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Sparse and redundant representation of data enables the description of signals

as linear combinations of a few atoms from a dictionary. In this dissertation, we

study applications of sparse and redundant representations in inverse problems and

object recognition. Furthermore, we propose two novel imaging modalities based on

the recently introduced theory of Compressed Sensing (CS).

This dissertation consists of four major parts. In the first part of the disser-

tation, we study a new type of deconvolution algorithm that is based on estimating

the image from a shearlet decomposition. Shearlets provide a multi-directional and

multi-scale decomposition that has been mathematically shown to represent distrib-

uted discontinuities such as edges better than traditional wavelets. We develop a

deconvolution algorithm that allows for the approximation inversion operator to be

controlled on a multi-scale and multi-directional basis. Furthermore, we develop a

method for the automatic determination of the threshold values for the noise shrink-

age for each scale and direction without explicit knowledge of the noise variance

using a generalized cross validation method.

In the second part of the dissertation, we study a reconstruction method that

recovers highly undersampled images assumed to have a sparse representation in

a gradient domain by using partial measurement samples that are collected in the

Fourier domain. Our method makes use of a robust generalized Poisson solver that

greatly aids in achieving a significantly improved performance over similar proposed



methods. We will demonstrate by experiments that this new technique is more

flexible to work with either random or restricted sampling scenarios better than its

competitors.

In the third part of the dissertation, we introduce a novel Synthetic Aperture

Radar (SAR) imaging modality which can provide a high resolution map of the

spatial distribution of targets and terrain using a significantly reduced number of

needed transmitted and/or received electromagnetic waveforms. We demonstrate

that this new imaging scheme, requires no new hardware components and allows the

aperture to be compressed. Also, it presents many new applications and advantages

which include strong resistance to countermesasures and interception, imaging much

wider swaths and reduced on-board storage requirements.

The last part of the dissertation deals with object recognition based on learning

dictionaries for simultaneous sparse signal approximations and feature extraction.

A dictionary is learned for each object class based on given training examples which

minimize the representation error with a sparseness constraint. A novel test image is

then projected onto the span of the atoms in each learned dictionary. The residual

vectors along with the coefficients are then used for recognition. Applications to

illumination robust face recognition and automatic target recognition are presented.
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Chapter 1

Introduction

1.1 Research Motivation

In many applications in the sciences and engineering, one needs to approximate

an unknown object given a collection of its linearly transformed, noisy and possibly

incomplete observations. Such ill-conditioned problems often arise in a variety of

fields such as remote sensing, medical imaging, astronomy, seismic analysis, etc.

Of particular interest in this dissertation are the image deconvolution and image

reconstruction problems.

In image deconvolution problem, the objective is to estimate an image given its

blurred and noisy observation. The most popular methods for solving this problem

are based on wavelets [2]. The main reason for wavelets’ success can be explained by

their ability to sparsely represent one-dimensional signals which are smooth away

from point discontinuities. However, in two-dimension, wavelets are actually not

optimal for all types of images. Multidimensional representations such as shearlets

can provide better approximation rates for certain types of images [3]. Hence, in

the first part of the dissertation, we study a new type of deconvolution algorithm

based on estimating the image from a shearlet decomposition [4].

Reconstruction of images from an incomplete set of samples from a Fourier

representation is an important goal to improve scanning technologies such as Mag-

netic Resonance Imaging (MRI) and Synthetic Aperture Radar (SAR). Solutions to

such a problem would allow a significant reduction in collection time and improve

the capacity to collect very time sensitive events. For example, an MRI scanner

records data in a Fourier representation so methods, capable of reconstructing from

such partial samples, would greatly improve medical science and reduce a patient’s

exposure time. To this end, in the second part of this dissertation, we study a re-

construction method that recovers images assumed to have a sparse representation
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in a gradient domain by using partial measurement samples that are collected in

the Fourier domain [5].

The next part of this dissertation concerns an interesting application of Com-

pressed Sensing (CS) in SAR imaging. Compressed sensing is a new concept in

signal processing and information theory where one measures a small number of

non-adaptive linear combinations of the signal. These measurements are usually

much smaller than the number of samples that define the signal. From these small

number of measurements, the signal is then reconstructed by a non-linear procedure

[6], [7]. Motivated by the theory of CS, we study a new imaging modality that can

provide a high resolution map of the spatial distribution of targets and terrain based

on a significant reduction in the number of transmitted and received electromagnetic

waveforms [8], [9].

One principle for designing recognition algorithms for visual imagery is to en-

code objects as sparse representations from an over-complete dictionary. Areas of

promise for sparse representation are face recognition and automatic target recog-

nition. To this end, in the last part of this dissertation we present recognition

algorithms based on learning dictionaries, both discriminative and reconstructive,

for simultaneous sparse signal approximations and feature extraction. Applications

in illumination robust face recognition and automatic target recognition on forward-

looking infrared imagery consisting of military vehicles are presented.

1.2 Contributions

This dissertation makes the following contributions:

• Shearlet-based deconvolution [4],[10]: We study a deconvolution algo-

rithm based on estimating the image from a shearlet decomposition. The

threshold values for the noise shrinkage for each scale and direction are deter-

mined using a generalized cross validation method without the explicit knowl-

edge of the noise variance.

• Reconstruction of gradient sparse images from incomplete Fourier
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measurements [5]: We study a method that reconstructs images that have

sparse or compressible gradients from an incomplete set of Fourier samples.

We use a robust general Possion solver to obtain the reconstructed image from

the estimated gradients. We show that a Poisson solver-based solution is much

more robust to imperfections in the estimate of gradients and does not require

any constraint on the type of data that are collected.

• SAR imaging based on CS [9],[8]: We study a new SAR imaging modality

that can provide a high resolution map of the spatial distribution of targets

and terrain based on a significant reduction in the number of transmitted

and received electromagnetic waveforms. We study two different types of k-

space undersampling schemes for SAR and analyze the severity of artifacts

introduced by these undersampling schemes using a point spread function.

We provide some of the applications of this new SAR imaging modality.

• Sparsity-induced object recognition: We study two different algorithms

for object recognition based on simultaneous sparse approximations and fea-

ture extraction.

– Illumination robust face recognition: The K-SVD algorithm is used

to learn a reconstructive dictionary for each class. Furthermore, a re-

lighting method based on estimating albedo of a face image is adapted

to deal with illumination variations.

– Automatic Target Recognition (ATR) [11], [12]: We study an

ATR algorithm based on sparse representations. The dictionary learning

algorithm is based on class supervised simultaneous orthogonal matching

pursuit while a matching pursuit-based similarity measure is used for

recognition.
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1.3 Overview

1.3.1 Fourier-Shearlet Regularized Deconvolution

Inverse problems often involve estimating data from noisy and incomplete

observations. Inverse problems are typically ill-posed, that is, the data cannot always

be recovered. One such inverse problem is deconvolution, where the observation is

comprised of an input image first degraded by linear time invariant convolution with

a known impulse response and then corrupted by additive noise.

In chapter 3, we propose a new type of deconvolution algorithm that is based

on estimating the image from a shearlet decomposition [4]. Shearlets provide a multi-

directional and multi-scale decomposition that has been mathematically shown to

represent distributed discontinuities such as edges better than traditional wavelets.

We develop an algorithm that allows for the approximation inversion operator to be

controlled on a multi-scale and multi-directional basis. Furthermore, we develop a

method for the automatic determination of threshold values for the noise shrinkage

for each scale and direction without explicit knowledge of the noise variance using

a generalized cross validation. Various experiments show that this method can

perform significantly better than many competitive deconvolution algorithms.

1.3.2 Enhancing sparsity using gradients for CS

Several scanning technologies such as MRI will greatly benefit from being able

to reconstruct an image from a reduced sampling set. The theory of CS points

to ways of reconstructing such images from undersampled data yet the underlying

algorithms still need improvement to obtain satisfactory and efficient results. In

chapter 4, we study a new reconstruction method that recovers images that have a

sparse representation in a gradient domain yet have partial samples that are collected

in the Fourier domain. This technique makes use of a generalized Poisson solver

and experiments show that this method performs significantly better than similar

reconstruction methods.
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1.3.3 CS for Synthetic Aperture Radar (SAR) Imaging

SAR is a radar imaging technology that is capable of producing high resolution

images of the stationary surface targets and terrain. In chapter 5, we present a new

SAR imaging scheme based on compressing the number of transmitted waveforms.

We will show that if the target reflectivity function is assumed to be sparse in some

domain, one can reconstruct a good estimate of the reflectivity profile using a new

image formation algorithm that relies on using far fewer number of waveforms than

conventional systems do. Also, some applications of this compressed aperture radar

will be presented.

1.3.4 Dictionary-based object recognition

In chapters 6 and 7, we study recognition algorithms based on learning dic-

tionaries for simultaneous sparse signal approximations and feature extraction. A

dictionary is learned for each object class based on given training examples which

minimize the representation error with a sparseness constraint. A novel test image

is then projected onto the span of the atoms in each learned dictionary. The residual

vectors along with the coefficients are then used for recognition.

1.4 Organization

The dissertation is organized as follows. Chapter 2 presents some of the back-

ground materials that are central to this dissertation. In chapter 3, we present our

deconvolution method based on shearlet transform. Chapter 4, presents an applica-

tion of CS using image gradients. In chapter 5, we present an application of CS for

SAR imaging. Dictionary-based recognition algorithms are presented in chapter 6

for face recognition and in chapter 7 for automatic target recognition. Finally, in

chapter 8 we discuss some future research directions.
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Chapter 2

Background

In this chapter, we cover some of the background materials that are central to

this dissertation. The chapter is divided mainly into three parts. We first introduce

the shearlet transform and discuss some of its properties. The second part of the

chapter discusses the theory of compressed sensing. In the final part of the chapter,

we give a brief background on SAR and formulate a discrete observation model for

the spotlight mode SAR

2.1 The Shearlet Transform

The continuous wavelet transform provides a decomposition of a signal over

dilated and translated versions of a fixed waveform ψ. Specifically, for a fixed

ψ ∈ L2(R2), this is defined as the mapping Wψ with domain L2(R2) such that for

x ∈ L2(R2)

Wψx(a, t) =

∫

R2

x(u)ψa,t(u) du, (2.1)

where ψa,t(x) = a−1 ψ(a−1(u− t)), a > 0 and t ∈ R
2. If the function ψ satisfies the

admissibility or Calderòn condition

∫ ∞

0

|Ψ(aω)|2 da
a2

= 1 for a.e. ω ∈ R
2

(where Ψ denotes the Fourier transform of ψ), then ψ is referred to as a wavelet,

and any x ∈ L2(R2) can be recovered via the reproducing formula:

x =

∫ ∞

0

∫

R2

〈x, ψa,t〉ψa,t dt daa4 .

Despite the success of wavelets in signal processing applications, it is known

mathematically that traditional wavelets are not very effective in dealing with mul-

tidimensional signals containing discontinuities such as edges. In this section, we
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briefly describe a recently developed multi-scale and multi-directional representa-

tion called the shearlet transform [3]. The shearlet transform combines the power of

multi-scale methods with the ability to capture the geometry of multidimensional

signals and provides an optimal representation for images containing edges.

�
�	

(a, s) = ( 1
16
, 0)

�
�

��

(a, s) = (1
2 , 0) 6

(a, s) = ( 1
16
,−1)

ω1

ω2

Figure 2.1: Frequency support of the shearlets for different values of a and s.

Consider the two-dimensional affine system

{ψa,s,t(u) = | detMa,s|−
1

2 ψ(M−1
a,su− t) : t ∈ R

2},

where

Ma,s =



1 s

0 1







a 0

0
√
a





is a product of a shearing and an anisotropic dilation matrix for (a, s) ∈ R
+ × R.

The generating functions ψ are such that, for ω1 6= 0,

Ψ(ω) = Ψ(ω1, ω2) = Ψ1(ω1) Ψ2

(
ω2

ω1

)
, (2.2)

where ψ1 is a continuous wavelet for which Ψ1 ∈ C∞(R) with supp (Ψ1) ⊂ [−2,−1/2]∪
[1/2, 2], and ψ2 is chosen so that ‖ψ2‖ = 1, Ψ2 ∈ C∞(R), supp (Ψ2) ⊂ [−1, 1], with

Ψ2 > 0 on (−1, 1). Then any x ∈ L2(R2) admits the representation

x(u) =

∫

R2

∫ ∞

−∞

∫ ∞

0

〈x, ψa,s,t〉ψa,s,t(u)
da

a3
ds dt

for a ∈ R
+, s ∈ R, and t ∈ R

2. The operator SH defined by

SHx(a, s, t) = 〈x, ψa,s,t〉

7



is known as the continuous shearlet transform of x ∈ L2(R). The shearlet transform

is a function of three variables: the scale a, the shear s and the translation t. In the

frequency domain, Ψa,s,t(ω) has support in the set

{(ω1, ω2) : ω1 ∈ [− 2
a
,− 1

2a
] ∪ [− 2

a
,− 1

2a
],
∣∣∣ω2

ω1
− s
∣∣∣ ≤

√
a}.

Hence, each element Ψa,s,t has support on a pair of trapezoids, at various scales,

symmetric with respect to the origin and oriented along a line of slope s.

The collection of discrete shearlets is described by

{ψj,ℓ,k = | detA0|j/2 ψ(Bℓ
0A

j
0x− k) : j, ℓ ∈ Z, k ∈ Z

2},

where

B0 =



1 1

0 1



 , A0 =



4 0

0 2



.

For the appropriate choices of ψ, the discrete shearlets form a Parseval frame (tight

frame with bounds equal to 1) for L2(R2) [13], i.e., they satisfy the property

∑

j∈Z,ℓ∈Z,k∈Z2

|〈x, ψj,ℓ,k〉|2 = ‖x‖2.

The discrete shearlets described above provide a nonuniform angular covering

of the frequency plane when restricted to the finite discrete setting for implemen-

tation. Thus, it is preferred to reformulate the shearlet transform with restrictions

supported in the regions given by D0 = {(ω1, ω2) : |ω1| ≥ 1/8, |ω2/ω1| ≤ 1} and

D1 = {(ω1, ω2) : |ω2| ≥ 1/8, |ω1/ω2| ≤ 1}. Specifically, define

Ψ(0)(ω) = Ψ1(ω1)Ψ2(
ω2

ω1
), Ψ(1)(ω) = Ψ1(ω2)Ψ2(

ω1

ω2
)

where Ψ1,Ψ2 ∈ C∞(R), supp Ψ1 ⊂ [−1/2,−1/16]∪ [1/16, 1/2] and supp Ψ2 ⊂ [−1, 1]. In

addition, we assume that

∑

j≥0

|Ψ1(2
−2jω)|2 = 1 for |ω| ≥ 1

8
,

and, for each j ≥ 0,

2j−1∑

ℓ=−2j

|Ψ2(2
j ω − ℓ)|2 = 1 for |ω| ≤ 1.
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Let

A1 =



2 0

0 4



, B1 =



1 0

1 1



 ,

and choose Φ ∈ C∞
0 (R2) to satisfy

|Φ(ω)|2 +
1∑

d=0

∑

j≥0

2j−1∑

ℓ=−2j

|Ψ(d)(ωA−j
d B−ℓ

d )|2 χDd
(ξ) = 1

for ω ∈ R
2, where χD denotes the indicator function of the set D.

With the functions φ and ψ as above, we deduce the following result.

Theorem 2.1.1 ([3]). Let φk(x) = φ(x − k) and ψ
(d)
j,ℓ,k(x) = 2

3j
2 ψ(d)(Bℓ

dA
j
dx − k).

Then the collection of shearlets {φk : k ∈ Z
2} together with

∪{ψ(d)
j,ℓ,k(x) : j ≥ 0, −2j + 1 ≤ ℓ ≤ 2j − 2, k ∈ Z

2, d = 0, 1}

∪{ψ̃(d)
j,ℓ,k(x) : j ≥ 0, ℓ = −2j, 2j − 1, k ∈ Z

2, d = 0, 1},
is a Parseval frame for L2(R2), where Ψ̃

(d)
j,ℓ,k = Ψ

(d)
j,ℓ,k χDd

.

Based on ψ1 and ψ2, filters vj and w
(d)
j,ℓ can be found so that 〈x, ψ(d)

j,ℓ,k〉 and

〈x, ψ̃(d)
j,ℓ,k〉 can be computed as

x ∗ (vj ∗ w(d)
j,ℓ )[k] , x ∗ g(d)

j,ℓ [k],

where g
(d)
j,ℓ = vj ∗w(d)

j,ℓ are the directionally-oriented filters. To simplify the notation,

we suppress the superscript (d) and absorb the distinction between d = 0 and

1 by re-indexing the parameter ℓ so that it has double the cardinality. An M-

channel filterbank whose filters correspond to gj,ℓ can be implemented by using the

techniques given in [14]. As a consequence, its implementation has a complexity of

O(N2 log2(N)) for an N ×N image.

Notice that, just as in the continuous version, each element Ψj,ℓ,k is supported

on a pair of trapezoids, and each trapezoid is contained in a box of size approximately

2j × 22j satisfying a parabolic scaling property. Their supports become increasingly

thin as j → ∞. and the elements Ψj,ℓ,k exhibit highly directional sensitivity since

they are oriented along lines with slope given by −ℓ2−j. These properties contribute

to being able to establish the following theorem.
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Theorem 2.1.2 ([15]). Let x be C2 away from piecewise C2 curves, and let xSM be

the approximate reconstruction of x using the M largest coefficients in the shearlet

expansion. Then

‖x− xSM‖2
2 ≤ CM−2 (logM)3.

The significance of this result is that a shearlet-based estimate yields a MSE

approximation rate of O(ǫ4/3) as ǫ → 0, where ǫ is the noise level of the noisy

image [16]. (This is achieved by choosing a threshold so that one reconstructs from

the largest M ≈ ǫ−2/3 noisy shearlet coefficients.) Similarly, one obtains the MSE

approximation rate of wavelet thresholding as O(ǫ) for ǫ→ 0.

The shearlet transform has similarities to the curvelet transform and the con-

tourlet transform. Shearlets and curvelets, in fact, are the only two systems which

are known mathematically to provide the rate of O(M−2 (logM)3) using the M

largest coefficients for images described as C2 away from piecewise C2 curves. The

spatial-frequency tilings of curvelet and shearlet representations are completely dif-

ferent theoretically, yet the implementations of the curvelet transform corresponds

to essentially the same tiling as that of the shearlet or contourlet transform.

Alternative discrete shearlet decompositions can be created by varying the

support of the mother wavelet Ψ (which amounts to changes in Ψ1) and changing the

dilation matrices A0 and A1. Such changes produce different spatial-frequency tilings

composed of regions of support that are restricted to pairs of various trapezoidal

regions. When implemented in an undecimated form, the shearlet transform will

produce a highly redundant decomposition consisting of the total number of paired

trapezoidal regions considered.

As will be seen in Chapter 3 that an important advantage in the use of this

redundant shearlet transform implementation for deconvolution is that it allows one

to independently estimate each directionally-oriented frequency band with different

amounts of regularization. This has not been done before and cannot be done by

the current curvelet or contourlet transform implementations.
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2.2 Compressed/Compressive Sensing

Compressed sensing is a new concept in signal processing and information

theory where one measures a small number of non-adaptive linear combinations

of the signal. These measurements are usually much smaller than the number of

samples that define the signal. From these small number of measurements, the

signal is then reconstructed by a non-linear procedure [6], [7]. In what follows, we

present some fundamental premises underlying CS: sparsity, incoherent sampling

and non-linear recovery. Excellent tutorials of CS can be found in [17], [18], [19],

[20], [21], and [22].

2.2.1 Sparse representations

Consider an unknown finite length discrete time signal x ∈ RN . x can be

viewed as an N × 1 column vector with elements x[n], n = 1, ..., N . Let’s assume

that the basis Ψ = [ψ1, ..., ψN ] is an orthonormal. Then, any vector in R
N can be

expressed as

x =
N∑

i=1

θiψi (2.3)

or more compactly x = Ψθ, where θ is an N×1 column vector of coefficients. These

coefficients are given by θi = 〈x, ψi〉 = ψTi x where .T denotes the transposition

operation. If the basis Ψ provides a K-sparse representation of x, then (2.3) can be

rewritten as

x =
K∑

i=1

θni
ψni

, (2.4)

where {ni} are the indices of the coefficients and the basis elements corresponding

to the K nonzero entries. In this case, θ is an N × 1 column vector with only K

nonzero elements. That is, ‖ θ ‖0= K where ‖ . ‖p denotes the ℓp norm defined as

‖ x ‖p=
(
∑

i

| xi |p
) 1

p

(2.5)

and the ℓ0 norm is defined as the limit as p→ 0 of the ℓp norm

‖ x ‖0= lim
p→0

‖ x ‖pp= lim
p→0

∑

i

| xi |p . (2.6)
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In general, the ℓ0 norm counts the number of non-zero elements in a vector

‖ x ‖0= ♯{i : xi 6= 0}. (2.7)

Typically, real-world signals are not exactly sparse in any orthogonal basis.

