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Abstract

Rapid deployment of automatic speech recognition (ASR) in new languages,

with very limited data, is of great interest and importance for intelligence

gathering, as well as for humanitarian assistance and disaster relief (HADR).

Deploying ASR systems in these languages often relies on cross-lingual acous-

tic modeling followed by supervised adaptation and almost always assumes

that either a pronunciation lexicon using the International Phonetic Alphabet

(IPA), and/or some amount of transcribed speech exist in the new language of

interest. For many languages, neither requirement is generally true – only a

limited amount of text and untranscribed audio is available. This work focuses

specifically on scalable techniques for building ASR systems in most languages

without any existing transcribed speech or pronunciation lexicons.

We first demonstrate how cross-lingual acoustic model transfer, when

phonemic pronunciation lexicons do exist in a new language, can significantly

reduce the need for target-language transcribed speech. We then explore three

methods for handling languages without a pronunciation lexicon. First we

examine the effectiveness of graphemic acoustic model transfer, which allows

for pronunciation lexicons to be trivially constructed. We then present two
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methods for rapid construction of phonemic pronunciation lexicons based on

submodular selection of a small set of words for manual annotation, or words

from other languages for which we have IPA pronunciations. We also explore

techniques for training sequence-to-sequence models with very small amounts

of data by transferring models trained on other languages, and leveraging

large unpaired text corpora in training. Finally, as an alternative to acoustic

model transfer, we present a novel hybrid generative/discriminative semi-

supervised training framework that merges recent progress in Energy Based

Models (EBMs) as well as lattice-free maximum mutual information (LF-MMI)

training, capable of making use of purely untranscribed audio.

Together, these techniques enabled ASR capabilities that supported triage of

spoken communications in real-world HADR work-flows in many languages

using fewer than 30 minutes of transcribed speech. These techniques were

successfully applied in multiple NIST evaluations and were among the top-

performing systems in each evaluation.

Primary reader: Sanjeev Khudanpur

Secondary reader: Jan Trmal

Third reader: Najim Dehak
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Chapter 1

Introduction

Recent progress in machine learning and speech recognition has brought au-

tomatic speech recognition (ASR) and audio search capabilities to millions

of people in the world. However, in most of the 3 to 4 thousand languages

with writing systems [1], the large amount of transcribed speech necessary

for building high quality ASR engines does not exist. These languages are

primarily spoken in geographically and politically isolated, or economically

developing parts of the world. These regions are also some of the most politi-

cally unstable and disaster-prone parts of the world, and significant effort goes

into information gathering and disaster relief in these locations.

These geopolitical factors result in low internet penetration and literacy

rates and the role of the text-based communication using smart-phones or

computers is often subsumed by speech-based communication over mobile

phones, community radios, or voice messaging. Since much of this speech is

1



not written, the audio transcripts necessary to train good ASR engines in these

languages are lacking. Consequently, the rapid deployment of ASR capabilities

in many languages, requiring little to no transcribed speech is immensely

important. This need was the motivation for the IARPA BABEL program [2]

whose goal was to rapidly develop ASR and keyword search (KWS) capabilities

in under-resourced languages, as well as the DARPA LORELEI program [3],

whose focus was to develop language technologies in low-resource languages

for use in humanitarian assistance and disaster relief (HADR) scenarios.

1.1 Contributions of this Dissertation

This dissertation focuses specifically on techniques for creating ASR engines

that can be quickly deployed with little or no need for additional transcribed

speech in a target language. The main contributions of this thesis are as follows:

1. Transferring acoustic-phonetic models from resource-rich to low-resource

languages assumes the existence of a pronunciation lexicon in the target

low-resource language. Techniques developed here remove this require-

ment. This techniques enable the creation pronunciation lexicons in new

languages and consequently zero-shot acoustic model transfer.

2. Building sequence-to-sequence models removes the need for pronunci-

ation lexicons, but at the expense of more transcribed speech. We have

developed a new technique for improving the performance of these mod-
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els in extremely low-resource settings by leveraging large unpaired text

resources.

3. Untranscribed speech in the target language is a commonly available and

under-utilized data source. A novel, generative approach for training

ASR systems using untranscribed speech is developed here using the

framework of energy-based models.

In Chapter 2, we describe the task of ASR, specifically cross-lingual training

of ASR models. We contextualize our approach within the body of relevant

prior work, and describe the technical background and relevant data resources

used in this dissertation.

In Chapter 3 we describe how, through the use of universal phonemic

acoustic models, we can reduce or even remove the need for transcribed speech

when developing ASR models in a new language. Specifically, we study the

effectiveness of various cross-lingual transfer and adaptation strategies.

In Chapter 4 we examine how we can remove the need for phonemic

pronunciation lexicons by using graphemic acoustic models, and study their

effectiveness in cross-lingual acoustic model transfer.

In Chapter 5 we examine how to quickly construct phonemic pronuncia-

tion lexicons when they do not exist, using active learning and cross-lingual

approaches based on constrained submodular optimization.

In Chapter 6, we explore alternative ASR models for cross-lingual transfer.
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Specifically, we present a technique for pretraining on large amounts of un-

paired text to improve the performance of encoder-decoder models for ASR in

low-resource settings.

In Chapter 7, we describe a novel framework, using energy-based genera-

tive models, to improve acoustic models by training on untranscribed speech.

Finally we conclude this dissertation and discuss future research directions

that can build on this work.
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Chapter 2

Cross-Lingual Automatic Speech

Recognition

The aim of this chapter is to familiarize the reader of the fundamentals of

automatic speech recognition, specifically cross-lingual training of ASR models.

This chapter consists of 4 sections.

1. Section 2.1 formulates the automatic speech recognition (ASR) problem

and how collections of transcribed speech, known as speech corpora, can

be used to build statistical models for ASR.

2. Section 2.2 is an overview of the available data-resources for training

multi- and cross-lingual ASR models as well as those that we use in this

dissertation.

3. Section 2.3 reviews common ASR models, including the weighted finite-
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state transducer (WFST) based hybrid deep neural network-hidden Markov

models (DNN-HMMs).

4. Section 2.5 presents a WFST framework for cross-lingual acoustic model

transfer. It also reviews how prior work fits into this framework as well

as the remaining problems in cross-lingual acoustic model transfer that

we address in this dissertation.

2.1 The Speech Recognition Problem

The task of automatic speech recognition (ASR) is to produce a transcript

for input audio. Other audio pre-processing is often necessary to build high-

quality speech recognition systems: speech and voice activity detection (VAD,

SAD) [4, 5, 6] are used to segment the audio and remove silence; speaker

diarization [7, 8] can help to build personalized models, and improve speech

alignment; a myriad of techniques have explored mitigating the detrimental

effects of overlapped [9, 10, 11], noisy, and reverberant speech[12, 13, 14]. Since

in this work, we focus on recognizing speech in previously unseen languages

— a challenging task in its own right — we ignore these important problems

and assume that we have access to well-segmented audio with speaker-level

information where necessary.

ASR generally relies on building statistical models. Our goal is to produce

a model capable of mapping speech signals to word sequences that are close to
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the correct word sequences. We refer to paired speech and word sequences as

utterances. Ideally, one would construct a general purpose model capable of

producing the correct transcript for any utterance. Generally, however, models

are intended to be deployed in a specific domain, characterized by certain

acoustic environments, XU , and certain kinds of word sequences. For instance,

a model may be designed to be deployed on speech in a specific language, or

transmitted over a specific acoustic channel.

Let xt ∈ Rd×1 be a d-dimensional, real-valued representation of a window

of speech at time t, and let

x =
(︂

x1, x2, . . . , xt, . . . , xT−1, xT
)︂

represent a length T speech signal. Commonly used representations include

mel-frequency cepstral coefficients (MFCCs) [15], and log-mel filterbank fea-

tures [16].

Let V be a finite vocabulary, V, of discrete output units, such as words. Let

V∗ be the set of all sequences of such units, and let w ∈ V∗ be a sequence of

elements wi ∈ V, indexed by i, i.e.,

w =
(︂

w1, w2, . . . , wi, . . . , wN
)︂

.

Formally the task of ASR is to create a model pθ (w|x; λ) with appropriate

values for parameters θ, and hyper-parameters λ such that for an utterance
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from a domain, or set of utterances,

U =
{︂
(x, w)i ∈ Rdx1 × V∗ s.t. x ∈ XU , i ∈ N

}︂
,

the most likely word sequence, ŵ = arg max
w∈V∗

pθ (w|x), is close to the correct

word sequence w∗, under some metric D (ŵ, w∗). Typically, D (·, ·) is the

Levenshtein distance [17], which we discuss in Section 2.1.3. For simplicity,

unless explicitly required, we omit writing the hyper-parameters, λ, in this

dissertation. Formally, the goal of an ASR system is to minimize the expected

transcription error,

DU (θ, λ) = E(x,w∗)∼U

[︃
D
(︃

w∗, arg max
w∈V∗

pθ (w|x; λ)

)︃]︃
, (2.1)

on domain U , which is accomplished by setting the model parameters, θ, and

hyper-parameters to

(θ∗, λ∗) = arg min
θ,λ

DU (θ, λ) .

2.1.1 Using fixed corpora to simulate real-world data

The formulation in Equation 2.1 is general, but intractable. For instance the

set of all utterances, U , for which the model, pθ (w|x), is designed to work is

infinite, even if it is well defined, i.e., all English utterances. Consequently, the

expectation in Equation 2.1 is approximated by using multiple, finite, disjoint
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collections , U1, . . . ,UN, of transcribed speech. Uj ⊂ U , the j-th such collection

containing NUj transcribed utterances, is defined as

Uj =
{︂
(x, w)i ∈ U s.t. x ∈ XU , i ∈ 1, . . . , NUj

}︂
.

Together, these subsets of transcribed speech, U1, . . . ,UN , are called a speech

corpus. A subset, Uj that is used to estimate the parameters, θ, of an ASR model

is referred to as a training set, T . Estimating model parameters using data is

referred to as training; the other subsets are “heldout” and are used to ensure

that the model is capable of generalizing to new data and that the model is

accurate, in expectation, across all the data we are likely to encounter – not just

the data used to fit model parameters.

When a model’s performance improves on T at the expense of performance

on data from U \ T , we say that the model parameters are over-fit. The heldout

subsets are often called the validation, evaluation, tuning, or sometimes the

development sets. In this dissertation we refer to these sets as E .

Using two or more such subsets, E1, E2 is commonplace. One of these sets,

E1, is periodically probed during training and used as a stopping criterion to

prevent over-fitting. E1 is also used for model-selection to tune model hyper-

parameters, λ, which represent meta-level modeling decisions that were not

informed by T . This procedure aims to maximize a model’s capacity to general-

ize to new data. Subsets used in the fashion are called tuning, or development
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sets. The remaining subsets are used only to report model performance, but

never to influence model selection or hyper-parameter tuning. These sets are

called test sets or evaluation sets.

In summary, these three subsets of data are used in a three-step process to

approximate the optimal parameters, θ∗, and hyper-parameters λ∗ as

θ∗ ≃ θ̂ = arg min
θ

DT (θ, λ) (2.2)

λ∗ ≃ λ̂ = arg min
λ

DE1

(︁
θ̂, λ
)︁

. (2.3)

The optimal model performance on utterances from U , is approximated as

DU (θ∗, λ∗) ≃ DE2

(︁
θ̂, λ̂
)︁
.

2.1.2 Objective Functions

The formulation in Equation 2.1 is also intractable due to the metric D (·, ·),

whose computation is difficult and could dominate the time to taken to train

models. For this reason, the error function used in training often differs from

that used for evaluation. The error function, L (w∗, x, θ), used to estimate

model parameters, θ, is called an objective function, loss function, or training

objective. Objective functions often operate on chunks of speech rather than the

whole utterance to make computation more tractable, but also to enable online

application of ASR engines, to make the learning problem easier, and to make

models less prone to over-fitting.
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Many objective functions can be interpreted as a score for probability den-

sity function (PDF) pθ (w|x) over outputs w, parameterized by θ. A low scoring

PDF is one that is close to the empirical probability density function p̃ (w|x) of

utterances (x, w) ∈ T . One way of measuring the similarity of PDFs is using a

divergence, such as the Kullback-Leibler (KL) divergence, which on discrete

PDFs is defined as

DKL ( p̃ (w|x) ||pθ (w|x)) = ∑
w∈V∗

p̃ (w|x) log
p̃ (w|x)
pθ (w|x) . (2.4)

The KL-divergence is non-negative, and also has the property that

DKL ( p̃ (w|x) ||pθ (w|x)) = 0⇐⇒pθ (w|x) = p̃ (w|x) , (2.5)

which makes it easily interpretable as an objective function. In fact, commonly

used objective functions such as cross-entropy [18], or mutual information

[19] are related information theoretic quantities that can be defined using the

KL-divergence on the appropriate density functions.

Finally, the arg max
w∈V∗

can be computationally intractable. As a result, sim-

plified search strategies are often used, including greedy beam-search [20, 21],

teacher-forcing [22], or other such approximations. Almost all modern ASR

engines use these approximations to formulate ASR parameter training as

θ̂ = arg max
θ

E(x,w∗)∼T [log pθ (w∗|x)] , (2.6)
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where the maximization is reformulated as minimizing the KL-divergence

between modeled and empirical densities. In other words, this estimation

procedure is used in place of arg min
θ

DT (θ, λ) in Equation 2.2.

2.1.3 Evaluation Metric

In speech recognition the evaluation metric, D (w, w∗), is almost always word

error rate (WER), though sentence (SER) phoneme (PER) and character (CER)

error rates are often reported as well. These error rates rely on finding the best

possible alignment between hypothesis, ŵ, and reference sequences, w∗, using

the Levenshtein distance between two strings [17].

Informally, the Levenshtein distance between two strings is the minimum

number of edits, (insertions, deletions, and substitutions), needed to transform

one string into the other. The process of alignment can be described as the

application of these edits to ŵ, and the best alignment is the one that uses

the fewest number of edits. Note that the Levenshtein distance considers

only monotonic, i.e. left-to-right, alignment of the hypothesis transcript ŵ, with

reference transcript, w∗, and is efficiently computed via dynamic programming.

Let D, S , I , and C represent the number of deletions, substitutions, inser-

tions, and correct symbols in the best alignment of hypothesis, ŵ, with respect

to the reference w∗. The WER is defined as the total number of edits divided
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by the number of words in the reference transcript, 1

DWER (ŵ, w∗) =
I +D + S
D + S + C . (2.7)

This is the primary metric used to measure performance of models in this

thesis, as well as in the ASR literature.

Figure 2.1: Depiction of the procedure described in this chapter for the training,
tuning, and testing procedure used to develop statistical ASR models. (1) shows the
training step. (2) shows how the development set (Dev), E1 can be used for model
selection and hyper-parameter tuning. (3) demonstrates how E2 is use to estimate
model performance on real-world data.

The model, pθ (w|x; λ), is finally evaluated according to

E(x,w∗)∼E [DWER (ŵ, w∗)] . (2.8)

1Note that WER can be well over 1.0. If a system produces an infinitely long hypothesis
sequence, the WER will go to +∞. Deleting or substituting every word results in a WER of 1.0
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Figure 2.1 summarizes how these fixed subsets can be used to both estimate

model parameters as well as model performance.

In conclusion, ASR models are trained on a finite collection of utterances,

T , using an objective function such as the KL-divergence, that measures how

close the modeled density, pθ (w|x; λ), is to the empirical density, p̃ (w|x), of

utterances in T . Alternative settings of λ are explored and the best-performing

configuration, λ̂, is selected. Model performance is validated by measuring the

WER of the model, pθ̂

(︁
w|x; λ̂

)︁
, on a third dataset E2.

2.2 Speech Corpora for Cross-lingual ASR

In this dissertation, we develop universal ASR models, pθ (w|x), intended to

be deployed in any language. The domain, U , of interest is the set of all

utterances. We specifically explore the cross-lingual aspect of developing ASR

models as the available transcribed speech cannot be expected to cover all

languages. We therefore construct our training sets, T , to cover a diverse set of

languages, while ensuring that we have held-out some languages for use in

our development, and evaluation sets, E . We do this to ensure that any models

we train are capable of generalizing to new languages.

In this work we employ some terminology from linguistics to describe

the languages present in the training, T , and evaluation sets, E . Attested

languages are languages for which we have data confirming their existence.
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From the point of view of an ASR model, the languages present in the training

set, T , are attested. Unattested languages are languages that may exist, but for

which we have no direct evidence. From the point of view of an ASR model,

the languages for which no examples exist in T are unattested. This dissertation

focuses on the case where E is unattested.

Often, a small amount of transcribed speech is, or may become, available in

a specific language of interest. We can use this data to fine-tune our estimate of

model parameters, θ, in order to make a language specific model built with the

help of cross-lingual resources. We refer to the language of interest as the target

language and the process of fine-tuning model parameters, θ, from an existing

model as model adaptation, or simply fine-tuning.

A number of multilingual speech corpora are commonly used for develop-

ing and testing multilingual ASR systems. We describe some of these datasets.

2.2.1 BABEL

The BABEL corpus [2], was developed to support research in ASR and keyword

search (KWS) in moderately challenging acoustic conditions across a wide

variety of under-served languages. There are a total of 25 languages in the

corpus. The speech data are almost entirely telephone conversations in which

participants were encouraged to speak about topics such as family, current

affairs, sports, culture, and technology. These data are all recorded at 8kHz.

A small portion of the data in some languages are street interviews recorded
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at 16kHz. Significant care was taken to annotate non-speech sounds such as

lip-smacks, laughter, cough, partial words, as well as words unknown to the

transcriber. Speaker turns, are well annotated and include timing information.

This information can be used to create relatively short (3-30 second) speaker-

labeled, transcribed audio segments.

In each of the 25 languages there are a variety of data splits commonly used

for different training conditions: the full language pack (FLP) is a training set,

T , consisting of a subset of between 40 to 80 hours, depending on the language,

of mostly telephone conversations; the limited language pack (LLP) is a 10hr

subset of the FLP data. Additional read prompts and untranscribed telephone

conversations are also included for each language. A 10 hour development

set is also defined for each language. This set is call the dev10h set. Separate

evaluation sets exist for at least some languages, but are not publicly available.

For this reason, most published work using this corpus report ASR and KWS

performance using the dev10h data, as E2, while using different strategies for

defining sets, E1, on which to tune models.

Additional resources such as pronunciation lexicons (lexicons) are included

with each language. The lexicon is a list of all words seen in the union of the FLP

and dev10h sets. Each word is followed by one or more tab-delimited standard

phonetic pronunciations. The pronunciations are written as sequences of X-

SAMPA [23] phonemes. X-SAMPA phonemes are an ASCII representation of

the international phonetic alphabet (IPA) [24], which was explicitly constructed
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to be a finite symbol set capable of describing all attested phonemes in all the

world’s attested languages. For languages written in non-roman orthographies,

the X-SAMPA pronunciation is preceded by a romanized spelling of each word.

The full list, amount of data, and number of provided pronunciations in

each BABEL language is shown in Table 2.1. We sort the languages according

to a unique language code (column 1 of Table 2.1), assigned to each language

in the corpus. The name of each language as well as its ISO-639-3-letter code

is shown in columns 2 and 3 of Table 2.1. The exact number of hours of

transcribed speech in each language’s FLP training set is shown in column 4.

Column 5 shows the number of unique words present in the union of the FLP

and dev10h sets.

2.2.2 CMU Wilderness Multilingual Speech Corpus

The CMU Wilderness Multilingual Speech Dataset (Wilderness) [25] is, to our

knowledge, the publicly available corpus with the largest language coverage.

In each of around 700 languages, this corpus provides about 20 hours of aligned,

sentence-length, text and audio segments. The speech consists of recordings of

readings of the new testament scraped from the www.bible.is website. The vast

majority of these languages are low-resource languages, including many from

regions, as described in Chapter 1, with low internet penetration, low literacy

rates, and which have a high risk of political and environmental turmoil. These

languages are precisely those for which ASR capabilities would be useful in
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BABEL Code Language ISO-639-3 FLP size (hr) Lexicon (# words)

101 Cantonese yue 141.3 18506
102 Assamese asm 60.8 22033
103 Bengali ben 61.7 24339
104 Pashto pus 78.4 17640
105 Turksih tur 77.2 38311
106 Tagalog tgl 84.5 21063
107 Vietnamese vie 87.7 6204
201 Haitian hat 67.1 12952
202 Swahili swh 44.3 21884
203 Lao lao 65.6 6034
204 Tamil tam 69.3 52363
205 Kurmanji kmr 42.1 12854
206 Zulu zul 62.1 54295
207 Tokpisin tpi 39.4 5619
301 Cebuano ceb 41.4 13462
302 Kazakh kaz 40.0 19581
303 Telugu tel 42.0 32556
304 Lithuanian lit 42.5 28366
305 Guarani grn 43.0 24239
306 Igbo ibo 43.9 15679
307 Amharic amh 43.7 31534
401 Mongolian mon 46.5 20854
402 Javanese jav 45.5 13570
403 Dholuo luo 41.6 16213
404 Georgian kat 50.5 30266
— total - 1462.5 560417

Table 2.1: The BABEL speech corpus. Columns 1-3 show the language code used
internally in the BABEL corpus, as well as the language name and ISO-639-3-letter
codes for each language. Column 4 shows the number of hours of transcribed speech
in the FLP.

the HADR scenario.

While the languages are representative of those that would be useful in the

HADR scenario, the speech is not, and is somewhat problematic. First, the

speech is clean, read speech, that appears to have been recorded in a studio.

Occasionally, quiet background music was added to the read speech, and often
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the voice of God is distinguished by synthetically reverberating the audio.

While there are some female speakers in the corpus, the majority of speakers

are male. Since most recordings are read by only one or two individuals, there

is very little speaker variability in most languages.

Furthermore, because the data are found, the transcripts and audio were

automatically segmented and aligned. This process introduces error in the

segment boundaries and transcripts. To measure alignment quality, a speech

synthesis system was built using the aligned utterances, which were in turn

re-synthesized, and the quality of the synthesized audio, measured using

the mel-cepstral distortion (MCD) [26], served as a downstream measure of

alignment quality in [25]. Many languages are well-aligned, but a large number

are too poorly aligned to be useful in training. However, this corpus can serve

as an interesting test-bed for cross-lingual transfer to the subset of well aligned

languages.

Figure 2.2 [27] shows a map of the world on which dots represent a language

covered in the corpus, and the color indicates the MCD, which is a proxy-metric

for alignment quality.

In [27], we helped create a companion corpus by applying the zero-resource

acoustic modeling techniques explored in this dissertation to substantially

improve the alignments and phonemic transcripts of 48 of the languages from

this corpus. This enabled the first study of phonetic typology at scale across

many languages.
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Figure 2.2: Language coverage of the Wilderness corpus. Each dot represents the
location of one of 635 languages covered in the corpus. The color of the dot represents
the estimated alignment quality of the data. In general only languages with MCD
< 5.0 are well enough aligned to be useful training or test languages.

2.2.3 VoxForge

The VoxForge project is an open-source effort to provide ASR models in multi-

ple languages by leveraging user submitted read speech to build ASR engines.

The effort has thus far collected read speech in 17 languages. However, most of

these languages have only minutes to a few hours of transcribed speech. The

speech is recorded a 16kHz on computer microphones. So while the speech is

generally clean, the amount of noise present varies across recordings. Most of

the collected languages are Indo-European languages, which make them less

interesting for testing the HADR use-case described in Chapter 1.

There are two further problems with this data set, especially in the lan-

guages for which there are few data. First, for some languages there are only a

few speakers who have contributed recordings. More problematically, in some
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languages, only a small number of prompts were read, which limits the vocab-

ulary and sentence variability of the speech. In order to prevent over-fitting of

models, care must be taken to construct training sets, T , and evaluation sets, E ,

that do not have prompt-overlap and that ideally, minimize speaker overlap.

Nonetheless, this corpus has been widely used in the literature to build and

test a variety of multilingual models [28].

2.3 Common ASR models

In the previous two sections we defined the ASR problem and a procedure

for using transcribed speech to train ASR models. We also described some of

the available resources for training ASR models designed to be deployed in

cross-lingual and multilingual settings. We now will focus on the modeling

approaches used in ASR.

Commonly used ASR models fall into roughly two classes: models that

directly optimize the posterior density, pθ (w∗|x), during training, and models

that decompose this density via Bayes rule as pθ (w∗|x) ∝ pθ (x|w∗) p (w∗).

In this dissertation we consider both models, but focus on the second kind,

known as noisy channel models. Noisy channel models are of interest because

they factorize pθ (w∗|x), which results in modular ASR components that can be

trained on data resources beyond paired speech and transcripts, (x, w∗), such as

speech from other languages and text corpora.
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The first group of models consists of so-called "end-to-end" systems, which

generally refer to models trained on whole utterances, that require neither a

pronunciation lexicon, nor a separate alignment stage. In “end-to-end” systems,

the burden of learning a model is shifted away from subcomponent design and

onto the data resources used to train large, general purpose, and often blackbox

neural models. These models rely on auto-regressive decoding, or conditional

independence assumptions to evaluate pθ (w∗|x), such as cross-entropy trained

sequence-to-sequence models [29] or models trained with the connectionist

temporal classification objective (CTC) [30]. These models rely on having large

amounts of matched-domain transcribed speech. The popularity and success

of these models has followed the increasing prevalence of the requisite data

and computational resources. However, when such models are deployed in

new environments, where new lexical items, accents, acoustic conditions, or

even grammars are encountered, these models tend to generalize poorly and

are cumbersome to work with due to lack of modularity.

The second group includes hybrid deep neural network hidden Markov

models (DNN-HMMs) and rely on the noisy channel model for speech recog-

nition. These latent variable models decompose the problem into multiple,

more modular probabilistic models: they use Markov chains to model the prior

p (w∗) and neural networks to estimate acoustic likelihoods p (x|w∗). These

models can often be made more modular by including new latent variables. Im-

portantly, some of these probabilistic models may be re-usable across domains,
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and trained on unpaired data. For instance, pronunciation lexicons can be

reused across a wide variety of acoustic conditions and require no transcribed

spech; language models can be reused across a wide variety of accented speech

and can be trained on unpaired text. These models enable cross-lingual transfer,

for instance, through the reuse of sub-components.

