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Abstract

In this chapter, we describe different methods to estimate an unknown signal from its
linear measurements. We focus on the underdetermined case where the number of
measurements is less than the dimension of the unknown signal. We introduce the
concept of signal sparsity and describe how it could be used as prior information for
either regularized least squares or Bayesian signal estimation. We discuss compressed
sensing and sparse signal representation as examples where these sparse signal estima-
tion methods could be applied.

Keywords: inverse problems, signal estimation, regularization, Bayesian methods,
signal sparsity

1. Introduction

In engineering and science, a system typically refers to a physical process whose outputs are

generated due to some inputs [1, 2]. Examples of systems include measuring instruments,

imaging devices, mechanical and biomedical devices, chemical reactors and others. A system

could be abstracted as a block diagram,

where x and y represent the inputs and outputs of the system, respectively. The block, A,

formalizes the relation between these inputs and the outputs using mathematical equa-

tions [2, 3]. Depending on the nature of the system, the relation between its inputs and outputs
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could be either linear or nonlinear. For a linear relation, the system is called a linear system and

it would be represented by a set of linear equations [3, 4]

y ¼ Ax: (1)

In this chapter, we will restrict our attention to linear systems, as they could adequately

represent many actual systems in a mathematically tractable way.

When dealing with systems, two typical types of problems arise, forward and inverse problems.

1.1. Forward problems

In a forward problem, one would be interested in obtaining the output of a system due to a

particular input [5, 6]. For linear systems, this output is the result of a simple matrix-vector

product, Ax. Forward problems usually become more difficult as the number of equations

increases or as uncertainties about the inputs, or the behavior of the system, are present [6].

1.2. Inverse problems

In an inverse problem, one would be interested in inferring the inputs to a system x that resulted in

observed outputs, i.e., measured y [5, 6]. Another formulation of an inverse problem is to identify

the behavior of the system, i.e., constructA, from knowledge of different input and output values.

This problem formulation is known as system identification [1, 7, 8]. In this chapter, we will only

consider the input inference problem. The nature of the input x to be inferred further leads to two

broad categories of this problem: estimation, and classification. In input estimation, the input could

assume an infinite number of possible values [4, 9], while in input classification the input could

assume only a finite number (usually small) of possible values [4, 9]. Accordingly, in input

classification, one would like to only assign an input to a predetermined signal class. In this

chapter, we will only focus on estimation problems, particularly on restoring an input signal x

from noisy data y that is obtained using a linear measuring system represented by a matrix A.

2. Signal restoration as example of an inverse problem

To solve the above signal restoration problem, we need to estimate input signal x through the

inversion ofmatrixA. This could be a hard problem because inmany cases the inverse ofAmight

not exist, or the measurement data, y, might be corrupted by noise. The existence of the inverse of

A depends on the number of acquired independent measurements relative to the dimension of

the unknown signal [5, 10]. The conditions for the existence of a stable solution of any inverse

problem, i.e., for an inverse problem to be well-posed, have been addressed by Hadamard as:

• Existence: for measured output y there exists at least one corresponding input x.

• Uniqueness: for measured output y there exists only one corresponding input x.

• Continuity: as the input x changes slightly, the output y changes slightly, i.e., the relation

between x and y is continuous.
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These conditions could be applied to linear systems as conditions on the matrix A. Let the

matrix A∈R
n�m, such that Rn�m denotes the set of matrices of dimension n � m with its

elements being real values. The matrix equation, yn � 1 = An � m xm � 1, is equivalent to n

linear equations with m unknowns. The matrix A is a linear transformation that maps input

signals from its domain D Að Þ ¼ R
m to its rangeR Að Þ ¼ R

n [4, 5, 10]. For any measured output

signal y∈Rn, we could identify three cases based on the values of n and m.

2.1. Underdetermined linear systems

In this case, n < m, i.e., the number of equations is less than the number of unknowns,

A ¼

a11 a12 ⋯ a1m

⋮ ⋮ ⋱ ⋮

an1 an2 ⋯ anm

2

6

4

3

7

5
: (2)

If these equations are consistent, Hadamard’s Existence condition will be satisfied. However,

Hadamard’s Uniqueness condition is not satisfied because the Null Space(A) 6¼ {0}, i.e., there

exist z 6¼ 0 ∈ Null Space(A) such that,

A xþ zð Þ ¼ y: (3)

This linear system is called under-determined because its equations, i.e., system constraints, are

not enough to uniquely determine x [4, 5]. Thus, the inverse of A does not exist.

