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Abstract

Quantitative acoustic microscopy (QAM) is a well-accepted modality for forming 2D pa-
rameter maps making use of mechanical properties of soft tissues at microscopic scales.
In leading edge QAM studies, the sample is raster-scanned (spatial step size of 2µm)
using a 250 MHz transducer resulting in a 3D RF data cube, and each RF signal for
each spatial location is processed to obtain acoustic parameters, e.g., speed of sound or
acoustic impedance. The scanning time directly depends on the sample size and can
range from few minutes to tens of minutes. In order to maintain constant experimental
conditions for the sensitive thin sectioned samples, the scanning time is an important
practical issue.
To deal with the current challenge, we propose the novel approach inspired by com-
pressed sensing (CS) and finite rate of innovation (FRI). The success of CS relies on the
sparsity of data under consideration, incoherent measurement and optimization tech-
nique. On the other hand, the idea behind FRI is supported by a signal model fully
characterized as a limited number of parameters. From this perspective, taking into
account the physics leading to data acquisition of QAM system, the QAM data can
be regarded as an adequate application amenable to the state of the art technologies
aforementioned. However, when it comes to the mechanical structure of QAM system
which does not support canonical CS measurement manners on the one hand, and the
compositions of the RF signal model unsuitable to existing FRI schemes on the other
hand, the advanced frameworks are still not perfect methods to resolve the problems
that we are facing.
In this thesis, to overcome the limitations, a novel sensing framework for CS is presented
in spatial domain: a recently proposed approximate message passing (AMP) algorithm
is adapted to account for the underlying data statistics of samples sparsely collected by
proposed scanning patterns. In time domain, as an approach for achieving an accurate
recovery from a small set of samples of QAM RF signals, we employ sum of sincs (SoS)
sampling kernel and autoregressive (AR) model estimator. The spiral scanning manner,
introduced as an applicable sensing technique to QAM system, contributed to the sig-
nificant reduction of the number of spatial samples when reconstructing speed of sound
images of a human lymph node. Furthermore, the scanning time was also hugely saved
due to the merit of the mechanical movement of the proposed sensing pattern. Together
with the achievement in spatial domain, the introduction of SoS kernel and AR estimator
responsible for an innovation rate sampling and a parameter estimation respectively led
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to dramatic reduction of the required number of samples per RF signal compared to a
conventional approach. Finally, we showed that both data acquisition frameworks based
on the CS and FRI can be combined into a single spatio-temporal solution to maximize
the benefits stated above.

Keywords − Quantitative acoustic microscopy, compressed sensing, sparsity, inco-
herent measurement, approximate message passing, Cauchy denoiser, sensing pattern,
finite rate of innovation, parametric model, sum of sinc kernel, autoregressive model
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Résumé

La microscopie acoustique quantitative (MAQ) est une modalité d’imagerie bien établie
qui donne accès à des cartes paramétriques 2D représentatives des propriétés mécaniques
des tissus à une échelle microscopique. Dans la plupart des études sur MAQ, l’échantillons
est scanné ligne par ligne (avec un pas de 2m) à l’aide d’un transducteur à 250 MHz. Ce
type d’acquisition permet d’obtenir un cube de données RF 3D, avec deux dimensions
spatiales et une dimension temporelle. Chaque signal RF correspondant à une position
spatiale dans l’échantillon permet d’estimer des paramètres acoustiques comme par ex-
emple la vitesse du son ou l’impédance. Le temps d’acquisition en MAQ est directement
proportionnel à la taille de l’échantillon et peut aller de quelques minutes à quelques
dizaines de minutes. Afin d’assurer des conditions d’acquisition stables et étant donnée
la sensibilité des échantillons à ces conditions, diminuer le temps d’acquisition est un
des grand défis en MAQ. Afin de relever ce défi, ce travail de thèse propose plusieurs
solutions basées sur l’échantillonnage compressé (EC) et la théories des signaux ayant un
faible nombre de degré de liberté (finite rate of innovation - FRI, en anglais). Le principe
de l’EC repose sur la parcimonie des données, sur l’échantillonnage incohérent de celles-
ci et sur les algorithmes d’optimisation numérique. Dans cette thèse, les phénomènes
physiques derrière la MAQ sont exploités afin de créer des modèles adaptés aux con-
traintes de l’EC et de la FRI. Plus particulièrement, ce travail propose plusieurs pistes
d’application de l’EC en MAQ: un schéma d’acquisition spatiale innovant, un algorithme
de reconstruction d’images exploitant les statistiques des coefficients en ondelettes des
images paramétriques, un modèle FRI adapté aux signaux RF et un schéma d’acquisition
compressée dans le domaine temporel.

Mots-clés − Microscopie acoustique, échantillonnage compressé, parcimonie, mesures
incohérentes, débruitage, modèle paramétrique, modèle AR

iii



iv



Contents

Contents

Abstract i

Résumé iii

1 Introduction 1
1.1 Ultrasound wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Transducer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Physics of ultrasound . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Quantitative acoustic microscopy . . . . . . . . . . . . . . . . . . . . . . . 11
1.2.1 The mechanism and principle of QAM . . . . . . . . . . . . . . . . 12
1.2.2 Examination of soft tissue in ex-vivo with QAM . . . . . . . . . . 15

1.3 Open challenges and motivation of this thesis . . . . . . . . . . . . . . . . 15
1.4 Contribution and outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.4.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.4.2 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 State-of-the-art 19
2.1 Compressed sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1.1 Overview of CS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.1.2 Theory and premise . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1.2.1 Sparsity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.1.2.2 Incoherence . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.1.2.3 Sparse signal recovery . . . . . . . . . . . . . . . . . . . . 24
2.1.2.4 Restricted Isometry Property . . . . . . . . . . . . . . . . 24

2.1.3 Sensing matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.1.4 Sparse recovery algorithms . . . . . . . . . . . . . . . . . . . . . . 27

2.1.4.1 Iteratively Reweighted Least Squares (IRLS) . . . . . . . 27
2.1.4.2 Orthogonal Matching Pursuit (OMP) . . . . . . . . . . . 28

2.1.5 Approximate Message Passing (AMP) . . . . . . . . . . . . . . . . 28
2.1.5.1 Derivation of AMP from belief propagation . . . . . . . . 29
2.1.5.2 Remark on η function . . . . . . . . . . . . . . . . . . . . 31

2.1.6 Applications of CS to US imaging . . . . . . . . . . . . . . . . . . 32
2.2 Finite rate of innovation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

v



Contents

2.2.1 Overview of FRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2.2 Preliminary theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2.2.1 FRI interpretation of classical sampling theory . . . . . . 34
2.2.2.2 Parametric modeling of FRI signals . . . . . . . . . . . . 36

2.2.3 Sampling kernels and FRI sampling . . . . . . . . . . . . . . . . . 38
2.2.3.1 Polynomial reproducing kernel and Strang-Fix condition 38
2.2.3.2 Exponential reproducing kernel . . . . . . . . . . . . . . . 39
2.2.3.3 Exponential moments . . . . . . . . . . . . . . . . . . . . 40

2.2.4 Parameter estimation . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.2.4.1 Annihilating filter . . . . . . . . . . . . . . . . . . . . . . 41
2.2.4.2 Retrieval of FRI signals in a noisy setting . . . . . . . . . 43

2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3 Approximate message passing algorithm for reconstruction of QAM
2D maps 45
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2 Denoiser in AMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.1 Model estimation of denoiser . . . . . . . . . . . . . . . . . . . . . 48
3.2.2 Soft Threshold (ST) denoiser . . . . . . . . . . . . . . . . . . . . . 49
3.2.3 Amplitude-scale-invariant Bayes Estimator (ABE) denoiser . . . . 49

3.3 Cauchy-AMP for compressed QAM imaging . . . . . . . . . . . . . . . . . 50
3.3.1 Wavelet based Cauchy-AMP . . . . . . . . . . . . . . . . . . . . . 50
3.3.2 Practical sensing patterns for QAM . . . . . . . . . . . . . . . . . 52

3.4 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.4.1 Simulation A: reconstruction results with random sensing schemes 53

3.4.1.1 Gaussian random measurements . . . . . . . . . . . . . . 55
3.4.1.2 Bernoulli random measurements . . . . . . . . . . . . . . 58

3.4.2 Simulation B: reconstruction results with sensing schemes dedi-
cated to QAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4 FRI-based AR model reconstruction for QAM RF signals 69
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.2 Signal model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.3 Sampling procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3.1 Sum of sinc (SoS) sampling kernel . . . . . . . . . . . . . . . . . . 72
4.3.2 I-Q demodulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.3.3 Filtering and sampling . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.3.4 Estimation of Fourier coefficients . . . . . . . . . . . . . . . . . . . 75

4.4 Reconstruction method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.4.1 Auto regressive (AR) estimator . . . . . . . . . . . . . . . . . . . . 79
4.4.2 Evaluation of recovery quality of RF signal . . . . . . . . . . . . . 80
4.4.3 Computation of acoustic parameters . . . . . . . . . . . . . . . . . 81

4.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

vi



Contents

4.5.1 Experimental data and QAM system . . . . . . . . . . . . . . . . . 84
4.5.2 Similarity measures . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.5.3 Acoustic parameter maps . . . . . . . . . . . . . . . . . . . . . . . 85

4.6 Discussion and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5 Compressed QAM in spatio-temporal domain 95
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.2 Spatio-temporal sparse encoding . . . . . . . . . . . . . . . . . . . . . . . 96
5.3 Reconstruction of 2D acoustic maps . . . . . . . . . . . . . . . . . . . . . 98
5.4 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6 Conclusions and Perspectives 103
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Appendix 111

A Auto regressive (AR) estimator 111

List of publications 113

Bibliography 115

vii



Contents

viii



Chapter 1

Introduction

Contents
1.1 Ultrasound wave . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Transducer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Physics of ultrasound . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Quantitative acoustic microscopy . . . . . . . . . . . . . . . . . 11
1.2.1 The mechanism and principle of QAM . . . . . . . . . . . . . . 12
1.2.2 Examination of soft tissue in ex-vivo with QAM . . . . . . . . 15

1.3 Open challenges and motivation of this thesis . . . . . . . . . 15
1.4 Contribution and outline . . . . . . . . . . . . . . . . . . . . . . 17

1.4.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.4.2 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1



Chapter 1. Introduction

Ultrasonography is one of the major medical imaging modalities, and in particular
occupies an exclusive status in obstetrics monitoring due to its clinical safety to not use
ionizing radiation, as well as in cardiology owing to its real-time visualization ability.
Furthermore, its various merits such as low cost, portability and relatively easy oper-
ation make it widely used in medical fields after radiography. Aside from the features
stated above, this thesis focuses on the fact that the physics of ultrasound (US) can
be exploited to investigate and even quantify biomechanical properties of biological soft
tissues. Quantitative acoustic microscopy (QAM), which forms an image in micro scale
with quantified parameters by evaluating elastic properties of soft tissues, is a represen-
tative application.
This chapter begins by an overview of the fundamental physics of US imaging, and
subsequently addresses the distinct characteristics and mechanical principles of QAM.
Then, as the motivation of this study, we underline the intrinsic limitations and chal-
lenges which the QAM technology is currently facing, and present the objectives and
contributions of this work. Finally, the overall structure of the thesis is presented.

1.1 Ultrasound wave
The process to form an image within the QAM technology is very similar to the one in the
conventional medical US imaging in the sense that US pulses are utilized to investigate
target objects. Therefore, prior to exploring the QAM, we review the physical basics of
US wave and the fundamental knowledge of US instruments addressed in the literature
[Fanet 2014, Smith 2010, Kremkau 1993, Trots 2007].
US is defined as pressure waves with RF spectrum exceeding the maximum audible
frequency of 20 KHz, which requires a source to generate them and a physical medium to
propagate. While an US pulse emitted from the source travels inside mediums consisting
of multiple different echogenic materials, it undergoes several physical phenomena such
as reflection, transmission, refraction, scattering and so forth which are triggered by
the difference of acoustic properties at the boundaries among each medium. Thus, a
diagnostic echography is constructed basically measuring the perturbation level of soft
tissues with respect to the irradiated US. The acoustic characteristics of typical biological
tissues and certain materials of interest are displayed in Table 1.1. The numbers offer the
intuition that the mechanical properties of tissues are affecting the manner of US wave
propagation, and thus the contrast of the values can be utilized to not only visualize
the internal structure of human body, but also explore pathogenesis for instance, in
oncology. The conventional medical US imaging has been implemented in diverse modes
commensurate with its clinical purpose: A-mode (amplitude), B-mode (brightness), M-
mode (motion) and Doppler modes. Furthermore, the advanced methodologies in signal
and image processing on the one hand, and the development of hardware on the other
hand enable to expect the emergence of innovative imaging technologies such as 3D or
4D US imaging. Describing the details of the modes exemplified above is beyond our
focus, and thus interested readers in the areas can be referred to [Fanet 2014].
In the next sections we will inspect the nature of US wave on the perspective of how to
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1.1. Ultrasound wave

generate and detect it, and how it interacts with a given medium.

Table 1.1: Acoustic characteristics of biological tissues and certain materials [Fanet 2014]

Biological tissues
and materials

Density
(kg/m3)

Speed of sound(SOS)
(m/s)

Acoustic
impedance
(kg/[m2 · s])

Air 1.20 344 430
Water 1000 1480 1.52 ×106

Blood 1060 1530 1.62 ×106

Fat 920 1410 to 1470 1.34 to 1.39×106

Muscle 1070 1500 to 1640 1.65 to 1.70×106

Liver 1060 1550 1.65×106

Kidney 1040 1560 1.62×106

Bone 1200 to 1810 2700 to 4100 3.2 to 7.8×106

Lung 400 650 0.26×106

Skin 1519 1.58×106

Blood Vessels 1080 1530 1.65×106

Soft tissues 1540 on average 1.63×106

Spleen 1060 1566 1.66×106

Quartz 5750 1.52×107

1.1.1 Transducer

Piezoelectric phenomenon. US waves are produced and detected at a shaped piezo-
electric material in a device called a transducer or probe. Fig. 1.1 illustrates a single
element transducer activated by the piezoelectric phenomena; electrical energy can be
converted into mechanical vibrations, i.e., ultimately US waves, and conversely acoustic
energy can be also transformed to electric pulses. The conversion of the energy forms
described above is completed by PZT standing for lead (Pb) zirconate titanate, which
is a piezoelectric resonator transmitting US pressure by regularly changing its physical
shape when a voltage is applied, and generating electric signals when being excited by
external vibrations.

Matching layer. The matching layer located at the tip of a transducer is hired so as
to minimize the loss of the energy entering into a patient’s skin by lowering the gap of the
acoustic impedance between PZT and skin. Specifically, the acoustic flow is affected by
the difference of acoustic impedances of two adjacent materials perpendicularly aligned
to the travel path of US. Therefore, the acoustic characteristic of the matching layer
to be adopted is determined by the relationship of Zm =

√
ZpZs where Zm, Zp and

Zs denote the acoustic impedances of matching layer, PZT and skin respectively. The

3



Chapter 1. Introduction

Figure 1.1: A single element transducer [Smith 2010]

details on the physics of US associated with this consideration are discussed in the
following subsection.

Beamforming. In the bottom right image of Fig. 1.1, the lens of the transducer is
displayed, which has a concave shape in order to concentrate the emitted acoustic en-
ergy on a specific local area to be identified. In single element transducers, the geometry
lens leads to a mechanical beamforming, in other words determines a focal zone con-
sisting of both the beam width at the focused point and the focal length as a working
distance, which turns out to dictate the lateral resolution [Fanet 2014]. By contrast,
the multi-element probes hire the electronic beamforming technique for focusing of US,
which are comprised of unfocused rectangular elements sequentially arranged with vari-
ous geometries in accordance with their medical use: linear array, convex array, annular
array, etc. The electronic beamforming produces an effective focused beam by applying
voltage pulses with a relative delay in time with respect to individual elements of the
piezoelectric array (for the beamforming process of a linear array, refer to Fig. 1.2).
Unlike the medical US imaging used to rapidly acquire a cross sectional image in real-
time, the beamforming for QAM is done by the mechanical focusing based on a single
element transducer described above, and thus the detailed review on the architecture or
operation of the arrays subjected to the electronic beamforming is not covered in this
thesis. Instead, we will mainly focus on the exploration of dedicated transducer to QAM
in section 1.2.1.

Frequency and bandwidth. As another characteristic of a transducer, the resonant
frequency and its bandwidth are deeply involved in determining the axial and lateral
resolutions. Fig. 1.3 reveals the series of steps for electrical signals to be converted
into pressure waves; Voltage pulses, produced by periodically gating the output of a

4



1.1. Ultrasound wave

Figure 1.2: Electronic beamforming of a linear array [Smith 2010]

frequency generator with the pulse repetition rate (PRR), are applied to the face of the
PZT element, the damping characteristic of which determines the shape of pressure waves
or bandwidth. Fig. 1.4 highlights the mechanical damping effect of a transducer which
acts like a bandpass filter, i.e., the wider bandwidth leads to the heavier damping and
the shorter the duration of the pressure wave [Trots 2007]. The frequency component,
located at the central position of the spectrum shown in the left images of Fig. 1.4,
is called the center frequency which determines the spatial resolution of an echogram
together with the bandwidth and beamforming.

Frequency 
generator

Gating signal

Voltage pulse

Pressure wave
low transducer

damping

Pressure wave
high transducer

damping

On
Off

1/PRR

time

Figure 1.3: Generating pressure waves from electrical signals [Smith 2010]

Resolution. The spatial resolution representing the degree of image clarity is, in an
US system, evaluated from two perspectives: one is the lateral resolution showing the
ability to distinguish two structures closely situated on the same perpendicular plane to
the beam propagation, the other is the axial resolution related to the minimum distance

5



Chapter 1. Introduction

(a)

(b)

Figure 1.4: The pulse shape varies with the damping characteristic of the transducer.
The pressure wave lightly damped (a) has narrower bandwidth and dies out more slowly
than one heavily damped (b) [Trots 2007].

distinguishable between two structures lined up along the direction of propagation of
US beam. The lateral resolution can be improved by increasing the center frequency or
decreasing the beam width using beamforming techniques as stated previously. On the
other hand, the axial resolution is improved by shorter duration of the US pulse, i.e.,
the higher damping degree which also means the wider bandwidth and the higher center
frequency.

Frequency attenuation. It should be noted that the higher frequency, the greater
attenuation, namely the penetrability of the US wave is inversely related to the frequency.
The attenuation indicates all of energy losses occurring over the wave propagation. To
be more specific, when expressing the energy as a function with respect to the distance
(z) in the propagation direction, it is defined as an exponential decay relative to the
attenuation coefficients (α) as follows:

P (z) = P0e
−αz (1.1)

where P0 represents the original pressure amplitude at position of z = 0 and α expressed
in Nepers/cm is given by:

α = 1
z
ln

P0
P (z) (1.2)

The attenuation coefficient is proportionally related to the frequency and can be recast
as:

α(f) = bfm (1.3)

6



1.1. Ultrasound wave

where m is considered as marginally greater than one for most biological tissues, and b is
a constant varying with tissues; for example, m = 1.2 and b = 0.5 in homogeneous liver
[Kouamé 2015]. Therefore, as far as the choice of working frequency of the transducer is
concerned, one must consider the tradeoff between the desired resolution and the depth
to be explored, which is demonstrated in Fig. 1.5. It is clearly unveiled that the quality
of the resulting images is dominated by the operating frequency, which is getting higher
as moving towards the right side image. Compared to the left image, the edges on the
right image are much sharper whereas it severely suffers from the poor penetration, and
thus completely fails to get echograms in deep regions (the bottom of images).

Figure 1.5: The resulting images of a same object irradiated by US beam are displayed,
the quality of which is varied depending on the operating frequency. The top and
bottom on the images corresponds to respectively near and far region from the probe
[Smith 2010].

1.1.2 Physics of ultrasound

Wavefronts. The US wave emitted from a source forms a wavefront which are the
set of points of medium being simultaneously agitated by the applied pressure, and
classified by three types depending on its shape: spherical waves, cylindrical waves and
plane waves. In practice, a wavefront appears as a combination of the three different
forms, yet it can be thought of as a plane wave in most cases since even though a point
source generates spherical waves, they eventually behave like plane waves at a target
further away from the source as depicted in Fig. 1.6.

Wave propagation. The particles of the medium initially at a steady state, when
reached by the wavefront, begin moving back and forth synchronizing with the oscilla-
tion of the pressure wave. They transmit the acoustic energy further the propagation
direction in a way repeatedly compressing and dilating the elastic medium. The period-
icity of particle displacement caused by the cyclic phenomenon is called the wavelength
λ, and alternatively the period T can be defined in the sense of time domain (for the
illustrative diagram, see Figure. 1.7). These two measures (λ, T ) can be associated with
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Chapter 1. Introduction

Target 1 Target 2

Source

Distance ≫ 𝜆

Wavefronts

Wavelength (𝜆)

Propagation

Figure 1.6: The target 1 receives a spherical wave whereas the target 2 located far away
from the source experiences nearly a plane wave.

each other by introducing the velocity c to represent the propagation speed of the wave
or sound (SOS); λ = cT or c = λf from the reciprocal relation between frequency f and
T . The SOS (c) is also linked to the density (ρ) and impedance (Z) via the derivation of
the wave equation, given the assumption in convention at US system; the support medi-
ums for propagation are homogeneous and perfectly elastic, and thus the amplitude and
direction of the initial plane wave are constantly preserved, even though the conditions
do not perfectly hold in practice.

Pressure Compressional pressure

Dilatational pressure

z direction or Time

Particle displacement

Wavelength (𝜆) or Period (T)

Figure 1.7: Direction of particle vibration is the same as that of wave propagation, and
US are purely longitudinal waves.

