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Abstract

Within this thesis, we aim at designing a loosely coupled holistic system for Spoken
Term Detection (STD) on heterogeneous German broadcast data in selected application
scenarios. Starting from STD on the 1-best output of a word-based speech recognizer,
we study the performance of several subword units for vocabulary independent STD
on a linguistically and acoustically challenging German corpus. We explore the typical
error sources in subword STD, and find that they differ from the error sources in word-
based speech search. We select, extend and combine a set of state-of-the-art methods
for error compensation in STD in order to explicitly merge the corresponding STD
error spaces through anchor-based approximate lattice retrieval. Novel methods for
STD result verification are proposed in order to increase retrieval precision by exploiting
external knowledge at search time. Error-compensating methods for STD typically suffer
from high response times on large scale databases, and we propose scalable approaches
suitable for large corpora. Highest STD accuracy is obtained by combining anchor-based
approximate retrieval from both syllable lattice ASR and syllabified word ASR into a
hybrid STD system, and pruning the result list using external knowledge with hybrid
contextual and anti-query verification.

Zusammenfassung

Die vorliegende Arbeit beschreibt ein lose gekoppeltes, ganzheitliches System zur Sprach-
suche auf heterogenenen deutschen Sprachdaten in unterschiedlichen Anwendungsszenar-
ien. Ausgehend von einer wortbasierten Sprachsuche auf dem Transkript eines aktuellen
Wort-Erkenners werden zunächst unterschiedliche Subwort-Einheiten für die vokabu-
larunabhängige Sprachsuche auf deutschen Daten untersucht. Auf dieser Basis wer-
den die typischen Fehlerquellen in der Subwort-basierten Sprachsuche analysiert. Diese
Fehlerquellen unterscheiden sich vom Fall der klassichen Suche im Worttranskript und
müssen explizit adressiert werden. Die explizite Kompensation der unterschiedlichen
Fehlerquellen erfolgt durch einen neuartigen hybriden Ansatz zur effizienten Anker-
basierten unscharfen Wortgraph-Suche. Darüber hinaus werden neuartige Methoden
zur Verifikation von Suchergebnissen vorgestellt, die zur Suchzeit verfügbares externes
Wissen einbeziehen. Alle vorgestellten Verfahren werden auf einem umfangreichen Satz
von deutschen Fernsehdaten mit Fokus auf ausgewählte, repräsentative Einsatzszenarien
evaluiert. Da Methoden zur Fehlerkompensation in der Sprachsuchforschung typischer-
weise zu hohen Laufzeiten bei der Suche in großen Archiven führen, werden insbesondere
auch Szenarien mit sehr großen Datenmengen betrachtet. Die höchste Suchleistung für
Archive mittlerer Größe wird durch eine unscharfe und Anker-basierte Suche auf einem
hybriden Index aus Silben-Wortgraphen und silbifizierter Wort-Erkennung erreicht, bei
der die Suchergebnisse mit hybrider Verifikation bereinigt werden.
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1. Introduction

1.1. Holistic Spoken Term Detection

Today, more new data is uploaded to YouTube in a minute than a single user can watch

in two whole days [84]. A German household can choose from over 20,000 hours per day

via digital satellite TV [100]. By 2015, it will take five years to watch all video data that

crosses global networks in a single second [18]. Only a fraction of this data deluge that

floods through our digital age is preserved and stored in audiovisual archives, nevertheless

their size is exploding. For example, the French national audiovisual archive adds over

500,000 hours of TV and radio recordings to their archives every single year [49].

Considering the sheer scale of available data and the fact that it’s largely unannotated,

there is little need for further motivation of research in multimedia search, and it is clear

that speech is a major source of information when searching in such large corpora [24].

Consider the scenario of a large broadcast archive, where the archivist wants to find

statements on regulations of the financial system. A politician might comment on the

topic in a discussion show on the financial crisis in general. Even if manual resources

would be committed for annotating the discussion show with manually selected keywords,

it is uncertain whether this particular statement would be reflected in the annotation.

However, searching the speech track will unlock the archive and enable the archivist to

find the item he is looking for.

Ad-hoc search in the speech track of audiovisual data for the occurrence of a written

query is typically referred to as Spoken Term Detection (STD) in the literature. A key

aspect of STD systems is their vocabulary independence, i.e., the set of possible queries

is not known in advance. Therefore, typical STD approaches go beyond the application

of classic word-based speech recognition, and exploit a wide range of techniques for

increasing the STD accuracy on arbitrary queries.

Applications scenarios for STD include many interesting use cases, from searching

large media archives to monitoring of radio and TV streams. At Fraunhofer IAIS,

we are particularly interested in the task of STD on heterogeneous German broadcast

data. We found that many interesting applications can be built on top of the core STD

1



1. Introduction

technology in this data domain, and that interest from the owners of large media archives

in unlocking their content is high [30, 28, 29].

End user expectations for such STD systems on large data sets are challenging, since

they have been ’trained’ by the daily use of Internet search engines. They expect that a

result from a search engine actually contains an occurrence of the query, and that they

will be able to find all documents where a query occurs. Furthermore, users will expect

the same behavior across application domains on all types of data, e.g., from searching

Wikipedia to spontaneous chat messages. And finally, every day we experience that

web search engines deliver results for a search on the whole Internet within milliseconds.

Why should searching a video archive take longer?

Considering the state of the art in STD research as summarized in chapter 2.3, we

observe that current systems are far from fulfilling the expectations of the users: no

approach yields highly precise and complete results across application domains, with

reasonable efficiency on large data sets. Moreover, while STD research has received

much attention recently, only little work has been published on the specific requirements

for STD on German data [60].

Looking at the variety of application scenarios, we found the following challenges that

prevented us from successfully deploying German STD in our projects:

• The actual requirements for STD systems in the various scenarios are not well

defined, hence it is difficult to asses whether a certain approach is suitable for a

given task.

• There is a lack of evaluation resources for German STD, so even if we had the

perfect system, we could not measure its performance.

• It is unclear how recent approaches to STD perform on German, and how specific

German language characteristics (such as inflections or compounding) impact the

STD performance.

• There is only little interest in efficient approaches which scale beyond the research

laboratory.

• There is a lack of flexibility in the current state of the art, since approaches are

typically tailored towards a specific application scenario.

Within the scope of this thesis, we will approach these challenges with the aim of

building an accurate and efficient system for German Spoken Term Detection that can

be flexibly tailored towards a specific scenario. We envisage a holistic approach to
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Spoken Term Detection, with loosely coupled components that can be flexibly assembled

to meet the accuracy and efficiency requirements of a given application scenario. We

aim at integrating these individual components into a holistic STD system suitable

for heterogeneous German broadcast data. Figure 1.1 illustrates the architecture of

the holistic STD system described within this thesis, and indicates the major design

decisions that can be taken when targeting a new scenario.

Indexing

Automatic Speech Recognition (ASR)Automatic Speech Recognition (ASR)

Retrieval

Hybrid ErrorHybrid Error-Tolerant Search

Hybrid Hybrid Result Verification

Pruned STD Results

Use Word ASR
Use Subword ASR
Index Lattice instead of 1-Best

Hybrid ASR Index 

Use Approximate Search on 1-Best / Lattice
Use Scenario-Dependent Anchor Filtering

Use Contextual Verification
Use Anti-Query Verification

Figure 1.1.: Holistic Spoken Term Detection - system overview.

The individual components of our holistic system will be described and evaluated in

the remainder of this thesis. In the following, we will specify the related scientific goals

in more detail.

1.2. Scientific Goals

Our vision is to design and implement a holistic system for German Spoken Term De-

tection, which allows for error-tolerant and vocabulary independent speech search on

large archives with heterogeneous data. This broad vision can be subdivided into a set
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of individual scientific goals as follows:

• Specification of user requirements for Spoken Term Detection. Often-

times, techniques proposed in STD research provide only punctual solutions aiming

at specific application scenarios. However, indexing and retrieval requirements vary

substantially between STD use cases. Based on well-defined use cases, we specify

a set of requirements for Spoken Term Detection systems for selected scenarios.

The requirements are based on an extensive collaboration with actual broadcast

archives, which we have established over a range of joint projects [28, 30, 29, 2].

• Design of an evaluation corpus for STD on heterogeneous German broad-

cast data. To date, no standard evaluation corpus exists for evaluating German

STD on broadcast data. This is a major obstacle which effectively hinders progress

on German STD research. Hence, our aim is to design and develop a large scale

evaluation corpus for German STD. The design will follow the characteristics of the

successful and widely accepted NIST STD Evaluation corpus [82], which is used

for STD research on English, Mandarin Chinese and Arabic throughout the STD

research community. The corpus will not only contain the acoustic data and the

reference transcriptions, but also a set of evaluation queries and the correspond-

ing metric that can be used for assessing the quality of an STD run. Instead of

purely automatic query selection as in the NIST corpus, we would like to enhance

the query evaluation set with queries generated by humans, such that the evalua-

tion data becomes even more realistic. Details on our novel corpus can be found

in [6], and we have published a cross-site comparative study on the corresponding

evaluation metrics in [80].

• Design and implementation of a state-of-the-art word-based STD base-

line for heterogeneous German broadcast data. We will build a large vocab-

ulary continuous speech recognizer as the baseline for subsequent STD experiments.

The system architecture will be selected according to state-of-the art approaches

to ASR, and language resources such as acoustic models, language models and pro-

nunciation lexicon will be built to match with the characteristics of the selected

application scenarios. The output of the system will be used for word-based STD,

hence, we aim at a low OOV rate in the selected use cases and configure the system

accordingly. A description of the system was recently published in [94].

• Investigation of subword units suitable for German subword indexing.

Subword ASR has been proven to be a promising approach to vocabulary inde-
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pendent STD in many scenarios and languages, however, only little work has been

carried out on vocabulary independent STD on German data. Within this thesis,

we will investigate the baseline STD performance of selected subword units par-

ticularly suited for the German language. Moreover, we will explicitly address the

difference between recognition and retrieval unit, and investigate possible gains

and drawbacks obtained from breaking down decoding units to smaller retrieval

units. Our investigations in this chapter are based on our contribution in [96].

• Investigation of new approaches for error-tolerant subword speech re-

trieval. Error compensation plays an important role for effective subword re-

trieval, especially in complex acoustic and linguistic conditions where exact sub-

word match yields only low search recall. Yet to date, there is no explicit analysis

of the sources that lead to errors in subword STD. Within the scope of this the-

ses, we will analyze the subword STD error space, and identify the major STD

error sources. Based on this analysis, we will select and enhance state-of-the-art

techniques for error compensation, and propose a novel hybrid approximate lattice

retrieval approach, which effectively merges the error spaces, thereby increasing

STD accuracy. Our results on error compensation in German STD have been

published in [77] and [78].

• Exploiting external knowledge for result verification at search time. Ap-

plying methods for error compensation typically results in lower search precision.

We investigate new approaches for verifying approximate STD results, where we

aim to increase precision while preserving the recall gains obtained from the error

compensation. Therefore, we introduce the concept of exploiting external knowl-

edge about a specific query at search time in order to verify a putative STD result.

We propose two methods which implement this paradigm: contextual verification

and anti-query verification. We have first published preliminary results in [95], and

provide a comprehensive investigation within the scope of this thesis.

• Design of scalable algorithms for error-tolerant speech search on large

corpora. Search efficiency has not been in the focus of the STD research commu-

nity so far, and query response time is not an issue for exact word search based

on LVCSR. However, many of the proposed techniques for error compensation of

subword errors suffer from high time complexity. We aim at designing retrieval

approaches which allow for error compensation in a large scale subword search

task, and which can be flexibly adjusted to the considered application scenarios.
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• Best practices for selected STD scenarios. Based on our investigations into

flexible and scalable STD, we will propose best practices for selected representative

STD application scenarios. We will study the practical impact of merging actual

word- and subword-based systems in to a hybrid STD approach, and investigate

whether the additional burden of a second decoding subsystem pays off in terms

of STD accuracy. Optimal search configurations will be given, which yield the

highest STD accuracy while staying within the efficiency constraints of a specific

scenario.

1.3. Structure of the Thesis

Following the scientific goals described above, the thesis at hand is structured as fol-

lows. In chapter 2, we first give an exact definition of the STD task. We describe the

related state of the art in Spoken Term Detection, and identify limitations that will be

investigated in the remainder of the thesis. We describe major STD scenarios in the

field of media archive search and media monitoring, and derive requirements for actual

deployed STD systems. Finally, the chapter presents our evaluation methodology for

assessing the performance of a specific STD approach, including a novel STD evaluation

corpus which we have presented in [6].

Each of the following chapters on vocabulary independent STD, error compensation

and verification has the same structure: First, we point out our main own contributions.

Then, the considered approaches are described in detail, followed by a comprehensive

evaluation. Each chapter concludes with a summary that contains the main results

and implications. Chapter 3 describes our baseline system for vocabulary independent

Spoken Term Detection, which we have first presented in [96]. The following chapter 4

investigates error compensation for Spoken Term Detection, and introduces our hybrid

to approximate lattice search based on our contributions in [77] and [78]. In chapter 5,

we propose a novel approach for exploiting external knowledge for verification at query

time, which was first published in [95].

Then, chapter 6 investigates the scalability of the approaches which we have studied

above. We analyze the baseline efficiency of the most promising configurations, and

propose optimizations that enable STD for a range of interesting scenarios. Finally,

chapter 7.2 discusses the possible gain of hybrid word-subword STD systems in actual

deployed systems, and provides best practices for STD in selected application scenarios.

We conclude the thesis with a summary of our main contributions in the field of Spoken

Term Detection, and close with a set of possible directions for future research.
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We start with a formal description of the Spoken Term Detection task, and illustrate the

goals and characteristics of the corresponding NIST evaluation. Current state-of-the-art

approaches to STD are presented, and related to the scope of the thesis at hand. We

identify a set of limitations in the current state of STD research, and describe gaps that

will be bridged within the scope of this thesis.

Next, we present a set of STD application scenarios which are motivated by actual

project contexts at Fraunhofer IAIS in the field of large scale media analysis [28, 30, 29],

and derive a set of system requirements.

In section 2.4.2, we introduce the experimental setup for evaluating the proposed Spo-

ken Term Detection approaches. A new corpus for ASR and STD evaluation on German

data is presented, which we have published in [6] (and with a focus on STD in [94]).

Finally, we describe a set of metrics for quantitative evaluation which are commonly

used in the STD community. These metrics will then be used on the presented corpus

in the following chapters for quantitative evaluation of STD vocabulary independence

(chapter 3), STD error compensation (chapter 4), STD result verification (chapter 5)

and STD scalability (chapter 6).

2.1. The Spoken Term Detection Task

The notion of Spoken Term Detection (STD) was coined by NIST in 2006 in the scope

of the NIST STD evaluation campaign. According to NIST, STD focuses on ”technolo-

gies that search vast, heterogeneous audio archives for occurrences of spoken terms”1.

It contrasts to classic keyword spotting techniques like [116], as it is by definition an

open-vocabulary task, i.e., the query terms are not known at indexing time. Vocabu-

lary independence is a major requirement for many interesting applications, and it is

especially useful in large corpora with heterogeneous content.

The STD task is formally defined as follows. Assume that a corpus C and a query set

Q is given. The corpus consists of n audiovisual documents d

1http://www.itl.nist.gov/iad/mig//tests/std/
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C = {d1, . . . , dn} (2.1)

and the query set Q contains r queries q:

Q = {q1, . . . , qr} (2.2)

where a query qi consists of a sequence of im words wi1 . . . wim . The goal of the STD

task is to identify all occurrences o(qi) of each query qi in the corpus. Such an occurrence

hypothesis detected by the system is a tuple of the form

o(qi) = (s, ts, te, c) (2.3)

where s is the document which contains the hypothesized hit at starting time ts and

end time te with a confidence of c. The STD confidence is the final confidence score

produced by the system, and it is required that c ∈ [0, 1]. Typically, retrieval behavior

is evaluated at different levels of confidence (e.g., using receiver operating characteristics

(ROC) curves). It is left to the implementing STD system which mechanism is actually

used for estimating the confidences, i.e., they must not necessarily come exclusively from

the ASR decoder.

A full STD result is then a tuple (R, T ), where

R =
r⋃
i=1

{o(qi)|o is a hit hypothesis for qi} (2.4)

is the set of result hypotheses and T is the runtime of the retrieval run for all r queries.

Efficiency is an important aspect for the practical applicability of STD approaches: in

some use cases, retrieval is required to produce useful results on very large corpora with

only small response times (see section 2.2 on STD requirements and use cases).

We note that STD is a technology situated on top of the ASR process. It searches for

occurrences of spoken words regardless of the document or corpus context in which the

words are spoken. The technical characteristics of the STD task description contrasts

to what is typically understood by the term Spoken Document Retrieval (SDR), which

aims at producing a relevant spoken document for a given information need expressed by

a user. One could rather think of STD as an auxiliary process, which provides input for

the actual SDR system. An example run including STD and SDR could be illustrated

as follows:

• The user expresses his information need, e.g., he wants to find videos about a
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certain event.

• The SDR component expands the information need to a set of keywords which are

typically spoken in videos about the event.

• The STD subsystem generates a set of hypotheses for the generated keywords.

• The SDR system integrates the information obtained from the STD system, e.g., by

obtaining a relevance score for a document from the set of keywords hypothesized

within this document.

This is a simple example for the possible interaction between STD and classic infor-

mation retrieval techniques, which should clarify the typical auxiliary role of STD in a

larger retrieval system. In this thesis, we limit our investigations to the actual STD task.

2.2. Application Scenarios and Requirements

Possible application scenarios for STD are numerous, and range from document retrieval

in large audiovisual archives to continuous media monitoring of complex TV and radio

data. In this section, we shortly review two representative use cases and describe possible

general requirements for an STD system. Finally, we match these requirements to the

described scenarios.

Scenario: Media archive search. Professional media archives can be quite large in

terms of the amount of audiovisual data that is stored. For example, every day, the

French national audiovisual archive (INA) stores over 1350 hours of data from a range

of TV and radio stations [49]. It is obvious that such large amounts of audiovisual

material cannot be annotated manually. In a joint experiment with archivists from a

large broadcaster, the authors in [61] have found that Spoken Term Detection is a viable

means for retrieving documents from a radio archive, and that it can successfully be

embedded in the everyday workflow of the archivists.

There is a wide range of different archives, both in terms of type of content and size

of content that is stored in archive. The type can range from professionally recorded

content in archives of professional broadcasters to arbitrary user generated content in

Internet video portals. The same is true for the size of the archive, which can range

from a few hundred hours in a program-specific archive to millions of hours in large-

scale professional TV and radio archives as in the case of INA. However, in most cases,

the actual STD run will not be carried out on the complete large archive, as existing
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formal metadata can be used to restrict the search to a reasonable sub-corpus (e.g.,

search only within a relevant time period or on relevant broadcasting stations).

Since 2007, we have worked with a wide range of different institutions that have access

to small, medium and large-scale media archives. From 2007-2010, we contributed STD

technology to the VITALAS project (Video & image Indexing and reTrievAl in the LArge

Scale), a FP6-EU Project with the participation of l’Institut National de l’Audiovisuel

(INA) and Institut für Rundfunktechnik (IRT) as end user partners. Within this project,

we obtained requirements for large scale Spoken Term Detection on a large scale evalu-

ation corpus of 10,000 hours of video data [2], and received direct feedback on our work

from actual archivists.

Our approaches were partly deployed in several commercial contexts, where we could

further refine the set of typical requirements given below. In 2009, our Spoken Term

Detection system was used by the first German broadcaster ARD to search political

speeches from the ARD archive during the German national election campaign ([28], see

figure 2.1). In 2010, we deployed a speech search system for the archive of popular science

show Galileo broadcasted by a commercial German TV station ([29], see figure 2.2).

From 2010 to 2011, we built a Spoken Term Detection system at the ARD Mediathek,

which enables end users to search in the transcripts of clips and allows for cross-linking of

video citations with social networks ([30], see figure 2.3). This system was also selected

for demonstration at the IEEE ASRU workshop on Automatic Speech Recognition and

Understanding [97].

Scenario: Media monitoring. Another very interesting application of STD is continu-

ous monitoring of TV and radio channels. For example, this could be used by companies

to analyze the media coverage of their products. Here, the STD system must detect a

set of specified keywords in the speech track of selected TV and radio programs. Such

a monitoring system has the following key characteristics: First, we know that the set

of keywords is known at indexing time, and can be automatically searched in the ASR

output. However, the set of keywords can change at any time during the lifetime of the

system (e.g., if the name of a new product must be detected). The retrieval latency must

be low, i.e., if a spoken word was broadcasted at time t, the system must detect this

occurrence within a small time period δ of a few minutes, such that it is reported no later

than t+δ. Hence, the automatic speech recognition must continuously produce word-by-
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Figure 2.1.: Screenshot from ARD Web-Duell (2009), using Spoken Term Detection from
Fraunhofer IAIS.

word output, and more accurate two-pass decoding approaches cannot be applied. As

an alternative, one could segment the video stream into small yet acoustically homoge-

neous chunks (e.g., following the approach in [17]), and perform the multipass decoding

on each chunk individually. Hence, the amount of data that needs to be searched in a

single STD run is relatively small. Even with a relatively large chunk size of 15 minutes

and a request to monitor 50 TV stations in parallel, only 12.5 hours of data would need

to be searched for each keyword.

Next, we will describe a set requirements for STD systems, which will then be matched

to the scenarios described above.

Requirement: High STD recall. The STD system should be able to locate as many

query occurrences as possible. This includes approaches which enable the user to search

for any word he can think of at the time of the query, not only for a fixed set of words

determined at the time of building the models. At search time, the system should be

able to cope to a certain extent with errors from the automatic speech recognition, such

that incorrectly transcribed words can still be found.

Requirement: High STD precision. In some scenarios, a high precision of the STD

results provided by the system is important. This is essential if the result set is large
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Figure 2.2.: Screenshot from Galileo Videolexicon (2010), using Spoken Term Detection
from Fraunhofer IAIS.

(e.g., when searching for frequent terms in very large media archives). Of course, this

requirement competes with high STD recall, and often only one of the two requirements

can be fulfilled.

Requirement: Time and space efficiency. Despite the ubiquitous availability of CPU

power and storage, time and space efficiency are major requirements for STD systems

that handle large scale archives. A decrease in efficiency directly increases the hardware

costs required for setting up the actual STD system, and approaches with very low

efficiency will not be applicable to large-scale data sets.

Requirement: Flexibility The ultimate target of STD is to deliver both complete and

precise result sets, thus aiming for both high precision and recall at the same time.

This cannot be achieved in many scenarios, especially if the data is acoustically and

linguistically complex (see section 3.3). However, the system should allow for easy

adaptation to new scenarios, domains and information needs. System adaptation should

be possible at two different stages:

1. Adjusting the indexing system, for example towards the characteristics of the data

that will be indexed. Data that is acoustically or linguistically more challenging

might need more complex STD methods than professional planned speech in a
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Figure 2.3.: Screenshot from ARD Mediathek (2011), using Spoken Term Detection from
Fraunhofer IAIS.

studio background.

2. Adjusting the search system. For example, consider a user who is using an STD

system for his media archive. He wants to locate a particular document (known-

item search), and cannot find it with the baseline configuration of the system. In

this case, the system should enable the user to increase recall at query time with

as little STD precision loss as possible.

Within the scope of this thesis, we will investigate several approaches to meet the

described requirements. Table 2.1 indicates which chapters are most relevant for each

aspect.

Table 2.1.: Spoken Term Detection system requirements.

Requirement Relevant chapters
in this Thesis

High STD recall 3, 4

High STD precision 5

Efficiency 6

Flexibility 7
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Based on the description of the use cases and the proposal for different requirement

aspects, we summarize the actual requirements for the individual scenarios in table 2.2.

The symbol + indicates that the corresponding requirement has a low importance in the

given scenario, while +++ indicates a major focus.

In the media monitoring use case, we can assume that for user satisfaction, result

completeness is much more important than result precision. Response time per hour

of data and required storage do not plan an important role, as the total amount of

data to be searched is relatively low in this scenario. When searching media archives,

retrieval efficiency becomes more important, especially for large archives of up to 100,000

hours of data. Here, compact indices with fast access to the STD results are mandatory.

Moreover, STD systems for large archives should be rather configured towards precision,

However, flexibility at search time is needed, especially for known-item search. If a user

needs to find a specific document of which he knows that it is in the archive, he will

tolerate larger response times, hence he must be able to tune the STD system on-the-fly

towards recall at the cost of precision.

In the experimental evaluation, we will investigate to which extent our proposed meth-

ods are able to cope with the given requirements, and optimal system configurations for

the individual scenarios will be provided in chapter 7.

Table 2.2.: Spoken Term Detection requirements for selected application scenarios. The
number of + symbols indicates the importance of a specific requirement for
a given scenario.

