278 research outputs found

    Spoken content retrieval: A survey of techniques and technologies

    Get PDF
    Speech media, that is, digital audio and video containing spoken content, has blossomed in recent years. Large collections are accruing on the Internet as well as in private and enterprise settings. This growth has motivated extensive research on techniques and technologies that facilitate reliable indexing and retrieval. Spoken content retrieval (SCR) requires the combination of audio and speech processing technologies with methods from information retrieval (IR). SCR research initially investigated planned speech structured in document-like units, but has subsequently shifted focus to more informal spoken content produced spontaneously, outside of the studio and in conversational settings. This survey provides an overview of the field of SCR encompassing component technologies, the relationship of SCR to text IR and automatic speech recognition and user interaction issues. It is aimed at researchers with backgrounds in speech technology or IR who are seeking deeper insight on how these fields are integrated to support research and development, thus addressing the core challenges of SCR

    Automatsko raspoznavanje hrvatskoga govora velikoga vokabulara

    Get PDF
    This paper presents procedures used for development of a Croatian large vocabulary automatic speech recognition system (LVASR). The proposed acoustic model is based on context-dependent triphone hidden Markov models and Croatian phonetic rules. Different acoustic and language models, developed using a large collection of Croatian speech, are discussed and compared. The paper proposes the best feature vectors and acoustic modeling procedures using which lowest word error rates for Croatian speech are achieved. In addition, Croatian language modeling procedures are evaluated and adopted for speaker independent spontaneous speech recognition. Presented experiments and results show that the proposed approach for automatic speech recognition using context-dependent acoustic modeling based on Croatian phonetic rules and a parameter tying procedure can be used for efficient Croatian large vocabulary speech recognition with word error rates below 5%.Članak prikazuje postupke akustičkog i jezičnog modeliranja sustava za automatsko raspoznavanje hrvatskoga govora velikoga vokabulara. Predloženi akustički modeli su zasnovani na kontekstno-ovisnim skrivenim Markovljevim modelima trifona i hrvatskim fonetskim pravilima. Na hrvatskome govoru prikupljenom u korpusu su ocjenjeni i uspoređeni različiti akustički i jezični modeli. U članku su uspoređ eni i predloženi postupci za izračun vektora značajki za akustičko modeliranje kao i sam pristup akustičkome modeliranju hrvatskoga govora s kojim je postignuta najmanja mjera pogrešno raspoznatih riječi. Predstavljeni su rezultati raspoznavanja spontanog hrvatskog govora neovisni o govorniku. Postignuti rezultati eksperimenata s mjerom pogreške ispod 5% ukazuju na primjerenost predloženih postupaka za automatsko raspoznavanje hrvatskoga govora velikoga vokabulara pomoću vezanih kontekstnoovisnih akustičkih modela na osnovu hrvatskih fonetskih pravila

    Spoken term detection ALBAYZIN 2014 evaluation: overview, systems, results, and discussion

    Get PDF
    The electronic version of this article is the complete one and can be found online at: http://dx.doi.org/10.1186/s13636-015-0063-8Spoken term detection (STD) aims at retrieving data from a speech repository given a textual representation of the search term. Nowadays, it is receiving much interest due to the large volume of multimedia information. STD differs from automatic speech recognition (ASR) in that ASR is interested in all the terms/words that appear in the speech data, whereas STD focuses on a selected list of search terms that must be detected within the speech data. This paper presents the systems submitted to the STD ALBAYZIN 2014 evaluation, held as a part of the ALBAYZIN 2014 evaluation campaign within the context of the IberSPEECH 2014 conference. This is the first STD evaluation that deals with Spanish language. The evaluation consists of retrieving the speech files that contain the search terms, indicating their start and end times within the appropriate speech file, along with a score value that reflects the confidence given to the detection of the search term. The evaluation is conducted on a Spanish spontaneous speech database, which comprises a set of talks from workshops and amounts to about 7 h of speech. We present the database, the evaluation metrics, the systems submitted to the evaluation, the results, and a detailed discussion. Four different research groups took part in the evaluation. Evaluation results show reasonable performance for moderate out-of-vocabulary term rate. This paper compares the systems submitted to the evaluation and makes a deep analysis based on some search term properties (term length, in-vocabulary/out-of-vocabulary terms, single-word/multi-word terms, and in-language/foreign terms).This work has been partly supported by project CMC-V2 (TEC2012-37585-C02-01) from the Spanish Ministry of Economy and Competitiveness. This research was also funded by the European Regional Development Fund, the Galician Regional Government (GRC2014/024, “Consolidation of Research Units: AtlantTIC Project” CN2012/160)