Propagation equation. The wave equation relative to the direction (z) for US wave
to pass through is established by tweaking Newton’s second law of motion; the net force
(
∑
F ) applied to an object is equivalent to the product of the mass of that object and
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1.1. Ultrasound wave

the acceleration of the object:

∂Kzz

∂z
+ ∂Kyz

∂y
+ ∂Kxz

∂x
= ρ

∂2W

∂2t2
(1.4)

where Kzz is the stress ([N/m2]) caused by the longitudinal wave, and Kyz and Kxz

are the stresses caused by the shear waves in directions y and x respectively. W is the
particle displacement ([m]) in the direction z, and t is the time ([s]). The shear waves
tends to be quickly attenuated and negligible, and thus US wave is reckoned as the
purely longitudinal wave. Thus (1.4) boils down to:

∂Kzz

∂z
= ρ

∂2W

∂t2
(1.5)

Kzz is linked to the longitudinal strain (εzz) by involving the constants µ and ν referred as
Lamé’s first and second parameters which have the same unit ([N/m2]) as the pressure:

Kzz = (ν + 2µ)εzz (1.6)

The strain (ε) is the dimensionless constant characterizing the degree of deformation of
a medium per unit distance, and in the longitudinal direction is calculated by ∂W

∂z . (1.5)
is further rewritten by means of (1.6) and the formula of the strain:

∇2W
(a)= ρ

ν + 2µ
∂2W

∂t2
(b)= 1

c2
∂2W

∂t2
(1.7)

where∇2 denotes a second order differential operator ( ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 ) in three-dimensional
space (x, y, z). (a) comes from simply rearranging ν+2µ

∂z
∂2W
∂z acquired by substituting

(1.6) in the left-hand side of (1.5), and (b) is accomplished by applying � = 1
c2

∂2

∂t2 −∇
2

called the d’Alembertian operator to the effective net displacement W ; �W = 0. From
the derivation, the SOS (c) can be expressed by the characteristics of a tissue:

c =
√
ν + 2µ

ρ
≈
√

K
ρ

(1.8)

where K is the bulk modulus (N/m2) gathering parameters (ν, µ) as K = ν + 2
3µ. The

compressibility (k = 1
K) as the reciprocal of K is often used. On the other hand, the

acoustic impedance (Z) represented with the unit of kg/m−2.s−1 or Rayleigh determines
the amplitude of reflected signal at the interface and is defined by the product of the
density (ρ) of the medium and the SOS (c) in the medium:

Z = ρc =
√

ρK (1.9)

9



Chapter 1. Introduction

where the second equality is led by (1.8). Table 1.1 gives some typical SOS (c), acoustic
impedance (Z) and density (ρ), as the features characterizing the properties of the
tissues.

Reflection, transmission and refraction at interfaces. The ultimate aim of ul-
trasonography is to record and analyze the signals returned from interfaces defined as
boundaries between two mediums with different acoustic properties. In what follows,
based on the underlying physics of US wave, we examine the phenomena occurring as
US wave passes through the interfaces. It is consistently supposed that materials are
homogeneous, isotropic and perfectly elastic, and that the acoustic energy is propagated
along the longitudinal direction forming the plane wave.

Medium 1

Transmitted
waveMedium 2

Reflected
wave

Incident
wave

Z1, c1, k1, 𝝆1

Z2, c2, k2, 𝝆2

i r

𝐭

Figure 1.8: The dynamics of wave propagation occurring at the interface is illustrated.
θ indicates the angle between the travel path of the plane wave and the normal to the
interface, and the subscripts i, r, and t stand for respectively incident, reflected, and
transmitted.

As depicted in Fig. 1.8, mediums 1 and 2, having the different acoustical properties
(Z, c, k,ρ), give rise to the variation of direction and amplitude of the acoustic energy
of the incident wave at the interface, in the manner of reflection and transmission. The
reflected angle θr is identical to the incidence angle θi, and the transmitted angle θt is
determined by the Snell–Descartes law, also known as the law of refraction defined with
the SOS (c1, c2) of each medium and (θi) as:

sinθi
c1

= sinθr
c1

= sinθt
c2

(1.10)

The coefficients of pressure reflection (R) and pressure transmission (T ) are computed
with the acoustic impedances (Z1,Z2) of each medium, the angle of incidence (θi) and
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1.2. Quantitative acoustic microscopy

the angle of refraction (θt) as follows:

R = Pr
Pi

= Z2cosθi − Z1cosθt
Z2cosθi + Z1cosθt

, T = Pt
Pi

= 2Z2cosθi
Z2cosθi + Z1cosθt

(1.11)

The relationship can be also expressed using the coefficients of energy reflection αr and
transmission αt, with I = P 2

2Z :

αr = Ir
Ii

=
(Z2cosθi − Z1cosθt

Z2cosθi + Z1cosθt

)2
, αt = It

Ii
= 4Z1Z2cosθi

(Z2cosθi + Z1cosθt)2 (1.12)

Accordingly if the impedance of medium 2 is negligible compared to that of medium 1,
most of energy is reflected, and consequently no US wave is transmitted into the medium
2. For example, this occurs if medium 2 is air. Taking into account such a nature of US,
the matching layer of transducer described in section 1.1.1 is devised to maximize the
acoustic energy to be transmitted into the skin.

1.2 Quantitative acoustic microscopy

In biology and life science, the microscope is an indispensable tool to broaden our ob-
servable limit to the subcellular world. Since the advent of the optical microscope (see
Fig. 1.9 (a)) designed by Antony van Leeuwenhoek in the late 17th century which is
accredited as the first real microscope, the microscopy has been remarkably advanced to
super resolution (PALM, STORM, STED [Schermelleh 2010]) and to 3D imaging (SPIM
[Keller 2008]), through the innovation of scanning systems, and the introduction of so-
phisticated natural principles, e.g., the fluorescence phenomenon. The resolution limit
of every microscope is intrinsically subjected to Abbe’s law (d = λ

2N.A.) which states
that the resolvable minimum distance is determined by the wavelength and numerical
aperture N.A. [Hockin 1884]. Electron microscope (Fig. 1.9 (b)), having much shorter
wavelength (0.00389nm for an electron beam of 100 KeV) than those of the visible light
(from 750nm to 390nm), is able to provide extremely high resolution, and has been
further evolving by combining the advantage of the light microscopy like the correlative
Light Electron Microscopy. However, the usefulness of microscopy is not confined to only
the capability to demonstrate the superb resolution since it is also arguably beneficial
to be able to accurately quantify physical properties of a material in a microscopic level.
The quantitative acoustic microscopy (QAM) is used as a method to disclose a histolog-
ical structure or examine an abnormality of a biological soft tissue in a submicrometer
resolution exploiting the fact that physically distinct objects perturb in elastically differ-
ent ways with respect to the irradiation of US pulses. In what follows, we focus on the
mechanical structure, the process of data acquisition, signal processing and biomedical
applications of QAM.

11
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Focus
Knob
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Translator

(a) (b)

Figure 1.9: (a) Leeuwenhoek Microscope (circa late 1600s) of hand-held size acknowl-
edged as the first practical microscope [Smith 2010], (b) Transmission Electron Mi-
croscopy (TEM) as one of the most advanced types of microscope [Alberts 2007].

1.2.1 The mechanism and principle of QAM

QAM technology exhibited in Fig 1.10 generally attempts to yield an image estimat-
ing acoustic parameters from RF signals collected by mechanically scanning a biolog-
ical tissue through the focused beam in a raster pattern [Lemons 1974, Quate 1979,
Johnston 1979]. Hence the contrast of the image is directly associated with the acoustic
properties of the tissues, and the outcome from this novel contrast mechanism offers in-
valuable evidences for quantitative clinical (i.e., histological, anatomical or pathologic)
analyses. This subsection briefly addresses the whole gamut of the process from the data
acquisition to the image forming.

Working principle. A high-frequency (> 50 MHz), single-element, spherically-focused
(e.g., F-number < 1.3) transducer transmits a short US pulse and receives the RF echo
signal reflected from the sample which consists of a thin section of soft tissue affixed to
a microscopy slide. This single operation is repeated point-by-point by raster scanning
with an transducer-dependent increment (i.e., a fixed spatial interval) until entirely cov-
ering the specimen mounted on the QAM system in the upside down configuration (see
the left bottom of Fig 1.10). In other words, high frequency transducers contribute to
the enhancement of the spatial resolution permitting the dense scanning with a tiny step
size of the motor stage in Fig. 1.10. The recent QAM studies pursue the fine resolution
images by means of high frequency transducers (250 MHz with 2 µm scan increment
[Mamou 2015a] or 500 MHz with 1 µm scan increment [Rohrbach 2017]), the acoustic
lens of which is also a key component to determine the quality of an image by imple-
menting a favorable focal zone i.e., focal depth and focused diameter.
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1.2. Quantitative acoustic microscopy

{}

{}

Figure 1.10: The block diagram on the left top position describes the working process of
QAM system, and the left bottom photograph provides the closer view of the transducer
and the sample in the photograph of the right side showing the whole QAM system
[Mamou 2015b].

Meanwhile, the rim echo occurring around the edge of the lens generates an intense
unfocused signal and consequently degrades the resulting image. Usually, to mitigate
the undesirable effect, lenses with long focal length are adopted. But in this way, the
received echo is likely to suffer from poor signal to noise ratio (SNR) caused by high
frequency attenuation, which makes the fine resolution approach unfeasible. As a so-
lution to circumvent this drawback, the fabrication of a customized lens is detailed in
[Rohrbach 2017].
The cartoon in Fig 1.11(a) illustrates the individual components of a typical QAM
transducer and the focused beam being generated from the acoustic lens covered with a
matching layer.

QAM RF signals. As depicted in Fig. 1.11(a), the received RF signal consists of
two main reflections, i.e., h1 and h2 due to respectively the water-tissue and tissue-glass
interfaces, which can be reckoned as the sum of two time-delayed, amplitude-decayed
and frequency-dependent attenuated versions of the reference RF pulse h0 obtained from
a region devoid of sample presenting only one water-glass interface. The interactions
between US waves and mediums are clearly visualized in Fig. 1.11(b) plotting the QAM
RF signals recorded in time domain; the blue continuous line corresponds to the sum
of two echoes (h1, h2) affected by the existence of the tissue, while the red dotted
line describing the (h0) made up of a single pulse. This observation on the physical
phenomena arising from the interfaces allows one to build an explicit formula to express
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Figure 1.11: (a) The cartoon describes the structure of transducer and the process of
data acquisition, (b) Reflected signals acquired by 250MHz transducer.

QAM RF signal using only the reference signal (h0) as follows:

h(t) = h1(t) + h2(t)

= a1h0(t− t1) + a2h
(∗)
0 (t− t2),

(1.13)

where a1,2 and t1,2 respectively denote amplitude decays and time delays. Moreover,
due to a round trip flight inside the sample, h2 undergoes an additional effect of linear
frequency dependent attenuation symbolized by the superscript (∗). The second equality
of (1.13) paves the way for introducing the Finite Rate of Innovation (FRI) sampling
and reconstruction in QAM imaging, as will be profoundly studied in Chapter 4.

Acoustic parameters. At each scan location, the RF data is digitized, saved, and
processed offline to ultimately estimate the acoustic parameters: SOS (c), acoustic
impedance (Z) or attenuation coefficient (α). In the previous sections, it was witnessed
that the acoustic parameters mentioned above are independently defined from each other,
and thus each parameter estimation enables to investigate the specimen in various med-
ical perspectives by presenting its unique contrast. The following subsection exhibits
the experimental results demonstrating that the parametric two-dimensional (2D) maps
obtained by the QAM system can quantitatively characterize the elastic properties of
biological soft tissues. Prior to observing the resulting images, we offer a brief insight
about the parametric image forming recently established in [Rohrbach 2018] for achiev-
ing more advanced parameter estimation than the existing Hozumi model [Hozumi 2004].
The ratio between the Fourier transforms of the sample signal (h) and the reference sig-
nal (h0) is computed, and fit to a forward model to estimate the time lags of h1 and h2
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with respect to h0. These time differences are exploited to determine c and the tissue
thickness d corresponding to the scanned location of the sample. The forward model fit
also provides the amplitude of h1, which is used to estimate Z in the sample. Finally, α
is obtained from the previously estimated time delay of h2 and d.

c = cw
imag(log(λ1))

imag(log(λ1)) + imag(log(λ2)) (1.14)

α = real(log(λ2))
2d∆f (1.15)

d = cw
2
imag(log(λ1))

∆f (1.16)

Z = Zw
1 + a1

Rwg

1− a1
Rwg

(1.17)

More details about the notations in the formulae and computation of these acoustic
parameters are given in Chapter 4.

1.2.2 Examination of soft tissue in ex-vivo with QAM

Fig. 1.12 shows QAM 2D maps of the same tissues in a human lymph node in three acous-
tic parameter modes, each of which is determined by two different parameter estimators
[Hozumi 2004, Rohrbach 2018]. This figure demonstrates that the QAM parametric 2D-
maps show different contrasts depending on the choice of acoustic parameters, and the
image quality is affected by the performance of parameter estimators.

1.3 Open challenges and motivation of this thesis

Currently, QAM requires a complete 2D raster scan of the sample to form images, and
thus yields a large amount of RF data cube when using conventional spatial and temporal
sampling methods, particularly in accordance with the requirement for the fine resolu-
tion image. For instance, given the operating configuration where an area of 1 mm2

is scanned with an imaging system having the 250 MHz of center frequency and the
6-dB bandwidth of 300 MHz, each RF signal is sampled at 2.5 GHz every scan step-size
of 2 µm, and the resulting RF data cube is made up of 501 × 501 × 200 RF samples
[Rohrbach 2015b]. As a consequence, this arouses a number of practical issues, such as
the cost and the complexity of the A/D converters and other fast electronic components.
Also the three dimensional dataset enormously expanded might impose a burden on the
signal post processing for the parameter estimation. On the other hand, the scanning
time is directly dependent on the sample size and can range from less than one minute
to possibly tens of minutes. Taking into account a thin sectioned tissue sensitive to the
temperature variations in the coupling medium, the scanning time can greatly effect SOS
estimates. Accordingly, it is imperative to maintain constant experimental conditions for
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(a) (b)

(c) (d)

(e) (f)

Hoz AR

Figure 1.12: The left column (a,c,e) of the figure illustrates the acoustic parameter
maps (Z, c and α from the first row) estimated using the Hozumi model [Hozumi 2004],
whereas the right column (b, d, f) corresponds to the acoustic parameter maps (Z, c and
α from the first row) estimated using the AR model [Rohrbach 2018]. The abbreviation
(ca) and (LT) in the maps respectively stand for capsule and Lymphocyte tissue in a
human lymph node.

ensuring the reliability of the imaging modality, and it should be indeed a worthwhile
challenge to revolutionize the traditional data acquisition manner to reduce both the
scanning time and the data amount.
In this regard, we pay our attention to the property of the QAM data that many nat-
urally occurring signals and images like QAM 2D maps have a sparse representation
in certain transform domains [Candès 2006a], and QAM RF signals can be character-
ized as a parametric model [Rohrbach 2018]. These two key factors motivated us to
take advantage of Compressed Sensing (CS) [Donoho 2006b] and Finite Rate of Innova-
tion (FRI) [Vetterli 2002] framework as a breakthrough able to overcome the challenges
stated above. Nevertheless, there is a catch that measurement matrices typically used in
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the CS framework are impractical to the QAM scanning system. This is due to the use
of random sampling schemes which are not feasible in practice. As well as, existing pa-
rameter estimators adopted in the FRI studies do not serve as appropriate solvers for the
problem setting of the QAM RF signals due to an additional unknown parameter, i.e.,
frequency attenuation coefficients. Chapters 3, 4 and 5 of this thesis are devoted to the
development of the solutions to the problems, and further details about the contributions
of the thesis are presented in the following section.

1.4 Contribution and outline

1.4.1 Contributions

The objective of this thesis is to propose novel approaches to tackle the current chal-
lenges described in Section 1.3. These contributions are listed below.

1. We proposed novel techniques for QAM data sampling in spatial domain with the
objective of reducing both acquisition time and the amount of samples required.
Our goal was supported by choosing compressive sampling (CS) measurement ma-
trices that meet CS requirements, and simultaneously take into account the con-
straints imposed by the design of current experimental QAM systems. For image
reconstruction, we designed and tested a wavelet domain AMP-based approach,
which exploits underlying data statistics through the use of a Cauchy-based MAP
(maximum a posteriori) algorithm. The spiral scanning approach could be imple-
mented on cheap and potentially less precise servo motors, which implicates that
QAM systems would be lower costs and simpler to use.

2. The second contribution of this work consists in combining a low rate RF signal
sampling procedure with an AR model-based parametric acoustic map reconstruc-
tion in QAM imaging. The FRI-based AR approach leads to reconstructing accu-
rate acoustic maps from a markedly reduced number of samples, since the QAM
RF signals are defined as a parametric model with a limited number of degrees of
freedom: the amplitude decays, time delays and frequency-dependent attenuation
coefficients. Thus it would allow the use of much slower A/D cards than those cur-
rently used. This would drastically reduce costs, and leads to easy manufacturing
of such systems and also increased data quality and lower sensitivity to noise.

3. Finally, we provided the solution for spatio-temporally implementing the under-
sampling in QAM data acquisition process by combining the spatial CS framework
with FRI-based temporal approach. The simulation results showed huge potential
of our approach proposed to cope with the current issues.
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1.4.2 Thesis outline

This thesis is structured as follows. Chapter 2 presents the necessary theoretical back-
ground behind the undersampling measurements in spatial domain and the innovation
rate sampling in temporal domain. In the first section assigned to CS framework, the
properties of transform domains will be explained focusing on the ability to extract
the sparse representation of natural images, together with incoherence relationship with
the measurement bases, followed by the exploration of recovery strategies. The second
section of the chapter provides the overview of FRI scheme well related to the para-
metric model of QAM RF signals in time domain. Chapter 3 introduces the derivation
of the wavelet-based Cauchy denoiser and, three practical sensing patterns adopted for
QAM data acquisition. The performance of the proposed approach is evaluated through
the comparison with those of existing CS reconstruction techniques. In Chapter 4, the
problem formulation for associating FRI framework with QAM RF signals is elaborated,
which is linked to autoregressive (AR) inverse model to estimate acoustic parameters.
Simulation results are presented with quantitative assessments of the acoustic parameter
maps reconstructed by the FRI-based AR estimator. Chapter 5 combines the two sep-
arated sparse sampling schemes proposed in the previous chapters. The results demon-
strate that combining both CS and FRI theory contributes to the significant reduction of
the scanning time and the size of the QAM data cube. Finally, conclusive remarks and
perspectives are reported, and possible future work directions are detailed in Chapter 6.
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This second chapter focuses on describing compressive sampling (CS) and finite rate
of innovation (FRI), two frameworks that will play a pivot role throughout this the-
sis. From a practical viewpoint, CS is used in this work to decrease the amount of
acquired data and the acquisition time in the spatial domain. Its fundamental theories
and the state of the art methods for encoding and decoding are reported in this chap-
ter. Furthermore, the main principles of FRI are provided, which are the basis of the
proposed methodology to decrease the number of temporal samples acquired in QAM.
General FRI background is presented, and prototypical parametric model-based signals
are discussed. Finally, in the last section of this chapter we conclude by highlighting the
significance of these frameworks as the novel paradigm to revolutionize the conventional
data acquisition manner in QAM systems.

2.1 Compressed sensing
The key idea of CS is that many real-world signals and images can be faithfully recon-
structed from by far lower number of transform coefficients than the original number of
samples (i.e. acquired according to Nyquist–Shannon sampling theorem) [Donoho 2006b,
Candès 2008]. Inspired by this attractive hypothesis, CS has been vigorously studied as
an approach to decrease the amount of data and to accelerate the acquisition process
at potentially no cost of image quality. Hereafter we recall the insight of CS frame-
work based on its underlying theories, and subsequently address sensing modalities and
recovery schemes. In particular, we intensively focus on the characteristics of Approxi-
mate Message Passing (AMP) algorithm due to the strikingly fast and accurate recovery
performance compared with its counterparts.

2.1.1 Overview of CS

CS is based on measuring a dramatically reduced number of samples than what is dic-
tated by the Nyquist–Shannon theory [Shannon 1984]. Given a signal or an image, the
traditional transform-based compression method performs the following steps: (i) ac-
quires all N samples complying with the sampling theorem, (ii) computes a complete set
of transform coefficients (e.g., DCT or wavelet), (iii) selectively quantizes and encodes
only the K � N most significant coefficients. This procedure is highly inefficient since
the majority of the output of the analogue-to-digital conversion (ADC) process ends
up with being discarded. CS is concerned with sampling signals more parsimoniously,
acquiring only the relevant signal information rather than sampling followed by com-
pression. The main hallmark of this methodology is that, given a sparse or compressible
signal, a small number of linear projections of an input data directly acquired contains
sufficient information to effectively carry out the processing of interest (signal recon-
struction, detection, classification, etc).
In terms of signal approximation, the authors in [Candès 2006a, Donoho 2006b] have
demonstrated that if a signal is K-sparse in one basis (meaning that the signal is exactly
or approximately represented by K components of this basis), then it can be recovered
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from M = cst ·K · log(N/K)� N fixed (non-adaptive) linear projections onto a second
basis called the measurement basis, where cst > 1 is a small overmeasuring constant.
The related essential theories underpinning the former formula, i.e., sparsity, incoher-
ence, and restricted isometric property (RIP) will be recalled in Section 2.1.2.
The CS measurement model is as follows:

y = Φx + n, (2.1)

where y ∈ RM is the observation or measurement vector, x ∈ RN is the signal to be re-
constructed, Φ ∈ RM×N is the sensing matrix leading an underdetermined linear system,
i.e., M � N , and n ∈ RM is an additive white Gaussian noise. As stated previously,
recovering x from y is possible due to the sparse property of x in a given basis, i.e.,
x = Ψs, where s is aK-sparse vector having onlyK components different from zero. The
majority of recovery approaches solve constrained optimization problems. Commonly
used approaches are based on convex relaxation (Basis Pursuit [Emmanuel 2004]), non-
convex optimization (re-weighted lp minimization [Chartrand 2008]) or greedy strategies
(Orthogonal Matching Pursuit (OMP) [Tropp 2007]). On the other hand, alternative
algorithms such as iterative thresholding approaches [Daubechies 2004, Beck 2009] have
attracted intense interest, owing to faster reconstruction than what can be done by con-
vex optimization. The authors in [Herrity 2006, Blumensath 2009] proved that correct
solutions could be obtained via soft or hard thresholding of observations measured from
sparse signals. However in spite of the low computational complexity, such fast iterative
thresholding methods show considerably worse sparsity-undersampling tradeoff than the
one achieved by basis pursuit [Maleki 2009]. As a relatively recent achievement to satisfy
both aspects simultaneously, [Donoho 2010] proposed AMP algorithm that is detailed
in Section 2.1.5.