2.2. Overdetermined linear systems

In this case, m > n, the number of equations is more than the number of unknowns,

A ¼

a11

a21

⋯

⋯

a1m

a2m
⋮

⋮
⋱

⋮

⋮

an1 ⋯ anm

2

6

6

6

6

6

4

3

7

7

7

7

7

5

: (4)

If these equations are consistent, Hadamard’s Existence condition will not be satisfied. How-

ever,Hadamard’sUniqueness condition will be satisfied, if A has full rank. In this case,Null Space

(A) = {0}, i.e.,

A xþ 0ð Þ ¼ Ax ¼ y: (5)

This linear system is called over-determined, because its equations, i.e., system constraints, are

too many for x to exist [4, 5]. Also, the inverse of A does not exist.

2.3. Square linear systems

The case where m = n, the number of equations is equal to the number of unknowns,
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A ¼

a11 ⋯ a1n
⋮ ⋱ ⋮

an1 ⋯ ann

2

4

3

5
: (6)

If A has full rank, its Null Space(A) = {0} and both Hadamard’s Existence and Uniqueness

conditions will be satisfied. In addition, if A has a small condition number, the relation

between x,ywill be continuous, andHadamard’s Continuity condition will be satisfied [4, 5, 10].

In this case, the inverse problem formulated by this system of linear equations is well-posed.

3. Methods for signal estimation

In this section, we will focus on the estimation of an input signal x from a noisy measurement y

of the output of a linear system A.

The linear system shown in Figure 1, could be modeled as,

y ¼ Axþ v: (7)

where v is additive Gaussian noise. As a consequence of the Central Limit Theorem, this

assumption of Gaussian distributed noise is valid for many output measurement setups.

Statistical Estimation Theory allows one to obtain an estimate bx of a signal x that is input to a

known system A from measurement y (see Figure 2) [11, 12]. However, this estimate bx is not

unique, as it depends on the choice of the used estimator from the different ones available. In

addition to measurement y, if other information about the input signal is available, it could be

Figure 1. Linear system with noisy output measurement.

Figure 2. Signal estimation using prior information.
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used as prior information to constrain the estimator to produce a better estimate of x. Signal

estimation for overdetermined systems could be achieved without any prior information about

the input signal. However, for underdetermined systems, prior information is necessary to

ensure a unique estimate.

3.1. Least squares estimation

If there is no information available about the statistics of the measured data,

y ¼ Axþ v; (8)

least squares estimation could be used. The least squares estimate is obtained by minimizing

the square of the L2 norm of the error between the measurement and the linear model,

v = y � Ax. It is given by

bx ¼ arg min
x

∥y� Ax∥22: (9)

The L2 norm is a special case of the p-norm of a vector, where p = 2, that is defined as

xk kp ¼
Pm

i¼1 xij jp
� �1

p. In Eq. (9), the unknown x is considered deterministic, so its statistics are

not required. The noise v in this formulation is implicitly assumed to be white noise with

variance σ
2 [13, 14]. Least squares estimation is typically used to estimate input signals x in

overdetermined problems. Since bx is unique in this case, no prior information, additional

constraints, for x is necessary.

3.2. Weighted least squares estimation

If the noise v in Eq. (8) is not necessarily white and its second order statistics, i.e., mean and

covariance matrix, are known, then weighted least squares estimation could be used to further

improve the least squares estimate. In this estimation method, measurement errors are not

weighted equally, but a weighting matrix C explicitly specifies such the weights. The weighted

least squares estimate is given by

bx ¼ arg min
x

∥C�1=2 y� Axð Þ∥22: (10)

We note that the least squares problem, Eq. (9), is a special case of the weighted least squares

problem, Eq. (10), when C = σ2I.

3.3. Regularized least squares estimation

In underdetermined problems, the introduction of additional constraints on x, also known as

regularization, could ensure the uniqueness of the obtained solution. Standard least squares

estimation could be extended, through regularization, to solve underdetermined estimation

problems. The regularized least squares estimate is given by
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arg min
x

∥y� Ax∥22 þ λ∥Lx∥2; (11)

where L is a matrix specifying the additional constraints and λ is a regularization parameter

whose value determines the relative weights of the two terms in the objective function. If the

combined matrix
A
L

� �
has full rank, the regularized least squares estimate bx is unique [4]. In

this optimization problem, the unknown x is once again considered deterministic, so its

statistics are not required. It is worthwhile noting that while regularization is necessary to solve

underdetermined inverse problems, it could also be used to improve numerical properties,

e.g., condition number, of either linear overdetermined or linear square inverse problems.