Instead, they are compressible. A signal is said to be compressible if the magnitude

of the coefficients, when sorted in a decreasing order, decays according to a power

law [23],[24]. That is,

| θ |(n)≤ C.n−s, (2.8)

where | θ |(n) is the nth largest value of θ, s ≥ 1 and C is a constant. For a given L,

the L-term linear combination of elements that best approximate x in an L2-sense

is obtained by keeping the L largest terms in the expansion

xL =
L−1∑

n=0

θ(n)ψ(n). (2.9)

If θ obeys (3.5), then the error between xL and x also obeys a power law as well

[23], [24]

‖ xL − x ‖2≤ CL−(s− 1

2
). (2.10)

In other words, a small number of vectors from Ψ can provide accurate approxima-

tions to x.

2.2.2 Incoherent Sampling

In CS, the K-largest θi in (2.3) are not measured directly. Instead, M ≪ N

projections of the vector x with a collection of vectors {φj}Mj=1 are measured as in

yj = 〈x, φj〉. Arranging the measurement vector φTj as rows in an M ×N matrix Φ

and using (2.3), the measurement process can be written as

y = Φx = ΦΨθ = Θθ, (2.11)

where y is an M×1 column vector of the compressive measurements and Θ = ΦΨ is

the measurement matrix or the sensing matrix. Given an M ×N sensing matrix Θ,

the first question is to determine whether Θ is good for compressive sensing. Candes
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and Tao introduced a necessary condition on Θ that guarantees a stable solution for

both K-sparse and compressible signals [17], [25].

Definition 2.2.1. A matrix Θ is said to satisfy the RIP of order K with constants

δK ∈ (0, 1) if

(1 − δK) ‖ v ‖2
2≤‖ Θv ‖2

2≤ (1 + δK) ‖ v ‖2
2 (2.12)

for any v such that ‖ v ‖0≤ K.

An equivalent description of RIP is to say that all subsets of K columns taken

from Θ are nearly orthogonal. This in turn implies that K-sparse vectors cannot be

in the null space of Θ. When RIP holds, Θ approximately preserves the Euclidean

length of K-sparse vectors. That is,

(1 − δ2K) ‖ v1 − v2 ‖2
2≤‖ Θv1 − Θv2 ‖2

2≤ (1 + δ2K) ‖ v1 − v2 ‖2
2 (2.13)

holds for all K-sparse vectors v1 and v2. A related condition known as incoherence,

requires that the rows of Φ can not sparsely represent the columns of Ψ and vice

versa.

Definition 2.2.2. The coherence between Φ and the representation basis Ψ is

µ(Φ,Ψ) =
√
N max

1≤i,j≤N
| 〈φi, ψj〉 |, (2.14)

where φi ∈ Φ and ψj ∈ Ψ. The number µ measures how much two vectors in

Θ = ΦΨ can look alike. The value of µ is between 1 and
√
N . We say that a matrix

Θ is incoherent when µ is very small.

The incoherence holds for many pairs of bases. For example, it holds for the

delta spikes and the Fourier bases. Surprisingly, with high probability, incoher-

ence holds between any arbitrary basis and a random matrix such as Gaussian or

Bernoulli [19], [26].

2.2.3 Recovery

Since, M ≪ N , we have an underdetermined system of linear equations, which

in general has infinitely many solutions. So our problem is ill-posed. If one desires
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to narrow the choice to a well-defined solution, additional constraints are needed.

One approach is to find a minimum-norm solution by minimizing the following

optimization problem

θ̂ = arg min
θ′∈RN

‖ θ′ ‖2 subject to y = Θθ′. (2.15)

The solution to the above problem is explicitly given by

θ̂ = Θ†y = Θ∗(ΘΘ∗)−1y, (2.16)

where Θ∗ is the adjoint of Θ. This solution, however, yields a non-sparse vector.

The approach taken in CS is to instead find the sparsest solution.

The problem of finding the sparsest solution can be reformulated as finding a

vector θ ∈ R
N with a minimum possible number of nonzero entries. That is

θ̂ = arg min
θ′∈RN

‖ θ′ ‖0 subject to y = Θθ′. (2.17)

This problem can recover a K-sparse signal exactly. However, this is an NP-hard

problem [19]. It requires an exhaustive search of all
(
N
K

)
possible locations of the

nonzero entries in θ.

The main approach taken in CS is to minimize the ℓ1 norm instead

θ̂ = arg min
θ′∈RN

‖ θ′ ‖1 subject to y = Θθ′. (2.18)

Surprisingly, the ℓ1 minimization yields the same result as the ℓ0 minimization in

many cases of practical interest. This program also approximates compressible sig-

nals. This convex optimization program is often known as Basis Pursuit (BP) [27].

The use of ℓ1 minimization for signal restoration was initially observed by engineers

working in seismic exploration as early as 1970s [21]. In last few years, a series

of papers [6], [26], [28], [29], [24], [30], explained why ℓ1 minimization can recover

sparse signals in various practical setups.

2.2.3.1 Robust CS

In this section we examine the case when there are noisy observations of the

following form

y = Θθ + η (2.19)
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where η ∈ R
M is the measurement noise or an error term. Note that η can be

stochastic or deterministic. Furthermore, let’s assume that ‖η‖2 ≤ ε. Then, x can

be recovered from y via θ by solving the following problem

θ̂ = arg min
θ′∈RN

‖ θ′ ‖1 subject to ‖ y − Θθ′ ‖≤ ε. (2.20)

The problem (2.20) is often known as Basis Pursuit DeNoising (BPDN) [27]. In

[30], Candes at. el. showed that the solution to (2.20) recovers an unknown sparse

signal with an error at most proportional to the noise level.

Theorem 2.2.1. [30] Let Θ satisfy RIP of order 4K with δ3K + 3δ4K < 2. Then,

for any K sparse signal θ and any perturbation η with ‖η‖2 ≤ ε, the solution θ̂ to

(2.20) obeys

‖ θ̂ − θ ‖2≤ εCK

with a well behaved constant CK.

Note that for K obeying the condition of the theorem, the reconstruction from

noiseless data is exact. A similar result also holds for stable recovery from imperfect

measurements for approximately sparse signals (i.e compressible signals).

Theorem 2.2.2. [30] Let Θ satisfy RIP of order 4K. Suppose that θ is an arbitrary

vector in R
N and let θK be the truncated vector corresponding to the K largest values

of θ in magnitude. Under the hypothesis of Theorem 2.2.1, the solution θ̂ to (2.20)

obeys

‖ θ̂ − θ ‖2≤ εC1,K + C2,K
‖ θ − θK ‖1√

K

with well behaved constants C1,K and C2,K.

If θ obeys (3.5), then

‖ θ̂ − θK ‖1√
K

≤ C ′K−(s− 1

2
). (2.21)

So in this case

‖ θ̂ − θK ‖2 ≤ C ′′K−(s− 1

2
),
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and for signal obeying (3.5), there are fundamentally no better estimates available.

This, in turn, means that with only M measurements, we can achieve an approx-

imation error which is almost as good as that one obtains by knowing everything

about the signal θ and selecting its K-largest elements [30].

2.2.3.2 The Dantzig selector

In (2.19), if the noise is assumed to be Gaussian with mean zero and variance

σ2, η ∼ N (0, σ2), then the stable recovery of the reflectivity field is also possible by

solving a modified optimization problem

θ̂ = arg min
θ′

‖ θ′ ‖1 s. t. ‖ ΘT (y − Θθ′) ‖∞≤ ε′ (2.22)

where ε′ = λNσ for some λN > 0 and ‖.‖∞ denotes the ℓ∞ norm. The above program

is known as the Dantzig Selector [31].

Theorem 2.2.3. [31] Suppose θ ∈ R
N is any K−sparse vector obeying δ2K +

ϑK,2K < 1. Choose λN =
√

2 log(N) in (2.22). Then, with a high probability,

the solution to (2.22), θ̂ obeys

‖θ̂ − θ‖2
2 ≤ C2

1 .(2 log(N)).K.σ2, (2.23)

with

C1 =
4

1 − δK − ϑK,2K
,

where ϑK,2K is the K, 2K-restricted orthogonal constant defined as follows

Definition 2.2.3. The K,K ′-restricted orthogonality constant ϑK,K′ for K +K ′ ≤
N is defined to be the smallest quantity such that

|〈ΘTv,ΘT ′v′〉| ≤ ϑK,K′‖v‖2‖v′‖2 (2.24)

holds for all disjoint sets T, T ′ ⊆ {1, ..., N} of cardinality |T | ≤ K and |T ′| ≤ K ′.

A similar result also exists for compressible signals (see [31] for more details).

The ℓ1 minimization problem (2.22) is a linear program [31] while (2.20) is

a second-order cone program (SOCP) [27], which can can be solved using interior
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point methods [32]. Log-barrier and primal dual methods can also be used [33],

[34] to solve SOCPs. Note, the optimization problems (2.18), (2.20), and (2.22)

minimize convex functionals, hence a global minimum is guaranteed.

In the following sections, we describe other CS related reconstruction algo-

rithms.

2.2.3.3 Iterative thresholding algorithms

A Lagrangian formulation of the problem (2.20) is the following

θ̂ = arg min
θ′

‖y − Θθ′‖2
2 + λ‖θ′‖1. (2.25)

There exists a mapping between λ from (2.25) and ε from (2.20) so that both

problems (2.20) and (2.25) are equivalent. Several authors have proposed to solve

(2.25) iteratively [35], [36], [37], [38]. This algorithm iteratively performs a soft-

thresholding to decrease the ℓ1 norm of the coefficients θ and a gradient descent to

decrease the value of ‖y − Θθ‖2
2. The following iteration is usually used

yn+1 = Tλ(y
n + Θ∗(θ − Θyn)), (2.26)

where Tλ is the element wise soft-thresholding operator

Tλ(α) =






α+ λ
2
, if α ≤ −λ

2

0, if |α| < λ
2

α− λ
2
, if α ≥ λ

2
.

(2.27)

The iterates yn+1 converge to the solution of (2.20), θ̂ if ‖Θ‖2 < 1 [36]. Similar

results can also be obtained using hard-thresholding instead of the soft-thresholding

methods described in (2.26) [37].

Other methods for solving (2.25) have also been proposed. See for instance

GPSR [39], SPGL1 [40], Bregman iterations [41], split Bregman iterations [42],

SpaRSA [43], and references therein.
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2.2.3.4 Greedy Pursuits

In certain conditions, greedy algorithms such as matching pursuit [44], orthog-

onal matching pursuit [45], [46], gradient pursuits [47], and stagewise orthogonal

matching pursuit [48] can also be used to recover sparse (or in some cases compress-

ible) θ from (2.19). In particular, a greedy algorithm known as, CoSaMP, is well

supported by theoretical analysis and provides the same guarantees as some of the

optimization based approaches [49].

2.2.3.5 Other algorithms

Recently, there has been a great interest in using ℓp minimization with p < 1

for compressive sensing [50]. It has been observed that the minimization of such

a nonconvex problem leads to recovery of signals that are much less sparse than

required by the traditional methods [50]. Other related algorithms such as FOCUSS

and reweighted ℓ1 have also been proposed in [51] and [52].

2.2.4 Sensing Matrices

Most of the sensing matrices in CS are produced by taking i.i.d. random vari-

ables with some given probability distribution and then normalizing their columns.

These matrices are guaranteed to perform well with high probability. In what fol-

lows, we present some commonly used sensing matrices in CS [30], [26], [17].

• Random matrices with i.i.d. entries: Consider a matrix Θ with entries drawn

independently from the Gaussian probability distribution with mean zero and

variance 1/M . Then the conditions for Theorem 2.2.1 hold with a high prob-

ability when

K ≤ CM/ log(N/M).

• Fourier ensemble: Let Θ be an M×N matrix obtained by selectingM rows, at

random, from the N ×N discrete Fourier transform matrix and renormalizing

the columns. Then with a high probability, the conditions for Theorem 2.2.1
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Figure 2.2: 1D sparse signal recovery example from random Gaussian measurements.

(a) Compressive measurement matrix. (b) Original sparse signal. (c) Compressive

measurements. (d) ℓ1 recovery. (e) ℓ2 recovery. (f) ℓ1 reconstruction error. (g) ℓ2

reconstruction error.
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(a)

(b) (c)

(d) (e)

Figure 2.3: 2D sparse image recovery example from random Fourier measurements.

(a) Original image. (b) Original image contaminated by additive white Gaussian

noise with signal-to-noise ratio of 20 dB. (c) Sampling mask in the Fourier domain.

(d) ℓ2 recovery. (e) ℓ1 recovery.
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holds provided that

K ≤ C
M

(log(N))6
.

• General orthogonal ensembles: Suppose Θ is obtained by selecting M rows

from an N ×N orthonormal matrix Ξ and renormalizing the columns. If the

rows are selected at random, then the conditions for Theorem 2.2.1 hold with

a high probability when

K ≤ C
1

µ2

M

(log(N))6
,

where µ is defined in (2.14).

2.2.5 Numerical Examples

We end this section by considering the following two examples. In the first

example, a 1D signal x of length 200 with only 10 nonzero elements is undersampled

using a random Gaussian matrix A of size 50 × 200 as shown in Fig. 2.2(a). Here,

the sparsifying transform is simply the identity and the observation vector y is of

length 50. Having observed y and knowing A the signal x is then recovered by

solving the following optimization problem

x̂ = arg min
x′∈RN

‖ x′ ‖1 subject to y = Ax′. (2.28)

As can be seen from Fig. 2.2(d), indeed the solution to the above optimization

problem recovers the sparse signal exactly from highly undersampled observations.

Whereas, the minimum norm solution (i.e. by minimizing the ℓ2 norm), as shown

in Fig. 2.2(e), fails to recover the sparse signal. The errors corresponding the ℓ1 and

ℓ2 recovery are shown in Fig. 2.2(f) and Fig. 2.2(g), respectively.

In the second example, we reconstructed an undersampled Shepp-Logan phan-

tom image of size 128 × 128 in the presence of additive white Gaussian noise with

signal-to-noise ratio of 30 dB. For this example, we used Haar wavelets as a spar-

sifying transform. So the observations can be written as y = MFΨx0 + η, where

y,M,F,Ψ,x0 and η are the noisy compressive measurements, the restriction opera-

tor, Fourier transform operator, the Haar transform operator, the sparse coefficients
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vector and the noise vector with ‖η‖2 ≤ ε, respectively. The image was reconstructed

via x0 by solving the following optimization problem

x̂0 = arg min
x0

′∈RN
‖ x′

0
‖1 subject to ‖y − MFΨx0

′‖ ≤ ε. (2.29)

For this example, we used only 15% of the random Fourier measurements. The

reconstruction from ℓ2 and ℓ1 minimization is shown in Fig. 2.2(d) and Fig. 2.2(e),

respectively. This example shows that, it is possible to obtain a stable reconstruction

from the compressive measurements in the presence of noise. For both of the above

examples we used SPGL1 [40] algorithm.

In [7], [6], a theoretical bound on the number of samples that need to be

measured for a good reconstruction has been derived. However, it has been observed

by many researchers [53], [30], [26], [24], [17] that in practice samples in the order of

two to five times the number of sparse coefficients suffice for a good reconstruction.

Our experiments also support this claim.

2.3 SAR Imaging

In this section, we give a brief background on SAR and formulate a discrete

observation model for the spotlight mode SAR [54], [55], [56], [57].

2.3.1 Introduction to SAR

Synthetic Aperture Radar (SAR) is a radar imaging modality that is capable

of producing high resolution images of the stationary surface targets and terrain.

The main advantages of SAR imaging are its ability to operate at night and in ad-

verse weather conditions, hence overcoming limitations of both optical and infrared

systems. The basic idea of SAR is as follows: as the radar moves along its path,

it transmits pulses at microwave frequencies at an uniform pulse repetition interval

(PRI) which is defined as 1/PRF, where PRF is the pulse repetition frequency. The

reflected energy at any instant can be modelled as a convolution of the pulse wave-

form with the ground reflectivity function . Each received pulse is pre-processed
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and passed on to an image formation processor. The image formation processor

produces an image that is a two dimensional mapping of the illuminated scene [58]

(i.e. the reflectivity function) [58]. A depiction of the SAR image formation process

is shown in Fig. 2.4.

Figure 2.4: Spotlight SAR data collection in 2D.

The two dimensional image formed is interpreted in the dimensions of range

and cross-range or azimuth. The range is the direction of signal propagation and the

cross-range is the direction parallel to the flight path. Sometimes the range and the

cross-range samples are referred to as fast-time and slow-time samples, respectively.

2.3.1.1 Resolution

In order to compare the effects of each type of processing, in this section we

define the notion of resolution. The resolution in either dimension of a system is

defined as the minimum separation of two target responses that can be distinguished

or resolved as separate by the system [59], [60]. The range resolution, δr, for SAR

depends on an effective transmitted pulse length or on a signal bandwidth. It is
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given by [59]

δr =
c

2β
, (2.30)

where β is the signal bandwidth and c is the speed of light. In a real beam radar,

as shown in Fig. 2.5(a), the cross-range resolution is approximated by [61]

δrcr ≈
kλR

D
, (2.31)

where λ,D and R are the radar wavelength, the width of the radar antenna, and

the range to a target scene, respectively and k depends on the antenna design. For

ideal aperture, k is usually 0.89 [61]. We will assume that k is approximately equal

to one and ignore it in subsequent calculations. The cross-range resolution given

by (2.31) is not practical for imaging purposes. To see this, let us consider the

following parameters. If λ = 0.02 m (x band radar), D = 1.5 m, R = 150 km, then

δrcr = 2000 m. This resolution is too coarse for imaging purposes.

(a) (b)

Figure 2.5: (a) Real beam radar. (b) Synthetic aperture radar.

On the other hand, SAR achieves the fine cross-range resolution by synthesiz-

ing the effect of a large antenna using multiple observations from a small antenna.

Consider the synthetic aperture setup shown in Figure 2.5(b). The corss-range

resolution for a synthetic aperture of length L is given by [59]

δSARcr ≈ λR

2L
=

λR

2vTa
, (2.32)

where v is the sensor velocity and Ta is the aperture time. In comparison with the

real beam radar, for L = 7 km, the cross-range resolution for a SAR using the same

parameters as before is given by δSARcr = 0.21 m.
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2.3.1.2 SAR modes

(a) (b)

Figure 2.6: SAR modes. (a) Spotlight (b) ISAR

There are four common modes of SAR: scan, stripmap, spotlight and inverse

SAR (ISAR). In this dissertation, we will mainly focus on the spotlight mode SAR

and ISAR. In spotlight mode SAR, as shown in Fig. 2.6(a), the radar sensor steers

its antenna beam to continuously illuminate the terrain patch being imaged. It can

provide higher resolution than the stripmap and scan mode SAR because it maps a

scene at multiple viewing angles during a single pass [58]. In ISAR, Fig. 2.6(b), the

radar is stationary and the target is moving. The angular motion of the target with

respect to the radar can be used to form an image of the target. Differential Doppler

shifts of adjacent scatters on a target are observed and the target’s reflectivity

function is obtained through the Doppler frequency spectrum [62].