2.1.2 Theory and premise

CS success is conditioned on the choice of the sensing procedure and the use of non-
linear recovery algorithms, which is only possible given the sparsity of the signal under
consideration and the incoherence of sensing modality [Candès 2008]. We herein delve
into these prerequisites.

2.1.2.1 Sparsity

Most signals and images present in nature can faithfully express the underlying informa-
tion with small number of nonzero values in an appropriate transform domain (including
identity matrices in the case of naturally sparse signals or images), which is referred to
as sparsity and has the following mathematical implication:

xn =
N∑
i=1

siψi,n (2.2)
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where Ψ = [ψ1, ψ2, . . . , ψN ] is a set of certain sparsifying bases able to fully represent x,
and could be a known basis such as wavelet, Fourier, curvelet or wave atoms transform
that have been widely exploited in the literature due to the robust sparsifying ability
and fast implementation [Candès 2005, Candes 2006b, Candès 2008, Mallat 1999]. It
implies that if all entries of the vector s ∈ RN but K largest values are equal to or close
to zero, the signal is called K-sparse and can be approximated with K nonzero values
as follows:

x̂n =
K∑
j=1

sjψj,n (2.3)

Given the expressions of (2.2) and (2.3) based on the definition of sparsity, it is arguable
that the error ||x− x̂||2 could be negligible.
Fig. 2.1 illustrates this argument. Fig. 2.1 (c) was reconstructed with only the 5% largest
coefficients in the wavelet transform (Haar wavelet, three levels) of Fig. 2.1 (a) of the
original images with 537×358 pixels, yet the loss of salient information is not noticeable.
Fig. 2.1 (b) depicts the wavelet coefficients of Fig. 2.1 (a) sorted with the descending
order of magnitude, and all of coefficients are nearly zero after the symbol ∗ indicating
the 5% of total amount of coefficients.
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Figure 2.1: (a) The original image with 537× 358 pixels. (b) The sorted magnitudes of
wavelet coefficients show a steep decay, and the large fraction of coefficients are nearly
zero. (c) The image is acquired by the inverse wavelet transform after setting all wavelet
coefficient of (a) but the 5% largest (marked with ∗ in (b)) to zero using hard thresh-
olding.

Relying on the characteristic of signals or images, the most relevant sparsifying basis
can be chosen among the known transform bases exemplified above.
In the previous work [Kim 2016], we compared the sparsifying capability with respect
to US images among three different domains (Time, DCT and wavelet domain), and
confirmed that an effective sparse representation has a significant influence on the re-
covery quality in the CS framework. In Chapter 3, we will seek the enhancement of the
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2.1. Compressed sensing

recovery performance by introducing the most compatible sparse signal estimator with
wavelet domain.

2.1.2.2 Incoherence

In the previous section, it was shown that there exist appropriate sparse representations
for any signal or image, and thus (2.1) also can be written as follows:

y = Φ Ψs︸︷︷︸
x

+n, (2.4)

where Ψ denotes a representation domain letting the signal of interest x be transformed
to a sparse sequence of s as shown in (2.2), for which commonly orthogonal bases are
used in most of the applications. In accordance with the introduction of the new basis,
CS needs to regulate the relationship of the two set of bases (Φ,Ψ), which is achieved
by introducing the measure of the incoherence.
In the CS context, the coherence is rephrased as measuring the largest correlation be-
tween any two elements taken from the first (Φ) and second basis (Ψ). Accordingly, if Φ
and Ψ contain correlated elements, the coherence is large, and vice versa. The coherence
measurement between the two bases is given by [Donoho 2001, Candès 2008]:

µ(Φ,Ψ) =
√
N · max

1≤k,i≤N
| 〈ϕk, ψj〉 | (2.5)

where 〈ϕk, ψj〉 represents the inner product between k-th and j-th column vectors of Φ
and Ψ respectively. One may obtain the intuition for the formula (2.5) from the exam-
ple that given a pair (Φ,Ψ) of orthonormal bases of RN , the measure µ is compactly
confined to [1,

√
N ].

CS is generally concerned with low coherence, and the extreme example having a per-
fect incoherence, namely µ(Φ,Ψ) = 1, is found for the pair of the Dirac delta function
ϕk(t) = δ(t − k) and Fourier transform function ψi(t) = 1√

N
ej2πit/N [Candès 2008].

Aside from that, noiselets also reveals low coherence with many filters used in wavelet
decomposition irrespective of sample size N , such as

√
2 with Haar wavelets, 2.2 with

Daubechies D4 and 2.9 with Daubechies D8. Finally, sensing matrices based on random-
ness, like Gaussian following a normal distribution or Bernoulli consisting of ±1 binary
entries, proved to have low coherence with any fixed basis attaining µ ≈

√
2logN with

high probability. Therefore, when it comes to the design of sensing system, a random
measurement matrix Φ can be universally adopted without considering the structure of
a representation basis Ψ, and such property is called the universality.
The aforementioned two random-based measurements will be tested as a sensing modal-
ity for the undersampling of QAM in Chapter 3.
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2.1.2.3 Sparse signal recovery

Searching for the sparsest solution to underdetermined systems (M � N) of linear
equations is equivalent to solving the `0-minimization problem:

(P0) min
s̃∈RN

‖s̃‖0 subject to y = Θs̃, Θ = ΦΨ (2.6)

where ‖ · ‖0 indicates the total number of nonzero elements in a vector.
Indeed, the problem in (2.6) is NP-hard [Donoho 2006a, Natarajan 1995] and intractable
since it requires exhaustive searches for over all subsets of columns of Θ. Furthermore,
as far as a large-scale signal is concerned, the procedure clearly is combinatorial, and
consequently the complexity increases exponentially. Hence, the relaxation to `1-norm
known as Basis Pursuit (BP) [Chen 2001, Candès 2005] is generally used within CS
reconstruction, turning into optimization problems; `1 norm is convex unlike `0 norm
requiring to enumerate non-zero coordinates:

(P1) min
s̃∈RN

‖s̃‖1 subject to y = Θs̃, Θ = ΦΨ (2.7)

where ‖ · ‖1 indicates the summation of the absolute values of elements.
As a condition for (P1) to accomplish the successful recovery, Theorem 1 in [Candès 2007b]
remarks that if, for some positive constant C, M measurements selected randomly in Φ
domain obey:

M ≥ C ·µ2(Φ,Ψ) ·K · logN, (2.8)

a K-sparse signal of RN in basis Ψ is exactly found by solving (P1) with overwhelming
probability. From the formula of (2.8), one may also observe the significance of incoher-
ence that the smaller µ, the fewer measurements are needed.
Nevertheless, (2.7) only takes into account the noiseless scenario unlike (2.4), and thus we
will deal with more general case considering noise effect in the forthcoming subsection.

2.1.2.4 Restricted Isometry Property

In practice, the data acquisition process necessarily entails noise effects due to vari-
ous reasons, e.g., quantization error. Therefore, in general our interest is in dealing
with the noisy setting (2.4), and it turns out that the optimal solution to the corre-
sponding problem is found by solving the `1 norm minimization with relaxed constraints
well known as LASSO named after Least Absolute Shrinkage and Selection Operator
[Tibshirani 1996, Candès 2008]:

(P2) min
s̃∈RN

‖s̃‖1 subject to ‖y−Θs̃‖2 ≤ ε, Θ = ΦΨ (2.9)
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where ‖ · ‖2 is the Euclidean distance (:=
√∑

i · 2i ) of a vector, and ε bounds the amount
of noise in the measurements [Candès 2008].
As a method to evaluate the reconstruction fidelity, [Candès 2005, Baraniuk 2008, Candès 2006a]
proposed the restricted isometry property (RIP), which also allows to study the general
robustness of CS given by [Candès 2005]:

(1− δK)‖s‖22 ≤ ‖Θs‖22 ≤ (1 + δK)‖s‖22 (2.10)

where δK is the isometry constant of a measurement matrix Θ defined as the smallest
number for each integer K = 1, 2, . . . , which holds for all K-sparse vector s. We say that
given δK ∈ (0, 1), a matrix Θ obeys RIP of order K. This statement implies that if δK
is equal to zero in an extreme case, the Euclidean norm of K-sparse vector is intactly
preserved in the measurement; in that case, Θ should be an orthogonal matrix, namely
square matrix. However the CS measurement is supposed to hire inherently a short or
fat matrix, i.e., RM×N (M � N). Thus, RIP postulates an approximately orthogonal
matrix for Θ, and correspondingly the equivalent description for a matrix to obey RIP
is introduced; all subsets of K columns taken from Θ are nearly orthogonal.
In order to recover an unique K-sparse vector from compressive measurements, one
wants to guarantee that all pairwise distances between K-sparse vectors must be well
preserved in the measurement space, like when they are in the original vector space.
This concept is formulated as follows [Candès 2008]:

(1− δ2K)‖s1 − s2‖22 ≤ ‖Θs1 −Θs2‖22 ≤ (1 + δ2K)‖s1 − s2‖22 (2.11)

If δ2k is sufficiently lower than 1, one can design recovery algorithms able to discriminate
all K-sparse vectors from compressive measurements, which indicates the implication of
RIP regarding CS.
If the RIP holds for δ2K <

√
2 − 1, (P1) problem achieves an accurate reconstruction

[Candes 2006b, Candès 2008, Cohen 2009], whose solution s∗ obeys the following The-
orem 2 in [Candès 2007a]:

‖s∗ − s‖2 ≤ C0 · ‖s− sK‖1/
√
K and ‖s∗ − s‖1 ≤ C0 · ‖s− sK‖1 (2.12)

where C0 is some constant, and sK is the vector s with all but the K largest components
set to 0 [Candès 2007a]. Theorem 2 offers stronger conclusions than those of Theorem
1 in (2.8). If s is K-sparse, s = sK and thus the solution s∗ to (P1) is exact.
On the other hand, in the case of noisy scenario when the RIP holds for δ2K <

√
2− 1,

the solution s∗ to (P2) obeys the following Theorem 3 [Candès 2007a]:

‖s∗ − s‖2 ≤ C0 · ‖s− sK‖1/
√
K + C1 · ε (2.13)

where C0 and C1 are some constants. This shows that the reconstruction error is pro-
portional to the noise level of data.
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2.1.3 Sensing matrices

When it comes to a successful CS recovery in the sense of RIP, one wants to find the
matrices with the property that column vectors taken from arbitrary subsets are nearly
orthogonal, and thus it is intuitive that the larger subsets are better. In this regard,
Candès et al. considered the following family of sensing matrices built on randomness
[Candès 2008]:

(1) form Φ by sampling N column vectors uniformly at random on the unit sphere of
RM ,

(2) form Φ by sampling independent and identically distributed (i.i.d.) entries from the
normal distribution ∼ N

(
0, 1

M

)
[Candes 2004],

(3) form Φ by sampling a random projection P as in “Incoherent Sampling” and nor-
malize: Φ =

√
N
MP,

(4) form Φ by sampling i.i.d. entries from a symmetric Bernoulli distribution (P (φi,j =
±
√
M) = 1

2) or other sub-Gaussian distribution [Baraniuk 2008, Mendelson 2008].

All these matrices satisfy RIP with overwhelming probability, provided that the following
condition holds:

M ≥ C ·Klog(N/K) (2.14)

where C is some constant varying with each instance (1)-(4) enumerated above. (2.14)
reveals how RIP is linked to CS defining the relationship between the sparsity K and
the amount of measurement M as glimpsed in Section 2.1.1.
We hereby learned that random matrices formed following incoherence and RIP can
guarantee stable and accurate reconstruction of sparse or approximately sparse signals
from dramatically undersampled measurements bounded by (2.8), (2.14).
However, even though the random matrices are underpinned by the well-established
theories, it is apparent that considering particularly large-scale setup, it could pose
impractical issues such as high computational complexity or huge memory buffering.
As the alternatives to take the compromise between the computational efficiency (fast
recovery) and randomness (exact recovery), the class of structured random matrices and
their performance are studied in [Rauhut 2010].
On the other hand, one needs to pay attention to the specificity of the CS measurement
problem that will arise being applied to the QAM system; QAM motor stage for a raster
scanning should be consecutively operated from a point to the adjacent point with an
uniform step size (see Fig. 1.10). Therefore, it is essential to develop a dedicated sensing
manner under consideration of this particular mechanism. In Chapter 3, we propose the
undersampling scanning patterns motivated by Bernoulli trial process.
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2.1.4 Sparse recovery algorithms

As mentioned previously, the ideal pair of encoding and decoding for CS framework,
finding an unique sparse vector (s) from an incomplete information (y), lies in a random-
based sensing followed by a recovery using (P1) or (P2) classified as a linear program (LP)
[Powell 1984]. Also, on the purpose of improving the recovery accuracy, the LP idea has
inspired the development of many derivatives such as `1-magic [Candès 2007c] or `1-ls
[Kim 2007]. However, these approaches do not exploit the true statistical distribution
of the data, and are motivated by the inability of the classical least-squares approach to
estimate the reconstructed signal. Moreover, in terms of a large scale problem in most
practical cases, the LP based algorithms suffer from enormously expensive complexity of
O(N3) [Qaisar 2013]. Consequently, the main contribution of these recovery schemes is
to a benchmark for evaluating the performance of brand new sparse recovery algorithms.
In the subsection, we review and examine various existing algorithms developed to over-
come the limitation of the LP in fast, accurate or stable aspects.

2.1.4.1 Iteratively Reweighted Least Squares (IRLS)

SαS-IRLS [Achim 2010] is one of the examples achieving the enhancement of the recon-
struction quality by taking advantage of actual statistics of US data. It was inspired by
[Chartrand 2008, Tsaig 2006] which is based on `p norm optimization approach (2.15)
approximating the ideal `0 case with p < 1.

min
s̃∈RN

‖s̃‖p subject to y = Θs̃ (2.15)

The ultimate goal of the work is to find the optimal p to satisfy (2.15), and the novelty of
[Achim 2010] is to relate the optimum value of p to the statistics of US data, as detailed
in the following sentences.
When it comes to US image formation, RF echoes have been commonly assumed to
follow Gaussianity until [Kutay 2001] showed that RF echoes can be more exactly char-
acterized as a power-law shot noise model. The discovery can be further associated with
alpha-stable distribution [Petropulu 2000]. Particularly, when its characteristic function
follows (2.16), random variables are called symmetric α stable (SαS):

ϕ(ω) = exp(jδω − γ|ω|α) (2.16)

where α denotes the characteristic exponent ranging from 0 to 2, and a location param-
eter δ(−∞ < δ <∞) becomes the mean of SαS distribution if α belongs to the interval
(1, 2]. Otherwise, (i.e., for 0 < α ≤ 1) δ is the median of the distribution. γ(γ > 0),
determining the spread of the distribution, is analogous to the variance of Gaussian dis-
tribution.
SαS-IRLS utilizes α in (2.16) to find the optimum value of p with which the `p-norm
minimization (2.15) is solved using iteratively reweighted least squares approach (IRLS)
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[Lawson 1961, Beaton 1974]. The simulation results demonstrated that the images re-
covered with this method have much more improved PSNR than those of BP and Or-
thogonal Matching Pursuit (OMP). On the contrary, in terms of the execution time, it
turned out that the method has no advantage compared to its counterparts, (for the
detailed results, see [Achim 2010]). In chapter 3, SαS-IRLS is hired as a comparative
method for the assessment of our proposed approach.

2.1.4.2 Orthogonal Matching Pursuit (OMP)

Orthogonal Matching Pursuit (OMP) [Tropp 2007] is an appealing method to tackle the
huge computational burden occurring in CS recovery of high-dimensional sparse signals,
the fundamental operation of which is inspired by greedy algorithms [Leiserson 2001]. At
each iteration, OMP collects the most correlated atom with the current residual vector
(xt = y −Θŝt) over all column vectors (θi with i ∈ {1, . . . , N}) of the sensing matrix.
The stepwise subset consisting of the selected column vectors is updated every iteration
and utilized to estimate the non-zero components of the sparse vector by computing
least square error, which is iterated until the predefined stop criterion is reached. The
stopping rule plays a pivot role to avoid the selection of zero components. [Cai 2011] of-
fers a fruitful discussion with respect to setting of the reasonable stopping rule. OMP is
obviously easy to implement and shows fast convergence with computational simplicity.
Aside from OMP, there are diverse iterative greedy methods: Stagewise OMP (StOMP)
[Donoho 2012], Compressive sampling MP (CoSaMP) [Needell 2009a] and regularized
OMP methods [Needell 2009b, Needell 2010]. However if the signal to be recovered is
not strictly sparse, the methods would be ineffective. In other words, they commonly
show considerably worse sparsity-undersampling tradeoff than convex optimization ap-
proaches, which will be illustrated in the Fig. 2.3.

2.1.5 Approximate Message Passing (AMP)

In this thesis, we adopted an approximate message passing (AMP)-based algorithm
[Donoho 2009, Donoho 2010] to reconstruct QAM images from spatially undersampled
measurements. AMP is a simplified version of MP (message passing) derived from belief
propagation [Baron 2009, Yedidia 2005, Kabashima 2003] in graphical models, and is
characterized not only by dramatically reduced convergence times but also by a recon-
struction performance equivalent to `p-based methods. AMP uses an iterative process
of a sparse representation-based image denoising algorithm performed at each iteration.
Hence, the selection of a robust denoiser and of the most efficient sparsifying basis are
crucial issues to be addressed in order to achieve fast convergence and high recovery
quality [Tan 2015].
In what follows, we explore the mathematical structure of AMP through the derivation
from belief propagation, and then explain the role of denoiser in AMP algorithm.
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2.1.5.1 Derivation of AMP from belief propagation

Here, in order to illustrate the power of AMP in producing fast and exact recovery, we
look into the process to derive AMP from sum-product belief propagation algorithm.

Construction of the graphical model
Utilizing the sparse characteristic of a vector s and the fact that y is its observation
through a system A, the joint PDF is constructed over all variables si, i ∈ {1, 2, . . . , N}
making up the sparse signal as follows:

p(s) = 1
C

N∏
i=1

exp(−β|si|)
M∏
a=1

δya=(As)a (2.17)

where C denotes a normalizing constant to make
∫∞
−∞ p(s)ds = 1 and δ( · ) represents

a Dirac delta function. The subscripts are indices following {a, b . . .} ∈ {1, . . . ,M},
{i, j . . .} ∈ {1, . . . , N}, and the (a, i) element of the matrix A is denoted by Aai. Finally
β is a parameter to determine the dispersion of the distribution.
In addition, in order to comprehend the architecture of the message passing model, it
might be helpful to familiarize with the notations used in belief propagation. G :=
(V, F,E) represents a complete bipartite factor graph illustrated in Fig. 2.2 consisting
of variable nodes V := [N ], factor nodes F := [M ] and edges connecting the two nodes
E := [N ]× [M ] = {(i, a) : i ∈ [N ], a ∈ [M ]}.

{ ( ) }

Measurement nodes
𝐹 = [𝑀]

Variable nodes
𝑉 = [𝑁]

Message Passing
𝐸 = 𝑉 × 𝐹

{ ( ) }

{ ( ) }

Figure 2.2: The factor graph showing message passing between factor and variable nodes

The update rule of belief propagation messages is given by computing the marginals at
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each node, namely {νi→a}i∈V,a∈F and {ν̂a→i}a∈F,i∈V :

νt+1
i→a(si) ∼= exp(−β|si|)

∏
b 6=a

ν̂tb→i(si)

ν̂ta→i(si) ∼=
∫ ∏

j 6=i
νtj→a(si)δ{ya−(As)a}dsi

(2.18)

Simplification of messages in large system limit
With respect to large N , the central limit theorem allows the messages in (2.18) to be
converted into mean and variance. The detailed derivation procedures can be found
in [Donoho 2011], and consequently the classical message passing (MP) algorithm is as
follows:

xt+1
i→a = ηt

 ∑
b∈[n]\a

Abiz
t
b→i

 (2.19)

zta→i = ya −
∑

j∈[N ]\i
Aajx

t
j→a (2.20)

where η function plays the role of soft thresholding, given the setting of β →∞; as β →
∞, the density of (2.17) concentrates on the basis pursuit solution [Donoho 2011]. These
are evidently simplified version of (2.18), and this recursive concept [Richardson 2008,
Pearl 2014] has inspired the design of many MP-based algorithms. However, the com-
putational cost is still expensive since this update rule forces to track the MN messages
every iteration.