3.4. Maximum likelihood estimation

If the probability distribution function (pdf) of the measurement y, parameterized by an

unknown deterministic input signal x, is available, then the maximum likelihood estimate of x is

given by,

bx ¼ arg max
x

f yjxð Þ: (12)

This maximum likelihood estimate bx is obtained by assuming that measurement y is the most

likely measurement to occur given the input signal x. This corresponds to choosing the value of

x for which the probability of the observed measurement y is maximized. In maximum

likelihood estimation, the negative log of the likelihood function, f(y|x), is typically used to

transform Eq. (12) into a simpler minimization problem. When, f(y| x) is a Gaussian distribu-

tion, N(Ax,C), minimizing the negative log of the likelihood function is equivalent to solving

the weighted least squares estimation problem.

3.5. Bayesian estimation

If the conditional pdf of the measurement y, given an unknown random input signal x, is

known, in addition to the marginal pdf of x, representing prior information about x, is given,

then a Bayesian estimation method would be possible. The first step to obtain one of the many

possible Bayesian estimates of x is to use Bayes rule to obtain the a posteriori pdf,

f xjyð Þ ¼
f yjxð Þ f xð ÞÐ
f yjxð Þf xð Þ

: (13)

Once this a posteriori pdf is known, different Bayesian estimates bx could be obtained. For

example, the minimum mean square error estimate is given by,

bxMMSE ¼ Ex f xjyð Þ½ � ¼ Ex
f yjxð Þ f xð ÞÐ
f yjxð Þf xð Þ

� �
; (14)

while the maximum a priori (MAP) estimate is given by,
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bxMAP ¼ arg max
x

f xjyð Þ ¼ arg max
x

f yjxð Þ f xð Þ: (15)

We note that the maximum likelihood estimate, Eq. (12), is a special case of the MAP estimate,

when f(x) is a uniform pdf over the entire domain of x. The use of prior information is essential

to solve underdetermined inverse problems, but it also improves the numerical properties,

e.g., condition number, of either linear overdetermined or linear square inverse problems.

3.5.1. Bayesian least squares estimation

In least squares estimation, the vector x is assumed to be an unknown deterministic variable.

However, in Bayesian least squares estimation, it is considered a vector of scalar random vari-

ables that satisfies statistical properties given by an a priori probability distribution function [5].

In addition, in least squares estimation, the L2 norm of the measurement error is minimized,

while in Bayesian least squares estimation, it is the estimation error, e ¼ bx � x, not measure-

ment error, that is used [5]. Since x is assumed to be a random vector, the estimation error e will

also be a random vector. Therefore, the Bayesian least squares estimate could be obtained by

minimizing the condtional mean of the square of the estimation error, given measurement, y,

bx ¼ arg min
x

E bx � xð Þ
T bx � xð Þjy

h i
: (16)

When x has a Gaussian distribution and A represents a linear system, then measurement ywill

also have a Gaussian distribution. In this case, the Bayesian least squares estimate given by

Eq. (16) could be reinterpreted as a regularized least squares estimate given by,

bx ¼ arg min
x

∥y� Ax∥22 þ ∥μ � x∥; (17)

where μ is the mean of the a priori distribution of x [5]. Therefore, a least squares Bayesian

estimate is analogous to a regularized least squares estimate, where a priori information about

x is expressed as additional constraints on x in the form of a regularization term.

3.5.2. Advantages of Bayesian estimation over other estimation methods

Bayesian estimation techniques could be used, given that a reliable a priori distribution is

known, to obtain an accurate estimate of a signal x, even if the number available measure-

ments is smaller than the dimension of the signal to estimated. In this underdetermined case,

Bayesian estimation could accurately estimate a signal while un-regularized least squares

estimation or maximum likelihood estimation could not. The use of prior information in