2.3.1 Noisy Channel Model

In the noisy channel model, pθ (w∗|x) is decomposed via Bayes rule into a

conditional likelihood, pθ1 (x|w), and a prior, pθ2 (w), with separate parameters

θ1, θ2. A great advantage of this model is that the prior, or language model,

can be learned independently on much larger amounts of text than the audio

transcripts. The model parameters are written as Θ = (θ1, θ2), where

pΘ (w|x) =
pθ1 (x|w) pθ2 (w)

∑w pθ1 (x|w) pθ2 (w)
(2.9)

Unfortunately, even this formulation is intractable when the output se-

quences are words.2 For this reason another latent representation of speech

is introduced. The latent variables, p ∈ P are typically a hand-crafted set of

subword units, such as phonemes or graphemes, into which words are de-

composed. Work on learning these representations from data has also been

explored [31, 32]. This map of words, w ∈ V, to sequences, s = (p1, . . . , pNw),

2The amount of data required to train whole word models is impractical to work with and
difficult to obtain. As a result these sorts of models are prone to over-fitting. We are unlikely to
have audio corresponding to most words and word sequences.
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of latent classes of length Nw, is called the pronunciation lexicon as typically

the chosen units are phonemes, so that the latent variable sequences define

canonical pronunciations for each word. We described an example format of

these lexicons in Section 2.2.1.

Using the pronunciation lexicon, the posterior distribution can then be

written as

pΘ (w|x) = ∑s pθ1 (x|s) pθ3 (s|w) pθ2 (w)

∑w,s pθ1 (x|s) pθ3 (s|w) pθ2 (w)
, (2.10)

where s denotes the phoneme sequences corresponding to word, w, and we

assume conditional independence between w, x, i.e., p (x|s) = p (x|s, w). In

practice phonemes are not fine-grained enough to model effects such as coar-

ticulation in speech. For this reason, rather than using purely phonemic latent

variables, most systems use clustered, context-dependent units as the latent

representation. Triphones 3 are phone(me) triplets, which when used as latent

variables, enables modeling phonemes in context. Training triphone models

remains difficult due to the same data-sparsity problem encountered when

training whole-word acoustic models (see the previous footnote). To alleviate

this problem, triphones are clustered and the parameters of triphone models

are shared within a given cluster. Each triphone is generally represented by a

3I sometimes use phoneme and phone interchangeably when referring to the latent vari-
able identifiers describing the pronunciation of words. However they have fairly distinct
meanings. Phones, and hence triphones, describe linguistic sounds, where as phonemes and
triphonemes are the equivalence class of sounds that do not change the meaning of a word
within a language. An example is the /p/ sound in the word spin. In English, the /p/ is
un-aspirated when following an /s/. However, there would be no lexical distinction between
the pronunciation /spIn/ and /sphIn/. Many Indic languages use this phonetic feature to
make lexical distinctions. Therefore, aspiration is a phonemic feature in many Indic languages,
but a phonetic feature of English.
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3-state HMM. The individual HMM-states are referred to as senones. It is these

clusters that a DNN, ϕ (x) aims to accurately predict from the acoustic signal x

in DNN-HMMs. To map from these triphone sequence, c, back to the original

phoneme sequences, s, we use a deterministic map, p (c|s), from triphonemes

to their respective center phonemes. This enables us to express the posterior

p (w|x) in terms of these components as shown in Equation 2.11. These compo-

nents are called the hidden Markov model (H), context dependency map (C),

pronunciation lexicon (L), and language model, or grammar (G). We refer to

(ϕ, H, C) together as the acoustic model.

pΘ (w|x) = ∑s,c

H⏟ ⏞⏞ ⏟
pθ1 (x|c)

C⏟ ⏞⏞ ⏟
p (c|s)

L⏟ ⏞⏞ ⏟
pθ3 (s|w)

G⏟ ⏞⏞ ⏟
pθ2 (w)

∑w,s,c pθ1 (x|c) p (c|s) pθ3 (s|w) pθ2 (w)
(2.11)

2.4 WFSTs in HMM-DNN ASR

Each component in the noisy channel model (Equation 2.11) – Hidden Markov

Models (HMMs), pronunciation lexicons (Lexicons), and Language Models

(LM) – can be represented using weighted finite state transducers (WFSTs)

[33, 34]. A WFST is a graph representing a function that maps sequences of

input symbols to output symbols. A WFST, T, can be represented as an 8

tuple, T = (Σ, ∆, Q, I, F, E, λ, ρ). Σ is the vocabulary of input symbols. ∆ is

vocabulary of output symbols. Q is the set of states in the graph. I ⊆ Q is

the set of initial states. F ⊆ Q is the set of final states. E is a set of weighted
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edges between states in Q, which accept an input symbol from Σ, and return

an output symbol from ∆. λ is a function that provides weights for each state

in I, and ρ gives the weights for each state in F. Weighted finite state acceptors

(WFSAs), are defined like WFSTs, but without the output symbols.

The weights of WFS(A/T)s are defined over a semiring. A semiring is a

set for which two operators
⨁︁

,
⨂︁

are defined as well as elements 1̄, 0̄. The

operators and elements must be defined such that 1̄, 0̄ are the identity elements

of
⨂︁

,
⨁︁

respectively, and such that 0̄
⨂︁

a = 0̄, 1̄
⨂︁

a = a. Furthermore,
⨁︁

is

both commutative and associative, while
⨂︁

is associative and distributes with

respect to
⨁︁

. The most commonly used semirings in ASR are the probability,

log, and tropical semirings. The probability semi-ring is defined on the positive

Real numbers, where 0̄ = 0, 1̄ = 1,
⨁︁

= +,
⨂︁

= ×.

The log semiring is defined on the extended Real numbers, where 0̄ =

+∞, 1̄ = 0,
⨂︁

= +,
⨁︁

= log ea + eb. The tropical semiring is the same as

the log semiring, except for
⨁︁

= min. The cost, ω (π), of a length-n path,

π = (e1, . . . , en), of edges, ei ∈ E, is denoted by λ (π) ⊗ ⨂︁
e∈π

ω (e) ⊗ ρ (π),

where ω (e) refers to the weight on arc e, λ (π) denotes the initial weights in

path π and ρ (π) denote the final weights in path π. The cost of a sum of a set

of paths, Π is denoted as
⨁︁

π∈Π
ω (π).

We briefly describe some commonly used WFST/WFSA operations and

algorithms used in ASR. For a more detailed presentation of WFSTs in ASR,

we refer the reader to Mohri, et al. [33]. We use the running example of a

26



pronunciation lexicon to demonstrate these operations. For simplicity the

lexicon, Leg, consists of the words, art, brat, car, cart, cat, and rat,

decomposed into their spellings. The FST in Figure 2.3 depicts the FST that

maps each word in our example lexicon to its spelling.

0

1
cat:c

4
car:c

7rat:r

10

art:a

13

cart:c

17

brat:b

2<eps>:a

5<eps>:a

8<eps>:a

11
<eps>:r

14
<eps>:a

18
<eps>:r

3<eps>:t

6<eps>:r

9<eps>:t

12
<eps>:t

15
<eps>:r

16<eps>:t

19
<eps>:a

20
<eps>:t

Figure 2.3: WFST representation Leg of the example lexicon mapping words, art, brat,
car, cart, cat, and rat to their spellings.

Projection – The projection operation, Projx, onto either the input or output

labels, x, preserves either the input, or output label sequences of a WFST.

For example, in a lexicon where inputs are words and outputs are phoneme

sequences, projecting on the outputs results in a WFSA that defines the set of

all phoneme strings that an ASR model will accept. Figure 2.4 shows the result

of the operation, Projs
(︁

Leg
)︁
, the projection of lexicon Leg onto the output labels,

which in this case are phoneme sequences s.

Inversion – We can reverse the roles of the the input and output labels on a

WFST by swapping each input label on each arc with its corresponding output

label. The resulting WFST maps phoneme sequences to words. We denote the
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0

1

c 4

c

7r

10

a

13

c

17

b

2a

5a

8a

11
r

14
a

18
r

3t

6r

9t

12
t

15
r

16t

19
a

20
t

Figure 2.4: WFST representation of Projs
(︁

Leg
)︁
.

inverse of WFST A as A−1. Figure 2.5 depicts L−1
eg .

0

1
c:cat

4
c:car

7r:rat

10

a:art

13

c:cart

17

b:brat

2a:<eps>

5a:<eps>

8a:<eps>

11
r:<eps>

14
a:<eps>

18
r:<eps>

3t:<eps>

6r:<eps>

9t:<eps>

12
t:<eps>

15
r:<eps>

16t:<eps>

19
a:<eps>

20
t:<eps>

Figure 2.5: WFST representation of L−1
eg .

Determinization – A WFST, A, is deterministic if at each node no two

outgoing arcs have the same input label. In general not all WFSTs are deter-

minizable. To determinize a WFST, det (A), it is first converted into an acceptor,

i.e., the output labels are ignored or merged into the input labels in some
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manner. Any acceptor is determinizeable, but not all WFSTs are. A WFST over

the tropical semi-ring with the twins property [35] guarantees that a WFST

can be made deterministic. Determinization reduces the size of the graph. It

ensures that each sequence can only appear once in the graph. This can be

thought of as prefix sharing. For example, given the lexicon, L, that maps word

sequences, w, to phoneme sequences, s, det (Projs (L)) creates a prefix tree of

phonemes. Figure 2.6 shows the FST, det (Projs (L)). Note how the sequences

c-a-r, c-a-r-t and c-a-t, which all share the prefix c-a, now share the same

path prefix as well.

0

1

a

2b

3

c

4

r

5r

6r

7
a

8

a

9t

10a

11r

12

t

13

t

14t

15
t

Figure 2.6: WFST representation of det
(︁
Projs

(︁
Leg
)︁)︁

.

Minimization – A determinized WFST can be minimized. Determinizing

and subsequently minimizing WFSTs significantly reduces the memory foot-

print of WFSTs and speeds up decoding. Minimization can be thought of as
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suffix sharing [36]. Figure 2.7 shows the result of the operation

min
(︁
det

(︁
Projs

(︁
Leg
)︁)︁)︁

.

Note how the suffix, a-t, from sequences b-r-a-t and r-a-t, now falls on a

single shared path.

0

1
a

2

b

3

c

4r 5

r

r

6a

a

8

t

7
r

t
t

Figure 2.7: WFST representation of min
(︁
det

(︁
Projs

(︁
Leg
)︁)︁)︁

.

Composition – When two WFSTs, T1, T2 are defined such that ΣT2 ⊆ ∆T1 ,

they can be composed to return a new WFST, T1 ◦ T2 capable of mapping se-

quences from ΣT1 to sequences in ∆T2 . As long as T2 accepts at least one possible

output symbol sequence from T1, the returned WFST will not be empty. In

this way the components of ASR systems can be composed to return a new

graph, generally called HCLG, that assigns weights to each potential map from

a sequence of HMM states to sentences.

To illustrate composition, imagine we are transmitting an English message

character by character to a receiver who must decode this character sequence

into words. Our receiver might have a more limited vocabulary than our

sender, who is transmitting words from lexicon, Leg. Let L′
eg be the lexicon that
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decomposes words, art, car, and rat into their spelling. The composition

min
(︁
det

(︁
Projs

(︁
Leg
)︁)︁)︁

◦ L′
eg
−1 returns an WFST that represents the space of all

possible decoded words given our sender’s, and receiver’s vocabularies. To

represent this compactly, we can also determinize and minimize the result of

the composition.

Figure 2.8 depicts min
(︂

det
(︂

min
(︁
det

(︁
Projs

(︁
Leg
)︁)︁)︁

◦ L′
eg
−1
)︂)︂

.

0 1a:art

2

c:car

3
r:rat

4r:<eps>

5a:<eps>

a:<eps>

6

t:<eps>

r:<eps>

Figure 2.8: WFST representation of min
(︂

det
(︂

min
(︁
det

(︁
Projs

(︁
Leg
)︁)︁)︁

◦ L′
eg
−1
)︂)︂

.

Forward Algorithm – This is an algorithm that uses dynamic program to

compute a sum-product. One such sum-product is cost of all paths in a WFST

that accept input x. We denote this quantity as,

[[T]] (x) =
⨁︂

π∈T(x)

λ (π)⊗
[︄⨂︂

e∈π

ω (e)

]︄
⊗ ρ (π) , (2.12)

where π is a path, or sequence of edges e ∈ E, that accepts input x. In other

words, this computes the total weights of all paths in WFST, T, that accept

x using the operations defined by a particular semiring. By choosing the

appropriate semiring, we can compute various quantities. For instance, in the

probability semiring, the forward algorithm gives the sum of the individual
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costs of all paths and can often be interpreted as the probability of an event x.

When these costs are appropriately defined, the forward algorithm can be used

for marginalization of particular latent variables encoded as alternate paths in

T. When using the tropical semiring, the forward algorithm gives the score of

best path through a graph, T.

To decode frames of speech into sentences, each frame is scored according

to each HMM state’s observation distribution. The resulting scores can be rep-

resented as another WFST called U = (ΣU, ∆U, QU, IU, FU, EU, λU, ρU). Each

state q ∈ QU, represents a frame of speech. ΣU, ∆U are the identities of the

HMM states S ∈ H. Between every state q ∈ QU , are |S| arcs a ∈ EU , each with

a weight corresponding to the (pseudo-)likelihood of the speech frame xt at

time t given a specific HMM state s ∈ S.

Composing U with HCLG and finding the lowest cost path through the

resulting lattice returns the model estimate of the most likely audio transcript.

In modern HMM-DNN ASR architectures, U is produced by a deep neural

network (DNN) trained to estimate a sequence of pseudo-likelihoods for multi-

ple frames of speech,
(︁
xt, . . . , xt+k)︁, having been generated by an HMM state

sequence
(︁
s1, . . . , st+k)︁, though other models such as Gaussian mixture models

(GMM) [37] are still sometimes used. U can be represented as a matrix for

which

Uτ,s = p(xτ|sτ) = ϕτ
s

(︂
xt−N, . . . , xt, . . . , xt+k, . . . xt+k+M

)︂
, (2.13)
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where τ is a potentially subsampled index corresponding to time, t, at the

input of the neural network; xt is the left-most frame of speech within a chunk

of k frames; sτ is the s-th state of the HMM, H, at subsampled time τ; N, M are

the number of frames of additional left and right context used to predict the

(pseudo-)likelihood p(xτ|sτ); and ϕτ
s (x) is the value of the s-th output node of

the last layer of the DNN, ϕ (x). at time τ, subject to input x.

This WFST is sometimes referred to as a sausage lattice. Figure 2.9 shows

an example lattice.

τ = 0 τ = 1 τ = 2 τ = T

s(1)i : s(1)i /ϕ
(1)
si (x)

...

s(2)i : s(2)i /ϕ
(2)
si (x)

... . . .

s(T)i : s(T)i /ϕ
(T)
si (x)

Figure 2.9: “Sausage” lattices used to represent a neural network output ϕ (x) of
speech input x. The arc weights are often referred to as pseudo-likelihoods. The
weight on the i-th arc, at time t, represents the pseudo-likelihood corresponding to the
i-th senone at time τ.

Equation 2.15 below, shows the ASR decoding problem in terms of the

WFST components of the ASR model. The creation of HCLG shown is a slightly

simplified version based on [38],

HCLG = min (det (H ◦ C ◦ det (L ◦ G))) (2.14)

w⋆ = Projw (ShortestPath (ϕ (x) ◦ HCLG)) . (2.15)

Projw is the projection onto the output labels of a WFST. ShortestPath returns
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the lowest cost path in the graph. G represents an n-gram language model.

L represents the lexicon, which maps sequences of subword units, generally

phonemes or phones, to words. C is a deterministic context dependency graph

that maps context dependent acoustic units, such as triphonemes, to context

independent units. H is a WFST representing the HMM acoustic model. The

component HCLG is called the decoding graph.

2.5 WFST Framework for Cross-language Transfer

An ASR system for an unattested language can be built from WFSTs compo-

nents trained on data from attested languages as long as each component’s

input and output symbols are appropriately chosen. We refer to deploying

such systems without retraining the acoustic models as zero-shot transfer. Since

the domain, U , is all speech from a target unattested language, we use U to also

denote the target language, and VU is the vocabulary of the target language/-

domain, U .

When unpaired text (utterances for which x from (x, w) are unavailable)

exists in an unattested language, a new language model, GU , can be trained.

In the case where the vocabulary of the languages is the same, (VU = VT ),

the decoding graph can be rebuilt using this language model. The unattested

language in this scenario might be a new dialect or register of speech. In the

entirety of this work, we assume that there is enough text in the new language

or domain to estimate GU .
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2.5.1 Language-dependent Acoustic Model Transfer

Let LP
U be a pronunciation lexicon for the domain (or language) U that maps

from subword units in P to words in VU , and let (H ◦ C)P refer to the acoustic

model (H ◦ C), where the superscript P describes the set of units the acoustic

model can produce. PT are the subword units used in the training set T , and

PU are the subword units used in the new domain, or language U .

When dealing with an unattested language or a new domain requiring the

inclusion of new vocabulary, the lexicon, LPT
T , used in training, which mapped

subword units, p ∈ PT , to words, w ∈ VT , is replaced with a ground-truth,

domain specific lexicon, LPU
U , that maps subword units, p ∈ PU , to words,

w ∈ VU .

The acoustic model (H ◦ C)PU is then (re)trained to produce acoustic units

from the potentially new subword unit set PU . This approach is language-

dependent since the unit set, PU , and possibly data included in T could change

depending on the target language. Many methods initialize some or all of the

parameters of (H ◦ C)PU with a preëxisting model (H ◦ C)PT and use a small

amount of transcribed speech in a previously unattested language to fit the

parameters responsible for mapping acoustic representations to outputs in the

new subword unit set PU
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2.5.1.1 Transfer of Gaussian Mixture Acoustic Models

One such line of work [39], used Subspace Gaussian Mixture Models (SGMM)

[40] for multilingual training. These models have both global and state-specific

parameters and since fewer parameters are state-specific, the model can be

trained on smaller amounts of data. Multilingual training is used for estimating

the global parameters while state-specific parameters are trained using data

only from a single language. This performs better in low-resource settings

compared to a purely monolingual baseline. To transfer these models to a new

language, the global parameters are copied, and any new data in a previously

unattested language is used to train state-specific parameters only. This work

does not, however, address the zero-shot transfer scenario.

Language-dependent transfer of acoustic models was also studied in [41],

including the zero-shot scenario, by transferring existing monolingual acoustic

models to a new language. [42] similarly proposed an unsupervised self-

labeling approach whereby an ensemble of existing monolingual models is

used to decode unlabeled data from an unattested language. Each model in the

ensemble is then updated using the transcripts produced by all other models,

weighted according to an agreement-based confidence metric. These methods

both rely on manually specified mappings between the phoneme sets of the

attested and unattested languages, which is only feasible when dealing with

some languages.
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2.5.1.2 Transfer of Cross-Entropy Trained of Neural Networks

Partially motivated by the success of SGMM systems, Multilingual Bottleneck

Features (MBF) were proposed, whereby a neural network trained with shared

hidden layers and language specific output layers, is used as a feature extractor

in tandem [43] or even hybrid HMM-DNN ASR systems. [44, 45, 46, 47]

proposed leveraging cross-lingual data to train neural networks in “tandem”

architectures. [47] additionally investigated using these features for unattested

languages, and found that in some cases they even outperformed training

solely on a small amount of matched-language data.

2.5.1.3 Transfer of Sequence-Trained Neural Networks

More recently, many sequence-based training objectives such as Lattice-Free

Maximum Mutual Information (LF-MMI) [48], Connectionist Temporal Classi-

fication (CTC) [30, 49], and sequence-to-sequence (Seq2Seq) models [50] have

produced state-of-the-art ASR systems. Sequence-based training objectives

aim to directly predict the sequence output rather than correct frame-level

predictions. These approaches use an implicit pronunciation lexicon — the

output acoustic unit sequences are graphemes and can be trivially combined to

form words. A number of approaches have been explored for cross-language

bootstrap training of these models. [51, 52] explored cross-language bootstrap-

ping of Seq2Seq architectures, while [53, 54, 28] demonstrated that multilingual

modeling improves Seq2Seq ASR. [55, 56] investigated CTC-based multilingual
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training. [56, 57] examined cross-lingual transfer using CTC training. [56]

examined how to choose a seed model used in bootstrapping CTC models,

and noted that while multilingual bootstrapping improves performance, the

choice of a seed model seems to have little effect when sufficient data is used

for model adaptation. To handle unseen output units, such as graphemes from

a new script, or a new phonemic unit, these adaptation approaches modify the

output layer of the neural network and subsequently fine-tune the network on

transcribed speech in previously unattested languages.

These “end-to-end” approaches became popular in part because they re-

moved the need for a pronunciation lexicon. However, these models perform

very poorly when ported to new languages without relatively large amounts

of transcribed target language speech for continued training [52, 56]. Generally,

these models have been used for multi-lingual ASR training, but not cross-

lingual ASR. The focus of much of this work has thus been more on language

adaptive training such as in [53, 58, 55].

LF-MMI systems have also been used for cross-lingual modeling. [59] used

multilingual bottleneck features to train time-delay neural networks (TDNNs)

[60] with LF-MMI, but used 40h of target language transcribed speech to train

the acoustic model. Cross-language transfer of end-to-end LF-MMI systems

was investigated in [61], assuming that some transcribed speech is available for

model adaptation and training an output layer compatible with a new lexicon.

[62, 63, 64] investigated semi-supervised training and domain adaptation of
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LF-MMI trained models, but did not address cross-lingual transfer (i.e., they

re-used the same pronunciation lexicon).

2.5.1.4 Transfer by Cross-lingual Phoneme Map

Small amounts of transcribed speech in the target language can be used to

train a simple map between the subword units or representations used in train-

ing the acoustic models and those used in lexical or pronunciation modeling.

Schultz and Byrne [41, 65], for instance, proposed using a small amount of tran-

scribed speech to estimate a normalized confusion matrix between phonemes

or sub-phonetic units in the attested and target languages. Each target lan-

guage (sub)phoneme is mapped to the source language (sub)phoneme with

the highest normalized confusion score.

In [66], the authors also proposed to instead retrain the decision tree for

clustering context dependent phonemes as a means of model adaptation. This

work found that continued training using the original decision tree worked

better than aligning with the old decision tree and retraining the models and

decision tree on the new data. The best system first updates the existing models

using the original tree, realigns the data using the updated models, and then

finally trains new acoustic models using an updated decision tree.

A similar line of work [67, 68, 69, 70] proposed an alternate acoustic

model, the Kullback-Leibler divergence HMM (KL-HMM). In this model,

graphemes or trigraphemes are used as the lexical units, and each state of
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the (tri)grapheme’s 3-state HMM is parameterized by a categorical distribu-

tion. Similar to the tandem architectures described in 2.5.1.2, a neural network

trained on language-independent phonemic targets is used to produce vectors

of posterior features for each frame of speech.

Instead of using the posteriors as features, however, each HMM-state is

endowed with a multinomial distribution, and the GMM observation proba-

bilities are replaced with the KL-divergence between the state’s multinomial

distribution and the vector of posteriors. This distribution can be estimated

with Viterbi training for instance. Ultimately, however, all these approaches

have generally been replaced in favor of fine-tuning neural models with modi-

fied output layers as described in section 2.5.1.3. Vu [70] proposed combining

both procedures in hybrid DNN-HMMs, where the neural network targets

were the senone identifiers derived from the IPA symbols shared across lan-

guages, and found that the KL-HMM resulted in marginal, but consistent

improvements over standard HMM models.

In most of these approaches, cross-language acoustic model transfer was

made possible using some amount of transcribed speech. The neural multilin-

gual training techniques likely lead to more language-robust acoustic repre-

sentations, but ultimately zero-shot ASR requires compatible pronunciation

lexicons between the attested and unattested languages.

40



2.5.2 Language-independent Acoustic Model Transfer

Instead of modifying the acoustic model to be compatible with a new lexi-

con, we could construct a lexicon, LPU
U , to be compatible with acoustic model

(H ◦ C)PT (i.e., PU ⊆ PT ). This is language-independent acoustic model transfer

since the same models can be applied to any target language. In this scenario

the acoustic model is fixed and the focus is on constructing a good lexicon, LPU
U ,

to enable cross-language transfer. This is a primary focus of this thesis.

A wealth of research exists exploring language-independent acoustic model

transfer. Much of this work, spearheaded by Tanya Schultz, Alex Waibel, and

Ngoc Thang Vu, studied the training, transfer and adaptation of HMM-GMM

acoustic models to decode speech from a previously unseen language. The

underlying assumption of much of this work is that a relatively small and fixed

inventory of acoustic units can adequately model the sounds of all human

language. These works proposed using the International Phonetic Alphabet

(IPA) [24] as the subword unit inventory, PT . In this way, models for these

units can be trained and used on speech from any language.

Schultz and Waibel [71, 72, 73] first proposed language-independent ap-

proaches to cross-language transfer, whereby models for acoustic units and

representations of speech were learned by mixing training data from across

languages. Models for each IPA symbol are trained on data from all languages.

These language independent approaches are incredibly useful in HADR
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settings, or large-scale processing of multilingual corpora: a first pass ASR

system can be built for unattested languages without any additional work if a

language model and lexicon using the same set of subword units exist.

[71, 72, 73] also examined how to tie parameters of phonetic models across

language, but all assumed that a ground-truth pronunciation lexicon existed

in the new language. To create a compatible lexicon, an expert maps any

previously unseen phonemes in the unattested language to the closest IPA

symbols seen in training. These models can also be used as seed models for

bootstrapped training when transcribed speech in a previously unattested

language becomes available. Knill proposed zero-shot ASR systems using

tandem neural network architectures [74]. This method similarly relied on a

shared unit set, which was possible since the included lexicons all used the

XSAMPA phoneset [23].

In summary, language-dependent approaches enable cross-lingual transfer

without necessarily using a lexicon, but require using transcribed speech to

learn a mapping between learned representations and the new output units.

Language-independent approaches, on the other hand, remove the need for

transcribed speech, but rely on universal phonemic pronunciation lexicons to

enable cross-lingual transfer.
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2.6 Conclusion

In this chapter we introduced the ASR problem and defined terminology and

notation that we refer to in the rest of this dissertation. We described how

speech corpora are commonly used to estimate the parameters of statistical

ASR models, and we described some common multilingual speech corpora

that are used in the ASR literature as well as in this dissertation.

We then described the noisy channel model for ASR. We motivated its

use in HADR scenarios by highlighting the modularity of models such as

hybrid DNN-HMMs that rely on the noisy channel model, and which enables

porting of cross-lingual models and data resources to unattested languages.

We discussed at length the WFST framework for building hybrid DNN-HMMs,

since this machinery is used extensively in this dissertation.