From MP to AMP
In order to reduce the algorithm complexity of the MP methods, conventional fast iter-
ative thresholding approaches [Herrity 2006, Indyk 2008, Maleki 2009] exploit the fact
that, in large system, the right terms of (2.19) and (2.20) weakly depend on the index a
and i respectively. In other words, the difference made by a single index can be neglected
on the summation of (2.19) and (2.20), which leads to the assumption that messages
sent from a variable node are all equal regardless of factor nodes, i.e., xti→a ≈ xti and
the reverse is also valid, i.e., zta→i ≈ zta. As a result, the approaches cited above are
established with the following basic structures:

xt+1 = η
(
ATzt + xt

)
zt = y−Axt

(2.21)

Owing to the large system assumption, the MN messages demanded in MP algorithms
can be remarkably decreased to M +N every iteration.
Meanwhile, AMP algorithm pursues more careful analysis than the derivation process
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performed to obtain (2.21). Specifically, AMP introduces the first order Taylor approx-
imation of (2.19) considering the correction of the error caused by the assumptions of
xti→a ≈ xti and zta→i ≈ zta, the result of which produces the additional term as follows
[Donoho 2011]:

xt+1 = η
(
ATzt + xt

)
zt = y−Axt + 1

δ
zt−1

〈
η′
(
ATzt−1 + xt−1

)〉
︸ ︷︷ ︸

Onsager reaction term

(2.22)

which is called the Onsager reaction term in statistics physics [Thouless 1977]. The au-
thors in [Donoho 2011] proved, through the analysis of dynamical behavior with state
evolution (SE) formalism, that the error correction term is a decisive factor allowing
AMP to overwhelmingly outperform other fast iterative algorithms in the sparsity-
undersampling tradeoff, and even be comparable to the performance of LP-based re-
constructions. That is demonstrated in Fig. 2.3 which shows the comparison of the
phase transition graphs among three different recovery methods, where the upper area
of the graph represents the successful recovery of the algorithm.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0
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OMP
AMP

Figure 2.3: The phase transitions of reconstruction algorithms are compared. δ and ρ
denote the undersampling rate (M/N) and sparsity (K/N) respectively. AMP demon-
strates the equivalent recovery performance to L1 reconstruction. AMP used in this
simulation adopted the soft thresholding as the η function.

2.1.5.2 Remark on η function

We end the preliminary study of CS briefly inspecting the nature of η function turning
out to perform soft thresholding as stated previously, whereby we realize that the role
of the function is equivalent to the manner that a normal denoiser works in the modern
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signal processing.
Suppose that we are interested in solving the inverse problem of y = Ax. When in-
troducing an operator H = ATA − I, ATy = x0 + Hx0 makes sense with respect to
the estimate x0 of x. If A is orthogonal, H = 0 and the solution is immediately found
from ATy. However in the undersampling setting, i.e., when A is an M ×N(M < N)
random matrix, the inverse of A does not exist. Therefore, rather than Hx0 = 0, Hx0
acts like a sort of noisy random vector, and ATy can be recast as x0 + ε denoting
the noise by ε. In order to denoise ATy with typical iterative methods, when begin-
ning from an initial setup that elements of x0 are all zero, the second iteration leads to
AT (y−Ax1) = x0−x1 + H(x0−x1). Consequently, one may anticipate to keep on re-
ducing the noise level by iterating the operation; the initial noise level with the variance
of M−1‖x0‖22 will be reduced, at the next step, to the variance of M−1‖x0 − x1‖22.
In this regard, all iterative thresholding approaches including AMP are dedicated to the
design of denoising technique to fast and effectively remove ε for the exact sparse recov-
ery. Provided that the noise vector is accurately modeled as i.i.d. normal distribution,
[Donoho 1994] demonstrated that the soft thresholding having the appropriate threshold
value can show the best performance in denoising of a sufficiently sparse vector. The
standard AMP algorithm proposed by [Donoho 2009] have been devised with the soft
thresholding, and we will extend the original model by adopting more robust denoiser
and introducing more powerful sparsity expression in Chapter 3.

2.1.6 Applications of CS to US imaging

Fig. 2.4 compares the US images reconstructed by different recovery algorithms with the
measurement rate of 60%. In particular, the figure highlights the superiority of SαS-
IRLS [Achim 2010] introduced in section 2.1.4.1, demonstrating that RF echoes can be
best recovered with the optimal p determined exploiting the characteristic exponent α of
US data. Furthermore, [Achim 2015] shows in Fig. 2.5 that the recovery performance of
the approach in [Achim 2010] can be more enhanced, when being implemented in Fourier
domain where the distribution of US RF echoes is more heavy-tailed and using prior
knowledge from the acquisition process, i.e., the frequency of acquisition and transducer
bandpass.

2.2 Finite rate of innovation

This section is devoted to delivering the theoretical background underlying the second
contribution of this thesis. Whereas the focus of the preceding section is on finding
the breakthrough of the conventional data acquisition of QAM in the spatial domain,
henceforth we introduce a leading-edge sampling framework able to drastically reduce
the number of samples per QAM RF signal in the temporal domain.
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Figure 2.4: Comparison of original and reconstructed patches. (a) Original (RF) ultra-
sound image. Reconstructions with (b) `popt-norm (c) `α−0.01-norm (d) BP and (e) OMP
[Achim 2010].

2.2.1 Overview of FRI

The approach that will be proposed in Chapter 4 is based on the finite rate of innovation
(FRI) theory [Vetterli 2002] that provides theoretical guarantees for reconstructing FRI
signals, i.e. described by a limited number of parameters, from a small number of samples
acquired at the innovation rate. Interestingly, it has been shown that relevant recovery
schemes are even possible in the case of non-bandlimited signals such as stream of Diracs,
nonuniform splines and piecewise polynomials [Vetterli 2002, Urigüen 2013a, Wei 2016].
The key concept making the approach feasible is that the aforementioned class of signals
can commonly be modeled as union of subspaces instead of a single linear vector space
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Figure 2.5: Reconstruction results for a thyroid ultrasound image using 33% of the
number of samples in the original (a) B-mode ultrasound image (b) Reconstruction with
Lasso (c) SαS-IRLS reconstruction (d) SαS-IRLS in the Fourier domain (e) Fourier
domain IRLS with dual prior [Achim 2015].

forcing an input signal to be bandlimited [Lu 2008]. Specifically, in the context of FRI,
the signals can be interpreted as living in a shift-invariant subspace spanned by a set of
parameters with a known basis. As such, given the basis function as a prior information,
the novel sampling process carries out an uniform sampling at a dramatically reduced
sampling rate, i.e. the rate of innovation, corresponding to the degree of freedom able
to completely characterize the considered signal. The reconstruction strategy consists of
identifying the innovation part of the signal that is equivalent to finding the locations
and amplitudes of frequencies in a standard problem of spectral analysis [Stoica 2005].
The annihilating filter technique [Stoica 2005, Blu 2008] or the matrix pencil method
[Hua 1990, Sarkar 1995, Golub 1999] has been verified as the reliable solvers leading the
exact recovery in the FRI setup [Dragotti 2007, Maravic 2005].

2.2.2 Preliminary theory

Here, we clarify the notion of FRI signals by understanding the fundamental difference
from the conventional sampling theorem.

2.2.2.1 FRI interpretation of classical sampling theory

We herein figure out the potential of FRI by witnessing the intrinsic limitation of the
classical sampling theory.
When storing or processing real-world continuous-time signals with a digital device, the
analog to digital conversion (ADC) is involved, the first stage of which is sampling as
illustrated in Fig. 2.6. In terms of the classical sampling mechanism, the signal of interest
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𝑥(𝑡) 𝑔 𝑡 = 𝜑 −
𝑡

𝑇

𝑥(𝑡)
𝑥

𝑇

Figure 2.6: The schematic diagram shows the canonical sampling setup where x(t) is a
continuous-time signal. It is filtered by g(t) and then uniformly sampled with interval
T seconds. The resulting samples are given by xn =

〈
x(t), ϕ

(
t
T − n

)〉
.

x(t) is filtered by the sampling kernel ϕ(t) which is the scaled and time reversed version
of g(t), and then uniformly sampled every T seconds. The sampled discrete sequence xn
are given by:

xn = (x ∗ g)(t)|t=nT =
〈
x(t), ϕ( t

T
− n)

〉
=
∫ ∞
−∞

x(t)ϕ( t
T
− n)dt

(2.23)

Here, the key concern of this process is whether xn can preserve sufficient information
allowing the unique recovery of the original signal x(t). In order to provide more rigorous
answer, we need to comprehend the physics of the sampling process. xn is acquired by
orthogonal projection of x(t) onto the shift-invariant subspace V spanned by sampling
kernel ϕ(t) having the bandwidth of [−B

2 ,
B
2 ]. In addition, the sampling period T is

determined by the reciprocal of twice the maximum frequency of the kernel ϕ(t), i.e., 1
B .

Therefore, if x(t) does not contain any frequency component exceeding the maximum
frequency B

2 , namely x(t) ∈ V , the perfect recovery is guaranteed as follows:

x(t) =
∞∑

n=−∞
x(nT )ϕ̃

(
t

T
− n

)
(2.24)

where ϕ̃(t) is chosen from any function satisfying the pair of 〈ϕ(t− n), ϕ̃(t− k)〉 = δn−k.
Unless this is the case, the recovery process produces merely an approximate reconstruc-
tion x̂(t)(6= x(t)) which is the projection onto the subspace of the bandlimited signals,
i.e., span

{
ϕ̃
(
t
T − n

)}
n∈Z . Note that real-life signals are never exactly bandlimited, and

thus the conventional sampling scheme inevitably gives rise to a loss of information in
input signals. Instead, the subspace interpretation paves the way for the introduction of
a novel sampling scheme (FRI) allowing a lossless recovery irrespective of the constraint
of bandlimit; if and only if they are classes of signals belonging to the union of subspace
spanned with an arbitrary function, as well as the measurement is equivalent to the
degree of freedom of the signal called the innovation rate denoted by ρ.
From the perspective of FRI, the twice maximum frequency (B) of a bandlimited signal
within

[
−B

2 ,
B
2

]
is interpreted as the innovation rate of the signal, i.e., B = ρ. There-
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fore, the argument of the classical sampling theory for achieving a faithful recovery is
equivalent to indicating the classes of signals with finite number of parameters per unit
of time in the viewpoint of FRI.
In the following, we present the explicit definition of the innovation rate and the typical
expressions defining the parametric form of FRI signals.

2.2.2.2 Parametric modeling of FRI signals
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Figure 2.7: The figures display prototypical FRI signals: (a) train of Diracs, (b) stream
of pulses, (c) piecewise polynomial and (d) piecewise sinusoidal.

Starting from the seminal paper of Vetterli et al. [Vetterli 2002], a rich literature
exists on the reconstruction of this type of signals from a limited number of samples. The
number of measurements required for FRI signals is dictated by the rate of innovation
as mentioned before, i.e., the number of parameters defining x(t) over one period. The
innovation rate ρ of a signal x(t) is defined as follow:

ρ = lim
τ→∞

1
τ
Cx

(
−τ2 ,

τ

2

)
, (2.25)

where Cx[ta, tb] represents a counting function that counts the number of parameters of
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x(t) over the interval of time [ta, tb]. Signals with a limited number of degrees of freedom
occur in various applications such as astronomy [Pan 2017], radar [Rudresh 2017], medi-
cal imaging [Oñativia 2013] or wideband communications [Maravic 2003, Maravic 2004].
Fig 2.7 depicts examples of the signals with FRI, and particularly Fig 2.7 (a-b) can be
characterized with the following τ -periodic parametric form:

x(t) =
∑
m∈Z

L−1∑
l=0

alh(t− tl −mτ) (2.26)

where h(t) is a possibly non-bandlimited pulse considered known, e.g. Dirac delta func-
tion, and located at times {tl}l∈L and scaled by the amplitudes {al}l∈L. Thus, these
signals have 2L degrees of freedom.
The signal shown in Fig 2.7 (c) is piecewise polynomial and expressed as the following
form [Dragotti 2007]:

x(t) =
L−1∑
l=0

R−1∑
r=0

al,r (t− tl)r+ (2.27)

where x(t) consists of L pieces of maximum degree R− 1 (R > 0), and tr+ = max(t, 0)r.
Furthermore, Rth derivative of x(t) is given by a stream of differentiated Diracs, x(R)(t) =∑L−1
l=0

∑R−1
r=0 r!al,rδ(R−r−1)(t−tl). In this case, the rate of innovation is L+RL = L(1+R),

and the samples of x(t) obtained by a polynomial reproducing sampling kernel are re-
lated to those of x(R)(t) to reconstruct x(t) [Dragotti 2007].
[Berent 2009] extended FRI theory to piecewise sinusoidal functions which are concate-
nated by multiple pieces of oscillating functions containing time and frequency compo-
nents as shown in Fig. 2.7 (d), and also has the parametric expression as:

x(t) =
L−1∑
l=0

D−1∑
d=0

al,dcos (ωl,dt− θl,d) ξd(t) (2.28)

where al,d, ωl,d, and θl,d are unknown parameters, and denote respectively amplitudes,
frequencies and phases. On the other hand, ξd = u(t − td) − u(t − td+1) defines the
duration of summation of individual sinusoids, u(t) is the Heaviside step function, and
td is the instant of time to be determined.
Also, it should be noted that the QAM RF signal of our interest in Fig 1.11 (b) is
amenable to FRI framework since the physical phenomenon dominating the formation
of the signal can be explained in the view of the FRI parametric modeling. The in-depth
discussion of the above implication is presented in Chapter 4.
We have defined FRI signals and observed various examples, for which the sampling and
reconstruction processes are resumed hereafter.
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2.2.3 Sampling kernels and FRI sampling

In the previous subsection, it was shown that FRI acquisition process is akin to the
classical sampling process for a bandlimited signal due to the fact that, in this case, the
rate of innovation is consistent with the Nyquist rate. Thus, the ideal low-pass filter
can be considered as one of FRI sampling kernels. In fact, the authors of [Blu 2008]
showed that the FRI signal with τ -periodic K Diracs is sampled with a sinc function
of the bandwidth Bτ [Hz], and the 2M + 1 samples corresponding to Bτ are enough
for perfectly estimating 2K parameters of the input signal using annihilating filter.
However, the sampling method has an infinite support, and consequently is impractical
in real systems. In this regard, finding the appropriate sampling kernel is the central
objective of several existing studies [Vetterli 2002, Maravic 2005].
In what follows, we explore FRI sampling kernels compactly supported in time, and their
properties letting a sequence of numbers xn to be the exact representation of an original
signal x(t).

2.2.3.1 Polynomial reproducing kernel and Strang-Fix condition

A polynomial reproducing kernel of order (P+1) is any function ϕ(t) that can reproduce
polynomials of maximum degree P via a linear combination of its shifted versions. That
can be expressed with proper coefficients cm,n as follows:

∑
n∈Z

cm,nϕ(t− n) = tm, m = 0, . . . , P (2.29)

The family of polynomial reproducing kernels obeys the so-called Strang-Fix conditions
[Strang 2011], namely (2.29) for ϕ(t) holds if and only if

Φ(0) 6= 0 and Φ(m)(2jπl) = 0, for m = 0, . . . , P l ∈ Z \ {0} (2.30)

where Φ(ω) denotes Fourier transform of ϕ(t), and Φ(m)(ω) represents itsmth derivative.
B-spline [Schoenberg 1946] is one example of functions meeting Strang-Fix condition,
and (P + 1) order βP (t) is obtained by the convolution of (P + 1) box functions β0(t)
having 1 for t ∈ (0, 1] and zero otherwise, and its Fourier transform B0(jω) = 1−e−jω

jω
[Unser 1999]:

βP (t) = (β0 ∗ β0, · · · ∗ β0)︸ ︷︷ ︸
P+1 order

(t)
(2.31)

A function ϕ(t) of order (P + 1) satisfying (2.29) can be created by a linear combination
of shifted versions of B-spline in (2.31), and therefore such a polynomial reproducing
kernel has a (P + 1) compact support in time. Next we discover another kernel having
a finite duration, which is reckoned as a generalized form with respect to ϕ(t) in (2.29).
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2.2.3.2 Exponential reproducing kernel

Exponential reproducing kernels [Dragotti 2005] have been most commonly used for
sampling FRI signals owing to various advantages. First and foremost, it is of compact
support, and thus physically applicable for many existing sampling applications, fur-
thermore the property of which plays a key role to derive a novel FRI sampling strategy
permitting to use arbitrary kernels [Urigüen 2013b]. Finally, it is also worth mentioning
that the characteristic of the kernel allows the stable and robust design of a sampling
device with respect to a noise scenario [Urigüen 2013a]. That can be any function sat-
isfying the following: ∑

n∈Z
cm,nϕ(t− n) = eαmt, m = 0, . . . , P (2.32)

where cm,n are proper coefficients able to reproduce complex exponentials, i.e., eαmt with
complex value parameters αm, via linear combination of shifted versions of any function
ϕ(t). (2.32) hold for the family of the exponential reproducing kernels if and only if
ϕ(t) obeys the so-called generalized Strang-Fix conditions [Khalidov 2005, Vonesch 2007,
Urigüen 2013b]:

Φ(αm) 6= 0 and Φ(αm + 2jπl) = 0, for m = 0, . . . , P l ∈ Z \ {0} (2.33)

where Φ(αm) represents the Laplace transform of ϕ(t) evaluated at αm.
Note that if the specific kernel ϕ(t) meeting the above conditions is known, the coeffi-
cients cm,n can be numerically computed as follows:

cm,n =
∫ ∞
−∞

eαmtϕ̃(t− n)dt

=
∫ ∞
−∞

eαmxeαmnϕ̃(x)dx (2.34)

= eαmn
∫ ∞
−∞

eαmxϕ̃(x)dx︸ ︷︷ ︸
cm,0

= eαmncm,0

where the dual analysis function ϕ̃(t) is biorthogonal to ϕ(t), i.e., 〈ϕ̃(t− n), ϕ(t−m)〉 =
δm−n[Unser 2005].
The authors in [Urigüen 2013a] established the condition of the coefficients cm,n for the
kernel ϕ(t) to guarantee the stable and accurate recovery that the absolute values of cm,0
are equal to entrywise, e.g., |cm,0| = 1, and αm should be purely imaginary exponents
able to span an entire unit circle. In addition, complex conjugate exponential pairs in
αm lead to practical real valued analog filters.
In order to obtain ϕ(t) satisfying (2.32), it is necessary to figure out the notion of
exponential splines, i.e., E-spline, the first order of which by definition is βα having eαt
for t ∈ (0, 1] and zero otherwise, and its Fourier transform is given by Bα(jω) = 1−eα−jω

jω−α .
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Higher order of E-splines can be obtained by the successive convolution of lower ones
with specific parameters ~α = (α0, α1, . . . , αP ) as follows [Unser 2005]:

β~α(t) = (βα0 ∗ βα1 , · · · ∗ βαP )(t) (2.35)

where we notice that in the case of α = 0, (2.35) is identical to (2.31), and therefore the
family of E-splines is a generalized form of that of B-spline. Also note that since the ex-
ponential reproduction property is kept through convolution as proven in [Unser 2005],
any composite function ψ(t) produced by (h ∗ ϕ)(t) relative to an arbitrary function
h(t) is still able to reproduce exponentials, and consequently

∑
n∈Z ĉm,nψ(t− n) = eα̂mt

[Urigüen 2011].
In the following, we will show how to sample FRI signals with the exponential reproduc-
ing kernel, and examine how the resulting samples are related to the unknown parame-
ters.

2.2.3.3 Exponential moments

Let xn be a finite set of N uniform samples acquired by low-pass filtering an FRI signal
x(t) with the exponential reproducing kernel ϕ(t) in (2.32), and uniformly sampling at
intervals of T seconds:

xn =
〈
x(t), ϕ

(
t

T
− n

)〉
(2.36)

For estimating the unknown parameters of the signal x(t), the discrete numbers xn are
converted into a sequence of moments Sm as follows:

Sm =
N−1∑
n=0

cm,nxn

=
〈
x(t),

N−1∑
n=0

cm,nϕ

(
t

T
− n

)〉
(2.37)

=
∫ ∞
−∞

x(t)e
αmt
T dt

where it is obvious that Sm is equivalent to the projection of x(t) onto the subspace
spanned by {eαm}Pm=0, and thus it is exactly the bilateral Laplace transform of x(t)
evaluated at {αm}Pm=0, or is the Fourier transform X(ωm) of x(t) at ω = {ωm}Pm=0 when
αm is purely imaginary, αm = −jωm.
In order to make the implication of (2.37) clearer in the perspective of the parameter
estimation, we apply the specific FRI signal of (2.26) to x(t) in the last equality of (2.37),
which is characterized as the weighted and delayed periodic signal of a known pulse h(t)
with τ -period. For the simplicity, the period τ is considered as one second, and we
confine the exponential moments Sm to Fourier domain respecting the constraints for
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coefficients cm,n in [Urigüen 2013a].

Sm =
∫ ∞
−∞

L−1∑
l=0

alh(t− tl)︸ ︷︷ ︸
one period of x(t)

e
−jωmt
T dt

=
∫ ∞
−∞

L−1∑
l=0

alh(u)e
−jωtl
T e

−jωmu
T du =

L−1∑
l=0

ale
−jωmtl

T

∫ ∞
−∞

h(t)e
−jωmt
T dt

= H(ωm)
L−1∑
l=0

alu
m
l

(2.38)

where uml stands for e
−jωmtl

T . By normalizing the left-hand side with the prior knowledge
H(ωm), we obtain the power sum series form:

Nm = Sm
H (ωm) =

L−1∑
l=0

alu
m
l (2.39)

where determining innovation parameters {al, tl}L−1
l=0 from {Nm}Pm=0 can be solved by

conventional tools from spectral estimation [Stoica 2005] such as annihilating filter method
(Prony’s method) [Vetterli 2002, Dragotti 2007].
In the sequel, we review some of the existing recovery strategies.

2.2.4 Parameter estimation

A power series form such as (2.39) commonly appears at signal decomposing problems
with linear combination of complex exponentials. The Annihilating filter proposed by
Gaspard de Prony is known as the first solution to the parametric spectral estimation,
and has been extensively employed as a tool to not only determine unknown parameters
in FRI area but also decode the CS information [Hormati 2007]. Hereinafter, we review
the annihilating filter structure and its properties, and additionally address recovery
methods in noisy setting.