    Holistic Vocabulary Independent Spoken Term Detection

    Get PDF
    Within this thesis, we aim at designing a loosely coupled holistic system for Spoken Term Detection (STD) on heterogeneous German broadcast data in selected application scenarios. Starting from STD on the 1-best output of a word-based speech recognizer, we study the performance of several subword units for vocabulary independent STD on a linguistically and acoustically challenging German corpus. We explore the typical error sources in subword STD, and find that they differ from the error sources in word-based speech search. We select, extend and combine a set of state-of-the-art methods for error compensation in STD in order to explicitly merge the corresponding STD error spaces through anchor-based approximate lattice retrieval. Novel methods for STD result verification are proposed in order to increase retrieval precision by exploiting external knowledge at search time. Error-compensating methods for STD typically suffer from high response times on large scale databases, and we propose scalable approaches suitable for large corpora. Highest STD accuracy is obtained by combining anchor-based approximate retrieval from both syllable lattice ASR and syllabified word ASR into a hybrid STD system, and pruning the result list using external knowledge with hybrid contextual and anti-query verification.Die vorliegende Arbeit beschreibt ein lose gekoppeltes, ganzheitliches System zur Sprachsuche auf heterogenenen deutschen Sprachdaten in unterschiedlichen Anwendungsszenarien. Ausgehend von einer wortbasierten Sprachsuche auf dem Transkript eines aktuellen Wort-Erkenners werden zunächst unterschiedliche Subwort-Einheiten für die vokabularunabhängige Sprachsuche auf deutschen Daten untersucht. Auf dieser Basis werden die typischen Fehlerquellen in der Subwort-basierten Sprachsuche analysiert. Diese Fehlerquellen unterscheiden sich vom Fall der klassichen Suche im Worttranskript und müssen explizit adressiert werden. Die explizite Kompensation der unterschiedlichen Fehlerquellen erfolgt durch einen neuartigen hybriden Ansatz zur effizienten Ankerbasierten unscharfen Wortgraph-Suche. Darüber hinaus werden neuartige Methoden zur Verifikation von Suchergebnissen vorgestellt, die zur Suchzeit verfügbares externes Wissen einbeziehen. Alle vorgestellten Verfahren werden auf einem umfangreichen Satz von deutschen Fernsehdaten mit Fokus auf ausgewählte, repräsentative Einsatzszenarien evaluiert. Da Methoden zur Fehlerkompensation in der Sprachsuchforschung typischerweise zu hohen Laufzeiten bei der Suche in großen Archiven führen, werden insbesondere auch Szenarien mit sehr großen Datenmengen betrachtet. Die höchste Suchleistung für Archive mittlerer Größe wird durch eine unscharfe und Anker-basierte Suche auf einem hybriden Index aus Silben-Wortgraphen und silbifizierter Wort-Erkennung erreicht, bei der die Suchergebnisse mit hybrider Verifikation bereinigt werden

    Voice-processing technologies--their application in telecommunications.

