as shown in Figure 

4.12(d).

The algorithm is also tested with complex wavelet transform (CWT) as a frame, 

where the signal is sparse. More details of the use of CWT as a frame is described in 

chapter 5. The sparse signal of length M = 256 is synthetically created with the sparsity 

index of 46. The size of the transformed data is 544. There is an increase of the size of 

the data by more than 2:1 when CWT is used as a frame. The SolveBP is not used in this
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case as K and K* are not matrices but functions and also y 6 Cw ,xe CN . Instead, the 

Ll_Adapt algorithm is compared with OMP method and the results are shown in Figure 

4.13. The sparse signal of size 256 with the sparsity index of 46 is shown in Figure 

4.13(a). The /2 -norm recovery is shown in Figure 4.13 (b), which does not correspond to 

the desired sparse solution. The OMP recovery is shown in Figure 4.13(c), which also 

fails to recover the desired sparse solution giving a SNR of only 10.18 dB. The result of 

the Ll_Adapt is shown in Figure 4.13(d), which shows the recovery of the desired 

sparse solution with a SNR of 81.46 dB. This shows that Ll_Adapt works well for some 

cases where the OMP fails to get the sparse solution or the minimum lv -norm solution.

4.7 Some Further Extensions of Ll_Adapt 

4.7.1 Hard-Thresholding

The hard-thresholding could be used instead of soft thresholding defined in (4.14) as

g g>T

0 g| <, r (4.20)
-g g<~T

to get sparse solution in some cases.

It has been observed that the Ll_Adapt_SD converges faster, if we use the hard thresh­ 

olding (4.20) initially when the difference in the computed /j-norm in successive 

iterations is greater than a threshold E, = 0.01 and subsequently use the soft-thresholding 

(4.14) when the difference in computed /j-norm in successive iterations is below a 

threshold £ = 0.01. We call this as Hard+Soft thresholding. An experiment is conducted 

with 128 length signal with 20 random values located at random locations. The meas­ 

urement matrix is Gaussian i.i.d. The signal measurement length is 70.
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The sparse solution is computed with Hard+Soft thresholding and soft thresholding and 

the plot of /,-norm vs the iteration no. is as shown in Figure 4.14. The Ll_Adapt_SD 

takes 2520 iterations to compute the sparse solution whereas the Hard+Soft thresholding 

scheme takes only 551 iterations to converge.
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Figure 4.14 Plot of /j -norm vs iteration no. for the Hard+Soft and 
Soft Thresholding.

4.7.2 Positivity Constraint

An additional constraint of positivity can be included in cases where the solutions have 

all positive coefficients. The positivity constraint is accounted for in Ll_Adapt by 

projecting at each iteration the solution of the previous update equation on the cone

generated by the vectors having positive entries as zw <-Pc (z^J where the projector 

P for vector is defined by component-wise projection, Pc , of each element of the vector 

as
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0 otherwise

We performed an experiment by simulating a test signal with all positive values of 

amplitude 1 at random positions of size N = 1024 as shown in Figure 4.15(a). The 

measurement signal of length M = 100 is obtained through a Gaussian i.i.d. matrix. The 

signal recovery with OMP is shown in Figure 4.15 (b) with an SNR of -2.04 dB and the 

recovery through Ll_Adapt is shown in Figure 4.15(c) with an SNR of 4.79 dB. The 

Ll_Adapt with an additional constraint of positivity resulted in a very good recovery of 

the original sparse signal with an SNR of 95.70 dB. A good recovery of the signal for this 

experiment with Ll_Adapt and OMP were obtained for measurement length of 128 

samples. Thus, the recovery of the signal in this case was observed to be successful with 

much less measurement data as compared to when no such additional constraint was 

included. This demonstrates the improvement that can be achieved by including all the a- 
priori information that we have for the solutions.

4.7.3 TV Regularization

In [87], it is shown that wavelet soft shrinkage on a single scale with Haar wavelets and 

threshold parameter r is equivalent to TV regularization of two-pixels pair with regulari- 

zation parameter T 12 . An experiment was performed with a test signal of length 1024 

and sparse in Haar wavelet transform domain, as shown in Figure 4.16(a). The sparse 

Haar coefficient with support of 65 is shown in Figure 4.16(b). The measurement signal 

of size of 300 is obtained by Gaussian i.i.d. matrix. The signal recovery with total varia­ 

tion (TV) method [57, 88] is shown in Figure 4.16(c) with an SNR of 14.48 dB and the 

recovery through Ll_Adapt is shown in Figure 4.16(d) with an SNR of 95.70 dB. The 

Ll_Adapt in this case gives much result than the equivalent TV method.
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The Ll_Adapt algorithm, in fact, could be used to find a solution x as a minimizer of a 

more general convex objective function /: Cm -> R given by and defined in [60]

) (4.22) 

where 0: C" -> R is a function defined as:

1. Weighted / norm

The weighted lp norms, for p > 1, are defined as

[ \I/P 
TV!*/ (4.23) L^ 'I

where wt > 0.

For the case when p = 1, the projection onto to the convex set BR is given as

z( "+1) =Sr (P) (4.24) 

where ST (zt ) = szg«(z.)(|z/ -

It is shown in [89] that sparse recovery of the algorithm which consists of solving a 

sequence of weighted /j -minimization problems, where the weights used for the next

iteration are computed from the value of the current solution, outperforms /, minimiza­ 

tion algorithms. In such case,

-n+l   -  (4.25)

where s > 0.
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2. p' Power of a Weighted lp Norm

This class of regularizes, is defined as

The denoising operator for various p is discussed in [60] and given below

a) For p - 1, the denoising operator is as described in (4.14).

b) For p> 1, the denoising operator or the shrinkage function is given as

where S 3   = F, \ is the inverse function of

• «__i
(4.28)

Generalized Landweber Iterations:

The algorithms discussed in the above sections can be considered as a special case of 

Generalized Landweber iterations which are summarized as below.

If z("+l) = §r [z(n) + M4 a(")r(w) ], r(n) = (y - Kz(w) ) then we have

1. Thresholded Landweber : T — constant, or'=1

2. Projected Landweber: T = ^[R^"'), crn'=I

( i \ \ / \ P" R,v '\, or' =-J   
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4. Projections on Convex Sets : r = //(#,z(w) ), or(w) = (MM*)

5. Ll_Adapt: T= compute, a^=I

6. Ll_Adapt_SD: T - compute, a^ =
Mr(/0

It is also possible to include the /2 -norm of the solution in the unconstrained optimiza­ 

tion formulation of (4.11) as zlc = argminj-|Kz-y|2 + <'||Lz|2 +r|z| I and solving

through the iterative algorithm z(w+1) = §r ((l- ̂ L*L)z(w) + K* (y - Kz(n) )) .

4.8 Conclusions

An iterative algorithm for the computing sparse solutions (or sparse approximate solu­ 

tions) to linear inverse problems is presented, in which no prior knowledge about the 

regularization parameter is required. The required regularization parameter is computed

at each iteration step. The algorithm starts with z^°' = 0 and slowly increases the /j -norm

of the successive approximations. The various advantages of the iterative methods over 

the standard /j-norm minimization algorithms and various possible extensions are also

discussed. We emphasize that our algorithm does not require any linear system solvers 

or matrix factorizations and requires only vector operations and matrix-vector multipli­ 

cations. The algorithm can also take full advantage of fast transforms like fast Fourier 

transform (FFT), discrete wavelet transform (DWT), etc. The algorithm is tested with 

various test signals both real and complex and is shown to converge to the min ^ -norm

solution as that of BP algorithm. Few mechanisms to increase the speed of convergence 

of the algorithm are also presented. This new algorithm is used as a reconstruction 

algorithm to compress SAR raw data in the compressed sensing framework, as discussed 

in the chapters.
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Chapter 5

5. Compressed Sensing Framework 
for SAR Raw Data Compression

In this chapter, we describe a framework for compressing the SAR raw data by sampling 

the signal below the Nyquist rate using the ideas from Compressed Sensing. The major 

contribution of this chapter is a regularization based SAR image reconstruction from 

sub-sampled complex-valued raw data. Due to the low computational resources available 

onboard satellite, the idea is to use a simple encoder, with a 2D FFT and a random 

sampling. Decoding is then based on the iterative algorithm, as described in Chapter 4, 

or uses greedy algorithms such as orthogonal matching pursuit (OMP). Unlike standard 

image processing problem, SAR involves data processing with complex-valued and 

random-phase coefficients corresponding to scatterers on the ground, as seen in Chapter 

2. This complex-valued and random-phase characteristic of the SAR images makes the 

extension and application of real-valued regularization methods challenging. Moreover, 

speckle noise is formed during the processing of the radar returns into a SAR image 

which in turn severely degrades the compression/ decompression results. In one of our 

experiments described here we have modified the complex wavelet transform (CWT), 

generally applied to the real data for shift invariance, for the complex-valued data to use 

it as a sparsijying transform. We provide results both with simulated SAR raw data and 

actual satellite data and measure the reconstruction quality with metrics such as PSLR 

and ISLR, as described in Chapter 2.

5.1 SAR Raw Data Collection and its Characteristics

The SAR system being a linear system, it is natural to characterize its performance 

through its impulse response. In a SAR system, the impulse response is obtained by 

measuring the system response to a single, isolated scatterer on the ground, such as
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corner reflector. The most important parameters that can be measured from the point 

target are 1) the impulse response width that defines the SAR resolution and 2) the peak 

sidelobe ratio (PSLR) and the integrated sidelobe ratio (ISLR) which is related to the 

image contrast. The PSLR is defined as the ratio of the peak intensity of the most 

prominent sidelobe to the peak intensity of the mainlobe. The ISLR is the ratio of the 

power in the mainlobe to the total power in all the sidelobes.

The radar return for SAR system can be modeled as the superposition of several 

small scatterers within the antenna beam footprint. The contribution from each of these 

scatterers on the ground is independent and their amplitude and phase are also statisti­ 

cally independent. The radar return signal is due to the convolution of the transmitted 

signal with the individual point scatterers within the antenna beam footprint. The radar 

return thus received by the SAR receiver is then converted to complex I and Q channels. 

It is shown in Chapter 2 that the real and imaginary parts of the complex radar return are 

uncorrelated, have zero mean with Gaussian distribution and with variable variance 

(power). The magnitude of these complex-valued return has a Rayleigh distribution with 

its phase being uniformly distributed between —n to n.

The raw data used in this study is from a SAR point target simulator, actual satellite 

data and raw data generated through inverse SAR processing of SAR magnitude data. 