2.3.1.3 PRF Constraints

The PRF determines to what extent the observed ranges and doppler frequen-

cies will be (un)ambiguous [59], [61], [63]. If the PRF is too high then, an echo from

a distant target may return after the transmitter has transmitted another pulse. In

this case, the radar will be unable to distinguish between pulses, because it would

be impossible to determine whether the returned pulse is the echo of the pulse just

transmitted or the echo of the preceding pulse. This situation is referred to as range

ambiguity.
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The roundtrip travel time of the transmitted and reflected back from a target

located at range R is given by 2R
c

, where c is the speed of light. Since most radars

can not simultaneously transmit and receive, the radar must wait for the trailing

edge of the returned pulse to be received before it can transmit again. For a point

target, the required minimum PRI for range unambiguous processing is given by

[59], [63]

PRImin =
2R

c
+ T, (2.33)

where T is the transmitted pulse length. In many cases, T is very small compared

with 2R
c

. So the minimum PRI can be approximated by 2R
c

. Hence, the maximum

PRF for unambiguous range is

PRFmax =
c

2R
. (2.34)

A second constraint on the PRF is due to the Doppler bandwidth. The PRF

must equal or exceed the maximum Doppler shift of the echo signals. The lower

limit on the PRF is [59], [63]

PRFmin =
2v

D
, (2.35)

where D is the radar antenna length and v is the radar platform velocity. Hence,

the PRF is constrained by the following inequality

2v

D
≤ PRF ≤ c

2R
. (2.36)

2.3.1.4 Spotlight Mode SAR Phase Histories

In this section, we give a brief description of the tomographic formulation of the

spotlight-mode SAR [54], [55], [56], [57]. The ground plane geometry in spotlight-

mode SAR is shown in Fig. 2.3.1.4. The radar, which transverses the flight path,

continuously points in the direction of a ground patch. At locations corresponding

to each increments of θ, high-bandwidth pulses are transmitted. The returns from

the ground patch are received and processed to image the reflectivity profile g(x, y)

[54].
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Figure 2.7: Ground plane geometry in spotlight mode SAR.

A radar can transmit linear FM (LFM) chirp pulses described mathematically

as the real part of

s(t) =






ej(ω0t+αt2), | t |≤ T
2

0, otherwise

(2.37)

where ω0, 2α and T are the carrier frequency, the chirp rate and the pulse length,

respectively. The return signal from a differential area centered on the point (x0, y0)

at a distance R0 from the radar will be

p(t) = |g(x0, y0)| cos

[
ω0

(
t− 2R0

c

)
+ α

(
t− 2R0

c

)2

+ ∠g(x0, y0)

]
dx dy (2.38)

= Re

{
g(x0, y0)s

(
t− 2R0

c

)}
dx dy (2.39)

where ∠g denotes the phase of g, c is the speed of light, Re{g} denotes the real part

of g and 2R0

c
denotes the two way travel time from radar to target. Also, we have

neglected the propagation attenuation. Now let’s consider points on the ground

patch that are equidistant from the radar. These points lie on an arc. Since R ≫ L,
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this arc can be approximated as a straight line (see Fig. 2.3.1.4) [54]. Let qθ(u) be

the line integral given by

qθ(u) =

∫ ∫

D

δ(u− x cos(θ) − y sin(θ))g(x, y)dx dy (2.40)

where D = {(x, y)|x2 + y2 ≤ L2}. This line integral represents a sum of reflectivities

at distance R + u to the radar at an angle θ. Using (2.40), and by superposition,

the return signal from a differential line of scatterers normal to u axis at u = u0 is

given by

p1(t) = Re

{
qθ(u0)s

(
t− 2(R + u0)

c

)}
du. (2.41)

So, the return from the entire ground patch can be approximated by

p̃θ(t) = Re

{∫ L

−L

qθ(u)s

(
t− 2(R + u)

c

)
du

}
. (2.42)

Using (2.37), (2.42) can be rewritten as

p̃θ(t) = Re

{∫ L

−L

qθ(u) exp

{
j

(
ω0

(
t− 2(R + u)

c

)
+ α

(
t− 2(R + u)

c

)2
)}

du

}

(2.43)

where

t ∈
[−T

2
+

2(R + L)

c
,
T

2
+

2(R− L)

c

]
.

Mixing p̃θ(t) with the reference chirp signal

exp
[
−j(ω0(t− τ0) + α(t− τ0)

2)
]

where τ0 = 2R
c

and low pass filtering gives [54]

p̂θ(t) =

∫ L

−L

qθ(u) exp

{
j
4αu2

c2

}
exp

{
−j 2

c
(ω0 + 2α(t− τ0))u

}
du. (2.44)

We will assume that the quadratic phase term {j 4αu2

c2
} in (2.44), known as the

Residual Video Phase (RVP), is negligible and can be ignored [54]. In cases when

the RVP is significant, a pre-processing procedure known as diskewing can be applied

to remove this phase effect [58]. Also, we will assume that τ0 is known. In practice,

autofocus techniques are applied when τ0 is partially known. The observed signal

after these approximations and assumptions is given by
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Figure 2.8: Approximation of arcs by straight lines.

rθ(t) =

∫ L

−L

qθ(u) exp

{
−j 2

c
(ω0 + 2α(t− τ0))u

}
du. (2.45)

Let Ω(t) = 2
c
(ω0 + 2α(t− τ0)), then (2.45) can be written as

rθ(t) =

∫ L

−L

qθ(u) exp

{
−j 2

c
Ω(t)u

}
du. (2.46)

rθ(t) can be identified as a 1D Fourier transform of the projection qθ(u). Substituting

(2.40) into (2.46) gives

rθ(t) =

∫ L

−L

∫ ∫

D

δ(u− x cos(θ) − y sin(θ))g(x, y) exp {−jΩ(t)u} dx dy du

=

∫ ∫

D

g(x, y) exp {−jΩ(t)[x cos(θ) + y sin(θ)]} dx dy. (2.47)

Hence, rθ(t) can be viewed as a bandlimited slice at θ from the 2D Fourier transform

of the field g(x, y). Taking advantage of a formulation of (2.47) that re-expresses

rθ(t) as (Aθg(x, y))(t), where Aθ is the continuous observation kernel, we can setup

a matrix-based formulation of the imaging acquisition problem [57], [56]. Let rθi
(tj)

be the fast-time samples at the ith observation angle θi at times tj of the continuous

observation rθi
(t). Let rθi

be the vector of these samples and Aθi
be a discretized
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approximation to the kernel Aθi
and g be a lexicographically ordered vector of

unknown sampled reflectivity field of length Ñ2. Then, one can write





rθ1

rθ2
...

rθP




=





Aθ1

Aθ2

...

AθP




g (2.48)

or r = Ag, where r = [rθ1 , ..., rθP
]T , A = [Aθ1 , ...,AθP

]T , P is the total number of

slow-time samples used to form the image, and A is of size P 2 × Ñ2. For the sake

of simplicity, we will assume that the number of phase histories and the number of

samples per phase history are the same. The collection of phase histories, r, defines

a set of samples in the Fourier space of the scene on an annular region, as shown

in Figure 2.9. Since this system relates the reflectivity profiles to the measurements

directly, polar to rectangular sampling is not required [64]. Assuming the presence of

additive measurement noise η, the discrete SAR observation model can be expressed

as [57], [64]

r = Ag + η. (2.49)

Having observed r and knowing A, the objective is to recover the complex reflectivity

field g. In the following section, we briefly describe some of the commonly used

spotlight-mode SAR image formation algorithms.

2.3.1.5 SAR image formation methods

2.3.1.6 Polar Format Algorithm

As discussed earlier, in spotlight-mode SAR, the collection of phase histories, r

provides a set of samples in the Fourier sapce of the scene on a polar wedge. In Polar

Format Algorithm (PFA), the collection of phase histories is first interpolated to a

Cartesian grid. Then a window such as Hamming or Hanning is applied to control

the sidelobes. Finally, a 2D inverse Fourier transform is applied and the magnitude

of the image is displayed for viewing [58]. PFA is one of the most commonly used
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Figure 2.9: Graphical representation of the phase histories on a Polar wedge.

algorithms for SAR image formation.

2.3.1.7 Filtered Backprojection Algorithm

Another popular spotlight-mode SAR image reconstruction method, based on

the tomographic formulation of SAR [54], is the Filtered Backprojection algorithm

(FBPA) [65]. In this method, each radial slice in the Fourier space is considered as

the 1D Fourier transform of the projection of the field at the corresponding angle.

The procedure is based on two steps. The first is the filtering of the projections and

the second is called backprojection.

2.3.1.8 Reconstruction Methods based on Regulariztion

In [66], iterative reweighted methods such as FOCUSS [51] were applied for

SAR image formation. It was argued that such methods can provide reconstructions

with reduced clutter, enhanced prominent scatterers and reduced speckle compared

to images formed by traditional Fourier methods.

In [57], an estimation theoretic technique based on ℓ1-norm regularization was

presented to obtain the sparse estimate of the reflectivity field. It was shown by
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examples that such a method can provide SAR images with reduced sidelobes and

improved resolution.

A regularized ℓp-norm based feature enhanced SAR image formation method

was proposed in [64], [56]. Extensions of half-quadratic regularization methods

[67], [68] were used to minimize non-quadratic functionals. The following benefits

were claimed for such regularization based method: sidelobe reduction, increased

resolution, ease of region segmentation, and speckle suppression.

2.3.1.9 Other Algorithms

Algorithms such as range migration and chirp scaling can also be used for the

spotlight-mode SAR image reconstruction [58]. Spectral estimation based methods

have also been proposed for SAR image estimation [69].

2.3.2 An Example

In this section, we provide an example of SAR image formation of point scat-

terers using the PFA. The parameters used in our simulation are summarized in

Table 2.1. In Fig. 2.10(a), we show the locations of the point targets used in our

simulation. In Fig. 2.10(b) and Fig. 2.10(c), we show the support of the data on

a polar wedge and the resulting k-space samples, respectively. The reconstructed

SAR image of the point scatterers by using the PFA is shown in Fig. 2.10(d).

Table 2.1: Parameters used in our simulation

Center frequency 3.80 × 109 Hz

Pulse width 1 × 10−6 sec

Bandwidth 1.34 × 108 Hz

Chirp rate 1.34 × 1014 Hz/sec

∆θ 2.1◦
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Figure 2.10: (a) Point targets. (b) Corresponding phase histories on a polar wedge.

(c) Phase histories in the k-space. (d) Reconstructed image using the PFA.
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Chapter 3

Shearlet Approach to Deconvolution

3.1 Introduction

In image restoration, the goal is to best estimate an image that has been

degraded. Examples of image degradation include the blurring introduced by camera

motion as well as the noise introduced from the electronics of the system. In the

case when the degradations can be modelled as a convolution operation, the process

of recovering the original image from the degraded blurred image is commonly called

deconvolution. The process of deconvolution is known to be an ill-posed problem.

Thus, to get a reasonable image estimate, a method of reducing/controlling noise

needs to be utilized.

Wavelets are popular for image representation and are used in a wide variety of

image processing applications such as compression, and image restoration [70], [71].

The main reason for wavelets’ success can be explained by their ability to sparsely

represent one-dimensional signals which are smooth away from point discontinuities.

By sparse representation, we mean that most of the signal’s energy can be captured

by a few of the transform coefficients. This is quantified by the decay rate of the

nonlinear approximation error. Indeed, it can be shown that the best nonlinear M -

term wavelet expansion (reconstruction from the M largest coefficients) for this type

of signal has the rate of decay that is the best achievable [72, 2]. It is understood

that, higher the decay rate, better the signal estimate from the noisy data will be

from that representation.

It is because of this optimality property of wavelet representations that wavelet-

based deconvolution routines have been proposed. However, wavelet representations

are actually not optimal for all types of images. Specifically, two dimension, if we

model images as piecewise smooth functions that are smooth away from a C2 edge1,

1C2 is the space of functions that are bounded and 2-times continuously differentiable.
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the standard 2D wavelets do not reach the best possible rate. In particular, the

approximation error for a wavelet representation decays as O(M−1) as M increases

[2]. As a result, denoising estimates based on 2D wavelets tend to have small un-

wanted artifacts and complex decision metrics or schemes need to be utilized to try

to improve the quality of the estimate. Multi-directional representations such as

shearlets [73, 3] provide nearly the optimal approximation rate for these types of

images (the optimal rate being O(M−2) as M increases [74]) and the corresponding

denoising estimates do not suffer from the same types of artifacts [75]. Although

related transforms such as contourlets [76], [77], and curvelets [78], [16], [79] share

similar properties, in this work we utilize properties unique to an implementation

of the shearlet transform that offer advantages for the purpose of deconvolution.

The concept of using a sparse representation to achieve good estimates for de-

convolution has been suggested before (see for example [80] and [81]). However, par-

ticular features concerning implementations of such representations that contribute

to performance presented here have not been previously considered. Our shearlet-

based deconvolution has the unique ability for a multi-scale and anisotropic regu-

larization inversion to be done before noise suppression. Furthermore, for a given

regularization parameter its adaptive noise suppression surpasses similar schemes.

This is an important consideration since in some case it may not be possible to find

the optimal regularization parameter.

In the implementation stage, to deal with boundary effects, some concepts in

the literature have centered around the idea of noise shrinkage either before or after

the application of the deconvolution procedure (see [80] and [82]). However, to carry

out such schemes effectively, one needs a transform that can be implemented in a

non-recursive formulation as is done in this work with the shearlet transform. Oth-

erwise, error estimates made by one set of coefficients will highly influence estimates

made on a different but dependent set of coefficients. In addition, to be effective in

regularizing the approximate deconvolution process, a nonsubsampled (redundant)

transform should be utilized. This redundancy not only provides for more effective

measurements based on the use of auxiliary functions such the GCV function, but it
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also greatly aids in estimation [77, 1, 83, 84]. As will become apparent, these desired

features are obtained by using an M-channel shearlet transform implementation [10],

[4].

3.1.1 The Image Deconvolution Problem

Since a digitally recorded image is a finite discrete data set, an image de-

convolution problem is formulated as a matrix inversion problem. Without loss of

generality, assume the recorded arrays are of size N × N . Let γ denote an N × N

array of samples from a zero mean additive white Gaussian noise (AWGN) with

variance σ2. Given the N ×N arrays y and x, representing the observed image and

the image to be estimated, respectively, the matrix deconvolution problem can be

described as

y = Hx + γ, (3.1)

where y, x, and γ are N2 × 1 column vectors representing the arrays y, x, and

γ lexicographically ordered, and H is the N2 × N2 matrix that models the blur

operator. In the case when H is a block-circulant-circulant-block matrix [85], the

problem can be described as

y(n1, n2) = (x⊛ h)(n1, n2) + γ(n1, n2), (3.2)

where 0 ≤ n1, n2 ≤ N − 1, ⊛ denotes circular convolution, and h denotes the point

spread function (PSF) of a linear space-invariant system. Equation (3.2) in the

discrete Fourier transform (DFT) domain can be written as

Y (k1, k2) = H(k1, k2)X(k1, k2) + Γ(k1, k2), (3.3)

where Y (k1, k2),H(k1, k2), X(k1, k2) and Γ(k1, k2) are the 2D DFTs of y, h, x, and

γ, respectively, for −N/2 ≤ k1, k2 ≤ N/2 − 1. The conditioning of this system

is determined by the ratio of the largest to smallest magnitudes of the H values.

Typically, |H(k1, k2)| contains values at or near zero which makes the system ill-

conditioned.

36



In general, to regularize the inversion of the convolution operator, a repre-

sentation that diagonalizes the convolution operator (matrix) is needed in order to

appropriately control the approximation. In particular, if H is a block-circulant-

circulant block matrix, H is diagonalizable by a Fourier basis. This means that

an estimate of the image can be found by filtering the diagonal components of the

Fourier diagonalization of H in order to approximately invert H. For instance, let

Υ(k1, k2) be a filter that is nearly one whenH(k1, k2) is large, is small whenH(k1, k2)

is nearly zero, and such that Υ(k1, k2)H(k1, k2)
−1 is defined everywhere. Then, a

Fourier-based estimate can be given as Υ(k1, k2)H(k1, k2)
−1Y (k1, k2). This in turn

means that the image is estimated from a Fourier representation.

However, if our image is considered as a piecewise smooth function that is

smooth away from a C2 edge, then the decay rate of the nonlinear approximation

from a Fourier representation is O(M−1/2) as M increases. Yet, for this type of

image the decay rate of the nonlinear approximation from a wavelet representation is

O(M−1) as M increases. This means that estimating the image from the perspective

of removing noise, a wavelet based estimate would perform better than the one from

a Fourier basis. In short, the ability to get a good estimate depends on balancing

a representation that is effective for regularizing the inversion of the convolution

operator and a representation that is effective for estimating the image from colored

noise by means of the approximate inversion of the operator. (See [81] for further

discussion).

3.1.2 Historical Perspective

Deconvolution methods can be separated into two major categories: direct

and iterative.

Direct Methods. Some of these methods are based on filtering the singular

value decomposition (SVD) such as Tikhonov, truncated SVD (TSVD), and Wiener

filtering [86]. Increased performance of such direct methods can be attributed to the

inclusion of the wavelet-based estimators. One such technique called the Wavelet-

Vaguelette deconvolution (WVD) was proposed in [80]. In this work, functionals
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called vaguelettes are used to simultineously deconvolve and compute the wavelet

coefficients. However, the scheme does not provide good estimates for all convolution

operators. To overcome this limitation, Kalifa et al. proposed a wavelet packet based

method that matches the frequency behavior of certain convolution operators [87].

Additional wavelet-based techniques have been proposed in [82], [88], [89], and [90].

An improved hybrid wavelet-based regularized deconvolution algorithm that

works with any ill-conditioned convolution system was developed in [1]. This Fourier-

Wavelet Regularized Deconvolution (ForWaRD) method employs Fourier-domain

regularized inversion followed by wavelet-domain noise shrinkage to minimize the

distortion of spatially localized features in the image. An extension in terms of

curvelets, known as ForCuRD, was proposed in [91].

Iterative Methods. Some of the better-known basic iterative methods are the

Conjugate Gradient algorithm [86], Richardson-Lucy [92], [93], and Landweber [94].

Many extensions and improvements over these methods have been made that include

the use of wavelets, or other sparse representations such as curvelets. Some of these

are [95, 83, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105]. Additional techniques

may be found within these references. Note some of the these promising techniques

make use of one-norm transform-domain sparsity promotion. Such methods seem

to retain edge information well.

Among the direct methods, the local polynomial approximation (LPA) algo-

rithm [106] outperformed some of the best existing deconvolution methods such as

[1] and [107] in terms of improvement in signal-to-noise-ratio and was established

to be state-of-the-art. In this work, we will only focus on direct methods for com-

parison because some applications may desire direct methods, and also since some

of these iterative methods can use the estimates provided from such techniques as

the initial starting point.

3.2 Generalized Cross Validation (GCV) for Shearlet Thresholding

In this section, we describe a shearlet-thresholding scheme based on a GCV
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function for the purpose of noise reduction [108]. One of the major advantages of this

GCV method is that it obtains nearly the optimal thresholding without knowing the

noise variance. It depends only on the data and automatically adjusts the shrinkage

parameter according to the data. A similar GCV method for wavelet thresholding

has been proposed in [109, 110, 111]. Note that, although we are suggesting the use

of a GCV function, it is also possible to adapt the new SURE approach [112] for

this task.

Suppose

y = x + γ, (3.4)

where the vectors y, x and γ represent respectively the observation, the original

image and the colored noise that is assumed to be second order stationary (i.e.

the mean is constant and the correlation between two points depends only on the

distance between them). Corresponding to a threshold τ , define the soft-threshold

function Tτ (x) to be equal to x − τsign(x) if |x| > τ and zero otherwise. We will

show that nearly optimal threshold values τj,ℓ can be obtained by finding the values

minimizing a GCV function which is dependent on each scale j and direction ℓ.

Just as in the case of wavelets, to obtain results similar to those in [111],

it is not necessary for the shearlet coefficients to be uncorrelated at any moment;

however, it is necessary that the noise be second order stationary [110]. If the noise

process γ is stationary, then using the multi-scale and multi-directional structure of

shearlets, we obtain the following lemma.

Lemma 3.2.1. If 〈γ, ψj,ℓ,k〉 represents a shearlet coefficient of a random vector γ at

scale j, direction ℓ, and location k, then the variance of this coefficient, E [|〈γ, ψj,ℓ,k〉|2],
depends only on the scale j and direction ℓ.