Scenario Precision Recall Efficiency Flexibility

Media monitoring + +++ + +

Small media archive ++ ++ ++ +++
(up to 1000 hours)

Large media archive +++ + +++ +++
(up to 100,000 hours)

2.3. Related Work in Spoken Term Detection

This section describes the current state of the art for ASR-based Spoken Term Detection.

First, we describe the evolution and current state of the STD research community,

which manifested itself after the initial NIST STD evaluation in 2006. Then, we give a

structured overview of current approaches to STD, covering all aspects that are relevant
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for the scope of this thesis. Finally, we identify a set of gaps in the current state of the

art, and motivate our approach to holistic STD.

2.3.1. The Spoken Term Detection Research Community

Historically, the task of detecting keywords in spoken utterances was referred to as key-

word spotting. A classic example based on the standard ASR architecture is [116]. Here,

the authors build Hidden Markov Models for each keyword that needs to be detected,

and construct a garbage model (or filler model) that is used to model all other spoken

words. In [98] we have shown that this approach yields reasonable keyword spotting

results in challenging acoustic environments, even if resources for training the phoneme

models are limited. Despite recent improvements in discriminative keyword spotting [56],

a major drawback of this approach remains: the keyword spotting system needs prior

knowledge about the query set during indexing.

For tasks which are more oriented towards ad-hoc Google-like searches in already in-

dexed data, this approach was overcome by the success of word-based speech recognition.

Back in 2000, after the successful TREC evaluation [34], Spoken Document Retrieval

was declared ”a solved problem”: a large scale retrieval experiment showed that the

output from word-based ASR on the speech track could be successfully used to retrieve

relevant documents from a large broadcast corpus. As this was even possible for high

ASR rates around 50%, there was no obvious need for further research in this direction.

However, the TREC evaluation ignored a key drawback when using word-based LVCSR

as the only source for SDR: typically, state-of-the-art word speech recognizers depend

on a finite decoding lexicon, i.e., all words that can be decoded (and retrieved) must

be known a priori at indexing time. This opened up the way for a large variety of new

approaches to overcome the so-called open vocabulary challenge: how can SDR systems

retrieve spoken utterances, where the most important key words that influence retrieval

and ranking are not part of the word decoding lexicon?

It is natural to decouple this challenge from the actual SDR task, and focus only an

open vocabulary speech search as an auxiliary technology for SDR (see section 2.1. In

2006, NIST first used the notion of Spoken Term Detection for the large-scale vocabulary-

and topic-independent localization of written queries in spoken content [82], and initi-

ated a corresponding evaluation. The evaluation was carried out on English, Arabic and

Mandarin Chinese corpora, including broadcast news data and conversational telephone

speech recordings. It revealed that LVCSR is indeed suited for in-vocabulary speech

search, however, efficient, accurate and flexible large-scale open-vocabulary speech re-

trieval is still in its infancy [26].
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In 2007, the first Workshop on Searching Spontaneous Conversational Speech was held

in conjunction with ACM SIGIR, with the goal of bringing together researchers from

different communities such as speech processing or information retrieval [23]. Since then,

the workshop has become a major event for the STD community, and it was held again

at SIGIR 2008 [57], ACM Multimedia 2009 [62] and ACM Multimedia 2010 [63]. In

2011, a Special Interest Group on Speech and Language Indexing for Multimedia (SLIM)

was founded within the International Speech Communication Association (ISCA), with

a focus on ”Spoken content retrieval and spoken term detection for multimedia collec-

tions”2.

Compared to speech recognition research, the entry cost for new research teams is

relatively low, as new STD approaches can be built on top of existing ASR systems.

Hence, since 2006, more and more research groups have become involved in STD re-

search. Spoken Term Detection research is crossing the borders of disciplines like speech

recognition, linguistics and and information retrieval, and new results are published at

all corresponding major conferences such as IEEE ICASSP, ISCA Interspeech, ACL HLT

or ACM SIGIR.

2.3.2. Approaches to Spoken Term Detection

Searching for written keywords in spoken content has a long tradition in the speech

community, and a wide range of approaches has been studied to cope with this problem.

Based on their key characteristics, the field can be divided into two different directions

of research:

• Template-based approaches such as [45] or [108], where an acoustic template of

the query is obtained and matched with the audio signal of the corpus. Such

approaches are typically language-independent.

• Language-dependent approaches which use the output from automatic speech recog-

nition to locate written queries.

The choice of approach clearly depends on the actual STD scenario. For example, con-

sider a multi-lingual environment, where STD is required for different under-resourced

languages where no resources are available to built complex ASR systems (for instance,

when searching in the archive of the Max-Planck-Institute for Psycholinguistics, which

currently contains over 50 Terabyte of recordings from all over the world [118]). Here,

template based methods can be applied without additional adaptation cost in the same

2http://www.searchingspeech.org/
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manner across all occurring languages. However, such pure acoustic methods naturally

suffer from lower retrieval rates compared to the more informed ASR-based systems,

which can exploit language information by means of language models and decoding

dictionaries.

Within the scope of this thesis, we focus on STD for media monitoring and media

archive search, and can assume prior knowledge about the language of the spoken con-

tent. Hence, in the following, we can narrow down the description of the state of the art

to those STD approaches which exploit ASR output, and our proposed view on holistic

Spoken Term Detection will be built on top of these techniques. In this area, the STD

community investigates several related topics:

• Using subword models to overcome the vocabulary dependence of classic speech

recognizers.

• Applying error compensation at indexing and query-time to cope with high sub-

word ASR error rates.

• Investigating the applicability of STD in selected scenarios, e.g., with respect to

time and storage requirements.

Vocabulary Independent Spoken Term Detection

Baseline STD systems employ large vocabulary continuous speech recognition (LVCSR)

for generating a word transcript, where the query can be searched on the word level.

While LVCSR has reached a high level of accuracy in many domains, it is obviously not

the most suitable solution for STD due to its inherent dependency on a fixed recognition

lexicon. This is a major source for search errors, as the system can never detect queries

which contain an out-of-vocabulary (OOV) word. A popular approach to overcome this

challenge is to apply subwords instead of words as the decoding unit, where the set of

subword units is finite and known a priori [81]. Queries are then broken into subword

sequences, which are searched in the subword output of the ASR decoder.

In recent years, various units have been investigated, including phonemes [113], syl-

lables [60] and data-driven subword units [10, 47]. Due to less constraining language

models, subword systems typically suffer from lower ASR accuracy compared to word-

based systems. Moreover, the subword representation of a query contains more (smaller)

tokens that must be matched in the subword transcript. If only one of these tokens is

incorrect, the matching will fail. Combining the results from word and subword decoding

into hybrid STD systems can further increase the overall retrieval performance [1].
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Various languages have been in the focus of vocabulary independent STD. English,

Mandarin Chinese and Arabic have been used within the NIST STD Evaluation in 2006.

The corresponding evaluation corpus is available via LDC, hence many research groups

evaluate their approaches in one of these languages. However, there has been limited

work on STD in other languages, including Turkish [88], Japanese [50] or Spanish [103].

In 2011, the MediaEval Benchmark Initiative proposed the Spoken Web challenge3,

which particularly targets the Spoken Term Detection community. The corresponding

data set contains spontaneous speech from English, but also from Hindi, Gujarati and

Telugu, and is hence rather suited for language-independent techniques. For German,

only little work has been published on STD. While [40] and [115] provided first insights

into open vocabulary spoken document retrieval on German data, [60] were the first to

investigate the principle use of syllables for German STD. Still, most approaches have

not been investigated on other languages than English.

Error Compensation in Spoken Term Detection

With an increasing number of word and subword ASR errors, more and more occurrences

of user queries will not be found by the search system. As a remedy, error-tolerant

indexing and retrieval approaches can be applied, which increase STD recall while not

sacrificing too much precision.

Many systems do not only store the 1-best output of the recognizer, but also competing

hypotheses in the form of lattices [93, 99]. Instead of retrieving from unconstrained

lattices, more compact representations such as word confusion networks [44] or Position-

Specific Posterior Lattices [15, 86] have been proposed, which achieve comparable high

STD accuracy [87], where PSPL performs slightly better than word confusion networks.

However, the authors in [55] note that the benefits of PSPL might be ”coupled to [...]

low-frequency search queries and low-WER environments”. Recently, lattice extensions

have been proposed which integrate lexical adaptation and subword decoding [4].

At retrieval time, the word query is typically broken down to a canonical subword

sequence. For example, the phoneme sequence for a word query could represent the

standard pronunciation of the query. Then, error-compensating algorithms can be ap-

plied to allow for deviations between the query and the the subword transcript [60] to

cope with subword ASR errors and pronunciation variations. As an alternative, the au-

thors is [72] have successfully expanded the subword query with likely deviations, which

are then also searched in the subword transcript. A combination of both ideas further

3http://www.multimediaeval.org/
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improves the results [114].

Only little work has been published on efficient approximate retrieval from lattices.

Several groups rely on the extraction of subword multigrams [102, 114], which are all

matched with the subword query. In [104], the authors describe a method that allows

for fast approximate matching on lattices, however only on unconstrained output from

phoneme ASR and without explicit modeling of the different search spaces covered by

the two approaches as described in section 4.1.

For German, error compensation has been studied in an early work in the field of

Spoken Document Retrieval on 1-best phoneme sequences by [115]. Moreover, syllable-

based approximate search on 1-best syllable ASR output was investigated in a small-scale

evaluation in [60], which forms the baseline of section 4.3.

Applicability and Scalability of Spoken Term Detection

An important issue in all mentioned topics is the efficiency of the respective STD ap-

proach: as STD retrieval is supposed to be executed on demand by actual end users, it

must operate in reasonable time even on very large corpora. Depending on the applica-

tion scenario, different STD approaches can be suitable. While monitoring applications

in the security domain might focus on recall, media archive search systems for end users

would require more precision-oriented systems.

Despite the importance for practical use of STD systems, dedicated scalability inves-

tigations and evaluations on large corpora are rare. In [52], the authors use exact match

of phoneme-n-gram models to scale up to 2,000 hours with response times below one

second. However, reasonable STD accuracy could only be obtained when applying a

more expensive multistage approach, which resulted in higher response times.

Another approach for efficient approximate subword STD based on metric subspace

indexing was studied in [53] on a set of hundred Japanese lecture recordings taken

from [69]. Compared to continuous approximate phoneme matching, the authors achieve

a search time reduction of over 30% absolute at equal STD accuracy. However, the

proposed approach still requires about 200ms on a relatively small corpus.

In [54], suffix arrays were used for fast approximate search on phoneme ASR output.

Similar to text retrieval, suffix arrays and suffix trees are particularly suited for fast

approximate substring matching on a large data set. In the given implementation,

approximate search with high similarity thresholds on a simulated corpus of 10,000 hours

of data yielded very low response times. However, reasonably high STD accuracies could

only be achieved at low similarity thresholds, which in turn causes high response times,

especially for longer queries (over 16 seconds for a query with 18 phonemes).
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An interesting idea similar to our proposal [78] was published in [121]: the authors

use a filter approach to efficiently pre-select the most promising utterances that most

likely contain the keyword, and then apply a more expensive retrieval technique on the

remaining set of utterances. However, the idea is only used to filter word and phoneme

lattices for exact lattice matching. In [101], the authors use a similar two-stage approach

on syllable confusion networks. They retrieve all networks that contain one of the query

syllables, and apply an error-tolerant matching between all filtered networks and the

query sequence. A drawback of this approach is the relatively large number of initial

networks that are selected for approximate matching, which in turn can cause high

response times on large corpora.

2.3.3. Limitations of Current Approaches

In the following, we describe limitations of the current approaches to STD, and identify

the gaps that need to be bridged for enabling holistic, scalable and flexible STD.

First, we observe that there is no systematic and exhaustive investigation of the differ-

ent units for German STD. The optimal unit size differs from language to language. For

example, agglutinative languages such as Turkish will benefit from relatively large units

such as morphs [88], while for other languages like English, phonemes perform well [113].

Moreover, typically there is no distinction between recognition and retrieval unit. How-

ever, it could be interesting to investigate the effect of breaking down decoding units to

smaller retrieval units. Hence, we will study different combinations for recognition and

retrieval unit in section 3.2.

For error compensation, there is no explicit analysis of the different error sources that

occur in subword STD, which in turn require dedicated methods for error compensation.

An analysis of the STD error spaces, and methods for explicit handling of the corre-

sponding errors will be given in chapter 4. Again, only little work on state-of-the-art

error compensation has been published on a German STD task. Based on prior work

from [60], we have investigated and published on German lattice STD [77] and approx-

imate search on German subword transcripts ([96]). In [78], we have proposed a novel

efficient and effective approach to hybrid approximate lattice search, which explicitly

merges the STD error search spaces.

Current state-of-the-art approaches ignore a major source of information: at search

time, the STD system has access to more information about the query than at indexing

time. In chapter 5, we propose a novel approach to exploit this knowledge in order to

verify whether a putative STD result is correct or not, which we have first published

in [95].
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Scalability has received the attention of the STD community only recently, but the

proposed techniques provide punctual solutions, and where provided independent from

actual application scenarios. However, different STD application scenarios can have dif-

ferent scalability requirements. Yet, an analysis of STD requirements in major scenarios

and a relation of requirements to system configurations is still missing. A holistic view

using different search strategies for different scenarios is not covered at all. Based on

our scalability investigations in chapter 6, we will propose best practices and system

configurations for selected STD scenarios in chapter 7.2.

In summary, we would like to close three gaps in current STD research:

• Investigate the exploitation of external query knowledge that is only available

at search time, and study its interplay with state-of-the-art methods for error

compensation.

• Derive scalable and flexible variants of the proposed hybrid approaches for large-

scale STD, and provide best practices for selected STD application scenarios.

Within this thesis, we will provide these search policies for two selected STD ap-

plication scenarios: media monitoring and speech search in large media archives.

• Provide comprehensive STD investigations on German data using state-of-the-

art approaches to the STD research community. To reach this goal, we have

built a German evaluation corpus [6, 94], described a vocabulary independent

STD baseline [96], and approached error compensation [77, 78] as well as a novel

paradigm for STD result verification [95] on the German data.

2.4. Evaluation Methodology

Our evaluation methodology follows the evaluation plan developed by NIST for the STD

evaluation in 2006. We decided to adhere to the standards provided by NIST for two

reasons:

• The STD evaluation procedures are well-defined, and they have are capable of

evaluating whether an STD system can be used in the specified scenarios.

• The NIST speech group has a long experience and outstanding reputation in eval-

uating results from state-of-the-art research in speech technology. The first NIST

evaluations in the field of ASR date back to 1996. Currently NIST carries out

a wide range of large scale benchmarks, including diverse topics such as speaker

recognition, ASR or machine translation.

21



2. Spoken Term Detection

This section introduces a related set of metrics widely used in the STD community,

and describes modifications which were necessary due to characteristics of the German

language. No German STD corpus exists to date which could be used to evaluate speech

search on heterogeneous and complex TV data. We describe the design and creation of

DiSCo, a new German broadcast speech corpus, which is used for the evaluation in the

thesis at hand.

2.4.1. Evaluation Metrics

A wide range of metrics exist which could be used to evaluate STD systems. The

approaches presented here rely on automatic speech recognition, hence it is natural to

asses the quality of the ASR output. Here, the standard quantitative measure is the

Word Error Rate (WER). It is estimated from the alignment between the reference

transcription and the hypothesized output from the ASR decoder:

WER =
S +D + I

n
(2.5)

where S is the number of substitutions, D the number of deletions and I the number of in-

sertions in the alignment, and n is the number of reference words. An optimal alignment

with minimal number of edit operations can be obtained using dynamic programming,

a reference implementation is available from NIST4.

The quality of a subword transcript is assessed in a similar fashion. First, the reference

transcript is broken down into subwords, such as syllables or phonemes. Then, the

subword ASR output is aligned with the subword reference. Similar formulae are then

used for estimating the Syllable Error Rate (SER) and the Phoneme Error Rate (WER).

Note that the reference subword transcript is not necessarily correct with respect to

the actual spoken subwords, as it contains the canonical transcription obtained from

the grapheme-to-phoneme conversion (section 4.1 describes this phenomenon in more

detail). Hence, the actual SER or PER values can be lower than those estimated on the

canonical subword transcriptions. Many German speakers delete the final t [123], which

for example occurs in the German conjunction und - and. A syllable decoder would

tend to output U n instead of the canonical transcriptionU n , which is correct from an

acoustic point of view, but incorrect when using the canonical syllable transcription as

a reference. This can be substantially increase SER, as the conjunction typically has a

high frequency.

The quality of the lattice output is often assessed with the Lattice Word Error Rate

4http://nist.gov/itl/iad/mig/tools.cfm
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(LWER), e.g., in [4]. The LWER is equal to the lowest WER that can be obtained from

any path through the lattice. Similar metrics can be used for subword lattices (Lattice

Syllable Error Rate (LSER) and Lattice Phoneme Error Rate (LPER)).

The actual effectiveness of a retrieval algorithm is typically evaluated with two aspects:

1. Completeness: given a set of queries, does the system retrieve all occurrences of

all queries in a given corpus?

2. Correctness: given the result set for a set of queries, how many results are correct?

Completeness can be measured with the Recall metric R:

R =
TP

NRef
(2.6)

where TP is the number of true positives (i.e., correct results) and NRef is the number

of correct occurrences in the reference transcription. In a similar fashion, we measure

correctness with the Precision metric P :

P =
TP

TP + FP
(2.7)

where FP is the number of false positives (i.e., incorrect results). Typically, recall

decreases if a system is tuned towards higher precision and vice versa. For illustrating the

performance of a system while varying the system configuration during tuning, Receiver-

Operating-Characteristic (ROC) curves can be used, which is a 2-D plot of Precision

versus Recall. An alternative to ROC are Detection Error Tradeoff (DET) curves, where

the axes are scaled by their normal deviates [75].

The use of ASR word error rate is an obvious indicator for the overall performance

of a speech search system, and unsurprisingly, it was found to strongly correlate with

retrieval performance [107]. However, the word error rate is not necessarily an optimal

target for system optimization. In [85], the authors investigated whether optimizing

the ASR decoder towards low word error rate also leads to an increase in retrieval

performance. They observed that tuning the decoding parameters5 towards lower WER

can also lead to a decrease in mean average precision. This might be caused by the fact

that important content words often have a low frequency, and their impact on the word

error rate is low. On the other hand, the parameter tuning privileges highly frequent

filler words, which have no impact on retrieval performance.

5language model scaling and word insertion penalty
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For the 2006 STD evaluation, NIST proposed the Term-Weighted Value as an eval-

uation measure for STD [82], which aims at un-biasing the evaluation by removing the

influence of individual query frequencies . Let Q be the set of actually occurring queries

that shall be detected by the STD system. From the result set of a given STD system,

we can estimate the probability of missing a certain query q ∈ Q with

pmiss(q) = 1− TP (q)

NRef (q)
(2.8)

where TP (q) is the number of correct hits produced by the system for q, and NRef (q)

is the number of reference occurrences of q. As defined by NIST in the STD evaluation

plan, the probability that a given system produces a false alarm for a certain query q

can be estimated with

pFA(q) =
FA(q)

possible number of trials
(2.9)

where FA(q) is the number of false alarms produced by the STD system for q. The

number of possible trials can be approximated with the total length of the corpus in

seconds. Averaging over all terms we obtain two adjusted indicators for the two aspects

completeness and correctness:

pmiss =
1

|Q|
∑
q∈Q

pmiss(q) (2.10)

pFA =
1

|Q|
∑
q∈Q

pFA(q) (2.11)

In order to obtain a single estimate for measuring the overall system performance

at a given system configuration, NIST proposed to use the actual term-weighted value

ATWV, which is estimated using

ATWV = 1− 1

|Q|
∑
q∈Q

pmiss(q) + β · pFA(q) (2.12)

where the false alarm probability of a certain term is weighted with the constant cost

β:

β = CV · ( 1

pprior
− 1) (2.13)

The cost-value ratio CV indicates to which extend the user is willing to accept false
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alarms in order to obtain more true positive hits. The value should be chosen according

to the given use case - for example, monitoring applications in the security domain are

likely to be more interested in minimizing the miss probability. In the original NIST

evaluation, the cost-value ratio is set to 0.1 (i.e., the cost for producing a false alarm

is assumed to be a tenth of the cost when missing a term). It is multiplied with the

number of possible terms that could cause a false alarm. This value can be obtained

from the inverse of the prior probability pprior of a term, which is set to 10−4 in the

original evaluation plan. The same configuration is used within the evaluation of this

thesis in order to ensure comparability with other publications.

The ATWV measures the system performance for a particular configuration, i.e., at

a certain actual confidence threshold. This is useful for comparing systems that share

components, which can then use the same configuration (e.g., equal thresholds). On the

other hand, NIST also proposed the maximum term-weighted value MTWV, which is

the maximum ATWV that can be achieved while varying the system parameters.

Other single-point metrics for evaluating STD systems include the F1 score (i.e., the

harmonic mean between recall and precision) [96] or a Figure of Merit (FOM) focusing on

false alarms per hour of data [111]. In [80], we found that the choice of STD evaluation

metric has a direct impact on the characteristics of the system: MTWV using the default

NIST configuration is biased towards more exact search approaches which are rather

required in end-user search scenarios, while FOM is biased towards approximate, recall-

oriented search approaches needed in the surveillance domain. Hence, for the scenarios

targeted within the thesis at hand, we will use the standard TWV measures developed

by NIST, keeping in mind that the resulting systems might need to be re-configured for

other more recall-oriented domains such as surveillance applications.

The official STD evaluation plan defined that only exact orthographic matches are

considered to be correct hits, i.e., partial substring matches are considered to be false

alarms. This is reasonable for many cases, such as the hit cat for the actually spoken

word catalogue, which is obviously a retrieval error. However, in some cases this strategy

is debatable, e.g., when considering singular and plural forms such as fence and fences,

which could fulfill the same information need. Hence, optimizing a system towards

not finding the plural when searching for the singular might hurt the overall system

performance. The impact of this evaluation requirement for STD on German data is

even higher due to complex ending variations caused by flexions of verbs, adjectives

and nouns. For example, four variations of the word Zaun (fence) exist (Zaun, Zauns,

Zäune, Zäunen), which all are reasonable results for a corresponding search for Zaun.

Moreover, German compounding causes additional false alarms during evaluation within
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this restriction. An example is a search for Wirtschaft (economy), which could easily

return results such as Marktwirtschaft (market economy) or Binnenwirtschaft (national

economy). Within the limits of the NIST evaluation plan, these would be considered to

be false alarms, but we prefer to optimize our German system towards detecting such

terms rather than ignoring them. Following this rationale, we will accept compound

words containing the query word and flexions of the query word as true positives. Partial

matches are verified manually such that correctly labeled false positives (cat - catalogue)

remain false positive.

An additional metric is required in order to assess the efficiency of an indexing and

retrieval approach. The NIST STD evaluation plan requires to report the Term Search

Speed (TSS), which measures the time it takes the system to respond to a certain query

on a given STD evaluation corpus. However, with only eight hours of data for English,

the NIST STD corpus is too small for efficiency evaluation. Others have shifted the

focus of the metric, such that it gives the search speed per hour of data [89]. Within

this thesis, we will estimate the efficiency of a search approach by averaging the search

speed for a single query over a large query set, and give the results per hour of data

estimated on a large artificial data set.

For the evaluation in the thesis at hand, we will use the following metrics to assess

the quality of an STD approach:

• The speech recognition error rate of the 1-best transcript in order to assess the

quality of the ASR process.

• Recall R and precision P of the retrieval approach in order to individually assess

completeness and correctness of the method.

• ROC curves for analyzing the tradeoff between recall and precision.

• MTWV as a single-point metric for assessing the overall system performance.

• ATWV for comparing systems at a fixed system configuration.

• The average search speed per query per hour of data as an indicator for the search

efficiency.

Using recall, precision and ROC curves will reflect the actual frequency distribution of

the queries, while MTWV and ATWV provide adjusted, single-point metrics for assessing

the performance of a particular system configuration.
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2.4.2. Evaluation Corpora

In this section, we present the design and preparation and of DiSCo (Difficult Speech

Corpus), a new German corpus for evaluating various speech technologies on challenging

broadcast material [6].

The motivation for building the corpus is the lack of available data for in-depth eval-

uation of the proposed approaches. No publicly available corpus for evaluating Spoken

Term Detection on heterogeneous German broadcast data exists at the time of writing

this thesis. Moreover, no resources are available to the public which could be used for

evaluating German ASR on heterogeneous Broadcast News data. Past German ASR

evaluations such as [46, 76] used rather small and homogeneous data sets.