Finally we examined prior work in cross-lingual acoustic modeling and

found that all previous approaches either rely on some amount of transcribed

speech to learn a mapping between pretrained representations and target

language output units, or rely on existing pronunciation lexicons to enable

acoustic model transfer. In the remainder of this thesis, we take steps towards

removing both requirements.
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Chapter 3

Cross-Language Transfer via

Pronunciation Lexicons

The previous section introduced the problem of automatic speech recogni-

tion in a new language with almost no transcribed speech. The approaches

overviewed in that chapter can be categorized as belonging to one of the rows

in Table 3.1, which shows the decoding graphs that result from altering various

WFST components for cross-language transfer.

Decoding Graph Decoding Graph Modification

(H ◦ C)PT ◦ LPT ◦ GU New LM only
(H ◦ C)PU ◦ LPU

U ◦ GU + new lexicon. (H ◦ C)PT is altered to match LPU
U

(H ◦ C)PT ◦ LPU
U ◦ GU + new lexicon with units, PU ⊆ PT

Table 3.1: The different means of transferring acoustic models across language. In
Row 1., there, only the kinds of sequences in the new domain have changed, but the
vocabulary is fixed. In Row 2., the acoustic model is trained or updated using target
language transcribed speech to be able to produce outputs from the new subword unit
set, PU . In Row 3. the lexicon is constructed, or altered such that it uses a subword
unit set PU that is a subset of the subword units seen in acoustic model training.
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All previously described approaches effectively relied on cross-lingual

transfer by means of decoding graph (H ◦ C)PU ◦ LPU
U ◦ GU (row-2 of Table

3.1): Either, the acoustic model, (H ◦ C)PU was explicitly trained to be com-

patible with existing pronunciation lexicons in unattested languages, or small

amounts of transcribed speech were used to alter existing acoustic models to

be compatible with an existing lexicon.

However, in HADR scenarios, there often is neither existing transcribed

speech, nor pronunciation lexicon. Therefore, in addition to studying cross-

lingual transfer using (H ◦ C)PU ◦ LPU
U ◦ GU , we focus on transfer using existing

acoustic models by constructing compatible lexicons, or eliminating the the

need for them. This corresponds to using the decoding graph

(H ◦ C)PT ◦ LPU
U ◦ GU , s.t.PU ⊆ PT . (3.1)

To tackle this problem, we first study acoustic model transfer from attested

languages in T to unattested languages in E in isolation. We assume we already

have access to high quality pronunciation lexicons, all sharing the same set

of subword units (PE ⊆ PT ). Therefore, we do not need to construct them.

In subsequent sections we will describe how we can automatically generate

lexicons.

In this chapter we are interested in training an acoustic model using attested

languages, which we will call the seed model, and subsequently porting this
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acoustic model to a new language by reconstructing the decoding graph using

an appropriate lexicon and language model as previously described. We study

the effects of the following on cross-lingual acoustic model transfer:

1. The granularity of the subword unit used when training seed acoustic

models on attested languages.

2. The number of attested languages used to train the seed acoustic models.

3. The amount of data used to train the seed acoustic model.

4. Adapting seed acoustic models using small amounts of transcribed speech

from an unattested target language.

3.1 Experimental Setup

3.1.1 Data

We use the BABEL corpus [2] for all experiments in this Chapter. We use

up to 21 of these languages in training, and select 4 languages to use in our

unattested set. We use languages from diverse parts of the world, all using

different orthographies, in order to reach robust conclusions across multiple

language families. The list of our unattested languages and the sizes of their

the dev10h sets are listed in Table 3.2. As mentioned in Section 2.2.1, there are

no separate development and test partitions. We therefore use the dev10h set

as our test set. All audio is down-sampled to 8kHz.

47



BABEL Code Language ISO-639-3 Training hr Dev10h hr

104 Pashto pus – 9.9
201 Haitian-Creole hat – 10.7
307 Amharic amh – 11.6
404 Georgian kat – 12.4

Table 3.2: Dev10h is the name of the test set. We only focus on the test sets of the 4
held-out languages.

3.1.2 Lexical Models

In all experiments in the chapter we start by training a single, language-

independent acoustic model on the training data T . These data consist of

the union of k monolingual data sets Lk
1 from multiple attested languages:

T =
k⋃︂

i=1

Li. (3.2)

With each set, Li, of transcribed speech we have an associated pronunci-

ation lexicon, LPT
i , that maps words from language i to a shared phonemic

representation PT . We test our ASR models on E , which consists of the speech

data in the dev10h sets of the 4 unattested languages. To enable cross-lingual

acoustic model transfer, we first train our acoustic models using a lexicon,

L̂ =
⋃︁k

i=1 Li, which is the union of all the individual training lexicons. We

make two modifications to L̂ during training. Since the same word, i.e., ortho-

graphic form, can exist in multiple attested languages, and we want to ensure

that the correct, language-specific pronunciation is used for that word during

training, we remap all words to unique identifiers, so that the same word in
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different languages will appear different in the training transcripts. We also

split all diphthongs and triphthongs in the training data into their constituent

phonemes. When this procedure is also applied to the lexicons of unattested

languages it almost always reduces the number of phonemes in unattested

languages that have not been "seen" in attested languages.

We follow the Kaldi babel/s5d 1 recipe when preparing the training tran-

scripts and audio for these data: we retain the transcription of non-speech

sounds and give them the pronunciation of <oov> or <noise>, depending on

whether they are speech or non-speech sounds. These two "phonemes" are

included as extra subword units.

3.1.3 Acoustic Models

We use hybrid DNN-HMMs in all experiments described in this chapter. To

train the DNN requires speech and aligned senone sequences or lattices. We

follow the KALDI babel/s5d recipe to first train speaker adapted HMM-GMMs

on the union of all training data using lexicon L̂. These models are then used

to align the training audio and transcripts, from which we can produce time-

aligned senone sequences. We use these in turn to train a neural network to

produce acoustic scores, as described in Section 2.3.1.

1https://github.com/kaldi-asr/kaldi/tree/master/egs/babel/s5d
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3.1.3.1 Wide Residual Networks

The neural networks described in this section are all Wide Residual networks

[75]. Residual networks are convolution networks that have residual or skip

connections between the input and output of each convolutional block. This

facilitates gradient propagation in deep networks, and allows for processing

blocks deeper in the computation graph to have direct access to inputs.

Our models have three residual layers, preceded by a convolutional layer,

at the start of the network. Each residual layer, denoted Layeri (·), consists of a

number of residual blocks, fblock (·), which implement the following function

on their input x:

fblock (x) = x + Conv2d (ReLU (Conv2d (ReLU (x)))) . (3.3)

The 2-d convolutions each have a kernel width of 3 and get progressively

wider in each layer. These blocks are repeated n times, where n is a tunable

parameters representing the depth of the network. The residual layer may

therefore be written as

Layeri = f n
block

(︂
f n−1
block

(︂
... f 1

block (x)
)︂)︂

. (3.4)

The first block in each layer down-samples the input, in both time and

frequency, by a specified factor. We use down-sampling factors of (1, 2, 2) for
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the three residual layers.

The first convolutional layer is essentially a “glue” layer between d-dimensional

inputs and the residual layers. It is parameterized by a d × 16 matrix. In

wide residual networks, the width refers to the number of parameters in a

residual layer. The first residual layer uses convolutions parameterized by a

16 × 16k matrix. Subsequent layers are parameterized by increasingly wide,

16
(︁
2l)︁ k × 16

(︁
2l+1)︁ k matrices, where l is the layer index, and k is a widening

factor. We used a widening factor of k = 10 in all experiments. An adaptive

2d-average pooling layer is then applied to the output of the last residual layer

in order to map input chunks to a specified number of output vectors. Each

output vector is the learned representation for a particular subsampled time

index from the input speech. A linear layer then maps these representations to a

vector of dimension equal to the number of senones in the acoustic model. The

i-th element in this vector can be interpreted as the un-normalized score of the

i-th senone in the acoustic model for a possibly subsampled frame of speech.

3.1.4 Lattice-free Maximum Mutual Information

We train all acoustic models using the lattice-free maximum mutual informa-

tion objective function (LF-MMI). This is a discriminative objective function

that aims to maximize the log-posterior log p (w∗|x) of the ground-truth tran-

script w∗. We use the LF-MMI objective to train the parameters θ of the wide

residual network, ϕ (·; θ), whose outputs replace the HMM emission probabil-
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ities in DNN-HMMs as described in Section 2.3.1. When the log-posterior is

parameterized by a neural network, The LF-MMI objective function is defined

as

L (θ) = Ep̃(x,w∗)

[︄
log

e fθ(x,w∗)

Ep(w)

[︁
e fθ(x,w)

]︁]︄ , (3.5)

where fθ (x, w) is a function, often called a critic, that scores the extent to which

sequence w corresponds to input x; p (w) is a fixed prior, or language model

over output sequences w; and p̃ (x, w∗) is the empirical joint distribution of

the training data T . Instead of using the ground-truth transcripts, w∗, the

transcript corresponding to a length-T, chunk of speech is decomposed into a

(possibly subsampled) frame-level senone sequence, s∗ =
(︁
s1, . . . , sT)︁, obtained

by aligning the audio and transcripts with existing GMM-HMMs. Note that

a single transcript could be pronounced in multiple ways and could allow

for multiple valid frame-level senone alignments. We denote the set of valid

senone alignments as B−1 (w∗), where B (·) is the function mapping a senone

sequence to its transcript. Since we want to marginalize over all possible

alignments and pronunciations we can express the LF-MMI objective function

as

L (θ) = Ep̃(x,w∗)

⎡⎣log
Ep(s|B−1(w∗))

[︂
e fθ(x,s)

]︂
Ep(s)

[︁
e fθ(x,s)

]︁
⎤⎦ , (3.6)

where p
(︁
s|B−1 (w∗)

)︁
is the probability of a senone sequence, s, drawn from

B−1 (w∗).
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In this case the critic, fθ (x, s), is defined as

fθ (x, s) =
T−1

∑
t=0

ϕt
s(t) (x; θ) , (3.7)

where s(t) is the t-th senone in the sequence s.

The challenging part about computing this objective function is evaluating

the expectations. The outer expectation, can be approximated by using a finite-

sample of transcribed speech. The finite sample corresponds to a minibatch

of B chunks of speech. Using this finite-sample approximation, the objective

function becomes

L (θ) =
1
B

B−1

∑
i=0

⎡⎣log
Ep(s|B−1(w∗

i ))

[︂
e fθ(xi,s)

]︂
Ep(s)

[︁
e fθ(xi,s)

]︁
⎤⎦ . (3.8)

To evaluate the expectation with respect to p (s) in the denominator, a WFST

representing a 4-gram phoneme-level language model (phone-LM), GP , over

phonemes from P is used to create the denominator graph, D = (H ◦ C) ◦ GP ,

which approximates the space of all possible senone sequences. Similarly, we

define the numerator lattice, Nw∗ , as the subgraph of D that accepts paths

corresponding to w∗. The forward algorithm through the WFST composi-

tion ϕ (x) ◦ D using the log-semiring efficiently computes the logarithm of

the weighted sum of all possible paths through the denominator graph, as

described in Section 2.4. Using the notation from Section 2.4, we write the
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forward probability as,

Ep(s)

[︂
e fθ(x,s)

]︂
= [[ϕ ◦ D]] (x) . (3.9)

The LF-MMI objective function may therefore be written as

L (θ) =
1
B

B−1

∑
i=0

[︂
[[ϕ ◦ Nw∗

i
]] (xi)− [[ϕ ◦ D]] (xi)

]︂
. (3.10)

The training transcripts are used to estimate the arc weights of the denom-

inator graph, D. Since we use multiple datasets, LL
1 , in training, we pool all

the available transcripts to construct a single multilingual denominator graph.

We train the parameters, θ of the DNN, ϕ (·; θ), with the Adam optimizer [76],

using a learning rate of 0.0001 that we warm up linearly over 15k minibatch

updates. The learning rate at iteration n is then decayed by scaling the learning

rate by the factor e−0.00001n. We use 64-dimension filterbank features as the

inputs, x, to the neural network.

LF-MMI is prone to over-fitting. As in [48] we regularize the objective with

a separate branch trained using the cross-entropy objective on the 1-best senone

sequence corresponding to transcript w∗. We also use the sum of the squares of

the network outputs as an additional loss. We weight these two regularizers by

factors of 0.1, and 0.0001 respectively. Finally, we use a leaky-HMM coefficient

of 0.1, which smooths the transition weights in the denominator.

To support completely randomized minibatching, without having to store
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the fixed, predefined numerator lattices to disk, we use the single best senone

sequence, s∗, corresponding to w∗ rather than the full numerator lattice as

supervision. However, we allow some flexibility of alignment in the following

way.

The partial derivatives of the LF-MMI objective function with respect to the

neural network outputs for utterance
(︁
xi, w∗

i
)︁

are

∂L (θ)

∂ϕt
s (xi)

= γNw∗
i
(t, s)− γD (t, s) , (3.11)

where γNw∗
i
(t, s) is the posterior probability in the numerator lattice, Nw∗

i
,

of being in state s at time t. The term γD (t, s) is similarly defined on the

denominator graph, D. We note therefore, that when using the single best

sequence, s∗ ∈ Nw∗
i
, for the ground truth, the first term in the gradient is

simply δ
[︂
s, s∗i

(t)
]︂
, the indicator function for the condition that state s = s∗i

(t).

The second term, corresponding to the denominator graph remains unchanged.

For instance, if number of senones, |S| = 4, and the chunk-width, T = 4,

then the numerator lattice posteriors, γNw∗
i
(t, s), when approximated using a

single senone sequence, s∗i = (0, 0, 2, 3), arranged in an |S| × T (chunk width

55



by number of senones), matrix would appear as follows:

γNw∗
i
=

⎛⎜⎜⎜⎜⎜⎜⎝
...

...

γNw∗
i
(0, ·) . . . γNw∗

i
(3, ·)

...
...

⎞⎟⎟⎟⎟⎟⎟⎠ (3.12)

≃ γNs∗i
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0

0 0 0 0

0 0 1 0

0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (3.13)

where γNs∗i
is the approximate posterior obtained from using the single best

senone sequence instead of a full numerator lattice allowing multiple align-

ments and posteriors.

Rather than generating lattices on-the-fly for each chunk of speech, or stor-

ing fixed numerator lattices to disk and running the forward and backward

algorithms to compute the exact posterior probabilities corresponding to us-

ing multiple possible alignments, we find that just approximating them by

smoothing γNw∗
i
, with a width-3 kernel, [0.1, 0.8, 0.1], works adequately. The
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numerator posteriors are approximated as

ˆ︁γNw∗
i

T
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.1 0.8 0.1 0.0 · · · · · ·

0.0 0.1 0.8 0.1 0.0 · · ·

. . .

· · · · · · 0.0 0.1 0.8 0.1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
γT
Ns∗i

. (3.14)

3.1.5 Training Details

Models are trained using up to 5 GPUs, using an approach very similar to the

parallelism used in neural network training in Kaldi [77] in which there are

inner and outer iterations of training. The training starts with a single GPU

jobs and ends with 5 jobs. Each GPU job updates the model parameters 500

times (500 inner iterations) using 500 randomly created minibatches. At the

end of one of these outer iterations of training, i.e. the 500 minibatch updates,

models from each GPU job are combined by averaging their weights. Multiple

copies of the resulting model are then submitted to multiple GPUs for the

next round of 500 minibatch updates. Models are trained until convergence,

which corresponds to 150 such outer iterations of 500 minibatch updates. The

mini-batch size is changed dynamically depending on the chunk-width used

in a particular mini-batch to always include the same number of input frames

of speech. We use 5640 frames of speech in each mini-batch. At the end of

training the weights of the last 10 models are averaged together.
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Prior work has demonstrated that a more robust network, ϕ (·; θ), can be

trained by perturbing the inputs, x, to the network. We found that larger, more

powerful networks can be trained by applying on-the-fly data perturbations

similar to SpecAugment [50], where a random number of time and frequency

masks with randomly chosen widths and positions are applied to input chunks

of speech. We also add random amounts of Gaussian noise with randomly

selected variance to the inputs, and sample chunk-widths from a uniform

distribution between 60 and 220 frames wide. An additional 10 frames of left

context and 5 frames of right context are added to each chunk to facilitate the

computation of ϕ (x), which is helpful near the chunk boundaries.

3.2 Acoustic Model Transfer

The acoustic models described in Section 3.1.3 are transferred to new languages

by building the decoding graph using the original, language-independent

acoustic model (H ◦ C)PT , and using a target-language lexicon, LPT
U , and lan-

guage model, GU . Making the lexicon, LPT
U , compatible with the existing

acoustic model requires remapping any phoneme in the unattested language

that is not “seen” in the attested language training data. In practice, since the

input labels, PT , i.e. phonemes, for all lexicons used in these experiments

are drawn from the X-SAMPA phoneme set, this occurs rarely. This trans-

fer corresponds to row 3 of Table 3.1, described in the WFST framework for

cross-lingual acoustic model transfer.
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We must also build an appropriate language model. We use the training

transcripts provided in the BABEL corpus for the unattested languages, dis-

carding the paired speech. For most experiments we use the transcripts from

the Full-Language-Pack (FLP). We also compare our method for multilingual

transfer with purely monolingual baseline trained on on the limited-language

pack. In order to make a fair comparison, and to focus on the effect of the acous-

tic model transfer, we only use the Limited-Language-Pack (LLP) transcripts.

We also discard all words in the pronunciation lexicon that do not appear in

the training transcripts. All language models are 3-gram Kneser-Ney language

models built using the SRILM toolkit [78].

3.3 Experiments

3.3.1 Granularity of output units

Over-fitting is always possible when training large statistical models with

millions of parameters. This is especially true when the models are transferred

to a completely different domains. In the case of cross-lingual acoustic model

transfer, models for the acoustic units may be severely over-fit on the attested

languages. While, as described in Section 2.3.1, using triphone units allows

us to model context dependent effects such as coärticulation in speech, they

already suffered from overfitting in mono-lingual settings, which was mitigated

by clustering these models and tying the parameters of their HMM-states. This
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problem could be exacerbated in cross-lingual settings since many triphones

present in attested languages will be absent from unattested languages, and

visa versa. This does not preclude their use in cross-lingual settings, but the

optimal amount of state tying may be significantly greater, i.e., using fewer

triphones, or even context independent phones may be more effective for

cross-lingual transfer.

In this section, we train cross-lingual acoustic models using different num-

bers of target leaves in the clustering decision-tree of the attested languages to

enforce more or less state tying. In most monolingual LF-MMI models, about

3000 output classes are used to model about 40 mono-phones. That is about 75

triphone clusters per monophone unit out of a possible 402 = 1600 units.

We explore using different numbers of leaves in the decision: we try 96,

which is about the number of roots we start with in our phoneme decision tree

(84); 408, which is on the order of the number of monophones present in training

(194); 808, which is about the number of position-dependent monophones in

the training data (828); and finally 2864, which is more similar to the number

of leaves used in large mono-lingual systems trained on large amounts of data.

In these experiments we train Wide Residual Networks (WRN), described

in Section 3.1.3.1. To produce senone sequence targets for WRN training we

construct different decision trees that enforce more or less state-tying. We then

transfer the different models, trained to predict senone sequences produced

using different amounts of state-tying, to our 4 unattested languages without

60



using any additional transcribed speech to adapt the seed model. We call the

seed models XL-21-WRN-{100,500,1000,3500}, where the last numbers refer to

the number of maximum number of leaves permitted in the decision trees used

to produce the senone sequence targets. XL-21 refers to the fact that the model

is trained cross-lingually on 21 languages.

Results from transferring these model to unattested languages are shown

in Figure 3.1. On the x-axis of Figure 3.1 is the number of senone targets used

when training the WRN on the 21 attested BABEL languages. On the y-axis

is the word-error rate (WER) on the unattested language dev10h sets in 104-

Pashto (pus), 201-Haitian (hat), 307-Amharic (amh) and 404-Georgian (kat).

Bolded in black is the average WER across the four languages.

We see that the optimal number of state-tied senones is between the number

of monophone, and position dependent monophone units used in training.

This indicates that acoustic model transfer does not benefit significantly from

modeling triphone context in the attested language, and in some cases this

may actually hinder acoustic model transfer. The learned representations when

modeling triphone context in the attested languages may still be meaningful,

and in fact might be better representations of the underlying speech signal,

but simply do not transfer well to new languages, i.e., the learned linear

mapping between underlying representations and meaningful output units

may not transfer well. In a subsequent section we explore the effect of acoustic

model transfer using different numbers of senones and see that while a smaller
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Figure 3.1: Performance in 4 unattested languages of the XL-21-WRN-100, XL-21-WRN-
500, XL-21-WRN-1000, XL-21-WRN-3500 models when transferred to new languages.
We see that the best performing model on average is the XL-21-WRN-500 model,
which used just under 500 senone classes in training. This indicates that the optimal
number of senones is between the number of position independent (194) and position
dependent mono-phonemic units (828).

number of senones transfers better to new languages, these models are not as

adaptable when presented with new data.

3.3.2 Amount and Diversity of Languages in Training

To study the effects on cross-lingual transfer of the amount of data and the

diversity of languages used to train seed models we perform the following

experiments. We train WRN acoustic models (the same neural architecture)

using different subsets of the original 21 FLP datasets that we used to train the

seed models in the previous section studying the granularity of the modeled

subword units. To explore how language diversity affects performance we

train WRN networks on subsets of five and 10 attested training languages.

We use 500 leaves in the decision tree as the prior experiment indicated that

this was the best performing granularity for zero-shot cross-lingual transfer.

We call these models XL-{5,10,21}-WRN-500. To study how data quantity

62



affects cross-language acoustic model transfer, for each of the training language

subsets, we also train models using the 10 hour, limited language pack (LLP)

data subsets rather than the full language packs (FLP). We call these models

XL-{5,10,21}-LLP-WRN-500.

Results showing the performance of acoustic model transfer using these

models on the 4 unattested languages in our test set, 104-Pashto (pus), 201-

Haitian (hat), 307-Amharic (amh), and 404-Georgian (kat), are shown in Figure

3.2.

On the x-axis of Figure 3.2 is the number of languages used in training. On

the y-axis is the WER resulting from cross-language acoustic model transfer

used to recognize the dev10h sets of each of the 4 unattested languages. For

each language, the smooth line shows the result of the models trained on the

FLP datasets and the dashed line is the result of the models trained on the LLP

subsets in those particular languages.

We see that for cross-lingual acoustic model transfer, the diversity of training

languages is much more important than the quantity of training data. In

fact, the XL-21-LLP-WRN-500 model, trained on 200 hours of speech from 21

languages outperforms the XL-10-WRN-500 model, trained on twice as much

data (400 hours) in half as many languages (10 languages), with performance

similar to the XL-21-WRN-500 model trained on 1200 hours of speech in 21

languages.

There are two reasons the diversity of language likely improves acoustic
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Figure 3.2: Comparing the effect of data diversity versus data quantity on acoustic
model transfer.

model transfer. First, increasing the number of languages in training increases

the number of phonemes and triphone seen in training, making it more likely

that we have well trained models for a particular phoneme in a new language.

Second, the model must be trained to be even more robust to natural varia-

tions of the same IPA sound across languages, speakers and acoustic conditions.

The increased language diversity will result in a model that is more capable

of generalizing to new speakers and domains, even if it is at the expense of

performance in the attested languages.

This suggests that to train a single model capable of transferring to multiple,

arbitrary unattested languages, the best strategy for selecting training data is

to prioritize language diversity over data quantity.
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3.3.3 Model Adaptation

Finally, we study adapting the initial seed model to small amounts of tran-

scribed speech in previously unattested languages. We compare these adapted

systems to mono-lingual baselines trained on the 10 hour, LLP training set

of the unattested language. Note again that we use a considerably weaker

language model than in previous sections in order to enable a fair comparison

with mono-lingual models trained on the LLP training sets, and decoded with

language models trained on the LLP transcripts. We call the small amount

of target-language data used to fine-tune a seed model to perform ASR in a

previously unattested language the adaptation set, and denote it as A.

We explore two ways of transferring cross-lingually trained neural seed

models to a new language with the help of an adaptation set, A (corresponding

to rows two and three of Table 3.1): we can model speech in a new language

starting from the abstract vector representations of speech extracted from one

of the layers of the cross-lingually trained seed network, and learn to map

these to the monolingual subword inventory, also called a phoneset, in the target

language; or we can transfer the actual, phonetic interpretation of the network

outputs to a new language, and assume that the phoneset of the new language

is a subset of that used in training (on attested languages).

We explore these two methods of adaptation.

1. Multi-phoneset – Initialize the new model, including the output layer,
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with the parameters of the language-independent seed model. Any

new phonemes seen in the test language are mapped manually to the

closest attested phoneme. We re-use the multilingual phoneset, PT , from

training.

2. Mono-phoneset – Initialize the new model, excluding the output layer,

with the parameters of the language-independent seed model. A new

output layer that maps into the phoneset, PU , of the new lexicon is used.

The output layer is entirely new and will have a new number of units.

Adaptation with LF-MMI: When fine-tuning on small amounts of data in

a new language using the LF-MMI loss, we need to obtain aligned senone

sequences for all speech data in A in order to form the numerator "lattices",

as well as some way to (re)construct the denominator graph. In the multi-

phoneset strategy, the original, cross-lingual GMM-HMMs can be used to

align the speech and transcripts in A. The denominator graph can be con-

structed using the original, cross-lingual decision tree and a phone-LM that is

a weighted combination of a cross-lingual, attested-language, phone-LM and

the target-language phone-LM trained on A.

In the mono-phoneset strategy, target language GMM-HMM must be

trained on A and the denominator graph must be constructed using a phone-

LM trained on A, or by using unpaired text in conjunction with a pronunciation

lexicon to generate additional phone-level transcripts on which the phone-LM

can be trained.
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For the multi-phoneset strategy, we initially compared using the original

denominator FST with using a reconstructed denominator FST that uses a

phone-LM trained on A, and a denominator FST resulting from weighting the

phone-LMs trained on the attested language, but we found little difference in

performance. Furthermore prior work [79] weighted the phone-LM trained on

the adaptation set, A, by a factor of 10 relative to the phone-LM trained on the

original training set. We, therefore, use this approach in all our experiments. In

all cases, except for one (the Mono model in Table 3.3), we use all LLP phone

transcripts when training the phone-LM used in the denominator graph. This

is an easy method for incorporating unpaired text into acoustic model training.

We find that the performance of fine-tuned seed models was extremely

sensitive to the amount of data in A, and models can quickly start to over-fit.