Bayesian estimation could also improves the numerical properties, e.g., condition number, of

either linear overdetermined or linear square inverse problems. This could be understood by

keeping in mind the mathematical equivalence between obtaining one scalar measurement

related to x, and specifying one constraint that x has to satisfy. Therefore, as the number of

available measurements significantly increases, both Bayesian and maximum likelihood esti-

mates would converge to the same estimate.
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Bayesian estimation also could be easily adapted to estimate dynamic signals that change over

time. This is achieved by sequentially using past estimates of a signal, e.g., xt � 1, as prior

information to estimate its current value xt. More generally, Bayesian estimation could be

easily adapted for data fusion, i.e., combination of multiple partial measurements to estimate a

complete signal in remote sensing, stereo vision and tomographic imaging, e.g., Positron

emission tomography (PET), Magnetic resonance imaging (MRI), computed tomography (CT)

and optical coherence tomography (OCT). Bayesian methods could also easily fuse all avail-

able prior information to provide an estimate based on measurements, in addition to all

known information about a signal.

Bayesian estimation techniques could be extended in straight forward ways to estimate output

signals of nonlinear systems or signals that have complicated probability distributions. In these

cases, numerical Bayesian estimates are typically obtained using Monte Carlo methods.

3.5.3. Sparsity as prior information for underdetermined Bayesian signal estimation

Sparse signal representation means the representation of a signal in a domain where most of its

coefficients are zero. Depending on the nature of the signal, one could find an appropriate

domain where it would be sparse. This notion could be useful in signal estimation because

assuming that the unknown signal x is sparse could be used as prior information to obtain an

accurate estimate of it, even if only a small number of measurements are available. The rest of

this chapter will focus on using signal sparsity as prior information for underdetermined

Bayesian signal estimation.

4. Sparse signal representation

As shown in Figure 3, a sinusoid is a dense signal in the time domain. However, it could be

represented by a single value, i.e., it has a sparse representation, in the frequency domain.

We note that any signal could have a sparse representation in a suitable domain [15]. A sparse

signal representation means a representation of the signal in a domain where most of its

coefficients are zero. Sparse signal representations have many advantages including:

1. A sparse signal representation requires less memory for its storage. Therefore, it is a

fundamental concept for signal compression.

Figure 3. A sinusoid in time and frequency domains.
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2. A sparse signal representation could lead to simpler signal processing algorithms. For

example, signal denoising could be achieved by simple thresholding operations in a

domain where the signal is known to be sparse.

3. Sparse signal representations have fewer coefficients than dense signal representations.

Therefore, the computational cost for sparse representations would be lower than for

dense representations.

4.1. Signal representation using a dictionary

A dictionary D is a collection of vectors {φn}nEΓ, indexed by a parameter n E Γ equal to the

dimension of a signal f, where we could represent f as a linear combination [16],

f ¼
X

nEΓ

cnφn: (18)

If the vectors {φn}nEΓ are linearly independent, then such dictionary is called a basis.

Representing a signal as a linear combination of sinusoids, i.e., using a Fourier dictionary, is

very common. Wavelet dictionaries and Chirplet dictionaries are also common dictionaries for

signal representation. Dictionaries could be combined together to obtain a larger dictionary,

where n EΓ is larger than the dimension the signal f, that is called an overcomplete dictionary or

a frame.

4.1.1. Signal representation using a basis

A set of vectors form a basis for Rn if they span Rn and are linearly independent. A basis in a

vector space V is a set X of linearly independent vectors such that every vector in V is a linear

combination of elements in X. A vector space V is finite dimensional if it has a finite number of

basis vectors [17].

Depending on the properties of {φn}nEΓ, bases could be classified into different types, e.g.,

orthogonal basis, orthonormal basis, biorthogonal basis, global basis and local basis. For an

orthogonal basis, its basis vectors in the vector space V are mutually orthogonal,

φm;φn

� �
¼ 0 for m 6¼ n: (19)

For an orthonormal basis, its basis vectors in the vector space V are mutually orthogonal and

have unit length,

φm;φn

� �
¼ δ m� nð Þ; (20)

where δ(m � n) is the Kronecker delta function. For a biorthogonal basis, its basis vectors are not

orthogonal to each other, but they are orthogonal to vectors in another basis, eφn

n o
nEΓ

, such that

φm;

eφn

D E
¼ δ m� nð Þ: (21)
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In addition, depending on the domain (support) on which these basis vectors are defined, we

could also classify a basis as either global or local. Sinusoidal basis vectors used for the discrete

Fourier transform are defined on the entire domain (support) of f, so they are considered a

global basis. Many wavelet basis vectors used for the discrete wavelet transform are defined on

only part of the domain (support) of f, so they are considered a local basis.