Proof: It follows from the fact that we are using a filter bank with appropri-

ate directional filters and if γ is a discrete stationary random process which is an

input to a shift-invariant filter, gj,ℓ, corresponding to scale j and direction ℓ then

the output is a convolution of γ with gj,ℓ which is also stationary [113]. �
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By Lemma 3.2.1, the shearlet transform of stationary correlated noise is sta-

tionary within each scale and directional component. We can use this property to

choose a different threshold for each resolution and directional component. If yj,ℓ

represents the vector of shearlet coefficients of y at scale j and direction ℓ, then we

can write

R(τ) =
∑

j

∑

ℓ

Lj,ℓ
L
Rj,ℓ(τj,ℓ), (3.5)

where Lj,ℓ is the number of shearlet coefficients on scale j and direction ℓ, L is the

total number of shearlet coefficients, and

Rj,ℓ(τj,ℓ) =
1

Lj,ℓ
‖Tτ (yj,ℓ) − xj,ℓ‖2. (3.6)

Since, all the components in (3.5) are positive, minimizing the mean squared error or

risk function R(τ) is equivalent to minimizing Rj,ℓ(τj,ℓ) for all j and ℓ. An argument

similar to that used in [111] leads to the following GCV functions:

GCVj,ℓ(τj,ℓ) =

1
Lj,ℓ

‖ Tτ (yj,ℓ) − yj,ℓ ‖2

[
Lj,ℓ,0

Lj,ℓ

]2 , (3.7)

where Lj,ℓ,0 is the total number of shearlet coefficients that were replaced by zero.

We now have the following result:

Theorem 3.2.2. The minimizer of GCVj,ℓ(τj,ℓ) is asymptotically optimal for the

minimum risk threshold Rj,ℓ(τj,ℓ) for scale j and directional component ℓ.

Thus, by using the values τj,ℓ that minimize GCVj,ℓ for each j and ℓ, a shearlet-

based denoised estimate will likely be close to the ideal non-noise corrupted image.

An important feature about the use of our non-subsampled shearlet transform

implementation is that it facilitates the use of asymptotic methods such as those

based on GCV functions. A subsampled transform implementation would cause the

number of coefficients to decrease as the levels progress, so that thresholds found

by minimizing the individual GCV functions will be less likely to correspond to the

actual threshold values that minimize the risk functions for each frequency band.
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Figure 3.1: Fourier-shearlet regularized deconvolution.

3.3 Shearlet-based Deconvolution

Having established a method for obtaining a good image estimate when the

image is corrupted by colored noise, let us now focus on how we are to use this

method as part of a deconvolution routine. Since our blurring model is described by

(3.2), a suitable pseudo-inverse estimate can be found by regularizing the convolution

operator from a discrete Fourier basis. Using the regularized inverse operator

Hα(k1, k2) =
H(k1, k2)

| H(k1, k2) |2 +α
(3.8)

for some regularizing parameter α ∈ R+, an image estimate in the Fourier domain

is given by

Xα(k1, k2) = Y (k1, k2)Hα(k1, k2), (3.9)

for −N/2 ≤ k1, k2 ≤ N/2−1. This type of regularization applied is often referred to

as Tikhonov-regularization [114]. When an estimate of the power spectral density
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(PSD) can be accurately determined from a method such as that proposed in [115],

a Wiener-based solution can be found by using

Hα(k1, k2) =
H(k1, k2)

| H(k1, k2) |2 +α σ2

Px̂(k1,k2)

, (3.10)

where α ∈ R
+ and Px̂(k1, k2) is the estimated PSD of the image for −N/2 ≤ k1, k2 ≤

N/2 − 1.

Taking advantage of the shearlet decomposition, we can adaptively control

the regularization parameter to be the best suited of each frequency supported

trapezoidal region. Let Gj,ℓ denote the DFT of the shearlet filter gj,ℓ for a given

scale j and direction ℓ. The shearlet coefficients of an estimate of the image for a

given regularization parameter αj,ℓ can be computed in the Fourier domain as

Xαj,ℓ
(k1, k2) = Y (k1, k2)Gj,ℓ(k1, k2)Hαj,ℓ

(k1, k2) (3.11)

for −N/2 ≤ k1, k2 ≤ N/2 − 1.

The remaining aspect of the deconvolution problem is transformed into a de-

noising problem in the presence of colored noise. This can be dealt with by threshold-

ing the estimated shearlet coefficients using the GCV determined previously without

having to know the noise variance explicitly. An important advantage in using the

GCV is that after the Fourier regularized inversion (FRI), the method automatically

adjusts the shrinkage parameter according to the data. We summarize the shearlet

based deconvolution method in Figure 3.1.

Let X̂α denote the result of the inversion of the shearlet transform after the

shearlet coefficients of Xα have been thresholded. We want to choose an α that

minimizes the shearlet-based mean-squared-error (MSE) ‖x − x̂‖2
2. However, since

x is unknown, α is chosen to be a minimizer of the cost function

C(α) =
∑

k1

∑

k2

|H(k1,k2)|
|H(k1,k2)|2+η

∣∣∣H(k1, k1)X̂α(k1, k2) − Y (k1, k2)
∣∣∣
2

(3.12)

where η = N2σ2/‖y − µ(y)‖2
2, µ(y) is the mean of y, and the sum is taken over

all values of k1 and k2 from −N/2 to N/2 − 1 inclusive. In other words, we

choose α such that the estimate agrees with the observation y based on weighing
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|H(k1, k1)X̂α(k1, k2)−Y (k1, k2)|2 counter-balanced by an approximation to 1/H(k1, k2)

for each frequency index (k1, k2). This is just an extension (shearlet-based estimate

vs. wavelet-based estimate) of the cost function originally suggested in [1]. This

optimization function assumes the noise variance σ2 to be known. This is not a prob-

lem since the noise variance can easily be estimated by using a median estimator on

the finest scale of the wavelet coefficients of y [2], [71].

In this case, there is a great advantage in using the GCV for the shearlet

thresholding as the variance of the colored noise at each location and scale dependent

on α does not have to be estimated. In addition, a GCV-based thresholding routine

produces better results over schemes based on estimating the standard deviation of

the noise throughout the decomposition.

If we define Yj,ℓ(k1, k2) = Y (k1, k2)Gj,ℓ(k1, k2) for −N/2 ≤ k1, k2 ≤ N/2 − 1,

then the optimal αj,ℓ for each thresholded shearlet coefficient X̂αj,ℓ
can be found by

minimizing the cost function K(αj,ℓ) equal to

∑

k1

∑

k2

|H(k1,k2)|
|H(k1,k2)|2+η

∣∣∣H(k1, k1)X̂αj,ℓ
(k1, k2) − Yj,ℓ(k1, k2)

∣∣∣
2

, (3.13)

where η = N2σ2/‖yj,ℓ − µ(yj,ℓ)‖2
2 and yj,ℓ is the inverse DFT of Yj,ℓ.

The use of this optimization function to find α has been shown to be satis-

factory with many of the examples tested. The L-curve method could be adopted

to estimate α (see [86] for details on the method). This could prove to be more

reliable and does not require any estimate of the noise variance. It is also possible

to use the optimization function ‖Hx̂α − y‖2
2/(trace(I −HH̃α)) where H̃α denotes

the regularized Tikhonov inverse of H and I denotes the identity matrix. Such an

optimization function weighs the fidelity of the estimate x̂α against the given data

y and inversely weighs it against a measure of how far away the regularized inverse

operator is from an idealized inversion operator. This generalized cross validation

function can be derived by using similar arguments to that given in [108].

We summarize the main steps of the shearlet-based deconvolution algorithm

as follows:
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Shearlet-based Deconvolution Algorithm

Given αj,ℓ, for some j and ℓ.

• Use the shearlet filter Gj,ℓ and apply the regularized filter (3.9) or

(3.10) to Y to obtain Xαj,ℓ
.

• Apply the GCV based shearlet shrinkage to xαj,ℓ
to obtain x̂αj,ℓ

.

Repeat process for a different value of αj,ℓ until K(αj,ℓ) is minimized for

each j and ℓ.

After each shearlet coefficient x̂αj,ℓ
that minimizes K(αj,ℓ) is found, form

the final estimate by applying the inverse shearlet transform.

The values αj,ℓ that minimize K can be found by using either a sequence of

possible values or by using a minimization routine.

Although we have described the most general case of regularizing each shear-

let coefficient separately, in some cases for efficiency it may be preferred to use a

common regularization parameter α. In such a case, the algorithm is implemented

using the coast function C(α) instead of K(αj,ℓ).

3.4 Experimental Results

In this section, we present the results of our proposed algorithm and compare

them with some of the recent multiscale wavelet and wavelet-like deconvolution

methods described in [1, 106] and [91]2. In these experiments we use the improve-

ment in signal-to-noise-ratio (ISNR) to measure the performance of the routines

tested using the images shown in Figure 3.2. The ISNR is defined as

ISNR = 10 log10

(‖x− y‖2
2

‖x− x̂‖2
2

)
. (3.14)

2The implementation of the ForWaRD algorithm is available at www.dsp.rice.edu/software and

the implementation of the LPA-ICI algorithm is available at www.cs.tut.fi/∼lasip/2D.
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For an image of size m× n, the BSNR is defined in decibels as

BSNR = 10 log10

(‖(x⊛ h) − µ(x⊛ h)‖2
2

mnσ2

)
, (3.15)

where µ(x⊛ h) denotes the mean of x⊛ h.

(a) (b)

(c) (d)

Figure 3.2: Images used for different experiments. (a) Cameraman image, (b) Bar-

bara image, and (c) Lena image, (d) Peppers image.

For all shearlet transform implementations, we used 1, 8, 8, 16, and 16 direc-

tions in the scales from coarse to fine which corresponds to the same decomposition

tested in [3]. We apply the GCV based shrinkage to the outputs from each of the

48 filters except the output corresponding to the coarsest scale. Experiments have

45



shown that increasing the number of directions every scale usually results in better

estimates.

In the case when wavelets are used for image denoising, it was shown in [116]

that a Wiener-based wavelet shrinkage filter typically improves upon the mean

square error performance over that of hard/soft thresholding. By Wiener-based

shrinkage, we mean to weigh the wavelet coefficients wj,l as wj,l|w′

j,l|2/(|w
′

j,l|2 +βj,λ),

where w
′

j,l are the wavelet coefficients from another denoised estimate, and βj,λ

are scale-dependent regularization parameters. The performance of the proposed

method is improved by using a similar Wiener shrinkage filter. In this case, the

shearlet coefficients with a slightly different decomposition (three decomposition

levels) are filtered using the initial shearlet-based estimate. Several experiments

have shown that the final estimate is mostly driven by how successful the initial

estimate is, so that even the use of a wavelet decomposition instead of an alternate

shearlet decomposition can provide just as an effective estimate.

In the first set of tests, we consider the setup of [1], where a Cameraman image

is blurred by a 9× 9 uniform box-car blur. The AWGN variance, σ2, is chosen with

a BSNR of 40 dB. A comparison of different methods in terms of ISNR is shown

in Table 7.1 under the Experiment 1 column. The shearlet-based method yields a

value 7.89 dB which is better than the values obtained by any of the other methods.

In Figure 3.3, we display a few of the GCVj,ℓ and Rj,ℓ curves for different scales

and directions obtained from Experiment 1. In [1], after the Fourier shrinkage, the

leaked colored noise variance was estimated at each scale and was used to shrink

the wavelet coefficients. Similarly, we can estimate the colored noise variance, σj,ℓ,

at different scales and directions at the output of the shearlet filter bank as follows:

σ2
j,ℓ = σ2 ‖ Hαj,ℓ

(k1, k2)Gj,ℓ(k1, k2) ‖2
2

=
∑

k1

∑

k2

σ2|Hαj,ℓ
(k1, k2)Gj,ℓ(k1, k2)|2.

The threshold values λj,ℓ are determined by λj,ℓ = κj,ℓσj,ℓ, where κj,ℓ is a scale

and direction dependent threshold [1],[2]. For comparison, the estimated λj,ℓ are

plotted in Figure 3.4 along with the actual minimum values obtained by minimizing
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the GCVj,ℓ and Rj,ℓ functions for experiment 1. Figures 3.3 and 3.4 indicate that

both GCVj,ℓ and Rj,ℓ have approximately the same minimum values. However, in

some cases the estimated λj,ℓ values are very different than the values obtained by

minimizing the GCVj,ℓ and Rj,ℓ curves.
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Figure 3.3: Rj,ℓ and GCVj,ℓ as functions of the threshold τ for different scales and

directions from Experiment 1. Solid (blue) line corresponds to theGCVj,ℓ and dotted

(red) line corresponds to Rj,ℓ. (a) j = 2, ℓ = 13, (b) j = 1, ℓ = 4, (c) j = 3, ℓ = 6.

In Figure 3.5, we show the signal-to-noise-ratio (SNR) performance of the

shearlet-based deconvolution (black-line) compared to ForWaRD (dotted-line) and

ForCuRD (gray-line) as a function of blur SNR (BSNR). In this illustration, we

used the 9× 9 box-car blur on the Lena image shown in Figure 3.2(c). As explained

previously, an estimate based on a shearlet or curvelet decomposition decays faster

than that of an estimate based on a wavelet decomposition as a function of noise

level for images that are smooth away from C2 edges. Figure 3.5 displays a similar

correspondence in decay rates for the proposed shearlet-based deconvolution and the

ForCuRD scheme over the wavelet-based deconvolution scheme (ForWaRD). Since

the performance is measured in terms of SNR instead of MSE, it is expected that

shearlet and curvelet-based estimates will decay slower as a function of noise level

given in terms of BSNR.

In the second set of experiments performed over the Cameraman image, we

replicate the experimental setup of [107]. The point spread function of the blur

operator is given by: h(n1, n2) = (1 + n2
1 + n2

2)
−1, for n1, n2 = −7, ..., 7, and the
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Figure 3.4: Minimum values obtained by minimizing Rj,ℓ (black), and GCVj,ℓ (dot-

dash) values along with λ (gray) values obtained by the method described in [1], for

different scales and directions from Experiment 1. As can be seen from the figure,

minimum values of GCVj,ℓ are approximately equal to the minimum values of Rj,ℓ.

(a) At scale j = 1, there are 16 directions. (b) At scale j = 2, there are 16 directions.

(c) At scale j = 3, there are 8 directions. (d) At scale j = 4, there are 8 directions.
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Figure 3.5: SNR performance of ShearDec (black-line) compared to ForCuRD (gray-

line) and ForWaRD (dotted-line) as a function of BSNR.

noise variances are σ2 = 2 and σ2 = 8. The SNR improvements are summarized

in Table 7.1 under the Experiment 2 and Experiment 3 columns, for σ2 = 2 and

σ2 = 8, respectively. Again, the shearlet-based deconvolution algorithm outperforms

the other methods in terms of ISNR.

In the third set of tests, the original image of Lena is blurred by a Gaussian

PSF defined as

h(i, j) = Ke
− i2+j2

2η2 ,

Table 3.1: ISNR for different experiments.

Experiments

Methods 1 2 3 4 5 6

ShearDec 7.89 7.55 5.67 5.84 1.74 5.23

LPA-ICI 7.84 7.31 5.54 5.77 1.00 4.17

ForCuRD 7.28 6.84 5.09 5.66 1.03 4.53

ForWaRD 7.40 6.75 5.07 5.60 1.12 3.91
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for i, j = −5, ..., 5, where K is a normalizing constant ensuring that the blur is

of unit mass, and η2 is the variance that determines the severity of the blur. In

this experiment we chose η = 2 and the noise variance, σ2, with a BSNR of 40

dB. We report the simulation results under the Experiment 4 column of Table 7.1.

Again, our proposed method outperforms the best performing methods known for

this problem setup.

In the fifth experiment, we use the blur filter considered in [106]. The original

image of Barbara is blurred by a 5 × 5 separable filter with weights [1, 4, 6, 4, 1]/16

in both the horizontal and vertical directions and then contaminated with AWGN

with σ = 5. The details of the images obtained by the different methods are shown

in Figure 3.7. Again, the shearlet-based algorithm performs the best in terms of

ISNR and captures the details better than any of the other methods.

In light of the robustness to noise of the shearlet-based method showed in Fig-

ure 3.5, we replicated the set-up similar to that given in [1]. In this case, the Peppers

image is blurred by a 9× 9 uniform box-car blur and the AWGN added is such that

the BSNR=30 dB. We tested the ForWaRD method (ISNR = 3.91 dB), the For-

CuRD method (ISNR = 4.53 dB), the LPA-ICI method (ISNR = 4.17 dB), and the

shearlet-based method (ISNR = 5.23 dB) using the same regularization parame-

ter α (not necessarily optimal) for each routine (experiment 6). Close-ups of some

of the results are shown in Figure 3.9. The Fourier regularized inversion estimate

used in all three algorithms is shown in Figure 3.9 (c). This experiment presents

an important comparison in robustness to noise suppression and an indication of

the shearlet-based algorithm’s high default tolerance level when the regularization

parameter is not chosen optimally.

Plots of the validation functions C(α) and ‖Hx̂α− y‖2
2/(trace(I −HH̃α)) are

shown for various values of α in Figure 3.8. For comparison, a plot of ‖x̂α − x‖2
2 is

also given. In the experiment set up for this comparision, we used the Peppers image

blurred by a 9 × 9 uniform box-car blur and the AWGN added with corresponding
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(a) (b)

(c) (d)

Figure 3.6: Details of the image deconvolution experiment with a Barbara image.

(a) Original image. (b) Noisy blurred image, σ = 5 dB. (c) ForWaRD estimate,

ISNR = 1.12 dB. (d) ForCuRD estimate, ISNR= 1.03 dB.
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(e) (f)

Figure 3.7: Details of the image deconvolution experiment with a Barbara image.

(e) LPA-ICI algorithm, ISNR = 1.0 dB. (f) shearlet-based estimate, ISNR=1.74 dB.

2e−004 4e−004 6e−004 8e−004
0
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regularization α

Figure 3.8: Plots of ‖Hx̂α − y‖2
2/(trace(I − HH̃α)), C(α), and ‖x̂α − x‖2

2 for var-

ious values of α are displayed as a black line, a gray line, and a dash-dotted line,

respectively. The output values have been rescaled for illustration purposes. The

locations of their minimal value are marked with a circled ’X’.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.9: Details of the image deconvolution experiment with a Peppers image. (a)

Original image. (b) Noisy blurred image, BSNR=30 dB. (c) Regularized inversion

estimate, ISNR=-11.03 dB. (d) ForWaRD estimate based on result shown in (c),

ISNR= 3.91 dB. (e) LPA-ICI estimate based on result shown in (c), ISNR = 4.17

dB. (f) shearlet-based estimate based on result shown in (c), ISNR=5.23 dB.
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BSNR=40 dB. The results give an indication that the validation function

‖Hx̂α − y‖2
2

(trace(I −HH̃α))
(3.16)

can be just as effective as C(α) for finding estimates of the optimal α when the

standard deviation of the noise is not estimated.

3.5 Chapter Summary

We have studied an effective shearlet-based deconvolution algorithm which uti-

lizes the power of a Fourier representation to approximately invert the convolution

operator and a redundant shearlet representation to provide an image estimate.

The multi-scale and multi-directional aspects of the shearlet transform provide a

better estimation capability over that of the wavelet transform or wavelet-like trans-

forms for images exhibiting piecewise smooth edges. In addition, we have adapted

a method of automatically determining the threshold values for the shearlet noise

shrinkage without knowing the noise variance by using a generalized cross validation

function. Demonstrations show this method to outperform many of the state-of-the-

art methods that have been previously compared to the ForWaRD algorithm in the

literature.
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Chapter 4

Gradient-based Recovery Methods from Partial Fourier

Measurements

Several scanning technologies such as MRI and SAR will greatly benefit from

being able to reconstruct an image from a reduced sampling set. The theory of CS

points to new ways to reconstruct such images from highly undersampled data. In

this chapter, we study a reconstruction method that recovers images assumed to have

a sparse representation in a gradient domain by using partial measurement samples

that are collected in the Fourier domain. A key improvement of this technique is

that it makes use of a robust generalized Poisson solver that greatly aids in achieving

a significantly improved performance over similar proposed methods. Experiments

also demonstrate that this new technique is more flexible to work with either random

or restricted sampling scenarios better than its competitors [5].

4.1 Introduction

Reconstruction of imagery from an incomplete set of samples from a Fourier

representation is an important goal to improve scanning technologies. Solutions to

such a problem would allow a significant reduction in collection time and improve

the capacity to collect very time sensitive events. For example, an MRI scanner

records data in a Fourier representation so methods, capable of reconstructing from

such partial samples, would greatly reduce a patient’s exposure time.

Many MRI and SAR images are sparse or compressible in some transform

domain such as those from a wavelet, gradient or Fourier transform. Images such

as angiograms are inherently sparse in the pixel domain or gradient domain. For

instance, if the image is piecewise constant then a gradient representation would

only contain nonzero values near boundary positions.