The details for generating SAR raw data through the above processes are described in 

Chapter 2. The SAR image formation from the raw data is shown in Figure 5.1 which 

involves the transformation of complex raw data, via the Fourier transform and geomet­ 

ric projections, to produce a complex-valued image. A detected SAR image is formed 

through non-linear transformation consisting of the sum of squares of I and Q compo­ 

nents. It is to be noted that complex SAR image preserves both the phase and the 

magnitude information of the returned signal whereas the SAR detected image is pro­ 

duced that corresponds to the point-by-point magnitude of the complex data from which 

all phase information has been removed.
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Radar Signal 
(phase history) SAR Image

Formation
(focusing)

Complex SAR 
image Detection

SAR detected 
image

Figure 5.1 Block diagram of SAR image formation.

5.2 Compressed Sensing Framework Description

The compressed sensing (CS) framework for compressing the SAR raw data is shown in 

the Figure 5.2. The three essential ingredients required to carry out compression in the 

CS framework are: 1) the incoherent projection of the signal to get the measurement 

data, 2) the implicit sparsity of the SAR images and 3) the non-linear reconstruction 

algorithm. By implicit sparsity of SAR images, we mean that the underlying object to 

recover happens to have a sparse representation in a known and fixed mathematical 

transform domain e.g. wavelets, Fourier domain, spatial finite differences, etc. In Figure 

5.2, the top path shows the random sampling and the sparse reconstruction to get the 

reconstructed image where the lower path shows the conventional CD — k SAR process­ 

ing.

SPARSE 
RECONSTRUCTION

Reconstructed 
Image ^

I
Matched Filtering 
(Scene Centre) Stolt Mapping

SAR System 
Parameters

Figure 5.2 Compressed sensing framework to compress SAR raw data.
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5.3 SAR Signal Simulator

To study the feasibility of using CS for SAR raw data compression, we used five point 

targets simulated through the SAR simulator, as shown in Figure 5.3(a), with ideal point 

target response in Figure 5.3(b). The important parameters used for the simulation of the 

point targets are as given in Table 1.1 of Chapter 2. The point targets generation is based 

on the co - k algorithm. The raw data can also be generated from the actual satellite SAR 

complex image or the SAR magnitude image (with random phase) by inversing the 
co -k algorithm [18].

5.4 SAR Processing

The SAR image formation methods can be broadly classified into two classes: methods 

based on Fourier transform and backprojection (time domain) methods. The most 

common Fourier transform based methods are the range-Doppler [90], polar format [9], 

ct)-k [91, 92] and chirp-scaling algorithms [93]. These algorithms either require 

interpolation in the frequency domain or an approximation to the interpolation (as in the 

case of Chirp-Scaling algorithm) to compensate for the range migration effects. On the 

other hand, the backprojection algorithm [10, 94] eliminates the requirement for the 

interpolation associated with the Fourier based methods, at the expense of substantially 

greater processing time. In backprojection method, we select a pixel to integrate over the 

aperture to compute its value and then move on to the next pixel. Though, there are fast 

back projection methods which go in some way to re-dress the balance.

The method adapted here to process the SAR images is the co - k algorithm which 

can handle large swath and large squint angles. The processing of SAR raw data as 

shown in Figure 5.2, involves computation of a 2D FFT, matched filtering with the scene 

centre reference function, converting the polar format data to the rectangular format 

through Stolt mapping and finally a 2D IFFT to get the SAR complex image [11]. The 

detected image is formed by a non-linear operation i.e. a squared magnitude operation on 

this complex image.
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Figure 5 J(a) SAR simulated signal, (b) Point targets.
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5.5 Incoherent Sampling

We have considerable freedom to design incoherent sampling trajectories as required for 

CS. Enhanced performance is reported in [19, 95, 96] by sampling along the radial lines 

in the k -space and sampling along the spiral trajectories for magnetic resonance images 

(MRI). As we can see from the co-k plot in Figure 5.4(b) of the actual SAR image in 

Figure 5.4(a), there is no specific concentration of coefficients which would enable us to 

design any specific sampling strategies like spiral or radial to get high performances. In 

such cases, it is best to have random sampling of the data in k -space, which is often 

termed as Cartesian sampling. In the original CS papers [19, 20], sampling a completely 

random subset of k -space was also chosen to guarantee a very high degree of incoher­ 

ence, which is an essential ingredient for CS. It is also important to note that the 

Cartesian sampling is the most common approach as an implementation of such under- 

sampling scheme is simple and requires minor modification to the data acquisition 

system.

5.6 Sparsifying Transform

One of the major ingredients for the successful compression of the signal in a CS 

framework is the sparse representation of the underlying object. The approaches consid­ 

ered here to provide a sparse representation of the complex-valued SAR data are

a) sparse representation of the magnitude and phase separately,

b) sparse representation of the real and imaginary separately and

c) sparse representation by shifting the frequency spectrum to all positive frequen­ 

cies, so that the real part of the complex data carries both phase and magnitude 

information of the original complex image [5].

In the case of reconstruction of the point targets, we consider the identity transform, 

so that the transform domain is the image domain itself. For this case, the sparsity 
specifies that there are few pixels with non-zero values. Actual satellite SAR images are
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not sparse in the pixel representation but they do exhibit transform sparsity. Discrete 
wavelet transform (DWT) based methods have been used to compress the complex 

valued SAR raw data [5, 21, 22, 97, 98]. Their success is shown to be the fact that 
wavelet transforms of such images tends to be sparse i.e. few coefficients have signifi­ 

cant values. We have used both the DWT and complex wavelet transform (CWT) as 
sparsifying transform for the actual satellite SAR complex images in Section 5.9 and 

5.10 respectively and have shown that the performances of these transforms are not 
sufficient to provide a substantial compression for the suggested framework.

Conventional compression of detected (amplitude or magnitude) SAR images has 
been studied in [21] and it is found that in many cases the detected SAR images have 

compression ratios much better than the complex images. However, such sparsifying 

transforms with the detected images could only be used in the CS framework by using 

non-linear reconstruction algorithms like the half-quadratic regularization [99], which is 

a topic for further study. The following objective function was used in [99] for feature 
enhanced imaging for SAR,

(5.D

where |»|| denotes the lk -norm, D is the discrete approximation to the 2D derivative 

operator (gradient), |z denotes the vector of magnitudes of the complex-valued vector 

z, and A,, /^ are scalar parameters. The second and the third terms in (5.1) are aimed

at enhancing point-based and region-based features respectively. The iterative algorithm 

and the greedy algorithm used here for the linear case are not appropriate for and hence 

do not perform well for such non-linear measurement model.
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Figure 5.4(a) Original SAR image, (b) co-k plot.
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5.7 Sparse Reconstruction

Let us consider signal x e C^, which has a sparse representations over a fixed orthogo­ 

nal transform, W C"X". Thus, we can describe the signal as x = W*z 

with|z|0 <R<zN. Such a signal is known as R- Sparse signal with respect to the 

dictionary W.

As discussed in chapter 2, in the CS framework to measure (encode) x we compute 

the measurement vector y£C^ using a linear projector AeCMx;v ,with R<M<zN 
via y = Ax. We refer to A as the measurement matrix whose rows are the measurement 

vectors.

The measurement signal y e C is written is terms of z e C as

y = Ax = AW*z _ 
= Kz

where K = AW* is the holographic basis.

The original signal x can be reconstructed from y by exploiting the sparsity of its 

representation i.e. by searching for all possible z satisfying y = Kz that is the sparsest. 

Mathematically, x can be found by first solving the linear inverse problem through /0 -

optimization z = argmin|z| s.t. y = Kz and then computing x= W*z . The objective 

function enforces the sparsity whereas the constraint enforces data consistency. The /0 -

optimisation is a combinatorial problem and is NP-hard to solve. The two methods 

which are used here for the reconstruction are the orthogonal matching pursuit (OMP) 

and the iterative algorithm, Ll_Adapt_SD (described in Chapter 4), which is based on 

the /j-optimisation
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z = arg minIzjj s.t. y = Kz (5.3)

On the other hand, the greedy reconstruction algorithms build a sparse approxima­ 

tion iteratively by selecting the basis most strongly correlated with the residual part of 

the signal and use it to update the current approximation. The two most prevalent greedy 

techniques are the matching pursuit (MP) and orthogonal matching pursuit (OMP) [41]. 

These techniques are adapted in CS framework in [32, 68]. It is also to be noted that the 

reconstruction algorithms based on iterative and greedy methods make use of the fast 

transforms used in the co - k algorithm to speed up the computation as opposed to the 

matrix inversions required in other methods like basis pursuit (BP) and its variants.

For the block diagram in Figure 5.2, if the matched filter is denoted by Mt , the Stolt 

mapping by S,, the 2D FFT (IFFT) by F (F*) , sparsifying transform as W and the 

random sampling as A, we then have the following optimization problem to solve

min(|z| ) s.t. y = AxV» U (5 4)
where z = V?FStMtx

5.8 SAR Raw Data Compression of Point Targets

To study the feasibility of using CS for SAR raw data compression, we used five point 

targets simulated through the SAR simulator as shown in Figure 5.3(a) with ideal point 

target response in Figure 5.3(b). The 2D FFT of the complex raw data was performed to 

obtain the A;-space data, as shown in Figure 5.5(a). The k -space data thus obtained was 

sampled randomly. The size of the randomly sampled measurement data is 4200 for the 

image size of 256 x 256, which is the size of the image to be reconstructed. We then 

recover 200 samples of the sparse image corresponding to the five targets. The Figure 

5.6 depicts the compression of point targets in CS framework. It shows the spatial image 

domain, the full A:-space, the transform domain and an undersampled A;-space along
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with the operators. The reconstruction algorithm is based on OMP with the least square 

estimation performed through the conjugate gradient (CG) method, as described in 

Chapter 3. The reconstruction process involves computation of (forward and inverse) 

matched filtering, Stolt mapping and 2D FFT. The point targets image is sparse in the 

magnitude domain of the image itself and doesn't require any additional sparsijying 
transform. The reconstructed image for the point target simulation is shown in Figure 

5.5(b) and was evaluated in terms of the peak side lobe ratio (PSLR) and integrated side 
lobe ratio (ISLR). The PSLR and the ISLR of the point targets simulation for 256 x 256 

size complex SAR processed image and the image generated with 4200 measurement 

samples and 200 coefficients are tabulated in Table 5-1. The plots of the point targets 

response along the range direction for the original image and the CS reconstructed image 

is shown in Figure 5.7 and Figure 5.8 respectively.

Original Image

CS Image

PSLR (dB)

-11.21

-10.97

ISLR (dB)

-1.75

-4.96

Table 5-1 PSLR and ISLR of the original and reconstructed CS image.