We considered using an available evaluation set stemming from an internal project with

two public German broadcasters [59], which has been already used in the past to assess

the quality of a prototype speech search system [96]. The corresponding STD evaluation

queries have been chosen by professional archivists, hence they represent a relevant query

set for the media archive scenario. However, the evaluation set consists only of radio

data recorded in 2004 and 2005, and it has been collected from only a few different radio

shows. It contains a substantial amount of clean planned and spontaneous speech, but

additional acoustic artefacts (such as background music or background speech) are rare.

No information about the dialect of the speaker is available. Hence we decided to build

a new evaluation corpus, which should be representative of a variety of interesting TV

and radio broadcast formats.

Selection of programs. We selected a range of programs from both public and private

German broadcast stations, such that the corpus contains a balanced mix of both planned

and spontaneous speech under various acoustic conditions. Our selection includes the

following genres:

• News. The composition of broadcast news shows is rather formal, i.e., each show

has a similar structure. A major part of the speech is uttered by the anchor person,

who reads a prepared text and is a professional speaker. Most of the speech is

recorded without any background noise in a high quality studio environment. This

can be used as a baseline, where the speech search system should yield the best

results. However, news shows also contain many sound bites such as interviews in

more complex acoustic environments, which are particularly interesting for Spoken

Term Detection. We collect both news from public and commercial broadcasting

stations.
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• Political talk shows. This type of program contains numerous interesting quo-

tations from politicians or other important celebrities. Often, the shows have just

one topic, with an up-to-date but rather limited vocabulary. The sound qual-

ity is high, as the participants often use close-talk microphones, but there is fre-

quent background noise (other speakers interrupting or commenting on the main

speaker, background applause). Speech is mostly from professional speakers, but

often highly spontaneous.

• Popular science shows: Here, most of speech is planned and recorded in a

professional studio environment. Often, background music is added to the speech

signal for setting the atmosphere of the show. The vocabulary is highly specialized

on the current topic of the recording.

• Regional reports: The documents in this set are recordings from a local Bavarian

magazine, which is dedicated to regional stories. It contains reports and interviews,

and often the speech has a strong Bavarian dialect.

• Foreign affairs reports: The documents in this collection contain reports about

foreign countries all around the world. The speech parts contain numerous dubbed

utterances, which is typical for the German TV program: the original voice of an

utterance in a foreign language is audible relatively low in the background, and

a louder, time-synchronous translation in German is added on top of the original

signal. An additional complexity in this type of program is the vast vocabulary,

comprising names of rather small geographical entities (cities, rivers, or other land-

marks) which occur in the reports.

• Sports shows: The material from the sports domain is particularly challenging

for speech recognition, even with well-adapted state-of-the-art systems [27]. The

vocabulary is complex and ever-changing due to the various sports disciplines and

the changing active athletes. Moreover, speech is often uttered in difficult acoustic

conditions, e.g., with heavy background noise from the audience in a stadium.

Interviews with athletes are frequent and pose additional challenges such as non-

native non-professional German speech.

Table 2.3 gives an overview of the raw material that was collected for annotation. All

documents were recorded from a high quality DVB-S signal.

Corpus annotation. Each broadcast recording was manually annotated by a single

annotator. We asked the annotators to adhere to the following standards:
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Table 2.3.: Raw recordings used for the DiSCo corpus.

Program Duration Percentage
(hh:mm)

News (public) 02:42 17%

News (private) 01:11 8%

Political talk shows 04:44 30%

Popular science shows 00:29 3%

Regional reports 01:29 9%

Foreign affairs reports 03:04 20%

Sports commentaries 02:00 13%

All 15:39 100%

• Segment boundaries should be inserted at speech pauses and at speaker changes.

• Segments without speech are labeled as non-speech with a special marker. Non-

speech includes speaker noise such as laughing or coughing. Telephone speech in

professional broadcast recordings is rare (except for call-in interviews in the radio

domain), hence we asked the annotators to mark telephone speech as non-speech.

Moreover, suitable German telephone corpora are already commercially available

via ELRA6).

• Segments that contained foreign speech or speech that was otherwise indiscernible

or unintelligible to the transcriber are not transcribed, but labeled with a special

marker.

• Segments with cross-talk by two or more speakers are not transcribed, but labeled

with a special marker.

• Compound words should be transcribed using a longest-possible-match instead of

individual nouns (e.g., Gammelfleischskandal instead of Gammelfleisch Skandal).

• Words should always be transcribed using the correct orthography, even if the

speaker is using a popular mispronunciation (e.g., haben instead of ham or wichtig

instead of wichtich).

• Hesitations should be transcribed with a special marker #ä#.

6http://www.elra.info/
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• Stutter and slip of the tongue should be marked with an asterisk at the beginning of

the correct word. For example, if the speaker said Trankstelle instead of Tankstelle,

the word should be transcribed with *Tankstelle.

• In case of doubt, the annotator should discard the whole utterance and mark it as

unintelligible.

As a result, we obtained almost 12 hours of transcribed speech utterances that can be

used for evaluation. Segments that contained stutter or slip of the tongue were rare (only

351 occurrences), and we removed the corresponding utterances from the evaluation set.

Table 2.4 gives an overview on the corpus statistics by looking at the individual programs.

Both public and private newscasts have a very high speech portion of around 90%, and

are well represented in the corpus. In contrast, only 60% of the discussion shows have

been considered to be transcribable speech by the annotators, caused by long non-speech

applause sequences between answers, cross-talk, or false starts and stutters. Only 532

utterances from the popular science show are available for evaluation, nevertheless, over

90% of these segments contain interesting acoustic challenges with professional speech

over various backgrounds. Both sports shows and foreign affairs magazines are fairly

well represented. The complete set of transcriptions sums up to about 120,000 running

words, with a vocabulary of 15438 unique words. The manual utterance segmentation

yielded an average segment length of 2.5 seconds.

Table 2.4.: DiSCo corpus by program.

Program Speech Duration Percentage Transcribed
utterances (hh:mm) transcribed words

News (public) 3,306 02:22 88% 23,146

News (private) 1,286 01:04 90% 11,024

Political talk shows 4,065 02:51 60% 31,259

Popular science shows 532 00:24 83% 3,401

Regional reports 1,833 01:16 85% 12,281

Foreign affairs reports 3,636 02:15 73% 22,065

Sports commentaries 2,494 01:35 79% 16,372

All 17,152 11:47 75% 119,548

Compared to other evaluation corpora for German ASR, the material contained in the

corpus is diverse, and its size is rather large. For example, [76] uses only recordings from

a single public news program, summing up to 1.5 hours of data. The authors in [46] only
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use news broadcasts (3.5 hours in total). In [83], a more heterogeneous collection of web

videos, broadcast news and conversational telephone speech data is used for evaluation,

yet the corpus is relatively small (3 hours).

For each of the 17152 speech segments, we asked the annotators to add labels for char-

acterizing the speech and the acoustic conditions of the recording. Figure 2.4 illustrates

the label hierarchy that was used during the annotation process. All speech segments

contain a label whether the speech is planned, spontaneous or whether the annotator

was undecided. Moreover, the annotators assessed whether the speech of a certain ut-

terance contains strong dialect or not. We also asked to label segments with frequent

background noises, such as music, background speech or applause. Other noises (such

as stadium noise) were subsumed in a common noise class, which enables us to further

detail the noise annotations at a later stage.

transcription
non-speech spontaneous

type of speech planned
unintelligible undecided

segment none
cross-talk music

noise type background speech
speech applause

other
LEGEND: dialect yes

no
category firstnamelastname
label speaker gender female
free text male

Figure 2.4.: Hierarchy of the DiSCo speech annotations, taken from [6].

DiSCo is not only designed for evaluation of ASR and STD, but also for Speaker

Recognition experiments. For each utterance, the full DiSCo annotation set contains an

additional label with the name of the corresponding speaker. Details about the speaker

annotations can be found [6].

Based on the extensive annotation, we can decompose the corpus into individual

subsets focusing on a particular challenge. In particular, we are interested in the following

comparisons:

• Comparing planned to spontaneous speech. All other (such as dialect or back-

ground noises) should be eliminated.

• Comparing the influence of different background noises. While varying the acoustic

background, we would like to keep the speech type as simple as possible (i.e., no
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2. Spoken Term Detection

spontaneity and no dialect).

• Comparing non-dialect to dialect speech. German has a wide range of dialects, and

their influence on ASR performance is well known [46]. We look at the influence

on Spoken Term Detection when comparing planned non-dialect speech to planned

dialect speech, both without any background noise.

The subsets which are needed for the corresponding experiments are listed in table 2.5.

We obtained a sufficient amount of data for most of the major challenges. However, due

to the restriction that only a single challenge per subset is allowed, some sets received

only little data. The smallest subset is speech over applause with no background noise,

which contains only 115 utterances. However data for this class is indeed hard to obtain,

as speakers typically stop talking right after the applause begins. On the other hand,

other classes contain large amounts of data that should be more representative of the

corresponding challenge. A large part of the corpus (almost seven hours) is excluded

from this detailed decomposition, as it contains various simultaneous challenges such as

spontaneous dialect speech over music, but it can still be used for evaluations on the

complete corpus. Experiments on the all data set should therefore give a good estimate

of how well a certain approach performs on a real-life mix of German TV data.

Table 2.5.: DiSCo corpus by acoustic and linguistic challenge.

Subset Speech Duration Transcribed
utterances (hh:mm) words

Planned, clean 1,364 00:56 9,184

Spontaneous, clean 2,861 01:56 20,740

Planned, background speech 727 00:29 5,054

Planned, music 1,789 01:12 10,354

Planned, dialect 318 00:13 2,179

Planned, applause 115 00:06 994

Other (including mixes) 9,978 06:55 71,043

All 17,152 11:47 119,548

STD evaluation queries. A fixed set of queries is required in order to evaluate retrieval

approaches for Spoken Term Detection on the DiSCo corpus. We base our selection

of queries on two different sources of information: the query selection of the NIST
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STD evaluation [82], and the query sets used in [96], as they were provided by actual

professional broadcast archivists.

We used a semi-automatic approach for selecting a representative query set for the

DiSCo corpus, consisting of two steps:

1. First, we applied the Term Selection Tool provided by NIST7, which automatically

extracted a set of queries from the training corpus.

2. In addition, five individuals were asked to manually select queries from the tran-

scription text. These queries were merged with the automatically generated list,

yielding a total set of 501 unique queries, which occur 2748 times in the complete

corpus.

Table 2.6 shows the distribution of the queries among the individual DiSCo subsets.

Table 2.6.: Evaluation queries.

Data set Query Occurrences

Planned, clean 268

Spontaneous, clean 427

Planned, music 319

Planned, background speech 89

Planned, dialect 54

Planned, applause 42

Other (including mixes) 1549

All 2,748

In the STD evaluation plan, NIST states that the search terms ”will include single-

word and multi-word terms, common and rare terms”. Looking at the DiSCo query

statistics, we find that our query set fulfills these requirements. Out of the 501 queries,

36% are single-word queries, and the remaining queries are composed of up to 5 words.

Very rare queries that occur only once in the complete corpus make up 10% of the

query set (i.e., 50 unique rare queries). On the other hand, the 50 most frequent queries

already cover 60% of all query occurrences, so there is a good balance between frequent

and infrequent terms.

Regarding the query lengths, we compare our selection with the queries from the

German query set [96] instead of the official English NIST queries, as average English

7http://www.itl.nist.gov/iad/mig/tests/std/tools/
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2. Spoken Term Detection

and German word lengths differ greatly due to the German compounding. Table 2.7

shows that the average length per query is almost equal across the two data sets, even

when comparing the queries at the syllable or phoneme level. We also compared the

distribution of the query lengths in both sets. Figure 2.5 shows that both sets have

similar length distributions, and that in both selections, most of the queries that were

selected consist of 6 to 15 phonemes.

Table 2.7.: Comparing DiSCo queries with [96].

Unit Queries in [96] DiSCo queries

Avg. words per query 1.5 1.8
Avg. syllables per query 4.8 4.8
Avg. phonemes per query 12.8 13.0

Named entities (people) 16.4% 17.4%
Named entities (places) 10.4% 13.6%
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Figure 2.5.: Comparison of query lengths between the DiSCo query set and queries used
in [96].
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Table 2.7 also gives some interesting insights into the composition of the query set

selected by the professional archivists. About 30% of the queries are proper names of

people and places, which indicates the importance of this type of queries. A similar

amount of such named entities are found in the DiSCo set.

2.5. Summary

Many interesting application scenarios exist for Spoken Term Detection. As they are

inherently different in nature, it is obvious that the optimal approach for a specific

application needs to be selected based on the specific requirements of the application

scenario.

We have described two representative STD application scenarios (media monitoring

and media archive search), and derived a set of required system characteristics. Several

cooperations with the broadcasting industry revealed helpful insights into the actual

requirements of end users.

While STD research has produced a range of interesting results in recent years, there

are still many gaps that need to be bridged. Very little work has been published on Ger-

man STD, and no comprehensive investigation of state-of-the-art approaches on German

data exists. Moreover, no STD evaluation corpus comparable to the NIST evaluation

set existed, which is a major obstacle since the construction of such a corpus is time-

consuming and expensive. As a remedy, we have prepared DiSCo [6], a new corpus

comparable to the NIST evaluation data, which allows for STD evaluation on German

data.

Beyond the language aspect, we have identified several interesting limitations of the

current state of the art that will be covered within the scope of this thesis. This includes

explicit discrimination between decoding and retrieval unit (chapter 3) and explicit han-

dling of STD error spaces (chapter 4). Moreover, we observed that current approaches

do not exploit external query knowledge that is only available at search time (chapter 5).

Finally, search scalability and scenario-dependent configuration of STD systems have not

been in the focus of research so far (chapters 6 and 7).
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3. Vocabulary Independent Spoken Term

Detection

This chapter will present our system for vocabulary independent Spoken Term Detection

on heterogeneous German broadcast data, which we have first published in [96], and

recently described in more detail in [94]. We describe the baseline STD system using

word-level automatic speech recognition (LVCSR), and present its evolution into a state-

of-the-art system for speech search. Then, we investigate the use of different subword

units to overcome the out-of-vocabulary problem.

Starting from a short description of the necessary theoretic background in automatic

speech recognition, we describe our system for large vocabulary continuous speech recog-

nition on German broadcast data that was developed within the scope of this thesis.

The architecture of the system is presented, and a more detailed description of the parts

which are relevant for STD is given, which includes the evolution of both acoustic and

language model into the current state-of-the-art LVCSR system. The resulting 200,000

word ASR decoder was used for large scale automatic speech recognition in a range

of STD-related projects, including several cooperations with the broadcasting industry

(ARD Mediathek [30], Galileo Videolexikon [29], ARD Web Duell [28]), national research

projects (including THESEUS1 and TAT2), as well as large European research initiatives

in the field of audiovisual library research (AXES3, VITALAS4).

Next, we motivate the use of subword retrieval for vocabulary independent Spoken

Term Detection, and describe the architecture of our subword-based STD system. We

analyze the potential advantages and drawbacks of different subword units. Unlike

other contributions in the field of subword STD, we explicitly distinguish between ASR

decoding unit and STD retrieval unit.

Finally, section 3.3 presents an extensive evaluation of all described approaches, where

we study in particular effects that are specific to the German language. We conclude

1http://www.theseus-programm.de/
2http://www.targeted-advertising.net/
3http://www.axes-project.eu/
4http://vitalas.ercim.org/
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3. Vocabulary Independent Spoken Term Detection

the chapter with best practices for subword-based vocabulary independent Spoken Term

Detection on heterogeneous German broadcast data.

3.1. Baseline System for Word-Based Spoken Term Detection

We start our investigations into Spoken Term Detection from what many would consider

the straightforward way of searching speech: converting the spoken content into a search-

able word transcript. Typically, this transcription is obtained by applying techniques

for automatic speech recognition.

Many approaches to word-based ASR have been investigated over the past decades,

with state-of-the-art solutions which yield high accuracies for many interesting scenarios.

Grammar-based techniques are typically used in highly constrained applications, such

as voice portals in contact centers, where calling customers use their voice to navigate

through the menu options and enter constrained information such as product numbers.

By exploiting prior knowledge about the possible choices uttered by a client, a voice

portal system can anticipate typical sentences that the client will use, and only allow

for a small fraction of the possible word combinations. In a similar fashion, command-

and-control applications make heavy use of prior knowledge to enable speech-driven

application control even in adverse conditions, e.g., on motorcycles [117]. At the other

end of the spectrum, flexible systems are geared towards optimal performance on surprise

data, where the system has no prior knowledge about the next decoding task.

The speech that can be observed in the use cases illustrated in section 2.2 is typically

not constrained at all. It can hardly be modeled by a fixed grammar, and in many

applications the size of the used vocabulary is exceedingly high. A flexible system for

large vocabulary continuous speech recognition (LVCSR) is required to transcribe the

speech utterances.

Research on LVCSR systems has a long tradition in the speech community. For many

years, progress of the core technologies has been monitored and fostered by the cor-

responding NIST evaluations, including the Broadcast News Recognition evaluations

(1996-1999) and the NIST Rich Transcription evaluation (2003-present). While numer-

ous different approaches to LVCSR exist, many systems that have been successful in

the evaluations follow the same holistic statistical paradigm: Given an observed spoken

utterance, the task is to find the word sequence w that has the highest probability of

having generated the observation. First, a sequence of features Y is extracted from the

speech signal using the acoustic frontend. The goal of the feature extraction is to provide

a set of features that have a lower dimension than the original input samples, focusing
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3.1. Baseline System for Word-Based Spoken Term Detection

on the signal characteristics that allow for discriminating between spoken words. Then,

for a given feature sequence Y , the maximization task can be formally defined as:

ŵ = argmaxw{p(w|Y )} (3.1)

Rewriting the objective function in the right side of equation 3.1 we obtain

p(w|Y ) =
p(Y,w)

p(Y )
(3.2)

=
p(w) · p(Y |w)

p(Y )
(3.3)

We observe that the denominator of equation 3.3 does not depend on the maximizing

argument w, hence we can omit the term p(Y ), resulting in:

ŵ = argmaxw{p(w) · p(Y |w)} (3.4)

Equation 3.4 allows us to split the probability for a hypothesized word sequence w

into two individual parts: the language model probability p(w) and the acoustic model

probability p(Y |w). The language model gives the prior probability for a certain word

sequence, for example, US president Barack Obama should be much more likely than

US president Nathan Obama. The acoustic model gives the probability that the feature

sequence Y is observed if the word sequence w is spoken, e.g., it is a model for the acoustic

realization of w. Most state-of-the-art systems for large vocabulary speech recognition

use Hidden Markov Models for the acoustic modeling of words [32], which can be tuned

towards a specific transmission channel or a certain speaker [119]. The pronunciation

of a word is represented by a sequence of phonemes given by a pronunciation lexicon,

which is typically generated automatically using grapheme-to-phoneme conversion [11].

In our baseline system, we use a typical holistic system setup which estimates ŵ for a

given observation Y using the aforementioned paradigm. The architecture is illustrated

in figure 3.1. Assuming that a document of interest is already segmented into speech

and non-speech parts, a single speech utterance is sent to the LVCSR system for tran-

scription. The decoder than searches for the optimal word sequence ŵ which maximizes

equation 3.4, given the input feature vector sequence, a language model for p(w) and

an acoustic model for p(Y |w). A detailed description of standard approaches to the

individual parts illustrated in figure 3.1 can be found in [32].
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3. Vocabulary Independent Spoken Term Detection

Figure 3.1.: Architecture of a HMM-based system for automatic speech recognition,
taken from [32].

In this section, we describe the setup of our ASR system used for creating the 1-best

word transcriptions. As illustrated above, the ASR system setup is determined by the

actual decoding algorithm, the acoustic frontend, language and acoustic model, and the

pronunciation lexicon. For the baseline setup, we use the following components.

Decoder. We use a state-of-the-art off-the-shelf component for speech decoding which

is readily available: the Julius Open-Source Large Vocabulary CSR Engine5, a flexible

yet efficient decoding engine that has been developed over two decades at the Kawahara

Lab at Kyoto University6. Julius has been successfully used for large vocabulary tasks

in Japanese [66, 65]. It is known to be very efficient while showing similar recognition

accuracies compared to other large vocabulary decoders [92].

Acoustic model. Large training sets are critical when it comes to building the acoustic

model [31]. A baseline acoustic model which was available at Fraunhofer IAIS prior to

starting the work on this thesis was trained on only 14 hours of transcribed broadcast

speech. It was obvious that the set was too small to be representative for the hetero-

geneous characteristics of the targeted use cases. Hence, for the baseline of the thesis

at hand, we decided to collect a new training corpus which is (a) substantially larger

than the original set and (b) representative for many TV and radio formats. We col-

5http://julius.sourceforge.jp/en
6http://www.ar.media.kyoto-u.ac.jp/
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lected a large set of data from both public German broadcasters ARD and ZDF, but

also from German radio stations that have a lot of spoken content (Deutsche Welle,

Deutschlandfunk, WDR). To a large extent, the data was taken from the professional

podcast channels of the respective broadcaster, but we also recorded additional high

quality material via DVB-S. All recordings were of a professional studio recording qual-

ity with no notable compression artifacts. After extracting the audio track from the

media assets, each file was manually segmented into single speech utterances, which

were then manually transcribed on the word level using Transcriber [5]. We were par-

ticularly interested in having a baseline training corpus which reflects standard German

speech and is optimized for representing professional speakers in a controlled environ-

ment. Hence, we excluded utterances with strong dialects or heavy spontaneity from

the manual transcription. For the same reason, only wideband speech was transcribed,

i.e., all utterances transmitted via telephones were not included. Telephone speech is

very rarely observed in TV data, hence we decided to focus on optimizing the wideband

performance. Telephone speech is more prevalent in the radio domain, where intervie-

wees are often not professionally recorded and transmitted, but rather call-in with their

phone into a studio situation. For such scenarios, a dedicated telephone model should

be used. The following summary recapitulates our rules for the manual segmentation

and transcription process, which are inspired by existing broadcast corpora in other lan-

guages, such as the French ESTER [33] or the English HUB4 corpus [41]. The focus of

training data transcription is rather on quantity than on annotation completeness. Typ-

ically, evaluation corpora are annotated with much more detail such as speaker names

or speech and background types [6], whereas training transcriptions are often not even

verified by a second annotator [35]. We specified a limited set of easy rules, similar but

reduced compared to the DiSCo transcription rules described in section 2.4.2. Ideally,

a segment resembles a single sentence with a duration between 5 and 30 seconds. A

segment boundary should be inserted in the following cases:

• At a speaker change.

• Between two sentences.

• Between speech and non-speech segments.

• At the boundaries of long speech pauses (> 1 second).

The annotator should skip utterances which cannot be exploited well in acoustic train-

ing. If in doubt, we asked the annotators to skip a segment.
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• Segments without understandable speech.

• Foreign language (i.e., non-German).

• Strong dialect.

• Simultaneous speech from several speakers.

• Telephone speech.

• Very short segments (< 1 second).

• Utterances containing stutter.

• Utterances containing slip of the tongue.

All utterances must be transcribed just as they are spoken, e.g., fünf bis sieben Prozent

instead of 5-7%.

Table 3.1 summarizes the composition of the final wideband acoustic training corpus.

All in all, we collected and transcribed about 110 hours of German speech utterances,

split into radio and TV sub corpora of roughly the same size. The transcription sums

up to over one million running words, with a vocabulary of about 60000 unique word

types.

Table 3.1.: Corpus for training the acoustic models.

Sub corpus Utterances Hours of Speech Transcribed Words

Radio 50,057 51 465,750

TV 71,222 57 558,159

All 121,279 108 1,023,909

It is clear that further data collection will further increase the performance of the

acoustic model. However, it has been observed in several contributions that the decrease

in WER saturates, and the additional gain from adding more data becomes smaller. For

example, in [31], the authors report a 0.6% absolute WER decrease while more than

doubling the training data set from 144 hours to 375 hours. Note that the manual

segmentation and transcription of a one hour file can take up to eight hours depending

on the complexity of the audio track, hence a further increase of the training data set

should be well-considered.
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As in the case of decoding, we decided to select a well-established model structure and

training approach for the acoustic model. The phoneme set is based on the SAMPA-D-

Vmlex set7, augmented with dedicated phonemes for frequent diphthongs8, yielding a

set of 49 phonemes. The system uses crossword triphone models to incorporate the left

and right acoustic context of a phoneme. We use a phonetic decision tree to cluster the

triphone models, such that models for similar triphones can share the same parameters

and models which have not been observed in training can be synthesized [120]. After

clustering all possible triphones, about 20000 physical model clusters remain. Each

triphone is modeled by a three-state Hidden Markov Model with a 0-1-2 topology (i.e.,

only loop, forward and skip transitions are allowed). The emission probability of each

HMM state is represented by a 16-component Gaussian Mixture Model.