Maleh et. al presented in [117] an improved recovery algorithm that can
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recover sparse gradient images from partial Fourier data using orthogonal matching

pursuit (OMP) [46]. It is known as the GradientOMP method. The GradientOMP

method, however, has some drawbacks. In many MRI data collection scenarios,

Fourier samples are collected along curves in Fourier space (k-space) and there is

usually no reason to discard any samples collected within such curves. This violates

GradientOMP’s working premise that the sampling set is the union of two radial

slices through the origin perpendicular to one another and randomly chosen points

in the plane. While this may be approriate for 3D MRI and 2D spectroscopy when

the image plane is perpendicular to the collection trajectories, a versitile method

should be able to recover imagery from 2D MRI data as well.

In this chapter, we present a new method that recovers images that can be

sparsely represented by gradients using highly undersampled Fourier measurements.

This new method is less restrictive on sampling constraints than the GradientOMP

and is more robust in the estimation process. A key element in the improvement

is that besides using a different/better nonlinear estimator to estimate the gradient

field, we solve a generalized Poisson equation to obtain the estimated image. Such

a Poisson based solution [118][119] is much more robust to imperfections in the

estimate of the gradients and does not require any constraint on the type of data

collections that can be made.

4.2 Background

Let x ∈ C
l×l and Ω be some randomly chosen set of frequencies of size |Ω| = M

and WΩ : C
l×l → C

M to denote the partial Fourier transform operator restricted to

Ω. Define the total-variation (TV) operator as

TV (x)n,m =
√

|p(n,m)|2 + |q(n,m)|2 (4.1)

where p and q are the discrete gradients of an image x, i.e.

p(n,m) = x(n,m+ 1) − x(n,m) (4.2)
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and

q(n,m) = x(n+ 1,m) − x(n,m) (4.3)

for 0 ≤ m,n ≤ l − 1. Given the assumption that x has sparse gradients; that is

‖ TV (x) ‖0= K ≪ N = l2, and Y = WΩx ∈ C
M (representing the partial Fourier

measurements of x), the general problem is to estimate x. It was shown in [7]

that for an overwhelming percentage of sets Ω with cardinality obeying |Ω| = M ≥
AK log(N), the minimizer to

xrec = arg min
x′∈CN

‖ TV (x′) ‖1 s. t. WΩx
′ = WΩx (4.4)

is unique and recovers x, where A is some constant.
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Figure 4.1: The magnitude of TV (red), p (dotted blue) and q (cyan) coefficients in

decreasing order for the Shepp-Logan Phantom image (see Figure 4.2(a)).

In this chapter, we show that instead of reconstructing an image by the TV

minimization, one can reconstruct the image by separately reconstructing the gradi-
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ents and then solving for the image. This allows one to reconstruct the image with

a far fewer number of measurements than required by the TV minimization method

(see Figure 4.2). Figure 4.1 presents an important comparison in the sparsity of p, q

and the TV measure. The plots of the sorted absolute values of the coefficients of

the gradients p,q and the TV measure for the Shepp-Logan Phantom image indicate

that p and q decay much faster than the TV measure. In fact, it is easy to see from

the expression of TV , (4.1), that the coefficients of p and q will always decay faster

than the coefficients of TV. This means our method can take advantage of this and

be able to reconstruct an image with far fewer measurements than that required by

using the TV -based method. Note the assumption that the image of interest has

sparse gradients with the use of the TV constraint for estimation has been suggested

before [7], [53], [120], [121].

4.3 Image Gradient Estimation

By using the properties of the Fourier transform, we can directly express the

partial gradients P = WΩp and Q = WΩq, in the Fourier domain from Y = WΩx as

P = (e
j2πk2

l − 1)Y and Q = (e
j2πk1

l − 1)Y, (4.5)

where (k1, k2) ∈ Ω. Taking into account the presence of additive noise during the

measurement process, gradients can be reconstructed by solving the following two

constrained optimization problems

prec = arg min
p′

‖ p′ ‖1 s. t. ‖ WΩp
′ − P ‖2≤ ε (4.6)

qrec = arg min
q′

‖ q′ ‖1 s. t. ‖ WΩq
′ −Q ‖2≤ ε (4.7)

where ε is a noise statistic that controls the fidelity of the reconstruction. It can be

shown that the solutions to (4.6) and (4.7) will recover the unknown sparse gradients

p and q with an error proportional to the noise level [30]. That is, ‖prec− p‖2 ≤ Cε,

and ‖qrec− q‖2 ≤ Cε, where the constant C may depend on the restricted isometry

constant [30].
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There has been a number of approaches suggested for solving BPDN problems

such as (4.6) and (4.7). In our approach, we shall employ a highly efficient algorithm

that is suitable for large scale applications known as the spectral projected gradient

(SPGL1) algorithm [40].

4.4 Image Reconstruction from Gradients

Once the gradients have been estimated, the problem is to obtain the desired

image reconstruction. The gradient field (p, q) of a scalar surface or an image should

be integrable (conservative). That is, the integral along any closed curve should be

equal to zero. However, this is often not the case when inherent noise during the

estimation process contaminates the gradient field.

One of the ways of enforcing integrability is by using the Simchony, Chellappa

and Shao (SCS) method [122]. It can be described as follows [118], [119], [122]. Let

(p(n,m), q(n,m)) be the estimated non-integrable gradient field. Define the curl

and divergence operators as

Cp,q = curl(p, q) =
∂p

∂n
− ∂q

∂m
(4.8)

and

Dp,q = div(p, q) =
∂p

∂m
+
∂q

∂n
. (4.9)

The objective is to obtain a surface x̂(m,n) estimate (reconstructed image) such that

its gradient field (p̂, q̂) satisfies the integrability constraint Cp̂,q̂ = 0 and minimizes

J(x̂) =

∫ ∫
[(p̂− p)2 + (q̂ − q)2] dm dn. (4.10)

The error function E = (p̂ − p)2 + (q̂ − q)2 is a function of x̂, and the extremum

points are given by the Euler-Lagrange equation:

∂E

∂x̂
− d

dn

∂E

∂p̂
− d

dm

∂E

∂q̂
= 0. (4.11)

Solving the above equation gives the Poisson equation

0 − 2
∂

∂n
(p̂− p) − 2

∂

∂m
(q̂ − q) = 0.
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∇2x̂ = div(p, q), (4.12)

where

∇2 =
∂2

∂n2
+

∂2

∂m2
(4.13)

is the Laplacian operator.

Since the least squares based approaches, such as the one described above, are

known not to be robust to noise and outliers, they result in a loss of salient features

in the image. Thus, we incorporate in our proposed algorithm an improved Poisson

based approach known as the affine transformation on gradients using diffusion

tensors [118].

4.4.1 Affine Transformation of Gradients using Diffusion Tensors

Motivated by the application of anisotropic diffusion in image enhancement

and denoising, a generalization of divergence based equation for image reconstruction

has been suggested [118]. Given an image I, the heat equation estimates the image

by solving the following PDE

It = div(∇I), (4.14)

where ∇I is the gradient of I and It is the gradient at time t. For anisotropic

restoration, Perona and Malik [123] proposed to solve the following PDE by using

a function f

It = div(f(‖∇I‖)∇I), (4.15)

to stop diffusion across edges. This way sharp edges can be preserved in the final

estimate. Weickert proposed a generalized divergence based equation for image

restoration

It = div(D∇I), (4.16)

where D is a symmetric positive definite matrix at each pixel [124]. Similarly, for

image reconstruction, one can define a modified Poisson equation using D.

Given that

D(n,m) =



 d11(n,m) d12(n,m)

d21(n,m) d22(n,m)



 (4.17)
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be a 2 × 2 symmetric positive-definite matrix associated to each pixel location, a

generalized relation is then

div



D



 p̂

q̂







) = div



D



 p

q







 . (4.18)

This equation is the associated Euler-Lagrange equation of the functional

J(x̂) =

∫ ∫
d11(p̂− p)2 + (d12 + d21)(p̂− p)(q̂ − q) + d22(q̂ − q)2 dm dn. (4.19)

Let xD denote the lexicographically ordered column vector of div(d11p+d12q, d21p+

d22q), then the general Poisson equation (an alternative formulation of the general

relation) can be simply expressed as

∇2
Dx̂ = xD, (4.20)

where ∇2
D is the weighted Laplacian kernel based on the diffusion tensor D (see

[118] for more details). The image can then efficiently be recovered as x̂ = L−1
D uD,

where the matrix LD is the sparse weighted Laplacian matrix [118]. Note that this

method does not require any restriction on the amount of information gleaned from

a partially sampled Fourier data set.

We now summarize our proposed algorithm as follows:

Given partial Fourier data Y = WΩx,

1. Find partial Fourier gradients P and Q using (4.5).

2. To recover p and q, solve (4.6) and (4.7), respectively.

3. Reconstruct the desired image using the method of affine transformation of

gradients using diffusion tensors.

4.5 Experiments

In this section, we give some numerical examples to illustrate the performance

of our algorithm and compare it with the GradientOMP [117], the TV minimization

method [125], and the minimum energy reconstruction by zero-filling [53].
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In the first example, we reconstructed a 512×512 Shepp-Logan phantom image

after 94.6% random undersampling. As can be seen from Figure 4.2, the reconstruc-

tion by zero-filling, GradientOMP and the TV minimization fail to reconstruct the

image perfectly, while our proposed algorithm reconstructs the image exactly (MSE

= 3.2e−6).

(a) (b) (c)

(d) (e)

Figure 4.2: (a) 512 × 512 Shepp-Logan Phantom example. Reconstructed by (b)

zero-filling, (c) GradientOMP, (d) TV method, and (e) our proposed method.

In the second example, Figure 4.3, we show the reconstruction of a 256 × 256

MRI of the brain after 68.5% undersampling using Cartesian radial sampling. Both

GradientOMP and zero-filling provide poor image reconstructions, while our method

performs significantly better.

Finally, to compare our algorithm in terms of robustness to noise suppression,

we tested a 128 × 128 Shepp-Logan phantom image with additive white Gaussian

noise with signal-to-noise ratio of 20 dB. Only 35% of the Fourier coefficients were

used. As can be seen from the Figure 4.4, reconstruction by the GradientOMP
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suffers from the vertical streaking artifacts while our method removes these artifacts

and provides more improved reconstruction.

(a) (b) (c)

(d) (e)

Figure 4.3: (a) Original MRI image. (b) Radial k-space trajectories. Reconstructed

by (c) zero-filling, (d) GradientOMP, and (e) our method.

4.5.1 Remark

Experiments have shown that image reconstruction by the GradientOMP al-

ways suffers from the vertical streaking artifacts regardless of the type of sampling

being used. Reconstruction by the TV method is effective when the measurements

are given along the radial lines, however it fails miserably when the coefficients are

chosen randomly [117]. Our method is robust to work with either random or re-

stricted sampling and provides much better reconstruction from fewer measurements

than the TV method or the GradientOMP.

Recently, there has been a great interest in using ℓp minimization with p < 1

for compressive sensing [120], [50]. It has been observed that the minimization of
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(a) (b)

(c) (d)

Figure 4.4: (a) Noisy 128× 128 phantom image (SNR 20dB). (b) Sampling pattern.

Reconstructed image by (c) GradientOMP and (c) by our method.
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such a nonconvex problem leads to recovery of signals that are much less sparse than

required by traditional methods [120]. Our method is flexible enough that, instead

of solving problems (4.6) and (4.7) using SPGL1, the gradients can be reconstructed

by using any of these nonconvex algorithms. It is also possible to reconstruct the

gradients from even fewer measurements by adapting the reweighted ℓ1 minimization

algorithm [52]. OMP can also be used to recover the gradients. In this case, our

method can be viewed as an improved GradientOMP.

4.6 Chapter summary

We studied a new method of recovering an image when partially sampled

data is collected in the Fourier domain and the image is considered to be sparsely

represented by gradients. This entails using a robust general Possion solver to obtain

the reconstructed image. Various experiments have shown a great improvement in

quality of reconstruction as well as a robustness to various sampling scenarios over

similar type schemes.
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Chapter 5

Compressive SAR Imaging

Since a SAR image is a map of the spatial distribution of the reflectivity

function of stationary targets and terrain, many SAR images can be sparse or com-

pressible in some representation such as those from wavelets or the complex wavelet

transform1. The recently introduced CS theory states that it is possible to recover

such compressible images from a small number of random measurements provided

that the undersampling results in noise like artifacts in the transform domain and

an appropriate nonlinear recovery scheme is used [6], [7].

In this chapter, we introduce a new SAR image formation algorithm empir-

ically derived based on the theory of CS that reduces the number of transmitted

and/or received waveforms. It will be demonstrated that if the SAR image is as-

sumed to be compressible in some transform domain, then one can reconstruct a

good estimate of the reflectivity profile using this new image formation algorithm

that relies on using a far fewer number of waveforms than the conventional systems

do and requires no changes to a radar system hardware to work. It is also the case,

that the radar community has considered similar concepts that we are presenting

such as that provided in [126]. Yet our method enhances some of these suggestions

and provides a framework along with general reconstruction techniques. By using

concepts provided by CS theory we are able to propose an imaging system that

should pave the way for many new applications that are highly desirable. In ad-

dition, not only do we demonstrate this concept of SAR imaging using CS theory

with real data but we point out some of its valued benefits never before realized.

1SAR images are often characterized by the multiplicative noise known as speckle. Speckle

makes the compressibility of the SAR images difficult. However, the underlying reflectivity map

without the speckle has compressibility as good as many natural images.
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5.0.1 Previous Compressive Radar Related work

Inspired by the CS theory, more efficient schemes for sensing signals at much

lower sampling rate than required by the traditional Nyquist sampling theorem

have been proposed. This sub-Nyquist acquisition framework is often known as the

analog-to-information (A2I) conversion [127, 128, 129]. Motivated by the CS theory

one such compressive radar imaging scheme based on A2I was proposed in [130]. It

was argued that such a radar system can eliminate the need for the matched filter

in the radar receiver and reduce the required receiver analog-to-digital conversion

bandwidth [130]. A similar acquisition and imaging system for Ground Penetrating

Radar (GPR) was proposed in [131],[132]. Instead of sampling the radar returns

at the Nyquist rate, linear projections of the echo signals with random vectors

were taken as measurements. It was shown that, using only a small subset of the

measurements, sparser and sharper target images could be obtained compared to

the standard backprojection method [131],[132]. In [133], a high-resolution radar

was proposed based on CS by transmitting specially designed waveforms. A similar

concept was also proposed in [134], where the theory of CS with random convolution

was used by transmitting random noise like signals. Also, in [135], to reduce the

amount of stored SAR data, a method based on CS theory was proposed. Recently,

a method of imaging a scene of sparse targets from the perspective of scattering

theory and CS has been proposed in [136].

Our approach in this work, is in contrast to some of the above mentioned

compressive radar related algorithms that have only considered using CS as part of

the A2I conversion or transmitting specially designed waveforms. Note our method

also requires no changes to a system’s hardware to work unlike many other schemes

that propose using CS theory for imaging.

5.0.2 Compressive Sampling for SAR

The design of a CS undersampling scheme for SAR entails the selection of

phase histories such that the resulting mutual incoherence is small. Some of the
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results about CS are based on the fact that the k-space samples are obtained ran-

domly. However, sampling a truly random subset of the phase histories in SAR

is usually impractical for existing hardware. In this section, we consider two com-

pressed sensing k-space undersampling schemes for SAR. Since, the PRF essentially

determines the slow-time sampling rate, our CS undersampling schemes are based

on modifying the PRF of the radar. Implementation of such schemes is very sim-

ple and requires a minor change to the PRF scheduling of the radar. To analyze

the severity of artifacts introduced by these undersampling schemes, we adapt the

notion of the Point Spread Function (PSF) with regards to CS theory from [53].

Note that in practice the sparsity of the image will typically mean the percent-

age of transform coefficients needed to form an acceptable reconstruction. The ac-

ceptable reconstruction will depend on specific applications in mind such as whether

it will be used for target identification or situational awareness. Thus, before meth-

ods suggested here are fielded, systematic studies will be needed that will depend

on their intended use.

5.0.2.1 Point Spread Function (PSF)

To analyze the severity of artifacts introduced by these undersampling schemes,

we adapt the notion of the Point Spread Function (PSF) with regards to CS theory

from [53]. Let r denote the collection of phase histories and S̃ = RSr = RSAg = Φg

represent the k-space measurements obtained by incorporating one of the slow-time

undersampling schemes described above. Here, RS represents the restriction oper-

ator that selects the phase histories from the SAR model. Furthermore, we assume

that g has a sparse representation (or is compressible) in some basis Ψ, so that

g = Ψv. In this case, the sensing matrix Θ is given by Θ = ΦΨ.

In [53], Lustig et al. proposed that the Transform Point Spread Function

(TPSF) be used to measure the incoherence of a sampling scheme. It is defined as

follows

TPSF (m;n) =
〈ΦΨem,ΦΨen〉

‖ΦΨem‖2‖ΦΨen‖2

, (5.1)
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where em is the mth vector of the natural basis having 1 at the mth location and

zeros elsewhere. Ideally, for m 6= n, the TPSF (m;n) should be much smaller

than 1 and should be noise like. This implies that the aliasing artifacts introduced

by undersampling produces relatively small uncertainty in resolving mth transform

coefficient from the nth coefficient. In the case, when Ψ is the identity matrix, we

call the resulting TPSF simply the PSF. The maximum of the sidelobe-to-peak ratio

(SPR) or the maximum off diagonal entry in TPSF, maxm6=n |TPSF (m;n)| is used

as a measure of severity of the aliasing artifacts [53]. Note that the SPR is also equal

to the mutual coherence. In what follows, we propose using two types of slow-time

undersampling and analyze their PSFs to establish their viability.

5.0.2.2 Random slow-time undersampling

As discussed earlier, as the sensor advances along its path, pulses are transmit-

ted and received by the radar. The pulses are transmitted at every PRI = 1
PRF

. Un-

dersampling methods based on sampling at regular intervals produce strong aliases.

Random changes to the PRI can break up the periodicity of the aliasing artifacts

and can convert strong aliases to random noise like artifacts [137, 138]. For this rea-

son, instead of transmitting pulses with a regular PRI, we propose to transmit fewer

pulses than traditional systems at random intervals. This amounts to undersampling

the 2D phase histories along the slow-time axis randomly.

5.0.2.3 Jittered slow-time undersampling

Jittered undersampling is based on a regular undersampling which is perturbed

slightly by random noise. The effect of jitter in one dimension was analyzed by

Balakrishnan in [139]. He analyzed time jitter in which the nth sample is jittered by

an amount ζn so that it occurs at time nPT+ζn, where PT is the sampling period. He

reported that if the ζn are uncorrelated then the following happens: high frequencies

are attenuated, the energy lost to the attenuation appears as uniform noise, and the

basic structure of the spectrum does not change [137, 138, 139]. Jittered sampling in
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2D was generalized and applied in computer graphics in [137, 138]. Also, Hennenfent

and Herrmann in [140] have successfully applied 2D jittered undersampling in the

context of CS for seismic data processing. Inspired by the properties of the jittered

sampling, we propose to apply jittered undersampling in slow-time as well.

5.0.2.4 PSF Analysis

In this section, we analyze the aliasing artifacts introduced from the slow-time

undersampling schemes by the PSF. In the case, a sparsifying transform is used,

TPSF can be studied to analyze the aliasing artifacts. We use the PSF of pure 2D

random sampling where samples are chosen randomly from a Cartesian grid, as a

standard for comparison [53]. Figure 5.1 shows the PSFs for random 2D under-

sampling, random slow-time undersampling and jittered slow-time undersampling.

The height of the red line measures the effect of the aliasing artifacts. The higher

the line more severe are the aliasing artifacts. It is clear from Figure 5.1, that by

undersampling the phase histories along the slow-time axis, we are mainly exploit-

ing 1D sparsity in 2D. Therefore, the artifacts introduced by random or jittered

slow-time undersampling are not as good as the one obtains with truly 2D random

k-space undersampling. Nevertheless, these aliasing artifacts can be removed using

a nonlinear reconstruction technique promoting sparsity as suggested in [140, 53].

5.0.3 SAR image reconstruction

Given the partial k-space measurements of the reflectivity map to be imaged,

in this section, we show how the nonlinear recovery can be used to reconstruct the

SAR image.