4.1.2. Signal representation using a frame

A frame is a set of vectors {φn}nEΓ that spans R
n and could be used to represent a signal f from

the inner products {〈f, φn〉}nEΓ. A frame allows the representation of a signal as a set of frame

coefficients, and its reconstruction from these coefficients in a numerically stable way

f ¼
X

nEΓ

f ;φn

� �

φn: (22)

Frame theory analyzes the completeness, stability, and redundancy of linear discrete signal

representations [18]. A frame is not necessarily a basis, but it shares many properties with

bases. The most important distinction between a frame and a basis is that the vectors that

comprise a basis are linearly independent, while those comprising frame could be linearly

dependent. Frames are also called overcomplete dictionaries. The redundancy in the representa-

tion of a signal using frames could be used to obtain sparse signal representations.

4.2. Sparse signal representation as a regularized least squares estimation problem

If designed to concentrate the energy of a signal in a small number of dimensions, an orthog-

onal basis would be the minimum-size dictionary that could yield a sparse representation of

this signal [15]. However, finding an orthogonal basis that yields a highly sparse representa-

tion for a given signal is usually difficult or impractical. To allow more flexibility, the orthog-

onality constraint is usually dropped, and overcomplete dictionaries (frames) are usually used.

This idea is well explained in the following quote by Stephane Mallat:

“In natural languages, a richer dictionary helps to build shorter and more precise sentences. Similarly,
dictionaries of vectors that are larger than bases are needed to build sparse representations of complex

signals. Sparse representations in redundant dictionaries can improve pattern recognition, compression,

and noise reduction but also the resolution of new inverse problems. This includes super resolution, source

separation, and compressed sensing” [15].

Thus representing a signal using a particular overcomplete dictionary has the following goals [16]

• Sparsity—this representation should be more sparse than other representations.

• Super resolution—the resolution of the signal when represented using this dictionary

should be higher than when represented in any other dictionary.

• Speed—this representation should be computed in O(n) or O(n log(n)) time.

A simple way to obtain an overcomplete dictionary A is to use a union of basis Ai that would

result in the following representation of a signal y,

Bayesian Inference288



yð Þ ¼ A1½ � A2½ � A3½ � A4½ � A5½ �ð Þ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

A

xð Þ ) y ¼ Ax; (23)

where A is a n � m matrix representing the dictionary and x are the coefficients representing y

in the domain defined by A. Since A represents an overcomplete dictionary, the number of its

rows will be less than the number of its columns. Eq. (23) is a formulation of the signal

representation problem as an underdetermined inverse problem.

To obtain a sparse solution for Eq. (23) one needs to find an m � 1 coefficient vector bx, such

that,

bx ¼ arg min
x

y� Axk k22 þ λ xk k0; (24)

where kxk0 is the cardinality of vector x, i.e., its number of nonzero elements, and λ > 0 is a

regularization parameter that quantifies the tradeoff between the signal representation

error, y� Axk k22, and its sparsity level, kxk0 [19]. The cardinality of vector x is sometimes

referred to as the L0 norm of x, even though kxk0 is actually a pseudo norm that does not satisfy

the requirements of a norm in Rm. This sparse signal representation problem, Eq. (24), has a

form similar to the regularized least squares estimation problem, Eq. (11), that would be

underdetermined in the case of an overcomplete dictionary. Because of the correspondence

between regularized least squares estimation and Bayesian estimation, the problem of finding

a sparse representation of a signal could be formulated as a Bayesian estimation problem.

5. Compressed sensing

Compressed sensing involves the estimation of a signal using a number of measurements that

are significantly less than its dimension [20]. By assuming that the unknown signal is sparse in

the domain where the measurements were acquired, one could use this sparsity constraint as

prior information to obtain an accurate estimate of the signal from relatively few measurements.

Compressed sensing is closely related to signal compression that is routinely used for efficient

storage or transmission of signals. Compressed sensing was inspired by this question: instead of

the typical signal acquisition followed by signal compression, is there a way to acquire (sense)

the compressed signal in the first place? If possible, it would significantly reduce the number of

measurements and the computation cost [20]. In addition, this possibility would allow acquisi-

tion of signals that require extremely high, hence impractical, sampling rates [21]. As an affirma-

tive answer to this question, compressed sensing was developed to combine signal compression

with signal acquisition [20]. This is achieved by designing the measurement setup to acquire

signals in the domain where the unknown signal is assumed to be sparse.