Our speech recognition system uses Mel-Frequency Cepstral Coefficients (MFCCs)

as features [22]. MFCCs are well-studied and have been successfully used in speech

technology for many years. We use a standard configuration with 12 MFCCs and signal

energy, augmented with both first and second order derivatives to capture temporal

context. This yields a 39-dimensional feature vector per frame, which is calculated over

a 25ms window at a rate of 100 vectors per second. All feature vectors are normalized

using Cepstral Mean Normalization [32] in order to reduce the influence of different

recording channels.

The parameters of the acoustic triphone models were estimated using the Hidden

Markov Toolkit9. We use the Maximum-Likelihood paradigm to estimate the parameter

set, which results in models that give the best explanation of the training utterances.

Pronunciation lexicon and language model. The vocabulary for the pronunciation

lexicon was selected by taking the most frequent words from a large corpus of German

newswire data obtained from DPA (Deutsche Presse Agentur), covering the years 2000-

2006. The corpus contains about 10 million sentences, summing up to over 150 million

running words and a vocabulary of 913041 unique word types. The data was assembled

from DPA articles from the categories politics and miscellaneous news, yielding a good

textual baseline for many recognition tasks in the broadcast domain. An important de-

sign decision for a word-based ASR system is the size of the decoding vocabulary. Many

state-of-the-art broadcast news systems for English use a 60,000 word dictionary [31, 37],

which yields a relatively low OOV rate on broadcast news data. For example, the au-

thors in [37] report an OOV rate of 0.3% on the HUB4 evaluation set [35]. We decided

7http://coral.lili.uni-bielefeld.de/Documents/sampa-d-vmlex.html
8http://www.phon.ucl.ac.uk/home/sampa/german.htm
9http://htk.eng.cam.ac.uk/
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to use a larger decoding lexicon for two different reasons:

• The number of valid German words is much higher than the number of valid

English words. On the one hand, this is due to the rich morphology in German due

to flexions. This includes dedicated endings for nominative, genitive, dative and

accusative cases of nouns and adjectives, but also individual word forms for verb

conjugation. Moreover, German makes heavy use of compounding, i.e., multiple

words (typically nouns) can be combined into a new word. In [76], the authors

report a OOV rate of 6.1% for a German ASR system with a 60,000 word dictionary.

Similar OOV rates were reported in [68] and more recently in [83].

• The vocabulary for the decoding lexicon is typically built by selecting the most

frequent words from a large corpus as the vocabulary for the decoding dictionary.

By using a very large decoding lexicon, many words will only occur rather infre-

quently in the large corpus, and hence occur also infrequently in evaluation tasks.

Therefore, the effect of increasing the vocabulary on the word error rate might be

low. However, our focus is Spoken Term Detection rather than perfect transcrip-

tion, and our primary target metric is not WER but ATWV (see section 2.4.1). It

is obvious that word-based Spoken Term Detection benefits if more possible search

terms are in the dictionary. This can either be achieved by specialized, task-

and domain-dependent dictionaries, or by increasing the dictionary such that the

decoding process fits just within the time and space constraints of the scenario.

Hence, before deployment, the STD system should be adapted on in-domain data

that is as close to the target data as possible. However, this is not always possi-

ble, either because in-domain training data is not available at the time of model

training or if the target domain is just too diverse to be represented by a single

model (e.g., a lexicon for all TV data from 1950 to 2010 will exceed the technical

capabilities of a standard recognizer).

We can conclude that (i) German decoding lexica should be larger than English de-

coding lexica and that (ii) non-specialized STD lexica should be as large as possible. We

have experimented with different corpus sizes (including a 65,000 word baseline [96]) and

found that a vocabulary size of 200,000 words is a good compromise between vocabulary

coverage and model complexity (this size was also reported to have a reasonable OOV

rate in [76]). If the vocabulary is too small, many spoken words cannot be transcribed

correctly as they are not in the vocabulary. On the other hand, due to the complexity of

the decoding process, decoding time will increase substantially if the vocabulary exceeds

a certain size. Note that there is no temporal overlap with the evaluation corpus, which
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is from a later period (2008-2009). Hence, words that came up only after 2006 are most

likely not found in the decoding dictionary.

The manual phonetization of words is time-consuming, and not at all error-free and

consistent [21]. Only small pronunciation lexica are typically hand-crafted, and large

lexica for LVCSR are generated by automatic grapheme-to-phoneme conversion tools.

We used a data-driven approach based on the Bonn Open Synthesis System (BOSS) [13]

for generating the phoneme transcriptions of the decoding lexicon. A trigram language

model was trained, again using the same large newswire corpus. The resulting language

model contains 200,000 unigrams, 7,149,558 bigrams and 17,962,254 trigrams. We ap-

plied Katz smoothing to allow for unseen bi- and trigrams [16].

Spoken Term Detection on 1-best word transcriptions boils down to a simple text

search problem, hence we can use standard methods for efficiently storing and accessing

the ASR output. We use an inverted file, i.e., for each word in the decoding dictionary,

we store all document positions where the word was spoken. Hence only a lookup in the

corresponding bin of the word is needed to decide which assets contain the requested

spoken word, together with the exact location of the utterance. The number of bins is

limited by the size of the decoding lexicon (200,000 in our word baseline). For a phrase

query with n words, we collect all documents that contain one of the query words as

above, and then intersect the result sets to decide which documents contain all query

words. In the remaining set of documents, we verify that the sequence of the matched

words is equal to the sequence of query words. We note that other retrieval approaches

such as suffix arrays [73] are more efficient for searching phrase queries on large textual

corpora. However, in the case of word-based Spoken Term Detection, the size of the

transcribed corpora is relatively small compared to classic text search tasks, such as

searching a large collection of books or web pages. We will cover the scalability aspect

in more detail in chapter 6.

3.2. Subword-Based Spoken Term Detection

For many scenarios, word-based speech recognition transcripts are far from perfect, and

word-based ASR systems show dramatically high error rates even for rather controlled

scenarios such as meeting recognition [43]. Obviously, high word error rates will render an

STD system based solely on word transcriptions unusable for many application scenarios.

Large vocabulary continuous speech recognition is a complex process, which interprets

an acoustic signal by interweaving prior knowledge from acoustic and language models

and simultaneously applies a wide range of pruning techniques to keep the decoding
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search space at a tractable size.

Errors can occur at many stages of the decoding process, however, it is obvious that

spoken words which are missing in the decoding dictionary are a major source for ASR

errors. Such out-of-vocabulary (OOV) words cannot be transcribed correctly by a word

recognizer. It has been observed that on average, each OOV word leads to 1.6 errors

in the transcription [39], hence the WER is greatly influenced by the OOV rate of the

ASR system.

Several solutions have been investigated to approach the OOV problem. At first

glance, adapting the decoding lexicon and the corresponding language model to the

actual decoding task is the most promising and obvious solution [8]. However, complete

prior knowledge about the required decoding vocabulary is rare. In many of the described

scenarios the vocabulary changes drastically from document to document, and a complete

coverage of the spoken word types is not possible. For this particular decoding situation,

i.e., where prior knowledge about the decoding task is not available or not sufficient for

adapting the lexicon, subword-based approaches to Spoken Term Detection have been

investigated. The typical approach to subword Spoken Term Detection is as follows:

1. The spoken utterances are transcribed on a subword level (such as phonemes or syl-

lables) instead of using a classic word-based LVCSR approach. For each utterance

u, this yields a subword transcription u = su,1 · · · su,n.

2. At search time, the query q is broken down into a sequence of r subword units

sq,1 · · · sq,r. The system searches for a match between the subword representation

of the query and the subword transcript, and matches are returned as STD hits.

Approaches to generating a subword transcription typically follow the same holistic

statistical paradigm as depicted for word-based speech recognition in section 3.1. We

are particularly interested in evaluating different recognition units, and explicitly aim

at reducing the overhead when exchanging the recognition unit. In our system setup,

we treat subword units just as words in the case of the LVCSR system. We use a fixed

decoding lexicon which contains all subwords that can be decoded. For each subword,

we generate a corresponding phonetization for the pronunciation lexicon of the decoder.

Then, a subword language model is trained using a subword training text and the afore-

mentioned subword dictionary, using the same process that is used for training a word

language model. Apart from different parametrizations of the training language model

training toolkit, the main difference is the textual input for the training process: the

large textual corpus used for training the word language model is broken down into
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subwords. This yields a large amount of typical subword sequences that can be used for

generating the subword language model.

We note that there is a clear tradeoff between overall ASR accuracy and ability to cope

with OOVs when using a statistical subword language model. A strong language model

will typically yield lower subword error rates, but will also prevent unseen or unlikely

subword sequences from being correctly decoded [110]. Coping with infrequent query

words is the main target when applying subword STD approaches, hence using a low

language model scaling factor is often mandatory. All other parts of the system such as

the acoustic frontend, the acoustic model or the decoding algorithm remain untouched.

Figure 3.2 illustrates the main components of an exemplary system for word and subword

decoding, which outputs word, syllable and phoneme transcripts. Only language model

and pronunciation lexicon need to be defined if a new subword unit is introduced into

the system.

Decoder

Word LM + 
Lexicon

Word / Syllable / Phoneme Word / Syllable / Phoneme 
Transcription

SpokenSpoken
Utterance

Syllable LM + 
Lexicon

Phoneme LM + 
Lexicon

Phoneme 
Acoustic Model

Figure 3.2.: Components required for word and subword ASR.

Several aspects of the subword STD process have an impact on the overall system

performance. In particular, the following design decisions need to be investigated:
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• Choice of recognition unit: The performance of the system will drastically

depend on the choice of recognition unit. While longer units tend to produce more

stable ASR results, smaller units might be more suitable for coping with the OOV

challenge. In the following, we will introduce representatives for three popular

units which are evaluated within the scope of this thesis.

• Choice of retrieval unit: It is not mandatory to use the same units during

decoding and retrieval. At retrieval time, the search component can not only

break down the query string, but also further break down the ASR transcript.

Hence, it is possible to use larger units for decoding, and then retrieve from an

automatically generated subword representation of the transcript.

Subword-based approaches to STD as described above are inherently language de-

pendent: both subword lexicon and language model cannot be used across different

languages. Even for very close languages (such as German and Austrian) the subword

inventory and typical subword sequences will differ. However, for named entities with

a low acoustic variance (such as Putin), retrieval from a subword transcript generated

with the mismatched language model and a suboptimal subword inventory might still

show reasonable performance. Within the scope of this thesis, we focus on optimizing

the STD system components for the characteristics of the German language.

As already stated in section 2.3, many different units have been investigated for sub-

word decoding. We can classify the different units into three broad categories, depending

on the size of the unit: words, phonemes and intermediate units.

Words can be considered as an upper bound with respect to the unit length and are

used in our LVCSR STD baseline. Using words as the building blocks results in powerful

statistical language models, where short m-gram histories often already cover the most

import word contexts. The main drawback is the OOV challenge, i.e., each word that

shall be recognized must be part of the decoding dictionary.

Phonemes represent the smallest possible decoding unit for the aforementioned LVCSR

system setup, as they are the core acoustic building blocks of the ASR system. Zerogram

phoneme language models impose minimal linguistic constraints on the decoding pro-

cess, and hence allow for maximum flexibility with respect to correctly decoding every

phoneme sequence. On the other hand, such purely acoustic decoding configurations

cannot benefit from statistical language modeling, and they are more sensitive, e.g., to
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background noise or acoustic channel mismatch. This typically results in higher phoneme

error rates on heterogeneous data sets.

Intermediate units range between words and phonemes. Using such intermediate units,

one would expect a more stable decoding process under challenging conditions. Each sub-

word unit provides additional structural information on the unit level by encompassing

a fixed sequence of phonemes. This differs from purely statistical m-gram phoneme lan-

guage modeling, as only phoneme sequences validated by prior constraints are taken into

account during decoding. At the same time, the OOV challenge can still be approached:

if the set of intermediate units is complete, every word can be built by concatenating the

corresponding intermediate units. One can distinguish between different approaches for

obtaining the subword units. Smaller units can be obtained from words by segmenting

the orthographic transcription, or by segmenting the phoneme sequence corresponding

to the word transcription. The latter approach has the advantage that the pronuncia-

tion of such a subword unit is immediately available. There is a range of alternatives

with similar characteristics (e.g., [20, 60, 10]), from which we select syllables as a repre-

sentative for the intermediate unit category. The syllabic representation is the natural

phonologic segmentation of a word, and it is particularly suited for segmenting words

from inflecting languages such as German, as the number of possible syllables is much

higher than in agglutinating languages like Japanese or Turkish. Syllables have been

successfully used for subword decoding in other inflecting languages such as Polish [71].

In [3], the authors note that syllable-based ASR cannot be used for generating word

transcriptions as the system does not have knowledge about word boundaries. This

disadvantage is less important in the case of STD. Still, the absence of word bound-

aries in the subword transcript or in the subword representation of a multi word query

might yield additional false alarms during retrieval, especially in languages which make

extensive use of compounding.

We also consider using different units during decoding and retrieval. By using larger

units during decoding we can exploit the stability of decoding large units under more

challenging acoustic conditions. Then, we break down the resulting large-unit transcript

to smaller units, and search the small-unit representation of the query on the small-unit

representation of the transcript. For example, when breaking down word transcripts

to syllables or phonemes, this effectively enables us to find compound words if they

are transcribed by their individual parts (such as Gammelfleisch Skandal) instead of

Gammelfleischskandal).
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3.3. Experiments

In the following, we will evaluate both the word-based baseline and the described vo-

cabulary independent STD approaches on the complex DiSCo corpus introduced in sec-

tion 2.4.2.

3.3.1. Word-Based Spoken Term Detection

First we study the lexical coverage of the evaluation data using our 200,000 word dic-

tionary. Table 3.2 gives the corresponding OOV rates for the programs contained in the

DiSCo corpus. The OOV token rate is the fraction of running words in the reference

transcription that were not in the decoding vocabulary, while the OOV type rate is the

fraction of unique word types that were out of vocabulary during decoding. Naturally,

the OOV token rate is lower than the OOV type rate, as OOVs are typically low fre-

quent (otherwise they would have been chosen for the decoding lexicon). Looking at

the individual subsets divided by program, we observe that the OOV rate varies greatly

between the data sources. The vocabulary of news and news magazines is covered quite

well, however, non-political programs exhibit much higher OOV rates. For example, the

OOV rate of the sports data is more than three times higher than the OOV rate of the

political discussion show. This is not necessarily caused by a more complex vocabulary

of a particular program, but rather by the fact that the corpus used for vocabulary

selection matches better with the political evaluation data: while the OOV rate of the

sports show is almost twice as high as the OOV rate of the foreign affairs magazine,

each unique word in both shows is used about five times on average. We conclude that

there is need for using a vocabulary baseline which is as close to the decoding scenario

as possible. On the complete corpus, our system has an OOV rate on TV data which

is comparable to other state-of-the-art systems for German LVCSR [76, 46]. The im-

pact of the remaining out of vocabulary words on Spoken Term Detection performance

is high. An OOV type rate of 11.5% on a representative set of TV and radio assets

drastically limits the possible ATWV that can be obtained with any word-based Spoken

Term Detection system.

We looked in detail at the OOV characteristics of the most frequent OOVs ordered

by frequency rank which covered 25% of the whole OOV occurrences. We found that

• 97% of the most frequent OOVs were nouns,

• 60% of the most frequent OOVs were proper names and

• 32% of the most frequent OOVs were compound nouns.
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Table 3.2.: OOV rates using the 200,000 word dictionary (by program).

Subset OOV token rate (%) OOV type rate (%)

News (public broadcaster) 1.3 5.3

News (private broadcaster) 2.1 5.7

Political discussion show 1.2 6.7

Foreign affairs 1.9 6.3

Regional magazine 2.2 7.6

Popular science 2.9 6.4

Sports show 3.7 12.0

All 1.9 11.5

Looking at some OOV examples, the impact of missing words on search performance

becomes obvious. For example, in the sports domain, the most frequent OOV was

Hoffenheim, the name of a soccer team that has not played in the first division of the

German soccer league before 2008. Since 2008, the team is quite successful and popular,

so a speech search system on sports shows would definitely need to support it. The same

is true for the next most frequent OOVs, which stem from the surnames of three football

players that were not active in the first league before 2007 (Petric, Ibisevic, Ribery).

This temporal challenge in vocabulary design is accompanied by a time-independent

topical aspect, i.e., words which are only used in the sports domain, but which are not

only occurring in a certain period. Frequent examples from the sports evaluation data

include Torwartfehler - goalkeeping error, Dorfverein - small football club, KO - boxing

knock out. In other domains, the distinction between temporal and topical aspects is

less obvious. For example, in the foreign affairs magazine, OOVs include numerous city

and town names (e.g., Diabakir in Turkey) or other geographic landmarks such as rivers

(e.g., Volturno in Italy), which can come up in the news and cease to be mentioned again

at any point in time.

Hence we also give the OOV rates on the individual subsets introduced in 2.4.2 in

order to interpret the word error rates of the LVCSR system on specific acoustic and

linguistic challenges. From table 3.3 we observe the notable fact that spontaneous speech

has a lower overall OOV rate than planned speech.

First we give the results of the ASR on the word level for each of these subsets in

table 3.4. Our system produces similar results as other state-of-the-art research systems

for German ASR on broadcast news data [76, 46]. The system produces an absolute
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Table 3.3.: OOV rates using the 200,000 word dictionary (by acoustic and linguistic
challenge).

Subset OOV token rate (%) OOV type rate (%)

Planned, clean 1.9 5.1

Spontaneous, clean 1.2 5.6

Planned, background speech 1.3 3.2

Planned, music 2.7 7.3

Planned, dialect 1.7 4.4

Planned, applause 3.1 5.2

Other (including mixes) 2.1 10.3

All 1.9 11.5

difference of 12.3% in WER between the simplest subset and the average on the complete

evaluation corpus. The results are in line with existing evaluations of the different

challenges on English data. In [38] the authors report an absolute difference of 14.8%

in WER between planned clean data and an unconstrained evaluation set, while [109]

reports a difference of 8.9% on a more recent system. The higher WER baseline is again

due to the complex compounding and morphology of the German language [76].

Table 3.4.: Word error rates using the 200,000 word dictionary (by acoustic and linguistic
challenge).

Subset Word error rate (%)

Planned, clean 26.1

Spontaneous, clean 34.7

Planned, background speech 32.0

Planned, music 32.1

Planned, dialect 52.1

Planned, applause 64.0

Other (including mixes) 41.7

All 38.4

Looking at the differences between the recognition results for single challenges, we

see that each individual challenge increases the WER compared to the planned speech

baseline. Music and background speech increase the WER by only about 6% absolute.
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In many cases, music serves as a filler in the background of the speech, and the dominant

voice remains clearly understandable. The same is true for the data with background

speech, which stems mostly from dubbed segments in a foreign language, where the

original voice is still audible softly in the background. In contrast to this, the accuracy

drops and the WER reaches over 63% when adding applause as the background noise,

which typically has a high signal level and the dominant speaker becomes harder to

understand.

Speech with a distinct dialect poses a major problem to the recognizer. As the acous-

tic training corpus is made up mostly of speech from High German speakers, it is likely

that the observed dialects have not been observed during acoustic training. No acous-

tic adaptation is applied in the current baseline system configuration, hence the large

mismatch between training and testing conditions leads to a poor performance.

For spontaneous speech, the WER is 8.6% absolute higher compared to planned speech

under the same clean conditions. The language models are trained on a corpus consisting

of written (and thus mostly planned) speech. This does not match the characteristics

of the spontaneous test set, which contains numerous hesitations, repetitions or false

starts. Moreover, spontaneous speech is typically uttered much faster than planned

speech (180 vs. 167 words per minute in the two evaluation sets, estimated from the

reference transcriptions). This characteristic is not well covered by the acoustic training

set, which consists mostly of planned speech.

We retrieve the results for the 501 specified DiSCo queries from the inverted word

index as described above. For this evaluation, we did not apply any further post-

processing methods to the output of the word recognizer (such as stemming or com-

pounding/decompounding of the ASR transcripts), and the query must be matched

exactly with the ASR transcript in order to be found correctly. Multi-word queries

are treated as phrase queries, i.e., the exact sequence of words needs to be matched.

Figure 3.3 shows the results for all data subsets. Precision is always above 80% when

retrieving from the word transcripts, even in the hard cases containing applause or di-

alect speech. Recall exceeds 70%, except for the two mentioned classes. In the case of

applause, 62% of the existing references could not be found in the word transcript.

Next, we consider the influence of OOV queries on the evaluation results. Evaluating a

word-based STD system on a fixed set of queries clearly depends on the number of queries

that contain OOV words, i.e., queries that cannot be detected by the word system. This

number depends both on the vocabulary design and the query composition, and can

vary greatly between evaluation sets. First, we analyze the composition of the query set
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Figure 3.3.: STD performance on the individual subsets with exact retrieval from 1-best
word transcriptions.

into in- and out-of-vocabulary queries with respect to the decoding lexicon of the word

baseline. From table 3.5, we see that the number of OOV queries and corresponding

OOV query occurrences on the complete corpus is relatively low, hence we expect that

the STD performance on in-vocabulary terms is similar to the result on all queries.

The large ASR lexicon used in the evaluation is optimized for the political domain (see

below), which is dominating the corpus. Therefore the number of queries containing an

OOV is rather small in this particular scenario. While this might not be true for new and

unseen domains, it is a useful property in this evaluation: it allows us to compare the

performance of word and subword retrieval approaches on the same STD task, without

taking into account high OOV rates of the word recognizer.

In table 3.6, we compare the retrieval performance from the word 1-best baseline on

the whole DiSCo query set to a restricted set, excluding all queries which contain an

OOV term. By evaluating just on the in-vocabulary terms, recall is 4% absolute higher

at equal precision compared to the complete query set, reflecting the impact of the OOV

queries on the evaluation. The baseline ATWV of 0.67 is a suitable indicator for the
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Table 3.5.: Composition of the query set with respect to the word decoding lexicon.

Query set Unique queries Query occurrences

All queries 501 2,748

IV queries 460 2,601

OOV queries 41 147

overall system performance of a word-based LVCSR system on the STD task, regardless

of the relation between query set and decoding vocabulary composition.

Table 3.6.: STD performance using word 1-best retrieval.

Query set Precision Recall MTWV

All queries 0.95 0.72 0.62

IV queries 0.95 0.76 0.67

STD error analysis. From the 2748 query occurrences, the word baseline misses 147

OOV query occurrences and 624 IV query occurrences. Looking at the IV misses, we

observe that the corresponding query terms fall into three major categories:

• Proper names, which were infrequently mentioned in media at the time when the

language model training data was collected, but gained popularity when the eval-

uation data was recorded. This includes the name of US president Barack Obama,

who made it into the decoding dictionary as he was already a senator in 2004, but

became widely popular in Germany not before 2007 when he started the campaign

for the presidential election. The poor performance on such query terms (which

also include Andrea Ypsilanti or Lewis Hamilton) indicates that augmenting the

dictionary with new terms alone is not sufficient, and that either a continuous adap-

tation of the language model or a vocabulary independent approach is obligatory

for such terms.

• Foreign words, such as Champions League, New York, or Hypo Real Estate. This

can be caused by the larger pronunciation variability that can be observed in these

words due to nativization [70], but also the fact that monolingual pronunciation

inventories like the the SAMPA-D phoneme set are not designed to cope with the

challenge of foreign words [19].
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Moreover, the system produces 113 false alarms. We found that over 80% of these

false positives were caused by queries with six phonemes or less, and only 2% were

caused by queries longer than 10 phonemes. Examples for such short queries which

cause frequent false alarms are Wahlen - elections, Kinder - children or Markt - market.

The corresponding unigrams in the language model have a high probability, hence they

are likely to be used as back-off in smoothing. These errors are occuring especially in

more challenging acoustic situations. We conclude that word-based 1-best STD is highly

precise on longer query terms, and that retrieval of shorter queries might benefit from

additional result verification (see chapter 5).

In summary, the word-based 1-best STD system is especially well suited for search

scenarios where the following requirements are met:

• The set of relevant search terms that can occur is limited and known prior to the

indexing process.

• The acoustic and linguistic conditions are not too challenging, i.e., the word error

rate is reasonably low.

• The focus of the search is on precision rather than on recall, and search flexibility

with respect to true and false positives is not required.

3.3.2. Subword-Based Spoken Term Detection

In the following evaluation, we will look in more detail into the STD performance when

using the different recognition and retrieval units. Before the actual STD evaluation, we

compare the required vocabulary sizes for the different units, and describe appropriate

language model configurations. Within the scope of this thesis, we limit ourselves to

three different fixed configurations: a word-based system tuned for high stability, a

phoneme-based system optimized towards lexical flexibility, and a syllable system in

between. We measure the flexibility of a system configuration by the average number

of phonemes covered by a single n-gram (e.g., a unigram phoneme-based system with

maximum flexibility would cover one phoneme per unigram).