From the previous discussion, in the presence of additive measurement noise,

we can write the partial k-space measurements as

S̃ = RSAg + η = RSAΨv + η = ΦΨv + η = Θv + η, (5.2)

where η is an arbitrary noise vector with ‖η‖2 ≤ ε, and Φ = RSA. Note the model

in (5.2) may not be completely accurate as speckle is multiplicative but this is a
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Figure 5.1: PSFs of various SAR undersampling schemes. (a1), (b1), (c1) Random

2D points, Random slow-time undersampling, and Jittered slow-time undersam-

pling, respectively. (a2), (b2), (c2) Image plots of the 2D PSFs corresponding to

(a1), (b1), and (c1), respectively for all m and a fixed n. (a3), (b3), (c3) 1D slice

through the 2D PSFs in (a2), (b2), and (c2), respectively.

71



commonly used model for SAR (see [64] and [57]). The reflectivity map g can be

estimated via v by solving the following ℓ1 minimization problem

vrec = arg min
v′

‖ v′ ‖1 s. t. ‖ S̃ − ΦΨv′ ‖2≤ ε. (5.3)

It was shown in [141] that if ‖v‖0 <
1
4

(
1
µ

+ 1
)

then the solution to (5.3) obeys

‖vrec − v‖2
2 ≤

4ε2

1 − µ(4‖v‖0 − 1)
. (5.4)

It is very difficult to prove any general claim that Θ satisfies a RIP or a

mutual incoherence property for any particular sampling scheme. This remains

an open problem. Thus, the best method for establishing mutual incoherence is

to study the TPSF for a particular proposed sampling scheme given a particular

scanning scenario. This presents no real obstacle in applications especially since

many pre-calculations can be and are done before scanning begins. Note that, in the

context of CS, the TPSF has successfully been used to characterize the incoherence of

different sampling schemes arising in magnetic resonance [53] and in photo-acoustic

tomography [142].

5.0.3.1 Speckle

Many coherent imaging modalities such as SAR, sonar, holography and ultra-

sound often suffer form a multiplicative noise known as speckle. Speckle appears

when objects illuminated by coherent radiation have surfaces that are rough com-

pared with the imaging wavelength. It is caused by the constructive and destructive

interference of the coherent returns scattered by small reflectors within each resolu-

tion cell [143],[55]. Speckle noise can make the detection and interpretation difficult

for automated as well as human observers. In some cases, it maybe important to

remove speckle to improve applications such as segmentation. To deal with speckle,

instead of minimizing (5.3), we propose to minimize a modified problem

vrec = arg min
v′

‖v′ ‖1 +αTV (|Ψv′|) s. t.
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‖ S̃ − ΦΨv′ ‖2≤ ε (5.5)

for some user specified α ≥ 0 and TV is the Total Variation [144] defined as

TV (x) =‖ ∇(x) ‖1 .

By adding the TV constraint along with the ℓ1 constraint, we require the magnitude

of the underlying complex SAR reflectivity field to be sparse in both the transform

Ψ and finite difference domains. The assumption that the underlying reflectivity

field is piecewise smooth has been used before for image restoration under speckle

noise [64], [145], [146] [144]. Note that no stability results have been proven for

the minimization by the TV method. However, empirical experiments in [53], [147]

have shown that TV minimization provides the reconstruction as good as BP. Our

experiments have shown that in practice (5.5) provides much better reconstruction

in the presence of high speckle.

5.0.4 Applications

The idea of transmitting waveforms at a non-uniform PRI for SAR has been

suggested before [126]. This method, however, suffers from the smearing of the image

in the cross-range dimension due to the randomness of the PRI. By solving the basis

pursuit denoising problem (5.3), or (5.5), we are able to not only reconstruct the

image as good as some of the traditional SAR reconstruction methods do from the

full data but even at a lower sampling rate. Thus, our method of compressing the

synthetic aperture offers many advantages.

5.0.4.1 Counter-countermeasure

In many military applications of SAR, the user encounters scenarios where the

adversary uses a transmitting radar to send out a signal within the band of the SAR

system transmitter to confuse the SAR receiver. This process is called the Electronic

Countermeasure (ECM)[148],[63]. The ECM causes the SAR system to receive and

process erroneous information, which obscures targets or features of interest.
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The ECM schemes used to jam a SAR system often relies on estimating the

radar signal parameters such as PRI by exploiting the multiple transmissions of

the signal at each synthetic aperture position. An elementary electronic counter-

countermeasure (ECCM) is to jitter the PRF [148]. Each outgoing pulse is either

delayed or not depending on a sequence generated by a random number generator. A

simpler implementation of changing the interpulse period is to drop pulses randomly.

Hence, our compressive aperture method can offer strong countermeasures resistance

[126, 148].

5.0.4.2 Reduction in data

In many SAR systems, radar data is directly stored on board and then trans-

mitted to the ground in some reduced form. Our system has the potential to signif-

icantly reduce the amount of data to be stored and transmitted [149, 135].

Based on the CS theory, Bhattacharya et al. in [135], proposed a method of

compressing the raw SAR data by using a simple encoder with a 2D FFT and a

random sampler. The decoding was done by using one of the CS recovery algorithms.

Similarly, one can also encode the raw SAR data by using our compressed aperture

method.

5.0.4.3 Obtaining wider swaths

In [150], Stoyle proposed a satellite imaging method that obtains an image of

a wide swath of a planet’s surface. He argued that by transmitting pulses at random

PRIs, it is possible to image a much wider swath than possible by the conventional

methods (see [150] for more details). Our method can also achieve the same task

with an additional advantage of reduced data transmission.

5.0.5 Experimental Results

In the following sections, we present results of our proposed CS SAR methods

on synthetic and real SAR data.
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5.0.5.1 Phase transition diagrams

We evaluate the performance of our compressed synthetic aperture radar meth-

ods by generating phase transition diagrams [151]. A phase transition diagram

provides a way of checking ℓ0/ℓ1 equivalence, indicating how sparsity and indeter-

minancy affect the success of ℓ1 minimization [151, 152]. Let δ = M
N

be a normalized

measure of undersampling factor and ρ = K
M

be a normalized measure of sparsity. A

plot of the pairing of the variables δ and ρ describes a two-dimensional phase space

(δ, ρ) ∈ [0, 1]2. In the following experiments, the values of δ and ρ ranged through 30

equispaced points in the interval [0.03, 1] and N = 900. At each point on the grid,

corresponding to a CS SAR model for certain values of K,M and N (in this case

N = 900), we recorded the mean number of coordinates at which original and re-

construction differed by more than 10−3, averaged over 30 independent realizations.

In our approach, we employed a highly efficient algorithm that is suitable for large

scale applications known as the spectral projected gradient (SPGL1) algorithm [40]

for solving BP and BPDN problems such as (5.3).

In Figures 5.2(a) and (b), we show the phase transition diagrams corresponding

to the slow-time random and jittered undersampling, respectively, for the case when

there is no complex white Gaussian measurement noise (η = 0) and Ψ = I in (5.2).

In Figures 5.2(c) and (d), we show the phase transition diagrams for the slow-time

random and jittered undersampling, respectively, for the case when the complex

white Gaussian measurement noise η has been added with signal-to-noise-ratio of

20 dB in (5.2). These plots indicate that the original target scene (image) can be

recovered well as long as it is sparse enough and enough measurements are taken.

5.0.5.2 Reconstruction from the compressive measurements

In this section, we demonstrate the performance and applicability of our com-

pressive imaging algorithm on synthetic and real SAR data and compare it with

the PFA. Note that the approximation underlying the PFA is generally poorer com-

pared with the other algorithms. However, it is one of the most commonly used
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Figure 5.2: Phase transition diagrams corresponding to Random slow-time under-

sampling (a) without noise, (c) with noise and Jittered slow-time undersampling (b)

without noise and (d) with noise.
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reconstruction methods for SAR which is why it is chosen for comparison.
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Figure 5.3: Point targets example. (a) Simulated full data. (b) Traditional PFA

based reconstruction from the full simulated data. (c) Random slow-time under-

sampled phase histories (25% of data used). (d) Reconstructed by the PFA from

the compressive measurements. (e) Reconstructed image using our method.
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In the first example, we used eleven point targets with unit magnitude to

generate the phase histories. The control parameters used in our simulation are

summarized in Table 1. These determine all other variable parameters (see [58]

for details). The range resolution is given by ρr = c
2B

= 1.1m and the cross-

range resolution is given by ρcr = λ
2∆θ

= 1.1m. In Figure 5.3(a), we show the

generated phase histories from the eleven point targets. Figure 5.3(b) shows the

reconstruction of the point targets from the full simulated data using the PFA [58].

In Figure 5.3(c), we show the phase histories obtained after applying 75% random

slow-time undersampling (25% of data used). Figure 5.3(d), shows the traditional

reconstruction from the compressive measurements using the PFA. Figure 5.3(e)

shows the reconstructed image using our proposed method. It is clear from Figure 5.3

that our method produces image from the compressive measurements as good as the

PFA does from the full simulated data.

Table 5.1: Parameters used in the first example

Center frequency 3.80 × 109 Hz

Pulse width 1 × 10−6 sec

Bandwidth 1.34 × 108 Hz

Chirp rate 1.34 × 1014 Hz/sec

∆θ 2.1◦

In the second experiment, we used the ISAR data collected on a SAAB 9000 car

using System Planning Corporation’s Mark V radar2. We reconstructed the image

after 60% jittered slow-time undersampling was applied to the data (40% of data

used). As can be seen from Figure 5.4, the reconstructed image from the compressed

measurements, shown in Figure 5.4(e), is identical to the one reconstructed from the

full measurements, shown in Figure 5.4(a). Figure 5.4(d) shows how the traditional

reconstruction fails to recover the ISAR image from the compressive measurements

shown in Figure 5.4(c).

For the following two experiments, we used the SAR images from the MSTAR

2specifications of the radar can be found at www.sysplan.com/Radar

78



Cross−range frequency

R
an

ge
 fr

eq
ue

nc
y

Cross−range

R
an

ge

(a) (b)

Cross−range frequency

R
an

ge
 fr

eq
ue

nc
y

Cross−range

R
an

ge

(c) (d)

Cross−range

R
an

ge

(e)

Figure 5.4: SAAB 9000 car ISAR example. (a) Full measured data. (b) Tradi-

tional reconstruction from the full data. (c) Jittered slow-time undersampled phase

histories (40% of data used). (d) Traditional reconstruction from the compressive

measurements in (c). (e) Reconstructed image using our proposed method.
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public target database [153]. We simulated SAR phase histories using the acquisition

method described in [56]. We used Daubechies 4 wavelet as a sparsifying transform

for this experiment. The reconstruction from only 50% of the jittered slow-time

undersampled data using the PFA, (5.3) and (5.5) is shown in Figure 5.6(d), (b)

and (c), respectively. In Figure 5.6(e) and (f) we show how much speckle has been

removed by solving (5.3) and (5.5), respectively. This experiment shows that it is

possible to reconstruct and despeckle simultaneously from the compressive measure-

ments. The value of α was chosen to be 3.8 after experimenting with different values

for α and checking its performance.

Reconstructed SAR images with different methods in the case when only 50%

of the random slow-time undersampled phase histories used are shown in Fig. 5.5.

Fig. 5.5(a) shows the conventional SAR image where speckle is clearly visible.

Fig. 5.5(b), (c) and (e) are the reconstructed images from the compressive mea-

surements using the PFA, (5.3) and (5.5), respectively. In Fig. 5.5(d) and (f) we

show how much speckle has been removed (i.e the residual) by solving (5.3) and

(5.5), respectively.

In the final experiment, we used the ISAR dataset of a B-747 [62]. Fig-

ure 5.7(a)-(c) show the reconstructed image from the traditional method with full

data, traditional method with partial data and our method from the partial data, re-

spectively. The reconstruction was done using 70% random slow-time undersampled

phase histories (30% of data used). As can be seen from Figure 5.7 that our com-

pressive imaging method provides a good reconstruction compared to the traditional

method based on the full measurements.

Note that in our experiments the additive noise was either non-existent or

almost negligible. In the case when noise was non-existent, ε was chosen to be 0.

For the other cases, ε was set to 10−2, which was a value we determined by trial and

error.

It has been observed by many researchers [30], [53], [26] that in practice,

Fourier samples in the order of three to five times the number of sparse coefficients

suffice for a good reconstruction. Our experiments also support this claim. In our
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Figure 5.5: (a) Conventional SAR image. (b) Reconstructed by using PFA. (c)

Reconstructed by solving (5.3). (d) The residual (i.e (a)-(c)). (e) Reconstructed by

solving (5.5). (f) The residual (i.e. (a)-(e)).
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(a) (b) (c)

(d) (e) (f)

Figure 5.6: MSTAR example. (50% of data used) (a) Traditional reconstruction

with the full data. (b) Reconstructed by solving (5.3). (c) Reconstructed by solving

(5.5). (d) Reconstructed by using PFA. (e) The residual (i.e (a)-(b)). (f) The

residual (i.e. (a)-(c)).
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Figure 5.7: B-747 example. (a) Traditional reconstruction with the full data. (b)

Traditional reconstruction with the partial data (30% of data used). (c) Recon-

structed image using our proposed method.
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experiments, we have noticed that taking more measurements generally improves

the quality of reconstruction especially when the presence of speckle is high.

5.0.6 Chapter Summary

We have utilized CS theory and demonstrated that it is possible to compress

the synthetic aperture for radar imaging. Most importantly, not only can our sug-

gested undersampling be used in novel collection schemes to produce high quality

images but many new applications such as signals intelligence, imaging much wider

swaths, and reduced storage constraints are possible because of it.
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Chapter 6

Dictionary-based Face Recognition

6.1 Introduction

One principle for designing recognition algorithms for visual imagery is to

encode objects as sparse representations from an over-complete bases or dictionary

[154]. An area of promise for sparse representation is face recognition. In face

recognition, each face would be represented by a small number of atoms selected

from a dictionary. The goal is that the set of atoms that represent each face is

different from other faces. The ability to accomplish this goal depends on the method

for selecting atoms in the dictionary. The atoms in a dictionary should produce

representations that are stable across naturally occurring changes in pictures of

each face.

To successfully develop a face recognition algorithm based on the principles of

sparse representation a number of challenges have to be addressed. Among these

are constructing a dictionary of atoms designed for discrimination that is robust

to natural changes in the appearance of faces and developing computationally effi-

cient methods. This chapter addresses the following problems in developing a face

recognition algorithm based on the principles of sparse representation.

• A technique for generating dictionaries adapted to face recognition. The dic-

tionary is designed to be robust to changes in illumination.

• Faces are encoded by a small number of atoms and hence the representation

is sparse.

• A two phase computational efficient algorithms for generating sparse encod-

ings.

– The first phase enrolls a person into the face recognition system. The
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atoms are leaned to represent the person.

– The second phase performs recognition. A novel face is projected onto

the appropriate atoms.

• A computational efficient algorithm for generating the sparse representation

for each person. The sparse encoding can be generated from any number of

images of a person.

6.2 Related work

Ideas from the sparse representation theory have been previously applied to

face recognition. Phillips [155] proposed matching pursuit filters for face feature

detection and identification. The filters are designed through a simultaneous de-

composition of a training set into a 2D wavelet expansion designed to discriminate

among faces. It was shown that the resulting algorithm was robust to facial expres-

sion and the surrounding environment.

Compressive sensing has shown it is possible to efficiently compress signals

using a sparse representation [7],[6]. In turn, this has led to a resurgence in interest

in the principles of sparse representation for recognition. Recently, Wright et al.

[156] introduced an algorithm, called Sparse Repersentation-based Classification

(SRC), based on sparse representation and compressed sensing. This work was

later extended to handle pose and illumination variations in [157], [158] and for iris

recognition in [159]. Nagesh and Li [160] presented an expression invariant face

recognition method based on ideas from distributed compressed sensing and joint

sparsity models. Also, Li et al. [161] presented a face recognition method based

on sparse representation for recognizing 3D face meshes under expressions using

low-level geometric features.

Despite the success of some of the above mentioned methods harnessing spar-

sity for face recognition, they suffer from some limitations. For instance, in SRC,

for good recognition performance, the training images are required to be extensive

enough to span the conditions that might occur in the test set. For example, to
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be able to handle illumination variations in the test image, more and more training

images are needed in the gallery. But in most realistic scenarios, the gallery contains

only a single or a few images of each subject and it is not practical to assume the

availability of multiple images of the same person under different illumination con-

ditions. Another limitation of this approach is that the large size of the matrix due

to the inclusion of the large number of gallery images can tremendously increase the

computational load as well as storage needs which can make the real-time processing

very difficult.

The second strand of related work is dictionary learning for sparse represen-

tation. It has been shown that for image restoration, learning dictionaries from

the data instead of using pre-specified ones, usually leads to state-of-the-art re-

sults [162], [163], [164]. While these dictionaries are often trained to obtain good

reconstruction, training dictionaries with a specific discriminative criteria has also

been considered. For instance, linear discriminant analysis (LDA) based basis se-

lection and feature extraction algorithm for classification using wavelet packets was

proposed by Etemand and Chellappa in [165]. Recently, similar algorithms for si-

multaneous sparse signal representation and discrimination have also been proposed

in [166], [167], and [168]. In [168], a framework for signal classification is proposed

that combines a discriminative method with a reconstructive method using LDA

and a pre-defined dictionary. A similar algorithm called supervised simultaneous

orthogonal matching pursuit (SSOMP) is presented in [167]. The ideas presented in

[167] and [168] are based on a pre-defined dictionary. In contrast with these meth-

ods, in [166], a framework that learns a non-parametric dictionary which is efficient

for simultaneous sparse representation as well as class discrimination is presented.

Other methods have also been proposed for learning discriminative dictionaries. See

[169], [170], [171], [172], [173], [174] and the references therein for more details.

One of the most significant problems in face recognition is illumination vari-

ation [175]. The performance of most existing face recognition algorithms is highly

sensitive to illumination variation. Many methods have been proposed to deal with

the illumination problem in face recognition. Some of them include illumination
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cone methods [176],[177], spherical harmonic-based methods [178], [179],[180], quo-

tient images [181], [182] gradient faces [183], and logarithmic total variation method

[184]. In our approach, to deal with illumination variations that might occur in

the test image, we use a relighting framework based on a robust albedo estimation

method presented in [185]. We generate multiple images with different lighting of

the same subject and use it for training. In this setting, as will become apparent,

our proposed method has the ability to recognize face images with good accuracy

even in the case when only a single or a very few images are provided for training.

6.3 Dictionary-based Recognition

In face recognition, given labeled training images, the objective is to identify

the class of a novel probe face image. Suppose that we are given C distinct classes

and a set of mi training images per class, i ∈ {1, · · · , C}. We identify an l × q

grayscale image as an N -dimensional vector, x, which can be obtained by stacking

its columns, where N = l.q. Let

Bi = [xi1, · · · ,ximi
] ∈ R

N×mi (6.1)

be an N × mi matrix of training images corresponding to the ith class. Similarly,

we define a new matrix

A = [B1, ...,BC ] ∈ R
N×M (6.2)

= [x11, ...,x1m1
|x21, ...,x2m2

|......|xC1, ...,xCmC
],

as concatenation of training samples from all the classes, where M =
∑C

i=1mi.

For recognition, there has been a plethora of techniques proposed to explore

the structure of the matrix A. It has been observed that since human faces have

similar overall configuration, the facial images can be described by a relatively low

dimensional subspace. Dimensionality reduction subspace methods such as PCA

[186], LDA [187], and many others [175], [178],[188] have been proposed for the

task of face recognition. Images of the same person can vary significantly due

to variations in the illumination conditions, expression, and pose. To recognize a
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person across illumination variations, it is required to characterize the set of images

under all illumination conditions. It has been found that the set of images under

all possible illumination conditions can be well approximated by a 9-dimensional

linear subspace [188]. Based on this result, Lee et al. [188] showed that there exists

a configuration of 9 light source directions such that the subspace formed by the

images taken under these nine sources is effective for recognizing faces under a wide

range of lighting conditions.

In what follows, we propose a reconstructive approach to dictionary learning

for face recognition. Our formulation is based on exploiting the structure of each

Bi based on simultaneous sparse signal representation [189],[190],[191]. We learn

multiple dictionaries, one per each class such that each learned dictionary provides

an economic representation for its corresponding class and a poor reconstruction for

the other classes.

6.3.1 Learning Class Specific Reconstructive Dictionaries

Designing dictionaries based on training is recent approach to dictionary design

which is strongly motivated by the advances in the sparse representation theory

[190],[191],[164]. We now briefly describe the method of optimal directions (MOD)

[190] and the K-SVD [191] algorithms for learning dictionaries for face images. Note

that the K-SVD algorithm has been applied to compressing face images in [192].