2.2.4.1 Annihilating filter

Based on the definition of the annihilating filter {Am}Lm=0 to null out Nm and its Z-
transform Â(z) given in (2.40) and (2.41), the estimation of the ul’s is equivalent to
finding the zeros of Z-transform Â(z) such that the location tl’s are distinct.

Â(z) =
L∑

m=0
Amz−m =

L−1∏
l=0

(1− ulz−1) (2.40)
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Am ∗ Nm =
L∑
i=0
AiNm−i =

L−1∑
i=0
Ai

L−1∑
l=0

alu
m−i
l

=
L−1∑
l=0

alu
m
l

L∑
i=0
Aiu−il︸ ︷︷ ︸

Â(ul)=0

= 0
(2.41)

Consequently the time instance ul’s are determined by the roots of the filter coefficients
following the next steps.
(2.41) can be recast as a matrix-vector form Na = 0 as follows:

NL NL−1 . . . N0
NL+1 NL . . . N1

...
... . . . ...

NP NP−1 . . . NP−L


︸ ︷︷ ︸

N


A0
A1
...
AL


︸ ︷︷ ︸

a

=


0
0
...
0

 , (2.42)

where N is a Toeplitz matrix of Nm of size (P − L + 1) × (L + 1) provided that the
sampling kernel’s order (m = 0, . . . , P ) satisfies P + 1 ≥ 2L, and vector a denotes the
annihilating filter coefficients. Following the convention of A0 = 1, (2.42) is restructured
as the system having L equations. Thus, for identifying {A1, . . . ,AL}, at least 2L con-
secutive values of Nm are required. The time delays tl are found by the roots of the
vector a, and the amplitudes al are retrieved by a linear problem solving L consecutive
equations in (2.39).
Fig. 2.8 depicts that the two synthetic signals are exactly reconstructed by the annihi-
lating filter method and the LSE solver.
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Figure 2.8: Reconstruction results of a Stream of Diracs (a) and modulated Gaussian

pulses, e−
(t−t0)2

σ2 cos(2πtfc) (b).
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2.2.4.2 Retrieval of FRI signals in a noisy setting

To deal with complex exponentials perturbed by noise, diverse advanced approaches de-
rived from Prony’s method have been developed [Maravic 2005, Urigüen 2013a, Wei 2016].
The total least squares (TLS) [Moor 1993] is one of these methods.
TLS attempts to find an optimal solution by minimizing ‖ Na ‖2. In a nutshell, the
singular value decomposition (SVD) with respect to the matrix N is performed, and in
turn N = U∆VH is acquired. The vector a is obtained by choosing the last column
vector of the right unitary matrix V corresponding to the smallest singular value. Time
delays tl are determined from the roots ul of coefficients of the filter a. Finally, the am-
plitudes al can be obtained from the least square estimator (LSE) associated to (2.39),
by solving Nm −

∑L−1
l=0 alu

m
l ≈ 0.

Furthermore, recent related studies [Blu 2008, Urigüen 2013a, Wei 2016] introduced
TLS-Cadzow routine [Cadzow 1988] to achieve more robust reconstruction, which im-
plements an iterative denoising for noisy measurements prior to a parameter estimation
explained above. The approach is motivated by the fact that the matrix N formed by
noisy moments is no longer rank-deficient rather close to a full rank. The main prin-
ciple of the approach consists of two operations every iteration; the rank reduction by
replacing all singular values with zero but L largest values, and then forcibly imposing
a Toeplitz matrix structure on the matrix of the current stage by averaging diagonal
elements.

2.3 Summary
In this chapter, we have presented an overview and general theory on the state-of-the-
art data acquisition frameworks which must be the backbone of the contributions of this
thesis. However, in order to cope with our problems related to the QAM system, we
should further evolve the current technologies since, to the best of our knowledge, the
data structure and system mechanism of QAM have never been considered in the realms
of CS or FRI to date. In short, the raster scanning manner of QAM is not compatible to
any sensing scheme devised in CS literature at all. In addition, the frequency attenuation
effect occurring in QAM RF signals is a pretty intractable parameter in FRI context.
In this sense, the main original contributions of the thesis is disclosed in the following
chapters.
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Chapter 3

Approximate message passing
algorithm for reconstruction of
QAM 2D maps

Part of the work in this chapter has been published in [Hill 2016], [Kim 2016],
[Kim 2017], and [Kim 2018a].
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3.1 Introduction

A current QAM technique pursuing a fine resolution microscopic image necessarily ex-
ploits high frequency, i.e., 250 MHz or 500 MHz, and performs a quite dense scanning
which is time consuming and generates considerable amount of data.
This chapter proposes the novel approach to enhance the efficiency of the data acquisi-
tion process with respect to QAM by introducing Compressive Sampling (CS) framework
in spatial domain. CS has been vigorously studied as an alternative of Nyquist sampling
theorem for the last decade which, given particular conditions, proved to guarantee the
perfect reconstruction of the undersampled data even below Nyquist rate. Recall that
the CS measurement is modeled as:

y = Φx + n (3.1)

The strategy to estimate the original image x from the observation y can be made up of
the two separate procedures known as sensing and recovery which, in a classical manner,
are commensurate with the construction of measurement matrix and the design of the
recovery algorithm respectively. When it comes to the former, in the case of QAM the
data acquisition fashion is not able to follow the conventional sensing matrix based on
randomness because of the mechanical motion of QAM motor stage consecutively taking
data by continuous raster scanning. On the other hand, as a method of the latter to
find a sparse solution, this work employs Cauchy-AMP algorithm performing denoising
in a wavelet domain, based on the hypothesis that wavelet coefficients of QAM images
show heavy tailed PDF (probability density function) fit for Cauchy distribution.
Our proposed AMP-based QAM imaging framework consists of two major modules.: (i)
In the data acquisition component of our system, we propose novel techniques for QAM
data sampling, by choosing sensing matrices that meet CS requirements, and simulta-
neously take into account the mechanism of practical QAM acquisition devices based
on raster scanning. (ii) In the image reconstruction component, we design and test a
wavelet domain AMP-based approach, which exploits underlying data statistics through
the use of a Cauchy-based maximum a posteriori (MAP) algorithm.1
We hereafter demonstrate that the proposed reconstruction algorithm is able to most
accurately and fastest find the sparse solution of an QAM image represented in wavelet
domain, compared with the counterparts. Using the novel recovery method, three re-
alizable scanning patterns are simulated to figure out the most relevant undersampling
tactic for QAM image formation. For this simulation, three histological images were
utilized; one acquired from human cornea tissue by SOS mode with 500 MHz and the
others from human lymph node by SOS mode and impedance mode with 250 MHz. The
visual and numerical results are presented, and we conclude this chapter by discussing
the experimental results.

1An initial version of this algorithm was presented in [Hill 2016], but the work therein was focused
on natural images.
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3.2 Denoiser in AMP

The AMP algorithm can be interpreted as recursively solving an image denoising prob-
lem. The authors in [Som 2012, Tan 2015] have extended AMP by embedding various
image denoising algorithms into the AMP iterative structure. To be more specific, AMP
reconstructs an original image from the reduced number of linear measurements by per-
forming elementwise denoising at each iteration as we reviewed in section 2.1.5.2. Thus
at each AMP iteration, one obtains a noise perturbed original image. Reconstructing
the image amounts to successive noise cancellations until the noise variance decreases
to a satisfactory level. Fig. 3.1 visualizes the process to recover an undersampled image
by iteratively removing noise with a denoising method (soft thresholding) within the
wavelet based AMP framework. It is clearly witnessed that as the iteration number
increases, the resulting images become closer to the original one.

Original Image

2 4 6 8 10

12 14 16 18 20

Reconstructed Images 𝑿𝒕

Iteration Number t

Figure 3.1: The figure shows the iterative denoising process to recover the original image
(from Lena image) from 40% undersampled data within AMP reconstruction framework
where the used denoiser is the soft thresholding function.

To solve (3.1), AMP iteratively implements the following two steps:

xt+1 = ηt
(
ΦTzt + xt

)
, (3.2)

zt = y −Φxt + 1
δ
zt−1

〈
η′t−1

(
ΦTzt−1 + xt−1

)〉
(3.3)
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where x,y, z and δ denote a sparse signal, observation, residual and undersampling ratio
(M/N) respectively. η ( · ) is a function that represents the denoiser, η′ ( · ) is its first
derivative and 〈x〉 = 1

N

∑N
i=1(xi). The superscript t represents the iteration number and

( · )T is the classical conjugate transpose notation. Given that x is all zero vector and
z is set to y as the initial conditions, the algorithm implements sequentially (3.2) and
(3.3) until satisfying a stopping criterion or reaching a pre-set iteration number.

3.2.1 Model estimation of denoiser

From the observation in the Fig. 3.1, it is arguable that the most important considera-
tion in AMP algorithm design consists in the choice of the robust and efficient shrinkage
(denoising) function, η. A denoising function usually attempts to estimate the original
PDF of signal via noise reduction on a transform domain which normally provides a
sparse representation. Therefore, the performance of transform-domain based denoiser
strongly relies on the distribution of coefficients that the transform function represents.
For instance, wavelet transform is known as a effective method to attract the sparse
characteristic of any signals or images present in the nature, and its coefficients are gen-
erally modeled as a heavy tailed Gaussian distribution. [Selesnick 2009] introduced the
derivation process of the soft threshold function as the denoiser for a wavelet coefficients
often modeled as a generalized (heavy-tailed) Gaussian [Simoncelli 1999], using maxi-
mum a posteriori (MAP) estimator. In the section 3.3, we will introduce the wavelet
based Cauchy-AMP as the sparse reconstruction method, which is known to lead to
heavier tails than the Gaussian density and has been derived in a similar way to the
process described in [Selesnick 2009].
An extended wavelet-based AMP system can be generated by integrating a wavelet
transform (denoted by W ) into (3.2) and (3.3) using the following transformation.

y = ΦW−1θx︸ ︷︷ ︸
x

+n, (3.4)

where W−1 denotes the inverse wavelet transform of W , and θx becomes the sparse rep-
resentation of x within wavelet domain. Introducing Θ as the new notation for ΦW−1,
we get the following expressions:

θt+1
x = ηt

(
ΘTzt + θt

x

)
, (3.5)

zt = y−Θθt
x + 1

δ
zt−1

〈
η
′
t−1

(
ΘTzt−1 + θt−1

x

)〉
. (3.6)

Subsequently, the defined denoising algorithms seek to denoise the elements of θt
q =

ΘTzt + θt
x corresponding to the contaminated wavelet coefficients. To simplify the

following notation, the ith element of θt
q is defined as θtq,i = v and the ith element of the

denoised output θt+1
x is defined as θt+1

x,i = ŵ (a denoised estimate of the true coefficient
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3.2. Denoiser in AMP

w). In the following, we review two previously defined denoising functions [Dabov 2007,
Metzler 2016] which will be used as comparison methods in Section 3.4.

3.2.2 Soft Threshold (ST) denoiser

Soft threshold denoiser was adopted as the η function in the seminal AMP algorithm
first proposed by [Donoho 2009].

ŵ = η(v) = sign(v)(|v| − τ) ·1(|v|>τ)

η
′(v) = 1(|v|>τ)

(3.7)

where 1( · ) is the indicator function, and τ denoting the threshold is defined as the M th

largest wavelet coefficient of θt
q when M is the number of measurement. Therefore, the

coefficients less than τ are reckoned as noise and set to zero every iteration, otherwise
shrunk as much as τ . The denoised coefficients ŵ are used to update the residual z in
the next iteration as shown in (3.6). The first derivative η′ of the η function in the ST
denoiser is equivalent to counting the number of non zero coefficients in the output of
the η function, which is intuitively observed in Fig. 3.2.

3.2.3 Amplitude-scale-invariant Bayes Estimator (ABE) denoiser

ŵ = η(v) = (v2 − 3σ2)+
v

η
′(v) = 1(v2>3σ2) ·

(
1 + 3

(
σ

v

)2
) (3.8)

where σ2 is the noise variance at iteration t and ( · )+ is the right handed function where
(u)+ = 0 if u ≤ 0 and (u)+ = u if u > 0. As far as the CS reconstruction of conventional
ultrasound images is concerned, the denoiser in (3.8) has proved to achieve better per-
formance than IRLS and lp programming [Kim 2016]. Therefore, we hypothesize that
ABE should also be a successful solver for the reconstruction of QAM images, and con-
sequently we shall use it for benchmarking our method. Fig. 3.2 illustrates the behavior
of denoising for four different shrinkage functions, where ABE and the Cauchy-based
denoisers (to be introduced in the subsequent section) can be regarded as a compro-
mise between Soft-thresholding and Hard-thresholding [Figueiredo 2001]. The labels on
the horizontal and vertical axes correspond to corrupted wavelet coefficient and their
denoised version respectively. Subscript i represents the index of each element which
implies element-wise denoising, as stated before.
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Figure 3.2: The comparison of behavior among four different denoisers.

3.3 Cauchy-AMP for compressed QAM imaging
This section describes the key features of wavelet-based Cauchy-AMP together with the
practical sensing patterns as a novel approach for QAM CS reconstruction.

3.3.1 Wavelet based Cauchy-AMP

Wavelet coefficients provide a sparse representation for natural images. In addition,
they can be accurately modeled using heavy tailed distributions such as the α-stable
distribution [Achim 2001, Achim 2004]. The Cauchy distribution is a special case of the
α-stable family which not only has a heavy tailed form but has a compact analytical
probability density function given by [Hill 2016]:

P (w) = γ

w2 + γ2 , (3.9)

where w and γ are the wavelet coefficient value and the dispersion parameter (control-
ling the spread of the distribution) respectively. Given (3.9), a maximum a posteriori
(MAP) estimator (3.10) can lead to the derivation of explicit formula to estimate a clean
wavelet coefficient w from an observation v contaminated with additive Gaussian noise
n having noise variance σ2, i.e., v = w + n.

ŵ = argmax
w

Pw|v(w|v). (3.10)
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3.3. Cauchy-AMP for compressed QAM imaging

The posterior probability Pw|v(w|v) can be expressed as (3.11) by means of Bayes’ the-
orem, i.e., Pw,v(w, v) = Pw|v(w|v)Pv(v) and Pw,v(w, v) = Pv|w(v|w)Pw(w).

Pw|v(w|v) =
Pv|w(v|w)Pw(w)

Pv(v) . (3.11)

Assuming Pv|w(v|w) ∼ N(0, σ2) because Pv|w(v|w) is equivalent to Pn(v−w) of Gaussian
noise [Selesnick 2009] and introducing the logarithmic form that is a monotonic function
able to trace a peak point of Pw|v(w|v), (3.10) is given in (3.12) which is mathematically
more intuitive. The evidence Pv(v) is constant for all inputs and therefore can be ignored.

ŵ(v) = argmax
w

[
log(Pv|w(v|w)Pw(w))

]
(a)= argmax

w

[
−(v − w)2

2σ2 + log (Pw(w))
]

= argmax
w

[
−(v − w)2

2σ2 + log
(

γ

w2 + γ2

)] (3.12)

where (a) comes from the Gaussianity assumption of Pv|w(v|w), i.e., 1
σ
√

2π · exp
(
− n2

2σ2

)
and the normalization constant is negligible. To find the solution to (3.12), take the first
derivative of the terms in the bracket relative to w and set to zero:

v − w
σ2 − 2w

w2 − γ2 = 0 (3.13)

ŵ3 − vŵ2 + (γ2 + 2σ2)ŵ − γ2v = 0 (3.14)

Using Cardano′s formula, the estimate of w can be found in (3.15), the first derivative
of which is (3.16).

ŵ = η(v) = v

3 + s+ t, (3.15)

ŵ
′ = η

′(v) = 1
3 + s

′ + t
′
, (3.16)
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where s and t are defined as:

s = 3

√
q

2 + dd, t = 3

√
q

2 − dd

dd =

√
p3

27 + q2

4

p = γ2 + 2σ2 − v2

3

q = vγ2 + 2v3

27 −
(γ2 + 2σ2)v

3

(3.17)

s′ and t′ are found as follows:

s′ = q′/2 + dd′

3(q/2 + dd)(2/3) , t′ = q′/2− dd′

3(q/2− dd)(2/3)

dd′ = p′p2/9 + q′q/2
2dd ,

p′ = −2v
3 ,

q′ = −2σ2

3 + 2γ2

3 + 2v2

9

(3.18)

3.3.2 Practical sensing patterns for QAM

Random scanning schemes are theoretically optimal sensing modalities, but impractical
for QAM data acquisition due to the intrinsic mechanical structure of the QAM system
that a motor stage moves along a continuous path as stated previously. Therefore, in this
thesis we investigated three practical sensing schemes, which can be easily implemented
using servo motors. Firstly, the diagonal sensing schemes raster-scans oblique lines
using a constant predefined angle which is used to vary the measurement rate, i.e., a
smaller angle leads to denser sampling. The row random sensing pattern, as the second
suggestion, is a naive but practical attempt to preserve randomness. Data are collected
using a practical raster scanning approach, but only on randomly selected rows. Finally,
the spiral sensing scheme is also a practical sensing manner which originates in the
center of area to be sampled and spreads out following a spiral pattern. The pace of the
spreading is parameterized and used to prescribe the measurement rate.
Fig. 3.3 illustrates all sensing schemes used to sample data from a target composed of
256 × 256 pixel. A measurement rate of 20% is shown for all three schemes and the
white pixels corresponds to the area to be spatially sampled.
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Figure 3.3: The proposed three different types of sampling masks, (a) Diagonal, (b) Row
random and (c) Spiral.

3.4 Simulation results
Two different sets of experiments have been conducted and results are reported in Sec-
tions 3.4.1 and 3.4.2. The objective of the first set of experiments was to evaluate the
performance of the proposed Cauchy-AMP algorithm. The second set of experiments
shows the interest of the proposed sampling schemes in QAM and the ability of Cauchy-
AMP algorithm to recover high quality images from the resulting under-sampled data.
In addition to visual inspection, the peak signal to noise ratio (PSNR) and the structural
similarity (SSIM) index [Wang 2004] were used to assess the quality of the reconstructed
images by comparing them to the corresponding fully-sampled quantitative maps. SSIM
is known as a perception-based metrics more suitable for disclosing the degradation or
distortion of a recovered image.

PSNR(dB) = 10log10
max(x, x̂)2

‖x− x̂‖
(3.19)

SSIM = (2µxµx̂ + c1)(2σxx̂ + c2)
(µ2
x + µ2

x̂ + c1)(σ2
x + σ2

x̂ + c2) (3.20)

where x, x̂, µ and σ2 denote an original image, recovered image, the mean of the data
and the variance of the data respectively. c1 and c2 are variables to stabilize the division.

3.4.1 Simulation A: reconstruction results with random sensing schemes

The objective of this subsection is to validate the efficiency of the proposed Cauchy-AMP
algorithm in comparison to alternative methods, previously proposed for CS reconstruc-
tion. Two of these were described in Section 3.2 and, while also AMP-based, they use
ST and ABE as shrinkage functions in (3.2) and (3.3). In addition, we also compare to
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conventional CS reconstruction algorithms, including the L1LS method and the IRLS
algorithm for l1-norm and `p minimization, respectively. These are succinctly outlined
in the following:
L1LS (l1-regularized Least Squares):
This l1 based algorithm solves an optimization problem of the following form:

min‖Φx− y‖2 + λ
∑
i=1
|xi|, (3.21)

where λ, a positive number, is a regularization parameter; set by cross validation to its
best value, 0.01, in the results hereafter.
IRLS (iteratively reweighed least squares):

x̂ = min
x
‖x‖p subject to y = Φx. (3.22)

In the problem to estimate a sparse vector characterized by an alpha stable distribution,
(3.22) finds a solution by solving an lp norm minimization [Chartrand 2008]. Thus, in
order to choose the optimum value of p in (3.22), we employed the approach described
in [Achim 2010]. This approach was found to be superior to existing lp solvers when
applied to CS reconstruction of conventional ultrasound images.
In order to focus on evaluating the performance of the proposed reconstruction algorithm,
the results in this subsection are obtained with two random sensing matrices known as
ensuring the incoherence relationship with any transform domains: image projections on
random Gaussian vectors and point-wise multiplication with Bernoulli vectors formed
by uniformly random distributed zeros and ones.
Two experimental data volumes were used, from which impedance maps were estimated
point-wise using the method in [Rohrbach 2017]. The first was acquired from a spatial-
resolution target consisting of small bars of known width and spacing. Because the
chrome used to form those bars is deposited using photolithography, the metal thickness
(i.e., ∼ 0.12 µm) is much smaller than the wavelength at 250 MHz (i.e., ∼ 6 µm) and
therefore only an effective acoustic impedance (zeff ) can be estimated. The amplitudes
of the reflected signal (A) and the reference signal (B) were used to calculate zeff using
the following equation from the pressure reflection law [Kinsler 1999]:

zeff = zw
(1 +Rref

A
B )

(1−RRef AB )
, (3.23)

where zw is the known acoustic impedance of water and Rref is the pressure reflection
coefficient between water and glass slide:

Rref = zg − zw
zg + zw

, (3.24)
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where zg is the known acoustic impedance of the glass slide. The second data volume
was acquired from a 12-µm thick section obtained from a lymph node excised from
a colorectal cancer patient using the 250-MHz QAM system. For both Gaussian and
Bernoulli measurement matrices, the reconstruction results correspond to a measurement
rate of 25%, i.e., the ratio between the number of CS measurements and the number of
pixels in the fully sampled QAM image.