There is no degradation in PSLR and the improvement in the ISLR is due to the re­ 

covery of only 200 coefficients which resulted in the reduction of the sidelobes power. 

We could also see from the Figure 5.7 and Figure 5.8 that there is no degradation in the 

resolution (mainlobe width) of the point targets. We have similar results with the recon­ 

struction algorithm based on the iterative algorithm, Ll_Adapt_SD, described in Chapter 

4.

This experiment shows that it is indeed possible to compress the SAR raw data by a 

significant factor (in this case 15.6:1) when the SAR magnitude image is sufficiently 

sparse without any degradation in the resolution, PSLR and ISLR.
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Figure 5.7 The point targets response along the range direc­ 
tion of the simulated image in linear amplitude scale.
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Figure 5.8 The point targets response along the range direc­ 
tion of the CS reconstructed image in linear scale.
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5.9 SAR Raw Data Compression with DWT as Sparsifying Transform

The compression of the complex SAR data by using real wavelets was reported in [5] 

where the complex image data is converted to a real data format using Fourier transform. 

The signal is converted to a discrete "analytic" signal by shifting the frequency spectrum 

by half of the bandwidth to positive frequencies [100]. The inverse Fourier transform of 

this analytic signal can now be represented by its real part without loss of any informa­ 

tion, since the real and imaginary part of the signal are mutual Hilbert transforms. But 

in many practical scenarios, the acquired data does not satisfy the Hermitian assump­ 

tions required to form the analytic signal and one must instead handle the data in its 

complex form. For such cases, we have used the real wavelets on the complex signal. 

The particular advantage of these techniques is that several wavelet bases used in 

conventional image compression could be used as a sparsifying transform.

5.9.1 Discrete Wavelet Transform (DWT)

The one-level decomposition of an image using a 2-D separable DWT is illustrated in 

Figure 5.9. The analysis filters H^Hj and synthesis filters G 0 ,Gj are L -tap perfect

reconstruction quadrature mirror filters (PR-QMFs) [101] satisfying the following 

conditions

G 0 =H,(-z), G,=-H0 (-z),

and

2 =l, Va.

These analysis and synthesis filters are combined with downsampling by a factor of 

2 in both horizontal (row-wise) and vertical (column-wise) directions to compute an 

approximate image XLL and three detailed images namely horizontal sub-image XLH , 

vertical sub-image XHL and diagonal sub-image XHH at each level. The indices "I" and 

"//" refer to low and high frequency sub-band components. The decomposition first
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starts row-wise filtering with the lowpass filter H0 to produce the lowpass component 

and with the highpass filter Hj to produce a highpass component. These filtered compo­ 

nents are then downsampled by a factor of two without any loss of information. The 

aliasing which takes place due to this downsampling is eliminated by the perfect recon­ 

struction (PR) properties of these filters. The row-wise filtered components are then 

filtered column-wise to generate four sub-images namely, XLL ,XLH ,XHL ,XHH . The

reconstruction of the decomposed is performed by the dual of the system in Figure 5.9 

and is shown in Figure 5.10. The coding performance of wavelets with its multi- 

resolution capabilities for images is described in [101].

Row- wise Column- wise

Figure 5.9 One level of forward DWT.

X,LL

XLH

XHL

iHH
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XHL

Column- wise Row- wise

Figure 5.10 One level of inverse DWT.

5.9.1.1 DWT as Sparsifying Transform for Complex SAR Images

The compression of SAR raw data based on a low bit rate transform coding technique 

using DWT has been addressed in [98]. The wavelet coded quantization on magnitude 

and phase data separately was shown in [97]. It reported a compression of 64:1 on the 

magnitude data and 4:1 compression on the phase data without much degradation of the 

SAR image quality using the Daubechies (9,7) filter. A good compression performance 

with the Daubechies wavelets on SAR raw data was also shown in [22, 102]. A compari­ 

son between the complex SAR image and the detected SAR images with various wavelet 

transforms including Daubechies wavelet was presented in [21]. It showed that the 

compression performance with the detected images exceeds that with the complex raw 

data. The use of DWT for the compression of the complex SAR image was also studied 

in [22]. It showed that Daubechies wavelets have good performance on SAR complex 

image with compression ratio of 12:1.

We evaluated the performance of the Daubechies wavelet (D8) on both the complex 

SAR image and detected SAR image, shown in Figure 5.12(a). In the case of complex
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SAR image, we first segregated it into real and imaginary images. We applied D8 

wavelets on each of these images separately to produce real-valued coefficient image. 

Figure 5.11 (a) shows the sorted wavelet coefficients of the magnitude formed by the 

wavelet coefficients of the real and imaginary images of the SAR image. We compare 

the performance of the same wavelet D8 when applied to the detected SAR image, as 

shown in Figure 5.11 (b). These figures show that rate of decay of the wavelet coeffi­ 

cients in the case of real wavelets applied to complex SAR image is inferior to that of 

detected SAR image. As we will see later, this poor performance of real wavelets on 

complex SAR images becomes a limitation for achieving good compression ratio for the 

SAR raw data in the compressed sensing framework with DWT as sparsifying transform.

5.9.2 Results with Discrete Wavelet Transform

The compressed sensing framework for the complex SAR raw data with DWT is shown 

in Figure 5.2, where the sparsifying transform is a DWT. The holographic basis, K, in 

(5.3) is implemented through functions consisting of 2D FFT, Stolt interpolation, 

matched filtering, a 2D-DWT and the measurement matrix, A, consists of random 

sampling points.

For the satellite data, as shown in Figure 5.12(a), we have used the 4-levels of 

Daubechies-8 wavelet [103] on the complex image formed after taking the 2D IFFT, as 

shown in Figure 5.2. In this case the signal is compressed by a factor of 2:1. The recon­ 

struction algorithm is based on OMP with the least square estimation performed through 

the conjugate gradient (CG) method for computational efficiency.

For the 256 x 256 SAR complex image, as shown in Figure 5.12 (a), the reconstruc­ 

tion of the image for 6000 wavelet coefficients with OMP is shown in Figure 5.12(b). 

This image is generated by taking the full size of the original data and then using the 

OMP algorithm to generate 6000 wavelet coefficients. The final image is generated by 

taking the inverse wavelet transform. The Figure 5.12 (c) shows the reconstruction with 

OMP for 6000 wavelet coefficients with 2:1 compression ratio.
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Figure 5.11 (a) Sorted magnitude wavelet coefficients of real and imaginary SAR 
images, (b) sorted magnitude coefficients of magnitude SAR image.
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Rang* (b)

Rang* (C )

Figure 5.12(a) Original SAR image, (b) reconstructed image with 6000 DWT 
coefficients, (c) reconstructed image with 2:1 compression and 6000 DWT coeffi­ 
cients.
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The reconstruction with OMP is limited to 6000 coefficients as the sparsity of the 

2D-DWT is not sufficient to provide any further improvement in PSNR of the recon­ 

structed image. The original SAR image, as shown in Figure 5.12(a), is the result of the 

matched filtering with the point spread function. Each pixel in the image is thus formed 

by the target at that location along with contribution from all adjacent targets. Whereas, 

the image formed through OMP, as shown in Figure 5.12(b), is proper inversion consist­ 

ing of linear contributions of orthogonal bases and hence taken as a reference image. 

This reference image of Figure 5.12(b) consists of isolated point targets. The SAR 

images generated through the method of OMP are generally used to identify isolated 

point targets and are mainly used for detection and classification applications. The 

reconstructed image with 2:1 compression, as shown in Figure 5.12(c), is comparable to 

Figure 5.12(b). All the bright targets are clearly identifiable but some of the fine features 

like narrow roads are not very clear. The result shows the limitation of compressing the 

SAR raw data in the compressed sensing framework with DWT as sparsifying transform 

to get full reconstruction of SAR image. This suggests the effectiveness of this frame­ 

work for detection applications without the need of full image reconstruction. The main 

information from these reconstructed images is the presence of strong point targets. The 

strong return arises due to the presence of corner shapes that are very common in man- 

made buildings and vehicles. The returns from such corner shaped objects are much 

stronger than the natural background areas.

5.10 SAR Raw Data Compression with CWT as a Sparsifying 
Transform

For the compression of the satellite SAR raw data, the amplitude and phase are both 

indispensable for many applications e.g. interferometer. Discrete Wavelet Transforms 

have been used for SAR intensity image compression but are not suitable to preserve the 

signal phase information [104]. The compression of the complex SAR image with 

Daubechies-8 (D8) wavelet filter, is reported in [5] and the study of the complex wavelet 

transform (CWT) for the SAR image compression and denoising to preserve both 

amplitude and phase has been reported in [22]. It showed that it is possible to compress
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the SAR raw data with complex wavelets and get equivalent compression as the real 

discrete wavelet transforms working on the real and imaginary channels independently 

with a compression ratio of around 12:1.

We propose to use the dual tree complex wavelet transform (DT-CWT) [105], as a 

sparsifying transform with OMP algorithm to find the sparse representation of the 

complex SAR image. The superiority of the DT-CWT in image compression was shown 

in [106]. The compression of 2D image using DT-CWT despite its 4:1 redundancy 

through iterative projection techniques is addressed in [107] while the compression 

through iterative reweighted least squares algorithm is addressed in [108].

5.10.1 Complex Wavelet Transform(CWT)

The DT-CWT is an overcomplete, perfect reconstruction, separable transform. The DT- 

CWT comprises of two parallel wavelet filter banks that contain filters of different 

delays that minimises the aliasing error due to decimation to synthesis a single linear 

phase complex lowpass- highpass filter pair [105].

When the signal is real, its Fourier transform (FT) coefficients are symmetric about 

the origin i.e. Hermitian symmetry and no information is lost by considering only their 

positive frequency parts. However, in case of complex-valued SAR signal the FT 

coefficients are no longer symmetric and both the negative and positive frequency parts 

of the spectrum should be considered independently. DT-CWT has been generally 

applied to the real signals where the spectral decomposition takes place only for the 

positive part of the spectrum, as shown in Figure 5.13. It is to be noted that the plots are 

the frequency responses of the filters viewed at the highest sampling rate.
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Decomposition of the Positive Part of the Spectrum
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Figure 5.13 Decomposition of the positive part of the spectrum.

For the quadrature SAR image, the spectral decompositions for both negative and 

positive part of the spectrum are essential. This is achieved by applying the DT-CWT to 

the real, %r , and imaginary part, ^, of the complex SAR image separately and then 

combining the complex output as

(5.5)

where £+ corresponds to the positive frequency component and £. corresponds to the 

negative frequency component. The decomposition of the spectra for both the positive 

and negative part is as shown in Figure 5.14. Thus, we represent the image using a 

frame operator rather than a basis.
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Decomposition of Positive and Negative Spectrum
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Figure 5.14 Decomposition of positive and negative part of the spectrum.