In general, once all of the training data has been seen during training, any

additional training leads to over-fitting, but depending on other parameters,

this can occur earlier. Frequently storing past models to disk – after each 100

mini-batch updates – and averaging the parameters of these saved models

was a good strategy to prevent over-fitting. To further prevent over-fitting,

we rapidly decay the learning rate by a factor of e−0.01n on iteration n, as well

as apply aggressive, SpecAugment-like masking of the input data. For the

adaptation experiments we focus specifically on adapting WRN seed models

to subsets of the Haitian LLP data. Results showing the WER of various

adaptation approaches from different seed models on a 1.2h subset of the
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Haitian dev10h set are shown in Table 3.3.

The first column of Table 3.3 shows the number of utterances on which

the WRN models were fine-tuned. Each subsequent column shows the perfor-

mance when using a different adaptation technique or seed model. The column

labeled Multi-500-LLP shows the performance achieved by fine-tuning the

XL-21-LLP-WRN-500 model using the multi-phoneset technique. The column

labeled Multi-500 shows the performance achieved by fine-tuning the XL-21-

WRN-500 model using the multi-phoneset technique. The column labeled

Multi-3500 shows the performance achieved by fine-tuning the XL-21-WRN-

3500 model using the multi-phoneset technique. The column labeled Mono,

shows the performance achieved by fine-tuning the XL-21-WRN-3500 model

using the mono-phoneset technique, where the denominator graph phone-LM

is trained only on the transcripts from A. The Mono-full-den column is identi-

cal to the Mono column, but uses the entirety of the LLP transcripts to train

the denominator graph phone-LM. We arrive at five conclusions from these

adaptation experiments.

1. Cross-lingual pretraining improves target language ASR performance.

Target-language models obtained by fine-tuning cross-lingually trained

seed models outperform purely mono-lingual models trained from scratch

on A. Comparing the column labeled, scratch in Table 3.3, we see that

three of the five fine-tuning techniques from cross-lingual seed models

significantly outperform models trained from scratch. Even the two
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Adaptation Method

# Utts Multi-500-LP Multi-500 Multi-3500 Mono Mono-full-den Scratch
100 75.3 74.2 74.1 89.2 86.5 -
200 71.9 71.2 70.3 80.9 77.8 -
400 70.6 69.1 69.7 72.8 71.1 -
800 68 66.7 67 67.9 67.3 -

1600 65.2 64.4 62.8 62 61.9 -
3200 63.9 62.6 61.4 59.7 59.5 -
6400 62.6 61.9 59.8 57.7 57.4 -

10000 60.1 59.6 56.2 54.2 54.2 59.2

Table 3.3: Performance of various adaptation methods on a 1.2h subset of the Haitian
dev10h data.

worst performing techniques (Multi-500-LLP and Multi-500) perform

comparably. Furthermore, using the approach shown in the column la-

beled Mono-full-den, we can achieve performance comparable to a model

trained from scratch on 10 hours of transcribed speech using only one

third of the amount of data.

2. Seed models that are trained on larger amounts of attested language

data transfer slightly better than models trained on smaller amounts of

attested language data. Specifically, comparing the columns titled column

Multi-500-LLP and Multi-500 in Table 3.3, we find that fine-tuning across

all sizes of the adaptation set A, starting from the XL-21-WRN-500 seed

model, trained on 1,200 hours of data, works slightly better than starting

from the XL-21-LLP-WRN-500 seed model, trained on 200 hours of data.

3. Seed models trained using more senones are less transferable, but

more adaptable. Comparing the columns titled Multi-500, and Multi-
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3500 in Table 3.3, we see that seed models trained using 3500 senones

(Multi-3500) performed comparably to the most transferable seed models

(Multi-500, see Section 3.3.1) when both are fine-tuned using very small

amounts of transcribed speech. However, when 1600 or more utterances

are used for fine-tuning, the Multi-3500 model, which uses a decision tree

that produces a maximum of 3500 senones, is clearly better.

This indicates while the triphone contexts themselves do not transfer

well to new languages, using them during training on attested languages

results in speech representations that do transfer better to new languages

than the representations obtained by training models on attested lan-

guages using a coarser granularity.

4. Mono-phoneset adaptation outperforms Multi-phoneset adaptation in

our all our experiments except in the most data-constrained scenarios.

As seen in the columns titled Mono vs. Multi-3500 in Table 3.3, which

use, respectively, the mono-phoneset and multi-phoneset fine-tuning

techniques on the same XL-21-WRN-3500 seed model, the mono-phonset

fine-tuning outperforms multi-phoneset fine-tuning when the adapta-

tion set, A, has greater than 1600 utterances. Below this threshold the

multi-phoneset fine-tuning technique outperforms the mono-phoneset

technique. This threshold likely depends on the seed model, language,

and acoustic conditions of the audio in the target language.

5. Using more text in the denominator graph improves adaptation. Com-
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paring the columns titled Mono and Mono-full-den in Table 3.3, we see

that constructing the denominator graph using additional, unpaired text

data in the target language improves performance. The difference is more

pronounced in lower-resource scenarios.

Figure 3.3: Optimal adaptation strategies in different scenarios. Moving from left
to right on the arrow is the direction of increasing transcribed speech. The large,
translucent circles labeled, Multi-500, Multi-3500, and Mono, encompass the data
scenarios for which those adaptation techniques are optimal. The green boxes show
a hypothetical HADR scenario in which ASR systems for the Gorontalo language
are required. Increasing amounts of transcribed speech are collected over time and
the optimal adaptation strategy from cross-lingual seed models may change. The
other boxes show example languages and the typical amounts of easily attainable
transcribed speech one would expect.

Figure 3.3 summarizes the results shown in Table 3.3, by showing the

optimal adaptation strategy when different amounts of transcribed speech are

available, as well as the kinds of languages for which the different techniques

may be applicable.

3.4 Conclusion

We have described a simple cross-lingual acoustic model transfer approach

based on having compatible phonemic lexicons. We demonstrated that the
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most important feature in cross-lingual acoustic model transfer is not the

amount (in hours) of available training data, but the diversity of languages

used in training. Furthermore, we showed that a simple adaptation technique

of continued training, or fine-tuning, is capable of matching monolingual

performance on 10 hours of transcribed speech with one third the amount

of transcribed speech. In extremely low-resource scenarios, transferring the

output layer (Multi-phoneset adaptation), can significantly help performance.

As more data becomes available, reconstructing a monolingual output layer,

(Mono-phoneset adaptation) works better.
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Chapter 4

Transfer with Graphemic

Pronunciation Lexicons

In the previous chapter we explored how to transfer acoustic phonemic models

via target-language phonemic lexicons. We also used these phonemic acoustic

models to study properties of acoustic models and their effect on acoustic

model transfer.

In this chapter, we remove the requirement of phonemic lexicons for (cross-

lingual) acoustic modeling in DNN-HMMs. We accomplish this by creating

graphemic pronunciation lexicons. Graphemic pronunciation lexicons are ob-

tained “for free” in languages with segmental orthograhpies – orthographies

that are at least loosely correlated with pronunciation. Each word in the lex-

icon is simply decomposed into its spelling. Using graphemic lexicons not

only eliminates the problem of creating a pronunciation lexicon in a single,
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new, unattested target language, it also eliminates the need for creating pro-

nunciation lexicons in any of the attested languages used for multilingual or

cross-lingual acoustic model training.

Graphemes tend to be more weakly related to a word’s pronunciation and

they generally are pronounced differently in different languages. For instance

the letter i, is shared between English and French, and is pronounced differ-

ently in cognates such as "site" (s-ay-t in English vs. s-ee-t in French). This

generally makes graphemes an ill-suited set of subword units, P , for use in

acoustic model transfer [80]. Despite these disadvantages, using graphemic

lexicons is an easy way to create subword units for acoustic modeling in any

language with a segmental orthography. By choosing the appropriate mix of

languages, most of the world’s scripts can be covered, which eliminates the

problem of missing phonemes encountered when using phonemic pronuncia-

tion lexicons. Existing models can therefore be directly transferred using the

decoding graph

(H ◦ C)PT ◦ LPU
U ◦ GU s.t. PU ⊆ PT , (4.1)

as envisioned in row 3 of Table 3.1.
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4.1 Graphemic Acoustic Modeling

We first explore different techniques for creating graphemic pronunciation

models and their suitability for use in ASR systems. Other work has explored

using graphemic lexicons instead of phonemic lexicons and demonstrated that

in most languages, ASR performance degrades only minimally [81, 82, 83].

Gales [84] proposed an interesting method for creating and using graphemic

lexicons that decomposes each grapheme into a base-unit and a set of descrip-

tors based on Unicode [85] character descriptions. These descriptors include

the name of the script, diacritic marks, type of character, and capitalization. The

decision tree used in state-tying then has the option of splitting the graphemic

units based on these descriptors, and elegantly handles rare graphemes often

encountered in web-scraped text.

More recently, [86] demonstrated, somewhat surprisingly, that using graphemic

lexicons could in fact outperform phonemic modeling on the Librispeech cor-

pus [87]. They note that increasing the number of parameters in their neural

network improved performance of the graphemic models more than phonemic

models, and hypothesized that “graphemic units provide a more fine-grained

output space that more powerful acoustic models are able to exploit.” Much of

the gain came from improvements on proper nouns and rare words. Although

not mentioned in the paper, this may be because casing was preserved in the

pronunciations, as well as alternate spellings which could be correlated with
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accented speech. Since the LF-MMI baseline system included no speaker nor-

malization or speaker adaptive training, the alternate spellings may have been

one of the only means for the baseline system to model accent.

Using graphemic lexicons in multilingual systems was shown to [88, 80]

perform comparably to using phonemic lexicons. However, almost no work

has systematically compared the performance of multilingual phonemic ver-

sus multilingual graphemic models. [89] compared cross-lingual transfer of

language specific graphemic and phonemic models, but did not investigate

the language-independent, multilingual modeling scenario. This dissertation

is the first to our knowledge that trains large graphemic systems on multiple

languages for use in cross-lingual acoustic model transfer in DNN-HMM based

ASR systems.

4.2 Study of Graphemic Acoustic Models

Work on graphemic modeling has involved somewhat ad hoc text normaliza-

tion rules, often removing the case and diacritics from the graphemic units.

To study the effect of these alternate methods for inducing graphemic units

we propose and compare four approaches for graphemic modeling in a mono-

lingual context on 11 BABEL languages (Section 4.2.1). We then compare the

performance of graphemic and phonemic models in cross-lingual acoustic

model transfer. We again use the method for acoustic model transfer described

in section 3.1.3, however, replacing the phonemic lexicons with a graphemic
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lexicon.

4.2.1 Monolingual Graphemic Modeling

We base our monolingual graphemic modeling approach on the method pre-

sented by Gales [84], where the Unicode grapheme descriptors are used in the

decision tree clustering to enforce parameter-sharing between rare graphemes

and similar, more commonly occurring graphemes. This technique addresses,

for instance, the question of how to induce a unit or unit sequence for the rarely

occurring grapheme "é" in the loanword "résumé" (r-e-z-uh-m-ay), or place-

name "Québec" (k-w-uh-b-e-k). In these examples the "é" was pronounced as,

e, ay and uh. We use this as a running example when describing our proposed

approaches.

4.2.1.1 Parsing Unicode Syllabary Descriptions

One family of scripts that were not handled in Gales [84] are syllabaries. A

syllabary is a writing system in which graphemes represent whole syllable

rather than just individual phonemes. Since we want to use graphemic lexicons

in greatest number of languages, we extend this method to work for characters

with the “syllable” Unicode character description.

The Unicode table includes three different syllabaries: the Ethiopic script,

used to write many Semetic and Cushitic languages in the horn of Africa

including Amharic, Tigrinya, Tigre, Sebat Bet, Me’en, Bilen; Canadian Syllabics,
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used to write many first-nations languages of Canada including, Cree, Naskapi,

Ojibwe/Chippewa, Siksika, Inuktitut, Inuinnaqtun, Dane-zaa, and Chipewyan;

and the modern Yi script, used to write the Yi languages (also known as Loloish

languages) primarily in China’s Yunnan Province.

As shown in Figure 4.1,1 a syllable, σ, is formed using an optional conso-

nantal onset, ω, followed by the rhyme, ρ, which consists of a vocalic nucleus, ν,

and optional consonantal coda, κ. The syllable may be globally modified by a

tone or stress, T.

Figure 4.1: Structure of syllable.

Conveniently, the Unicode name for these syllables is actually a translitera-

tion of their pronunciation into ASCII characters. By creating two groups of

graphemes – the ASCII consonants, and the ASCII vowels – the Unicode char-

acter names can be parsed according to the syllable structure shown in Figure

4.1. For instance the Ethiopic character with Unicode Description ETHIOPIC

SYLLABLE QAA can be parsed and converted into the sequence of grapheme

units Q_ETHIOPIC AA_ETHIOPIC.

1https://en.wikipedia.org/wiki/Syllabary#/media/File:Syllable_diagram.png
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4.2.1.2 Approaches for Handling Diacritics

A Unicode grapheme description has the follow form:

Script⏟ ⏞⏞ ⏟
LATIN

Case⏟ ⏞⏞ ⏟
CAPITAL

Type⏟ ⏞⏞ ⏟
LETTER

Name⏟⏞⏞⏟
U

Descriptors⏟ ⏞⏞ ⏟
WITH HORN⏞ ⏟⏟ ⏞

Descriptor 1
AND ACUTE⏞ ⏟⏟ ⏞
Descriptor 2

We treat the "name" field as the base-grapheme, and the other fields are

potential modifiers of the base-grapheme which perhaps should, or should not,

become separate subword units. In other words, each base-grapheme forms a

separate root in the decision tree clustering process. When training the decision

tree, questions about the other Unicode descriptor fields can be used to split

these roots into multiple leaves, each of which becomes a unique subword unit.

We compare four variants of this approach:

1. Share – In this approach, all graphemes with the same base-grapheme

(i.e., the name field of the Unicode character description) have state-tied,

or shared, parameters. There is one unique root in the tree for each base-

grapheme, but the decision tree only asks questions about trigrapheme

context and is not permitted to use the grapheme descriptors as the basis

for forming new subword units. We are effectively removing all diacritics.

For instance, the letters “e”, “é”, “è”, “ë”, “ê”, in the words “résumé”,

“Québec”, “blessèd”, “Noël”, or “crêpe”, would all share the same base

subword unit, “e”. Their subword decompositions would be,
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• résumé - r e s u m e

• Québec - q u e b e c

• blessèd - b l e s s e d

• Noël - n o e l

• crêpe - c r e p e

2. Split – In this approach, graphemes with the same base-grapheme, but

different descriptors, are automatically split into separate subword units.

The decision tree again only asks questions about trigraphemic con-

text because the tree roots have been constructed to have separated all

graphemes with the same “name” field into different classes when their

descriptors are different. The letters “e”, “é”, “è”, “ë”, “ê”, in the words

“résumé”, “Québec”, “blessèd”, “Noël”, or “crêpe” would all result in

different subword units and subword decompositions for these words

would be

• résumé - r e_acute-accent s u m e-accute-accent

• Québec - q u e_acute-accent b e c

• blessèd - b l e s s e_grave-accent d

• Noël - n o e_diaeresis l

• crêpe - c r e_circumflex p e,

where everything following the underscore, "_", is a sequence of Unicode

descriptors each resulting in a separate decision tree.
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3. Compromise – In this approach, rather than forcing the decision tree to

ignore the Unicode descriptors or to automatically create separate tree

roots for all graphemes, even those that seem like they may be related

in some way, we allow the decision tree to ask questions, and possibly

split the base-graphemes, on the basis of the Unicode descriptors. This

was the approach taken by Gales in [84]. In other words, the decision

tree asks questions about trigrapheme context as well as descriptors. The

subword decompositions are identical to those used in the split approach,

but the decision tree is able to split units sharing a tree root, such as

“e_acute-accent” and “e_grave-accent” into two separate units if there is

sufficient acoustic evidence for creating two separate units. Using this

approach may result in graphemes “e”, and “é”, mapping to separate

subword units with their own parameters, while “è”, “ë”, and “ê” might

all share parameters.

4. Compromise+ – This approach is a combination of the Split and Com-

promise approaches. For all frequently occurring graphemes, we use

the Split approach. For the rare graphemes, we rely on the Compro-

mise approach, and decide, in data-driven manner, whether or not these

rare graphemes should correspond to a separate subword unit or if they

should share parameters with existing units.

More sharing of acoustic models generally increases coverage of graphemic

units cross-lingually, and may eliminate the need to train separate models for
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certain rare graphemes. Therefore, if approach (1.) is adequate for monolingual

modeling then it is certainly more suitable for cross-lingual transfer.

4.2.1.3 Monolingual Experiments

For each of the Pashto, Lithuanian, Guarani, Igbo, Amharic, Mongolian, Ja-

vanese, Dholuo, Assamese, Bengali, and Vietnamese datasets in the BABEL cor-

pus, we train speaker adapted HMM-GMM acoustic models using PLP+pitch

features as in the Kaldi babel/s5d recipe 2. Even though we are creating

graphemic pronunciation lexicons, we retained the pronunciations of hesita-

tion, cough, laugh, and other non-lexical events, which were each mapped to a

single, event-specific subword unit.

To train context-sensitive GMM-HMMs, we to create a pronunciation lexi-

con and a decision tree responsible for clustering the trigrapheme units. All

units in the same cluster have tied parameters. For each language we train

five GMM-HMMs: four of these systems correspond to the four methods for

creating graphemic subword units; the fifth method uses XSAMPA phonemic

lexicons provided in the BABEL distribution and does not alter the standard

decision tree training. We then use the trained GMM-HMMs, decision tree and

lexicons to decode the data in the dev10h set of each language. If one method

significantly outperforms another it should result in a noticeably different WER

on the dev10h set.

2https://github.com/kaldi-asr/kaldi/tree/master/egs/babel/s5d

82

https://github.com/kaldi-asr/kaldi/tree/master/egs/babel/s5d


The five tested approaches are referred to as

1. Share

2. Split

3. Compromise

4. Compromise+

5. Phonemic.

4.2.1.4 Monolingual Results

Figure 4.2 is a bar-chart showing the results comparing our five approaches.

On the x-axis are the ISO-639-3 language codes for the 11 BABEL languages on

which we tested our approaches, as well as a final set of results showing the

average (avg) performance of each method across all languages. Above each

language code on the x-axis are five bars corresponding to the WER (y-axis) of

the 5 proposed approaches. There are three important takeaways:

Graphemic models perform only marginally worse than phonemic mod-

els in monolingual settings. In most languages, the difference between the

phonemic models and graphemic models is negligible. These are languages

that have shallow orthographies – orthographies that are very correlated with

the underlying pronunciation.

In some languages the phonemic systems perform noticeably better than

graphemic approaches. These languages include Pashto (pus), Amharic (amh),
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Figure 4.2: Monolingual graphemic acoustic modeling approaches compared to phone-
mic baseline

and Mongolian (mon). The Amharic graphemic systems are derived using the

syllable-based parsing of Unicode character descriptions described in Section

4.2.1.1. The most common problem in the graphemic lexicons is that written

final vowels are non-systematically not pronounced (according to the refer-

ence phonemic lexicon). In Pashto, the transcripts are un-voweled, so the

graphemic systems are responsible for modeling much larger, consonant-vowel

contexts jointly. Mongolian uses a notoriously deep orthography based on

archaïc pronunciations [90].

There is little difference between the various graphemic approaches in

most languages. However, as demonstrated in Vietnamese, merging various

rare graphemes can severely degrade performance. In Vietnamese, this is
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because tone is an important phonemic feature of the language encoded in

diacritic markings.

In conclusion, for monolingual modeling tasks, all of the graphemic mod-

eling approaches are effective for most languages. Interestingly, the shared

approach performed comparably to other approaches, and as previously noted,

an advantage of using shared graphemic units is that they are more transferrable

to new languages. For instance, while training a graphemic system using sub-

word units that include the diacritic markings in Vietnamese would result in

units capable of modeling all the tonal distinctions made in Vietnamese, those

units would be unsuitable in a new language: the specific combination of

diactrics used in Vietnamese may not occur in other languages; furthermore,

the learend tonal distinctions are often different in other tonal language, and

are irrelevant in non-tonal languages. In the next section we investigate how

well this shared-graphemic modeling approach works in a cross-lingual setting.

4.2.2 Cross-lingual Graphemic Models

In Chapter 3, we demonstrated how cross-lingual acoustic model transfer could

be used in conjunction with pronunciation lexicons to create ASR systems

without transcribed speech in an unattested language. In the previous section

we demonstrated how to create ASR systems without an existing pronunciation

lexicon. In this section, we combine these approaches in order to build ASR

systems in unattested languages without transcribed speech or a pronunciation
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lexicon. Specifically, we compare cross-lingual transfer of acoustic models

trained using graphemic subword units formed using the share approach, to

cross-lingual transfer of acoustic models trained using phonemic subword

units as explored in Chapter 3.

To train cross-lingual grapheme-based ASR systems, we recreate the cross-

lingual acoustic models from Chapter 3, but replace the phonemic lexicon,

L̂ =
L⋃︁

i=1
Li, with a graphemic lexicon, L̂g =

k⋃︁
i=1

Lgi. We use the union of the k,

FLP sets (see Section 2.2.1 for data details) of each language, Li, as the training

set, T =
k⋃︁

i=1
Li.

We train a Wide Residual Network (WRN) (see Section 3.1.3.1) using speech

and frame-level senone sequences. To produce the senone sequences, we again

follow the KALDI babel/s5d recipe 3 to first train speaker adapted HMM-

GMMs on the union of all training data using lexicon, L̂g. These models are

then used to align the training audio and transcripts, from which we can

produce time-aligned senone sequences. We use these as the targets when

training the WRN with the LF-MMI objective function, using the same hyper-

parameters as in Chapter 3. To create the LF-MMI denominator graph, we use

the single pooled lexicon, L̂g, and train a denominator graph grapheme language

model using the union of all transcripts in T . We use a decision tree with 500

leaves as this was optimal for cross-lingual transfer in the phonemic systems.

In other words, the trained seed network is identical to the XL-21-WRN-500

3https://github.com/kaldi-asr/kaldi/tree/master/egs/babel/s5d
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network from Section 3.3.1, but trained using senones derived from graphemic

subword units instead of phonemic subword units.

For both attested and unattested languages written in non-roman scripts,

we use URoman [91], a universal transliteration tool, to map non-roman symbols

to ASCII base characters. The lexicons, Lgi and language models, GU of the

unattested languages are composed with the existing, graphemic acoustic

model, (H ◦ C), to create a decoding graph (H ◦ C) ◦ Lgi ◦ GU in an unattested

language. We use this decoding graph to decode speech from the dev10h sets

of each of the four unattested languages.

Table 4.1 shows the results of this experiment. The first column shows

the 3-letter ISO-639 code of the test languages. The second column shows

the performance in WER of the cross-lingual graphemic systems. Finally,

the third column shows the performance (WER) of the ASR models trained

using phonemic lexicons. We see that in all cases, the phonemic systems were

significantly better than graphemic systems when transferred to new languages

in a cross-lingual setting.

There are two potential reasons for the relatively degraded performance

of the graphemic systems. The first reason is that the underlying acoustic

variance of each grapheme across language hinders the network’s ability to

properly encode the relationship between acoustics and graphemes. This is a

problem with model training, but not inference. Providing enough surrounding

graphemic context could reduce some of this variance since trigraphemes are
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Acoustic Unit Type

Language Graphemic Phonemic

pus 82.0 78
hat 80.3 71.5

amh 86.1 82.6
kat 83.7 75.8

Table 4.1: Performance (WER) of ASR models trained using phonemic and graphemic
subword units transferred cross-lingually to four unattested languages, Pashto (pus),
Haitian-Creole (hat), Amharic (amh), and Georgian (kat). Note that the phonemic sys-
tems significantly outperform the graphemic systems when transferred to unattested
languages even though they perform comparably when testing on attested languages.

less likely to be shared across language. This would reduce the variance due

to cross-lingual differences in grapheme pronunciation. In other words the

optimal granularity for graphemic systems may differ from that of phonemic

systems. The second reason is that the acoustic “meaning” of the graphemes

in the attested languages differs too much from the meaning of graphemes in

unattested target languages.

Determining which of these effects is most responsible for the degraded

performance is necessary to assess the viability cross-lingual graphemic acous-

tic models. Therefore, we repeat the experiment from Secion 3.3.1, on the

graphemic cross-lingual seed models, sweeping over the number of senones

used in training. However, we only compare the performance of GMM-HMMs

because they are much faster to train than WRNs, and we can still determine if

graphemic systems require a larger number of context-dependent units for opti-

mal performance. Figure 4.3, shows the results of this experiment. On the x-axis

we see the number of senones (decision tree leaves) used in five graphemic and
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Figure 4.3: HMM-GMM number of senones used for cross-lingual transfer. Note that
each phonemic system outperformed the every graphemic system.

five phonemic GMM-HMMs. On the y-axis is the WER obtained when decod-

ing the dev10h sets of three of our unattested BABEL languages, Haitian-Creole

(hat), Amharic (amh), and Georgian (kat).

We note that the best performing graphemic model resulted in worse per-

formance than the worst performing phonemic model. Furthermore, the per-

formance of graphemic systems as we vary the number of senones followed a

similar trend to the performance of phonemic systems as we vary the number

of senones. While, the optimal number of senones for graphemic systems

appears to be marginally greater than for phonemic systems. Providing extra

graphemic context during training does not appear sufficient to overcome the

cross-lingual shift in “meaning” of the output units. This suggests that further

exploitation of grapheme-based cross-lingual transfer may be as fruitful an

avenue as transfer of phonemic models.
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4.3 Conclusion

In this section we demonstrated that having a phonemic pronunciation lexicon

is not necessary for training good ASR systems to be deployed in matched test-

language conditions. We explored several methods for creating graphemically

motivated training units and found that all the explored methods performed

similarly.

However, when these models are deployed in cross-lingual settings on

unattested languages, the graphemic acoutic models do not transfer as well

as phonemic models. This demonstrates that while a missing pronunciation

lexicon does not hinder development and deployment of ASR systems in

matched-language scenarios, it plays a more significant role in cross-lingual

transfer.

Therefore, it becomes worthwhile to undertake producing phonemic lexi-

cons in new languages, or other strategies for making lexicon-free models work

in the almost-zero-resource scenario.
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Chapter 5

Transfer with Learned Phonemic

Pronunciation Lexicons

In Chapter 3 we investigated cross-lingual acoustic model transfer of DNN-

HMMs using compatible pronunciation lexicons that were already available.

In Chapter 4 we explored training the acoustic models to produce graphemes

from which words could be inferred in any target language that uses the same

orthography as an attested language, or for which a transliteration system

exists that enables mapping words to an attested language orthography.