Method SSIM PSNR (dB)
Lymph Node USAF Lymph Node USAF

Cauchy 0.841 0.429 39.08 37.54
ABE 0.811 0.418 39.01 37.45
ST 0.724 0.380 38.41 35.95
IRLS 0.698 0.333 34.97 32.85
L1LS 0.457 0.290 32.14 31.30

Table 3.1: Numerical Results of recovery quality (Gaussian random sensing)

Method Runtime (secs)
Lymph Node USAF

Cauchy 3.32 3.47
ABE 2.86 3.00
ST 2.82 2.93
IRLS 62.88 333.61
L1LS 4.10 6.88

Table 3.2: The comparison of execution time: the averaged values over 30 trials

3.4.1.1 Gaussian random measurements

Figs. 3.4 and 3.5 illustrate the impedance images obtained with the five reconstruction
algorithms from Gaussian random measurements. It highlights that IRLS and L1LS
methods severely distorted the fully-sampled image compared to the AMP-based algo-
rithms. By closely comparing the AMP-based methods, one may remark that Cauchy-
AMP shows a tendency of noise removal with a slightly excessive smoothing effect,
whereas ST-AMP and ABE-AMP suffer from several reconstruction artefacts. Table 3.1
regroups the PSNR and SSIM values corresponding to the results in Figs. 3.4 and 3.5.
Additionally, Table 3.2 provides the runtime of the five methods, averaged over 30 trials.
All the algorithms were implemented in Matlab R2014a environment and executed on
a desktop computer equipped with a 2.6GHz Intel(R) CoreTM i7 − 6500C processor
with 8GB RAM. AMP algorithms outperform the two conventional recovery approaches
IRLS and L1LS. Particularly, Cauchy-AMP yields the most accurate results compared
to its AMP counterparts, at the cost of an execution time marginally higher than ABE-
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Figure 3.4: (a) Fully-sampled impedance (MRayl) map estimated from RF data acquired
on the USAF 1951 resolution test chart, reconstruction results from Gaussian random
measurements for a measurement ratio of 0.25 with (b) proposed Cauchy-AMP, (c)
ABE-AMP, (d) ST-AMP, (e) IRLS and (f) L1LS algorithms.
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Figure 3.5: (a) Human lymph node’s fully-sampled impedance (MRayl) map represent-
ing a reconstruction results from Gaussian random measurements for a measurement
ratio of 0.25 with (b) proposed Cauchy-AMP, (c) ABE-AMP, (d) ST-AMP, (e) IRLS
and (f) L1LS algorithms.
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Figure 3.6: The comparison of NMSE according to iteration number for three AMP
recovery methods: NMSE values are averaged over 30 simulated QAM images.

and ST-AMP. The execution time increase per iteration is explained by the number of
parameters to be estimated during the denoising process. Indeed, Cauchy-AMP requires
the estimation of an extra parameter compared to ST- and ABE-AMP,i.e., the disper-
sion parameter γ in (3.9) which is updated at each iteration. Nevertheless, the extra
computational cost per iteration is significantly mitigated by the faster convergence of
Cauchy-AMP as revealed in Fig. 3.6.

3.4.1.2 Bernoulli random measurements

The above overall evaluation confirms that AMP-based algorithms are the most promis-
ing QAM recovery methods from under-sampled data. However, measurements obtained
by linear projections on Gaussian vectors are not of practical use in QAM. As explained
previously, QAM data is acquired point-wise by raster scanning the sample. Thus,
Bernoulli random measurements corresponding to random spatial positions are further
adapted to QAM acquisition system. Therefore, the three AMP-based methods are
tested in this section on the same image used previously but on Bernoulli randomly
sampled data. Similar to the previous results, the proposed Cauchy-AMP outperforms
ABE- and ST-AMP algorithms. The three reconstructed images are shown in Figs. 3.7
and 3.8. The corresponding quantitative results are regrouped in Table 3.3.
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Figure 3.7: (a) Fully-sampled impedance (MRayl) map estimated from RF data acquired
on the USAF 1951 resolution test chart, reconstruction results from Bernoulli random
measurements for a measurement ratio of 0.25 with (b) proposed Cauchy-AMP, (c)
ABE-AMP, (d) ST-AMP algorithms.

Method SSIM PSNR (dB)
Lymph Node USAF Lymph Node USAF

Cauchy 0.851 0.424 38.72 34.56
ABE 0.837 0.417 38.56 34.33
ST 0.815 0.415 37.88 34.09

Table 3.3: Numerical Results of recovery quality (Bernoulli random sensing)
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Figure 3.8: (a) Fully-sampled impedance (MRayl) map representing a reconstruction
results from Bernoulli random measurements for a measurement ratio of 0.25 with (b)
proposed Cauchy-AMP, (c) ABE-AMP, (d) ST-AMP algorithms.
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3.4.2 Simulation B: reconstruction results with sensing schemes dedi-
cated to QAM

The results shown in the previous section demonstrated, in the recovery of QAM image,
the superiority of the proposed Cauchy-AMP algorithm to four well-established methods.
However, Gaussian random measurements are impractical for QAM data acquisition.
Similarly and although technically possible, it would be inefficient to move the transducer
to transmit and receive ultrasound signals at spatial locations following a Bernoulli
random measurements. Therefore, in this second set of simulations, the three AMP-
based algorithms are employed to assess the relevance of the practical sensing patterns
proposed in this study (see Section 3.3.2) for QAM imaging. The simulations used
experimental results obtained from three real QAM maps. The first map corresponds to
the SOS map obtained from a human cornea sample using the 500-MHz QAM system.
The two other maps are SOS and impedance maps obtained using the 250-MHz QAM
system on a human lymph node thin section obtained from a colorectal cancer patient.
The fully sampled images correspond to standard raster scanning at conventional spatial
scanning frequencies, resulting into a pixel size of 1 µm per 1 µm and of 2 µm per 2 µm
for the 500 MHz and 250 MHz data respectively. All the AMP-algorithm investigations
were performed using measurement ratios ranging from 20% to 60% of the data obtained
using the conventional raster scanning approach. Blue regions in these images were not
included in quantitative analyses because they were devoid of tissues. Figs. 3.9, 3.10
and 3.11 show the fully-sampled images and the ones recovered by the three algorithms
from data generated with the three considered patterns for a measurement rate of 40%.
Specifically, the results from the row random pattern show many artifacts appearing as
“transverse” lines, and consequently this scheme is out of our interest. In contrast, the
spiral and diagonal sensing patterns do not contain any visually-apparent artifacts. In
order to determine which of these two sensing patterns performs better QAM recovery,
one may observe Figs. 3.9-3.11 where the dense yellow area was better reconstructed
using the spiral than the diagonal sensing pattern. Also for the sake of the quantitative
evaluation to support the visual assessments, the numerical results are offered in the
Table 3.4 and 3.5. From the tables, it can be seen that the spiral pattern combined
with Cauchy-AMP based algorithm always provides the highest PSNR, followed by the
diagonal pattern. Additionally, the PSNR values displayed in Fig. 3.12 compare the
reconstruction qualities of the QAM images among the three proposed sensing patterns
supported by Cauchy-AMP based algorithm with respect to the different measurement
ratios ranging from 20% to 60%. In the whole range of measurement ratios, the spiral
pattern scanning led to more accurate recovery than others. We discuss the implication
of these results in section 3.5.
Along with the sensing ability to lead to the desirable recovery, another potential benefit
of spiral pattern resides in significantly reduced scanning time. QAM estimation time is
typically less important than QAM data acquisition time because tissue properties may
change during scanning. Nevertheless, while the proposed AMP approach significantly
decreases scanning time, it turns out that it also significantly decreases image formation
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time, because QAM parameter estimation is done independently on each RF line and
is much more time consuming than AMP (cf. Table 3.2). For example, in the case of
the 40% spiral, scanning time is reduced by more than 80% because in conventional
raster scanning most of the time is spent accelerating and decelerating in each scan
line, whereas the spiral is a smooth continuous curve which can be scanned at almost
constant speed with servo motors. In addition, initial parameter estimation time is also
reduced by 60% prior to the application of the AMP algorithm. The raster scanning
and parameter estimation times for the lymph node example (Fig. 3.10 and Fig. 3.11)
were approximately 20 and 15 minutes. The 40% spiral AMP approach would reduce
these times to approximately 4 and 8 minutes.
Overall, these sets of simulations reveal that combining a spiral sensing pattern with a
measurement ratio of 40%, and a Cauchy-AMP recovery is the best compromise between
a practical spatial sampling pattern easily implementable with servo motors and image
reconstruction quality for QAM imaging.

Image Method SSIM
SPIRAL DIAGONAL Y RANDOM

Conear 500MHz
(SOS)

Cauchy 0.530 0.458 0.415
ABE 0.509 0.435 0.393
ST 0.502 0.373 0.306

Lymph Node 250MHz
(SOS)

Cauchy 0.445 0.388 0.342
ABE 0.438 0.374 0.323
ST 0.418 0.351 0.301

Lymph Node 250MHz
(Impedance)

Cauchy 0.911 0.884 0.868
ABE 0.907 0.878 0.864
ST 0.896 0.868 0.859

Table 3.4: Numerical results (SSIM) of recovery quality for the reconstructed images
shown in Figs. 11, 12 and 13

3.5 Conclusions

In this chapter, a novel framework for compressive sampling reconstruction of QAM im-
ages was introduced, together with practically workable sampling patterns yet satisfying
the theoretical requirement of CS.
We proposed and tested three compressive sampling measurement matrices, with a view
of reducing both acquisition time and the amount of samples required, while taking into
account the constraints imposed by the structure of current experimental QAM systems.
We assessed the relative merits of diagonal, row random and spiral scanning as imple-
mentable patterns in designing a CS measurement matrix. When it comes to the results
that the spiral pattern scanning showed the most advanced performance compared to
other candidates, we carefully conjecture that the spiral sensing matrix may have lower
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Figure 3.9: Reconstruction results of SOS (m/s) map estimated from human cornea
data acquired at 500 MHz: (a) original fully sample data at pixel resolution of 1 µm per
1 µm, (b-d) reconstructed images with the proposed Cauchy-AMP algorithm for spiral,
diagonal and row random sampling patterns, (e-g) reconstructed images with ABE-AMP
algorithm for spiral, diagonal and row random sampling patterns, (h-j) reconstructed
images with ST-AMP algorithm for spiral, diagonal and row random sampling patterns.
All the results correspond to a measurement ratio of 40%.
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Figure 3.10: Reconstruction results of SOS (m/s) map estimated from human lymph
node data acquired at 250 MHz: (a) original fully sample data at pixel resolution of 2
µm per 2 µm, (b-d) reconstructed images with the proposed Cauchy-AMP algorithm
for spiral, diagonal and row random sampling patterns, (e-g) reconstructed images with
ABE-AMP algorithm for spiral, diagonal and row random sampling patterns, (h-j) recon-
structed images with ST-AMP algorithm for spiral, diagonal and row random sampling
patterns. All the results correspond to a measurement ratio of 40%.
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Figure 3.11: Reconstruction results of impedance (MRayl) map estimated from human
lymph node data acquired at 250 MHz: (a) original fully sample data at pixel reso-
lution of 2 µm per 2 µm, (b-d) reconstructed images with the proposed Cauchy-AMP
algorithm for spiral, diagonal and row random sampling patterns, (e-g) reconstructed
images with ABE-AMP algorithm for spiral, diagonal and row random sampling pat-
terns, (h-j) reconstructed images with ST-AMP algorithm for spiral, diagonal and row
random sampling patterns. All the results correspond to a measurement ratio of 40%.
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Figure 3.12: PSNR results as a function of the measurement rate, the sensing pattern
(diagonal, random rows and spiral) and recovery algorithm (proposed Cauchy-AMP):(a),
(b) and (c) are results of Cauchy denoiser with respect to respectively Human cornea
at 500 MHz of SOS mode, Human lymph node at 250 MHz of SOS mode and Human
lymph node at 250 MHz of impedance mode.

Image Method PSNR
SPIRAL DIAGONAL Y RANDOM

Conear 500MHz
(SOS)

Cauchy 41.40 39.35 37.58
ABE 40.97 39.03 37.54
ST 40.54 37.39 35.28

Lymph Node 250MHz
(SOS)

Cauchy 41.80 40.04 38.57
ABE 41.42 39.72 37.95
ST 40.22 34.50 36.53

Lymph Node 250MHz
(Impedance)

Cauchy 40.32 39.12 38.27
ABE 40.09 38.89 38.13
ST 39.51 37.47 36.04

Table 3.5: Numerical results (PSNR) of recovery quality for the reconstructed images
shown in Figs. 11, 12 and 13
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coherence with wavelet transform than its counterparts. This perspective for the simula-
tion results may open a possibility able to further improve the scanning manner proposed
in this work by considering the incoherence relationship with a transform domain.
On the other hand, we adopted an approximate message passing strategy for the image
reconstruction component of our framework, due to its comparable recovery fidelity to
lp minimization approaches. In particular, in the multiscale wavelet domain, a Cauchy-
based MAP estimator was employed to perform the image denoising step as a core
function for the recovery of a sparse solution within an AMP algorithm. We tested our
methods in comparison with various compressive image reconstruction approach, and
our results showed the superiority, in terms of the recovery quality and execution time
compared to both alternative AMP techniques using different denoising strategies and
classical approaches in CS framework namely, l1-norm, or lp minimization. The success
of Cauchy denoiser should consist in the ability to faithfully estimate the heavy tailed
distribution that the wavelet transform of QAM images shows. In this regard, the most
attractive advantage of AMP algorithm can be said that its performance is able to be
improved by testing other diverse conventional or emerging nonlinear shrinkage func-
tions.
In the following chapter, we will show the QAM data acquisition making use of the
cutting edge spare recovery approach in time domain.
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Chapter 4

FRI-based AR model
reconstruction for QAM RF
signals

Part of the work in this chapter has been published in [Kim 2018b].
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Chapter 4. FRI-based AR model reconstruction for QAM RF signals

4.1 Introduction

This chapter demonstrates that finite rate of innovation (FRI) framework can be adopted
to the QAM RF signals to achieve the exact recovery of the signals in time domain, and
form acoustic parameter 2D maps i.e., SOS, impedance and frequency attenuation with
far less sampling rate than the traditional sampling approach. In particular, the novelty
of this work is to show that the latter can be done by directly estimating the physical
quantities of objects from the dramatically reduced number of samples without requir-
ing the reconstruction of RF signals. The essence of the achievement lies in relating
the outcome from FRI sampling to the construction of the autoregressive (AR) model
[Rohrbach 2018].
This study is motivated by the inherent feature of QAM data acquisition that the dis-
tance between contiguous individual scanning points is constant, and determines a spatial
resolution which depends on the center frequency of transducer; the higher frequency is,
the smaller increment of scanning step size is. Thus, in order to yield a fine resolution
microscopic image, recent researches on QAM technology have utilized enormously high
frequencies approaching to even 500 MHz, and consequently the Analog to Digital Con-
version (ADC) process demands much higher sampling frequency (e.g, 2.5 GHz relative
to 250 MHz transducer) while complying with the classical sampling theorem.
In this regard, taking into account the fact that QAM RF signals can be parametrically
expressed by two pulses varied with amplitude decay, time delay and frequency depen-
dent attenuation of a known pulse, the low rate sampling based on the FRI manner
could contribute to a significant reduction of the number of samples equivalent to the
innovation rate in the context of FRI framework.
This work employs Sum of Sincs (SoS) kernel [Tur 2011] for carrying out the innovation
rate sampling, which hands over the discrete Fourier coefficients of an input RF signal
to AR estimator being in charge of determining the unknown model parameters to be
used to compute the acoustic parameter 2D maps.
The collaboration of these two approaches allows the SOS and acoustic impedance 2D
maps to be built with a few Fourier transform coefficients occupying only a small portion
of whole spectrum, e.g., 6 dB bandwidth. We perform the simulations with various sam-
pling frequencies covering from the exact innovation rate of our QAM RF signal to the
sampling rate corresponding to 12 dB of the input signal to find the smallest the number
of samples not to cause the critical degradation of recovered 2D maps. The results from
AR estimator are compared with those of annihilating filter method broadly hired as a
reliable solver to the parameter estimation in contemporary FRI studies.
In conclusion, the implications and contributions of the results and are discussed.

4.2 Signal model

In QAM, RF signals consist of two primary reflections due to the water-tissue and
tissue-glass interfaces as plotted with the continuous line in Fig. 4.1 (a). They can be
modeled by the sum of two time-delayed, amplitude-decayed and frequency-dependent-
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4.2. Signal model

attenuated versions of a reference RF pulse displayed with the dotted line in Fig. 4.1 (a).
The non-attenuated reference pulse, denoted by h(t) hereafter and corresponding to S0(t)
in (1.13) is commonly measured at the same time, when the sample is scanned, from a
region devoid of sample, i.e. presenting only one water-glass interface [Rohrbach 2017].
It is thus assumed to be known previously. The two frequency attenuated versions of h
are denoted by h(1) and h(2) in time domain. Written in a τ -periodic version, the QAM
RF signal model is as follows:

x(t) =
∑
m∈Z

2∑
l=1

alh
(l)(t−∆tl −mτ)

(a)=
∑
k∈Z

{
1
τ
H
[2πk
τ

] 2∑
l=1

ale
−j2πk∆tl−2πkβl

τ

}
e
j2πkt
τ (4.1)

∆=
∑
k∈Z

X [k] e
j2πkt
τ ,

where (a) is obtained applying the Poisson’s summation formula [Porat 1997], βl, al
and ∆tl are the model parameters standing for the frequency attenuation coefficients,
the amplitudes and the time delays respectively. In addition, the exponential terms
in the second line, e−j2πk∆tl/τ and e−2πkβl/τ , are caused by the phase shift and fre-
quency attenuation. As a result, the unknown parameters to be identified are the set of
{al,∆tl, βl}2l=1. Note that compared to the model in (2.26) representing a prototypical
FRI signal, the QAM model has an additional degree of freedom associated with the
frequency-dependent attenuation βl. The unfamiliar parameter to the established FRI
literature may require to introduce a different parameter estimation scheme from exist-
ing FRI recovery methods like annihilating filter or matrix pencil method. In section 4.4,
we will attempt to find the model parameters using AR inverse model [Rohrbach 2018],
and evaluate the recovery performance of the AR estimator and the annihilating filter
with synthetic signals, where the results will demonstrate the validation of the proposed
approach.
The last equality in (4.1) represents the Fourier series expansion of τ periodic signal
x(t), and the Fourier series coefficients X[k] can be easily connected to the unknown
parameters as follows:

X[k] = 1
τ
H
[2πk
τ

] 2∑
l=1

ale
−j2πk∆tl−2πkβl

τ (4.2)

Assuming that one has access to X[k], retrieving the unknown parameters from the sum
of power series is closely related to the standard problem of identifying frequencies and
amplitudes in spectral analysis [Stoica 2005].
The following sections explain how X[k] can be obtained in practice, and the reconstruc-
tion method proposed is able to determine the parameters uniquely defining the QAM
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RF signal model.
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Figure 4.1: (a) shows an example of reference and QAM RF signals in the time domain,
(b) is the Fourier transform of the reference signal in (a), which is highlighted in the
6dB bandwidth with the red continuous line.

4.3 Sampling procedure
The sampling procedure used in this work was inspired by the one proposed in [Tur 2011]
which proved that the data acquisition of ultrasound pulses could be an adequate appli-
cation to FRI framework. The main idea is to uniformly sample the demodulated QAM
RF signal using a compactly supported Sum of Sincs (SoS) sampling kernel and to relate
these samples through a linear model to the Fourier series coefficients X[k].

4.3.1 Sum of sinc (SoS) sampling kernel

In the Fourier domain, the SoS sampling kernel (denoted by ϕ(t) in the time domain) is
given by:

Φ(ω) = τ√
2π

∑
k∈K

bksinc

(
ω
2π
τ

− k
)
, (4.3)

where bk is a smoothing function, and Hamming window, i.e., bk = 0.54−0.46cos
(

2πk
M

)
,

was used in our experiments, which has a symmetric sequence (bk = b∗−k) of odd length
M, and thus leads to a real valued analog filter applicable to a continuous time domain.
Furthermore, from the duality relationship between sinc and rect functions, (4.3) allows
a time compact filter of τ support as:

ϕ(t) = rect

(
t

τ

)∑
k∈K

bke
j2πkt/τ (4.4)
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An example of SoS sampling kernel is plotted in Fig. 4.2 (a-b), in both temporal and
frequency domains, where the applied sampling rate is 125 MHz corresponding to 11
samples over one period.
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Figure 4.2: Example of SoS sampling kernel is illustrated in temporal (a) and frequency
domain (b).

Note that the sampling kernel ϕ(t) used within our sampling scheme is intrinsically a
low pass filter, but the 6-dB bandwidth highlighted in Fig. 4.1 (b) to be sampled has
the center frequency of 250 MHz. Therefore it should be shifted onto the baseband to
be subjected to the low rate sampling. This requirement is accomplished by a standard
I-Q demodulation [Kirkhorn 1999].