For the word STD experiments, we use the same setup as described in section 3.1, i.e.,

we applied a trigram language model and a pronunciation dictionary with 200,000 words.

On average, a word trigram in our language model covers a sequence of 33 phonemes.

As described above, we only exchanged the language model and the lexicon for building

the phoneme and the syllable system.

The phoneme dictionary contains all 49 phonemes which are used as central mono-

phones in the triphone acoustic model, and an additional entry for the silence model.
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In order to limit the influence of the statistical language model and allow for increased

flexibility during decoding, we trained a weak 4-gram phoneme language model on a

phonetized version of the same training data that was used for training the word lan-

guage models.

For the syllable language model, we first break down the language model training

corpus into its syllable equivalent, and collect all occurring syllables. As words, syllable

frequencies follow a Zipfian distribution, i.e., very few unique syllable types cause most

of the absolute syllable occurrences (see section 6.1). But unlike in the word case, we can

reach a large coverage of possible words with a relatively small amount of syllables. In

our case, we collect only about 10,000 unique German syllables from the large training

corpus, while over one million unique words can be observed in the data. We assume

that the set of syllables which is needed to model all possible words is finite, and that

it is covered by the set of syllables observed in the language model training corpus. In

particular, this assumption holds for the query set which is used in the evaluation at

hand: none of the IV or OOV queries from the set of 501 queries contains a syllable

which is not part of the 10,000 syllable vocabulary. We were particularly interested in

generating a system which is in between the word and phoneme systems with respect

to decoding stability and flexibility towards transcribing infrequent words. Hence we

decided to train a 4-gram language model on the syllabified version of the training data,

in order to obtain a sequence of 15 phonemes per syllable-4-gram on average. Table 3.7

summarizes the key aspects of the three different language models.

Table 3.7.: Characteristics of different decoding units.

Word Syllable Phoneme

Vocabulary size 200,000 10,816 49

Language model history trigram 4-gram 4-gram

Avg. phonemes per dictionary entry 11.1 3.8 1

Avg. phonemes per n-gram 33.3 15.2 4

Training data (sentences) 9,802,550 9,802,550 9,802,550

Training data (running tokens) 158 million 328 million 904 million

The actual decoding speed at indexing time is becoming less important in many sce-

narios with the growing and transparent availability of ubiquitous computing power, e.g.,

through services such as the Amazon Elastic Compute Cloud10. Nevertheless, required

10http://aws.amazon.com/ec2/
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CPU time for indexing is still a notable cost factor in designing speech search systems.

In order to achieve comparability at reasonable cost, we selected the pruning parameters

of the decoder such that the overall decoding duration is less than two times the duration

of the decoded utterance.

If we look at the systems in isolation, we can measure the performance of the three

individual ASR systems with word, syllable and phoneme error rate. However, results

for word, syllable and phoneme error rate are hard to compare. For the word system, we

can also give syllable error rate by breaking down both reference and ASR transcript into

their syllabic equivalents. Using the same evaluation metric for the word and the syllable

system enables a direct comparison of the system performance, regardless of the chosen

unit. The same procedure can be used to compare word, syllable and phoneme system

with respect to the phoneme error rate. Table 3.8 compares the quality of the syllable

transcript obtained from word and syllable decoding. The quality of word decoding

systems is higher across all challenges despite inevitable errors in the word transcript

stemming from OOV terms. This is mainly due to the more powerful language model

and the larger decoding unit, and the relatively low OOV rate with respect to the large

200,000 word lexicon.

Table 3.8.: Syllable error rates obtained from word and syllable ASR (by acoustic and
linguistic challenge).

Syllable error rate (%)

Subset Word ASR Syllable ASR

Planned, clean 17.2 20.6

Spontaneous, clean 24.9 28.7

Planned, background speech 22.9 27.9

Planned, music 22.3 28.2

Planned, dialect 41.4 48.1

Planned, applause 54.7 56.0

Other (including mixes) 31.3 36.0

All 28.3 32.9

Table 3.9 compares the phoneme error rate across all three systems. First we observe

that the relation between the phoneme error rate of the word and the syllable transcript

is very similar to the case of the syllable error rate comparison above. The phoneme

error rate of the word ASR output is lower across all challenges, but on average by only
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1.9% absolute compared to the direct syllable transcription. Compared to this result,

the performance of the unconstrained phoneme decoding is very low. On average, the

phoneme error rate of the phoneme decoder is 41.2% absolute higher compared to the

output of the word decoder. This poor performance is caused by several aspects. Due to

the small language model context and the absence of structural constraints as in the case

of syllables, in many cases the decoder hypothesizes phonemes even at very short speech

pauses, especially in the presence of background noise and despite the existence of a

dedicated short pause silence model. Looking at the size of the ASR output, we observe

that all syllable transcriptions contain a total of 240927 syllables, which is close to the

size of the syllabified version of the word transcription (232003 syllables). In contrast

to this, the phoneme transcriptions contain 822995 phonemes, opposed to only 578483

phonemes in the phonetized word transcriptions. In addition, the low influence of the

language model shifts more influence to the core acoustic models which are naturally

unable to match all the hetrogeneous acoustic conditions in the complex DiSCo corpus.

We conclude that from the three systems, the most constrained word system produces

the lowest phoneme error rate. We expect that the least constrained phoneme decoder

cannot yield competitive STD results due to the high ASR error rates.

Table 3.9.: Phoneme error rates obtained from word, syllable and phoneme ASR (by
acoustic and linguistic challenge).

Phoneme error rate (%)

Subset Word ASR Syllable ASR Phoneme ASR

Planned, clean 11.1 12.6 43.8

Spontaneous, clean 17.4 18.0 48.7

Planned, background speech 16.0 18.3 61.0

Planned, music 15.1 18.0 75.3

Planned, dialect 30.1 33.6 75.9

Planned, applause 45.5 44.0 91.8

Other (including mixes) 22.7 22.1 64.4

All 20.2 22.1 61.4

We start our analysis of Spoken Term Detection using the different approaches by

looking at the performance on in-vocabulary queries on the complete DiSCo corpus.

This enables us to focus on the performance of the individual units irrespective of the

OOV rate. Table 3.10 contains the results for all relevant combinations of recognition

59



3. Vocabulary Independent Spoken Term Detection

and retrieval units on the in-vocabulary queries.

First, we observe that all approaches have an STD precision which is tolerable in many

applications. Unsurprisingly, the pure decoding to and retrieving from phonemes yields

the lowest overall performance. However, we note that despite an average phoneme

error rate of 61.4%, the approach detects more than a fifth of the query occurrences at

reasonable precision.

Both precision and recall drastically increase when using syllables as the recognition

unit. Precision reaches 94% if syllables are used in retrieval, and it is decreased only

slightly if the syllables are broken down to phonemes at search time. This is due to

false alarms that are caused by ommitting implicit information about word boundaries,

which is not available anymore during retrieval at the phoneme level. For example,

consider Ban Ki Moon, the name of the Secretary-General of the United Nations as of

2011. A correct syllable transcription of a spoken occurrence of the name would result

in b a n k i: m u: n . If this result is further broken down to phonemes, we obtain

the phoneme sequence b a n k i: m u: n . Here, searching for the query Bank and its

phonetic representation b a n k would lead to a false alarm, that would not occur at

the syllable level.

On the other hand, breaking down syllables to phonemes increases recall and MTWV

by 2% absolute. Looking at the results, we observe ambisyllabic movement of consonant

clusters between two consecutive syllables. Consider the example Ratte - rat. Automatic

syllabification of the query Ratte will yield a unique syllabification, e.g., r a t @ . How-

ever, from an acoustic point of view, the central t could belong both to the first and the

second syllable, so with a relatively weak syllable language model, it is not clear whether

the decoder should transcribe either r a t @ or r a t @ . In this case, breaking down

both transcription and query to the phoneme representation copes with the amisyllabic

movement of the consonant t.

As we can expect from the different ASR results, in-vocabulary Spoken Term Detection

performs best if performed on the basis of word transcripts. Compared to the case of

using syllables for recognition, recall is more than 10% higher at similar precision. For the

same reasons as described above, precision decreases slightly when breaking down words

to syllables for retrieval, and further if broken down to the smallest possible retrieval

unit. A small gain in recall can be observed by breaking down words to syllables during

retrieval for queries containing relatively infrequent compound words. In this case, the

decoder might rather hypothesize the more frequent individual word parts, which cannot

be found by exact word search for the full compound. However on the syllable level,

word boundaries both in the query and the transcript are ommitted, and the syllable
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representation of the compound can be found in the subword transcript. As described

above, additional gain is possible by further breaking the transcript down to phonemes,

yielding the best overall system for in-vocabulary terms.

We note that there is a scalability issue when using smaller units such as phonemes

for retrieval. This effectively means that the amount of units to be stored and indexed

increases drastically, e.g., in the case of the DiSCo corpus from 158 million words to

almost 1 billion phonemes. This scalability challenge will be investigated in more detail

in section 6.

Table 3.10.: Exact STD performance on IV queries.

Recognition unit Retrieval unit Precision Recall MTWV

Phoneme Phoneme 0.73 0.21 0.07

Syllable
Syllable 0.94 0.66 0.52
Phoneme 0.94 0.68 0.54

Word
Word 0.95 0.76 0.67
Syllable 0.94 0.77 0.69
Phoneme 0.93 0.78 0.70

Looking at the remaining errors for the best performing word-phoneme system, we

observe that 85% of the false alarms are caused by queries with only one or two syllables.

This reflects the fact that the ASR correct rate of longer words is typically higher than

for short words [122]. In addition, most of the false alarms are caused by queries with

a relatively high frequency such as Wahlen - elections or Bayern - bavaria. Following

the statistical language modelling paradigm, high frequency words are prefered by the

ASR decoder. Regarding the missed query occurrences, we observe that many misses are

caused by queries containing rather infrequent proper names such as Arthur Abraham

or Andreas Kappler. All parts of these multiphrase queries are part of the decoding

lexicon and can in principle be decoded, however, the corresponding bigrams have a low

frequency in the language model training corpus. Despite the lower ASR accuracy, some

of these misses were detected by the less constrained syllable system.

Next, we investigate the performance of the three systems on very infrequent terms,

namely queries containing a word which is not among the 200,000 most frequent words in

the large language model training corpus. Words cannot be used as a unit for retrieval

on OOV queries, hence Table 3.11 compares only subword-based approaches on the

OOV query set. All in all, searching highly infrequent terms results in lower accuracy

than searching for IV terms with a high frequency. First, we observe that again the
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performance of retrieval from the phoneme transcript shows a very poor performance.

Only 3% of the query occurrences can be obtained with an exact search on the phoneme

transcript, although at a reasonable precision of 80%. Comparing retrieval from word

and syllable decoding output, we observe that in the case of OOV queries, the syllable-

based approaches outperform the search on the syllabified or phonetized word transcript.

This indicates that the retrieval benefits from the greater flexibility with respect to the

language model. As with IV queries, recall can be slightly increased by further breaking

down words to phonemes instead of syllables.

Table 3.11.: Exact STD performance on OOV queries.

Recognition unit Retrieval unit Precision Recall MTWV

Phoneme Phoneme 0.80 0.03 0.02

Syllable
Syllable 1.00 0.20 0.24
Phoneme 1.00 0.20 0.24

Word
Syllable 1.00 0.07 0.15
Phoneme 1.00 0.08 0.15

Despite the large improvement compared to the word decoder baseline, syllable STD

on infrequent terms still suffers from low recall. A major drawback of the intuitive exact

subword matching is the requirement that all syllables of the query must be transcribed

correctly in order to yield a match. Especially for longer words as well as for short

syllables this requirement is too strong. We will incorporate approaches to overcome

this challenge in the next section.

For reference, table 3.12 summarizes the results on the complete query set. We observe

that compared to the in-vocabulary results, the difference in recall between the word and

the syllable-based systems is smaller due to the inclusion of the OOV queries.

Table 3.12.: Exact STD performance on complete query set.

Recognition unit Retrieval unit Precision Recall MTWV

Phoneme Phoneme 0.73 0.20 0.07

Syllable
Syllable 0.94 0.64 0.50
Phoneme 0.94 0.65 0.51

Word
Word 0.95 0.72 0.62
Syllable 0.94 0.73 0.64
Phoneme 0.93 0.75 0.65
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3.4. Summary

In this chapter, we have investigated different setups for German Spoken Term Detection

using exact search on 1-best ASR transcripts. The results on the complete DiSCo corpus

show that for in-vocabulary queries, word-based approaches perform best (MTWV 0.70),

while for rare OOV queries, the syllable-based systems outperform the other approaches

(MTWV 0.20). The high error rates of phoneme decoding render pure phoneme systems

unusable for heterogeneous corpora.

For the evaluation, we have selected words, syllables and phonemes as representative

STD units, and made an explicit distinction between recognition and retrieval unit. A

200,000 word LVCSR system was set up, yielding error rates comparable with other state-

of-the-art systems for German ASR. Language models for word, syllable and phoneme

decoding were built with a focus on covering different language model histories (with

33, 15 and 4 phonemes per unit for word, syllable and phoneme m-gram, respectively).

Word ASR yielded the lowest phoneme error rate due to the large size of the decoding

unit and the most constrained language model. While syllable ASR showed compara-

ble performance, phoneme accuracy drops when using a rather unconstrained phoneme

language model.

The STD evaluation revealed that even with our large 200,000 in-domain word dictio-

nary, many interesting queries cannot be found by the word-based STD system because

they are not part of the vocabulary. We observed that almost all OOVs are nouns, and

about 60% are proper names, which represent an important class of STD queries. Hence,

the word-based 1-best STD system is especially well suited if the set of relevant search

terms is known prior to the ASR and the lexicon can be adapted accordingly. Word

STD produces highly precise results, but search flexibility with respect to true and false

positives is not given.

For OOV queries, syllable STD performed best, however, still only 20% of the OOV

occurrences could be retrieved. On the IV query set, subword STD based on syllables

achieves almost 10% less recall compared to word-based ASR, which is mainly caused

by the higher syllable error rate and the harder constraint that all syllables of the query

sequence must be matched exactly (instead of only one match in the word case). In the

following chapter, we will investigate methods for error compensation which cope with

this drawback of syllable retrieval by allowing for partial mismatch between query and

ASR output.

When distinguishing between recognition and retrieval unit, we observed the following

on our German evaluation task:

63



3. Vocabulary Independent Spoken Term Detection

• On IV queries, breaking down decoded words to phonemes yields the best per-

formance due to better handling of compounding and ambisyllabic movement of

phonemes.

• On OOV queries, STD on syllable ASR output outperforms retrieval from word

or phoneme output. Accuracy is even higher if the recognition output is broken

down to phonemes, which again copes with ambisyllabic movement.

• Retrieval on the output from phoneme ASR turned out to produce very poor results

on DiSCo due to the high phoneme error rate on the complex data set. This is

also true for OOV queries, where both word and syllable-based phoneme retrieval

performed much better.

• Some OOVs can be retrieved when breaking down words to subwords, but these

are mostly compound words, where the query was a compound part.
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Detection Errors

The preceding chapter has introduced subword-based STD as a viable means for coping

with the OOV problem in speech retrieval. The evaluation clearly indicates that search-

ing for infrequent words on transcripts based on syllable decoding outperforms exact

search on the ASR output of other units such as words or phonemes. Nevertheless, the

performance when searching such rare words is still rather poor, as only 20% of the

ocurring queries could be found when perfoming an exact search on the syllable tran-

script. In this section, we will investigate reasons for this poor performance, and study

approaches to further increase recall, especially for infrequent words. In particular, our

approaches adress the challenge of exact subword match on imperfect ASR transcripts

and cope with pronunciation variation in subword transcripts.

In section 4.1, we motivate our approaches to error compensation by analyzing the

sources for STD errors in the subword domain. From our analysis we conclude that

subword ASR errors and pronunciation variation are the major - and potentially disjoint

- sources for STD errors. In the following sections 4.2 and 4.3, we present a set of new

approaches to cope with the different error types, building upon existing work in this

area.

First, we investigate the applicability of state-of-the-art lattice retrieval techniques for

German lattice STD, which we have first published in [77]. A confidence measure based

on the work published in [65] is used for on- and offline pruning of word and subword

lattices. Based on existing work from [60], we study approximate search on German

subword transcripts in section 4.3. We propose a novel syllable distance metric based

on position-specific phoneme clusters (PSCs), which is focused on explicitly modeling

syllable pronunciation variation in Spoken Term Detection. Our results on approximate

matching have been first published in [96], while the PSC-based approach was first

described in our contribution in [78]. The sub-syllabic units have application beyond

STD, and we have successfully used them for ideolectal speaker recognition [7] and

subword vocabulary adaptation [79]. Following the taxonomy from chapter 3.2, where
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we distinguished between recognition and retrieval unit, we are again interested in the

effect of approximate subword match on word transcripts broken down to subwords:

does it pay off to invest in a dedicated subword decoding run, or can we simply retrieve

from the broken down word transcripts with the same accuracy?

Finally, section 4.4 describes a novel approach to hybrid approximate lattice retrieval,

which effectively adresses the two STD error spaces described above. We achieve this

by loosely coupling lattice retrieval and approximate lattice path alignment in a two-

step compensation cascade, which we have first proposed in [78], and then successfully

applied on DiSCo in [94].

4.1. Error Sources in Spoken Term Detection

The exact subword matching approach requires that the subword transcription of a

query occurrence is equal to the subword subword representation of the query in order

to produce a match. Any deviation on either side will prevent the exact search from

detecting query occurrences. In [78], we have shown that low retrieval recall in subword

Spoken Term Detection stems from two different sources: it can be caused by ASR errors

or by pronunciation variation, which are described in the following.

ASR errors. In many - if not most - scenarios that require transcribing natural speech,

systems are far from reaching the ultimate goal of generating perfect transcriptions.

The inevitable recognition errors are often caused by a mismatch between the conditions

during training the system and using it for recognition. This mismatch can be subdivided

into two categories:

• Language model mismatch: there is a mismatch between the textual corpora used

for training the language model and the characteristics of the actual speech that

shall be decoded. This includes typical word sequences, which can differ greatly

between written newswire texts and spoken utterances from a TV discussion show.

For subword decoding, the language model mismatch is less important as the influ-

ence of the language model is systematically reduced in order to allow for decoding

of highly infrequent words.

• Acoustic model mismatch: the acoustic conditions of the evaluation data are not

well covered by the data used for training the acoustic models. Acoustic conditions

include the particular characteristics of a speaker’s voice, but also characteristics
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of the recording channel. The acoustic model mismatch is of particular importance

in subword decoding due to the reduced influence of the language model.

In addition, subword decoders tend to have a lower ASR performance compared to

word decoders, and ASR errors inevitably lead to STD errors if exact matching is ap-

plied. In the evaluation of the subword STD baseline, we have observed that the subword

decoders typically suffer from higher syllable and phoneme error rates. The increased

flexibility of the subword decoders and their ability to decode the actual acoustic real-

ization of a subword sequence comes at the cost of less decoding stability under more

challenging conditions.

Pronunciation variation. Breaking down word queries to subword sequences yields a

canonical subword representation of a query, i.e., the subword transcription has an ideal

reference pronunciation. However, different speakers might use different pronunciations

for queries, hence there is a certain variability in the query pronunciation.

From a subword point of view, the decoder has to balance its hypotheses between two

different targets:

• The decoder can aim at producing a subword transcript close to the canonical

subword representation. This can be achieved by increasing the influence of the

language model, e.g., via language model scaling factor and longer language model

history.

• In contrast to the more constrained decoding optimized for generating the canon-

ical representation, the decoder can be tuned towards producing a subword tran-

scription close to the actual acoustic realization by reducing the influence of the

language model.

From the evaluation in section 3.3 we have seen that the word baseline typically

outperforms subword STD on highly frequent queries, hence we rather focus on tuning

the subword approaches towards detecting very infrequent words. In this case, a more

flexible language model configuration is much more appropriate, as the infrequent words

are unlikely to be represented well by the training corpora. This approach has been used

in the evaluation in section 3.3, where on average, each syllable m-gram covers 50% less

phonemes than an m-gram in the LVCSR baseline.

Figure 4.1 illustrates the effect pronunciation variation on retrieval from perfect sub-

word transcripts, if the ASR is tuned towards capturing the actual acoustic realization

of the utterance.
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Speaker says: 

„Ich wünsche Ihnen Hals- und Beinbruch!“ 

With the actual speaker-dependent syllabic pronunciation: 

I_C_   w_Y_n_   S_@_   Q_i:_  n_@_n_ 
h_a_l_s_   Q_U_n_   b_aI_n_   b_r_U_x_ Final-t-deletion 

Spoken Term Detection for Query: 

Canonical representation: 

„Hals- und Beinbruch“ („good luck!“)  

h_a_l_s_   Q_U_n_t_   b_aI_n_   b_r_U_x_ 

Syllable ASR aims at producing the actual syllabic pronunciation. 
Hence, the canonical query representation cannot be found in a perfect syllable transcript. 

Figure 4.1.: Example for final-t-deletion, which causes STD misses on perfect syllable
ASR transcripts.

In the following sections, we will investigate techniques to explicitly overcome the

described challenges. First, we look into established methods for coping with ASR errors

in word and subword STD by taking alternative recognition hypotheses into account.

Then, we describe our approach to cope with deviations between a subword query and a

subword transcript by means of approximate matching for subword sequences. Finally,

we present a novel hybrid approach which applies approximate subword matching to

competing ASR hypotheses. Here, we explicitly aim at overcoming ASR errors and

pronunciation variation in an integrated approach.

4.2. Compensation by Alternative Recognition Hypotheses

Many systems for ASR follow the paradigm specified by equation 3.4. They aim at esti-

mating the word sequence with the highest probability of having generated the observed

feature sequence. This is also true for the decoder used within this evaluation [65].

However, ASR decoders can output more information about the decoding process than
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just the 1-best transcription, for example they can provide competing recognition hy-

potheses. This additional output from the decoder can be exploited in retrieval. In

the following, we describe lattices, which represent a standard approach for encoding

alternative recognition hypotheses from the ASR decoder, and show how they can be

used in Spoken Term Detection.

Instead of storing only the most probable 1-best transcription of a single utterance, the

speech recognizer can also produce a list of competing sentence hypotheses. This N-best

list contains the N most probable sentence hypotheses, ordered by probability of the

sentence hypothesis. This approach is particularly suited for simple and efficient retrieval

on recognition alternatives. In principle, each sentence hypothesis can be indexed as a

different transcription of the same utterance, and searching for the query boils down

to simple text search. We note that the difference between two hypotheses is typically

very small, and will often consist of only one or two words. Hence, in the worst case,

large parts of the information encoded in the N-best-lists will consist of repetitions.

This is a major disadvantage for longer utterances consisting of many words, where the

number of sentences N that need to be stored to cover the most important alternatives

is too large for practical applications. The amount of required sentence alternatives even

increases if we consider using N-best lists for subword retrieval, as the number of tokens

per utterance transcription is much higher than in the case of words (c.f. table 3.7).

More compact representations of the ASR hypothesis space can be used in order to

overcome the storage drawbacks of the N-best list. In particular, lattices have been

used extensively for this task, and they have been successfully applied across different

retrieval units such as words [99], syllables [77] or phonemes [112].

Formally, a lattice is an acyclic directed graph

G = (V,E) (4.1)

with a set of nodes V and a set of edges E. Each node n ∈ V is a tuple

n = (i, l, ts, te, c) (4.2)

The tuple specifies a unique node id i, a node label l representing the transcribed

token identity (i.e., the word, syllable or phoneme) and the start and end time ts and

te of the speech segment covered by this node. Moreover, for each node we store a

confidence c, 0 ≤ c ≤ 1 which indicates the degree of uncertainty from the decoder.

The node set contains two special nodes: an initial node ninit with no incoming and at

least one outgoing edge, and a terminal node nend with at least one incoming and no
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outgoing edges. Figure 4.2 illustrates exemplary word and syllable lattices, generated on

the same sample utterance from the DiSCo corpus with the reference transcription über

den ganz Deutschland staunt. We used the ASR configuration described in section 3.3

to generate the lattices. Note that both ASR decoders use the same acoustic model,

but differ in language model and lexicon. Hence, paths through the syllable lattice can

be substantially different from syllabified paths through a word lattice. For example,

alternatives for the correct word staunt includes the word stammt, but the corresponding

syllable S t a m t is not part of the syllable lattice.

The syllable lattice contains a good example for pronunciation variation and its impact

on retrieval from subword ASR output. Here, the lattice contains the syllable sequence

d OY t S l a n corresponding to the spoken word Deutschland, which is the correct

syllabic representation if the speaker deleted the final t of the second syllable. In such

cases, it is possible that the correct syllable sequence is not part of the lattice (because

it has a relatively low acoustic likelihood), and retrieval would fail to recover from the

pronunciation variation.