In compressed sensing, we consider the estimation of an input signal x∈Rn from m linear

measurements, where m ≪ n. As discussed above, this problem could be written as an

underdetermined linear system,
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y ¼ Ax; (25)

where y∈Rm and A∈R
m�n represent the measurements and measurement (sensing) matrix,

respectively.

Assuming that the unknown signal x is s-sparse, i.e., x ∈ ∑s has only s nonzero elements, in the

domain specified by the measurement (sensing) matrix A, and assuming that A satisfies the

restricted isometry property (RIP) of order 2s, i.e., there exists a constant δ2s ∈ (0, 1) such that,

1� δ2sð Þ zj jj j22 ≤ Azj jj j22 ≤ 1þ δ2sð Þ zj jj j22; (26)

for all z ∈ ∑2s, then x could be reconstructed from m ≥ s measurements by different optimiza-

tion algorithms [20]. When the measurements y are noiseless, x could be exactly estimated

from,

min
x

xj jj j0 subject to Ax ¼ y: (27)

However, when the measurements y are contaminated by noise,x could be obtained as the

regularized least squares estimate,

bx ¼ argmin
x

Ax� yj jj j22 þ λ xj jj j0: (28)

This minimization problem could also be mathematically reformulated and solved as a Bayesian

estimation problem.

6. Obtaining sparse solutions for signal representation and signal

estimation problems

From Sections 4 and 5 we note that the problem of obtaining a sparse signal representation,

Eq. (24) and the problem of sparse signal estimation in compressed sensing, Eq. (28), both have

the same mathematical form [11, 22],

bx ¼ arg min
x

y� Axk k22 þ λ xk k0 : (29)

In this section, we describe different approaches to solving this minimization problem. From

Eq. (29), we note that the first term of its RHS, y� Axk k22, represents either signal reconstruc-

tion error (sparse signal representation problem) or measurement fitting error (sparse signal

estimation in compressed sensing problem), while the second term of its RHS,kxk0, represents

the cardinality (number of nonzero coefficients) of the unknown signal. The regularization

parameter λ specifies the tradeoff between these two terms in the objective function. The

selection of an appropriate value of λ to balance the reconstruction, or fitting error, and signal

sparsity is very important. Regularization theory and Bayesian approaches could provide

ways to determine optimal values of λ [23–26].
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Convex optimization problems is a class of optimization problems that are significantly easier

to solve compared to nonconvex problems [34]. Another advantage of convex optimization

problems is that any local solution, e.g., a local minimum, is guaranteed to be a global solution.

We note that obtaining an exact solution for the minimization problem in Eq. (29) is difficult

because it is nonconvex. Therefore, one could either seek an approximate solution to this

nonconvex problem or approximate this problem by a convex optimization whose exact

solution could be obtained easily.

Considering the general regularized least squares estimation problem,

bx ¼ arg min
x

y� Axk k22 þ λ xk kp; (30)

we note that it is a nonconvex optimization problem for 0 ≤ p < 1 and a convex optimization

problem for p ≥ 1. One alternative to approximate Eq. (29) by a convex optimization problem,

one could relax the strict condition of minimizing the cardinality of the signal, kxk0, by

replacing by it by the sparsity-promoting condition of minimizing the L1 norm of the signal,

kxk1. Another alternative to approximate Eq. (29) by another nonconvex optimization problem

that is easier to solve than the original problem using a Bayesian formulation, is to replace kxk0
by kxkp, 0 < p < 1. The minimization of Eq. (30) using kxkp, 0 < p < 1 would result in a higher

degree of signal sparsity compared to when kxk1 is used. This could be understood visually by

examining Figure 4, that shows the shapes of two-dimensional unit balls using (pseudo)norms

with different values of p.

We explain further details in the following subsections.

6.1. Obtaining a sparse signal solution using L0 minimization

The sparsest solution of the regularized least squares estimation problem, Eq. (29) would be

obtained when p = 0 in kxkp. As shown in Figure 5, the solution of the regularized least squares

problem, bx, is given by the intersection of the circles, possibly ellipses, representing the

Figure 4. Two-dimensional unit ball using different (pseudo)norms. (a) L0, (b) L0�1, and (c) L1.