While graphemic lexicons are easy to construct, cross-lingual acoustic model

transfer was shown to be more effective from phonetic acoustic models than

from graphemic acoustic models (see Table 4.1). Therefore, in this Chapter

we explore transfer of existing DNN-HMMs when compatible pronunciation

lexicons are not available, by constructing phonemic pronunciation lexicons.
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While the construction process may produce erroneous pronunciations, the

increased transferrability of phonemic acoustic units may still improve the

efficacy of the acoustic model transfer.

Thanks to decades of research in phonetics and phonology, linguistic de-

scriptions of phoneme inventories are available for most languages, and acces-

sible through resources such as Phoible [92]. However, large pronunciation

lexicons are not generally available. For instance, the largest public collection of

pronunciation lexicons is Wikipron [93]. Wikipron, which is regularly updated

with newly web-scraped words and associated IPA pronunciations, currently

hosts lexicons in about 400 languages, a large fraction of which contain fewer

than 200 words. Lexicons of this size are not adequate for ASR due to their

limited lexical coverage.

5.1 Lexicons Via Grapheme-to-Phoneme Conversion

For languages with segmental orthographies, one approach to extend the

coverage of these small, seed lexicons is to derive pronunciations for new

words via grapheme-to-phoneme conversion (G2P) [94, 95, 96]. A G2P model

can be trained on the seed lexicon and can then be used to construct pθ3 (s|w)

from the noisy channel model described in Section 2.3.1, which models the

generation of phoneme sequences s from word sequences w.

Prior work has focused on expanding small seed lexicons to include extra
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vocabulary items. For instance, [97, 98, 95], all examined the effect of G2P

bootstrapping on ASR performance, in high-resource languages with large seed

lexicons. Our work, by contrast, focuses on how to rapidly create useful seed

lexicons when they do not exist. G2P training methods fall into 3 categories:

• Joint Sequence EM-based training, exemplified by Sequitur [99],

• WFST-based joint sequence training [100, 101],

• Neural Network Based G2P [102], often Seq2Seq models [103, 104].

Because of the close relationship between graphemes and phonemes in most

languages, WFST-based systems are competitive with neural models and their

advantage in speed of training has led to their widespread use in ASR.

When a seed lexicon does not exist, a trained professional and/or native

speaker can construct a lexicon using grapheme-to-phoneme rules. Tools and

algorithms designed to facilitate this process include Epitran [105], SPICE [106],

the active learning approach of [107], or the tool described in [94]. However,

scaling up these techniques to create pronunciation lexicons for hundreds or

thousands of languages is impractical, and commercial organizations have

little incentive to prioritize this work since most languages have relatively few

speakers.

Kim et al. [108] proposed a different, active learning approach in which

words were selected based on coverage of grapheme n-grams. A similar

approach [109] was used on phoneme n-grams to create phonetically balanced
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ASR training corpora. Other existing work on active learning in ASR (but not

G2P models) focuses on submodular optimization for batch-active learning

[110, 111]. A key contribution of this Chapter to pronunciation modeling is to

treat the G2P seed lexicon construction problem as a constrained submodular

optimization problem.

5.2 Joint Sequence Models for Grapheme to Phoneme

Conversion

We briefly present a mathematical description of the grapheme-to-phoneme

conversion (G2P) approach used in this work. We train all models using

the Phonetisaurus toolkit [100], which is a WFST implementation of a joint-

sequence model. Joint sequence models use an object called a graphone, defined

jointly on phoneme sequences s ∈ S∗, and grapheme sequences g ∈ G∗, where

S∗ is the set of all possible phoneme sequences, and G∗ the set of all possible

grapheme sequences. A graphone is a tuple q = (s, g) ∈ S∗ × G∗. Given a

grapheme sequence, g, the Phonetisaurus toolkit, generates phoneme sequences,

by marginalizing over all possible graphone sequences, q ∈ Q (g, s) that accept
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g and phoneme sequence s. Formally,

s∗ (g) = arg max
s

p (s, g) = arg max
s ∑

q∈Q(g,s)
p (q) (5.1)

= arg max
s ∑

q∈Q(g,s)

|q|−1

∏
j=0

p
(︁
qj|h

(︁
qj
)︁)︁

, (5.2)

where q = q1, . . . , q|q| is the graphone sequence of length |q|, p
(︁
qj|h

(︁
qj
)︁)︁

are

learned graphone n-gram probabilites, and h
(︁
qj
)︁
= q1, . . . , qj−1 is the history

of previous graphones of qj. Any n-gram language model may be used over

graphones. The computation and maximization entailed in Equation 5.2 can

be efficiently implemented with WFSTs. The graphone language model, Q, is

composed with the WFSTs, L and P, representing the grapheme (letter) to gra-

phone and graphone to phone transducers respectively. The input grapheme

sequence, g, can also be represented as an acceptor. We can then carry out the

computation implied in Equation 5.2 as,

arg max
s

p (s, g) = ShortestPath
(︁
Projs (((g ◦ L) ◦ Q) ◦ P)

)︁
. (5.3)

Since the graphone language model is a joint model on grapheme and phoneme

sequences, we are assuming that new data will also be distributed according

to p (s, g) = p (s|g) p (g). In other words, the grapheme-to-phoneme relation-

ships in the test data will be the similar to those in the training data, and

grapheme sequences in the test data will be distributed similarly to those in

the training data. For instance, if in the training data the grapheme sequence
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tion was very rarely seen, then the graphone (tion, sh-ax-n) could be much

less likely than the graphone sequence (ti, t-ee), (on, o-n), and might bias

the system towards producing the incorrect phoneme sequence a-k-t-ee-o-n

for the word action.

The goal of the work in this Chapter is to create the best small seed lexicons

that can be used to train p (s, g). This is known as the G2P word selection task.

We rely on an expert, to create seed lexicons for a set of words (or equivalently

g) that we provide. These seed lexicons are needed to estimate p (s|g), i.e. align

phoneme and grapheme sequences. However, since it is we who selects which

g will be annotated, we do have the ability to match the marginal training

and testing distributions, i.e. select words such that the empirical distribution

of grapheme sequences in the seed lexicon, ptrain (g), is such that ptrain (g) ≃

ptest (g), provided that we have access to some text in the target language. Our

goal is to solicit pronunciations for a small, manually selected set of words such

that the KL-divergence, D (ptest (g) || ptrain (g)), between the training data and

test data marginal grapheme sequence distributions is small, where D (p||q)

is defined as in Section 2.1.2. We assume that ptrain (s|g) = ptest (s|g). This

problem is often referred to as minimizing covariate shift.

Let w represent an element (word) from vocabulary V, and the collection of

all subsets of words be 2V . Zi ∈ 2V represents a subset of i words from vocabu-

lary, V, destined for an expert who will provide one or more pronunciations

for each element w ∈ Zi. Let Z∗
B represent the optimal subset of B words from

96



V, g be a grapheme (sub)sequence present in Zi and let pZ (g) be the empirical

grapheme sequence distribution in a selected subset Z . Formally we are trying

to select Z∗
B such that

Z∗
B = arg min

ZB

DKL (ptest (g) ||pZ (g)) , (5.4)

5.3 Submodular Selection for G2P

Our approach can be thought of selecting a small, easy to annotate subset of

words that are orthographically representative of words in our target domain.

The G2P training data is then comprised of hand-crafted pronunciations for

these words. One technique that can be used for optimal subset selection is

constrained submodular maximization. In this Section, we introduce submodular

functions. We demonstrate how constrained maximization of a certain class of

submodular functions, known as feature-based functions (FBFs), can be used

to find the subset Z∗
B of B words that minimizes Equation 5.4.

5.3.1 Submodular Functions

A submodular function is a set function with the property of diminishing

returns. Given a set (vocabulary), V, the collection of all its subsets, 2V , and a

function f : 2V → R, then f is called submodular if for any subsets Zj ⊆ Zi ⊆
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V and any w ∈ V \ Zi,

f (Zi ∪ {w})− f (Zi) ≤ f
(︁
Zj ∪ {w}

)︁
− f

(︁
Zj
)︁

. (5.5)

The quantity ∆ (w|Zi) := f (Zi ∪ {w})− f (Zi) denotes the marginal gain of

adding element w to the set Zi. If additionally, for any subset Zi ⊆ V,

∆ (w|Zi) ≥ 0, ∀ w ∈ V \ Zi, (5.6)

the function, f : 2V → R is known as monotone.

Uses for these functions arise naturally in many applications. For instance,

consider the problem of selecting subsets of 5-letter English words such that we

have at least one example of each English grapheme in our subset. The score of

the subset might simply be the number of unique graphemes. Consider subsets

of words Z0 = ∅,Z1 = {crypt},Z2 = {crypt, squad}, and a new candidate

word “cards”. Then, the marginal gains for each subset would be

∆ (cards|Z0) = 5

∆ (cards|Z1) = 3

∆ (cards|Z2) = 0.

Clearly, the value of adding the word “cards” decreases as the size of Zi

increases, i.e., this task exhibits diminishing marginal returns. In fact the set
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function which counts the number of unique graphemes in a set of words is

actually submodular.

5.3.2 Maximizing Submodular Functions

Since there are 26 letters in the English language, then Z6 is clearly the smallest

subset of 5-letter words that could cover all the English letters. However,

depending on the vocabulary, V, from which we are allowed to chose words,

the size, k, of subset, Zk ⊆ V, needed to cover all English letters might be

significantly larger. A natural question that one might ask is, given a vocabulary,

V, and a fixed budget of B, 5-letter words, what is the subset, ZB, that covers

the maximum number of letters? In other words, this motivates the budget-

constrained submodular maximization problem

Z∗
B = arg max

ZB

f (ZB) . (5.7)

Unfortunately, this problem is NP-hard [112]. However, the greedily con-

structed subset, ˆ︂ZB, where elements, wn, are chosen sequentially to maximize

the marginal gain, ∆
(︂

wn| ˆ︁Zn−1

)︂
at each step n, have a lower-bound error [113]

of

f
(︁
ZBˆ
)︁
≥
(︂

1 − e−1
)︂

f (Z∗
B) . (5.8)

When the vocabulary, V, and budget, B, are both small, a naive greedy

selection algorithm (show in Equation 5.10) can be used, where the marginal
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gain of each element, wn ∈ V \ ˆ︁Zn−1, is re-evaluated at each selection step. The

element resulting in the largest marginal gain is selected sequentially according

to

ˆ︂Z0 = ∅ (5.9)

ˆ︂Zn = ˆ︁Zn−1
⋃︂⎧⎨⎩ arg max

w∈V\ ˆ︁Zn−1

∆
(︂

w| ˆ︁Zn−1

)︂⎫⎬⎭ . (5.10)

This algorithm has complexity O (B|V|) when B ≪ |V|, since at each of B

selection steps, we must evaluate approximately |V| candidate items. However,

we can use submodularity to significantly reduce the amount of computation

needed for the greedy algorithm.

5.3.3 Accelerating Greedy Selection

We can use submodularity to significantly speed up the greedy selection pro-

cedure using what is called the accelerated, or lazy greedy algorithm [114]. It

allows us to use much larger vocabularies including, for instance, all words

found in text scraped from the web. Using large vocabularies is often intractable

with a naive greedy selection approach, especially if the the submodular func-

tion is expensive to evaluate [112].

The lazy greedy algorithm exploits submodularity in the following way:

prior to the first iteration, i.e., before constructing Z1, the marginal gain of

adding each element, w ∈ V to Z0 = ∅ is computed and sorted in decreasing
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order in a priority queue, Q. Let k be the index of an element in the priority

queue and Qk be an element of V. On the first iteration we can simply pop the

first element off the top of the queue and add it to Z0, i.e., ˆ︁Z1 = {w0}, since Q

is already sorted.

On all subsequent iterations we start at the top of the queue (Q0) and re-

evaluate the conditional gain, ∆
(︂
Q0| ˆ︁Zn

)︂
. Either ∆

(︂
Q0| ˆ︁Zn

)︂
≥ ∆

(︂
Q1| ˆ︁Zn−1

)︂
,

the updated marginal gain of Q0 is greater than the previous marginal gain of

the next element in the queue, Q1, or it is not.

• Case 1: ∆
(︂
Q0| ˆ︁Zn

)︂
≥ ∆

(︂
Q1| ˆ︁Zn−1

)︂
– If this is true, then by submodular-

ity (diminishing marginal returns)

∆
(︂
Q1| ˆ︁Zn−1

)︂
≥ ∆

(︂
Q1| ˆ︁Zn

)︂
.

But since we have already assumed that ∆
(︂
Q0| ˆ︁Zn

)︂
≥ ∆

(︂
Q1| ˆ︁Zn−1

)︂
, we

have that

∆
(︂
Q0| ˆ︁Zn

)︂
≥ ∆

(︂
Q1| ˆ︁Zn−1

)︂
≥ ∆

(︂
Q1| ˆ︁Zn

)︂
.

In other words, the marginal gain of adding the next highest ranked

element in the queue, Q, will still be lower, and we do not need to

reëvaluate its marginal gain, nor any subsequent elements in Q. In fact,

Q now stores upper-bounds on the marginal gains of adding elements

w ∈ V.

• Case 2: ∆
(︂
Q0| ˆ︁Zn

)︂
< ∆

(︂
Q1| ˆ︁Zn−1

)︂
– In this case the subsequent ele-
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ments in the queue, Q, must be reëvaluated until ∆
(︂
Qk| ˆ︁Zn

)︂
≥ ∆

(︂
Qk+1| ˆ︁Zn−1

)︂
.

Any updated marginal gains are placed in the appropriate locations in

the priority queue.

Once the lower bounds have been appropriately updated, the element with

the largest upper-bound, Q0, is popped off the top of the queue and added

to form the set ˆ︁Zn = ˆ︁Zn−1 ∪ {Q0}. There is no rigorous way to characterize

the how much computation this procedure saves since it can be highly data

dependent. However, in other applications, orders of magnitude speedups

have been observed [112]. In subsequent sections we explain how we use this

algorithm and report the observed speedups in Figure 5.2.

5.3.4 G2P Selection as Constrained Submodular Maximization

By slightly modifying our running example of selecting five-letter English

words that cover all English graphemes, we see how to apply constrained

submodular maximization to select a set of words that minimizes Equation 5.4

under some budget constraints in order to solve the G2P selection problem.

Note that we can equivalently interpret the problem of covering all English

graphemes with 5-letter words as trying to select words such that letters are

uniformly distributed. In other words, we are selecting words in order to

minimize DKL

(︂
u (g) ||pZ∗

B
(g)
)︂

, where u (g) is the uniform distribution over

grapheme sequences g, and pZ∗
B
(g) is the empirical distribution of grapheme

sequences g in the subset Z∗
B.
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Furthermore, instead of trying to cover all English letters, we could just

as easily try to cover all English character bigrams, character trigrams, or any

other feature that could be derived from the elements of a subset. We can also

aim to select words such that the distribution of letters, character bigrams,

or character trigrams, matches the empirical distribution of these features in

a target set of of words, by weighting the inclusion of frequent grapheme

sequences more heavily than rare sequences. In other words, the constrained

maximization of a submodular function, with appropriately chosen weights

for features, can be used to minimize the KL-divergence shown in Equation

5.4.

In fact, there exists a well studied class of submodular functions, called

feature-based fucntions (FBFs) [111], that are weighted functions of feature

counts in a set. Let u ∈ X be a feature, such as a character n-grams from a

set of features, X . Let mu (Z) be the count of feature u in set Z . Let g (·), be a

concave, non-negative, non-decreasing, monotone function such as log (1 + ·),

and let ωu, be the weight associated with feature u. An FBF is defined as

ffbf (Z) = ∑
u∈X

ωug (mu (S)) . (5.11)

Furthermore, [109, 115] actually show that when g (x) = log (1 + x) and

ptest (u) = {ωu} is a probability distribution, the constrained maximization

of FBFs is equivalent to the constrained minimization of the KL-divergence
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between ω and the empirical distribution of features in the selected subset. In

other words, the following problems are equivalent:

arg min
ZB

DKL
(︁

ptest (u) ||pZB (u)
)︁
∼ arg max

ZB

ffbf (ZB) (5.12)

Thus, if we define the feature set to be the grapheme sequence, g, used in

G2P training, and set ω to be the sample distribution over these features in

our target language, then maximizing the resulting FBF can be interpreted as

selecting a subset of words with grapheme sequence frequencies that approach

those seen in our target domain text, i.e., such that D
(︁

ptest (g) || pZB (g)
)︁

is

small.

To our knowledge the state-of-the art algorithm for the G2P word selection

task was the Feature Coverage Maximization (FC) method presented in [108].

They proposed greedily selecting words to maximize the character n-gram

feature coverage of their currently selected subset. Their original objective

function

f (Z) = ∑
u∈U

Cu

(︃
1 − I (mu (Z) < Cu)

ηmu(Z)

)︃
, (5.13)

is almost an FBF, since ωu = Cu is a non-negative weight, and the term 1 −

I(mu(Z)<Cu)

ηmu(Z) , is smooth and concave except for when mu (Z) ≥ Cu. Therefore

we propose replacing this term with 1 − η−mu(Z) to give the submodular FBF,

f (Z) = ∑
u∈X

Cu

(︂
1 − η−mu(Z)

)︂
. (5.14)
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5.3.4.1 Facilitating Annotation with Knapsack Constraints

Choosing any set of B words to have annotated with pronunciations is not

always optimal for the annotator. For instance, annotators may have extreme

difficulty producing pronunciations for long words such as antidisestablish-

mentarianism, or technical terms such as doxycycline. To make producing

pronunciations for words easier, it is desirable to prioritize the selection of

common and short words, over long and rare words as was done in [116]. An

added benefit of the submodular framework for the G2P word selection task is

that there exists an easy method to incorporate knapsack constraints into the

greedy selection algorithm.

We incorporate knapsack constraints by using a modified marginal gain,

∆
(︂

w| ˆ︁Zn

)︂′
of adding an element w to the set ˆ︁Zn with cost c(w):

∆
(︂

w| ˆ︁Zn

)︂′
=

∆
(︂

w| ˆ︁Zn

)︂
c (w)r , (5.15)

where r is a weighting factor tuned to balance the marginal gain, ∆
(︂

w| ˆ︁Zn

)︂
,

with the cost, c (w), of adding element, w, to ˆ︁Zn. Specifically we set the cost of

each element to be equal to its length, and use r = 1.0 in our experiments.

5.3.5 Summary of Methods

In summary, we use G2P models to generate phonemic pronunciations for all

words in an unattested language without an existing lexicon. However, training
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a G2P model requires at least a small seed lexicon. We therefore focus our

efforts on selecting the best subset of words from an unattested language to

have annotated with pronunciations. This is what we called the G2P word

selection task. Our hypothesis is that G2P models trained on seed lexicons

whose words were carefully selected perform better than G2P models trained

using seed lexicons whose words are chosen arbitrarily. We specifically showed

why in the case of graphone-based G2P models, controlling the distribution

of grapheme sequences g to match the distribution seen in the test data is

important.

This intuition led us to formulate the G2P word selection problem as a

constrained minimization of the KL-divergence DKL
(︁

ptest (g) ||pZB (g)
)︁
, be-

tween the distribution over grapheme sequences in the selected subset, ZB of

B words, and the test data. We then showed how this problem can be solved

by constrained maximization of an appropriately defined submodular FBF. The

advantage of using submodular functions is that there is a strong theoritcal

basis for solving the maximization using the accelerated greedy algorithm

[114]. Finally we explored how to facilitate the pronunciation annotation task

by incorporating knapsack constraints on the length and frequency of words

into the selection algorithm.

Our approach to lexicon construction consists of the following steps:

1. Collect target language text.

2. Define the target language vocabulary, V.
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3. Define a set of features, X (character n-gram sequences).

4. Maximize f (Z) = ∑u∈X Cu

(︂
1 − η−mu(Z)

)︂
subject to budget contraints

and using a knapsack constraint on the length of selected words.

5. Train a G2P model using the selected subset ẐB.

6. Use the G2P model to extend the target-language seed lexicons to all

words for which we do not have pronunciations.

In the following section we evaluate our selection strategy compared to the

state-of-the-art FC strategy as well as compared to a random selection baseline.

5.4 Evaluating Selection of Seed Lexicons

We evaluate our proposed submodular selection for fast bootstrapping of seed

lexicons for G2P training on all of the pronunciation lexicons provided in the

24 BABEL Language Packs, as well as on CMU-DICT for English. In all of

our experiments we use the character 4-gram, 3-gram, 2-gram and unigrams

as the feature set, X . For each language, we use the words in the target

language lexicon as the target language text on which we compute the empirical

data distribution of each of our grapheme sequence features, as well as the

vocabulary V. We select words, w ∈ V using the accelerated greedy algorithm

in order to maximize the submodular FBF, f (Z) = ∑u∈X Cu

(︂
1 − η−mu(Z)

)︂
,

with η = 8.0, and where Cu are the normalized counts of each feature in the
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unattested language. In order to compare the G2P performance using different

seed lexicon sizes, we select all of the words in the target language lexicon.

Seed lexicons of different sizes can be examined by looking at the top-k list of

selected words. For all words to be included in the seed lexicon, we use the

provided ground-truth pronunciations.

Once the seed lexicons have been created we train G2P models using

Phonetisaurus [100] on the seed lexicon. We test G2P performance, on all

the words from the target language lexicon, using the ground-truth pronuncia-

tions for those words that were included in the seed lexicon, and using G2P

hypothesis pronunciations for words not included in the seed lexicon. In the

event that a word has multiple pronunciations in the reference lexicon, the

pronunciation resulting in the lowest phoneme error rate (PER) is chosen as

reference. In a few rare cases the G2P is not able to produce a pronunciation for

a word and we use the average number of phonemes seen in word’s reference

pronunciations to compute the number of reference/deleted phonemes.

We compare the performance of our approach against the FC method pro-

posed in [108], as well as against random selection averaged over 20 trials.

Figure 5.1 shows the performance of three selection strategies across all

languages using different seed lexicon sizes in training. In the top sub-plot we

see the the PER of G2P systems trained using 40 words in the seed lexicons. In

the bottom plot we see the PER of G2P systems trained using 1000 words in

the seed lexicon. On the x-axis are the ISO-639-3 codes for all of the BABEL
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languages (plus English). On the y-axis is the phone error rate (PER).

The green bars on the right side of each bar group show the average result

of 20 G2P systems trained on randomly selected seed lexicons. We see that in all

languages except for the small seed lexicon size for Vietnamese, training G2P

models on randomly selected seed lexicons results in significantly worse per-

formance. The orange bar in the middle of each group shows the performance

of G2P systems trained on seed lexicons chosen using the feature coverage

(FC-4) selection strategy proposed in [108]. We call this method FC-4 because

the feature set is all character 4-grams. This method significantly outperforms

random selection. Finally, the blue bar on the left of each bar group corresponds

to our selection method (FC-4+). Our method uses the submodular selection

strategy and includes all lower-order n-gram featurs (as opposed to just 4-gram

featres), as this works more consistently across a wide variety of languages.

For languages such as Georgian (kat), Haitan-Creole (hat), Tamil (tam),

Javanese (jav), Mongolian (mon), Turkish (tur), Swahili (swh), and Telugu

(tel), the submodular selection vastly outperforms random selection and the

resulting G2P models exhibit strong performance < 10% PER even when only

using 40 words in the seed lexicon.
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For consistency we use the same selection strategy on all languages us-

ing the same selection strategy, however, most Vietnamese words are shorter

than 4 characters and hence selection based on coverage of character 4-grams

was sub-optimal. Our modified selection strategy (FC-4+) outperforms the

greedy selection strategy (FC) of [108], in almost every case, while training

significantly faster. Figure 5.2 shows the significant difference in selection

speed in 4 languages when selecting up to 500 words. The solid lines show

the run-time of the accelerated greedy algorithm, while the dashed lines show

the run-time of the normal greedy algorithm. The x-axis shows the number

of selected words and the y-axis is on a log-scale, and shows the wall-time

for the section algorithm. The difference becomes even more magnified with

larger vocabularies, and more selected elements. Even on these relatively small

examples, there is a 10-100x speedup.

Considering that selecting only 500 words from a monolingual vocabulary

of 21063 words took over 2 hours, the O (B|V|) greedy algorithm would be

incapable of scaling to real-world problems where vocabularies are often 10-

100x larger. The selection time would take longer than the annotation task

itself! However, the accelerated greedy algorithm scales remarkably well.

In conclusion, the proposed submodular selection is a practical way to

select an optimal set of words for which to collect pronunciations under budget

constraints. This method enables fast creation, of high quality lexicons in new

languages.
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Figure 5.2: Selection time comparison between selection with and without the lazy-
greedy speed up enabled by submodularity.

5.5 Cross-Lingual Seed Lexicons

One way to eliminate the need for pronunciation generation in unattested

languages by human annotators is to train G2P models on existing lexicons

from other, similar languages, possibly chosen according to a language sim-

ilarity criterion as in [117, 104]. Underpinning this approach is the fact that

most low-resource languages have shallow orthographies often adapted from

higher-resource languages.

We therefore propose to bootstrap G2P models in unattested languages by

training on cross-lingual data. However, we select which training examples to

include using the submodular selection strategy described in Section 5.3. The

general idea is to start with target-language text in the unattested language,

for which we do not have pronunciation lexicons. We use this text estimate

the distribution of character n-grams. Then, from a pool of words from other
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languages, we greedily select words so that the sample distribution over n-

gram features in the selected subset is close to that of the target language text.

Thus, the algorithm will tend to select similar words across disparate languages,

including loan words, place names, or shared lexemes. We hypothesize that

when using our selection method, only a small subset of training examples are

useful in cross-lingual boostrapping of G2P conversion. By selecting only a

small subset of the data we arguably can construct a domain-matched training

set (on the input) from mismatched data.

To test this hypothesis we examine two selection strategies on French,

Spanish, and Vietnamese (see Figure 5.3). In all subsequent experiments we

refer to our submodular selection as FC-4. For the French, and Spanish lexicons,

we scraped Wiktionary using Wikt2pron[118]. For Vietnamese, we use the

lexicon provided in the BABEL corpus. We used the remaining 23 lexicons from

the BABEL languages with segmental writing systems (we remove Cantonese)

as our candidate pool in addition to scraped lexicons in Russian, English,

Italian, Portuguese, Ukrainian, and Catalan.

In these preliminary experiments we include lower order n-gram features.

However, in cross-lingual settings, submodular selection is very sensitive to

the knapsack constraint on the length and the lower-order n-gram features.