For a general N -point signal, the DT-CWT yields 2N complex coefficients, which 

implies that the DT-CWT is two times expansive ( 2d for d -dimensional signals). The 
DT-CWT employs two real Discrete wavelet transforms (DWT); the first DWT works 
on the real part of the input and the second DWT works on the imaginary part of the 
input signal. The analysis and synthesis filterbanks that are used to implement DT-CWT 
and its inverse are illustrated in Figure 5.15 and Figure 5.16. The filters are themselves 
real and no complex arithmetic is required for the implementation of the DT-CWT. The 
DT-CWT achieves competitive image coding performance as compared to DWT, despite 
of its redundancy by a factor of four [107].
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Figure 5.15 Analysis filterbanks for the DT-CWT.

Figure 5.16 Synthesis filterbanks for the DT-CWT.
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5.10.2 Results with DT-CWT

The compressed sensing framework for the complex SAR raw data with DT-CWT is 
shown in Figure 5.2, where the sparsifying transform is the DT-CWT. We have used the 

functions available at the repository [109], to perform 4-levels DT-CWT decomposition 
on a 2D-SAR raw data with 13,19-tap filters for level 1 and Q-shift 14-tap filters for 

levels >2 [62, 107]. The holographic basis, K, in (5.3) is implemented through 
functions consisting of a 2D DT-CWT, a 2D FFT, Stolt interpolation, matched filtering 

and the measurement matrix, A, consists of random sampling points. The reconstruction 
is similar to the one used for the point target processing.

The OMP based reconstruction for the 2:1 compression for the actual complex SAR 

image was carried out for 32 x 32 size image from the original image of size 256 x 256 

as shown in Figure 5.17(a), to evaluate the PSNR with respect to various lengths of 

recovered wavelet coefficients and is tabulated in Table 5-2. The PSNR of 2:1 com­ 

pressed signal degrades faster for recovery of wavelet coefficients greater than 150. This 

is consistent with the theory of compressed sensing to have measurement length 3 to 5 

times the length of the sparse coefficients.

Original

CS Image

50

36.8

36.8

100

38.8

38.7

150

40.3

39.5

200

41.5

39.7

250

42.7

39.8

300

43.9

39.8

Table 5-2 PSNR (dB) of 2:1 compressed signal with respect to the 
recovered wavelet coefficients.

For the 256 x 256 SAR complex image, as shown in Figure 5.17(a), the reconstruc­ 

tion of the image for 6000 wavelet coefficients with OMP is shown in Figure 5.17(b). 

The Figure 5.18(a) shows the reconstruction with OMP for 6000 wavelet coefficients 

with 2:1 compression ratio. The reconstruction with the 6000 most significant wavelet
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coefficients (sorted) with DT-CWT as a frame operator is shown in Figure 5.18(b). The 

reconstruction with OMP is limited to 6000 coefficients as the sparsity of the complex 

wavelet is not sufficient to provide any substantial improvement in PSNR of the recon­ 

structed image. The original SAR image, as shown in Figure 5.17(a), is the result of the 

matched filtering with the point spread function. Each pixel in the image is thus formed 

by the target at that location along with contribution from all adjacent targets. Whereas, 

the image formed through OMP, as shown in Figure 5.17(b), is proper inversion consist­ 

ing of linear contributions of orthogonal bases and hence taken as a reference image. The 

reconstructed image with 2:1 compression, as shown in Figure 5.18(a), is comparable to 

Figure 5.17(b). All the bright targets and boundaries are clearly identifiable. This shows 

that the reconstructed image with compression in this framework is suitable for detection 

and classification applications.
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Figure 5.17(a) Original SAR Image, (b) Intensity image with OMP for 6000 CWT 
coefficients.
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Figure 5.18(a) Intensity image for 2:1 compression with OMP for 6000 CWT coeffs. 
(b) Reconstructed image with 6000 sorted coeffs. (DT-CWT used as a frame opera­ 
tor).
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5.11 Results with MSTAR Data

We now present the results on data from the moving and stationary target acquisition 
and recognition (MSTAR) public target data set [110]. The dataset in MSTAR repository 
contains focused complex image of SAR. MSTAR images are formed by taking a 2D 
inverse FFT of zero-padded phase history data on a rectangular grid. To get the raw data 
we take the 2D FFT of the 128 x 128 images. Figure 5.19 shows the mesh plot of the 
magnitude of the resulting 2D image of the raw data for a sample MSTAR scene.

Figure 5.19 Magnitude plot of 2D FFT of MSTAR sample data.

We check the detection of 50 most significant targets in the image by using OMP 
and Ll_Adapt algorithm as described in chapter 4. The signal is randomly sampled in 
the Fourier domain. The result for the 2:1 compressed signal is shown in Figure 5.20. 
Figure 5.20(a) shows a sample of MSTAR image used in the experiment. The 50 most
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significant pixels of the image in Figure 5.20(a) are shown in Figure 5.20(b). The 
Ll_Adapt algorithm reconstruction of 50 most significant coefficients is shown in 
Figure 5.20(c) whereas Figure 5.20(d) shows the reconstruction with the OMP algo­ 
rithm. Similar reconstruction with 4:1 compressed data is shown in Figure 5.21. Both 
these cases suggest the effectiveness of this framework for detection applications with­ 
out the need of full image reconstruction. The main information from these reconstructed 
images is the presence of strong point targets. The strong return arises due to the pres­ 
ence of corner shapes that are very common in man-made buildings and vehicles. The 
returns from such comer shaped objects are much stronger than the natural background 
areas.
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5.12 Conclusions

The compression of the SAR data can be performed at three distinct points along the 
SAR image formation chain: (i) compression the raw SAR signals prior to or in the 
process of forming the complex image, (ii) compressing the complex image or (iii) 
compressing the detected SAR image. We have focused here on the compression of SAR 
raw data in the compressed sensing framework and find that its performance is related to 
the compressibility of the SAR complex image. The results with the point targets and the 
actual satellite images show that it is possible to compress the SAR raw data in the CS 
framework with the real and complex wavelets. No performance enhancement is seen 
through special sampling trajectories as the k -space samples are uniformly distributed 
and there is no specific concentration of high valued coefficients. The optimization 
based reconstruction of SAR image with small set of measurement data has an advantage 
that important features required for detection, classification and registration of SAR 
images can be recovered without reconstruction of the full image. The recovery based on 
CS is thus scalable depending upon various applications.

Much greater performance in terms of higher compression ratio and reconstruction 
qualities are expected by using transforms that could give better sparsity for the SAR 
complex signal as compared to the real wavelets and DT-CWT used here. Further study 
on the non-linear reconstruction algorithms based on the regularization of only the 
magnitude data in the CS framework is required to verify any additional compression 
gain that could be achieved by using DWT on the detected images.
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Chapter 6

6. Conclusions

6.1 Summary and Conclusions

In this dissertation, we have contributed to the area of synthetic aperture radar (SAR) 

raw data compression and to the area of finding sparse solution to the linear inverse 

problems. The SAR system generates huge amount of data due to high resolution and 

wide swath requirements which pose severe problem for on-board storage and downlink 

transmission. Due to constraints of on-board power and resources, the encoder has to be 

simple and computationally efficient in terms of power and hardware resources. Com­ 

pressed sensing (CS) has emerged as one potential framework for compressing the signal 

with a simple encoder at the expense of a computationally extensive decoder. We have 

presented here the compression of SAR complex-valued raw data in which the data is 

reduced by sub-sampling the Fourier domain data in the CS framework. We have seen 

that the reconstruction problem in compressed sensing is essentially the classical linear 

inverse problem with the number of variables much greater than the number of observa­ 

tions. The signal can be reconstructed (decoded) through a non-linear decoding scheme 

that uses the sparsity as a-priori information. A new iterative algorithm for computing 

the sparse solution to the inverse problems has been developed in which no prior knowl­ 

edge about the regularization parameter is required and is adaptively computed at each 

iteration.

We have considered the stripmap mode of SAR operation in this thesis. In chapter 2, 

we have provided the necessary background explaining the stripmap mode of SAR 

operation along with the signal processing algorithm, known as Omega-k, to generate a 

SAR magnitude image from the complex-valued SAR raw data. A point targets simula­ 

tor is also described to evaluate the performance of the compression. We have also
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described various possible ways to generate the SAR raw data through inverse SAR 

processing of actual SAR complex and magnitude images. Performance metrics like 

peak sidelobe ratio (PSLR) and integrated sidelobe ratio (ISLR) for evaluating the 

performance of SAR data compression are also described.

Signal compression is carried out in the compressed sensing framework in which the 

encoder is simple whereas the decoder is computational expensive. The major disadvan­ 

tage in conventional transform based compression of taking large samples and then 

rejecting most of the insignificant coefficients is taken care in the CS framework. It 

takes advantage of the fact that many signals are sparse i.e. fewer higher energy coeffi­ 

cients under some basis or frame. In chapter 3, we provide the necessary mathematical 

background to recover sparse signals from highly undersampled signals. The encoder, 

the sparsifying process and the decoder, which form the major components in this 

framework, are described in detail. The encoder which includes the measurement 

process consists of capturing a compressible signal through a small number of random 

linear projections onto a measurement basis. It is shown that the measurement matrices 

should satisfy certain properties like mutual coherence and restricted isometric proper­ 

ties for it to be non-adaptive to the input signal. It is also seen that the randomized 

measurement ensemble drawn from Gaussian i.i.d. or Bernoulli's distribution succeeds 

with high probability for most of the compressible signals. The decoder in this frame­ 

work is shown to be essentially the classical linear inverse problem with the greater 

number of variables than the number of observations and is based on non-linear decod­ 

ing scheme that uses the sparsity as a-priori information. Various recovery algorithms 

based on convex relaxation techniques and greedy algorithms are described. The robust­ 

ness of the compressed sensing framework to deal with compressible signals and with 

the noisy measurement is also shown. The chapter concludes with examples to demon­ 

strate the compressed sensing framework in action where the sparse/ compressible signal 

is captured/ measured by simply correlating with a small number of fixed waveforms 

that are incoherent with the sparsifying basis and also non-adaptive to the input signal.
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The iterative algorithm with sparsity constraints is one of the popular methods to re­ 
cover sparse coefficients from incomplete measurements, which arises in compressed 
sensing framework. In chapter 4, we present a new algorithm based on regularized 
iterations to find sparse solution for the real and complex-valued data which is based on 
minimization of an objective function. The objective function consists of a data fidelity 
term and prior information term with a regularization parameter to control the balance 
between these terms. In most of the iterative algorithms this regularization term is either 
manually set or estimated. The new iterative algorithm, Ll_Adapt, developed requires 
no prior knowledge of the regularization parameter. The required regularization parame­ 
ter is computed at each iteration step. It is shown that, this algorithm finds the sparse 

solution by slowly increases the /t -norm of the successive approximations. The algo­ 

rithm is based on computation of only vector operations and matrix-vector 
multiplications and avoids any computational expensive matrix factorizations. The 

various advantages of the iterative methods over the standard /j -norm minimization

algorithms and various possible extensions of the developed algorithm are also dis­ 
cussed. The algorithm is tested with various test signals, both real and complex, and is 

shown to converge to the min /t -norm solution as that of basis pursuit (BP) algorithm.