Given a set of examples B = [x1, · · · ,xm], the goal of the K-SVD and MOD al-

gorithms is to find a dictionary D and a sparse matrix Γ that minimize the following

representation error

(D̂, Γ̂) = arg min
D,Γ

‖B − DΓ‖2
F subject to ∀i ‖γi‖0 ≤ T0 (6.3)

where γi represent the columns of Γ and the ℓ0 sparsity measure ‖.‖0 counts the num-

ber of nonzero elements in the representation. Here, ‖A‖F denotes the Frobenius

norm defined as ‖A‖F =
√∑

ij Aij. Both MOD and K-SVD are iterative methods

designed to minimize the representation error in (6.3) and they alternate between

sparse-coding and dictionary update steps. First, a dictionary D ∈ R
N×P with ℓ2
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normalized columns is initialized. For example, this can be done by randomly se-

lecting face images from the gallery set. Then, the main iteration is composed of

the following two stages:

• Sparse coding : In this step, D is fixed and the following optimization problem

is solved to compute the representation vector γi for each example xi

i = 1, · · · ,m, min
γi

‖xi − Dγi‖2
2 s. t. ‖γi‖0 ≤ T0.

Since the above problem is NP-hard, approximate solutions are usually sought.

Any standard technique [27] can be used but a greedy pursuit algorithm such

as orthogonal matching pursuit [44],[45] is often employed due to its efficiency.

• Dictionary update: This is the place where both MOD and K-SVD algorithms

differ. The MOD algorithm updates all the atoms simultaneously by solving

a quadratic problem whose solution is given by D = BΓ†, where Γ† denotes

the Moore-Penrose pseudo-inverse. Even though the MOD algorithm is very

effective and usually converges in a few iterations, it suffers from the high

complexity of the matrix inversion.

In the case of K-SVD, the dictionary update is performed atom-by-atom in

an efficient way rather than using a matrix inversion. For a given atom l, the

quadratic term in (6.3) can be rewritten as

‖B −
∑

i6=l

diγ
T
i − dlγ

T
l ‖2

F = ‖El − dlγ
T
l ‖2

F , (6.4)

where El is the residual matrix, dl is the lth column (atom) of the dictionary

D and γTi are the rows of Γ. The atom update is obtained by minimizing (6.4)

for dl and γTl through a simple rank-1 approximation of El [191]. It has been

observed that the K-SVD algorithm requires less iterations to converge than

the MOD method. Hence, our proposed framework is based on the K-SVD

algorithm. The K-SVD algorithm is summarized in Fig. 6.3.1.
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Objective: Find the best dictionary to represent the samples B = [x1, · · · ,xm] as

sparse compositions, by solving the following optimization problem:

arg min
D,Γ

‖B − DΓ‖2
F subject to ∀i ‖γi‖0 ≤ T0.

Input: Initial dictionary D(0) ∈ R
N×P , with normalized columns, signal matrix B =

[x1, · · · ,xm] and sparsity level T0.

Output: Trained dictionary D and sparse representation matrix Γ.

Procedure: Set J = 1. Repeat until convergence:

• Sparse coding stage: Use any pursuit algorithm to compute the sparse represen-

tation vectors γi for each signal [x1, · · · ,xm].

• Dictionary update stage: For each column k = 1, · · · , P in D(J−1) update by

– Define the group of examples that use this atom, ωk = {i|1 ≤ i ≤ P, γkT (i) 6=
0}.

– Compute the overall representation error matrix, Ek, by

Ek = B −
∑

j 6=k

djγ
j
T .

– Restrict Ek by choosing only the columns corresponding to ωk and obtain

ER
k .

– Apply SVD decomposition ER
k = U∆VT . Select the updated dictionary

column d̂kto be the first column of U. Update the coefficient vector γkR to

be the first column of V multiplied by ∆(1, 1).

• Set J = J + 1.

Figure 6.1: The K-SVD algorithm.
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6.3.2 Classification based on Learned Dictionaries

Given C distinct classes and mi training images per class, let Bi be as defined

in equation (6.1) for i = 1, · · · , C. For training, we first learn C class specific

dictionaries, Di, to represent the training samples in each Bi, with some sparsity

level T0, using the K-SVD algorithm. Once the dictionaries have been learned for

each class, given a test sample y, we project it onto the span of the atoms in each

Di using the orthogonal projector Pi = Di(D
T
i Di)

−1DT
i . The approximation and

residual vectors can then be calculated as

ŷi = Piy = Diα
i (6.5)

and

ri(y) = y − ŷi = (I − Pi)y, (6.6)

respectively, where I is the identity matrix and

αi = (DT
i Di)

−1DT
i y (6.7)

are the coefficients. Since the K-SVD algorithm finds the dictionary, Di, that leads

to the best representation for each examples in Bi, we suspect ‖ri(y)‖2 to be small

if y were to belong to the ith class and large for the other classes. Based on this,

we can classify y by assigning it to the class, d ∈ {1, · · · , C}, that gives the lowest

reconstruction error, ‖ri(y)‖2:

d = identity(y) = arg min
i

‖ri(y)‖2. (6.8)

Similar approaches for texture classification using image patches have also been

proposed in [193] and [194].

We now summarize our dictionary-based classification algorithm as follows:

Given a test sample y and C training matrices B1, · · · ,BC where each Bi ∈ R
N×mi

contains mi training samples.

1. Learn the best dictionaries Di, to represent the face images in Bi, using the

K-SVD algorithm.
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2. Compute the approximation vectors, ŷi, and the residual vectors, ri(y), using

(6.5) and (6.6), respectively for i = 1, · · · , C.

3. Identify y using (6.8).

An example of how our algorithm works is illustrated in Fig. 6.2.

(a) (b)

(c) (d)

Figure 6.2: Overview of our approach. (a) Given C sets of training images corre-

sponding to C different classes, the K-SVD algorithm is used to learn class specific

dictionaries. Then, a novel test image is projected onto the span of the atoms in

each of the learned dictionaries and the approximation errors are computed. (b) The

class that is associated to a test vector is then declared as the one that produces

the smallest approximation error. In this example, class 1 is declared as the true

class. (c) and (d) illustrate an example of an invalid test image and the resulting

residuals, respectively.
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6.3.3 Dealing with Small Arbitrary Noise

An assumption underlying the treatment given above is that the test vector

y is free of error. In practice, y will often be contaminated by some small noise

perturbations. Hence, we consider the following more general model for y:

y = ỹ + z = Diα
i + z, (6.9)

where ỹ and z are the underlying noise free image and random noise term, respec-

tively. Recall that constructing an approximation ˆ̃y to y as

ˆ̃yi = Diα
i

requires an estimation of αi. In the case of least-squares approximation, αi are those

that give a reconstructed image that minimizes the squared error between y and ˆ̃y:

α̂i = min
αi

‖ỹ − Dαi‖2
2.

In this case, αi are given by (6.7). However, it is commonly known that least-squares

method is sensitive to gross errors or outliers. Hence, we need a formulation that

recovers αi from the noisy observation (6.9) in a robust way. To robustly estimate

the coefficients αi we replace the quadratic error norm with a more robust error

norm. We minimize the following problem

α̂i = min
αi

‖y − Dαi‖1,

where ‖ x ‖1=
∑

i |(xi)|. The resulting estimate is known as least absolute deviation

(LAD) [195] and can be solved by linear programming methods.

6.3.4 Rejection Rule

For classification, it is important to be able to detect and then reject invalid

test samples. To decide whether a given test sample is valid or not, we define the

following rejection rule.

93



Given a test image y, for all classes in the training set, the score syi of the test

image y to the ith class is computed as

syi =
1

‖ri(y)‖2
2

,

where ri(y) is the residual vector as defined in (6.6). Then, for each test image y,

the score values are sorted in the decreasing order such that s′y1 ≥ s′y2 ≥ · · · ≥ s′yC .

The corresponding sorted classes are the candidate classes for each test image. The

first candidate class is the most likely class that the test image belongs to. We define

the ratio between the score of the first candidate class to the score of the second

candidate class:

λy =
s′y1
s′y2

as a measure of the reliability of the recognition rate. Based on this, a threshold τ

can be chosen such that, y is accepted as a good image if λy ≥ τ , otherwise rejected

as a bad image. Since the score values to all the candidate classes are sorted, the

score values of the third and the higher order candidates are less than or equal to

the score of the second candidate class. Hence, a high ratio λy for the test image y

would show that the score of the first candidate class is significantly greater than all

the other scores. Therefore, the identification result can be claimed to be reliable.
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Figure 6.3: (a) and (b) are the score values corresponding to the test samples shown

in Fig. 6.2(a) and Fig. 6.2(c), respectively.
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To illustrate an example of how this rejection rule works, consider the test

images shown in Fig. 6.2(a) and Fig. 6.2(c) and their corresponding score values

in 6.3(a) and 6.3(b), respectively. Since, the image shown in Fig. 6.2(a) belongs

to class 1, the corresponding ratio comes out to be λy = 26.29, whereas the ratio

corresponding to an invalid test image shown in Fig. 6.2(c) comes out to be λy =

1.17. Hence, setting a threshold, τ , high enough this invalid test image can be

rejected.

6.4 Face Recognition with a Single Training Image

Recognizing human faces under varying illumination given a single training

image is a difficult problem. In this section, we study a method to deal with this

illumination problem. The idea is to capture the illumination conditions that might

occur in the test sample in the training examples.

We assume Lambertian reflectance model for the facial surface. The surface

normals, albedo and the intensity image are related by an image formation model.

For Lambertian objects, the diffused component of the surface reflection is modeled

using the Lambert’s Cosine Law given by

I = ρmax(nT s, 0), (6.10)

where I is the pixel intensity, s is the light source direction, ρ is the surface albedo

and n is the surface normal of the corresponding surface point. Using this model,

a nonstationary stochastic filtering framework was recently proposed in [185] to

estimate the albedo from a single image. We adapt this method to first estimate

the albedo map from a given face image. Then, using the estimated albedo map, we

generate new images under any illumination condition using the image formation

model (6.10). This is done by combining the estimated albedo maps with the average

facial information [196] (see [185] for more details).

It was shown in [188] that an image of an arbitrarily illuminated object can be

approximated by a linear combination of the image of the same object in the same
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pose, illuminated by nine different light sources placed at preselected positions. The

nine pre-specified light source directions are given by [188]

φ = {0, 49,−68, 73, 77,−84,−84, 82,−50}◦

θ = {0, 17, 0,−18, 37, 47,−47,−56,−84}◦.

Hence, the image formation equation can be rewritten as

I =
9∑

i=1

aiIi, (6.11)

where Ii = ρmax(nT si, 0), and {s1, · · · , s9} are the pre-specified illumination di-

rections. Since, we want to generate gallery images which will be sufficient to ac-

count for any illumination in the probe image, we generate images under the nine

pre-specified illumination conditions and use them in the gallery. We can also re-

generate the illumination conditions that might occur in the test image using nine

images from pre-specified illumination directions and (6.11). This illuminated image

can also be included in the gallery. Fig. 6.4 shows some relighted images and the

corresponding input images.

Figure 6.4: Examples of the original images (first column) and the corresponding

relighted images with different light source directions from the PIE data set.

6.5 Experimental Results

In this section, we present experimental results on some of the publicly avail-

able databases for face recognition such as Extended Yale B data set [176], AR
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database [197] and PIE data set [198]. The comparison with other existing face

recognition methods in [156] suggests that the SRC algorithm is among the best.

Hence, we treat it as state-of-the-art and use it as a bench mark for comparisons in

this study.

In all of our experiments, the K-SVD [191] algorithm is used to train the dic-

tionaries with 15 atoms unless otherwise stated. The performance of our algorithm,

which we will refer to as the dictionary-based face recognition (DFR) algorithm, is

compared with that of five different methods: SRC, nearest neighbor (NN), nearest

subspace (NS), support vector machines (SVM) and class dependent principal com-

ponent analysis (CDPCA) [199]. Our algorithm is also tested using several features,

namely, Eigenfaces, Fisherfaces, Randomfaces, and downsampled images.
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Figure 6.5: ROC curves for the proposed algorithm (DFR) corresponding to the

Extended Yale B and AR face databases.
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Table 6.1: Recognition result on the frontal images in the PIE data set. fi denotes the images with the ith flash on as labeled
in the PIE data set. Each (i, j)th entry is the rank-1 recognition rate obtained with the images in fi as gallery and fj as probe
sets.

f8 f9 f11 f12 f13 f14 f15 f16 f17 f20 f21 f22 Avg Avg [200] Avg [201] Avg [185]

f8 - 100 100 100 99 99 97 94 79 99 97 97 96 89 92 87
f9 100 - 100 100 100 99 99 99 97 99 97 97 99 93 97 95
f11 100 100 - 100 100 100 99 99 96 100 99 99 99 92 95 92
f12 100 100 100 - 100 100 100 99 99 100 100 100 100 96 98 98
f13 100 100 100 100 - 100 100 100 100 100 100 99 100 98 100 99
f14 100 99 100 100 100 - 100 100 100 100 100 100 100 99 99 98
f15 96 97 99 100 100 100 - 100 100 100 100 99 99 96 97 96
f16 96 97 100 100 96 99 99 - 100 97 100 100 98 91 94 93
f17 78 85 94 99 97 96 99 99 - 90 96 96 93 80 87 83
f20 100 100 100 100 99 99 99 99 97 - 100 100 99 91 95 93
f21 97 100 100 100 100 100 100 100 99 100 - 100 100 96 99 97
f22 97 97 100 99 100 100 100 100 100 100 100 - 99 98 98 97

Avg 97 98 99 100 99 99 99 99 97 99 99 99 99 - - -
Avg [200] 88 94 93 97 99 99 96 89 75 93 98 98 - 93 - -
Avg [201] 90 97 94 99 99 99 98 93 87 95 99 99 - - 96 -
Avg [185] 91 97 93 99 99 98 94 91 80 93 99 96 - - - 94
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Table 6.2: Recognition result on the PIE data set. fi denotes the images taken with
the ith flash on in the PIE data set with different poses. Each (i, j)th entry is the
rank-1 recognition rate obtained with the images in fi as gallery and fj as probes.

f8 f9 f11 f12 f13 f14 f15 f16 f17 f20 f21 f22 Avg

f8 - 100 100 100 99 99 94 89 70 99 99 97 95
f9 100 - 100 100 99 99 98 97 88 99 99 99 98
f11 100 100 - 100 100 99 98 93 86 100 100 99 98
f12 100 100 100 - 100 100 100 98 92 100 100 100 99
f13 98 98 99 99 - 99 99 98 92 98 98 99 98
f14 96 98 99 100 100 - 100 99 95 99 99 100 98
f15 79 88 89 95 96 97 - 98 95 91 96 97 93
f16 73 85 81 92 94 96 98 - 99 83 92 96 90
f17 54 71 69 82 85 91 97 97 - 73 88 94 82
f20 99 99 99 100 99 99 98 91 87 - 100 100 97
f21 98 99 100 100 99 100 100 99 95 100 - 100 99
f22 87 91 94 97 98 100 99 98 95 97 99 - 96

Avg 89 94 94 97 97 98 98 96 90 94 97 98 95

6.5.1 Results on Extended Yale B Database

There are a total of 2, 414 frontal face images of 38 individuals in the Extended

Yale B database. These images were captured under various controlled indoor light-

ing conditions. They were manually cropped and normalized to the size of 192×168

[188].

Our first set of experiments on the Extended Yale B data set consist of test-

ing the performance of our algorithm on face images with different features and

dimensions. We follow the experimental setup as considered in [156]. The feature

space dimensions of 30, 56, 120, and 504 corresponding to the downsampling ra-

tios of, 1/32, 1/24, 1/16, and 1/8, respectively are computed. We randomly select

32 images per subject (i.e. half of the images) for training and the other half for

testing. Recognition rates of different methods with different dimensions and fea-

tures are compared in Fig. 6.6. The results reported here on NN, NS, SVM and

SRC are taken from [156]. Note that in our method, we also flip the gallery images

horizontally which gives additional 32 more images for training.
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Figure 6.6: Performance comparison on the Extended Yale B database with various

features, feature dimensions and methods. (a) Our method (DFR). (b) SRC. (c)

NN. (d) NS. (e) SVM. (f) CDPCA.
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The maximum recognition rates achieved by DFR are 95.99%, 97.16%, 98.58%

and 99.17% for all 30, 56, 120 and 504 dimensional feature spaces, respectively. The

maximum recognition rate achieved by SRC is 98.1% with 504D randomfaces [156].

Also, NN, NS, SVM, and CDPCA achieve the maximum recognition rates of 90.7%,

94.1%, 97.7% and 98.83%, respectively [156]. As can be seen from Fig. 6.6 that

DFR performs favorably over some of the competitive methods for face recognition

on the Extended Yale B database.

6.5.2 Results on PIE Database

The PIE database consists of 41, 368 images of 68 subjects. The images were

captured under 13 different poses and 21 flashes under pose, illumination and ex-

pression variations. The face images were cropped with the size 48 × 40. In the

first set of experiments on the PIE data set, our objective is to perform recogni-

tion across illumination with images from one illumination condition forming the

gallery while images from another illumination condition forming the test set. In

this setting, there is just one image per subject in each gallery and probe set. Given

a single training image, we use the method described in Section 6.4 to generate 7

more training images with different lighting conditions and also flip them horizon-

tally. Hence, a total of 16 images are included in the training set. The rank-1 results

obtained using our method are reported in Table 6.1. As can be seen from Table

6.1, that our method achieves recognition rate over 99% in most of the experiments

and on average it achieves the recognition rate of 99%. For comparison, we have

also included the average recognition rates from [200], [201] and [185].

In the second set of experiments, we repeat the same set of experiments as

done above but in the presence of different poses. Table 6.2 shows the recognition

rates corresponding to these experiments. In Table 6.2, fi denotes the images taken

with the ith flash on in the PIE data set with 13 different poses. Each (i, j)th entry

is the rank-1 recognition rate obtained with 13 images per subject for training in

fi and fj as the probe sets. Even in the presence of different poses, our method

performs reasonably well with an average recognition rate of 95%.
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6.5.3 Results on AR Database

The AR database consists of over 4,000 frontal face images of 126 subjects

(70 men and 56 women). The images feature frontal view faces with different facial

expression, illumination variation and occlusion. This database is substantially more

challenging than the Yale B database. In this experiment, we choose a subset of the

images consisting of 50 male subjects and 50 female subjects. We use the images

captured in Session 1 with only illumination variations as the training set. Hence,

there are 7 images per subject for training 1. The images in Session 2 with only the

illumination variations are used as the test set. All the images were converted to

gray scale and cropped with the size of 165 × 120.

The best recognition rate achieved by our algorithm is 93.7% which is a little

lower than that of SRC and SVM whose reported best recognition rates are 94.7%

and 95.7%, respectively [156]. NN and NS achieve the recognition rates of 89.7% and

90.3%, respectively [156] whereas CDPCA achieves the recognition rate of 59.00%.

The ROC curves for DFR corresponding to the experiments described in Section

6.5.1 and this section are shown in Fig. 6.5.

6.5.4 Recognition with Partial Face Features

In this section, we report the ability of our algorithm in recognizing human

faces from the partial face features. We use the images in the Extended Yale B data-

base for the experiments on the partial face features. We replicate the experimental

setup of [156]. For each subject, 32 images are randomly selected for training, and

the remaining images are used for testing. The region of eye, nose and mouth are

selected as partial face features. Examples of these features are shown in Fig. 6.7.

Table 6.3 compares the results obtained by using our method with the other methods

presented in [156]. As can be seen from the table, our method achieves recognition

rates of 99.3%, 98.8% and 99.8% on eye, nose and mouth region, respectively and it

1In our approach, we use the relighting method described in Section 6.4 to generate 3 more

relighted images per training image and also flip them horizontally.
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outperforms the other methods such as SRC, NN, NS and SVM [156].

(a) (b) (c)

Figure 6.7: Examples of partial facial features. (a) Eye (b) Nose (c) Mouth.

Table 6.3: Recognition results with partial facial features.

Right Eye Nose Mouth

Dimension 5,040 4,270 12,936

DFR 99.3% 98.8% 99.8%

SRC 93.7% 87.3% 98.3%

NN 68.8% 49.2% 72.7%

NS 78.6% 83.7% 94.4%

SVM 85.8% 70.8% 95.3%

6.5.5 Recognition rate vs. Number of dictionary atoms

In this section we repeat the experiment described in Section 6.5.1 on DFR

using 504 dimensional eigenfaces with different number of dictionary atoms. Fig. 6.8

shows the recognition rate vs. number of atoms curve for this experiment. It can

be observed that even selecting only 5 atoms per each class dictionary provides a

reasonable recognition performance on the Extended Yale B database. Experiments

have shown that increasing the number of atoms more than 23 usually degrades the

performance of our algorithm.