For instance the top selected words for Spanish were N, ado, Sion, ménte,

Nacional, Nico, viénto, idad, antar, Mario, Cano, Car, and ero when

the knapsack constraints are used and the PER was 33%. When removing the
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lower-order n-gram features and increasing the knapsack cost on the length of

selected words, the PER was reduced to 29.47% (see Table 5.1). For this reason

in all subsequent cross-lingual selection experiments, we only use character

4-grams as features.

Figure 5.3: Performance (PER) of G2P models trained on seed lexicons selected using
our proposed feature coverage (FC-4) approach compared to 20 trials of random
selection (Rand). The circles represent the chosen seed lexicon sizes using the KL-
divergence stopping criterion described in this Section. The dark, bold lines in green,
blue and red show the average PER of the French, Vietnamese, and Spanish G2P
models trained on random selected cross-lingual lexicons. The light, bold lines show
the performance of the G2P models using our submodular selction strategy (FC-4).

Figure 5.3, shows the PER, of G2P systems trained on different size seed

lexicons selected using our submodular selection approach, as well as 20 trials

of random selection. On the x-axis is the number of words in the G2P seed

lexicons. The y-axis shows the PER when testing the different cross-lingual

seed lexicons on the target language words in the reference target language
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Figure 5.4: Example behavior of the KL-divergence, DKL (ptest (u) ||pZ (u)), between
the empirical distribution over features, u, in the target language text, ptest (u), and the
empirical distribution over features in the selected subset Z , pZ (u). The performance
of G2P models trained on seed lexicons selected using our feature coverage (FC-4)
approach and 20 trials of random selection (Rand) are also shown. Note that the
KL-divergence minimum matches the PER minimum. We use the seed lexicon size
that resulted in the minimum KL-divergence for training G2P models.

lexicons. The lighter colored, bolded curves shows the FC-4 approach. The

darker colored bolded curve shows the average of the 20 trials of random

selection (the thinner curves).

First, note that the G2P models trained on cross-lingual seed lexicons se-

lected with the FC-4 approach clearly outperform the average random selec-

tion method by a wide margin and almost outperformed every random trial.

Second, we note that while the average PER of the G2P models trained on

randomly selected seed lexicons decreases monotonically with the seed lexicon

size in all three languages, the best overall PER of the random selection trials
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is obtained when training on very small randomly selected cross-lingual seed

lexicons. This indicates that there exist at least some, very small seed lexicons

that result in better performance than using all available cross-lingual data.

The FC-4 method appears to systematically favor selecting these small seed

lexicons that result in better PER. In fact, the optimal seed lexicon uses only

100-2000 cross-lingually selected words in all three languages.

Using the intuition that the submodular selection algorithm is attempting to

add elements to our subset in order to match the target data distribution over

features, we propose to select the optimal subset by using the KL-divergence

minimum between sample distributions of grapheme n-gram features in the

selected subset and the test set. We first select a large number of words and

then pick the subset size with the smallest KL-divergence. Figure 5.4 shows

the a typical behavior of KL-divergence as a function of subset size.1

We benchmark the proposed submodular selection of cross-lingual seed

lexicons against a methods from prior work exploring training G2P models in

a target lexicon using cross-lingual data [117, 104]. We compare our selection

approach to that suggested in [117]. The approach of [117] is to construct seed

lexicons by pooling the training data of the languages most similar to the target

language. To measure similarity between languages a language similarity

metric, lang2lang, is defined, which takes into the phylogeny of languages,

relatedness of scripts, as well as phonemic coverage. This information is

1We scaled the KL-divergence appropriately for illustration only.
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available for most, but not all languages through the Phoible [92] database.

Because this method uses ground-truth phoneme inventories, they also define

a metric, phon2phon, which defines a function capable of mapping predicted

phonemes outside of the ground-truth phoneme inventory to the “closest”

phoneme in the target language phoneme inventory. This map is applied as a

post-processing step.

To recreate their method (L2L), we use the same lang2lang metric to select

the most similar attested languages to our unattested target languages, and

form cross-lingual seed lexicons by pooling the pronunciation lexicons of the

top-3 most similar attested languages. We benchmark the selection methods

on 6 BABEL languages, Spanish, Cebuano, Tagalog, Javanese, Russian, and

Kazakh, using each of these lexicons as the target language data from which

we compute grapheme 4-gram statistics. We use the PER of G2P systems on the

ground-truth, target language lexicons to evaluate the seed lexicon selection

methods.

Table 5.1 shows the results of this experiment. In the first column of Table

5.1 is the ISO-639-3 code of the BABEL target languages. The next two columns

show the PER of G2P models trained on cross-lingual seed lexicons selected

using the FC-4 approach. The columns labeled +phon2phon show the PER after

using the phon2phon metric to map phonemes to the closest phoneme in the

target language phonetic inventory. The last two columns show performance

in PER of G2P models trained on seed lexicons selected using the L2L method.
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There are two notable conclusions. First, the two methods perform compa-

rably, but the FC-4 method did so without having to use extra, and sometimes

unavailable resources from Phoible to evaluate language similarity between the

target and attested language. Second, post-processing of the output phoneme

sequences significantly improves the PER. To understand what kinds of words

the FC-4 model is selecting cross-lingually we show in Table 5.4 the top 10

words chosen from 4 different languages. In the first column is the name of the

language from which the word was selected. The second column shows the

selected word. Finally, the third column (in each of the four panels) shows the

X-SAMPA pronunciation of that row’s word.

While the PER is a useful metric for evaluating the quality of pronunci-

ations, it is flawed. For instance a pronunciation that uses a subtle variant

of a particular vowel, such as caught vs. cot in English, might be marked as

incorrect even though the distinction is unlikely to affect comprehension. In

the next section, we explore using these constructed lexicons in downstream

ASR tasks, and propose using the ASR WER as a downstream, extrinsic metric

for evaluating the quality of pronunciation lexicons.
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FC-4 L2L

- +phon2phon - +phon2phon

spa 38.51 29.47 42.69 40.16
ceb 60.46 58.67 56.01 55.08
tgl 64.53 64.24 58.91 58.88
jav 57.51 30.64 68.22 35.41
rus 72.92 57.22 63.73 59.75
kaz 82.33 80.29 82.35 80.02

Average 62.71 53.42 62.0 54.38

Table 5.1: Phoneme error rates against a reference lexicon of the proposed method
(Feature coverage; FC), and a language-similarity based approach (L2L) inspired by
[117]. For each method, an alternative variation maps OOV phonemes to the closest
target language phoneme. The discrepancy between the Spanish PER in figure 5.4 and
this table is because the lower order character n-gram features were no longer used.

5.6 Acoustic Model Transfer with Cross-lingual Seed

Lexicons

Recall that the goal of this chapter is to explore cross-language acoustic model

transfer in the absence of a lexicon in an unattested language. To this end we

train and transfer acoustic-phonetic models as described in Chapter 3 with a

few modifications.

Since, as discussed in Chapter 3, language diversity in training was more im-

portant than data quantity for cross-lingual transfer, we train acoustic models

on ∼300h of data from 25 languages all sharing a common phonemic repre-

sentation. We use the Limited Language Pack (10h of data) in 21 different

languages from the BABEL corpora, but add to it a 20h subset of the English

Wall Street Journal, Hub4 Spanish Broadcast news, and the Russian and French
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portions of the Voxforge corpus.2

We then transfer these acoustic-phonetic models to a new language by

rebuilding the decoding graph using the appropriate pronunciation lexicon

and language model as described in Section 2.5. This also provides an extrinsic

measure of the quality of a pronunciation lexicon to complement PER. We note

that since the words used to form seed lexicons for G2P model training are

also seen in the attested language transcripts during acoustic model training,

we completely avoid the problem of generating pronunciations in the target

language that contain unattested phonemes.

For all our ASR experiments we use a hybrid ASR system trained in Kaldi

[34]. The neural network is an 11-layer TDNN [60] with 512 hidden units per

layer, interleaved with batchnorm and dropout layers trained with the LF-

MMI objective [48]. We combine all the transcribed speech and pronunciation

lexicons together for training. Since we train on mixed bandwidth data (8 and

16 kHz) we choose to down-sample the wide-band data to 8 kHz when train

the GMM-HMMs. However, when training the TDNN, we use MFCC+Pitch

features up-sampled to 16 kHZ to match the evaluation data bandwidth. Save

these modifications, we train our system using the BABEL s5d 3 recipe in Kaldi.

Unfortunately, most of the target unattested languages that we focused

on up to this point are the only instances of those orthographies present in

2We included these data to help model performance on wide-band speech, and also to help
cover languages that have heavily influenced many of the low-resource languages on which
we test our model.

3https://github.com/kaldi-asr/kaldi/tree/master/egs/babel/s5d

120

https://github.com/kaldi-asr/kaldi/tree/master/egs/babel/s5d


our cross-lingual pool of lexicons: Pashto is the only language in the BABEL

corpus written in Arabic, Georgian is the only language written in Georgian,

and Amharic is the only BABEL language written in the Ge’ez script. One

massively multilingual corpus that enables evaluation of languages for which

we have no pronunciation lexicons is the CMU Wilderness Corpus (Wilderness

Corpus) [25] described in Section 2.2.2. We therefore use languages from

this corpus to evaluate our G2P word selection approach. For each language,

we create training, development, and evaluation sets using 80-10-10 splits

respectively. All WER results are reported on the evaluation sets.

To contextualize the results from cross-language acoustic model transfer,

we also report the WER of a speech recognizer trained on a matched training

set of each language for which we had pronunciation lexicons (See Table 5.2).

These are top-line systems, replicating the performance one would expect with

20 hours of transcribed speech. For these monolingual systems, we trained

a 6-layer TDNN with 512 hidden units each. We use a smaller model for the

monolingual systems than for the cross-lingual models because we are training

on a relatively smaller amount of data.

Language spa ceb tgl jav rus kaz

WER 5.97 7.23 7.99 23.16 16.56 31.83

Table 5.2: Monolingual ASR performance (WER) in 6 languages for which ground
truth lexicons exist.
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5.7 Cross-Language Transfer Experiments

We compare three methods for generating pronunciations for a given phoneset:

Epitran (Epi), the approach of [117] that selects G2P training subsets based on

language similarity (L2L), and our cross-lingual submodular selection based

on the Feature Coverage (FC) approach in [108]. The Epitran approach relies

on knowledge of the new language’s phoneme inventory as well as the most

important grapheme-to-phoneme relationships in the new language. Since

these lexicons are extremely close to hand-crafted target-language lexicons we

can use them to determine how much performance degradation is incurred using

the cross-lingual lexicons. L2L serves as an alternative to our proposed method

for cross-lingual G2P transfer. We also examine to what extent knowledge about

the target language’s phoneme inventory can help in cross-lingual acoustic

model transfer by using phon2phon [117] to map all phonemes in the G2P-

derived pronunciations to the closest phoneme in the new phoneme inventory.

We note that most of the languages in the Wilderness corpus do not have

supporting Epitran modules. We choose our evaluation languages in order

to be able to make this comparison, but for most languages this approach is

not viable without first creating an Epitran module. Furthermore, many of

the Wilderness languages are poorly aligned. We therefore choose languages

with acceptable MCD scores (see Section 2.2.2) and for which there are existing

Epitran modules. For this reason we use Malay (msa), Indonesian (ind), Hausa
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+phon2phon -

Epi L2L FC L2L FC All

msa 7.3 13.1 12.6 11.6 11.1 17.8
ind 23.2 30.1 26.2 28.3 27.4 34.7
hau 32.9 40.2 35.0 37.9 30.8 31.5
swe 78.5 84.0 75.2 72.2 71.5 72.0
spa† 8.5 57.2 32.6 49.7 35.2 36.9
ceb† 21.1 35.2 29.7 30.0 27.2 29.5
tgl† 24.6 32.0 30.0 30.3 29.8 32.4
rus† 45.8 68.4 71.7 72.1 74.4 75.2
jav† 47.9 63.4 51.3 55.0 52.8 57.6
kaz† 57.1 79.1 79.2 81.1 80.9 78.1

Avg. 33.6 50.3 44.3 46.8 44.1 46.6
– {spa,rus,kaz} 32.1 42.6 37.1 37.9 35.8 39.4

{spa,rus,kaz} 37.1 68.2 61.2 67.6 63.5 63.4

Table 5.3: Decoding results using the universal phoneset ASR with different pronunci-
ation lexicons for a variety of languages. Map indicates application of phon2phon. Epi is
an Epitran model and is supervised. The rest are zero-shot: L2L is trained on lexicons
from similar languages, FC uses submodular selection to match n-gram distributions,
and all uses all training data. Languages marked with † were seen in training, though
from a different corpus. Underlined is the best cross-lingual zero-shot approach. –
{Spa,Rus,Kaz} is the averaged result when removing Spanish, Russian, and Kazakh.
{Spa,Rus,Kaz} are the average results of only those languages.

(hau), Swedish (swe), Spanish (spa), Cebuano (ceb), Tagalog (tgl), Russian

(rus), Javanese (jav) and Kazakh (kaz) as our evaluation languages. Results are

shown in Table 5.3.

In the first column of Table 5.3 is the ISO-639-3 code of the evaluation lan-

guages. In the second column is the WER when transferring acoustic models

using lexicon constructed with Epitran modules. The next two columns (3-4),

labeled +phon2phon, show the L2L and FC approaches when a post-processing

step is used to “project” hypothesized pronunciations to the closest pronunci-

ations using the ground-truth phoneme inventories via phon2phon. Columns
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5-6 show the performance of the same cross-lingual acoustic model transfer

without this post-processing step on the lexicons. The last column shows the

performance of lexicons derived from G2P models trained on all available data

in the lexicon pool.

First we note that transfer of acoustic models using G2P-derived lexicon,

where the G2P was trained using a small, carefully selected subset of word-

pronunciation pairs from a large pool of candidate word-pronunciation pairs,

outperforms using lexicons derived from G2P trained on all of the available

data. This corroborates our hypothesis that using a small domain-matched

seed lexicon outperforms training on the entirety of the available data. Next,

we note that our selection method consistently outperforms the L2L selection

process, which is contrary to the previous evaluation against ground-truth

lexicons using PER. Examining the top selected words for a few languages

gives some insight as to why this might be. Examples of the top scoring words

and associated pronunciations for 4 languages are shown in Table 5.4 as well as

the associated language from which the word-pronunciation pairs were taken.

First, we note that in each language, the selected words are mostly from

related languages: in Hausa, we see words from Zulu, another Bantu language;

in Cebuano we see words chosen from geographically close Tagalog, Javanese,

and Vietnamese; in Malay we find words almost exclusively from closely

related Javanese. In Spanish, however, the most related language is Portuguese.

The Portuguese pronunciations of words with nearly identical orthographic
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Hausa Spanish

Lang Word Pron Lang Word Pron

cat calamarsa k @ l @ m a 4 s @ por estacionamento i S t 6 s j u n 6 m e∼t u
zul untararanta u n t>a R a R_" a_" n t>a por cerrados s 1 R a D u S
zul untararanta u n t>a l a l_" a_" n t>a por constantemente k o∼S t A∼t 1 m e∼t 1
zul kwakungabangani g<w a g<u N g a b<a N_" g_" a_" n i por correspondência k u R 1 S p o∼d e∼s j 6
zul kwakungabangani k>w a k>u N g a b<a N_" g_" a_" n i tgl computeran k o m p j u t @ r_" a_" n_"
ceb kikinsa k i k_" i_" n_" s a tgl computeran k o m p j u t e r_" a_" n_"
ceb pakiyawa p a k j_" a_" w a ceb imbitaron ? i m b i t a 4_" o_" n_"
lit matarinkų m a t a rj_"_F I_"_F n_"_F k u: lit programos p r O g_"_R r_"_R A:_"_R m o: s
lit atsinaujinsu a ts’ ts’ I n_"_R a_"_R U_"_R j I J ts’ U grn preparándo p 4 e p a 4_" a∼_" n_" d o
jav ditawarkan d‘ i t a w a r k a n grn preparándo p 4 e p a 4_" a∼_" dn o

grn desentonádo d_% e_% s e∼tn o∼n_" a∼_" D o
grn desentonádo d_% e_% s e∼n t o∼n_" a∼_" D o
jav perantara p @ r a n t O r O
jav perantara p @ r a n t a r a

Cebuano Malay

Lang Word Pron Lang Word Pron

tur maka m a k_" a_" swh ukanindanganya u k A n i nd A Ng_" A_" J A
tgl nakapa n 6 k 6 p_" a_" ?_" jav makannya m a k O n J a
tgl pagka p 6 g k_" a_" jav makannya m a k a n J a
tgl nagpa n 6 g p_" a_" jav memberhentikan m @ m b @ r h @ n t i k a n
tgl nang n_" a_" N_" jav langgananmu l a N g a n a n m u
tgl nang n_" 6_" N_" jav menghilangkan m @ N h i l a N k a n
tgl mag m_" 6_" g_" jav mengundurkan m @ N u n d‘ U r k a n
tgl pag p_" a_" g_" jav pengangkatan p @ N a N k a t a n
vie ong O_TML_TLS N_TML_TLS jav terang t @ r a N
vie nang n_TML_TLS a:_TML_TLS N_TML_TLS jav persembahan p @ r s @ m b a h a n
zul maka m_" a_" k>a jav bersalah b @ r s a l a h
zul maka m_" a_" g<a
ibo maka m a k a
jav pangan p a N a n
jav nang n a N
jav mag m a h
jav mag m a g
jav maka m a k a
luo gipar g I p_" a_" r_"
luo maka m_" a_" k a
luo mag m_" a_" g_"
luo maka m_" a_" k a
luo mag m_" a_" g_"

Table 5.4: Pronunciations of the top words chosen cross-lingually from across all
languages in the pool of training lexicons for 4 different languages. Each quadrant
shows the top words in one of the 4 languages. The first column in each quadrant
shows the ISO-639-3 code of language from which a selected word originated. The
second column shows the orthographic form of the selected word. The third column
shows the X-SAMPA pronunciation of that word as listed in the pooled, ground-truth
lexicons.

forms as Spanish are notoriously different and selecting them can give rise to

bad pronunciations using the “french” R (voiced uvular fricative) instead of the

“Spanish” "r" (alveolar trill) in words such as “correspondência” for instance.

However, the FC selection criterion enables smart selection on a word-by-word

basis, so it also includes Cebuano, Tagalog, and Gauraní loan-words such as
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“preparándo” which uses the correct Spanish “r” sound. This prevents the

G2P model from predicting pronunciations too confidently based on a single

language. Examining Table 5.3, we see that in Spanish the FC selection method

significantly outperforms the L2L selection method (32.6 vs. 49.7 % WER).

Returning to Table 5.3, comparing columns 3 and 4 to columns 5 and 6,

we see that post-processing pronunciations using the ground-truth phoneme

inventory via phon2phon hurts rather than helps performance as seen in the

PER evaluation in Table 5.1. This indicates that the post-processing step is

not needed. It is likely correcting pronunciation errors, such as between two

similar vowels or constants, that are not particularly severe and do not impact

downstream performance. This highlights the pitfalls of relying on edit distance

(PER) to evaluate the quality of pronunciation lexicons.

We also note that in 7 of the 10 evaluation languages the cross-lingual ap-

proaches perform on average only slightly worse than when using the Epitran

lexicons, indicating that, in the right conditions, cross-lingual acoustic model

transfer using a constructed phonemic lexicon can almost match performance

of an existing hand-crafted phonemic lexicon. This was not the case for in-

stance, when using graphemic models and graphemic lexicons to effectuate

cross-lingual acoustic model transfer.

However, for Spanish, Russian, and Kazakh there is a large performance

gap. First, we note that Russian and Kazakh are the only two test languages

written in the Cyrillic script, and the only 2 languages written in Cyrillic seen
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in training were Ukrainian and Mongolian. Mongolian also has a notoriously

deep orthography [90]. This resulted in many pronunciations draw from very

unrelated languages, with vastly different phonetic inventories, and compli-

cated grapheme to phoneme relationships.

In Spanish, the reasons for the poor performance are two-fold: the pro-

nunciations are still heavily influenced by the selected Portuguese examples;

furthermore, certain very frequent words were assigned very erroneous pro-

nunciations. In the mapped FC Spanish lexicon, for instance, the pronunciation

for the word “que” was “q { w e” (k-uh-w-ay instead of k-e). Simply replacing

this single pronunciation with the one found in the Epitran lexicon reduced

the WER from 32.6 to 28.1.

Finally we note that even though several of the evaluation languages were

actually attested languages (included in acoustic model training), there was no

noticeably improved performance in cross-lingual acoustic model transfer to

these languages compared to transfer to unattested languages. This indicates

that acoustic and genre mismatch, such as between wide-band read speech

and narrow-band conversational speech, is more severe than mismatch due to

language, provided an appropriately constructed lexicon exists in the target

language.
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5.8 Conclusion

In this Chapter we presented two methods for constructing phonemic pronun-

ciation lexicons. Both methods aimed to minimize the KL-divergence between

the distribution over graphemic features in a selected subset of words and

the empirical target language distribution over graphemic features. In both

cases we approximately minimize the KL-divergence using a greedy subset

selection to maximize submodular feature-based functions. The difference in

the approaches is in the pool of candidate words that we can include in our

subset, and who or what supplies pronunciations for selected words. In the

first approach, we assume that we can selected target language words for anno-

tation manually supplied by a human annotator. In the second approach, we

select words from other, non-target languages for which pronunciation already

exist, thus eliminating the need for a human annotator.

We then demonstrated that unlike when we used graphemic acoustic mod-

els in conjunction with graphemic lexicons, these constructed phonemic lexi-

cons, when used in cross-lingual acoustic model transfer, were able to match

the performance (WER) of hand-crafted phonemic lexicons. We analyzed the

selection approach and provided substantial evidence that the optimal seed lex-

icon for G2P model training uses only small subset of all available cross-lingual

data. We furthermore showed that our selection method outperforms other

cross-lingual seed lexicon selection methods based on language similarity.
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Now that we have a mechanism to easily create pronunciation lexicons

in new languages, and that we demonstrated that decoding hybrid acoustic

model with these constructed lexicons enables zero-shot cross-lingual acoustic

model transfer, we turn our attention to alternative models for cross-lingual

acoustic model transfer. Notably, we focus on the encoder-decoder model.
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Chapter 6

Transfer without a Pronunciation

Lexicon using Seq2Seq Models

So far, we have explored the transfer of acoustic models in hybrid ASR systems,

whose modularity enabled zero-shot ASR through the use of acoustic-phonetic

models trained on other languages and employed in an unattested target

language by using an appropriately constructed pronunciation lexicon. We

proposed that without an available pronunciation lexicon, we could either

construct one, which was the subject of Chapters 5 and 4, or we could explore

models which do not require pronunciation lexicons. In this Chapter we explore

such an alternative model for almost-zero-shot ASR without lexicons based on

sequence-to-sequence models.
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6.1 Attention-based Encoder-Decoder Models

As mentioned in Chapter 1, the encoder-decoder model is trained by directly

maximizing the posterior probability p (w∗|x). The encoder-decoder is an

entirely neural model consisting of three components:

1. The Decoder is a conditional language model. It predicts the next output

autoregressively from a fixed vocabulary, V , conditioning on previous

outputs as well as information from a presented acoustic signal, such as a

transformation of input, z = f (x). This transformation is modeled by an

encoder, which is described later. The decoder models

pθ

(︂
w(i)|w(i−1), . . . w(1), x

)︂
(6.1)

with parameters θ. Most decoders are Long Short-Term Memory (LSTM)

[119], Bidirectional Long Short-Term Memory (BLSTM) [30] or more

recently Transformer [120] models. These models have an internal state,

s(i), for each decoding increment that gets updated autoregressively.

Classification can be performed by transforming s(i) to a vector where

the dimensions represent scores on outputs o(i).

o(i) = Wos(i) + bo; Wo ∈ R
|V|×d

s(i) , bo ∈ R|V|×1 (6.2)

Finally, the Softmax function is applied to exponentiate and normalize
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the output scores resulting in a valid probability mass function over the

output classes.

pθ

(︂
w(i)|w(i−1), . . . w(1), x

)︂
= So f tmax

(︂
o(i)
)︂

(6.3)

Softmax (x) is an operation on the d elements of vector u that returns a

valid probability mass function defined as

Softmax (u)i =
eui

d
∑

j=1
euj

. (6.4)

The decoder is updated based on the previously decoded word ŵ(i−1) =

arg max
w

pθ

(︂
w(i−1)|w(i−2), . . . , w(1), x

)︂
, the current decoder state s(i), and

an aggregate representation, z(i)
∗
, of acoustic signal information, z, used

in the i-th step of decoding.

s(i+1) = update
(︂

s(i), z(i)
∗
, ŵ(i−1)

)︂
. (6.5)

Decoding continues until a special <eos> token is produced. The aggre-

gate representation z(i)
∗

is produced by a module called attention which

is described in more detail later.

2. The Encoder is responsible for learning good representations, z = fθenc (x)

of speech features x. The decoder conditions on these representations,
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or a transformation of these representations when predicting the output

tokens. The encoder looks very similar to the Wide Residual Networks de-

scribed in Section 3.1.3, with an optional LSTM, or BLSTM layer before the

encoder output. More recently, transformer models with convolutional

positional encodings have replaced the (B)LSTM layers. The learned

representations, z, are typically down-sampled by a factor of 2-8 relative

to inputs x.

3. Attention is responsible for aggregating the sequence of encoder repre-

sentations, z = z(1), . . . , z(T) over multiple time steps into a single vector,

z(i)
∗

on which the decoder conditions its predictions at the i-th step. This

aggregation is accomplished using a weighted sum of values, z(t). The

weight sequence, called the attention scores, α = α(1), . . . , α(T), may de-

pend on the current decoder state s(i), and possibly the previous attention

scores α(i−1). We refer to the computation of the attention scores, and their

use in aggregation of encoder outputs as the decoder attending to specific

inputs. This process is described by a function, attend
(︂

s(i), α(i−1), z
)︂

of

the current decoder state, s(i), the previous attention weights, α(i−1), and

the encoder outputs, z.