The chapter also gives an example in which the Ll_Adapt finds the correct sparse 
solution whereas the orthogonal matching pursuit (OMP) fails. Few mechanisms to 
increase the speed of convergence of the algorithm are also presented. A new algorithm 
is used for the compression of the SAR point targets in the compressed sensing frame­ 
work as described in chapter 5.

In chapter 5, our framework for the compression of complex-valued SAR raw data 
is established. The framework is applied to both point targets image and actual SAR 
data. The encoder in both the cases is simple and consists of 2D FFT with a random 
sampler. The reconstruction process for the point targets image involves computation of 
(forward and inverse) matched filtering, Stolt mapping and 2D FFT. The point targets 
image is sparse in the magnitude domain of the image itself and doesn't require any 
additional sparsifying transform. Whereas, for the actual SAR data the holographic basis

137



Conclusions

is implemented through functions consisting of 2D FFT, Stolt interpolation, matched 
filtering and a 2D-discrete and complex wavelet transforms. The stripmap mode SAR 
image is reconstructed from the sub-sampled complex valued raw data through regulari- 
zation based reconstruction algorithm. The complex valued and random phase 
characteristics of the SAR images along with speckle noise make the regularization 
based reconstruction more challenging. It is seen that the compression performance in 
the CS framework is dependent on the effectiveness of the sparsifying transform on the 
SAR complex image. We have demonstrated empirically that the CS framework for 
compression of complex-valued SAR raw data is effective for the cases when the SAR 
image is sparse in the spatial domain without any degradation in the resolution, PSLR 
and ISLR. Thus, the optimization based reconstruction of sparse spatial points with 
small set of measurement data has an advantage that important features required for 
detection, classification and registration of SAR images can be recovered without 
reconstruction of the full image. The recovery based on CS is thus scalable depending 
upon various applications. The limitation of CS framework while dealing with actual 
satellite images due to lack of good sparsifying transforms for the complex-valued data 
is also addressed. Various options for compressibility of the actual SAR complex image 
in magnitude-phase domain, real-imaginary domain, shifting the spectrum to positive 
half through real discrete wavelets transforms (DWT) were evaluated. The compression 
of the magnitude-phase data through wavelet transforms made the reconstruction diffi­ 
cult due to the non-linear reconstruction model. The compression of the real-imaginary 
data through discrete wavelet transform (DWT) for the actual satellite data was not 
sufficient to give any appreciable compression of SAR raw data in the CS framework. In 
one of the experiments, we modified the complex wavelet transform (CWT) to a frame 
to check the compressibility of real-imaginary data. The compressibility performances of 
the CWT on the actual SAR satellite data were not enough to give compression ratio 
greater than 2:1 for the SAR raw data. It is also observed that the new algorithm 
Ll_Adapt performed equally well as the orthogonal matching pursuit (OMP) for the 
point targets in terms of PLSR and ISLR and for the actual satellite data there was no 
substantial improvement as compared to OMP. This suggests that the performance of the
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SAR raw data compression in the CS framework mainly depends upon the compressibil­ 
ity of the sparsifying transform.

Overall, this thesis has presented a new perspective to compression of complex- 
valued SAR raw data, in particular for stripmap SAR imaging mode. At the centre of 
new approach was the compression of the raw data by reduction of number of samples 
rather than the number of bits which was central to the conventional compression of 
SAR raw data. With this investigation, it is shown that the success of the compression of 
the complex-valued SAR raw data is limited to the case where the image is sparse in the 
spatial domain for the full image reconstruction. The other applications namely detec­ 
tion, classification, estimation, etc. could be performed with partial image reconstruction 
with the compressive measurements. The new iterative algorithm developed and its 
various extensions discussed in this thesis, makes it an important alternative algorithm to 
find sparse solution to any inverse problems.

6.2 Suggestions for Further Work

We suggest some possible directions of future research in the area of SAR raw data 
compression based on compressed sensing framework.

• Much greater performance in terms of higher compression ratio and reconstruction 
qualities are expected by using transforms that could give better sparsity for the 
SAR complex signal as compared to the real wavelets and DT-CWT used here. 
Some work in this direction is required to get better compressible performance of 
the complex data which is comparable to the magnitude data.

• Further study and extensions on the non-linear reconstruction algorithms based on 
the regularization of only the magnitude data in the CS framework is required to 
verify any additional compression gain that could be achieved by using DWT on
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the detected images. Such half-quadratic regularization method in [99] has been 
successfully applied in feature-enhanced SAR imaging.

• The idea to use multiple sparsifying transforms to extract various features of the 
SAR image along with the regularized method of SAR image reconstruction could 
be explored.

• The rate distortion performance of the CS framework for the SAR raw data is re­ 
quired to be carried out to understand the effect of the quantization of the sub- 
sampled compressive measurements.

• The block adaptive quantization (BAQ) has been successfully applied to compress 
the SAR raw data by allocating variable number of bits to a block of data based on 
its computed variance [4]. It could be interesting to combine the techniques from 
BAQ and compressed sensing framework proposed in this thesis to get better 
compression performance.

• A more detailed study could be carried out to make the encoder much simpler 
than what is proposed here by sub-sampling the data in the time domain by using 
the random filtering technique suggested in [111]. The random filtering technique 
is based on convolution of the signal with a fixed FIR filter having random taps. 
This would eliminate the requirement of 2D-FFT at the encoder.

• A theoretical proof for the convergence of the iterative algorithm proposed here is 
to be taken up.
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ABSTRACT

Synthetic Aperture Radar (SAR) is active and coherent 
microwave high resolution imaging system, which has the 
capability to image in all weather and day-night conditions. 
SAR transmits chirp signals and the received echoes are 
sampled into In-phase (I) and Quadrature (Q) components, 
generally referred to as raw SAR data. The various modes 
of SAR coupled with the high resolution and wide swath 
requirements result in a huge amount of data, which will 
easily exceed the on-board storage and downlink bandwidth 
of a satellite. This paper addresses the compression of the 
raw SAR data by sampling the signal below Nyquist rate 
using ideas from Compressed Sensing (CS). Due to the low 
computational resources available onboard satellite, the idea 
is to use a simple encoder, with a 2D FFT and a random 
sampler. Decoding is then based on convex optimization or 
uses greedy algorithms such as Orthogonal Matching 
Pursuit (OMP).

Index Terms— SAR, Compressed Sensing, Encoding 

1. INTRODUCTION

Synthetic Aperture Radar (SAR) is active and coherent 
microwave radar, which produces high spatial resolution 
images from a moving platform - an airplane or a satellite. 
The radar produces 2D (range and azimuth) terrain 
reflectivity images by emitting a sequence of closely spaced 
radio frequency pulses and by sampling the echoes scattered 
from the ground targets. The received echoes are sampled 
into In-phase (I) and Quadrature (Q) components referred to 
as raw SAR data. In satellite systems, raw data is directly 
transmitted to the ground segment via a dedicated 
transmission link when in view with the ground segment or 
is stored onboard for later transmission to the ground.

The compression of raw SAR data poses several challenges 
due to its noise like characteristics [1]. The noise like 
characteristics arises because signals from several scatters 
are added incoherently with unknown phase and amplitude. 
Typically its adjacent samples are uncorrelated in both 
range and azimuth directions.

The SAR processed images have compression factor of 
50:1, which is much higher than the existing raw data 
compression factor of 4:1 [2]. Most of the traditional 
compression systems exploit the redundancy inherent in the 
Nyquist rate sampled signal to achieve compact 
representation and efficient transmission of the information. 
This technique of sampling at a higher rate and then 
eliminating redundancy by processing a large amount of 
data has poor efficiency in terms of both sampling rate and 
computational complexity.

A new framework that recovers signals from incomplete 
measurements is Compressed Sensing (CS), introduced in 
[3] and [4]. It was shown that a signal having a sparse 
representation can be captured (encoded) from a small 
number of random linear projections onto a measurement 
basis. The measurement process is non-adaptive. The 
original signal can be reconstructed (decoded) through a 
non-linear decoding scheme that uses the sparsity as a priori 
information for solving the linear inverse problem.

2. SAR SYSTEM AND PROCESSING

In the Stripmap mode the radar maps the surface with the 
antenna pointing downward such that the boresight (centre) 
of the mainlobe of the real aperture radiation pattern is 
perpendicular of the flight path as shown in Figure 1 [1]. 
The simplified model for the SAR Stripmap model is to
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consider the stationary imaging surface to consist of several 
point reflectors with reflectivity an and located at the 
location (xn ,yn ). The radar located at (o,un ) in the spatial 
domain transmits wide bandwidth signal p(t) of period T 
at regular interval TPKI .
The processing of SAR raw data is shown in Figure 2, 
which involves computation of 2D FFT, matched filtering 
with the scene centre reference function, converting the 
polar format data to the rectangular format through Stolt 
mapping and finally 2D IFFT [5].

3. COMPRESSED SENSING THEORY

Let us consider signal f e R^, which has a sparse 
representations over a fixed orthogonal transform, 
¥€RWx7V , having columns^,, /' = !,. ...,N. Thus, we can 
describe the signal as f = *Fx with|x| <L<sc7V, where

|x|o = j(/: xf * 0)|. Such a signal is known as an L - Sparse 
signal w.r.t. the dictionary *F .

hi the CS framework, to measure (encode) f we compute 
the measurement vector y e RK using a linear projector
MzRK*N ,withL<K<s;Nvia y = Mf. Since K «: N, 
we have fewer measurements than degrees of freedom for 
the signal f . We refer to M as the measurement matrix 
whose rows are the measurement vectors and denote its 
columns by q>],.....,(pN .

The measurement signal y e RK is written is terms of
x e R^ as

y = Mf = MT x (U)

where H = MT is also known as the holographic basis.