6.5.6 Recognition rate vs. Number of training images

In this section, we study how the performance of our algorithm changes as

we vary the number of training images in each class. Again, we use the Extended

Yale B database for the experiments in this section. All the images are scaled to
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Figure 6.8: Recognition rate vs. Number of dictionary atoms on Extended Yale B

database.

the size of 64 × 64. We randomly select 1, 2, and 3 images per subject for training

and the others for testing. The recognition rates of DFR along with SRC, NS and

CDPCA are compared in Table 6.4. Note that the gallery in DFR consisted of more

7 relighted images along with their flipped images. This experiment shows that

even in the presence of a few training images, our method can provide reasonable

recognition of human faces.

Table 6.4: Performances with different number of training samples per subject.

♯ for training images DFR SRC NS CDPCA

1 75.89% 42.37% 36.13% 5.52%

2 84.71% 37.45% 46.36% 26.22%

3 85.18% 37.20% 52.40% 30.25%

6.5.7 Improving the complexity of SRC

Let A = [B1, · · · ,BC ] ∈ R
N×M be the matrix of training images as defined

in (6.2). Consider a novel test image y of unknown class as a linear combination

of the training vectors as y = Aβ, where β ∈ R
M×1 is a vector of coefficients. We
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make an assumption that given sufficient samples of the ith class, Bi, any test image

y that belongs to the same class will approximately lie in the linear span of the

training samples from the class i. Hence, the coefficients not associated with class i

will be close to zero. Then, the approach taken in [156] to recognize a face image in

y consists of two steps. In the first step, the following problem is solved:

β̂ = min
β

‖β‖1 subject to Aβ = y. (6.12)

In the second step, residuals from each class are computed using only the coefficients

associated with each class. Then, the face in image y is identified as the person with

the lowest residual [156].

This method is very effective, however, it suffers from very high computational

complexity. For instance, if there are 100 classes and 30 samples are included for

training in each class, the resulting training matrix A will be of size N×3000. Thus,

the size of A will be very large. One can reduce the size of A without losing the

performance of the algorithm by first learning class specific dictionaries where fewer

atoms are selected than originally included in A. For example, we can define a new

training matrix Ã as a concatenation of learned dictionaries from all classes as :

Ã = [D1, · · · ,DC ]

where Di is the learned dictionary corresponding to the class matrix Bi. Then,

solving the ℓ1 minimization problem, (6.12), with Ã will reduce the complexity of

SRC without decreasing the performance of the algorithm.

Table 6.5: Recognition Rates of SRC on the Extended Yale B Database with Eigen-
faces as features.

Dimension 30 56 120 504

SRC (32 atoms) 86.5% 91.63% 93.95% 96.77%

SRC (15 atoms) 75.71% 85.89% 92.10% 96.01%

To verify our claim, we do an experiment with the Extended Yale B database

where, for each class, we randomly select 32 images for training and the remain-

ing images for testing. We choose Eigenfaces as features and learn class specific
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dictionaries with only 15 atoms with the K-SVD algorithm. We then concatenate

these learned dictionaries and solve (6.12) with this matrix. The resulting recogni-

tion rates are reported in Table 6.5 along with the recognition rates achieved with

the traditional SRC with 32 images for training per each class [156]. It is clear

from Table 6.5 that reducing the size of the training matrix A by learning class

specific dictionaries can reduce the complexity of SRC without loosing much of its

performance at the same time being robust to outliers, occlusion and corruptions.

6.6 Chapter Summary

In this chapter, we studied a face recognition algorithm based on learning

dictionaries for simultaneous sparse signal approximations and feature extraction.

Experiments indicate that our algorithm can perform better than many competitive

face recognition methods harnessing sparsity. One of the main advantages of our

algorithm is that it is computationally efficient. Using a unix system with Intel

Xeon E5506/2.13 GHz processor, on average our algorithm takes about 0.3 seconds

to train a dictionary of 15 atoms for a gallery matrix containing 32 images of size

24 × 21. Recognizing a test sample from 38 classes takes on average about 0.01

seconds. Also, our experiments indicate that DFR has the ability to recognize

human faces even in the case when a few number of examples are given for training.

Furthermore, we incorporated a relighting approach into the proposed method to

deal with the illumination conditions.

Note that in this chapter, we studied a reconstructive approach to face recog-

nition. It is also possible to learn discriminative dictionaries for face recognition.

However, the resulting algorithm is very slow and it does not improve the recognition

performance over that of the reconstructive dictionaries.
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Chapter 7

Sparsity inspired ATR

In this chapter, an Automatic Target Recognition (ATR) algorithm is pre-

sented based on a framework for learning dictionaries for simultaneous sparse signal

representation and feature extraction [12]. In the previous chapter, we took a re-

constructive approach to dictionary learning, whereas, in this chapter, we learn

discriminative dictionaries. The dictionary learning algorithm is based on class su-

pervised simultaneous orthogonal matching pursuit while a matching pursuit-based

similarity measure is used for classification. We show how the proposed framework

can be helpful for efficient utilization of data, with the possibility of developing real-

time, robust target classification. We verify the efficacy of the proposed algorithm

using confusion matrices on the well known Comanche forward-looking infrared data

set consisting of ten different military targets at different orientations.

7.1 Introduction

In ATR, the objective is to classify each target image into one of a number

of classes. However, the presence of high clutter background, sensor noise, the

large number of target classes, and the computational load involved in processing

all the sensor data has often hampered the development of real-time robust ATR

algorithms. The recognition algorithm usually consists of several stages such as

target detection, background noise removal, feature extraction and classification. In

this work, we mainly focus on the last two stages. Target recognition using forward-

looking infrared (FLIR) imagery of different targets in natural scenes is difficult due

to large variations in the thermal signatures of targets. Many ATR algorithms have

been proposed for FLIR imagery. In [202], an ATR algorithm for FLIR imagery

based on modular neural network was proposed. Wavelet based vector quantization

was used for FLIR ATR in [203]. See [204] for an excellent survey of papers and
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experimental evaluation of FLIR ATR.

Recently, a sparse representation-based face recognition algorithm was pro-

posed in [156], which outperformed many state of the art algorithms. Extensions

based on [156] for FLIR ATR were recently presented in [205]. As we discussed in

the previous section, one of the main limitations of this approach is that for good

recognition performance, the training images are required to be extensive enough to

span the conditions that might occur in the test set. This may not be the case in

many practical scenarios. Another limitation of this approach is that the large size of

the matrix due to the inclusion of large number of gallery images can tremendously

increase the computational complexity which can make the real-time processing very

difficult.

To overcome the aforementioned limitations, in this chapter, we present an

ATR algorithm based on learning class supervised dictionaries for simultaneous

sparse signal representation and classification.

7.2 Simultaneous Signal Representation

In this section, we show how simultaneous orthogonal matching pursuit can

be used for ATR.

7.2.1 Simultaneous Orthogonal Matching Pursuit (SOMP)

Let D be a redundant dictionary with K atoms in R
n. The elements of the

dictionary are indexed by γ ∈ Γ, i.e

D = {φγ : γ ∈ Γ} ⊂ R
n.

The atoms have unit Euclidean norm i.e., ‖φγ‖2 = 1,∀γ ∈ Γ. Let X = [x1, ..., xs] be

a set of training signals, where xi ∈ R
n denotes the ith signal of X. Given D and

X, SOMP attempts to approximate these signals at once as a linear combination

of a common subset of atoms of cardinality much smaller than n [189]. Under

the assumption that these signals belong to a certain class, SOMP extracts their
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Input: Dictionary D, signal matrix X, sparsity level T (i.e. number of

atoms).

Output: A set ΛT containing T indices, approximation A and residual

matrix R.

Procedure:

1. Initialize the residual R0 = X, Λ = ∅, and t = 1.

2. Find index γt, which solves the optimization problem

arg max
γ∈Γ

‖RT
t φγ‖1.

3. Set Λt = Λt−1 ∪ {γt}.
4. Determine the orthogonal projector Pt onto the span of the atoms

indexed in Λt.

5. Compute the new approximation and residual:

At = PtX,

Rt = (I − Pt)X.

6. If t = T , then stop. Otherwise, increment t = t+ 1, and go to step 2.

Figure 7.1: SOMP algorithm.

common internal structure [189]. In fact, by keeping the sparsity low enough, one

can eliminate the internal variation of the class which can lead to more accurate

recognition while being robust to noise [189],[166],[167]. The SOMP algorithm is

summarized in Fig. 7.1. In what follows, we show that after adding a discriminative

term into SOMP, how we can use the coefficients of sparse representation together

with the residual, over a class specific learned dictionary for recognition.

7.2.2 Separability based SOMP (SSOMP)

To further increase the discriminative power of SOMP, we adapt a super-

vised learning algorithm based on linear discriminant analysis (LDA). Note that
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LDA-based basis selection and feature extraction algorithm for classification using

wavelet packets was proposed by Etemand and Chellappa in [165]. Recently, sim-

ilar algorithms for simultaneous representation and discrimination have also been

proposed in [166], [167], and [168].

Let us denote the number of classes by c and assume that

X = [X(1), · · · , X(c)] ∈ R
n×m,

where X(j) = [x
(j)
1 , · · · , x(j)

ni ] ∈ R
n×ni denotes the samples that belong to the jth

class that has ni samples and m = cni. To obtain a supervised atom selection

algorithm, we modify the SOMP algorithm by adding a separability constraint that

captures within-class and between-class variations. Define the within-class scatter

matrix Sw as

Sw =
c∑

i=1

Si, (7.1)

where

Si =

ni∑

k=1

(x
(i)
k − µ(i))(x

(i)
k − µ(i))T , (7.2)

and µ(i) = 1
ni

∑ni

k=1 x
(i)
k . One can also define the between-class scatter matrix Sb as

Sb =
c∑

i=1

ni(µ
(i) − µ)(µ(i) − µ)T , (7.3)

where µ = 1
cni

∑c
i=1 niµ

(i) is the total mean vector. In order to achieve good sep-

arability for classification, one needs to have large between-class scatter and small

within-class scatter simultaneously. This can be achieved by introducing various

cost functions [166],[167],[165]. In this chapter, we use the following cost function

J(X) = Tr(S−1
w Sb) (7.4)

but similar results can be obtained by using any of the other cost functions defined

in [166],[167],[165].

For a dictionary D and a set of indices Λ, let ΦΛ ∈ R
n×|Λ| be the matrix

induced by the restriction of the dictionary elements whose indices are the elements

110



of Λ. Then, the sparsity coefficients are given by α
(j)
k = (ΦT

ΛΦΛ)−1ΦT
Λx

(j)
k . From this

observation, one can show that

Sb(α) = (ΦT
ΛΦΛ)−1ΦT

ΛSb(X)ΦΛ(ΦT
ΛΦΛ)−1

Sw(α) = (ΦT
ΛΦΛ)−1ΦT

ΛSw(X)ΦΛ(ΦT
ΛΦΛ)−1.

Hence, we can write the optimization problem that we want to solve in step 2 of the

SOMP algorithm (to get the supervised SOMP) as follows

arg max
γ∈Γ

(
‖RT

t φγ‖1 + λJ(α)
)
, (7.5)

where λ ≥ 0 controls the trade-off between discrimination and reconstruction. We

call the resulting algorithm supervised SOMP (SSOMP).

7.2.3 Classification Using SOMP and SSOMP

Once the dictionaries are learned for each class, one can design a classifier

based on either residuals (i.e. approximation error) or coefficients. For instance,

SOMP (or SSOMP) approximations of the test sample g can be found using the

learned dictionaries. The test sample can then be assigned the label of the class

whose dictionary gives the best approximation of g (i.e. the smallest residual).

However, a test signal may find an economic representation in many dictionaries.

Hence, the approximation error by itself may not be the most reliable measure for

classification.

The approach of comparing coefficient vectors of projected and original ob-

jects have also been proposed for classification [155]. Also, in [167] and [168, 166],

nearest neighbor (NN) and SVM classifiers are used on the coefficient vectors for

classification, respectively.

Since, the matching pursuit approximation defines a signal s in terms of its

projection, the coefficient vector and the residual, we propose to use these for classi-

fication. Let Ps be the projection operator defined by the dictionary learned for the

class containing s. Let α(s, Ps) be the coefficient vector and R(s, Ps) be the residual.
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TG1 TG2 TG3 TG4 TG5

TG6 TG7 TG8 TG9 TG10

Figure 7.2: Side view of all 10 targets present in the SIG data set.

Then, in order to compare two signals g and s, we project g onto the projection Ps

of s and noting the coefficient vector α(g, Ps) and residual R(g, Ps). Based on these,

the matching pursuit dissimilarity measure (MPDM)[206] has been defined as

δ(g, s) =
√
θFR(g, s) + (1 − θ)Fα(g, s), (7.6)

where θ ∈ [0, 1] determines the importance of the residuals and coefficients in δ,

FR(g, s) is the difference between the residuals of g and s when both samples are

projected onto the projection Ps of s

FR(g, s) = ‖R(g, Ps) −R(s, Ps)‖2 (7.7)

and Fα(g, s) compares their corresponding coefficient vectors

Fα(g, s) = ‖α(g, Ps) − α(s, Ps)‖2. (7.8)

Note that MPDM is a dissimilarity measure as small values indicate similar signals,

while large values indicate dissimilar signals [206]. Once the class specific dictio-

naries are learned, the classification is accomplished using the NN classification rule

in the MPDM sense. To further increase the recognition performance, one can also

perform the k-NN in terms of MPDM.

It is also simple to introduce a reject threshold using the MPDM; if the value

is too big, then the sample is considered not to belong to any class and should be

rejected.
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7.3 Experimental Results

In this section, we present some preliminary results of our proposed algorithm

on the Comanche FLIR data set consisting of different military targets at different

orientations.

7.3.1 Dataset

The data set contains 10 different vehicle targets. We will denote these targets

as TG1, TG2, · · · , TG10. For each target, there are 72 orientations, corresponding

to aspect angles of 0◦, 5◦, · · · , 355◦ in azimuth. The data consists of a training set

and a test set. We will refer to the training set as the SIG set and the test set

as the ROI set. The SIG data set has about 13,816 image chips, while there are

3,353 images in the ROI data set. The SIG data set consists of the images that

were collected under very favorable conditions. The SIG data set contains 874 to

1468 images per target class. The ROI set consists of only five targets, namely

TG1, TG2, TG3, TG4 and TG7. The target images for the ROI set were taken

under less favorable conditions, such as targets with different weather conditions, in

different background, in and around clutter; hence, these data are very challenging.

There are 577 to 798 images for each of these five target classes. The images are of

size 40 × 75 pixels. All the images in the SIG and ROI sets were normalized to a

fixed range with the target put approximately in the center. The orientation in the

ROI set was given very coarsely; every 45◦. In Fig. 7.2 we show side view of all the

10 targets present in the SIG set.

7.3.2 Dictionary

In our experiments, the dictionary, D, contained about 1500 elements. It

consisted of 2-D DCT atoms, 2-D Daubechies (4-taps) wavelet atoms, Gabor atoms

and a few target chips. Fig. 7.3 shows some of the atoms from our dictionary.
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Figure 7.3: A few 16 × 16 atoms from the dictionary, D.

7.3.3 Results

In the first set of experiments, we randomly selected 11 targets per aspect

angle from the SIG data set for training, called TRAIN-SIG, and another set of

1000 targets disjoint from the training data for testing, called TEST-SIG. We used

SOMP and SSOMP for training class specific dictionaries with 10 atoms. The value

for λ in (7.5) was chosen to be 0.2 and the θ value in (7.6) was fixed to 0.5. In all

the experiments, the target chips size was reduced from 40 × 75 to 16 × 16. Given

c target classes, ω1, · · · , ωc, each represented by its own separate dictionary, the

classification rule we use is the following

if δ(x, x
(j)
k ) < δ(x, x

(l)
k ),∀j 6= l, ∀k = 1, · · · , ni

then classify x into ωj. The probabilities of correct classification for this experiment

are 93.60 and 94.80 percent for the SOMP and SSOMP, respectively. The confusion

matrices for this experiment are shown in Fig. 7.4 (a) and (c) for SOMP and SSOMP,

respectively.

In the second set of experiments, we again randomly selected 11 targets per

aspect angle from the SIG data set for training. We randomly chose a set of 1000

targets from the ROI data set for testing, called TEST-ROI. Again, we used SOMP
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Figure 7.4: Confusion matrices. (a) SOMP on TEST-SIG. (b) SOMP on TEST-ROI.

(c) SSOMP on TEST-SIG. (d) SSOMP on TEST-ROI.
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and SSOMP for training class specific dictionaries with 10 atoms. The same values

for λ and θ were used as before. The probabilities of correct classification for this

experiment are 71.89 and 76.19 percent for the SOMP and SSOMP, respectively.

The confusion matrices for this experiment are shown in Fig. 7.4 (b) and (d) for

SOMP and SSOMP, respectively.

Table 7.1: Recognition rates (in %) for different methods.

Methods CNN4 MNN LVQ SOMP SSOMP

TRAIN-SIG 95.16 95.49 99.72 100 100

TEST-SIG - 90.53 - 93.60 94.80

TEST-ROI 59.25 75.58 75.12 71.89 76.19

From the above experiments, it is clear that introducing a discriminative term

into SOMP generally improves the classification performance over SOMP. Also,

note that our method is more general than the methods presented in [202] and

[203]. In their methods, to deal with the background artifacts, they use several

rectangular windows of different size based on the ground truth silhouette computer-

aided design models. As a result, their performance significantly depends on the

choice of windows [202],[203],[204]. In contrast, the method presented here does not

require any windowing. Results obtained using different techniques are compared

in Table. 1, where CNN4, MNN and LVQ stand for 4 layered convolutional neural

network [204], modular neural network [202] and learning vector quantization [203],

respectively.

7.4 Chapter Summary

In this chapter, we studied a framework for simultaneous sparse signal repre-

sentation for robust ATR. Supervised SOMP was proposed to learn discriminative

class specific dictionaries. The classification rule was based on a dissimilarity mea-

sure that combined both the coefficient vector and the residuals. Promising results
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were obtained on a difficult FLIR target data set.
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Chapter 8

Directions for Future Work

Several future directions of inquiry are possible considering the problems ad-

dressed in this dissertation and the methods proposed to solve them. We discuss a

few below.

8.1 Dictionary-based Deconvolution

Many complicated techniques that go beyond trimming wavelet coefficients by

a threshold parameter have been proposed, such as methods based on the hidden

Markov models [207]. It is very likely that utilization of such techniques adapted to

the shearlet domain will provide an even greater performance when combined to a

deconvolution routine. It would also be of interest to apply the methods developed

here to blind deconvolution when the knowledge of the point spread function is not

assumed.

It has been observed that for image restoration, learning dictionaries from the

data instead of using pre-specified ones, usually leads to state-of-the-art results [162],

[163], [164]. One can develop a deconvolution method based on learning dictionaries.

8.2 Compressive Synthetic Aperture Sonar Imaging

Synthetic Aperture Sonar (SAS) is an imaging technology that forms an image

of the complex reflectivity of targets or an area by coherently combining successive

returns that are transmitted, scattered by various targets and received by the sys-

tem [208], [209]. In SAS, it is possible to achieve an along-track resolution that is

independent of range and signal frequency. It is determined only by the width of

the real aperture. The stripmap mode SAS imaging geometry is shown in Fig. 8.1.

One can extend the CS techniques considered for SAR to sonar. It may offer
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Figure 8.1: The stripmap mode SAS imaging geometry.

many advantages such as reduced sampling requirements, higher area coverage rates

and relaxed sensing geometry requirements. One can also devise a method for

recognizing underwater objects directly from the compressive measurements without

explicitly reconstructing the image.

8.3 Reduction of motion artifacts using CS techniques

In [210], an algorithm for imaging a time varying object from its projection at

different fixed times was introduced. One could extend the ideas presented in [210]

using the theory of CS to get better reconstruction. Also, these techniques can be

used for imaging moving targets in SAR and sonar [57], [211].

8.4 Robust albedo estimation

One of the main disadvantages of the method presented in [185] for albedo

estimation is that it requires the images to be aligned and it can not handle cast
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shadows. An interesting avenue for research would be to come up with an albedo

estimation technique that can handle cast shadows and is robust to registration

errors.
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