The vector aggregating acoustic representations z, used for the i-th de-
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Algorithm 1: Conditional text generation in encoder-decoder models
V = {v1, v2, . . . , v|V|}
init

(︂
s(0), α(0)

)︂
w(0) =<s>
z = fθenc (x)
i = 0
while ŵi ̸=< eos > do

z(i)
∗
= attend

(︂
s(i), α(i−1), z

)︂
s(i+1) = update

(︂
s(i), z(i)

∗
, ŵ(i)

)︂
ŵ(i+1) = arg max

v∈V

(︂
Wos(i+1) + bo

)︂
v

i += 1

coding step is

z(i)
∗
= α(i)T

z (6.6)

= attend
(︂

s(i), α(i−1), z
)︂

(6.7)

We can interpret the attention scores as how relevant encoder states z(t)

are for the i-th step of classification. A number of different methods exist

for computing the scores [120], but a common method uses a bilinear

map parameterirzed by matrix Wa, i.e.,

α(i)⏞⏟⏟⏞
T × 1

= Softmax

⎛⎜⎝ zT⏞⏟⏟⏞
(T × denc × da)

Wa⏞⏟⏟⏞
(da × dsi )

s(i)⏞⏟⏟⏞
(dsi × 1)

⎞⎟⎠ (6.8)

Decoding can be described by Algorithm 1.

These models are trained using the cross-entropy objective function, which
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is equivalent to minimizing

DKL (p (w∗|x) || pθ (w∗|x)) . (6.9)

Instead of feeding past model outputs, ŵ(i), as inputs to the next update (·)

function, we can force the model to use the correct output prediction, w(i),

during model training. This method is commonly known as teacher forcing.

Generally, the output vocabulary is graphemes with an additional space sym-

bol, or possibly sequences of graphemes with an additional space symbol. In

this way, a sequence of output symbols can be trivially transformed into word

sequences. For instance, the grapheme sequence “<s> h e l l o <space> r

e a d e r <eos>” can be converted to the word sequence “hello reader, by

removing the <s> and <eos> symbols, as well as all white space symbols. The

<space> symbol is then replaced with whitespace.

6.2 Low-Resource Encoder-Decoder Modeling

Attention-based encoder-decoder networks have achieved state-of-the art per-

formance in ASR when trained on hundreds to thousands of hours of tran-

scribed speech [121], but their performance generally lags behind conventional

systems in low-resource conditions [122, 51]. In order to transfer “end-to-end”

components trained on mismatched data as in Section 3, we need to decouple

their training. Cross-lingual and cross-modal data resources could then be

136



used to train the encoder, decoder, and attention mechanisms.

Leveraging linguistic resources from other languages and modalities can

be used to learn a better encoder, which is similar to learning a language

independent encoder H ◦ C. These techniques include training on additional

synthetically perturbed speech [123, 124, 125], or by multilingual training, which

augments the training data with transcribed speech from other languages [126,

127, 28, 128, 129, 130]. We interpret these methods as improving the encoder,

which plays a similar role to H ◦ C in Hybrid systems.

One way to improve ASR performance without access to transcribed speech

is to leverage supplemental unpaired text data to train a language model [131,

132]. This is similar to training n-gram language model, G, in DNN-HMMs.

6.2.1 Pretraining for low-resource encoder-decoder ASR

The challenge when decoupling training of the components of end-to-end sys-

tems is to ensure that they encode the desired relationships between data, while

remaining compatible with each other. One method that explored decoupled

training was multi-model data augmentation (MMDA) [133]. MMDA is a data

augmentation scheme for encoder-decoder based ASR which only requires

text data [133] (see Figure 6.1. (a)) to train the attention and decoder networks.

The approach, inspired by “back-translation” in neural machine translation

(NMT) [134], involves using an additional augmenting encoder (in addition to

the traditional acoustic encoder), which accepts a sequence of features derived
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from a sentence as input and learns to predict the original sentence. Inter-

leaving minibatches of transcribed speech and synthetically created speech

features are used to train the speech and text encoders respectively. Similar

work used a text-to-speech (TTS) system to generate the augmenting speech

data. However, training a reasonable TTS requires more single speaker data

than we have available in many low-resource situations [135, 136], and does

not entirely decouple encoder and decoder training.

We extend MMDA to work in low resource contexts. One technique pro-

posed for low-resource neural machine translation (NMT) [137] uses an un-

supervised language modeling task on both the source and target languages

to pretrain the encoder and decoder model parameters respectively. This ap-

proach uses the insight that in NMT both the encoder and decoder act as

language models. Seq2seq ASR differs from NMT in this respect. First, only

the decoder clearly acts as a language model. Furthermore speech transcripts

generally align monotonically with audio, and the attention can be easily ini-

tialized to promote this behavior. To account for these differences we pretrain

both the decoder and attention parameters. In order to make these components

compatible with encoders trained on transcribed speech, we pretrain using

synthetically ”back-translated“ training examples as in MMDA, rather than

just a language modeling task.

We train the parameters of the encoder on transcribed speech from other

languages to make up for the limited transcribed resources in low-resource
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(a) MMDA Architecture
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Figure 6.1: MMDA and PSDA. x is the original speech, x̂ is the text-based augmenting
input, and w is an output character sequence. θenc, θatt, θdec, θDA, are the parameters of
the encoder, attention, decoder, and data-augmenting encoder respectively

languages. We also attempt to pretrain the encoder using only text input by

using a modified MMDA architecture that feeds the output of the augmenting

encoder to the acoustic encoder. This is more similar to the previously men-

tioned TTS-based augmentation. The augmenting data can then be viewed as

pseudo-speech from some related language that we add to our training data. We

refer to this as pseudo-speech data augmentation (PSDA) as the augmenting

encoder is implicitly tasked with learning representations of the augmenting

data that resemble the original acoustic features. To study the synthetic data’s

value in pretraining the encoder, we also compare pretraining the network

with PSDA to multilingual training.

139



6.2.2 Encoder-Decoder Architecture

Our architecture follows the encoder-decoder model and during training we

maximize the log-likelihood:

L(θ⃗) = log p (w∗ | x ; θenc, θatt, θdec) , (6.10)

where w denotes the desired output character sequence and x ∈ RT×D a

tensor of speech frames of length T and feature dimension D. We denote the

entire set of network parameters by θ, which is composed of acoustic encoder

parameters θenc, attention mechanism parameters θatt and decoder parameters

θdec. The encoder consists of a projection-BLSTM with a pyramidal structure

for the acoustic encoder [21], the decoder is a single-layer LSTM and we use

location-aware attention to complete the entire end-to-end network [138].

6.2.3 Multi-Modal Data Augmentation

The MMDA technique (Figure 6.1a) uses the multi-task objective:

L(θ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
log p (w∗ | x ; θenc, θatt, θdec) ; speech

log p (w∗ | x̂ ; θDA, θatt, θdec) ; text-based

, (6.11)

to train parameters θenc, θdec, θatt. When the inputs are acoustic features, x,

MMDA uses the standard encoder-decoder network to maximize the primary
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objective, which is the original ASR objective. When the inputs are text-based

features, x̂, MMDA uses a data-augmenting encoder instead of the acoustic en-

coder and maximizes the probability of the output sequence paired with the

text-based representation (secondary task). In Eq 6.11, θ⃗DA denotes the parame-

ters of the data-augmenting encoder which is composed of an embedding layer

and a single-layer projection-BLSTM.

6.2.4 Pseudo-Speech Data Augmentation

We propose a variation of MMDA which changes the architecture during the

secondary task (Figure 6.1b). In this setup, we cascade the data-augmenting and

acoustic encoders and force the data-augmenting encoder’s output to match

the dimensionality of acoustic frames (which are the input in the primary task).

Thus, in PSDA the entire encoder-decoder network is part of the computation

graph in both tasks. Specifically, the text input x̂ also updates the speech

encoder parameters, θenc

L(θ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
log p (w∗ | x ; θenc, θatt, θdec) ; speech input

log p (w∗ | x̂ ; θDA, θatt, θdec, θenc) ; text input

, (6.12)

PSDA can be viewed as a proxy multilingual training method, where the

pseudo-speech generated by the data-augmenting encoder (which is fed into

the acoustic encoder) is a cheap approximation of real acoustic features of some

new, but related language. We use the same structure for the data-augmenting
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encoder as in the MMDA case.

6.2.5 Multi-task Training & Pretraining

In this section we describe how to schedule minibatches of speech and text-

based inputs to train the data-augmenting architectures.

In [133] we proposed training the MMDA network by alternating between

audio-data and augmenting-data minibatches. In this work, we enable more

flexibile multi-task training by using a hyper-parameter ρ ∈ (0, 1) that decides

if the model should be trained on speech data or text-based data. We also

introduce a parameter, P, denoting the number of purely text-based updates

to use in model pretraining. Since, prior work has shown that training on new

data, or with a new objective function can lead to catastrophic forgetting [139],

tuning these parameters (P, ρ) is important in order to prevent catastrophic for-

getting of the decoder “language model” when fine-tuning on target language

transcribed speech.

6.3 Cross-lingual ASR Baseline – Shallow Fusion

In prior chapters, we explored acoustic model transfer by simply using target-

language specific WFST components L ◦ G. In encoder-decoder models, where

we use grapheme outputs, there is no need for a component L mapping acoustic

units to words. Therefore, one might simply try to use a new language model,

142



G, during decoding to transfer the existing model to a new language. The most

common method for integrating external language models in encoder-decoder

ASR is shallow-fusion.

Shallow fusion [140], is a simple, effective and commonly used technique for

external language model integration in sequence to sequence learning for ASR

[141]. In shallow fusion, a list of partial hypothesis and corresponding scores is

produced by the ASR decoder. Each partial hypothesis is then also scored by

an external language model. A composite score for the partial hypothesis is

given by

score(w) = log pASR (w|x) + λ log pLM (w), (6.13)

where log pASR (w|x) is the ASR score for a hypothesis sequence w given an

input utterance x, log pLM (w) is the corresponding language model score,

and λ is a tunable parameter. The list of hypotheses is reordered prior to

prediction of the subsequent output and only the top scoring hypotheses are

retained. [133] showed that shallow fusion and MMDA result in similar, but

complimentary performance gains. The advantage of MMDA is a simplified

decoding strategy. We therefore compare the proposed MMDA, PSDA, and

pretrained variants to a shallow fusion baseline.
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6.4 Experiments

Encoder-decoder models directly model acoustic to grapheme relationships,

and we have previously seen that these do not transfer well across language.

Therefore, we try our method on a simplified setup using only clean speech

from related romance languages. Since such a setup is not possible with the

BABEL corpus, we instead conducted experiments on 4 languages from the

Voxforge corpus (See Section 2.2.3): Catalan, Portuguese, Italian, and French.

We chose these data sets because they have small amounts of relatively clean

training data (0.5-30h), which mimics the low-resource scenario, and they are

closely related to Spanish which we used in multilingual training (see Section

6.4.2). This allows us to study the effect of small training data on end-to-end

ASR in isolation, without worrying about confounding factors such as language

relatedness or the noisiness of the training data.

For Catalan, Portuguese, and Italian, we created 5 baseline systems:

1. A baseline monolingual model here referred to as Monolingual;

2. A monolingual model decoded using shallow fusion (LM);

3. The same baseline model as in [133], trained using an augmenting encoder

and augmenting data scraped from the web (MMDA);

4. A multilingual model that was trained on transcribed speech from other

languages in addition to the monolingual data (ML);
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5. The multilingual model decoded with shallow fusion (ML+LM).

All of the augmenting data was used to train the RNNLM for each language

to enable a fair comparison between shallow fusion and MMDA. We denote

models where pretraining with data-augmentation was used as (+P).

6.4.1 Monolingual Systems

We trained monolingual systems for Catalan, Portuguese, and Italian. The

training, development and evaluation sets are constructed by randomly select-

ing 80%, 10%, and 10% of the data for each set respectively. As a reminder,

this corpus is a collection of user submitted read prompts. We ensure that no

prompt in the development or test sets is duplicated in the training set when

constructing our splits, even if it means that there may be speaker overlap

between the training and evaluation sets. This is because the encoder-decoder

model can very easily learn to memorize the training prompts. The Catalan

and Portuguese systems were trained on the entire 30 min and 3 hour extracted

training sets respectively. For Italian we trained only on a 4 hour subset of the

full 16 hour training set in order to more closely mimic the training conditions

of the two other languages. All systems were trained using ESPnet [142]. We

trained encoder-decoder networks as described in Section 6.2.2, but without the

augmenting encoder. We used the same configurations as in [28], except for we

use 4-BLSTM layers in the encoder network for all experiments. These models

serve as baselines for comparison with our proposed cross-lingual training
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approaches.

6.4.2 Multilingual Systems

Since one goal of this Chapter is to test whether we can replicate the improve-

ments obtained from cross-lingual transfer of seed acoustic models described

Section 3.1.3 in an encoder-decoder model framework, we augment our train-

ing data with transcribed speech from other languages. However, in these

experiments rather than training a single universal acoustic model that we

transfer to other languages, we construct evaluation specific models. For Cata-

lan and Portuguese we augment the training data with all 30h of the Hub-4

Spanish Broadcast news corpus training set and all 16h of the Italian Voxforge

training set. For Italian we only add the Hub-4 Spanish to training. These exper-

iments are designed to determined to what extent multilingual training helps

to learn a better encoder model, similar to how training with cross-lingual seed

models in Section 3.1.3 improved performance on a specific target language.

All systems are trained using the same network configurations and training

parameters as the monolingual systems. We follow [130, 28] and use as output

symbols the union of all graphemes seen in training such that the network was

capable of outputting any of the languages seen in training.
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6.4.3 MMDA & PSDA

To assess the extent to which MMDA and PSDA improve the decoder model by

(pre)training on large amounts of unpaired text, we train monolingual MMDA

and PSDA systems as well as systems with pretraining (MMDA+P, PSDA+P)

as described in Section 6.2.2 using the same data splits as described in Section

6.4.1. We also train multilingual (ML) MMDA and PSDA systems which we

compare to a ML baseline with RNNLM shallow fusion (ML+LM).

Augmenting Data: The augmenting data are generated by first scraping

Wikipedia for text in the language of interest. We then filter out tokens with

characters that do not appear in the audio training data as well as long and

short sentences. This results in 2.2, 3.8, 3.2, and 4.2 million training examples

respectively for Catalan, Portuguese, Italian, and French. We convert this text

into sequences of phonemes, as in [133], which was shown to give better per-

formance than simply using the graphemes. We create pronunciation lexicons

for each language by scraping Wiktionary for pronunciations of all words seen

in the augmenting text data. For each language we then train a grapheme-to-

phoneme transducer using Phonetisaurus [143] on the corresponding scraped

lexicons, which we then use to recover pronunciations for all words in the

augmenting data that are missing from the lexicon.

Modeling phoneme duration was shown to be important for the MMDA

encoder [133] and frame level phoneme alignments from TIMIT were used to
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model the duration of the augmenting data. Transferring the duration model

to a new language required manually mapping its phoneme (or grapheme)

inventory to TIMIT phonemes. We instead model phoneme duration with a

shared Gaussian distribution across all phonemes, whose mean is the average

ratio of input frames to output symbols in the audio training data. In this way

we can construct augmenting inputs that have the same duration (on average)

as the speech inputs by repeating each phoneme by a duration sampled from

this distribution. The variance ensures that duplicate or highly similar text

sentences result in unique training pairs. This technique eliminates the need for

frame-level phoneme alignments. We suspect that using a more sophisticated

duration model would result in better performance. However, this method

is simple, effective, and broadly applicable to any language. Furthermore, in

Italian which has a highly phonetic orthography, there is no difference between

using phoneme vs. grapheme-based inputs, which demonstrates that at least

in some languages, a pronunciation lexicon is not needed. In other cases,

techniques elaborated in prior chapters could be used to create the necessary

pronunciation lexicons.

Hyper-parameter Optimization: To tune our models we randomly sample 3

different numbers of pretraining updates, P, from the set {2000, 5000, 8000}

and 3 multi-task training ratios, ρ, from the set {0.1, 0.2, 0.5}. We selected the

parameters that performed best on the development set for each experiment.

For the monolingual French and Italian experiments, however, we simply used
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2000 pretraining batches (P = 2000) and 0.1 and 0.5 augmenting ratios (ρ = 0.1,

ρ = 0.5) for PSDA and MMDA respectively as we found these values worked

well for Portuguese and Catalan.

6.5 Results

Because we trained models on highly related romance languages, we suspect

there may be numerous errors at the word-level due to the model “spelling” a

cognate according to the writing conventions of a different romance language.

For this reason, it seemed more appropriate to report the character error rate

(CER). Table 6.1 shows the performance on the Catalan (cat), Portuguese (por),

and Italian (ita) test sets of monolingual and shallow fusion baselines compared

to MMDA, PSDA, and pretrained variants for improving the decoder model.

In column one we see the name of the technique. In the subsequent columns

we see the CER of the dev and eval sets in each of the three test languages.

First, comparing the rows labeled MMDA and LM corresponding to the

systems trained with MMDA and decoded without an external language model

vs. the shallow fusion baseline, which decodes the monolingual model using

and external LM trained on the same data as the MMDA system, we see that

MMDA outperforms shallow fusion. Comparing the rows labeled MMDA

and PSDA, we see that the proposed PSDA approach, however, does not

perform as well as MMDA. However, looking at the rows labeled MMDA + P

and PSDA + P, which correspond to the MMDA and PSDA techniques where
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the attention and decoder models are pretrained using the augmenting data,

we see a significant further improvement in CER, especially in Portuguese

(73.7 → 47.4 on dev) and Italian (27.9 → 23.9 on dev). We also see that the

best system for Catalan, where there was extremely limited training data, was

the PSDA+P system, while for Italian it was the MMDA+P. This corroborates

our intuition that PSDA should help more when fewer data are available, as it

allows for encoder pretraining, in addition to decoder pretraining, though its

utility may only be in extremely data constrained situations.

To try to determine if PSDA or MMDA is the better method in different

training data scenarios we also studied data augmentation on a single language

across various amounts of training data. To this end we created 4 smaller Italian

and French training sets by successively randomly removing half of the training

examples from the original 16 and 30 hour training sets respectively. We then

trained the baseline monolingual, MMDA+P, and PSDA+P systems on each

resulting dataset using the same network and training parameters as before. We

used the same hyperparameters as in the monolingual 4h Italian experiments.

The results of these systems are shown in Figure 6.2. The x-axis of Figure

6.2 shows the hours of transcribed speech used to traing baseline, MMDA+P

and PSDA+P systems. The y-axis shows the WER obtained by each of these

systems on the Italian (left), and French (right) dev and eval sets. As evident

from Figure 6.2, both MMDA+P and PSDA+P performed similarly to each

other across all training data sizes, except when training on just a few hours of
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speech. They both outperformed the baseline by a wide margin, with greater

improvements when data were more scarce.

Task
cat (0.5h)
dev, eval

por (3h)
dev, eval

ita (4h)
dev, eval

Monolingual 85.2, 82.3 76.9, 80.1 31.2, 31.4
LM 79.7, 76.9 77.6, 79.9 32.1, 32.1
MMDA 79.1, 76.5 73.7, 72.3 27.9, 28.2

PSDA 86.3, 81.4 80.0, 76.9 29.2, 29.4
MMDA + P 73.8, 75.3 55.4, 56.1 23.9, 24.1
PSDA + P 71.2, 72.2 47.4, 50.2 25.0, 26.0

Table 6.1: Summary of monolingual experiments. We see that our proposed pretrain-
ing (indicated with +P) improves performance dramatically. Both MMDA+P and
PSDA+P show strong and consistent improvement over Monolingual, LM and MMDA
baselines, reducing CER by 20% to 26%.

Task
CA (0.5h)
dev, eval

PT (3h)
dev, eval

IT (4h)
dev, eval

Monolingual 85.2, 82.3 76.9, 80.1 31.2, 31.4
LM 79.7, 76.9 77.6, 79.9 32.1, 32.1

MMDA + P 73.8, 75.3 55.4, 56.1 23.9, 24.1
PSDA + P 71.2, 72.2 47.4, 50.2 25.0, 26.0

ML 33.1, 37.2 34.5, 38.4 20.1, 21.0
ML+LM 31.1, 36.4 33.3, 37.7 18.7, 19.6

MMDA+P+ML+LM 34.2, 36.2 32.4, 35.9 17.2, 17.8
PSDA+P+ML+LM 34.9, 38.7 33.8, 35.3 17.1, 17.6

Table 6.2: Summary of multilingual experiments (indicated with ML). MMDA+P and
PSDA+P yield performance gains beyond multilingual training and RNNLM fusion
for both PT and IT.

Finally, we examine the extent to which training on data from other, albeit

related languages, affects ASR performance. Table 6.2 shows the results of these

experiments. First, we compare the performance of ML training to PSDA+P

training. We see that ML training helps significantly, bringing the CER down

from 85.2% on the Catalan dev set to 34.2%. However, training only with
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System WER Sentence
LM 74.9 QUESTE SEI VERSO NON NOSTRE

TORNATO I QUINDI NOSTRI PER SI
ERANO DI BANDERE A TUTTI

PSDA+P 70.1 QUESTE SE IL VESO NON MOSTRE
TORNATE QUINDI E VOSTRI PENSI
E NOI DI MANGEREMO A TUTTI

ML+LM 60.7 QUESTE SELVE SON A NOSTRE
TORNATE QUINDIE NOSTRI PAESI
E NOI DI MANGEREMO TUTTI

COMB 56.2 QUESTE SELVE SONO NOSTRE
TORNATE QUINDI E VOSTRI PESI
E NOI DI MANGEREMO TUTTI

Reference QUESTE SELVE SONO NOSTRE
TORNATE QUINDI AI VOSTRI PAESI
O NOI VI MANGEREMO TUTTI

Table 6.3: Example VoxForge Italian sentence (criptogenetico-criptogenetico-20081224-
jmd-it-0801) decoded using 4 ASR systems trained on 4h of speech. LM is the baseline
system decoding using langauge model shallow fusion. PSDA+P refers to PSDA with
pretraining. ML+LM is multilingual training and language model shallow fusion.
COMB uses all techniques above combined. The development set word-error-rate
(WER) of each model is shown. Results on the corresponding evaluation sets are
always 2-3% worse. Word errors are bold.
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Figure 6.2: CER of the baseline system, MMDA+P, and PSDA+P on the Voxforge
Italian and French Corpora across varying training set sizes

unpaired text using PSDA+P results in 50% as much improvement. Further-

more, the {MMDA,PSDA}+P+ML+LM systems were our best performing on

the evaluation set in every language tested. Using these techniques together

on only 1/4 of the full Italian training data (4 hours) gives performance similar

to the baseline model trained on the full data set (16 hours) (see Figure 6.2).

Since pretrained PSDA (PSDA+P) did not outperform pretrained MMDA

(MMDA+P) we conclude that most of the gain likely comes from pretraining the

decoder and attention parameters. However, since training on other languages

seems to help the encoder, we conclude that it is likely the synthetic data itself,

and not necessarily PSDA, which is of limited use for pretraining the encoder.

Finally Table 6.3 shows the WER of Italian ASR systems and a sample

decoded sentence. Appropriate pretraining of the encoder and decoder reduced

the WER by 20% absolute in the 4h Italian set, from 74.9% to 56.2%. This

performance has been shown to be usable for some downstream tasks such as

topic identification in low-resource settings [144].
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6.6 Conclusion

We demonstrated that through multilingual training, and pretraining of the

decoder and attention models via “back-translation” from large amounts of

text, we are able to significantly improve the performance of encoder-decoder

models in low-resource scenarios.

However, compared to the hybrid modeling approach explored in previous

sections, the method is lacking in multiple regards.

1. We did not report direct transfer of these models to unrelated or unat-

tested languages because the performance is so poor that even on datasets

from a corpus such as Voxforge, which is a substantially “easier” task

than the BABEL datasets, we get close to or exceeding 100% WER. The

dataset is easier due to how the data is constructed. For instance, the

test sets contain speaker overlap, and the audio is clean, wide-band,

well-segmented, clearly spoken, read speech, which is significantly easier

to recognize than the noisy, conversational, narrow-band speech in the

BABEL corpus.

2. The language model used in decoding was significantly more powerful,

and trained on much larger amounts of text than are available in truly low-

resource languages, as well as larger than what we used in all previous

chapters. Even though we do not have to construct a pronunciation

lexicon, we did restrict the languages used in multilingual training to

154



share the same script, and be in the same language family, partially to

ensure that the model would not produce vastly wrong outputs.

In spite of these factors, the best word error rates using these models trained

on such small amounts of data are significantly worse than the simplest hybrid

model.

While this work demonstrated significant improvement of encoder-decoder

models in very-low-resource settings, it appears as though encoder-decoder

models perform worse than Hybrid models in these settings. Future work

should thus explore using encoders trained on much larger amounts of cross-

lingual speech in conjunction with the methods presented in this section for

pretraining the attention and decoder models for the target language.
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Chapter 7

Energy-based Models for

Unsupervised Acoustic Modeling

So far, we have addressed the development of ASR systems in a low-resource

(i.e. unattested) language by making using of transcribed speech in other

languages, text and lexical resources in the target unattested language, and in

some cases, a small amount of target language transcribed speech. A hitherto

untapped resource, which we address next, is untranscribed speech in the

target language.

Specifically, we aim to leverage language models, p (w), on outputs, w,

to guide training of ASR model parameters θ on untranscribed inputs, x, by

learning to match the data’s (empirical) marginal density p̃ (x), and the implicit

model marginal pθ (x) = ∑w pθ (x, w). In addition to a discriminative objective

used on labeled data, this additional marginal matching objective is used to
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update model parameters in semi-supervised training. Matching the implicit

marginal density is expected to help to learn the relationship pθ (x, w) using

only unpaired data. We model this generative objective using the framework

of energy-based models (EBMs) [145, 146]. Training is made feasible by sam-

pling from the learned marginal distribution via stochastic gradient Langevin

dynamics (SGLD) [147]. We also demonstrate how to formulate unsupervised

training of models for structured prediction in these terms.

While the techniques we develop here are applicable to any structured

prediction problem, we apply our proposed method to automatic speech recog-

nition (ASR). Since ASR requires working with very high dimensional features

and a combinatorially large output space, stable training and fast sampling via

SGLD are paramount. We describe three strategies that alleviated problems

with training stability while simultaneously reducing the otherwise computa-

tionally prohibitive number of SGLD steps needed for training energy-based

models. Note, however, that sine the techniques being explored are more

generally applicable than to ASR alone, Sections 7.2-7.4 have a markedly more

abstract tone than the rest of the dissertation. The focus returns to ASR in

Section 7.5.

7.1 Related Work

This work brings together progress in three research areas: semi-supervised

learning, energy-based modeling, and unsupervised sequence-level training
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objectives, specifically objectives that can leverage unpaired side information

to guide training.

Semi-supervised training of our models uses a hybrid discriminative/gen-

erative objective function. Lasserre, Bishop, and Minka [148] and Minka [149]

and Druck et al. [150] originally proposed using mixed training objectives for

semi-supervised learning. In ASR, prior approaches augment discriminative

training with maximum likelihood training of Gaussian models from labeled

[151], or unlabled data [152, 153]. Alternative approaches have explored using

only generative objectives [154, 155], or have focused on using generative ad-

versarial networks (GANs) [156] for semi-supervised learning [157, 158, 159,

160]. Extending GANs to work on sequence tasks as in [161] is challenging.