The original signal f can be reconstructed from y by 
exploiting the sparsity of its representation i.e. by searching 
for all possible x satisfying y = H x that is the sparsest. If
this representation coincides with x we get a perfect 
reconstruction of the signal via (1.1). Mathematically, x 
can be found by solving the linear inverse problem through 
/0 optimization x = arg min|x||o subject to y = H x . The
objective function enforces the sparsity whereas the 
constraint enforces data consistency. The /0 optimisation is
a combinatorial problem and is NP-hard to solve. The two 
most common approaches are therefore to replace the 
/0 approximation problem with convex optimisation 
methods or greedy methods [6, 7].

4. RAW SAR DATA COMPRESSION THROUGH CS

To study the feasibility of using CS for SAR raw data 
compression, we used five point targets simulated through 
the SAR simulator as shown in Figure 3(a) with ideal point 
target response in Figure 3(b). The 2D FFT of the complex 
raw data was performed, as shown in Figure 3(c), after 
which the data was sampled randomly. The size of the 
measurement data is 4200 for the image size of 256 x 256, 
to recover 200 samples of the sparse image representation of 
five targets. The reconstruction algorithm is based on OMP 
with the least square estimation performed through the 
Conjugate Gradient (CG) method. The reconstruction 
process involves computation of (forward and inverse) 
matched filtering, Stolt mapping and 2D FFT. The 
reconstructed image for the point target simulation is shown 
in Figure 3(d) and was evaluated in terms of the Peak Side 
Lobe Ratio (PSLR) and Integrated Side Lobe Ratio (ISLR). 
The PSLR is defined as the ratio of the peak intensity of the 
most prominent sidelobe to the peak intensity of the 
mainlobe. The ISLR is the ratio of the power in the 
mainlobe to the total power in all the sidelobes. The PSLR 
and the ISLR of the point targets simulation for 256 x 256 
size complex SAR processed image and the image 
generated with 4200 measurement samples and 200 wavelet 
coefficients are tabulated in Table 1.

Original Image
CS Image

PSLR (dB)
-11.21
-10.97

ISLR (dB)
-1.75
-4.96

Table 1. PSLR and ISLR of the original and reconstructed 
CS image.

There is no degradation in PSLR and the improvement in 
the ISLR is due to the recovery of only 200 wavelet 
coefficients which resulted in the reduction of the sidelobes 
power.

For the compression of the satellite SAR raw data, the 
amplitude and phase are both indispensable for many 
applications e.g. interferometer. Discrete Wavelet 
Transforms have been used for SAR intensity image 
compression but are not suitable to preserve the signal phase 
information. The compression of the complex SAR image is 
reported in [8] and the study of the Complex Wavelet 
Transform (CWT) for the SAR image compression and 
denoising to preserve both amplitude and phase has been 
reported in [9]. We propose to use the Dual Tree CWT (DT- 
CWT) [10], as a sparsifying transform with OMP to find the 
sparse representation of the complex SAR image. The DT- 
CWT comprises of two parallel wavelet filter banks that 
contain filters of different delays that minimises the aliasing 
error due to decimation [10]. DT-CWT has been generally 
applied to the real signals where the spectral decomposition
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takes place only for the positive part of the spectrum. For 
the quadrature SAR image, the spectral decompositions for 
both negative and positive part of the spectrum are required. 
This is achieved by applying the DT-CWT to the real, £, 
and imaginary part, £, of the complex SAR image 
separately and then combining the complex output as

^r !*" 0-2)

where £+ corresponds to the positive frequency component 
and £_ corresponds to the negative frequency component.
Thus, we represent the image using a frame operator rather 
than a basis.

The Compressed Sensing framework for the complex SAR 
raw data is shown in Figure 2. The holographic basis, H, in 
(1.1) is implemented through functions consisting of 2D- 
DT-CWT, 2D FFT, Stolt interpolation, matched filtering 
and the measurement matrix, M, consists of random 
sampling points. The reconstruction is similar to the one 
used for the point target processing.

The OMP based reconstruction for the 2:1 compression for 
the actual complex SAR image was carried out for 32 x 32 
size image to evaluate the PSNR with respect to various 
lengths of recovered wavelet coefficients and is tabulated in 
Table 2. The PSNR of 2:1 compressed signal degrades 
faster for recovery of wavelet coefficients greater than 150. 
This is consistent with the theory of compressed sensing to 
have measurement length 3 to 5 times the length of the 
sparse coefficients.

Original
CS 
Image

50
36.8
36.8

100
38.8
38.7

150
40.3
39.5

200
41.5
39.7

250
42.7
39.8

300
43.9
39.8

Table 2. PSNR (dB) of 2:1 compressed signal with respect 
to the recovered wavelet coefficients.

For the 256 x 256 SAR complex image, as shown in figure 
4(a), the reconstruction of the image for 6000 wavelet 
coefficients with OMP is shown in figure 4(b). The figure 
4(c) shows the reconstruction with OMP for 6000 wavelet 
coefficients with 2:1 compression ratio. The reconstruction 
with the 6000 most significant wavelet coefficients (sorted) 
with DT-CWT as a frame operator is shown in figure 4(d). 
The reconstruction with OMP is limited to 6000 coefficients 
as the sparsity of the complex wavelet is not sufficient to 
provide any substantial improvement in PSNR of the 
reconstructed image. The reconstructed images with and 
without compression do not show much perceptual 
difference.

The optimization based reconstruction of SAR image with 
small set of measurement data has an advantage that 
important features required for detection, classification and 
registration of SAR images can be recovered without 
reconstruction of the full image. The recovery based on CS 
is thus scalable depending upon various applications.

5. CONCLUSIONS

This paper proposes the use of the CS framework for fast 
compression of SAR raw data to ease the computational 
requirements of satellite onboard processing. Much greater 
performance in terms of higher compression ratio and 
reconstruction qualities are expected by using transforms 
that could give better sparsity for the SAR complex signal 
as compared to the DT-CWT used here.
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Figure 1. Geometry of Stripmap SAR.

Figure 2. The Omega-K Processing of SAR data.
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Figure 4. (a) Original SAR Image, (b) Intensity image with OMP reconstruction for 6000 coefficients, (c) Intensity image for 
2:1 compression with OMP reconstruction for 6000 coefficients (d) Reconstructed Image with 6000 sorted coefficients (DT- 
CWT used as a frame operator).
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ABSTRACT
Synthetic Aperture Radar (SAR) is active and coherent 
microwave high resolution imaging system, which has the 
capability to image in all weather and day-night condi­ 
tions. SAR transmits chirp signals and the received echoes 
are sampled into In-phase (I) and Quadrature (Q) compo­ 
nents, generally referred to as raw SAR data. Raw data 
compression is an essential Juture requirement for high 
resolution space borne SAR sensor in order to reduce the 
volume of data that is stored onboard and later transmitted 
to ground station. Due to the low computational resources 
available onboard satellite a simple encoding algorithm 
based on Compressed Sensing framework to compress 
SAR raw data with real wavelets is proposed in this paper. 
The decoding of the data on ground is then based on con­ 
vex optimization through Projections on Convex Sets 
(POCS) or uses greedy algorithms such as Orthogonal 
Matching Pursuit (OMP). The option of converting the 
complex SAR signal to real data by shifting the frequency 
spectrum by half bandwidth and then using real wavelets 
as a sparsijying transform to compress the SAR signal is 
studied and compared with using the wavelets with the 
complex signal in the CS framework.

1. INTRODUCTION

Synthetic Aperture Radar (SAR) has been the sensor of 
choice for numerous applications due to its all weather 
and day-night imaging capabilities. It is active and coher­ 
ent microwave radar, which uses the motion of a satellite 
to synthesis a much larger antenna aperture than the actual 
antenna aperture to generate high spatial resolution im­ 
ages. The radar produces 2D (range and azimuth) terrain 
reflectivity images by emitting a sequence of closely 
spaced radio frequency pulses and by sampling the echoes 
scattered from the ground targets. The received echoes 
are sampled into In-phase (I) and Quadrature (Q) compo­ 
nents referred to as raw SAR data by the onboard elec­ 
tronics. The onboard satellite electronics essentially con­ 
sists of transmitter, receiver and Analog-to-Digital con­ 
verter, followed by a real time downlink or storage mem­ 
ory for later transmission to the ground.

The ever increasing demand for high resolution and large 
swath have resulted in a high data rate which poses major 
constraints in the operation of SAR to transmit the data to 
ground, or to store them onboard. An efficient compres­ 
sion algorithm has thus become important for advanced 
SAR systems. The compression of raw SAR data poses 
several challenges due to high entropy and its noise like 
characteristics [1]. The noise like characteristics arises 
because signals from several scatters are added coherently 
with unknown phase and amplitude. Typically its adjacent 
samples are uncorrelated in both range and azimuth direc- 

, tions.

The techniques for compression of raw SAR signal based 
on scalar quantizer, vector quantizer and transform domain 
are reviewed in [2]. All these techniques exploit the redun­ 
dancy inherent in the Nyquist rate sampled signal to 
achieve compact representation and efficient transmission 
of the information. This technique of sampling at a higher 
rate and then eliminating redundancy by processing a large 
amount of data has poor efficiency in terms of both sam­ 
pling rate and computational complexity.

A new framework that recovers signals from incomplete 
measurements i.e. sampling below the Nyquist rate is 
Compressed Sensing (CS), introduced in [3] and [4]. It was 
shown that a signal having a sparse representation can be 
captured (encoded) from a small number of random linear 
projections onto a measurement basis. The measurement 
process is non-adaptive. The original signal can be recon­ 
structed (decoded) through a non-linear decoding scheme 
that uses the sparsity as a priori information for solving 
the linear inverse problem.

The compression of the SAR raw data in the CS frame­ 
work through Complex Wavelet Transform (CWT) as a 
sparsifying transform was presented in [5]. The CWT did 
not provide enough sparsity of the SAR complex signal to 
give a high compression ratio. This paper proposes to use 
the real wavelets in the CS framework to compress the 
SAR raw data. The problem of converting the complex 
SAR signal to real data format by shifting the frequency 
spectrum by half the bandwidth is discussed. The results
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with real wavelets for point targets and actual satellite data 
is presented in this paper.

2. SAR SYSTEM AND PROCESSING
The Stripmap mode of SAR is capable of producing a 
high resolution terrain image over a wide swath by a rela­ 
tively small antenna. In the Stripmap mode, the radar 
maps the surface with the antenna pointing downward 
such that the boresight (centre) of the mainlobe of the real 
aperture radiation pattern is perpendicular of the flight 
path as shown in Figure 1 [1], The simplified model for 
the SAR Stripmap model is to consider the stationary im­ 
aging surface to consist of several point reflectors with 
reflectivity an and located at (xn ,yn ) . The radar located
at (o,un ) in the spatial domain transmits wide bandwidth 
signal p(t) of period Tp at regular interval TPRI . The
SAR image is reconstructed from a finite set of projec­ 
tions resulting from the interaction between the various 
scatters on ground and the transmitted signal.