Figure 4.2.: Example for word and syllable lattices, generated on the same DiSCo sample
utterance.
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Lattice retrieval, i.e., detecting query occurrences in a lattice, can formulated as a

search problem on the lattice graph. Consider a lattice G and a given word query

q = q1 · · · qn with n words. Then, we search for all node paths p = p1 · · · pn with n

nodes where the sequence of the corresponding node labels equals q. This description

can be easily transformed for retrieval from subword graphs, such as syllable or phoneme

lattices. In this case, the query is again broken down to subwords just as in the case of

exact search on the 1-best transcript, and the retrieval is performed on the the subword

graph just as in case of word lattices.

Several important design decisions have to be taken when using lattices for retrieval.

In particular, one has to decide

1. on the size of the lattice graph, i.e., on the amount of competing hypotheses that

shall be included,

2. how to control the number of nodes that will be included in the recognition lattice

and

3. how to estimate the uncertainty of the decoder for a certain lattice node.

The optimal size of the graph that will be indexed depends on the requirements during

retrieval. Basically, there are two alternatives. The graph can be pruned by removing

unlikely nodes (i) until the graph contains only hypotheses that are assumed to yield

correct STD results or (ii) by keeping as much hypotheses as possible within the given

storage constraints. In the first case, only nodes with a high local recognition confidence

are kept, and all others are removed during an offline process at indexing time. In the

second case, we keep all hypotheses above a certain minimal confidence threshold and

defer the actual STD decision to the retrieval process. The latter approach offers a

greater flexibility for the user, who can adjust the balance between precision and recall

of the search at query time. We refer to the first variant as offline graph pruning and to

the second variant as online graph pruning.

Both approaches require a process for controlling the number of nodes in the lattice

graph, which in turn requires a confidence measure for assessing the decoding quality at

a certain node.

Our process for pruning nodes with low confidence is as follows. First, we obtain a

large and unpruned lattice from the ASR decoder. Then, we estimate a confidence score

for each lattice node based on the acoustic and language model likelihoods that were

estimated by the ASR process. We follow the approach described in [14]. Given a node

q, the lattice confidence Cq that the label of the node was spoken at the given time

stamp is estimated by
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Cq =
Lα(q)LAM (q)LLM (q)Lβ(q)

Lmax
(4.3)

Here, Lα and Lβ are the forward and backward scores of the considered node q. The

forward score of a node represents the likelihood that a lattice path leads to this partic-

ular node, while the backward score represents the likelihood for a path from this node

to the end of the lattice. The acoustic likelihood of the node is denoted by LAM (q),

and LLM (q) is the language model likelihood. The confidence score is normalized by

the maximum likelihood Lmax of the Viterbi path through the lattice, yielding a con-

fidence score between 0 an 1. As usual in ASR decoders, we use log-likelihood scores

instead of probabilities to cope with the problem of very small probability values. Hence,

multiplication of probabilities in equation 4.3 becomes adding the corresponding scores.

In [14], the authors further distinguish between word and subword systems, as their

subword phoneme system in not constrained by a language model, and is thus completely

unconstrained from a linguistic point of view. In our case, this further distinction is not

necessary and we can use the same confidence scoring approach for all considered units.

For the actual implementation, a standard forward-backward algorithm is used [90].

First, the list of nodes is sorted in decreasing order by the time stamps of the nodes.

Starting with the rightmost node (which is now the first node in the list), we perform

the following forward procedure on all nodes:

• If the node is the rightmost node, we initialize the forward score with a value of

0.0.

• The forward pass terminates if an initial node is encountered (the last node in the

list).

• For all other nodes, we propagate the forward score of the current node to all

its left neighbors by adding the acoustic model score of the current node and the

language model score for the transition between neighbor and current node. For

each left neighbor q′ of the current node q, the forward score Lα(q′) is given by

Lα(q′) = Lα(q)LAM (q)LLM (q′, q) (4.4)

In a similar fashion, we carry out the backward procedure by sorting the nodes by time

stamp in increasing order. Starting with the leftmost node, we estimate the backward

scores from left to right. For the actual confidence score, we apply equation 4.3 for each
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node q, using the estimated forward and backward scores. For the normalizing factor

Lmax, we take the maximal forward score (i.e., the forward score at the initial node).

For offline graph pruning, we directly use this confidence score for limiting the number

of nodes per time frame by applying the following procedure which was used successfully

to prune lattices in [65]:

• for each time frame t, we obtain a list of nodes that have a start time ts ≤ t and

an end time te ≥ t

• we sort the list of obtained nodes in increasing order by their confidence value as

estimated by the forward-backward procedure above

• for a graph cut of n, we remove all but the last n nodes from the list that represent

the n nodes with the highest confidence at the current time frame

For online graph pruning, we have proposed a method in [77], which assesses the

confidence of a path through the lattice at search time. The idea is to pre-calculate the

confidence of each node at indexing time, and combine the confidences of a matching

lattice path at runtime. We use the same approach as described above for pre-calculating

the confidence for a single node at indexing time. Then, at runtime we can approximate

the confidence score for the whole sequence in several ways. One approach presented

in [77] is to calculate the product of the normalized node confidence scores as a lower

bound for the query confidence score, i.e., for a query with n tokens we obtain:

Cq =

n∏
i=1

Cqi (4.5)

We note that this approach is particularly sensitive to outliers, i.e., the overall confi-

dence score can become very small if only one of many query tokens has a low confidence.

As an alternative, one can also consider using the average of the confidence scores:

Cq =
1

n

n∑
i=1

Cqi (4.6)

For both approaches, we only need access to the node confidence scores at runtime

and can ignore all other node-specific information (such as acoustic and language model

likelihoods). This is especially useful in the case of subword decoding, where the graphs

are typically substantially larger than word lattices. The size of the large subword ASR

output graph is a major drawback when using subwords for lattice decoding and re-

trieval, and there is need for efficient approaches to scoring and accessing the information
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contained in the lattice. In our experiments, the already pruned lattices from syllable

decoding contained on average 13 times more nodes than the 1-best syllable transcrip-

tion (see section 6). This requires attention in scenarios where users perform ad-hoc

searches on large data sets, as exhaustive graph search for long query path matches

(and optionally additional online pruning) can be computationally expensive. Moreover,

storing such large lattices for thousands of hours of data requires compact representa-

tions for data persistence. Within the scope of this section, we focus on the baseline

performance of lattice indexing and retrieval, i.e., we are interested in the performance

without tight restrictions on the indexing and retrieval efficiency. Scalability aspects of

the retrieval system - both in terms of retrieval efficiency and storage requirements - will

be investigated in detail in section 6.

4.3. Compensation by Approximate Matching

The preceding section has introduced lattices as a means for coping with ASR errors in

the context of Spoken Term Detection. Searching lattices instead of words allows us to

increase the completeness of the search result, while we hope not to sacrifice too much

STD precision by constraining the graph to the most promising hypotheses.

In this section, we introduce our approach for approximate phonetic matching between

subword sequences, which can be used as a means for fuzzy STD on subword transcripts.

As a baseline, our system builds upon the work proposed in [60]. We extend the approach

with additional distance measures, investigate its applicability to other retrieval units

and optimize its computational requirements. Finally, we validate our published results

from [96] on the more challenging DiSCo corpus.

We define approximate phonetic STD on 1-best as follows:

Given a word query and a 1-best transcription, obtain all positions in the transcription

where the local phonetic similarity between query and transcript is above a certain

threshold.

Thus exact search on transcripts is a special case of approximate search, where the

minimum required similarity is equal to 1. In the context of STD, phonetic approxima-

tion by minimum edit distance between the subword representations has been shown to

be useful in several contributions [104, 91, 60]. We will use the idea as a baseline for our

further investigations.

Figure 4.3 illustrates the generic workflow for approximate search on ASR output.

First, we obtain the subword representation of the word query. As in the case of exact

search on subword transcripts, we can apply grapheme-to-phoneme or grapheme-to-
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syllable conversion, such that the unit type of the subword query matches with the unit

type obtained from the speech recognizer. Then, we compare the subword sequence that

represents the query with the subword transcripts which we obtain from the ASR. We

estimate the local similarity between the subword query and the subword transcript at

each position in the transcript. If the local similarity is above a decision threshold, we

accept the transcript position as an STD hit. As in the case of lattices, low decision

thresholds will increase recall at the inevitable cost of decreasing precision, while too

high decision thresholds will not enable additional recall compared to exact search. In

the following evaluation, we will particularly investigate the behavior of the different

approximate search configurations while varying the decision threshold in order do find

promising search configurations for the different search scenarios.

Word Query 

Subword 
Query 

Subword 
Transcripts 

 Grapheme-to-subword Conversion 

 
 
Approximate Subword Search: 
 
Return all transcript positions  
where local similarity between  
subword query and subword transcript  
is larger than decision threshold  
 
 

Figure 4.3.: Workflow for approximate subword search on ASR output.

4.3.1. Approximation using Minimum Edit Distance

In the following, we give a formal definition of the approximate subword search approach

using minimum edit distance, regardless of the unit we use for subword transcription.
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Recall the definition of a single occurrence hypotheses detected by the system for a

particular query q as defined in section 2.1:

o(q) = {s, ts, te, c} (4.7)

where s is the document which contains the hypothesized hit at starting time ts and

end time te with a confidence of c. Then, an approximate subword match for the query

q is defined as follows.

Assume that t = s1 · · · sn is the subword transcription of the document s, and q =

q1 · · · qr is the subword transcription of the word query qw. A sub sequence m = sv · · · sw
of t is called an approximate match for qw, if

d(q,m) <= γ (4.8)

where d(q,m) is the distance between the two subword sequences and γ is a threshold

that indicates the degree of sequence variation that is tolerated by the system. The

threshold γ is the decision boundary for the approximate matching and can be configured

depending on the STD scenario: for example, recall-oriented applications such as media

monitoring would rather require a low threshold, which enables additional true positive

hits at the cost of lower precision.

The distance d(q,m) can be estimated using a minimum edit distance, i.e., by calcu-

lating the minimal number of subword substitutions, deletions and insertions that are

required to transform q into m. We estimate the minimum edit distance using Dynamic

Programming recursion. and obtain the distance between q and m by

d(q,m) = D(r, (w − v)) (4.9)

where D is the minimum accumulated distance at the last subword of the query and

the last subword of the hypothesized matching subword sequence. Then, we can estimate

D in a recursive manner. For a particular pair of subwords qi, sj , where qi is the i-th

subword in the subword query and sj is the j-th subword in the hypothesized subword

transcript match, the minimum accumulated distance at i, j is given by:
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4.3. Compensation by Approximate Matching

D(i, j) = min{

D(i− 1, j) + TDP,

D(i, j − 1) + TDP,

D(i− 1, j − 1) + sub(qi, sj)

}

where TDP is the time distortion penalty for inserting or deleting a subword, and

sub(qi, sj) is the cost for substituting the subword qi with the subword sj . We will

investigate possible definitions for the subword distance in the next sections, which are

dedicated to the application of the minimum edit distance to phoneme and syllable

sequences respectively.

Following the work presented in [60], we normalize the minimum edit distance by the

maximum edit distance that can occur for the two given sequences and obtain a distance

between 0 and 1.

In the following, we will estimate the confidence c for an approximate for a hit occur-

rence o(q) = {s, ts, te, c} by

c = 1− d(q,m) (4.10)

where m = sv · · · sw is a subword subsequence of the transcription of s, ts is the

start time of the subword sv and te is the ending time of sv. Focusing on confidence

rather than distance allows us to use the same evaluation infrastructure as in the case of

lattice matching, i.e., we can estimate the actual term-weighted value of a system given

a confidence threshold δ = (1− γ).

4.3.2. Approximation Scenarios for Selected Recognition and Retrieval Units

Next, we analyze the different approximation scenarios that are available for different

word and subword transcription units.

• Approximation on phoneme transcripts: We could break down the word query to

a phoneme sequence. Then, we would align the query phoneme sequence with the

transcript phoneme sequence and search for positions with high similarity.

• Approximation on syllable transcripts: We could break down the word query to a

syllable sequence and align it to the syllable transcript as described for phonemes
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above. Moreover, we could further break down both query and transcript to

phoneme sequences and perform a phoneme instead of a syllable alignment in

order to overcome the ambisyllabic movement of consonant clusters between two

consecutive syllables (see section 3.3.2). We note that breaking down from sylla-

bles to phonemes inevitably decreases the efficiency of the approximation, as the

number of tokens that need to be aligned is increased by the average number of

phonemes per syllable.

• Approximation on word transcripts: We could break down word queries and tran-

scripts to both syllable or phoneme sequences and perform the alignment as de-

scribed above.

Approximate search on phoneme transcripts Figure 4.4 illustrates the workflow for

approximate search on phoneme transcripts. We break down the query into a phoneme

sequence using grapheme-to-phoneme conversion, and find locations in the phoneme

transcript that are phonetically similar.

Word Query 

Phoneme 
Query 

Phoneme 
Transcripts 

Grapheme-to-phoneme Conversion 
 
 
 

 
 
 

 
 
 
Approximate Phoneme Search 
 
Local similarity between phoneme sequences: 
Minimum edit distance. 
 
Phoneme Substitution cost:  
•  Variant 1: Equal cost for all substitutions 
•  Variant 2: Lower cost for similar phonemes 
 
 
 
 

Figure 4.4.: Workflow for approximate phoneme search on phoneme ASR output.
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The minimum edit distance according to equation 4.9 is used for the estimation of

the similarity between a phoneme query and a subsequence of similar length from the

phoneme transcript.

We expect that similar phonemes are falsely substituted more often by the ASR than

dissimilar phonemes. Hence, it could be beneficial to decrease the substitution cost

for pairs of similar phonemes when estimating the minimum edit distance. One can

group the phonemes into different classes according to their similarity [104]. Typically,

phonemes are either considered equal, completely dissimilar (such as a and S ) or similar

(such as b and p). Then, the subword distance sub(p, q) between two phonemes p and q

depends on the class they belong to:

sub(p, q) =


0 if p = q

csimil if simil(p, q)

1 else

(4.11)

where csimil is a constant substitution cost for substituting similar phonemes and simil

is a binary function which determines whether two phonemes are similar. As a baseline,

we could disable the substitution cost model and assume equal substitution costs for

all phonemes (i.e., csimil = 1). The substitution cost for substituting similar phonemes

should be lower than 1, and it should be lower than the time distortion penalty such

that substituting similar phonemes is cheaper than deleting a dissimilar phoneme.

Similar phonemes could be selected by using prior linguistic knowledge about phoneme

classes (e.g., a pair of vowels could be more similar than a fricative and a vowel) [104].

However, this approach is rather inflexible as it needs manual interaction when adapting

the system, e.g., to a new dialect.

We apply a more flexible data-driven approach that can be easily adapted to a new

decoding situation without deriving new rules. For each pair of phonemes (p, q) we

estimate the confusion probability pc(p, q) that the ASR hypothesizes phoneme q while

phoneme p is actually spoken. We obtain the phoneme confusion counts from the speech

decoder as follows:

1. Perform phoneme decoding of development data set that has similar acoustic prop-

erties than the target set for STD (in our case: broadcast data).

2. Break down both automatic and reference transcription of the development data

to the phoneme level using grapheme-to-phoneme conversion.

3. Perform alignment between reference and hypothesis phoneme sequences using
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4. Compensation of Spoken Term Detection Errors

minimum edit distance. For each pair of phonemes (p, q), this yields n(p, q) as

the number of times where p was substituted with q in the minimum edit distance

alignment.

We can assume that the frequency of substituting p with q is similar to substituting q

with p. Hence we sum up the frequencies of both substitution directions and normalize

the counts with the total number of occurrences of the two phonemes n(p) and n(q),

respectively:

pc(p, q) =
n(p, q) + n(q, p)

n(p) + n(q)
(4.12)

For a list of k phonemes q1 · · · qk, we obtain a phoneme confusion matrix (PCM) of

size k × k, where the element at position (i, j) is equal to pc(qi, qi).

Then, we use algorithm 1 to select a set of similar phoneme pairs that have a con-

fusion probability above a predefined phoneme confusion threshold θ. By increasing

the phoneme confusion threshold, more phoneme pairs will be labeled as similar. In

section 4.5.2, we will investigate the effect when varying the threshold.

Algorithm 1 Generate set of similar phoneme pairs S = {(p, q)|simil(p, q)} with
phoneme confusion threshold θ.

S ← ∅
for all q is a phoneme from the finite set of phonemes do

for all p is a phoneme from the finite set of phonemes do
if (pc(p, q) ≥ θ) then
S = S ∪ (p, q)

end if
end for

end for

Approximate search on syllable transcripts The principle workflow for approximate

search on syllable transcripts using syllables as the retrieval unit is illustrated in fig-

ure 4.5. We break down the query into a syllable sequence using grapheme-to-syllable

conversion, and find locations in the syllable transcript that are phonetically similar.

As in the case of approximate phoneme search we estimate the minimum edit dis-

tance between two syllable sequences as a means for calculating the sequence similarity.

In a similar fashion as above, we look at different possibilities for estimating syllable

substitution costs by investigating different syllable similarity measures.
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Word Query 

Syllable Query 

Syllable 
Transcripts 

Grapheme-to-syllable Conversion 

 
Approximate Syllable Search 
 
Local similarity between syllable sequences: 
Minimum edit distance. 
 
Syllable substitution cost:  
•  Variant 1: equal cost for all substitutions 
•  Variant 2: Lower cost for similar syllables 
 
Syllable-internal minimum edit distance unit 
for selecting similar syllables: 
•  Variant 1: Phonemes 
•  Variant 2: Position-specific phoneme clusters  

Figure 4.5.: Workflow for approximate syllable search on syllable ASR output.

The size of syllable inventory prohibits the direct estimation of the syllable similarity

with the same procedure as in the case of phonemes (i.e., breaking reference down

to syllables, aligning it to the syllable ASR output and counting the substitutions).

Given a decoding lexicon of 10, 000 syllables, we can only observe a small fraction of

the 10, 0002 possible syllable pairs. Instead, we follow the idea presented in [60]. First,

we break down both syllables that shall be compared into smaller subunits. Then, we

use again the minimum edit-distance between the subunit sequences as an indicator for

the similarity between the two syllables. In the following we will describe two different

approaches for estimating the subword distance sub(p, q) between two syllables p and q,

namely by using phonemes and position-specific phoneme clusters as a subunit.

When using phonemes, the distance between two syllables is estimated as follows:

1. First, each syllable is broken down into the corresponding phoneme sequence.

2. Then, the distance between the two phoneme sequences is calculated according to

equation 4.9.

Again, we can use different approaches for the phoneme substitution cost in this
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syllable-internal minimum edit distance, i.e., equal cost or substitution cost derived

directly from the phoneme confusion matrix as described in the preceding section.

We use the syllable distance to model the possible deviation between canonical refer-

ence transcription and ASR hypothesis. Phonemes are the smallest subunit that can be

used to model the variation of a syllable. While this guarantees maximum flexibility, it

also allows for almost arbitrary variations. Looking at the typical structure of a syllable,

we realize that we can exploit additional structural characteristics when estimating the

distance between two syllables and thereby constrain the set of possible variations.

A syllable is naturally structured into three adjacent phone clusters: a consonant

cluster called Onset, a vowel cluster (Nucleus) and again a consonant cluster (Coda).

For example, the syllable f l aI S can be broken down into onset fl, nucleus aI and coda

S. The clusters are realized differently depending on the phonotactics of the language.

In the following, we are concentrating only on the structure of German syllables, where

we observe the following properties of the three phone clusters that make up a syllable:

• The nucleus is a cluster of one or two vowels.

• Onset and coda are clusters consisting of zero to several consonants.

• The nucleus cluster is required, while Onset and Coda can be omitted (e.g., omit-

ting the onset in the monosyllabic word Eis - ice, omitting the coda in the syllable

la, and omitting both onset and coda in the syllable a).

• The variation of a phone cluster depends on the position. For example, a canonical

t is very often dropped in the coda position as in the German conjunction und -

U n t. However, dropping the phoneme t in the onset is very unlikely.

In the following, we aim at obtaining position-specific confusion evidence for phoneme

clusters from held-out training data as in the case of phonemes, and then generalize

pronunciation variation at the phone cluster level to the syllable level. We start with a

parser given by algorithm 2 that breaks down syllables to position-specific clusters.

Again, we estimate the most probable PSC confusions in a data driven manner from

some held-out data that has a similar characteristics as our evaluation data set. We

estimate the PSC confusion probability for substituting the PSC p with the PSC q as

follows.

1. Perform syllable decoding of development data set that has similar acoustic prop-

erties than the target set for STD (in our case: broadcast data).
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Algorithm 2 Break down a phoneme string s = p1 · · · pk corresponding to syllable s to
position-specific clusters (PSCs), namely onset (O), nucleus (N) and coda (C).

onset done = false
for i = 1→ k do

if pk is a vowel then
onset done ← true
add pk to N

else if onset done then
add pk to C

else
add pk to O

end if
end for

2. Break down the transcription of the development data to the PSC level using

algorithm 2.

3. Perform alignment between reference and hypothesis PSC sequences using mini-

mum edit distance. For each pair of PSCs (p, q), this yields n(p, q) as the number

of times where p was substituted with q in the minimum edit distance alignment.

4. Again, we ignore the direction of the substitution by accumulating the counts for

(p, q) and (q, p). We obtain the final PSC confusion probability by normalizing with

the respective total counts of p and q as in the case of phonemes (see equation 4.12).

In [42], the authors note that variation within a syllable is often realized at the cluster

level. Therefore, we exchange the subunits when estimating the distance between two

single syllables, and use PSCs instead of phonemes. Then, the process for estimating

the syllable distance is as follows:

1. First, each syllable is broken down into the corresponding PSC sequence using

algorithm 2.

2. Then, the distance between the two PSC sequences is calculated according to

equation 4.9, using the definition for PSC substitutions from above.

We have also investigated the usefulness of the PSC structure in other tasks that

exploit pronunciation variation. In [7], we have successfully used PSCs to model inter-

speaker pronunciation variability for large scale speaker recognition experiments. In [79],

we predicted the most probable syllable variations using the PSC model and adapted

the syllable decoding lexicon accordingly using multiple pronunciations.
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In section 4.5.2, we will evaluate both described syllable distance subword units,

namely phonemes and PSCs. We expect that PSCs will perform well if a system must

be tuned for high precision, and that the phoneme-driven syllable distance metric will

be more useful in recall-oriented scenarios, where flexible alignments are needed - even

if they are not linguistically motivated.

In addition to searching the direct output from the syllable decoder, we can also break

down the syllable transcripts into phoneme sequences and perform approximate phoneme

search exactly as described in section 4.3.2. Our syllables consist of connected phoneme

strings, hence generating a phoneme sequence from a syllable only requires removal of

the syllable boundaries.

Approximate search on word transcripts For approximate search on word transcripts,

we have two different options with individual advantages and drawbacks:

• We could break down both the query and the word transcripts to phoneme se-

quences and apply the workflow depicted in figure 4.4.

• We could generate syllable query and transcripts and use the workflow illustrated

in figure 4.5.

We can expect higher STD performance when retrieving from the phoneme sequences,

but at higher computational cost due to the larger amount of tokens that need to be

aligned.

Applying subword approximation to word transcription search could result in higher

STD performance compared to exact search for three reasons:

1. As German has a complex morphology, we obtain many transcription errors due

to small letter variations. Approximation could serve as an implicit stemmer, e.g.,

by accepting deletions or insertions of word endings in different flexions.

2. Approximation can be used to cope with the decompounding challenge, as flexions

at compound boundaries can be tolerated. Assume the query is the compound

word Wirtschaftskrise (economic crisis) that consists of the two nouns Wirtschaft

(economy) and Krise (crisis), where the compound word has a variation at the end

of the first compound part (Wirtschafts). The ASR decoder could prefer to tran-

scribe the sequence Wirtschafts Krise instead of the full single word. This becomes

more probable if the compound consists of many sub-nouns and becomes very long,

which is typically penalized by the ASR. Moreover, the unigram Wirtschaft has a

much higher language model probability than the unigram Wirtschafts, which is

84



4.3. Compensation by Approximate Matching

usually not used in isolation, resulting in the transcription Wirtschaft Krise. When

using approximate subword search, this transcription is broken down to subwords,

where word boundaries do not exist, and the letter variation between compound

query and subword sequence can be tolerated using approximate matching.