More recently, self-supervised representation learning such as word2vec [162],

and BERT [163], motivated other similar techniques such as contrastive pre-

dictive coding [164] and wav2vec [165], as well as research into application of

these methods to new domains [166, 167, 168].

Energy-based Models were recently shown to be effective generative mod-

els [169, 170]. Grathwohl et al. [170] and Song and Ou [171] proposed a

version of the hybrid discriminative/generative objective using energy based

models for the generative objective. Song and Ou [171] proposed training an

energy-based model and auxiliary generator network to handle sampling in

semi-supervised learning for object recognition. Grathwohl et al. [170] demon-

strated that common neural architectures could be trained as both classifiers
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and generators. Jin, Lazarow, and Tu [172], presented introspective convolu-

tional nets as a means of augmenting training with self generated examples.

Recent uses of energy-based models [170, 169, 173, 174] have relied on stochas-

tic gradient Langevin dynamics (SGLD) [147] for sampling from the generative

model. Our method similarly relies on SGLD for sampling, and we present

techniques for improving the stability of SGLD in section 7.4.

Unsupervised sequence-level objectives have not been extensively ex-

plored in prior work on energy-based models. LeCun et al. [146] detail how

most sequence discriminative objectives can be recast as energy-based models.

Recent work also proposed a variety of energy-based language models [175,

176, 177]. Some existing work has investigated leveraging output structure for

unsupervised learning, but none have done so using the framework of energy-

based models. Hsu, Zhang, and Glass [178] proposed a factorized hierarchical

variational auto-encoder to discover latent structure within speech signals.

More similar to our approach are [179, 180, 181] which propose different ways

of matching input and output statistics.

7.2 Model

Broadly, our approach relies on modeling the probability, pθ (x), of a sequence-

valued input x, as proportional to the sum of scores along all “paths” that

accept input x in the graph ϕ (x) ◦ G, which represents all possible “parses” of

the input, x, according to some “grammar”, G. Here, G is a weighted finite-state
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transducer (WFST), i.e., a weighted regular grammar. This sum is efficiently

computed using the forward algorithm in the log-semiring and is compactly

written as [[ϕ ◦ G]] (x).

We use a hybrid discriminative/generative training framework for semi-

supervised learning [149, 182, 150, 152, 153]. In this approach, labeled data are

used to update model parameters, θ, using a discriminative objective function

LD (θ) = Ep̃(x,w∗) [− log pθ (w∗|x)] and unlabeled data are used to update

model parameters using the generative objective LG (θ) = Ep̃(x) [− log pθ (x)].

The objectives are combined and weighted via scalars α, β to give the total

objective function

L (θ) = αLD (θ) + βLG (θ) . (7.1)

Training with (7.1) relies on using the same neural network for both the

generative and discriminative terms since, otherwise, the sets of parameters in

pθ (x) and pθ (w|x) would not interact. Grathwohl et al. [170] noted that many

generative training approaches use neural architectures that are not necessarily

well suited as classifiers. However, viewing neural classifiers as EBMs enables

generation with the same neural architectures that are used in discriminative

classification tasks. We extend this observation to sequence prediction tasks in

Section 7.3.1. Figure 7.1 depicts semi-supervised training of our model.
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w∗(0) : w∗(0)/ϕ
(0)
w∗(0) (x) w∗(1) : w∗(1)/ϕ

(1)
w∗(1) (x) w∗(2) : w∗(2)/ϕ

(2)
w∗(2) (x)

Eθ (x, w∗) = −[[ϕ ◦ Gw∗ ]] (x)

WFST G

Labeled x: − log p (w∗|x) = Eθ (x, w∗)− Eθ (x)
Unlabeled x: − log p (x) = Eθ (x)− log 1∫︁

x e−Eθ (x)dx

t = 0

t = 1

t = 2

Wide ResNet ϕ ( · ; θ) Eθ (x) = −[[ϕ ◦ G]] (x)

Figure 7.1: Semi-supervised training with energy-based models. We use labeled data
to minimize a discriminative objective Ep(x,w∗) [− log p (w∗|x)]. Unlabeled data are
used to update the unsupervised objective Epθ(x) [− log p (x)]. The energy, E (x) =
−[[ϕ ◦ G]] is the negated forward score through the graph G in the log-semiring. In
our experiments ϕ ( · ; θ) is a Wide Residual Network [75].

7.3 Energy-based Models

Energy-based models (EBMs) [145], have experienced a renaissance in the

computer vision community. Recently Du and Mordatch [169] demonstrated

that energy-based models could be successfully used for image generation,

and Jin, Lazarow, and Tu [172] and Lee et al. [183] and Grathwohl et al. [170]

demonstrated how a standard neural classifier could be jointly trained to

simultaneously classify and generate images. In EBMs the density pθ (x) is

modeled as

pθ (x) =
e−Eθ(x)∫︁

x∈X e−Eθ(x)dx
. (7.2)
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Eθ (x) is called the energy, and is a scalar, integrable, score on inputs, x, modeled

or computed by a neural network, ϕ (·; θ) with parameters θ. The parameters,

θ of the network are trained by

arg min
θ

Ep̃(x) [− log pθ (x)] = arg min
θ

DKL ( p̃ (x) ||pθ (x)) (7.3)

and in minibatch training, a fixed sample size N, is used to approximate this

expectation, i.e., Ep̃(x) [− log pθ (x)] ≃ − 1
N ∑N−1

i=0 log pθ (xi).

7.3.1 Structured Prediction as Energy-based Modeling

A number of training objectives used in structured prediction, such as connectionist-

temporal classification (CTC), (lattice-free) maximum mutual information

(MMI), conditional random fields, and (state-level) minimum Bayes risk (sMBR)

are easily re-interpreted as energy-based models. They generally decompose

the posterior density via Bayes rule

pθ (w∗|x) = pθ (x|w∗) p (w∗)

∑w pθ (x|w) p (w)
. (7.4)

This factorization allows for incorporating more unpaired output data, w via

p (w) to learn better posterior densities. Expressing this factorization instead

as a Boltzman distribution enables replacement of the properly normalized

log-likelihoods log pθ (x|w) with un-normalized conditional scores fθ (x, w∗),

as defined for LF-MMI in Section 3.1.3 for pairs (x, w∗). When using a deep
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neural network, ϕ, with parameters θ to produce these scores, the posterior

probability becomes

pθ (w∗|x) = exp [ fθ (x, w∗) + log p (w∗)]

∑w exp [ fθ (x, w) + log p (w)]
.

Note that in this formulation we do not use a Softmax layer at the output of

the network. We want to directly model the un-normalized conditional scores

f (x, w). By modeling p (w) with a WFST, dynamic programming enables the

tractable marginalization over all sequences w. As in previous sections we

model p (w) with a WFST, G, representing an n-gram language model.

Structured prediction often deals with problems characterized by uncer-

tainty in the output labels, or for which an input can be associated with multiple

valid outputs. For instance in speech recognition a transcript can correspond to

multiple valid alignments. These situations are gracefully handled by marginal-

izing over all possible, or valid output sequences. Formally, we express this set

as W = {w | g−1 (w) = x}, where g (x) is the 1-to-many map relating inputs

and outputs.

The set W can also be represented using a WFST, GW , that accepts only

sequences w ∈ W . GW is simply a subgraph of G. Marginalization is again

handled by the forward algorithm. The Boltzman distribution can therefore be
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expressed in terms of these two WFSTs as

p (W|x) = exp ([[ϕ ◦ GW ]] (x)− [[ϕ ◦ G]] (x)) . (7.5)

Appropriately choosing G results in many widely used sequence training

criteria!

• CTC corresponds to when G is formed by concatenating the hidden

Markov models (HMM) of each grapheme in the correct output string.

The HMMs used in CTC have uniform state transition probabilities and

class priors.

• LF-MMI uses a 1 or 2-state HMM topology for each modeled unit, with

state transitions weighted by a 4-gram phoneme-level language model.

In this way many sequence-level training objectives can be viewed as energy-

based models where the energy of a configuration (x,W) is

E (x,W) = −[[ϕ ◦ GW ]] (x) . (7.6)

In this case, the term [[ϕ ◦ G]] (x) is a normalizing constant representing the

energy of all possible configurations.
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7.3.2 Marginal Matching with energy-based Models

We use energy-based models to enable marginal likelihood matching. Energy-

based models of the marginal data distribution can be trained using the objec-

tive function in (7.3). We demonstrate that learning the relationship between

structured inputs and outputs, even when we only have access to unpaired

data, can be similarly trained. The marginal matching problem can be stated as

the minimization of the KL-divergence,

DKL

(︄
p̃ (x) ||∑

w
pθ (x, w)

)︄
, (7.7)

between the empirical data distribution, p̃ (x), and the implicit marginal distribu-

tion of the model p (x, w). This is an attractive approach since we can efficiently

marginalize over all output sequences, w thanks to dynamic programming.

We can interpret the objective function above for training a model, pθ (x, w),

as learning a joint likelihood such that the empirical marginal of structured

inputs p̃ (x) is compatible with a prior p (w) over structure outputs, which is

used to compute pθ (x). We can model the implicit marginal distribution with

a neural network using energy-based models, in which we replace the factored

joint distribution with a factored energy-based model, i.e.,
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∑
w

pθ (x, w) =
∑w exp [ϕ (x|w; θ) + log p (w)]∫︁

x ∑w′ exp [ϕ (x|w′; θ) + log p (w′)] dx
(7.8)

=
exp ([[ϕ ◦ G]] (x))∫︁

x exp ([[ϕ ◦ G]] (x)) dx
(7.9)

The problem of matching the empirical and implicit marginal data likelihoods

is therefore reduced to training an energy-based model, where the energy is

defined as

E (x) = −[[Φ ◦ G]] (x) . (7.10)

Hence, energy-based models, defined as above, enable unsupervised training

for prediction problems whose structure can be represented by graph G. This

training method enables sharing of model parameters for both the discrimina-

tive and generative parts of the semi-supervised training objective.

7.4 Gradient-Based Training via Stochastic Gradi-

ent Langevin Dynamics

The objective function in (7.3) is an expectation w.r.t. the empirical distribution

p̃ (x). However, its gradient entails computing an expectation w.r.t the current

model distribution pθ (x). The former is computationally tractable while the

latter is generally intractable.

Du and Mordatch [169] and Grathwohl et al. [170], propose approximating
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the expectation w.r.t pθ (x) by sampling using Stochastic Gradient Langevin

Dynamics (SGLD) [147]. The main idea behind SGLD is to generate low-energy

data points according to the current model via stochastic gradient descent

steps, and to add Gaussian noise to these estimates. If the variance of the noise

added at each step is proportional to the learning rate, then the Gaussian noise

will eventually dominate the minibatch noise. A single step of the sampling

procedure may be described as

x0 ∼ p0 (x) , (7.11)

ϵi ∼ N (0, α) , (7.12)

xi+1 = xi −
α

2
∂Eθ (xi)

∂xi
+ ϵi. (7.13)

In practice there are no restrictions placed on the distribution p0 (x). Du

and Mordatch [169] and Grathwohl et al. [170] both propose using a “replay

buffer”, in which old samples are saved. New samples x0 are drawn 95% of

the time from the replay buffer, and otherwise from a uniform distribution

between -1, and 1. This mimics running more SGLD iterations by continuing

to optimize previous samples, and also increases sample diversity.

To speed up SGLD-based sampling, Du and Mordatch [169], Nijkamp

et al. [174], and Grathwohl et al. [170], use only a fixed number of SGLD

iterations (20-50) with fixed variance Langevin noise instead of running SGLD
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to convergence and scaling the variance of the Langevin noise by the learning

rate. Nijkamp et al. [174] demonstrated that while short-run SGLD from

uniform randomly initialized samples does not converge to the empirical data

distribution p (x), it does converge to a different function q (x) that is optimal

in a moment-matching sense.

7.4.1 Improved Stability and Speed of SGLD

Nijkamp et al. [173] also noted that in short-run MCMC stable training occurs

when the difference between the ground-truth and sampled data energies,

Ê and Eθ (x) respectively, oscillates around 0. We treat this observation as

a necessary condition for stable training. We modify the SGLD updates to

perform only as many steps as needed to make the average difference of

energies approximately 0. Since we are no longer aiming to minimize the

energy on each minibatch iteration, we can use line-search to chose an “optimal”

learning rate, ∆ at each SGLD iteration as

∆ =
Eθ (x)−

(︁
Ê − δ

)︁
∥∇xEθ (x)∥2 + ϵ0

, (7.14)

= where δ is a small value added to Ê to encourage updates of Eθ (x) to slightly

overshoot Ê instead of stalling when Eθ (x) approaches Ê and ϵ0 is a small

number (5e-05 in our experiments) to prevent the step size from exploding

when the gradient norms are small. Since the energies can span many orders

of magnitude, we define δ = δ0|Ê|, where δ0 = 0.05.
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We also noticed empirically that later in training, when using a replay buffer,

large step sizes caused a dramatic increase in Eθ (x) on the first SGLD iteration.

We hypothesize that this is because many generated samples in the replay

buffer already have low energy and the large step-size kicks these samples out

of their respective local minima. Using a smaller step-size, however, slows

down training. For this reason, we store in the replay buffer, along with the

generated samples, the number, n, of SLGD steps that have been performed on

each sample. We decay the learning rate used to update samples as n−η , where

η determines the rate of decay. In our experiments we use η = 0.5. Without the

modifications above, SGLD sampling was prohibitively slow and unstable in

our experiments.

7.5 Experiments

We test our semi-supervised training, including on two different ASR datasets.

We first test on Librispeech [87], a high-resource corpus, consisting of cleanly

recorded, read speech, much of which we can treat as unlabeled data. We

then train our model on the BABEL Georgian corpus [184], a low-resource

corpus which consists of a limited amount of noisy, conversational speech. On

Librispeech we also examine the effect that our SGLD modifications had on

the number of SGLD steps needed per iteration of training.

We train Wide Residual Networks as described in chapter 3, except for on

80-dimensional filter-bank features instead of 64 dimensional features. We
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use the Adam optimizer [76] with a learning rate of r = 0.001. We use 1000

warmup steps and then decay the learning rate exponentially as re−.00001 n.

Our mini-batch size is 32.

For Librispeech we use the dev_clean dataset to tune the number of train

epochs, An epoch in our setup is 250 minibatch updates. In our case we save

decode the Librispeech dev_clean dataset after every 10 epochs of training.

We stop training when 2 consecutive runs of decoding result in increasingly

degraded performance in terms of WER. We then average models from the last

k epochs of training. Averaging the last 100 epochs works well.

To train the generative objective, we define G to be the denominator graph

used in LF-MMI. Since the forward and backward passes on graph G in the

LF-MMI computation depend on the length of the training example, using long

chunks can significantly increase the training time. For this reasons we train

using 20-frame chunks of speech for the unlabeled data. On the labeled data

we use 140-frame chunks.

7.5.1 Librispeech

We first demonstrate competitive performance of our approach compared to

other recent semi- and self-supervised approaches on Librispeech. We train our

model on the 10h training subset from the LIBRILIGHT corpus [185], and use the

remaining 950h of the original 960h training set as unlabeled data, following

[166, 185]. We report performance on the dev_clean, dev_other, test_clean, and
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test_other datasets from Librispeech.

To verify that the generative objective was successfully trained, we also

generate samples of speech. Specifically, we generate chunks of speech by

sampling from pθ (x) via SGLD. We sort the generated examples according to

f (x, w) for 2 different phoneme sequences, {/IY/, /IY/, /IY/, /IY/, /IY/},

{/AA/, /AA/, /AA/, /AA/, /AA/}. Since this sum is an un-normalized ap-

proximation of log p (x|w), this procedure is similar to sampling from p (x|w).

Figure 7.3 shows that the model produced realistic looking spectrogramsthat

maintain each phoneme’s defining characteristics. Table 7.1 shows results of

our semi-supervised method on the Librispeech dev_clean dev_other test_clean

and test_other sets.

First we note, that our baseline system is incredibly competitive. Its perfor-

mance on on 10 hours of transcribed speech vastly outperforms fine-tuning

with 10 hours of transcribed speech of the self-supervised baseline present-

ing in [185], and performs comparably to the best performing self-supervised

model trained on filterbank features in [166]. Furthermore, when using the

850h of untranscribed speech using our approach, we see consist improvement

in WER across all four evaluation sets. This small, but consistent improvement,

outperforms the other self-supervised pretraining methods from filterbank

features.

However, the self-supervised pretraining method using vector-quantized

(vq-wav2vec) features, the predecessor to wav2vec2.0, significantly outper-
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Figure 7.2: Behavior of SGLD with the techniques discussed in section 7.4. When using
50 SGLD iterations per minibatch, we observed training instability around epoch 80
(iteration 20,000).

forms all other methods. Our method could be used in conjunction with such

techniques, but we leave this for future work.

We now examine the effect of our SGLD modifications in this setup. Figure

7.2 shows the number of SGLD updates needed per minibatch update when

training on the 10 hours of labeled Librispeech and 850 hours of unlabeled

Librispeech data. The red line shows the minimum fixed number of SGLD

steps per minibatch update, using the method implemented in [170], needed to

succesfully train a model to convergence. However, depending on the random

seed used for training, even this fixed number of steps often resulted in training

instability after about 20,000 minibatch updates.

First, we note that while using our method for SGLD we occasionally still

observed training instability, it occurred much less frequently. Furthermore,

we see that at the beginning of training, our SGLD modifications require many

fewer SGLD updates. This significantly decreases training time. As training

progresses and it become more difficult to generate realistic chunks of speech,

we require more SGLD updates.
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Figure 7.3: The top-10 examples of phonemes /IY/ and /AA/ sampled from pθ (x).
The generated examples on the left are contrasted with a real sample of speech corre-
sponding to the same phoneme on the right. In the first row note the high and low
frequency formants that characterize the /IY/ sound. Note the high-energy middle
frequencies that characterize the /AA/ sound.

feat. type dev_clean dev_other test_clean test_other

10h [185] fbank 30.0 55.8 29.3 56.6
10h [166] fbank 9.8 25.7 10.1 26.6

10h sup fbank 9.9 26.1 10.2 27.1
10h sup + 950h unsup fbank 8.9 23.8 9.2 24.8

10h [166] vq-wav2vec 5.3 13.2 5.9 14.1

Table 7.1: Semi-supervised training results (WER) of ASR models trained on the
LibriLight 10h training set. We compare to other published 10h systems. First, note that
our baseline systems are competitive with most of published semi-supervised results
in the 10h case. Our semi-supervised approach results in a 10% relative reduction in
word-error-rate (WER).

7.5.2 BABEL Georgian

We also investigate our approach in a low-resource ASR scenario. We use

a smaller Wide ResNet because there is less available untranscribed speech,

and because it helped experimental turn-around. We train our models on

the BABEL Georgian data [184], which has 2 different training subsets: the

limited language pack (LLP) has 10h of labeled speech; the full language pack
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(FLP) has 40h of labeled speech. There are approximately 90h of additional

untranscribed telephone speech. We use the same training configurations that

worked well on Librispeech for all experiments unless stated otherwise. We

train a “top-line” system on the 40 hours (FLP) training set, a baseline system

on the 10 hour (LLP) training set, and investigate two semi-supervised training

approaches:

• We train using the hybrid discriminative/generative loss, adding to the

LLP training set 90 hours worth of speech segments, including 30 hours

from the unused part of the FLP set, and 60 hours of speech segments

produced by running voice activity detection on the 90h of untranscribed

speech.

• We also investigate a pretraining-based approach in which librispeech

models, trained with and without the extra generative objective on un-

transcribed speech, are used as a starting point for training on the Geor-

gian LLP training set. We transfer the Librispeech models’ weights and

randomly re-initialize the last layer so that it has the correct number of

output classes. Since we are transferring models from Librispeech, which

were trained on 16kHz data, we also up-sample the BABEL data from

8kHz to 16kHz for all systems.

Table 7.2 shows the performance (WER), and word error recovery rate (WERR)

of models trained with these two semi-supervised training approaches on the

Georgian dev10h sets. The WERR of a system that has a particular word error
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rate rate, r, is defined as

WERR =
baseline − r

baseline − topline
, (7.15)

and measures how effectively a model with WER, r, was able to leverage

unlabeled speech, whose transcripts we have access to when training the

topline system, and which we do not use in the baseline system.

Table 7.2 shows two baseline systems (small, large) trained on the LLP train-

ing set, and two topline systems (small, large), trained on the FLP training set.

The topline systems show the expected performance if one gathered labels for

the unlabeled data. All models labeled “Large”, should be compared to other

models labeled “Large”, and models described as “Small” should be compared

to other models described as “Small”. The first column shows the architecture

(small, or large). The second column describes the data resources used in

model training. The third column shows the WER on the Georgian dev10h

dataset, and the fourth column shows the WERR achieved when comparing

the semi-supervised approaches to the appropriate small and large toplines

and baselines.

First, note the performance of the small semi-supervised model (Small

Semisup), which was trained using the hybrid discriminative/generative loss.

The model was trained on the LLP data as well as the unlabeled data described

in the experimental setup. This system outperforms the purely supervised

176



baseline, and recovers 16.3% of the topline (FLP) system WER.

Next we examine using our semi-supervised training to pretrain models.

We transfer two different (Large Pretrain) models. The first model is trained

using only 10 hours of transcribed speech from Librispeech, while second

model uses the hybrid discriminative/generative loss function, where 850

hours of the Librispeech training set form the untranscribed speech data.

Architecture Training Data WER WERR

Small Baseline
Large Baseline
Small Topline
Large Topline

LLP 58.2 0%
LLP 54.1 0%
FLP 49.6 100%
FLP 45.1 100%

Small Semisup LLP + Unsup 56.8 16.3%

Large Pretrain LLP + Pretrain 10h Libri 52.7 15.6%
LLP + Pretrain 10h Libri + 950h Libri Unsup 51.9 24.4%

Table 7.2: Results of semi-supervised training experiments on BABEL Georgian. We
compare the small model results and the large model results.

We find somewhat surprisingly that transferring the model initialized by

supervised pretraining on Librispeech does not improve performance. Only

transferring the model initialized by pretraining with the hybrid discrimina-

tive/generative objective improved over the baseline. This model recovered

24.4% of the topline WER. Although these improvements are small, they are

consistent for all models tested. We believe that training on significantly more

unlabeled data would further improve results.
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7.6 Conclusion

We proposed a new semi-supervised training methodology for structured

prediction and demonstrated small, but consistent improvement in ASR perfor-

mance on two data sets. Generative modeling for semi-supervised learning is

attractive for its many downstream benefits, including robustness to adversar-

ial attacks, better calibrated models, and possibly even speech generation and

recognition with a single model. We believe these are all fruitful directions for

future research. Although we improved SGLD speed and stability, the main

drawback of this method is the long training time. Future work should attempt

to find faster alternatives to SGLD for sampling.

178



Conclusion

In this dissertation, we explored zero-shot and almost zero-shot acoustic mod-

eling with the aim fast development of ASR systems in under-resourced lan-

guages. Specifically we focused on alternative lexical models and their impact

on acoustic model transfer.

Our first contribution was to demonstrate how to effectuate cross-lingual

acoustic model transfer without a pronunciation lexicon. To this end, we

studied lexical modeling techniques for cross-lingual acoustic model transfer,

including 2 novel techniques: the first was a cross-lingual lexical modeling

technique based on grapheme-to-phoneme conversion; the second method

focused on techniques for improving low-resource encoder-decoder models.

Furthermore, we extensively explored adaptation of ASR systems in low-

resource environments, and provided three alternate methods for adaptation

that work well in 3 different scenarios.

In the first scenario, we were interested in zero-shot acoustic model transfer.

We showed that the best models for cross-lingual acoustic model transfer used

a small number of units, as triphone units did not transfer well across language.
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We then showed that when small amounts of transcribed speech – on the order

of minutes – were available, fine-tuning the model with a larger number of

triphones worked the best. When hours of transcribed speech were available,

reconstructing the output layer using a mono-lingual phoneme set worked

best. In all cases we demonstrated that using extra text in the denominator

graph helped improve performance.

We then demonstrated empirically that ASR systems trained with graphemic

subword units do not transfer as well as systems trained using phonemic sub-

word units. Therefore, to support the fast creation of phonemic pronunciation

lexicons in new languages, we developed a fast submodular selection strategy

for lexicon creation. This selection strategy outperformed other cross-lingual

selection strategies. We also showed how this selection strategy could be used

to select optimal budget constrained sets of words for annotation by an expert.

Because alignment-free and lexicon-free models have become more popular,

our second contribution was to show how to improve sequence-to-sequence

ASR performance in very low resource languages. We showed how multilin-

gual training, and the addition of large text corpora could be used to mod-

ularize encoder-decoder models. Multilingual training, and pretraining via

“back-translation”, were used to train models with very small amounts of data

(only hours or minutes), and significantly improved performance compared to

a baseline model trained only on monolingual transcribed speech.

Finally, our last contribution was a novel, neural generative model for
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semi-supervised learning which allowed us to additionally make use of un-

transcribed speech in a new language. We believe that our energy-based

training procedure is a principled way of semi-supervised learning, which

has shown encouraging, but limited performance improvements, especially in

contrast with some less principled methods such as pseudo-labeling, which

lack some theoretical foundations, but have proven to be wildly successful.

Together, the techniques detailed in this dissertation enabled the use of

untranscribed target-language speech, cross-lingual transcribed speech, and

cross-lingual lexical resources to create ASR systems without needing a target

language pronunciation lexicon, and without requiring much, if any, target

language transcribed speech. We hope that this work has helped, and will

continue to help, advance the goal of creating a language-universal speech

recognition system capable of generalizing to unattested languages.

7.6.1 Future Work

An added benefit of energy-based models is their capacity for denoising, self-

adjusting of acoustic and language model weight in adverse environments,

the fact that the energy of a speech signal can be directly used as a measure of

certainty on novel data, and their potential use in detecting and recognizing

adversarial attacks. These aspects and additional uses of energy-based models

merit further investigation, as prior work has demonstrated their effectiveness

in these tasks on images [169, 170].
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Furthermore, while we only explored semi-supervised adaptation of pre-

trained models in this work, pretraining using extremely large amounts of

purely unlabeled data has recently produced models capable of incredible per-

formance using only small amounts of transcribed speech. The energy-based

objectives could similarly be used on unlabeled data, possibly in conjunction

with a model such as wav2vec[186].
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