4.3.2 I-Q demodulation

The detail of the demodulation process is described in Fig .4.3. Fig. 4.3(a) is the Fourier
transform of an input QAM RF signal, and (b-c) show two spectrums produced by the
modulation where fm1,2 is a carrier frequency, and chosen considering the bandwidth of
the RF signal to avoid the distortion of the spectrum by overlapping. (d-e) are obtained
from lowpass filtering of previous signals (b-c), and (f) is formed by adding the two
quadrature signals (d) and (e), the result of which is again modulated to be situated
onto baseband as shown in (g). Finally, after the lowpass filtering, (h) is acquired. In the
following developments, for the notational brevity, we regard x(t) as the demodulated
signal on behalf of xb(t) in Fig. (h).
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Figure 4.3: I-Q demodulation process is applied to an input RF signal x(t), and the
resulting spectrum of the process is located on the baseband as shown in (h). The red
lines indicate low pass filtering.
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4.3.3 Filtering and sampling

We denote by x[n] the sampled version of x(t) acquired with the sampling kernel ϕ(t)
and a sampling period T , which is defined as follows:

x[n] = 〈x(t), ϕ(t− nT )〉 =
∫ ∞
−∞

x(t)ϕ∗(t− nT )dt

(a)=
∑
k∈Z

X[k]
∫ ∞
−∞

e
j2πkt
τ ϕ∗(t− nT )dt

(b)=
∑
k∈Z

X[k]e
j2πknT

τ

∫ ∞
−∞

e
j2πkt
τ ϕ∗(t)dt

(c)=
∑
k∈Z

X[k]e
j2πknT

τ Φ∗
[2πk
τ

]
(4.5)

where (a) is obtained by substituting the Fourier series expansion form of x(t) in (4.1),
(b) results from a change of variable, and Φ∗[2πk/τ ] in (c) denotes the discrete Fourier
transform of ϕ∗(t) evaluated at [2πk/τ ]. The superscript “ ∗ ” stands for complex con-
jugate. One may observe from (4.3) that Φ∗[2πk/τ ] is different from zero only for k’s
belonging to a finite set K as follows [Tur 2011]:

Φ

[2πk
τ

]
=


0, k /∈ K
nonzero, k ∈ K
arbitrary, otherwise

(4.6)

Then the summation in the last line of (4.5) becomes finite (k ∈ K instead of k ∈ Z),
and can be rewritten as in (4.7). This nice property can be supported by any kernel ϕ(t)
satisfying the Strang-Fix condition elaborated in section 2.2.3.1.

x[n] =
∑
k∈K

X[k]e
j2πknT

τ Φ∗
[2πk
τ

]
(4.7)

Fig. 4.4 (a-c) display, in time and frequency, the process being filtered with a SoS kernel
and uniformly decimated at an innovation rate with respect to an I-Q demodulated RF
signal.

4.3.4 Estimation of Fourier coefficients

The first step to estimate the model parameters of the QAM RF signal sampled at the
innovation rate is to recover the discrete Fourier coefficients X[k] as described in the
following.
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Figure 4.4: (a), (b) and (c) show respectively real and imaginary parts in time domain,
and the spectrum in frequency domain after filtering and uniform sampling the demod-
ulated RF signal using the SoS sampling kernel, where the applied innovation rate is 125
MHz (equivalent to 11 samples over one period).
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(4.7) can be recast as a matrix-vector form as follows:

χ = VGX (4.8)

where χ and X are column vectors that gather respectively the discrete samples x[n]
of the length N and the Fourier coefficients X[k] of the lengthM. On the other hand,
V and G are a N ×M Vandermonde matrix having e

j2πknT
τ as (nk)th elements and a

M×M diagonal matrix with Φ∗(2πk
τ ) as main diagonal entries respectively. From (4.8),

the Fourier series coefficients X can be computed algebraically from the prior knowledge
G and the measurement χ as follows:

X = G−1V†χ (4.9)

where ( · )† denotes the Moore-Penrose pseudoinverse of ( · ), and V is left invertible as
far as N ≥ M. Moreover, provided that N = M and T = τ/N , the Vandermonde
matrix V can be the discrete Fourier transform (DFT ) matrix with respect to χ. Thus,
the following operation is also possible for determining X:

X = G−1DFT (χ) (4.10)

The retrieved Fourier coefficients X is modulated again to restore the phase distorted by
I-Q demodulation. Additionally, if we consider a real implementation, the re-modulation
process would be simply completed by a phase shift in digital configuration. In the re-
maining reconstruction process, X[k] plays a pivotal role to estimate the unknown model
parameters in (4.2).
Fig. 4.5 evaluates the accuracy of the Fourier coefficients estimated by the introduced
method adopting the innovation rate, i.e, 125 MHz via the comparison with those com-
puted by the conventional sampling scheme using 2.5 GHz separately in the real and
imaginary parts. The illustrative results demonstrate that there is no visually percep-
tible discrepancy caused by the FRI estimation method. Table 4.1 shows the average
and the standard deviation (over 10, 000 recovered signals) of the normalized root mean
squared error relative to the above results. Overall, the numerical comparison confirms
that the Fourier coefficients are estimated nearly perfectly, which is consistent with the
qualitative observations of Fig. 4.5. Evidently, it can be expected that the accurate
recovery of the Fourier coefficients will contribute to the exact estimation of the model
parameters as revealed in the following section. In addition, it turns out that the es-
timation error depends on the design of the SoS sampling kernel, in particular being
affected by the selection of the window function, i.e. bk’s in (4.3), and the strategy for
finding the optimal window coefficients is referred to in [Tur 2011].
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Figure 4.5: Real parts (a) and imaginary parts (b) of FT coefficients estimated from
FRI sampling scheme (11 samples, i.e. 125 MHz) are overlapped on the FT coefficients
acquired by conventional sampling (200 samples, i.e. 2.5 GHz).

Number of
samples

Sampling
frequency
(MHz)

Fraction of
Nyquist rate

(800 MHz) in %

Real part of
FT coefficients

Imaginary part of
FT coefficients

NRMSE STD. NRMSE STD.

7 75 9.4 0.0137 0.0063 0.0064 0.0020
9 100 12.5 0.0126 0.0055 0.0062 0.0021
11 125 15.6 0.0132 0.0048 0.0067 0.0022
13 150 18.8 0.0116 0.0057 0.0060 0.0028
15 175 21.9 0.0100 0.0045 0.0058 0.0023
17 200 25.0 0.0090 0.0037 0.0056 0.0023
19 225 28.1 0.0089 0.0034 0.0059 0.0022
21 250 31.2 0.0089 0.0032 0.0058 0.0022

Table 4.1: The average and standard deviation of normalized root mean squared error
(over 10,000 recovered signals) with respect to real and imaginary parts of FT coefficients
retrieved from various innovation rates

4.4 Reconstruction method

In QAM, the acoustic parameters of the scanned tissue are acquired from the formulae
supported by amplitudes, time delays and frequency attenuation coefficients, which are
estimated in each RF signal reflected from each spatial location. To be more specific,
the model parameters will be determined by the AR inverse model requiring the small
set of Fourier coefficients of RF signals, which is detailed in what follows.
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4.4. Reconstruction method

4.4.1 Auto regressive (AR) estimator

The discrete Fourier coefficients, estimated from a few samples taken by SoS kernel in
previous section, are converted into a normalized form by dividing X[k] by 1

τH[2πk/τ ]
in (4.11), which is denoted by Nk and consequently contains only the terms associated
with the model parameters to be identified as:

Nk =
n∑
l=1

al{exp[2π∆f(−βl − j∆tl)/τ ]}k

=
n∑
l=1

alλ
k
l ,

(4.11)

where ∆f and n are the step size leading to discrete frequencies, i.e. fk = k∆f and the
number of pulses to be reconstructed respectively, and λl stands for exp[2π∆f(−βl −
j∆tl)/τ ]. Taking into account the ultimate objective of our problem setting, one may
notice that the parameters of the QAM RF signal model in (4.1) can be straightforwardly
estimated by solving (4.11) without the need of reconstructing an original signal. The
estimation is accomplished making use of an AR model which, unlike the previous setup
in (4.2), supposes that QAM RF signals are composed of more than two reflections
(n ≥ 2) in order for providing robustness and stability to noise and estimation artifacts.
Introducing the error term and the AR coefficients denoted by respectively ε and s, the
AR inverse model for QAM proposed is formulated as follow:

Nk =
n∑
i=1

siNk−i + εk, (4.12)

For the practical implementation, (4.12) is rewritten in matrix-vector form as:

n = −Rs + ε, (4.13)

where provided that the normalized coefficients Nk are computed at the frequencies
ranging from kmax∆f to kmin∆f , n is the column vector of length (kmax − kmin + 1)
representing the values of Nk from kmin to kmax, R is the matrix of size (kmax−kmin +1)
by n whose entries are determined by Nk−i, and ε is the column vector of length (kmax−
kmin + 1) composed of the values εk from kmin to kmax. Together with the process to
find the AR coefficients s, the remaining steps regarding further derivations to reach our
final goal basically follow the previous study in [Rohrbach 2018], which is also detailed in
Appendix A. Therefore in what follows, we briefly summarize the remaining process. The
AR model coefficients si are estimated by solving (4.13) with a least-square approach.
Then, the coefficients λl are determined by the roots of polynomials formed from the
AR model coefficients si. Subsequently, the coefficients al are obtained as a solution to
(4.11) using a least-square approach.
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Chapter 4. FRI-based AR model reconstruction for QAM RF signals

Among the n pairs of λl and al estimated, we select the most relevant two sets of
parameters corresponding to the echoes reflected from the water-tissue and tissue-glass
interfaces. Choosing the parameter sets related to the two desirable pulses are achieved
through the comparison with the time instance and amplitude of the reference pulse h(t)
or measuring the standard cross-correlation between h(t) and single pulses formed by
the p sets of parameters. The determined model parameters {al, λl}2l=l are eventually
utilized to estimate acoustic parameters in 4.4.3. The process that the AR inverse model
estimates the unknown parameters from the compressed measurements is resumed in
Algorithm 1.
Prior to the construction of acoustic 2D maps, we investigate the recovery fidelity of
the proposed FRI-AR approach comparing with the annihilating filter technique in the
following section.

Algorithm 1 FRI-based AR estimator
Input: Nk

Output: {λl, al}2l=1
1: Build the AR model, Nk =

∑n
m=1 smNk−m + εk

2: Estimate AR coefficients sm by least square error
3: Determine λl as the roots of P (z) = 1 +

∑p
m=1 smz

m =
∏n
m=1(1− 1

λm
z−1) = 0

4: Compute al by solving Nk −
∑n
l=1 alλ

k
l ≈ 0

5: Select two sets of {λl, al}nl=1 corresponding to h1 and h2

4.4.2 Evaluation of recovery quality of RF signal

We herein demonstrate the superiority of estimation performance of the proposed FRI-
AR approach to the annihilating filter method using synthetic signals suffered by noise
perturbation. The experimental signals are artificially produced by adapting arbitrary
model parameters {∆tl, al, βl}2l=1 to a modulated Gaussian pulse h(t) = exp[−(t −
t0)2/σ2

g ] · cos2πtfc on the basis of (4.1), where σg and fc emulate the dispersion of the
echo pulse and the center frequency of a transducer, and the time duration t is set to
the range from 0 to 1 second for the computational convenience, and thus τ = 1. The
estimation process of the existing method to obtain the set of model parameters is briefly
explained in what follows.
Nk in (4.11) is firstly denoised by TLS-Cadzow routine described in section 2.2.4.2, and
annihilating filter A is acquired by finding a sequence of coefficients to null out Toeplitz
matrix formed by the denoised Nk. The roots ul of A are computed, and tl and βl
are estimated considering phase and magnitude parts respectively from the complex
values ul. Lastly, al is estimated as a solution of least square error to (4.11). This is
summarized on the Algorithm 2. Furthermore, in order to reduce the estimation er-
ror in the noisy situation, the denoising technique applied above entails oversampling
[Dragotti 2007, Urigüen 2013a]. Thus instead of the degree of freedom corresponding
to {tl, al, βl}2l=1 in our parametric model, we acquired 11 samples considering the 6dB
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range of the signal. The test results were compared with those of our proposed approach
elaborated in the previous section. The recovery trials for the two different methods was
performed 100 times with respect to the synthetic signal corrupted with additive white
Gaussian noise of SNR(dB) ranging from 5 to 30. The desired noise levels are given by
Gaussian noise with variance σ2

n from SNR = 1
N ‖ x̂ ‖

2
2/σ

2
n when x̂ is a clean sample.

In Fig. 4.6(a-d) depict the synthetic signals recovered at the specific SNR levels, and on
the other hand Fig. 4.6(e-f) are the results from the simulation applied to a real QAM
RF signal. Fig. 4.7 compares the performance between two methods illustrating the
average of root mean square errors computed at every noise level. As observed in the
graphical results, as far as the noise perturbation is concerned, it is evident that the
AR estimator is much more optimized solution to the parameter estimation of QAM RF
signal than the typical FRI recovery manner.
The following section provides the resulting acoustic 2D maps formed by the proposed
framework.

Algorithm 2 Annihilating filter with Cadzow denoising
Input: Nk

Output: {tl, βl, al}2l=1
1: Build Toeplitz matrix S with Nk

2: Implement TLS-Cadzow routine for S
3: Obtain the annihilating filter coefficients (A) by solving S̃A ≈ 0
4: Compute the roots ul of (A), ul = real(ul) + imag(ul) = exp[(−j2πtl − 2πβl)/τ ]
5: Estimate tl from angle(ul)/2π = tl and βl from abs(ul) = exp[−2πβl/τ ]
6: Estimate al as the solution of LSE to (4.11)

4.4.3 Computation of acoustic parameters

From λl and al estimated in the previous sections, SOS (c), acoustic impedance (Z) and
attenuation (α) are computed, and additionally the subscripts 1 and 2 are matched with
the first interface (water-tissue) and the second interface (tissue-glass). Firstly, ∆tl and
βl are obtained by breaking down λl (defined in (4.11)) into real and imaginary parts
as:

∆t1 = imag(log(λ1))
∆f , ∆t2 = imag(log(λ2))

∆f (4.14)

β1 = real(log(λ1))
∆f , β2 = real(log(λ2))

∆f (4.15)

Given that cw is the known SOS in the water used as a coupling fluid between the
transducer and the sample, the thickness (d) of sample at a point irradiated by US
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Figure 4.6: (a-d) Reconstruction results with AR model and annihilating filter method
for a synthetic signal corrupted by an additive white Gaussian noise corresponding to
(a-b) 30dB and (c-d) 9 dB, (e-f) reconstructed experimental QAM RF signal with AR-
model and annihilating filter.
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Figure 4.7: Averaged root mean square errors and standard deviations of the signals
reconstructed using FRI-AR approach and annihilating filter depending on the different
noise levels.
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pulse is calculated by:
d = cw

2
imag(log(λ1))

∆f (4.16)

Based on the physics of QAM RF signals observed in Fig. 1.11(a), the following equations
are self-evident:

∆t1 = 2d
cw
, ∆t2 = 2d

c −
2d
cw

(4.17)

The formula for the SOS (c) is built by means of (4.14), (4.16) and (4.17) as:

c = cw
imag(log(λ1))

imag(log(λ1)) + imag(log(λ2)) , (4.18)

The attenuation α is acquired by dividing β2 with 2d commensurate with the round-trip
path into a sample:

α = β2
2d (4.19)

Finally, the acoustic impedance is determined with the amplitude decay (a1) of the first
reflection and prior knowledge as [Rohrbach 2018]:

Z = Zw

1 + a1
Rwg

1− a1
Rwg

(4.20)

where Rwg is the known pressure reflection coefficient between water and glass.
In the following section, we provide the resulting acoustic maps yielded by c and Z .

4.5 Simulation Results

Simulations were conducted with nine innovation rates chosen considering 6 dB band-
width of the reference signal, and the results are reported in section 4.5.3 for the acoustic
parameter estimation. More importantly, the outcomes lead to an instructive discussion
on how the most preferable innovation rate could be selected in a sense of the sampling
efficiency and the estimation accuracy.

4.5.1 Experimental data and QAM system

To evaluate the FRI-based AR approach, experimental QAM data were acquired from a
chicken tendon sample using a QAM system equipped with a 250 MHz center frequency
transducer. A fresh chicken tendon was fixed in formalin while loaded longitudinally
then cryosectioned (16-µm thick) and affixed to a microscopy slide [Yang 2018]. The
RF data cube was obtained by raster scanning the microscopy slide in two dimensions
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4.5. Simulation Results

using 2-µm steps between adjacent scan lines. At each scan location, the RF signal
was sampled at 2.5 GHz. The resulting RF data cube was of size 501 × 501 × 200 RF
samples. The QAM system has been described in great details in previous publications
(see, e.g., [Mamou 2015a, Rohrbach 2015a, Rohrbach 2015b]) which were committed to
identification of various elastic properties of soft tissues, i.e. attenuation (α), SOS (c),
acoustic impedance (Z), bulk modules (B) and mass density (ρ). The -20 dB bandwidth
of the QAM system extended to approximately 400 MHz. Therefore, in what follows,
we define the Nyquist frequency of the QAM system to be 800 MHz. The experimental
data were sampled using the FRI-based method with the same spatial step size but
with temporal sampling frequencies ranging from 75 MHz to 250 MHz (25 MHz steps)
yielding from 7 to 21 samples per RF line. These sampling frequencies correspond to
a range from approximately 9.4% to 31.3% of the QAM system Nyquist frequency 800
MHz.

4.5.2 Similarity measures

Quantitative evaluations between the acoustic maps obtained with the proposed ap-
proach and their counterpart produced from fully sampled RF signals are performed
using the normalized mean squared error (NRMSE=

√
‖x−x̂‖2
‖x‖2 ) and the peak signal

to noise ratio (PSNR(dB)= 10 log10
max(x,x̂)2

‖x−x̂‖2 ), which are defined as the comparison
between two images x and x̂.

4.5.3 Acoustic parameter maps

We herein evaluate the quality of the 2D acoustic maps, i.e. SOS map (2DcM) and
acoustic impedance map (2DZM), reconstructed from QAM RF signals sampled follow-
ing the proposed scheme against the one estimated from fully sampled RF data cubes.
Fig. 4.8 (a) and (b-i) shows 2DcMs reconstructed from the conventional AR estimator
(i.e., applied to the data sampled at 2.5 GHz) and using the proposed FRI-based AR
estimator applied at 8 different effective sampling rates. Similarly, Fig. 4.9 shows the red
boxes of Fig. 4.8 to provide visual details at a finer scale. On the whole, in spite of the
much lower sampling rate, the 2DcMs reconstructed using the FRI-based AR estimator
shows no significant visual degradation except for the 2DcM built from 7 samples (i.e.,
sampling at 75.0 MHz) of Fig. 4.8 (b). Additionally, Fig. 4.10 compares the single lines
extracted at 0.4mm on the y-axis of each map in order to scrutinize the estimation accu-
racy of the acoustic parameter in the 2DcMs yielded from the innovation rates. It clearly
illustrates two lines are exactly overlapped on most positions in the sampling schemes
using over 125.0 MHz of Fig. 4.10 (c)-(h), whereas the result recovered from 75.0 MHz
reveals the severe distortion as observed earlier. Figures 4.11, 4.12 and 4.13 present
the 2DZM results in the exact same fashion as Figures 4.8, 4.9, and 4.10. Overall, the
results follow the same trends as those of the 2DcMs. The above visual observations are
quantitatively confirmed by standard quality metrics (i.e., normalized root mean square
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Number of
samples

Sampling
frequency
(MHz)

Fraction of
Nyquist rate

(800 MHz) in %

SOS
map

Acoustic impedance
map

NRMSE PSNR(dB) NRMSE PSNR(dB)

7 75 9.4 0.1064 17.73 0.1073 18.41
9 100 12.5 0.0771 20.68 0.0842 21.42
11 125 15.6 0.0529 24.50 0.0591 24.51
13 150 18.8 0.0498 25.00 0.0631 23.94
15 175 21.9 0.0500 25.00 0.0498 25.99
17 200 25.0 0.0498 25.07 0.0464 26.60
19 225 28.1 0.0493 25.16 0.0461 26.66
21 250 31.2 0.0509 24.87 0.0456 26.74

Table 4.2: Quantitative results computed between the 2D map from fully sampled RF
data cube and those obtained from QAM RF signal sampled at low rates: 262.5 MHz (21
samples per RF signal), 237.5 MHz (19 samples per RF signal), 212.5 MHz (17 samples
per RF signal), 187.5 MHz (15 samples per RF signal),162.5 MHz (13 samples per RF
signal), 137.5 MHz (11 samples per RF signal), 112.5 MHz (9 samples per RF signal)
and 87.5 MHz (7 samples per RF signal) .

error and peak signal to noise ratio) shown in the Table 4.2 (which were computed in the
zoomed in areas, i.e., red rectangle). As expected, the results obtained with 7 samples
show large NRMSE and low PSNR. Small improvement exists in these metrics when
9 samples are used. Interestingly, NRMSE and PSNR results for between 11 and 21
samples are all satisfactory and nearly identical. No further improvement is obtained
even when more samples are used, which will be discussed in the following section.