3. Consider the case where the word transcription is wrong because the spoken word

was not in the dictionary, i.e., due to an OOV occurrence. In this case, the ASR

decoder might hypothesize a phonetically similar word or word sequence from the

decoding lexicon. For example, in the experiments in section 3.3.2 the name of

the football club Hoffenheim is not in the dictionary, and the decoder sometimes

output hoffen heim, which is a sequence with the same phonetic transcription but

completely different meaning. However, a phonetically equal sequence for OOVs is

only rarely available. Even if an OOV word can be re-written as a sequence of words

with the same pronunciation, it is often unlikely that the ASR decoder hypothesizes

this word sequence due to its low language model probability. Assume that the

word iPod is not part of our word decoding dictionary. We might construct a valid

word sequence Ei Pott (egg pot), but it is unlikely that this word sequence will be

transcribed. The ASR will rather select more probable competitor sequences such

as ein Pott (a pot). Here, approximate search on the subword level will help to

overcome some of these errors, and we expect that we can find some OOV words

using approximate search on the subword version of the word transcript.

Within the scope of this thesis, we focus on compensating errors that stem from the

ASR and reduce the mismatch between query and ASR output. Additional techniques

known from text information retrieval could be applied to compensate orthographic

deviations caused for example by misspelled queries [58].

The approximate search acts as a general means for compensating deviations between

subword query and subword transcript. Our expectations in terms of STD accuracy are

twofold. In principle, the approximate search should be able to cope with both ASR

errors and pronunciation variation, as both can be seen as deviations between query

and transcript. Moreover, we expect that phonetizations and syllabifications from the

grapheme-to-phoneme conversion can be compensated using the approximate search.

The approximation does not exploit knowledge about the actual decoding situation,

it is uninformed with respect to the actual acoustic observation. Free parameters of the

matching approach - such as the phoneme confusion matrix used for building the sylla-

ble distance matrix - are typically estimated based on statistics obtained from parallel

development corpora. Hence it is important that the characteristics of the development
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data are similar to the actual retrieval situation.

4.4. Hybrid Compensation

In this section, we propose a new integrated approach to STD error compensation, which

targets both ASR errors and pronunciation variation explicitly. We motivate how the

methods presented in section 4.2 and 4.3 can be merged for increasing the STD accuracy

and present our hybrid retrieval approach.

4.4.1. Motivation for Hybrid Approach

First, we look into the question why merging the two already presented methods for error

compensation might increase the STD performance compared to applying the individual

methods on their own.

The approximate search presented in section 4.3 is uninformed with respect to the ac-

tual observation that is decoded by the ASR. Hence, adding knowledge about promising

competing hypotheses from the ASR output graph can guide the approximation, and we

expect that we can use higher approximation thresholds for approximate STD on the

lattice.

On the other hand, if we consider exact subword lattice search as the baseline retrieval

method, it is clear that additional approximation during search can find additional true

positive hits. From the analysis of the error spaces in section 4.1, we know that compen-

sation of pronunciation variation is not covered by subword lattice retrieval. However, it

might be beneficial for some scenarios if the approximate search would be tuned towards

compensating only pronunciation variations, as ASR errors are already covered by the

lattice search.

4.4.2. Error Compensation Cascade

Intuitively, our hybrid approach assumes that if a query occurs in an utterance, then it

can be found with approximate search on one of the paths through the lattice. In the

following, we will focus on compensation for syllable STD, i.e., we perform approximate

syllable search on a syllable lattice in order to find STD occurrences.

Combining the confidence scores from the two approaches at query time is not straight-

forward, as the scores stem from different sources (ASR node confidence score and min-

imum edit distance). Instead, we split the scoring into two stages: we exploit the lattice

scores at runtime by applying offline pruning as described in section 4.2. This yields
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lattices that contain only valid paths, i.e., paths which we would accept as hit during

exact lattice search. Then, we use only the syllable distance as the primary metric to

asses the quality of a hit on the already pruned lattice. This keeps knowledge from the

ASR through offline pruning and preserves the flexibility from approximate search at

query time.

As a baseline, we first consider an exhaustive approach to the problem using the

following algorithm:

1. Break down query to syllable sequence s1 · · · sn.

2. Obtain all paths of length n through the lattice.

3. For each path, we obtain the distance between query and path as described in

section 4.3.1. Here, we are particularly interested in the effect of the different

distance metrics described above, namely phoneme minimum edit distance and

position-specific cluster minimum edit distance.

4. Accept path position as an STD hit if the syllable distance is below a predefined

threshold γ.

Subword lattices can become quite large, even for relatively short utterances. This is

especially true for spontaneous utterances or recordings with a complex acoustic back-

ground, where the ASR gets easily confused and many competing recognition hypotheses

come up. For long queries (especially in the subword case), the number of possible sub-

paths with the length of the subword query can become intractable. Therefore, we add

a simple yet effective restriction by requiring that at least one syllable of the query must

occur correctly in the lattice. With this assumption, the amount of paths that need to

be matched against the query is drastically reduced. Algorithm 3 specifies our approach

for extracting paths that contain one of the query syllables, and figure 4.6 illustrates

its application on a simple example. In section 6, we will investigate opportunities for

further reducing the amount of paths that need to be aligned.

In the experiments below, we increase the length of extracted paths for a query of

length n to n + k, where k is the maximum tolerated number of syllable insertions in

the lattice (2 in the experiments below).

Within the scope of this thesis, we limit ourselves to hybrid compensation of STD

errors obtained on syllable ASR output, and compare it to the respective individual

baselines in the evaluation section below. We note that the same idea can be easily

transferred to approximate search on phoneme lattices using exactly the same approach
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Example lattice which contains at least one of the query syllables: 

Query: „Hals- und Beinbruch“ 
Canonical representation: h_a_l_s_   Q_U_n_t_   b_aI_n_   b_r_U_x_ 

Paths which contain a query syllable at the same position as in the query: 

Path Similarity to Query 

h_a_l_s_   Q_U_n_   z_aI_n_   b_u:_x_ 0.79 

h_a_l_s_   Q_U_n_   f_aI_n_   b_u:_x_ 0.79 

h_a_l_s_   Q_U_n_   b_aI_n_   b_u:_x_ 0.86 

h_a_l_s_   Q_U_n_   b_aI_n_   b_r_U_x_ 0.95 

Perfect subword transcription. 
Requires only little approximation to 
cope with pronunciation variation. 

Figure 4.6.: Example for error compensation cascade, including path extraction and ap-
proximate path matching.

as in the case of syllables. We do not expect additional gain by applying approximate

search in the same manner to word lattices (which would be possible by breaking down

the word lattice paths to subwords followed by subsequent approximate matching on

the subword level): STD errors due to pronunciation variation are less frequent in the

case of word decoding due to the stronger language model and typically longer decoding

units.

4.5. Experiments

In this section, we present an evaluation of the proposed set of methods for error com-

pensation in our open vocabulary STD framework according to the following evaluation

strategy.

1. We are particularly interested in the STD performance of the various approaches on

the complete DiSCo query and data set. Where applicable, we will also investigate

the performance of an approach on a set of rare queries, namely those which contain
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Algorithm 3 Hybrid approximate lattice search for syllable sequence q = s1 · · · sn with
at least one exact syllable match.

for i = 1 · · ·n do
for all Lattice l do

if l contains a node t with label si then
for all syllable path p of length n through t, where the ith syllable of p is equal
to si do

if d(p, q) > δ then
Accept path position as STD hit.

end if
end for

end if
end for

end for

an OOV word with respect to our large 200,000 word decoding lexicon. This is

possible for all approaches that use subword units for retrieval.

2. In many cases, the evaluated approaches can be optimized for a specific scenario,

e.g., by specifying a minimum confidence for putative search results. In this case,

we will consider MTWV as the main single-point metric, as it is the standard

metric proposed by NIST. In some cases, we will also investigate the behavior of

an approach while varying this decision boundary by looking at the corresponding

Receiver-Operating-Characteristic curves.

We note that the direct output from the phoneme decoder will not be taken into

account further. We cannot expect that the high phoneme error rate and the very

poor STD performance both on frequent and rare queries can be overcome by the gain

expected from lattices. An experimental comparison between phoneme and syllable

lattice STD can be found in [77], where we have shown that for German data, using

syllables for decoding and retrieval outperforms the phoneme approach both in terms of

accuracy and efficiency.

4.5.1. Compensation by Alternative Recognition Hypotheses

We start our quantitative analysis by looking at lattice indexing as a means for coping

with ASR errors. The lattices used in this evaluation have been generated with exactly

the same ASR setup that was used for generating the 1-best transcripts in sections 3.3,

i.e., using the same acoustic and language resources and the same pruning parameters

during decoding.
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In order to limit the amount of required storage, we prune all lattices with a graph cut

of 20, which basically limits the amount of competing hypotheses per time frame to 20.

In the following experiments, this set of lattices will be denoted as unconstrained lattices,

as we do not expect further increase in STD recall by allowing for more competing nodes.

As a baseline for evaluating the lattice approach, we retrieve results for all 501 DiSCo

queries from all 17152 unconstrained lattices without any further graph pruning. This

means that if a query is found on one of the paths through the unconstrained lattice, it is

accepted as hit, irrespective of the node confidences along the matching path. Table 4.1

compares the results of word and syllable lattice retrieval directly to the corresponding 1-

best results. Neither 1-best STD nor unconstrained lattice search have a flexible decision

boundary, hence we measure the performance by precision, recall and MTWV.

Table 4.1.: STD performance using unconstrained lattices.

System Precision Recall MTWV

Word 1-best 0.95 0.72 0.62
Word lattice 0.61 0.76 0.61

Syllable 1-best 0.94 0.64 0.50
Syllable lattice 0.59 0.70 0.52

Comparing systems by recall and precision is not intuitive if we cannot assume the

same value for one of the two variables due to lack of system configuration flexibility.

Often, increase in recall comes at loss in precision and vice versa. Nevertheless, from

table 4.1 we see that using lattices instead of 1-best enables a substantial increase in

STD recall, both for words and syllables. We observe an increase in recall by 4% and

6% for words and subwords, respectively. However, the precision loss is dramatic: from

almost perfectly precise word and syllable 1-best systems, STD precision drops by over

30% absolute when using lattices. Hence, even though MTWV is more tolerant to

precision loss using the NIST evaluation defaults, the overall system performance of the

unconstrained word lattice approach is even worse than the 1-best baseline, and the

syllable MTWV is only increased by 1% absolute.

In the next experiment, we consider removing recognition hypotheses with a low con-

fidence in order to overcome the drastic loss in precision when using lattices. As in the

experiment on unconstrained lattices, we retrieve the STD results from the pre-pruned

graphs with a graph cut of 20. However, in spite of accepting all matches between

query sequence and lattice path as a hit, we accept only those matches that have a hit

confidence above a certain threshold.
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We compare two different methods for efficient confidence scoring of lattice path

matches. First, we evaluate a method which we proposed in [77], where the confi-

dence for a path is estimated by multiplying the confidences of the corresponding nodes

along the path. As described in section 4.2, we expect lower recall for this method on

longer queries with many query tokens. As an alternative, we evaluate the average node

confidence as a metric for the confidence of the whole match. Figure 4.7 illustrates the

results for the two methods while varying the decision boundary, both for word and

syllable retrieval.

First, we observe that as in the case of 1-best retrieval, word lattice STD outperforms

syllable lattice STD on the complete set in terms of recall when compared at different

levels of precision. For both units, we can obtain substantial improvements in recall at

still reasonable precision which is sufficient for many scenarios. With online graph prun-

ing, the system becomes much more flexible, and its search behavior can be adapted to

a particular usage scenario. Looking at the two methods for confidence scoring, we ob-

serve that the method based on average confidence yields higher STD performance at all

levels of precision. It outperforms the baseline method both in the word and the syllable

lattice system. The difference in STD performance between the two confidence scoring

methods is larger for syllables than for words (3.2% absolute MTWV gain for syllables

compared to 1.1% absolute gain for words), as syllable queries contain three times more

query tokens than word queries. Confidence scoring based on average node confidence

will be used as the default confidence scoring technique throughout the remainder of this

thesis.

With the additional flexibility when using online graph pruning we are able to compare

systems at certain interesting configurations. As motivated in section 2.4.1, we are

particularly interested in the maximum term-weighted value using the NIST definition.

Table 4.2 compares the static output of the 1-best systems to the respective lattice

systems using online graph pruning. Unlike above, we can directly compare the systems

as we are able to constrain one of the evaluation axes.

We carried out the following series of experiments to obtain the MTWV for online

graph pruning:

• We obtain unconstrained word and syllable lattices from the ASR decoder.

• We perform a complete STD evaluation with different online pruning thresholds δ.

• The reported MTWV is the highest ATWV that could be obtained by varying δ

between 0.0 and 1.0.
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Figure 4.7.: Lattice retrieval with varying online graph pruning threshold.

For the word system, we observe a considerable gain in MTWV of 3% absolute. For

the syllable system, MTWV is increased by 5% absolute. Hence, both word and subword

lattice retrieval outperform the 1-best baseline in terms of MTWV and should be used

whenever the corresponding efficiency requirements are met (see 6 for more details on

the scalability aspects of lattice retrieval).

Still, retrieval from lattices suffers from a large drop in precision compared to the

1-best baseline. This is especially true for subword lattice retrieval. In section 5, we will

investigate approaches which aim at reducing precision drop inherent to subword lattice

retrieval by introducing second-pass STD result verification.

Table 4.2.: STD performance using online graph pruning on unconstrained lattices.

Unit Precision Recall MTWV

Word 1-best 0.95 0.72 0.62
Word lattice 0.51 0.76 0.61
Word lattice with pruning 0.90 0.75 0.65

Syllable 1-best 0.94 0.64 0.50
Syllable lattice 0.59 0.70 0.52
Syllable lattice with pruning 0.81 0.68 0.55

The results when using online graph pruning on unconstrained lattices are promising.
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However, large subword lattices ask for efficient access and search methods as well as

for effective storage mechanisms. We will investigate these issues in detail in section 6.

However, it is already interesting in the context of this section to which extent the large

unpruned graphs contribute to the recall gain, and whether parts of the lattices can be

removed at indexing time without affecting the search performance.

For evaluating the effect of offline graph pruning, we start again from the uncon-

strained lattice set pruned with a graph cut of 20, and retrieve results for the complete

query set from both word and syllable lattices. Then, we apply a more intense pruning

by decreasing the graph cut parameter towards 1. For each step, we again obtain the

pruned lattices and retrieve all results without further online pruning. While varying

the offline pruning parameter, we store the retrieval performance as well as the total

number of nodes in the pruned lattices for the whole DiSCo set. Figure 4.8 and 4.9

illustrate the results for word and syllable lattice retrieval, respectively.

For both cases, we observe that most of the recall gain can already be obtained from

heavily pruned graphs, where only the most promising recognition alternatives are stored

in the lattice. Recall gain saturates at a graph cut of 8 for the case of words, and at

a graph cut of 10 for syllables. Due to the drop in precision, MTWV is reached even

earlier (graph cut of 3 for words and 5 for syllables). This means that we can retrieve

from more compact lattices using offline graph pruning, still having access to most of the

recall potential of the unconstrained recognition lattices. At the same time, the number

of nodes in the system is drastically reduced (e.g., by more than 50% in the MTWV

configuration of both word and syllable STD, see table 4.3).

Next, we compare the results of offline and online pruning. Table 4.3 gives the results

for the MTWV system configurations. As expected, both perform similar in terms of

STD accuracy, as they rely on the same core confidence measure, namely the node

confidence. However, the online pruning approach results in a slightly higher MTWV

both for word and syllable STD, as it estimates the confidence for the actual query

instead of relying only on the local node confidence. On the other hand, offline pruning

results in greatly reduced storage requirements.

Applying online pruning to the already pre-pruned graphs at runtime gives additional

improvements in terms of MTWV. We observed an increase of MTWV of 1% absolute

for both words and syllables when applying online pruning to the offline-pruned lattices

used for the MTWV results given in table 4.3.

Next, we look at the results from lattice retrieval on the set of rare queries which
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Figure 4.8.: Retrieval from word lattices with varying offline pruning threshold.

contain OOV words with respect to the 200,000 word decoding lexicon. Again, we

observe that lattice retrieval outperforms 1-best in terms of MTWV.

Table 4.4 shows that the MTWV improvement when using lattice-based error com-

pensation is more than twice as high as on the complete query set. Another major

difference to the evaluation on the complete corpus is the different optimal offline prun-

ing configuration. On the complete query set, MTWV using the syllable system was

reached at a graph cut of 5. For the rare queries, MTWV was reached at a graph cut

of 18, hence less pruning should be applied to subword lattices if they should be able

to cope with rare queries. Unlike in the case of the complete query set, which contains

many frequent queries, substantial recall improvements can be obtained on rare queries

by investing in larger recognition graphs. This reflects the fact that rare words are less

likely to be decoded correctly, which is caused by multiple factors. First, the syllable

sequence corresponding to the rare query has not or only rarely been observed during

language model training. Moreover, such rare queries often consist of named entities such

as names of persons, places or organizations, and the corresponding query phonetization

is more likely to consist of rare triphone combinations that have never been observed in
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Figure 4.9.: Retrieval from syllable lattices with varying offline pruning threshold.

acoustic training, and which have to be synthesized by acoustic parameter tying. Hence,

recognition alternatives help greatly when retrieving matches for such rare queries. As

an alternative to storing and searching such large lattices, approximate lattice search on

already pruned graphs will be investigated later in this section.

For the complete query set, we conclude that using lattices improves MTWV by

3% absolute for word and by 5% absolute for syllable lattice STD, compared to the

respective 1-best baselines on the complete corpus. For rare queries, error compensation

using syllable lattices increases MTWV by up to 13% absolute compared to the 1-best

syllable baseline.

4.5.2. Compensation by Approximate Matching

Next, we evaluate the impact of approximate subword matching on the STD perfor-

mance. In particular, we are interested in the following configurations for decoding and

retrieval:

1. Using syllables as the decoding unit, and then performing approximate syllable
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Table 4.3.: STD performance using online and offline graph pruning.

Unit Pruning MTWV Number of nodes

Word
Online 0.65 773,701
Offline 0.64 309,894

Syllable
Online 0.55 1,579,991
Offline 0.53 837,534

Table 4.4.: Syllable STD performance using online and offline graph pruning on OOV
queries.

Unit MTWV Number of nodes

1-best 0.24 240,927

Online pruning 0.37 1,579,991

Offline pruning 0.36 1,245,659

search on the 1-best syllable output. Alternatively, we can break down the decoded

syllables into phonemes and perform an approximate phoneme search on the 1-best

syllable-to-phoneme output.

2. We can also use the 1-best output from the word decoder and break it down to

either syllables or phonemes, and perform the respective approximate search on

the generated subword transcripts.

Again, we refrain from using the direct output from the phoneme decoder due to the

low accuracy on the complex evaluation data.

As a baseline for approximate search, we carry out the following experiment. We use

approximate syllable search and approximate phoneme search as defined in section 4.3.2,

and use equal substitution costs for all phoneme pairs. Then, we perform a complete STD

evaluation with different similarity thresholds δ. The reported MTWV is the highest

ATWV that could be obtained by varying δ between 0.0 and 1.0.

Looking at the results shown in table 4.5, we observe a drastic MTWV improvement for

approximate syllable search over the exact 1-best baseline of 10% absolute. This indicates

that approximate search is a viable means for coping with the observed challenges in

subword STD, namely compensation of ASR errors and pronunciation variation. For

approximate syllable retrieval from word transcripts, we obtain smaller gains. Less ASR

errors and pronunciation variation can be found in the subword transcript due to the

longer decoding unit, and hence less approximation is required during retrieval.
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Table 4.5.: STD performance using approximate match on 1-best transcripts.

MTWV

Recognition unit Retrieval unit Exact Approx.

Syllable
Syllable 0.50 0.60
Phoneme 0.51 0.60

Word
Word 0.62 -
Syllable 0.64 0.69
Phoneme 0.65 0.70

Next, we look in more detail at the behavior of the system if the retrieval units are

further broken down to phonemes. As motivated in section 4.3.2, we expect only small

additional gain over the syllable baseline. Figure 4.10 compares the results between

approximate syllable and phoneme retrieval for both word and syllable ASR output.

We note that in both cases, approximate phoneme retrieval is superior in terms of STD

accuracy for all possible confidence values. However, the additional recall gain at equal

precision is relatively small, and the computational cost for approximate phoneme search

is higher due to the longer subword sequences (see section 6 for more details on search

efficiency).
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Figure 4.10.: Approximate subword search with varying approximate search threshold.
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We further optimize the approximate search by replacing the substitution cost for a

pair of subword tokens. As described in section 4.3, we assume that a substitution of

phonetically close subwords should be cheaper than substitutions of completely different

subwords. The cost for a single pair of phonemes is quantized to be either 0 (equal

phonemes), 0.5 for phonemes which are often confused, and 1 for dissimilar phonemes.

As illustrated above, we exploit information from a phoneme confusion matrix estimated

on some held-out data to asses which phoneme pairs belong to which of the three classes.

For estimating the matrix, we considered a parallel German corpus with Broadcast News

and Broadcast Conversation shows. We used this corpus in earlier German STD evalu-

ations. It is disjoint with the DiSCo data set used for evaluation within this thesis, but

it has similar characteristics. The corpus contains about 3.5 hours of data, with about

50% spontaneous and planned speech, respectively. The utterances do not contain back-

ground noise. In order to obtain a phoneme confusion matrix for our approximate search

algorithm, we performed a syllable recognition of the data using the same recognizer that

is used within this thesis. Then, we broke down the syllable ASR output as well as the

reference transcriptions to the phoneme level. By aligning the reference phoneme se-

quence of each utterance with its corresponding ASR output, we obtained the phoneme

confusion matrix, which encodes likely phoneme confusions for 1-best syllable ASR.

In the following experiment, we evaluate different thresholds for the quantization. A

threshold of 0 means that all non-equal phoneme pairs will be assumed to be easily

confusable, and all pairs receive a reduced substitution cost. A larger threshold means

that more confusions must be observed before a phoneme pair is assumed to be part of

the confusable class. Above a certain threshold, all phoneme pairs will be assumed to be

dissimilar, and we will obtain the same results as in the case without using the phoneme

confusion matrix, where each substitution cost for non-equal phonemes was set to the

maximum cost of 1. The experiment is carried out as follows:

• We focus on a specific approximate search approach, namely approximate syllable

search on the output from the syllable decoder, which has already been proven

useful for rare OOV queries.

• For each phoneme confusion threshold, we vary the approximate matching thresh-

old and find the configuration with the highest STD performance in terms of

MTWV for this particular phoneme substitution cost configuration.

• We look at the results for all queries, IV and OOV queries separately, as we expect

different characteristics while varying the thresholds.
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Figure 4.11 illustrates the STD performance while varying the threshold for confusable

phoneme pairs. We obtain the performance of the baseline without reduced substitution

costs for confusable phonemes at a threshold of 0.05 for both IV and OOV queries.

Looking at the frequent IV queries, we observe that we can obtain a small gain in

MTWV by decreasing the threshold and thereby reducing the substitution cost for a

small number of phoneme pairs. However, for rare OOV queries, the potential gain is

much larger. Here, MTWV is increased by 8% absolute when comparing the baseline

with the best configuration at a phoneme confusion threshold of 0.01. As expected,

further reducing the threshold (i.e., including more and more phoneme pairs in the

confusable class) decreases overall system performance.
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Figure 4.11.: Optimal approximate subword search performance with varying thresholds
for phoneme confusion threshold.

Next, we compare the single-point system performance of different configurations for

decoding/retrieval units, using both approximate match with and without phoneme

confusion matrix. As we could already expect from figure 4.11, table 4.6 shows that

for retrieval from syllable ASR output on the whole query set, we obtain only a small
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overall improvement by including the phonetic confusion information. When retrieving

from words broken down to phonemes, no gain can be observed.

Table 4.6.: Optimizing approximate match with phoneme confusion matrix.

MTWV

Recognition unit Retrieval unit Equal cost With PCM

Syllable
Syllable 0.60 0.61
Phoneme 0.60 0.61

Word
Syllable 0.69 0.70
Phoneme 0.70 0.70

However, when looking only at the rare OOV queries, we observe a large increase in

MTWV when exploiting prior knowledge about likely phoneme confusions as shown in

table 4.7. For syllable retrieval from syllable transcripts, MTWV when using PCM is

increased by 8% absolute, compared to 1% absolute on the complete corpus.

A similar gain when using PCM can be observed when retrieving from words broken

down to syllables. Still, retrieval from actual subword ASR results outperforms the word-

based subword retrieval by 6% absolute in terms of MTWV on OOV queries. These rare

queries often deviate heavily from the words contained in the decoding lexicon (e.g.,

artificial proper names of products such as iPod). Hence more intense approximation

is required to compensate this deviation compared to direct retrieval from subword

decoding output, where the decoding output is closer to the actual acoustic realization

of the utterance.

Table 4.7.: Optimizing approximate match with phoneme confusion matrix for rare
queries.