The processing of SAR raw data is shown in Figure 2, 
which involves computation of 2D FFT, matched filtering 
with the scene centre reference function, converting the 
polar format data to the rectangular format through Stall 
mapping and finally 2D IFFT [6].

3. COMPRESSED SENSING THEORY

Let us consider signal f e RN , which has a sparse repre­ 
sentations over a fixed orthogonal transform, "P e RNxN , 
having columns^, i = l,....,N . Thus, we can describe the
signal as f = *P x with ||x|0 < L <e N , where

INIo = |0' ' x> * ®)| ' ^u°k a s'Sna^ 's taowi as an 
L - Sparse signal w.r.t. the dictionary IP .

In the CS framework, to measure (encode) f we compute 
the measurement vector y e R* using a linear projector
M e RK*N ,with !<*:«# via y = Mf. Since K « N , 
we have fewer measurements than degrees of freedom for 
the signal f . We refer to M as the measurement matrix 
whose rows are the measurement vectors and denote its 
columns by <p,,..... t <pN .

The measurement signal yeR* is written is terms of

M"P*x
= Hx

(1.1)

where H = MV is also known as the holographic basis.

The original signal f can be reconstructed from y by 
exploiting the sparsity of its representation i.e. by search­ 
ing for all possible x satisfying y = Hx that is the

sparsest If this representation coincides with x we get a 
perfect reconstruction of the signal via (1.1). Mathemati­ 
cally, x can be found by solving me linear inverse prob­ 
lem through /0 optimization as:

x = arg min Ijx^ subject to y = H x (1 .2)

The objective function enforces the sparsity whereas the 
constraint enforces data consistency. The /0 optimisation
is a combinatorial problem and is NP-hard to solve. The 
two most common approaches are therefore to replace the 
/0 approximation problem with convex optimisation 
methods or greedy methods [7, 8]. The most popular 
greedy algorithm is the Orthogonal Matching Pursuit 
(OMP) [8].

The problem can also be solved through the method of 
alternate projections onto convex sets (POCS) algorithm 
[9] that requires a small amount of a priori information 
about the signal we are to recover [10]. Since, x is the
unique solution to (1.2), the /,ball B = {x:|x| ^|x|| 

and the hyperplane G = {x : Hx = y} meet at exactly one 
point; BflG = {x} . The projection onto Gis computed

(1.3)
x = x + H*(HH*)"'(y-Hx)

= x + Ht (y-Hx)
where H* = adj(H) and H* is the pseudo-inverse of H. 
The projection onto G is computed as:

x = sgn(x)(|x|-<?)+ (1.4)

To determine the threshold 6 such that ||x| < T, r e Bf,
we sort the coefficients by magnitude and perform a linear 
search. The value of r is computed by r = £|x|, where

the index set Q is expanded or contracted based on in­ 
crease or decrease of previous estimate of T in each itera­ 
tion.

4. RAW SAR DATA COMPRESSION
THROUGH COMPRESSED SENSING

For the compression of the satellite SAR raw data, the 
amplitude and phase are both indispensable for many ap­ 
plications e.g. interferometer. The study of the Discrete 
Time Complex Wavelet Transform (DT-CWT) for the 
SAR image compression and denoising to preserve both 
amplitude and phase has been reported in [11]. The DT- 
CWT comprises of two parallel wavelet filter banks that 
contain filters of different delays that minimises the alias­ 
ing error due to decimation [12]. The compression of the 
SAR raw data in the CS framework through DT-CWT as a 
sparsifying transform was presented in [5] where DT-CWT 
is used as a frame operator rather that a basis.
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A good reconstruction of the measured signal in the CS 
framework is possible only if the sparsifying transform 
provides a sparse representation of the original signal. The 
CWT did not provide enough sparsity of the SAR complex 
signal for it to give a high compression ratio. The com­ 
pression of the complex SAR data by using real wavelets 
was reported in [13] where the complex image data is con­ 
verted to a real data format using Fourier Transform. The 
signal is converted to discrete "analytic" signal by shifting 
the frequency spectrum by the half bandwidth to positive 
frequencies [14]. The Inverse Fourier Transform of this 
analytic signal can now be represented by its real part 
without loss of any information, since the real and imagi­ 
nary part of the signal are mutual Hilbert transforms. But 
in many practical scenarios, the acquired data does not 
satisfy the Hermitian assumptions required to form the 
analytic signal and one must instead handle the data in its 
complex form. For such cases, we propose to use the real 
wavelets on the complex signal. The particular advantage 
of these techniques is that several wavelet bases used in 
conventional image compression could be used as a spar­ 
sifying transform rather than a limited choice of Complex 
Wavelet basis.

The Compressed Sensing framework for the complex SAR 
raw data using the real wavelet as a sparsifying transform 
is shown in Figure 2. The holographic basis, H, in (1.1) is 
implemented through functions consisting of 2D-WT, 2D 
FFT, Stolt mapping, matched filtering and the measure­ 
ment matrix, M , consists of random sampling points.

To study the feasibility of using CS for SAR raw data 
compression, we used five point targets simulated through 
the SAR simulator as shown in Figure 3(a) with ideal 
point target response in Figure 3(b). The 2D FFT of the 
complex raw data was performed after which the data was 
sampled randomly, as shown in Figure 3(c). The size of 
the measurement data was kept at 4200 for the image size 
of 256 x 256, to recover the sparse image representation 
of five targets. The real image is formed by shifting the 
frequency by half bandwidth before the 2D IFFT is per­ 
formed. The wavelet used is the Daubedes-8 (D8). The 
reconstruction algorithm is through the POCS method, as 
described above. The reconstructed image for the point 
target simulation as shown in Figure 3(d) and is evaluated 
in terms of the Peak Side Lobe Ratio (PSLR) and Inte­ 
grated Side Lobe Ratio (ISLR). The PSLR is defined as 
die ratio of the peak intensity of the most prominent 
sidelobe to the peak intensity of the mainlobe. The ISLR 
is the ratio of the power in the mainlobe to the total power 
in all the sidelobes. The PSLR and the ISLR of the point 
targets simulation for 256 x 256 size complex SAR proc­ 
essed image and the image generated with 4200 meas­ 
urement samples and 200 wavelet coefficients are tabu­ 
lated in Table 1.

Original Image
CS Image

PSLR(dB)
-11.21
-10.48

ISLR(dB)
-1.75
-3.57

Table 1. PSLR and ISLR of the original and reconstructed 
CS image.

There is no degradation in PSLR and the improvement in 
the ISLR is due to the recovery of only 200 wavelet coef­ 
ficients which resulted in the reduction of the sidelobes 
power.

For the satellite data, as shown in Figure 4(a), we have 
used the Daubecies-8 wavelet on the complex image 
formed after taking the 2D IFFT, as shown in Figure 2. In 
this case the signal was compressed by a factor of 2:1. 
The reconstruction algorithm in this case is based on 
OMP with the least square estimation performed through 
conjugate gradient (CG) method for computational effi­ 
ciency.

For the 256 x 256 SAR complex image, as shown in fig­ 
ure 4(a), the reconstruction of the image for 6000 wavelet 
coefficients with OMP is shown in figure 4(b). The figure 
4(c) shows the reconstruction with OMP for 6000 wavelet 
coefficients with 2:1 compression ratio. The reconstruc­ 
tion with OMP is limited to 6000 coefficients as the spar­ 
sity of the 2D-WT is not sufficient to provide any further 
improvement in PSNR of the reconstructed image. The 
reconstructed images with and without compression do 
not show much perceptual difference.

5. CONCLUSIONS

This paper proposes the use of real wavelet transform as a 
sparsifying transform in the CS framework for the SAR 
raw data compression. The option of converting the com­ 
plex SAR images to real data by shifting the frequency 
spectrum by half bandwidth and its associated problem of 
using it in actual satellite data is presented. The results 
with the point targets and the actual satellite images show 
that it is possible to compress the SAR raw data in the CS 
framework with the real wavelets. Further studies on us­ 
ing other wavelet basis to get sparser representation of 
complex SAR data and hence more compression ratio is 
undertaken.
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Figure I. Geometry of Stnpinap SAR.
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ABSTRACT

In this paper, we propose a fast and unsupervised iterative 
algorithm for computing sparse solutions to linear inverse 
problems. Often, it has been proposed to use regularization 
of ill-posed linear inverse problems via /, -penalization when
the solution is sparse. The choice of the regularization 
parameter is important and it is either manually set or 
estimated. In the proposed algorithm, which is based on 
iterative soft-thresholding, the regularization parameter is 
adaptively estimated at each iteration. It is also shown here 
that this algorithm could be accelerated by using steepest 
descent method. The algorithm, Ll_Adapt, is tested with 
several real and complex data and it is compared with 
standard algorithms like Basis Pursuit (BP) and Orthogonal 
Matching Pursuit (OMP).

Index Terms— Inverse problems, sparse solution, 
iterative algorithm, compressed sensing.

1. INTRODUCTION

One of the most important problems in signal processing has 
been the recovery or the restoration of the signal from its 
degraded version. Such problems are described as inverse 
problems, where one makes indirect observations of a 
quantity of interest. Examples of inverse problems includes 
(i) deconvolution i.e. recovery of the input to a linear time- 
invariant system from its output, (ii) restoration of signal 
from its projection, (iii) recovery of inputs from a time 
variant system, (iv) recovery of signal from incomplete 
measurements (Compressed Sensing), (v) overcomplete 
representation of signals and (vi) extrapolation of data from 
a given length of data. In all such cases, an appropriate 
mathematical representation is the Fredholm equation of
first kind,

y = Ax + e (1.1)
where x is the unknown input signal, y is the known 
measurement, A is the known distortion operator or 
transformation and e is unknown noise.

In this paper, we consider the problem of estimating the
vector x e R" given y € W1 and matrix A e R" , where 
M < N . The solution to such underdetermined problem is 
not unique [1]. The non-uniqueness of the underdetermined 
system is commonly addressed by using some prior 
knowledge about x, to select from among the (many) 
possible representations. One such important a-prior is the 
sparsity of the solution which implies that the solution being 
sought must have a small number of large coefficients. The 
sparsity promoting feature of the solution to the 
underdetermined system of equations has been explored 
extensively in various signal processing applications 
including image, audio, video compression and recently in 
the framework of Compressed Sensing (CS) [2, 3].