    Full text link

    Speech Recognition

    Get PDF
    Chapters in the first part of the book cover all the essential speech processing techniques for building robust, automatic speech recognition systems: the representation for speech signals and the methods for speech-features extraction, acoustic and language modeling, efficient algorithms for searching the hypothesis space, and multimodal approaches to speech recognition. The last part of the book is devoted to other speech processing applications that can use the information from automatic speech recognition for speaker identification and tracking, for prosody modeling in emotion-detection systems and in other speech processing applications that are able to operate in real-world environments, like mobile communication services and smart homes

    Exploration and Optimization of Noise Reduction Algorithms for Speech Recognition in Embedded Devices

    Get PDF
    Environmental noise present in real-life applications substantially degrades the performance of speech recognition systems. An example is an in-car scenario where a speech recognition system has to support the man-machine interface. Several sources of noise coming from the engine, wipers, wheels etc., interact with speech. Special challenge is given in an open window scenario, where noise of traffic, park noise, etc., has to be regarded. The main goal of this thesis is to improve the performance of a speech recognition system based on a state-of-the-art hidden Markov model (HMM) using noise reduction methods. The performance is measured with respect to word error rate and with the method of mutual information. The noise reduction methods are based on weighting rules. Least-squares weighting rules in the frequency domain have been developed to enable a continuous development based on the existing system and also to guarantee its low complexity and footprint for applications in embedded devices. The weighting rule parameters are optimized employing a multidimensional optimization task method of Monte Carlo followed by a compass search method. Root compression and cepstral smoothing methods have also been implemented to boost the recognition performance. The additional complexity and memory requirements of the proposed system are minimum. The performance of the proposed system was compared to the European Telecommunications Standards Institute (ETSI) standardized system. The proposed system outperforms the ETSI system by up to 8.6 % relative increase in word accuracy and achieves up to 35.1 % relative increase in word accuracy compared to the existing baseline system on the ETSI Aurora 3 German task. A relative increase of up to 18 % in word accuracy over the existing baseline system is also obtained from the proposed weighting rules on large vocabulary databases. An entropy-based feature vector analysis method has also been developed to assess the quality of feature vectors. The entropy estimation is based on the histogram approach. The method has the advantage to objectively asses the feature vector quality regardless of the acoustic modeling assumption used in the speech recognition system

    Automatic Speech Recognition without Transcribed Speech or Pronunciation Lexicons

    Get PDF
    Rapid deployment of automatic speech recognition (ASR) in new languages, with very limited data, is of great interest and importance for intelligence gathering, as well as for humanitarian assistance and disaster relief (HADR). Deploying ASR systems in these languages often relies on cross-lingual acoustic modeling followed by supervised adaptation and almost always assumes that either a pronunciation lexicon using the International Phonetic Alphabet (IPA), and/or some amount of transcribed speech exist in the new language of interest. For many languages, neither requirement is generally true -- only a limited amount of text and untranscribed audio is available. This work focuses specifically on scalable techniques for building ASR systems in most languages without any existing transcribed speech or pronunciation lexicons. We first demonstrate how cross-lingual acoustic model transfer, when phonemic pronunciation lexicons do exist in a new language, can significantly reduce the need for target-language transcribed speech. We then explore three methods for handling languages without a pronunciation lexicon. First we examine the effectiveness of graphemic acoustic model transfer, which allows for pronunciation lexicons to be trivially constructed. We then present two methods for rapid construction of phonemic pronunciation lexicons based on submodular selection of a small set of words for manual annotation, or words from other languages for which we have IPA pronunciations. We also explore techniques for training sequence-to-sequence models with very small amounts of data by transferring models trained on other languages, and leveraging large unpaired text corpora in training. Finally, as an alternative to acoustic model transfer, we present a novel hybrid generative/discriminative semi-supervised training framework that merges recent progress in Energy Based Models (EBMs) as well as lattice-free maximum mutual information (LF-MMI) training, capable of making use of purely untranscribed audio. Together, these techniques enabled ASR capabilities that supported triage of spoken communications in real-world HADR work-flows in many languages using fewer than 30 minutes of transcribed speech. These techniques were successfully applied in multiple NIST evaluations and were among the top-performing systems in each evaluation
    corecore