Sparsity in Bayesian Signal Estimation
http://dx.doi.org/10.5772/intechopen.70529

291



solution of the unconstrained least squares estimation problem and the unit ball using L0
representing the constraint of minimizing L0. In this case of minimizing L0, the unconstrained

least squares solution will always intersect the unit ball at an axis, this yielding the most

possible sparse solution. However, as mentioned earlier, this L0 minimization problem is

difficult to solve because it is nonconvex. Approximate solutions for this problem could be

obtained using greedy optimization algorithms, e.g., Matching Pursuits [27] and Least Angle

Regression (LARS) [28].

6.2. Obtaining a sparse signal solution using L1 minimization

On relaxing the nonconvex regularized least squares using L0 minimization problem, by

setting p = 1, we obtain the convex L1 minimization problem. As shown in Figure 4(c), the unit

ball using the L1 norm covers a larger area than the unit ball using the L0 pseudo norm, shown

in Figure 4(a). Therefore, as shown in Figure 6, the solution for the regularized least squares

problem using the L1 minimization would be sparse, but it should not be expected to be as

sparse as the L0 minimization problem.

This L1 minimization problem could be solved easily using various algorithms, e.g., Basis

Pursuits [16], Method of frames (MOF) [29], Lasso [30, 31], and Best Basis Selection [32, 33]. A

Bayesian formulation of this L1 minimization problem is also possible by assuming that the a

priori probability distribution of x is Laplacian, x ~ e� |x|.

6.3. Obtaining a sparse signal solution using L0 � 1 minimization

As discussed above, solving the regularized least squares problem with L0 minimization

should yield the sparsest signal solution. However, only approximate solutions are available

for this difficult nonconvex problem. Alternatively, solving the regularized least squares prob-

lem with L1 minimization should yield an exact sparse solution that would be less sparse than

in the L0 case, but it is considerably easier to obtain.

Figure 5. Regularized least squares using L0.
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The regularized least squares problem could also be formulated as an L0 � 1 minimization

problem. As kxkp, 0 < p < 1,that we abbreviate as L0 � 1, is not an actual norm, this optimization

problem would be nonconvex [34]. The advantage of using L0 � 1 minimization is that, as

shown in Figure 4(b), compared to unit ball using the L1 norm, the unit ball using the L0 � 1

pseudo norm has a narrower area that is concentrated around the axes. Therefore, as shown in

Figure 7, the L0 � 1 minimization problem should yield a sparser solution compared to the L1
minimization problem.

Figure 6. Regularized least squares using L1.

Figure 7. Regularized least squares using L0�1.
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Another advantage of using L0 � 1 minimization is that this nonconvex optimization problem

could be easily formulated as a Bayesian estimation problem that could be solved using

Markov Chain Monte Carlo (MCMC) methods. As shown in Figure 8, the product of student-t

probability distributions has a shape similar to the unit ball using the L0 � 1 pseudo norm, so

student-t distributions could be used as a priori distributions to approximate the L0 � 1 pseudo

norm.

6.4. Bayesian method to obtain a sparse signal solution using L0 � 1 minimization

As mentioned in Section 3.5, the first step to obtaining one of the many possible Bayesian

estimates of x is to use Bayes rule to obtain the a posteriori pdf,

f xjyð Þ ¼
f yjxð Þ f xð ÞÐ
f yjxð Þf xð Þ

: (31)

Using this a posteriori distribution, one could obtain a sparse signal solution using L0 � 1

minimization, as the maximum a posteriori (MAP) estimate given by Eq. (15). Compared to

other Bayesian estimates, the MAP estimate could be easier to obtain because the calculation

of the normalizing constant,
Ð
f(y|x)f(x),would not be needed. The maximization of the product

of conditional probability distribution of y given x and the a priori distribution of x is equiva-

lent to the minimizing of the sum of their negative logarithms,

bxMAP ¼ arg min
x

� log p yjxð Þ � log p xð Þ½ � : (32)

In the case of white Gaussian measurement noise, p(y|x) ~ Nx(Ax, σ
2I) where � log p yjxð Þ∝

y� Axk k22, which the first term of the RHS of Eq. (30). As discussed in the previous section, the

a priori probability p(x) corresponding to L0 � 1 minimization could be represented as a product

of univariate student-t probability distribution functions [14],

Figure 8. Product of two student-t probability distributions.
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p xð Þ ¼
Y

M

i¼1

studxi 0; 1;ϑ½ � ¼
Y

M

i¼1

Γ
ϑþ1
2

� �

ffiffiffiffiffiffiffi

ϑπ
p

Γ
ϑ
2

� � 1þ x2i
ϑ


 �� ϑþ1ð Þ
2

; (33)

where Γ is the Gamma function, and ϑ is the number of degrees of freedom of the student-t

distribution. Since this a priori distribution function is not an exponential function, we would

use Eq. (15) instead of Eq. (32) to obtain the MAP estimate.