2. SPARSE RECOVERY VIA /, REGULARIZATION

In the case of noiseless measurement i.e., when y = Ax, the
problem of finding the sparsest solution can be formulated 
as

x = argmin||x||0 s.t. y = Ax (1.2)
where ||x|0 = #{i: x, * 0} is the /0 semi-norm which counts
the number of non-zero entries in the vector x . A vector is 
called R -sparse if there are R number of non-zero entries. 
An exact solution of this problem is computationally 
intractable except for small problems [4].

Basis pursuit (BP) [5], replaces the /O with its /, norm, to 
obtain the convex problem

x = argmin|x|1 s.t. y = Ax (1.3)
A'

where |x| = ^|^| - This problem can be reformulated as a
/=!

linear program and so is tractable..
However, if there is noise in the measurement y, as

given by (1.1) , the sparse solution is obtained through the 
Basis Pursuit Denoising (BPDN) problem [5]



i = arg min \ -||Ax - yf + T llx: (1.4)

\vhere the variable r e K+ is the regularization parameter.
Iterative soft-threshold algorithms to approximate the 

sparse solution x for (1.4) have been proposed by several 
authors [6, 7] . It is shown in [7] that x is the limit of 
sequences x(M) defined recursively by

x^'^S^x^+A'fy-AxW)] (1.5)

starting from an arbitrary x(0) , where A* is the conjugate 
transpose of A and Sr is the soft-thresholding operation 
defined by component-wise shrinkage as

(x,-r xt >r 
S r (*,) = sign(*,)(|*,|-r)+ = 0 \x,\ < r (1.6)

[X,+T x,<-r
where («)+ denotes the positive part operator defined as 
(g)+ = max(g,0), and sign(«) is the sign function defined 
as sign(g) = l if g>0, and sign(g) = -l if g<0. The
convergence of this algorithm is proved in [7]. The above 
iteration is often called as the iterative soft-thresholding 
algorithm or the thresholded Landweber iteration [7]. The 
soft thresholding for the complex signal is defined in terms 
of its magnitude r and phase 9 as ST (re"> ) = §T (r)e'"[l].

It is shown in [7] that this non-linear thresholding of the 
Landweber iteration x( "+1) = x{n) + A* (y-Ax(n) ), which is
a gradient descend algorithm with a fixed step size, 
converges quite slowly. This algorithm would converge 
faster, if the solution in each iteration is restricted to the /, -
ball B,, := {x | \\x\[ < a], with a := \\\'\[ where x' = lim x(n) .
The size of /, -ball, a, depends on the regularization
parameter r in (1.5).

The success of the above method relies on the fact that 
the /, -norm of the true solution, a , is known beforehand. 
Also, in many algorithms which solves the unconstrained 
problem of the form (1.4) requires the determination of the 
regularization parameter, r, which could be quite 
challenging and this parameter is often either assigned 
manually or determined iteratively.

The proposed algorithm, as discussed in the next section, 
solves the problem (1.3) with the condition y = Ax
replaced by [|y-Ax||2 <£2 , by projecting the solutions of 
the iterative algorithm (1.5) onto an adaptive convex set of 
increasing /,-norm.

3. PROPOSED ALGORITHM

We propose a fast and unsupervised algorithm to solve the 
so called Basis-Pursuit Denoising problems for both real and

complex data. The proposed algorithm is based on the 
iterative soft-thresholding algorithm as given in (1.5). The 
novelty of the proposed algorithm is that the value of /,
norm orw for determining the threshold r in equation (1.5) 
is gradually increased in each iteration.

The pseudo-code of the proposed algorithm, Ll_Adapt, 
is shown in Table 1.

Initialise
L = 1, x(1) = 0, e, = le~s , s 2 = = 0, n = 1

2. a = sort(\fi\) such that a, > aM , V/

3. "w
4. If aM - a("~" < £, , then Z = Z + 1
5. k = arg min a,5 .l.2...A'. >

6. v =

8. If |y - Ax("+1) |2 > £2 , n = n -t- 1, go to step 1

Table 1. Pseudo-code ofL]_Adapt. 
The description of the algorithm LI _Adapt is as follows:

1. Initialisation: The algorithm begins with the 
initialization of the iteration no. n, the index L for
computation of /, -norm, the initial guess x' 1 ' = 0 , the 
convergence factor £, for incrementing the index L and the 
convergence factor £2 for the algorithm to terminate.
2. Gradient Descent Step: This step computes the gradient 
of the function and finds a new value by moving in the 
opposite direction of the computed gradient as

3. Computation of /,-norm: The value of the /,-norm to 
which the inner iteration has to converge is computed by 
first sorting the coefficients in the descending order and then

computing the /, -norm as a(n} = £°y • The index, L , for
y=i

estimating the a(n] value in step 3. of the pseudo-code is 
increased stepwise whenever the solution has converged to 
the previous reference of /, -norm.

It is to be noted that because of the shrinkage, the 
number of terms, k , used to form a norm of size a(n} after 
thresholding will always be greater than or equal to the 
number L before thresholding.



4. Computation of Soft-thresholding value: The step 5 
and 6 computes the value r, which is used for soft- 
thresholding. A search is performed to find the index k such 
that k = are min a, . Then we set

T J

v = (a(n) - |Sflt (fl)| ) Ik and compute T = ak + v .

5. Projection onto /, -ball: The projection onto the /, -ball 
is computed via the soft-thresholding as x("+1) = §T (/?) as 
per (1.6) with the value r as computed in the earlier step. 

The algorithm iterates till the 12 -norm of the residue
y - Ax("' is below the threshold s2 . Generally, s2 is the 
estimated noise level.

The convergence of Ll_Adapt is accelerated by 
introducing a standard descent step in (1.5) as

-Ax (") )] (1.7)

where S(n] = ||r||2 /|A*r|2 , with r = y - Axw and 6" the
standard descent step as calculated in Steepest Descent 
algorithm. The convergence of such algorithm with the step 
size 8" > 1 is proved in [8]. It is also shown in [1] that the 
convergence of (1.7) is assured, if and only if 
0 < S("' < 2/cr,2 where <TJ is the largest singular value and

The proposed algorithms, Ll_Adapt and its faster 
variant, work for both real and complex vectors and are 
more flexible as compared to the BP algorithm solved 
through interior-point methods. These algorithms are also 
tailored for the matrices that are formed by rows taken from 
orthonormal matrices corresponding to fast transforms so 
that Ax and A*x can be computed by fast transforms. 
Iterative algorithms offer interesting advantages like the 
possibility of developing adaptive procedures, easier ways to 
include constraints e.g. positivity, monitoring of the solution 
process and also the parameters determining the solution can 
be updated as the iteration progresses.

4. RESULTS

The Ll_Adapt algorithm is tested with four ID examples 
with TV = 1024 from Donoho-Johnstone collection of 
synthetic test signals namely, "Cusp\ 'Heavisine' and 
'Doppler' [9]. The other two test cases are "Piece-wise 
Polynomial' and "Piece-wise Regular'. The measurement 
matrix A is obtained by sampling a matrix with i.i.d. 
Gaussian entries which are then orthonormalized. The 
sparsifying transform used here is Daubechies-8 (D8) 
wavelet. The results for several values of M (the size of 
measurement vector) in comparison with SolveBP [10] for 
100 runs of each experiment and are shown in Table 2. The

mean and standard deviation of SNR and /,-norm are 
tabulated as Std_SNR and StdJLl respectively in Table 2. 
Extensive numerical results suggest that the Ll_Adapt 
algorithm converges to the minimum /,-norm as the 
SolveBP converges to. The advantages of using the 
Ll_Adapt algorithm over SolveBP are highlighted in the 
previous section.

The algorithm was also tested with Complex Wavelet 
Transform (CWT) [11] as frame where the signal is sparse. 
The sparse signal of length M = 256 was synthetically 
created. The frame size is 512. The SolveBP is not used in 
this case as A and A* are not matrices but functions and 
also yeCw ,xeCA'. Instead, the Ll_Adapt algorithm is 
compared with OMP method and results are shown in Figure 
1. The SNR of the signal reconstructed with Ll_Adapt 
(81.46 dB) far exceeds than that with OMP (10.18 dB). This 
shows that Ll_Adapt works well for some cases where the 
OMP fails to get the sparse solution or the minimum /, norm
solution.

10. CONCLUSIONS

An iterative algorithm for the computing sparse solutions to 
linear inverse problems is presented, in which no prior 
knowledge about the regularization parameter is required. 
The required regularization parameter is computed at each 
iteration step. The various advantages of the iterative 
methods over the standard /, -norm minimization algorithms
are discussed. The algorithm is tested with various test 
signals both real and complex and is shown to converge to 
the min /, -norm solution. Future work will involve applying
the algorithm and its variant to more practical cases like 
encoding the raw data from radar, MRI, etc.
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Figure 1. Results with CWT (a) Original Sparse Signal,(b) 12 -norm solution, (c) OMP solution (d) Ll_Adapt solution

IV 

M 

M

leasurement Length M =100

SNR

LI

Std_SNR

Std_Ll

Cusp
LI Adapt

24.52

35.18

BP

24.57

35.19

2.93

0.09

Heavisine
LlAdapt

16.92

308.21

BP

16.84

308.35

3.47

1.43

Doppler
LlAdapt

4.77

36.41

BP

4.86

36.45

1.84

0.49

Piece-Poly
LlAdapt

3.55

6431

BP

3.65

6439

1.60

88.62

Piece_Regular
LlAdapt

4.48

2238

BP

4.60

2240

2.04

30.17
leasurement Length M = 200

SNR

LI

Std_SNR

Std_Ll

Cusp
LlAdapt

42.52

36.48

BP

42.31

36.49

4.31

0.01

Heavisine
LlAdapt

31.67

327.81

BP

31.63

327.82

2.81

0.20

Doppler
LlAdapt

12.72

46.58

BP

12.81

46.59

1.83

0.15

Piece-Poly
LlAdapt

9.28

8518

BP

9.36

8522
1.34

35.97

Piece_Regular
LlAdapt

11.32

2874

BP

11.38

2875
1.31

10.06

easurement Length M = 300

SNR
LI

Std_SNR

Std_Ll

Cusp
LlAdapt

79.80

36.58

BP

78.35

36.58

18.16

0.00

Heavisine
LlAdapt

58.74

330.33

BP

58.60

330.33

3.47

0.01

Doppler
LlAdapt

22.16

49.69

BP

22.22

49.69

1.58

0.04

Piece-Poly
LlAdapt

15.20

9550

BP

15.27
9551

1.17

15.45

Piece_Regular
LlAdapt

19.11

3144

BP

19.18

3145
1.46

3.31

Table 2: Results ofL!_Adapt and SolveBP for various measurement length M