4.6 Discussion and conclusions

The objective of this work was to combine a low rate RF signal sampling procedure with
an AR model-based parametric acoustic map reconstruction in QAM imaging. Both
approaches were based on a parametric model of the QAM RF signals with a limited
number of degrees of freedom, i.e. the amplitudes, time delays and frequency-dependent
attenuation coefficients. We showed encouraging results by proving that the proposed
FRI-based AR approach can reconstruct 2D acoustic maps with an accuracy comparable
to the conventional QAM technology, despite using sampling frequency 18 times lower
than the one (2.5 GHz) classically used within existing imaging systems and 6 times
lower than the rate (800 MHz) required by the Nyquist criterion.
Taking into account a model mismatch caused by noise, artifacts or scattering in the
tissue structure, the FRI-based AR estimator is able to obtain the most desirable two
echoes in the manner of screening out such noise perturbations with the dedicated logic.
In this sense, increasing n in (4.12) implies that we can construct more individual pulses,
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and two correct reflections are more likely to be separable from the noise effects. How-
ever, because this requires the increase of Fourier coefficients, i.e. higher innovation
rate, we need to find a compromise. Except for the results acquired from the sampling
rates below 6-dB bandwidth, i.e. 7 and 9 samples, the overall numerical assessments
on the Table 4.2 reveal no noticeable improvement even though the number of samples
increases. This is likely to result from the fact that, as illustrated in the Fig. 4.1(b),
the coefficients away from the center frequency have less contribution to the signal in-
formation. Accordingly, the analysis of the power distribution of a reference signal could
offer a critical insight to determine the most relevant innovation rate of an QAM RF
signal featured by five parameters. Likewise, the estimation failure in less innovation
rates than 11 samples could be explained in this perspective. To conclude, the simula-
tion results legitimize that the innovation rate (125 MHz) of 11 samples, equivalent to 6
dB bandwidth showing the estimation performance comparable to its counterparts (i.e.
over 125 MHz), can be considered as the optimal operating in this experiment, i.e. the
compromise between the sampling cost and the image quality as stated above.
Strang-Fix condition [Khalidov 2005, Vonesch 2007] defines the property of a sampling
kernel able to perfectly represent the moments of an FRI signal in a subspace spanned
with a maximum order corresponding to the innovation rate. In the simulations, we
used SoS sampling kernel in [Tur 2011] since it respects this property. However, other
sampling kernels could also be considered such as B-splines that reproduce polynomials
other than exponentials [Unser 1999, Dragotti 2007].
The FRI-based AR approach to QAM presented in this paper has tremendous implica-
tions for QAM systems. For instance, it would allow the use of much slower A/D cards
than those currently used. This would drastically reduce costs. Furthermore, slower
A/D cards are much easier to manufacture and therefore can be made with higher bit
counts (e.g., 16 bits sampling at 250 MHz is much easier to manufacture than 12 bits at
2.5 GHz) yielding increased data quality and lower sensitivity to noise. Currently, most
QAM systems do not fully operate in real-time and require a few seconds to process
the data and form images. The FRI-based AR approach completely short circuits the
process of forming images by not only providing much less data overall, but, more im-
portantly, by directly providing normalized Fourier coefficients used in the AR algorithm
thus saving precious computation time.
Based on this achievement, we plan to propose an approach able to further reduce the
data acquisition time and the size of the data cube from spatio-temporally under-sampled
measurements by combining both the compressed sensing framework [Emmanuel 2004,
Donoho 2006b] and the finite rate of innovation signal theory. The integration of two
methods is straightforward thanks to the previous study [Kim 2018a]; the compressed
scanning scheme in spatial domain followed by the FRI sampling in temporal domain will
lead to extremely squashed data cube compared to the conventional QAM technique.
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Figure 4.8: (a) and (b-i) are SOS maps estimated from fully-sampled RF data cube (200
samples per RF signal), and from samples acquired following the proposed approach
corresponding to respectively 7, 9, 11, 13, 15, 17, 19 and 21 samples per RF signal.
Quantitative accuracy measurements computed from the red box in these SOS maps are
given in Table 4.2.
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Figure 4.9: Magnified maps of the red boxes in Fig. 4.8. (a) is the SOS map created
from fully-sampled RF data cube (200 samples per RF signal), (b-i) are the SOS maps
estimated following the proposed approach corresponding to respectively 7, 9, 11, 13, 15,
17, 19 and 21 samples per RF signal. The red dotted line indicates the cross sectioned
location of profiles in Fig. 4.10.
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Figure 4.10: Horizontal cross sections and single lines of 2DcM at 0.4mm of y-axis in Fig.
4.9. The red continuous lines are a cross section from fully sampled map, i.e. Fig. 4.9(a)
which is used as the criterion for comparison. The blue dotted lines of (a-h) represent
the cross sections of Fig. 4.9(b-i) respectively.
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Figure 4.11: (a) and (b-i) are acoustic impedance maps estimated from fully-sampled
RF data cube (200 samples per RF signal), and from RF signals sampled following the
proposed approach corresponding to respectively 7, 9, 11, 13, 15, 17, 19 and 21 samples
per RF signal. Quantitative accuracy measurements computed from the red box in these
SOS maps are given in Table 4.2.
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Figure 4.12: Magnified maps of the red boxes in Fig. 4.8. (a) is the acoustic impedance
map created from fully-sampled RF data cube (200 samples per RF signal), (b-i) are the
acoustic impedance maps estimated following the proposed approach corresponding to
respectively 7, 9, 11, 13, 15, 17, 19 and 21 samples per RF signal. The red dotted line
indicates the cross sectioned location of profiles in Fig. 4.13.
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Figure 4.13: Horizontal cross sections and single lines of 2DZM at 0.4mm of y-axis in
Fig. 4.12. The red continuous lines are a cross section from fully sampled map, i.e. Fig.
4.12(a) which is used as the criterion for comparison. The blue dotted lines of (a-h)
represent the cross sections of Fig. 4.12(b-i) respectively.
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Chapter 5

Compressed QAM in
spatio-temporal domain

Part of the work in this chapter has been published in [Kim 2019].
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Chapter 5. Compressed QAM in spatio-temporal domain

5.1 Introduction
In QAM technology, the scanning for a data acquisition is a quite time consuming process
relying on a sample size and the center frequency of transducer. In order to prevent the
changes in mechanical properties of the sensitive thin sectioned tissue during scanning,
a strategy for reducing the scanning time is of urgent necessity.
In this regard, the previous chapters were devoted to demonstrating: i) spatially under
sampled measurements, following a spiral pattern combined with image reconstruction
based on approximate message passing (AMP), allow decreasing the number of acquired
RF signals by 40% without degrading the QAM image quality [Kim 2018a], ii) since
QAM RF signals at a given location follow a parametric form with a limited number
of degrees of freedom, each RF signal can be sampled (and adequately processed) at a
much lower rate (162.5 MHz) than the Nyquist rate (800 MHz for our QAM system)
[Kim 2018b].
The main objective of this chapter is to present a single solution by combining the two
undersampling schemes to lead to far more parsimonious data acquisition, and to demon-
strate that the combined approach is able to significantly save QAM data acquisition
time and QAM data size at no detriment to image quality.
The remainder of this chapter is structured as follows. Section 5.2 describes the spatio-
temporal sparse encoding of QAM data, sequentially operating two undersampling tech-
niques individually adopted in spatial and temporal domain. Subsequently section 5.3
shows the process decoding the cubic dataset compressed in three dimension in the
preceding section. Section 5.4 evaluates the simulation results through the comparison
with the 2D map yielded by the traditional manner, and conclusions are presented in
Section 5.5.

5.2 Spatio-temporal sparse encoding
Hereafter, the two frameworks (i.e., CS using AMP and FRI) are combined to achieve
spatio-temporal undersampling of QAM data. Fig. 5.1 illustrates the successive sampling
process performed by CS and FRI frameworks. Firstly, the spiral pattern scanning is
performed pointwise; only RF signals from these scan locations are retained, and are
sampled using the FRI framework. As a result, the total amount of collected data was
significantly reduced as depicted in the right cartoon in Fig. 5.1.

Compressed scanning in spatial domain
CS measurement in space is implemented with a spiral scanning pattern developed in
[Kim 2018a] as addressed in chapter 3. The development was inspired by [Wan 2008,
Quinsac 2010] which proposed alternative sensing manners as the breakthrough to over-
come various practical issues caused by random sensing matrices recommended in canoni-
cal CS literature [Donoho 2006b]. As discussed in the previous chapter, the spiral sensing
manner proved to simultaneously achieve the requirement of CS and the compatibility
with an QAM motor stage. In particular, when it comes to the best results of the spiral
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RF signal

FRI sampling

Target object CS Spiral scanning CS-FRI undersampled
discrete cubic data set

Saved By CS

Figure 5.1: The block diagram describes the undersampling process based on the spi-
ral pattern and FRI sampling in spatial and temporal domain respectively. The right
cartoon clearly demonstrates the space saved by the proposed sampling scheme.

pattern compared with its counterparts, we tentatively concluded, in chapter 3, that it
may result from lower coherence with wavelet basis than other considered sensing pat-
terns.
CS measurement is given by:

y = ΦW−1θx︸ ︷︷ ︸
x

+n (5.1)

where Φ represents the sensing matrix, and actually the sparse scanning is performed
by Bernoulli trial process which collects values corresponding to the index of elements
to be scanned after vectorizing the spiral patterned matrix.

Innovation rate sampling in time domain
As a review of FRI sampling in chapter 4, recall that QAM RF signals are made up of
two primary reflections due to the water-tissue and tissue-glass interfaces, which can be
modeled by the sum of two time-delayed, amplitude-decayed and frequency-dependent
attenuated versions of a reference RF pulse h0(t) as follow:

h(t) = a1h0(t− t1) + a2h
∗
0(t− t2) (5.2)

where the symbol ∗ stands for frequency-dependent attenuation. Since the information
of the pulse shape h0(t) is given as the echo from a planar reflector at the focal depth,
and can be easily obtained experimentally from the data collected at only glass plate
locations, (5.2) is regarded as an FRI signal fully defined with the parametric expression.
The sampling procedure is identical to what we addressed in the previous chapter, but
note that the RF signals are recorded following the spatial undersampling scheme pro-
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posed in chapter 3. As a result, the volume of the cubic dataset is dramatically shrunk
compared to the conventional data acquisition manner as highlighted in the rightmost
cartoon of Fig. 5.1.

5.3 Reconstruction of 2D acoustic maps

The reconstruction of 2D map begins by using the auto-regressive (AR) parameter esti-
mation [Rohrbach 2018] from the cubic dataset illustrated in the bottom left of Fig. 5.2,
the result of which is equivalent to CS measurement in spatial domain as depicted in
Fig. 5.3(b). Therefore, the CS measurement of an QAM 2D map is reconstructed by the
AMP algorithm as what we did in chapter 3. The overview of the recovery process in
the spatio-temporal approach is described in Fig 5.2

Parameter estimation &
SOS calculation
by AR estimator

Reconstruction in 
time domain

𝑋 = min 𝑋   𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑌 = Φ𝑋

SOS 2D map reconstruction
by Cauchy-AMP

𝑎 , 𝑎 , �̂� , �̂� , ℎ∗

𝒄

SOS (𝑌 ) 

Reconstruction in 
spatial domain

𝒀𝒄

Cubic dataset Reconstructed SOS 2D map

𝒏

Figure 5.2: The block diagram describes the recovery process which is made up of two
process, i.e., the parameter estimation in time domain and image reconstruction in
spatial domain.
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Acoustic parameter estimation
The recovery scheme in time domain is exactly same as what we addressed in the sec-
tions associated with the model parameter estimation and the reconstruction of acoustic
parameter 2D maps in chapter 4. However, the recovered SOS map is Yc as described
in Fig. 5.2, which is equivalent to the result of CS measurement with the spiral pat-
tern scanning. Thus, the last step of this approach is completed by CS reconstruction
framework developed in chapter 3

Reconstruction in acoustic 2D map
Since the RF signals collected in spatial domain covered only the spiral pattern, we
accomplish the recovery process using AMP algorithm. The corresponding problem
setting is as follows:

X̂c = min
Xc
‖Xc‖1, subjec to Yc = ΦXc (5.3)

5.4 Simulation results
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Figure 5.3: The figure shows the recovery process of the SOS 2D map of a chicken
tendon tissue. (a) is the original 2D map yielded by the conventional method, (b) is
an intermediate result produced by estimating the SOS of the RF signals reflected from
the only positions scanned by the spiral pattern, and finally (c) is the complete FRI-CS
recovery result.

A 2D SOS map of a chicken tendon tissue in Fig. 5.3 was reconstructed using the
proposed approach described in Fig. 5.2 from the compressed spiral cubic data set (40%
less spatial data than classical raster scan and sampling rate of only 6.5% of the currently
used rate as shown in the Table 5.1). The spiral scanning pattern of Fig. 5.1 would allow
to reduce the scan time by far more than 40% because of the continuous motion of
the motors which is made possible through the smoothness of the spiral. Furthermore,
significantly compressed data volume, i.e., 2.6% compared to conventional method, could
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Figure 5.4: The figure compares the SOS 2D map formed by the conventional approach
(a) with the images (b-d) recovered from different methods, i.e., wavelet based Cauchy-
AMP in chapter 3, FRI-AR estimator in chapter 4, and spatio-temporal approach intro-
duced in chapter 5 respectively.

contribute to saving the required data storage space. In spite of the enormous decrease
of data acquisitions, in the resulting images in Fig. 5.4 (d), no critical image degradation
is perceived. The metrics in Table 5.2 support the visual evaluation.

Methods Compressed Ratio
Spatial Temporal Total volume (Spatial × Temporal)

CS 40% - 40%
FRI - 6.5% 6.5%

FRI-CS 40% 6.5% 2.6%

Table 5.1: Compressed ratio according to different methods. The ratios of data reduction
on this table correspond to 1004 scanning points on 40% of the spatial domain, and 13
samples on 6.5%the temporal axis.

PSNR(dB) NRMSE SSIM
CS 26.31 0.0483 0.7166
FRI 24.19 0.0617 0.6741

FRI-CS 23.38 0.0678 0.5511

Table 5.2: Resulting metrics according to different methods.
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5.5 Conclusions
In this chapter, two approaches of CS and FRI sampling were combined, resulting into
both shorter acquisition times and significantly reduced amount of acquired data, com-
pared to not only the classical QAM sampling scheme but also the individual under-
sampling techniques introduced in chapter 3-4. To validate the feasibility of proposed
approach (i.e., spiral pattern scanning in spatial domain and innovation rate sampling
in time domain) and to confirm the preliminary results obtained in post-processing, a
hardware implementation on our QAM scanner will be carried out as a future work.
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6.1 Conclusions

Quantitative acoustic microscopy (QAM) provides a unique contrast of a resulting image
by quantitatively characterizing the acoustic properties of biological soft tissue, com-
pared to other contemporary microscopic imaging modalities. The most beneficial fea-
ture of the ultrasound-based method is to allow medical doctors to diagnose a disease by
examining the abnormality of acoustic structures. For instance, malignant lesions in the
breast or the stage of liver fibrosis typically accompanies the change of elasticity in tissue,
which can be detected by the measurement of acoustic parameters. However, complying
with the conventional data acquisition procedure, the elasticity imaging method leads
to a prolonged exposure of the sample to be imaged, and consequently leads the change
of its mechanical properties to be possibly. This can yield accuracy and reliability issues
in parameter estimation.
From the perspective, this PhD thesis aimed to propose novel approaches able to realize
an efficient measurement and faithful parameter estimation to tackle current problems.
To achieve this objective, the first step was to use the characteristics of the data infor-
mation recorded by the ultrasonic microscope. More specifically, the contributions of
this work consisted in two different aspects: spatial and time domain approaches.
Our first work introduced compressed sensing framework based on the sparse property
of parametric 2D maps. The challenge in the first work was to devise a practically
implementable scanning pattern while leading to the incoherence measurement on the
wavelet domain as a sparsifying transform. Three dedicated patterns, compatible with
the restricted mechanical operation of QAM, were tested and it was concluded from the
experimental results that the spiral scanning approach showed the best recovery quality.
For subsequent image reconstruction, we designed and implemented an innovative tech-
nique based on the approximate message passing (AMP) method. Specifically, Cauchy
maximum a posteriori (MAP) image denoising algorithm was thus employed to support
the non-Gaussianity of QAM wavelet coefficients which have heavy-tails. The proposed
methods were tested retrospectively on experimental data acquired with a 250-MHz or
500-MHz QAM system. The experimental data were obtained from a human lymph node
sample (250 MHz) and human cornea (500 MHz). The spiral sensing matrix reduced
the number of spatial samples by a factor of 2 and led to an excellent recovery quality
when reconstructing QAM SOS images of a human lymph node. Moreover, our pro-
posed recovery algorithm showed enhanced performance compared to alternative AMP
algorithms associated with different shrinkage functions as well as standard CS recon-
struction, based on `1 norm or `p norm optimization.
Overall, these results demonstrate that the CS approach could significantly improve
scanning time, while reducing costs of future QAM systems. Nevertheless, it still seems
to be necessary to clarify the incoherence of the introduced measurement scheme with
sparsifying transforms so that future researches could facilitate CS application to QAM.
The second contribution of this thesis was focused on the parsimonious sampling of
RF signal in time domain, which was accomplished using the proposed FRI-AR ap-
proach. The core idea behind the development was inspired by bridging the two methods
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of [Tur 2011] and [Rohrbach 2018]. Generally, the formulation of QAM RF signals is
founded on the hypothesis that the thin section of tissue is homogeneously distributed
in the direction of travel path of wave, and thus it is fully characterized by physical
phenomena occurring on the only two main interfaces. Accordingly, the introduction of
the FRI sampling scheme could lead to dramatic reduction in data acquisition of the
QAM RF signal perfectly represented with a few parameters. The sum of sinc kernel
performed the low rate sampling, which satisfies Strang-Fix condition and guarantee the
exact reconstruction of Fourier coefficients of input. On the other hand, the discrep-
ancy, between the ideal setting of the homogeneity in the cross section of sample and
the reality, gives rise to noise or artefacts in our signal model. AR estimator showed
the superiority to collect the two most desired echo pules among multiple reflections
reconstructed. The combination of FRI and AR model for sampling and parametric
map recovery allows decreasing the required number of samples per RF signal up to a
factor of 18 compared to a conventional approach, with a minimal accuracy loss in the
quantitative acoustic maps. This was proven by visual evaluations and numerical results
for the reconstructed SOS map and acoustic impedance map.
The final contribution of this work was to combine two data acquisition schemes into a
spatio-temporal single solution, and to highlight the benefit of our proposed approaches.
The combination process was somehow straightforward, yet the results yielded a new
data volume size hugely saved up to even 2.6% of the data originated by classical sam-
pling techniques without critical deterioration of the 2D maps.
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6.2 Perspectives

Incoherence of scanning pattern
Indeed, CS has been constructed on the premise of sensing matrices satisfying mathe-
matical completeness such as RIP and incoherence to ensure perfect recovery of sparse
signals. Nevertheless, since this work prioritized the aspect of practical implementation
of sensing strategy, the proposed sensing patterns unavoidably followed deterministic
sensing trajectories rather than CS sensing modalities design based on a randomness
conditions stated above [Candès 2008]. Fortunately, our suggested scanning scheme
seems to somehow keep the necessary requirements when considering the favorable out-
comes. However, in order to pave the way for making our approach more robust to any
problem setting or further improving our current achievement, it would be worth paying
attention to the study on the deterministic sensing matrices [Naidu 2016] where promis-
ing results are presented. Aside from this, studies regarding structured random matrices
have been carried out with the purpose of tackling various practical issues [Do 2011],
but they were mainly developed to pursue fast and efficient implementation rather than
overcoming the limitation of mechanical design like our case. Nonetheless, the studies
also would deserve to be considered as a reference for our future work, when taking into
account the universality with most sparsifying basis that the sensing strategy shows.

Denoiser in AMP
The most attractive merit of AMP consists in a capability to enhance its recovery per-
formance by embedding more robust denoiser function in the iterative algorithm. In
particular, we confirmed that the statistical model of signal and the behavior of the
shrinkage function should be simultaneously considered to lead to the best result, in-
cluding the fast convergence. In this regard, we chose the Cauchy denoiser to recon-
struct heavy tailed distribution typically characterizing wavelet coefficients, instead of
soft threshold devised based on the assumption of Gaussianity. Therefore, it would be
still possible to produce better recovery quality for compressive imaging problems as far
as a better denoiser function is used [Tan 2015]. Furthermore, Denoising-based AMP (D-
AMP) [Metzler 2016] provides a quintessential solution by effectively employing generic
denoiser in a CS reconstruction algorithm. Thus, a wide class of denoisers integrated
within its iterations performs denoising. The key tuning scheme for each iteration is
implemented with respect to the Onsager reaction term to make it appropriate use for
the signal model.
The introduction of this approach in our problem could be a challenging project, yet
would be expected to obtain fruitful results.

Estimation of model parameters
The parameter estimation of RF signal, in the proposed approach, was done by au-
toregressive model, the results of which were compared with those of annihilating filter
technique as a competitive method, demonstrating its superiority. In fact, the perfor-
mance was satisfactory especially due the reduced number of samples. However, the
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applied undersampling rate was beyond the number of parameters fully characterizing
the QAM RF signal, whereas it basically is assumed to be six, i.e., {al, tl, βl}2l=1.
We had a closed form expression of the signal model in frequency domain, and con-
firmed that FRI sampling can faithfully retrieve the corresponding Fourier coefficients
to samples in time domain. From this aspect, it would be worthy attempting to find
other alternative to possibly enable an exact reconstruction from the innovation rate
sampling.
The parametric model in frequency domain is represented as a decaying oscillation of
the sum of two complex exponentials caused by the five unknown parameters, where a
model mismatching would be interpreted as a spectrum perturbed by noise. Thus our
aim is likely to estimating an original spectrum by denoising with an algorithm to be
designed. Therefore, We suggest an iterative method based on the minimization of the
residual between observation and estimation. The key idea to implement this process
could be supported by literature related to optimization problem [Nocedal 2006].
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Appendix A

Auto regressive (AR) estimator

In this appendix, we detail the remaining steps after (4.13), for estimating the model
parameters of QAM RF signals as proposed in [Rohrbach 2018].
The AR model coefficients s are solved by the following least-square approach:

s = −(RHR)−1RHn, (A.1)

where the superscript ( · )H represents the conjugate transpose of ( · ). Then, in order to
determine λl, (4.11) is linked to (4.13) through the following relationship:

Nk = −
n∑
i=1

si

n∑
l=1

alλ
k−i
l︸ ︷︷ ︸

Nk−i

(A.2)

= −
n∑
l=1

alλ
k
l

n∑
i=1

siλ
−i
l (A.3)

Assuming that the second summation of (A.3) is equivalent to polynomials of n degree
having zeros at (1/λl), which can be recast as follows:

n∑
l=1

alλ
k
l P
( 1
λl

)
= 0 (A.4)

Therefore, λl can be obtained by calculating the roots of the coefficients s. For the
estimation of the remaining unknown parameters, (4.11) is turned into the following
matrix-vector form:

n2 = Λa (A.5)

where n2, Λ and a represent a column vector of a consecutive sequence selected from
Nk, a matrix formed by λkl and a column vector of the unknown parameter al. The size
of the matrix-vector formation above is determined by the construction of AR model.
Subsequently, the amplitudes al are obtained as a solution to (A.6) established from
(A.5) using a least-square approach :

a = (ΛHΛ)−1(ΛHn2) (A.6)
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