Because the prior is not a Gaussian distribution, there is no simple closed form expression for

the posterior, p(x|y) with a student-t a priori probability distribution. However, we could

express each student-t distribution as an infinite weighted sum of Gaussian distributions,

where the hidden variables hi determine their variances [14].

p xð Þ ¼
Y

M

i¼1

ð

Nxi 0, 1=hið ÞGamhi ϑ=2,ϑ=2½ �dhi ¼
ð

Nx 0;H�1
� �

Y

M

i¼1

Gamhi ϑ=2,ϑ=2½ �dH ; (34)

where the matrix H contains the hidden variables hif gMi¼1 on its diagonal and has zeros

elsewhere, and Gamhi ϑ=2,ϑ=2½ � is the gamma probability distribution function with parame-

ters (ϑ/2, ϑ/2). Using this approximation, the a posteriori pdf could be written as

p xjyð Þ∝ p yjxð Þp xð Þ ¼ Nx Ax, σ2I
� �

ð

Nx 0;H�1
� �

Y

M

i¼1

Gamhi

ϑ

2
;
ϑ

2

� �

dH

¼
ð

Nx Ax, σ2I
� �

Nx 0;H�1
� �

Y

M

i¼1

Gamhi

ϑ

2
;
ϑ

2

� �

dH:

(35)

The product of two Gaussian distributions is also a Gaussian distribution [35],

Nx μ1;Σ1

� �

Nx μ2;Σ2

� �

¼ k:Nx μ;Σð Þ; (36)

where the mean and covariance (μ, Σ) of the new Gaussian distribution in Eq. (36) is given by,

μ ¼ Σ1
�1 þ Σ2

�1
� ��1

Σ1
�1μ1 þ Σ2

�1μ2

� �

andΣ ¼ Σ1
�1 þ Σ2

�1
� ��1

; (37)

and k is a constant. Therefore, we could simplify the product of two the Gaussian distributions

given in Eq. (35) as,

Nx Ax,σ2I
� �

:Nx 0;H�1
� �

¼ k:Nx σ
�2I þH

� ��1
σ
�2Ax

� �

, σ
�2I þH

� ��1
� 


: (38)

From Eqs. (35) and (38) we could write p(x|y) as,

p xjyð Þ ¼ k

ð

Nx σ
�2I þH

� ��1
σ
�2Ax

� �

, σ
�2I þH

� ��1
� 


Y

M

i¼1

Gamhi

ϑ

2
;
ϑ

2

� �

dH : (39)

We still could not compute the integral in Eq. (39) in closed form. However, we could maxi-

mize the RHS of Eq. (39) over the hidden variables H to obtain an approximation for the a

posteriori probability distribution function
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p xjyð Þ ≈ arg max
H

Nx σ
�2I þH

� ��1
σ
�2Ax

� �
, σ

�2I þH
� ��1

� 
YM

i¼1

Gamhi

ϑ

2
;

ϑ

2

� �" #

: (40)

Eq. (40) would be a good approximation of p(x|y), if the actual distribution over the hidden

variables is concentrated tightly around its mode [14]. When hi has a large value, its

corresponding ith component of the a priori probability distribution function p(x) would have

a small variance, 1
hi
, so that this ith component of p(x) could be set to zero. Therefore, this ith

dimension of the prior p(x) would not contribute to the solution of Eq. (30), thus increasing its

sparsity.

Since both Gaussian and gamma pdfs in Eq. (40) are members of the exponential family of

probability distributions, we could obtain bxMAP by maximizing the sum of their logarithms.

Section 3.5 in [11] and Section 8.6 in [14] describe an iterative optimization method to obtain

bxMAP from the approximate a posteriori probability distribution function given by Eq. (40).

7. Conclusion

In this chapter, we described different methods to estimate an unknown signal from its linear

measurements. We focused on the underdetermined case where the number of measurements

is less than the dimension of the unknown signal. We introduced the concept of signal sparsity

and described how it could be used as prior information for either regularized least squares or

Bayesian signal estimation. We discussed compressed sensing and sparse signal representation

as examples where these sparse signal estimation methods could be applied.
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