MTWV

Recognition unit Retrieval unit Equal cost With PCM

Syllable Syllable 0.45 0.53

Word Syllable 0.38 0.47

Table 4.8 summarizes the results for error compensation in vocabulary independent

STD. For retrieval from syllable ASR output, we observe that the best syllable lattice

retrieval configuration yields higher STD accuracy than the exact 1-best baseline for

both query sets (complete and rare), and that the best approximate syllable search even

outperforms the best syllable lattice search both on all and OOV-only queries. The
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difference between lattice and approximate search is particularly large in the case of rare

OOV queries, where the approximate search does not only cover pronunciation variation

(which is by design not covered by the lattice search), but also strong deviations be-

tween the OOV query and the subword transcript due to the language model mismatch.

Decoding long OOV syllable sequences (even as part of a rather unconstrained lattice)

becomes improbable if the syllable sequence was never observed during language model

training.

When retrieving from word ASR output, the MTWV gain by applying lattices over

the 1-best baseline is comparable to the syllable case. Again, approximate search on

words broken down to subwords produces the best overall MTWV on word ASR output.

All in all, retrieval from word ASR outperforms retrieval from syllable ASR on the

complete corpus, while rare queries are best found on the output from subword ASR.

Table 4.8.: Comparing lattice indexing and approximate match for error compensation.

Queries

Unit System All OOV

Syllable
Exact 1-best 0.50 0.24
Lattice 0.55 0.37
Approximate 1-best 0.61 0.53

Word
Exact 1-best 0.62 N/A
Lattice 0.65 N/A
Approximate 1-best (syllable) 0.70 0.47

4.5.3. Hybrid Compensation

In this section, we evaluate our proposed approach to hybrid compensation of ASR

errors and pronunciation variation. We start by applying approximate search on lattices

using different offline pruning thresholds. Then, we compare different approaches for

approximation, and look in more detail at the performance on rare queries.

In [78], we have shown that approximate search on lattices yields very poor results on

short queries. If we consider a short monosyllabic query, then the amount of available

phonetic information is not sufficient for the twofold approximation via lattices and

approximate search. Even heavily pruned lattices will very often contain syllables that

have a small edit distance to the query, where only few edit operations are needed

to transform the query into one of these candidates. Thus, in order to evaluate the

hybrid compensation without the negative side effects of short queries, we restrict the
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evaluation to queries with at least 10 phonemes (we have observed in [78] that the effect

ceases to exist beyond this minimum length). A large subset of the queries in the DiSCo

corpus meet the length requirement: 1083 out of 2748 query occurrences cover at least

10 phonemes. The performance on shorter queries will be evaluated in more detail in

section 5, where we investigate new approaches to identify false positive hits at query

time using additional external information.

We use the following baseline setup for the hybrid compensation cascade, given a

query q = s1 · · · sn:

1. For a given offline pruning threshold, we obtain all lattices that contain at least

one of the query syllables, and retrieve the matching lattice nodes.

2. For each matched lattice node, we obtain all paths of length n through the lattice

which contain the matched node.

3. We estimate the similarity between each extracted path and the query sequence,

and keep only those results that have a similarity above the STD decision boundary

δ. For the baseline approximation, we use the best configuration from the 1-best

search, i.e., using the syllable distance with substitution costs based on a phoneme

confusion matrix.

For each evaluated offline lattice pruning threshold, we obtain a series of results while

varying the approximate search threshold δ. Then, we report the δ configuration with

the highest ATWV as the MTWV setup for each offline lattice pruning threshold.

In table 4.9, we compare the results with the best exact lattice search and the best

configuration for approximate search on 1-best.

First, we observe that each of hybrid compensation approaches outperforms the indi-

vidual baselines. This is true for the complete query set, but also valid if we look only at

the rare queries. Even when retrieving from very small lattices (GC=2), we can already

obtain a small gain in terms of MTWV. With larger and larger lattices, the additional

gain over the 1-best approximation becomes larger, but saturates fast (GC=4). Using

the still relatively small lattices from this setting, we can already obtain large MTWV

gains.

Exact lattice search for long queries with at least 10 phonemes shows a rather poor

performance, as each of the syllables has to be matched exactly on the lattice, and

small variations or ambisyllabic movement of phonemes cannot be compensated during

retrieval. As most of the long queries cannot be matched exactly, we observe a large
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increase in MTWV of 26% absolute when comparing exact lattice search to hybrid com-

pensation. Moreover, we obtain an increase in MTWV of 7% absolute on the complete

corpus when comparing approximate lattice search to approximate 1-best search, as we

pre-select promising lattice paths for the approximate search and can thus apply higher

approximation thresholds during search.

Looking at the rare OOV queries, the additional gain becomes even larger, when com-

paring hybrid compensation to exact lattice search (43% absolute MTWV improvement).

Syllable sequences corresponding to the rare OOV queries are not well covered by the lan-

guage model used for lattice decoding, hence it is rather improbable that long sequences

are added to the lattice, even with low offline pruning thresholds. Approximation can

overcome these ASR errors that are not covered by lattice compensation.

Table 4.9.: Comparing fuzzy lattice baseline performance to exact lattice and fuzzy 1-
best.

Queries

System All OOV

Exact lattice 0.47 0.22
Approx. 1-best 0.66 0.57

Approx. lattice GC2 0.67 0.59
Approx. lattice GC3 0.71 0.65
Approx. lattice GC4 0.73 0.65
Approx. lattice GC5 0.73 0.65

Next, we compare the performance of different offline pruning configurations while

varying the approximation threshold in the second phase of the hybrid compensation

cascade. Figure 4.12 illustrates that increasing the amount of node hypotheses in the

lattice increases STD performance for all evaluated approximation thresholds, i.e., at

equal precision, lower offline pruning thresholds yield higher STD recall. Again, we

see that even compact lattices offer additional gain, and that the STD performance

improvement becomes smaller as we further increase the amount of hypotheses in the

lattice. In the following, we will build upon the best configuration after saturation in

terms of MTWV according to table 4.9 (GC=4).

In the experiments above, we have used the same approximation strategy for hybrid

compensation which we have used before for 1-best syllable sequence approximation,

namely using phoneme minimum edit distance for estimating the syllable substitution

cost. As described in 4.5.2, we have estimated the phoneme confusion matrix on some
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Figure 4.12.: Comparing approximate 1-best search to approximate lattice baseline at
different offline pruning thresholds.

held-out data that closely resembles the acoustic characteristics of the DiSCo evaluation

corpus. However, it would be interesting to investigate a more constrained means for

approximation: as lattices already cope with ASR errors, we could envisage an approx-

imation strategy that focuses primarily on compensating pronunciation variation.

In the following experiment, we will investigate the following alternative, which we

expect to yield more precise STD configurations. We estimate the phoneme confusion

matrix directly on the acoustic training data instead of using a parallel evaluation corpus.

Decoding acoustic training data results in very low error rates due to the maximum like-

lihood training criterion. Here, the idea is that most of the remaining errors are caused

by pronunciation variation, as there is virtually no remaining acoustic model mismatch

(the language model mismatch is negligible when using subword transcripts for estimat-

ing probable phoneme confusions). In addition, we evaluate whether more constrained

subunits for the intra-syllabic minimum edit distance can further increase the precision.

We apply position specific phoneme clusters (PSCs) introduced in section 4.3.1, and

compare the performance on the complete corpus and on rare OOV queries.

First, we look at the behavior of the baseline approximate search on the 1-best syllable

transcript when exchanging the distance metrics. From figure 4.13 we observe that on

the 1-best transcript, the proposed approach yields lower STD accuracy compared to

the baseline syllable substitution cost for recall-oriented approximation thresholds. As
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expected, the approach is less capable of coping with ASR errors, as its focus is rather

on compensating pronunciation variation only.
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Figure 4.13.: Comparing different syllable distance metrics for approximate search on
1-best.

However, the situation is different when looking at hybrid approximate retrieval from

the lattice. Figure 4.14 shows the results using the same approximation configurations

that were used for generating the results in figure 4.13, only retrieving from lattices

instead of 1-best transcripts. As expected, structural constraints using position specific

clusters yields the best results. We observe consistent improvements of our proposed

PSC-based approach over the baseline.

Next, we look at the performance on rare queries. Here, we know from the experiments

above that the lattice still contains many ASR errors, even at low offline pruning thresh-

olds. Figure 4.15 shows that additional compensation beyond tolerating pronunciation

variation is needed in this case, as the baseline approximation strategy yields the best

overall STD results and outperforms the more constrained PSC-based approach. Note

that we could bridge the gap between the baseline and the more focused PSC search

by using lower offline pruning thresholds when generating the lattices, which in turn

contain less ASR errors. However, this comes at the cost of storing and retrieving from

much larger lattices, which is prohibitive for many scenarios (see section 6).
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Figure 4.14.: Comparing different syllable distance metrics for approximate search on
pruned lattice with GC=4.

As subword search is particularly important for rare queries, we will use the phoneme

approach trained on comparable development data as the default strategy for estimating

syllable similarities during approximate syllable search.

Finally, table 4.10 summarizes the results for hybrid compensation, where we observe

large gains in MTWV compared to the individual baselines. For completeness, we also

give the results on the whole corpus (i.e., including short queries with less than 10

phonemes).

Table 4.10.: Comparing Syllable STD performance of approximate lattice indexing with
individual baselines.

Queries

System All > 10 phonemes

Exact 1-best 0.50 0.47

Lattice, online pruning 0.55 0.55

Approximate 1-best 0.61 0.66

Approximate lattice, offline pruning 0.63 0.73
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Figure 4.15.: Comparing different syllable distance metrics for approximate OOV search
on pruned lattice with GC=4.

4.6. Summary

The preceding evaluation confirmed that error compensation is needed in subword STD

in order to cope with inevitable deviations between subword transcript and subword

query sequence. Within this chapter, we have investigated and extended a range of

state-of-the-art techniques that allow for error-tolerant search, and which are especially

suited for subword-based STD. Our hybrid approximate syllable lattice approach, which

we have first presented in [78], improves MTWV on rare OOV queries by 40% absolute

to 0.60 over the exact 1-best syllable baseline. The hybrid approach outperforms both

lattice and approximate 1-best search, and thereby effectively merges the corresponding

subword STD error spaces.

First, we have analyzed the error sources in STD such that the best compensation

strategies could be derived accordingly. We found that errors in subword-based STD

stem from two different sources: subword ASR errors and pronunciation variation. This

is different from the case of word-based STD, and has not yet been addressed explicitly.

Then, we introduced lattices a means for explicit compensation of ASR errors, which

has been successfully applied in several languages and subword units. We have proposed

on- and offline pruning techniques that allow for flexible lattice configuration depending

on the requirements of the STD scenario. Next, we have described a two-stage approxi-
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mate search based on Minimum Edit Distance. Starting from the baseline from [60], we

explore a distance measure focused on pronunciation variations based on position-specific

syllable clusters, which we have first introduced in [78], and successfully applied in [79]

and [7]. Combining both methods into a hybrid approximate lattice cascade effectively

merges the identified search spaces. From the experimental evaluation of the proposed

hybrid combination we can draw the following conclusions:

• On the complete query set, hybrid approximate matching increases syllable STD

performance from 0.50 to 0.63, and it is particularly suited for longer queries, where

MTWV is increased by 26% absolute from 0.47 to 0.73.

• The position-specific cluster approach based on cluster confusion from acoustic

training data outperforms the baseline distance metric on IV queries. Here, the

deviation between lattice and canonical query sequence can be better compensated

by the predicted pronunciation variations.

• However, for rare OOV queries, fewer ASR errors can be compensated by the

pruned lattice. Hence, the less constrained phoneme-based distance metric based

on phoneme confusion matrix from actual development data performs better.

• For long OOV queries of at least ten phonemes, our proposed hybrid approach

increases MTWV by 43% absolute over the baseline (from 0.22 to 0.65).

• For IV queries, the best results could be obtained with approximate search on

word transcripts broken down to subwords, although the improvement is moderate

compared to the case of OOVs (MTWV of 0.74 compared to the exact baseline of

0.70).
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Results

The preceding section on error compensation has shown that the approximate compen-

sation cascade consisting of lattice and approximate search is able find new true positive

hits in our heterogeneous evaluation data set. However, the additional recall gain comes

with a drastic loss in precision, especially for short queries. Figure 5.1 illustrates the

effect of the different approaches on retrieval precision and recall. Adding more and

more retrieval flexibility via error compensation inevitably decreases retrieval precision.

In this section, we propose a novel approach for verifying STD results using external

knowledge in order to increase retrieval precision without loss of recall, which we have

first published in [95].

We exploit the fact that the STD system has access to more information about the

query at search time than at indexing time. This information advantage at search

time is twofold: first, the query itself was not available during indexing, hence the

indexing process was not optimized towards detecting the query. Second, the additional

information about the query might not have even existed at the time of indexing. In

this chapter, we investigate a novel approach to exploit this knowledge in order to verify

whether a putative STD result is correct or not. Section 5.1 describes our generic process

for result verification using external knowledge.

Next, we describe two approaches which represent actual implementations of the ver-

ification process: contextual verification and anti-query verification. In contextual veri-

fication, we use local contextual query information as knowledge, i.e., typical neighbor-

ing words or subwords that occur as contexts of query terms, and verify whether the

ASR output agrees with our hypothesized query context. This contrasts to SDR ap-

proaches such as [51], which aim at expanding queries with related terms from the same

topic, whereas STD verification is considered to be topic- and domain-independent. The

work proposed in [64] can be considered as a progenitor, where the authors evaluated a

method for 1-best phoneme expansions for known country-name queries, whose contexts

are highly regularized. In contrast to contextual verification, anti-query verification ex-
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ploits external knowledge to a different end: here, we look for competing phonetically

similar queries that are likely to produce false alarms for a given query, the so-called

anti-queries. Based upon our investigations in [95], both novel approaches are evaluated

in detail in section 5.5.

Approximate lattice search 

Fuzzy phonetic search on 
syllable lattice paths 

Exact lattice search 

Retrieve syllables from 
expanded search space 

Recall gain 

P
re

ci
si

o
n

 lo
ss

 

Exact 1-best search 

All query syllables must 
be recognized correctly 

Figure 5.1.: Recall gain and precision loss in STD error compensation.

5.1. Generic Verification Approach

Our new approach is based on a two-pass strategy as illustrated by figure 5.2. In the

first pass, an error-compensating search is carried out on the ASR output. This search is

tuned towards recall in order to obtain as many true positive hits from the ASR output

as possible. Then, in the second pass, we remove unlikely false alarms with one of the

proposed verification strategies.

This process has two core advantages:

1. The verification step can exploit external query knowledge which is only available
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Word Query 
ASR Output 

 

 

 

Search using hybrid error compensation 

 

Knowledge about Knowledge about 
Query 

 

 

 

Verification: Removal of false positives 

 

Large result set, tuned towards recall 

Verified result set 

Figure 5.2.: Generic process for STD result verification.

at query time. For example, we can collect word contexts that are typically spoken

around a query, or we can identify other queries that typically lead to false alarms

for the query in question. External knowledge can be obtained even if the query

is rare and not part of a typical word decoding lexicon, or if the corresponding

subword sequence has not been observed in language model training text. The no-

tion of out-of-vocabulary is not applicable anymore, as we can obtain such external

knowledge for virtually any relevant query via available Internet resources.

2. The system is equipped with a new parameter (namely the degree of verification)

that can be used to adapt a search result to user needs: a user could first review

the verified set of search results, which is rather compact. Then, if his information

need is not fulfilled, he could add more and more results from the set of results that

did not pass the verification step, knowing that this also increases the probability

that a result is not correct.

One might ask why splitting up the decision into two individual steps should increase

STD accuracy, and why the verification cannot be integrated in the first step. The reason
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for this is twofold. Our verification scheme targets primarily hybrid error compensation

for subword decoding, as we observe the largest precision loss when applying the error

compensation. In this case, the syllable language model used during ASR decoding is

trained on the syllabified version of a large language model training corpus. Hence, the

ASR decoder does not have access to word level information, such as word boundaries,

as these are lost when converting the training text to the syllable level. At query time,

we can use the original word query to obtain information such as typical contexts on the

word level, which we can then exploit to verify the result. This adds new information

to the process, even if we use exactly the same training text that was used to train the

syllable language model. In addition, we can use new textual resources that were not

available or that were not thought to be relevant at indexing time.

As an example, consider the name of a small town that is struck by an earthquake.

The town name might be rare and not part of the decoding lexicon, and we need to

search the subword transcript. At query time, we can obtain a large amount of typical

word contexts that typically surround the town name, which we can break down to

syllable sequences and exploit these in the verification of the result. We might use an

Internet news feed as a source for the word contexts.

The actual verification step has to be carried out online, i.e., at query time. The

collection of the external knowledge can be carried out both at indexing and query time,

depending on the scenario. For example, in the media observation case, a regular update

of the verification models is mandatory, as new terms can come up every day.

Formally, we define the STD verification step as follows. Given an STD result o(q) =

(s, ts, te, c) for a query q, we generate a verification hypothesis h = s1 · · · sn at query

time. The verification hypothesis is a sequence of subwords s1 · · · sn which we assume

to be spoken at the position of the hit.

Then, the STD verification step decides whether the subword hypothesis h was spoken

at the hit position or not. The idea is to perform another subword STD search for h on s,

and compare the result with the hit o(q). Searching for the subword verification sequence

h, we obtain a set of STD hits. Each hit can be described as o(h) = (s, tsh , teh , ch), where

tsh and teh are the start end end times of the hit alignment between h and the ASR

output, and ch is the confidence of the alignment. This idea can be apploed on 1-best

and lattice output in the same way.

A putative hit o(q) is then verified by a verification hypothesis o(h) if the following

conditions are met.

1. o(q) and o(h) occur at similar timestamps, i.e., they represent the same hit region in

the ASR output. In the following, we will use the idea of the NIST STD evaluation
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plan [82], where the authors assume that two hits stem from an equal ASR region

if the timestamps at the respective centers differ only by a small timespan ε.

2. The STD confidence of o(h) is at least as high as the confidence of the putative

hit o(q).

Hence, we can define the verification of o(q) using h as a binary function V , where

V (o(q), h) =


1 if ∃o(h) : ch ≥ c and

τ(o(q), o(h)) < ε

0 else

(5.1)

We use the following definition for the temporal distance between two aligned hits as

given by [82]:

τ(o(q), o(h)) = |mido(q) −mido(h)| (5.2)

where the center of an aligned hit o(q) is given by

mido(q) = ts +
te − ts

2
(5.3)

In the following sections, we investigate two different techniques for verification based

on external knowledge, which both use the described verification scheme:

1. Contextual verification: The verification system rejects the putative hit if the

subword context around the result in the ASR output is not predicted by the con-

text verification model (section 5.2). This is a positive verification, i.e., the actual

query is extended with likely contexts and then used in the described verification

process.

2. Anti-query verification: The putative hit o(q) will be rejected if a phonetically

similar anti-query exists (section 5.3), which is known to cause false alarms for

the given query. This is a negative verification, i.e., the system tries to verify the

putative hit with competing queries. If a competing query yields a better match,

the putative hit will be removed from the result set.

Contextual query verification focuses on rejecting putative hits whose context is un-

likely. Anti-query verification removes results which are closer to a phonetically similar

query than to the actual search term. Both approaches cover different aspects, hence
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we expect a performance increase from combining the methods in a hybrid verification

system.

5.2. Contextual Verification

In the following, we describe an approach for contextual verification which we have

proposed in [95]. The intuitive idea is to remove those STD results from the result set

where the local context in the ASR output is highly unlikely for the given query. We

exploit the fact that we have additional knowledge about the query at query time, that

was not available when the subword ASR was carried out.

As a motivation, consider the following example for a spoken utterance Hoffenheim

spielte in München - Hoffenheim was playing in Munich.

• We assume a perfect subword transcription from the syllable ASR, i.e., h O f @ n

h aI m S p i: l t @ . Note that we do not have access to the word boundaries at

query time.

• A user queries the system for the term Hockenheim, the name of a German race

course.

• Using approximate matching, only one consonant needs to be substituted to align

the two syllable sequences h O f @ n h aI m and h O k @ n h aI m . Hence,

error compensating STD will most likely produce a false alarm for the query Hock-

enheim, even using a high approximation threshold.

• However, at query time, we can obtain additional contextual knowledge about the

query. For instance, we know that Ring is a highly probable right context for the

word Hockenheim.

• We expand the query with this probable context, and verify whether the result-

ing syllable sequence h O k @ n h aI m r I N is also found with a reasonable

confidence by the STD system. If not, we remove the hit from the result set.

We note that query expansion and verification is only carried out locally with respect

to the query occurrence. Hence, we can assume that this approach stays within the topic-

independent boundaries of STD. Starting from the example above, we will investigate

the following questions in the sections below:

• How can we select a sufficiently large and appropriate set of contexts for a query?
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• How to perform the actual context matching, such that only few true positives are

removed due to missing contexts?

• In some scenarios, response and storage efficiency are important success criteria

for STD. How can we remove contexts and thus reduce the computational burden

during verification, without loosing too much recall?

5.2.1. Collecting Query Contexts

First we describe an approach to obtain a set of probable contexts for a given query. It

is desirable to cover as many valid query context solutions as possible, as only results

with a valid context will survive. For the same reason, we verify with left and right

context separately. Our system collects a set of contextual queries for a query q using

the following idea:

1. We mimic a search resulting in a true positive hit by locating exact occurrences of

q in a parallel textual corpus on the word level.

2. Then, for each occurrence, we store the left and right subword contexts of the

match as candidates for contextual verification.

The textual corpus c = w1 · · ·wr does not contain time stamps, hence we adapt the

definition of an STD search hit occurrence from equation 2.3 as follows:

o(q) = {ws, we, c} (5.4)

where s and e are the indices of the first and last word that are covered by the

approximate STD alignment. If available, we perform the aforementioned exact search

on a textual corpus that closely resembles the actual decoding situation, such that we

can expect to observe the query and its most probable contexts. Let C(q) be the set of

contextual queries that will be used for verification of a putative hit o(q) from the first

STD pass for a query q. Then, we construct C(q) according to algorithm 4.

The described process produces a set of contexts that are likely to be observed for a

given query. However, the set does not necessarily contain the most appropriate contexts

for all decoding situations:

• Insufficient contexts occur if a query has existed while collecting the corpus, but has

become more important at query time. For example, the football club Hoffenheim

was not in the first division of the German football league until 2008, and it was
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Algorithm 4 Construct set of contextual queries C(q) for a query q, with context length
k.

Let c = w1 · · ·wr be the external parallel corpus.
Break down c to syllables cs = s1 · · · sn.
Perform exact word search for q on c and obtain set of textual STD results o(q) =
{ws, we, c}.
for all o(q) is a hit from the result set do

Obtain syllable sequence si · · · si+t of t subwords that is covered by query q
Obtain left subword context cl = si−k · · · si−1
Obtain right subword context cr = si+t+1 · · · si+t+k
Store contextual query cl(q) = clsi · · · si+t in C(q).
Store contextual query cr(q) = si · · · si+tcr in C(q).

end for

only mentioned once in the complete DPA corpus, yielding only a single contextual

query for this term. However, it occurs several times in the DiSCo evaluation set

as an OOV query. Using the best fuzzy lattice search approach in section 4.5, 24

occurrences of the term Hoffenheim were correctly found. From these, 8 correct hits

would be falsely removed by contextual verification, because the single available

context did not even produce a fuzzy match. From the remaining 16 correct hits,

only 8 could be verified exactly, i.e., without approximate matching. The high

amount of fuzzy matches is characteristic for infrequent queries. The corresponding

n-grams have not been observed often during subword language model training,

and the corresponding query triphones have not been trained well in acoustic

training. In the Hoffenheim example above, only 33% of the correct hits could be

contextually verified with a 1-word context exactly. Looking at all queries that

have the same length as the query Hoffenheim, over 90% of the corresponding true

positive hits could be verified using contextual queries.

• Inappropriate contexts are collected from the corpus if the typical meaning or

typical usage of a query word has changed over time between collecting the training

data and issuing the query. As an example, consider the query Obama. The

contextual verification Senator Obama that could be collected from the DPA corpus

was widely used in 2006, when Barack Obama was a senator in Illinois. However,

in 2008, the verification President Obama has become much more important, but

is not available at all from the DPA corpus. Ideally, we would augment the training

corpus with up-to-date material, while preserving the original contexts.
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In the evaluation below, we will investigate the effect of using different parallel corpora

for obtaining the query contexts. We expect that the overall performance is higher if we

use up-to-date expansion corpora matching well with the query, and that we can obtain

additional gain by using additional data which differs from the original language model

training corpus.

5.2.2. Detecting Non-Contextual Matches

We only validate non-exact matches where we expect that verification can improve the

low baseline precision. Consider a putative hit occurrence o(q). Intuitively, our approach

assumes that o(q) is a correct hit if the system also detects q expanded with a local

context, at the same position and with a similar confidence. This is a positive verification,

i.e., we only keep results where we already have external evidence that the local context

is valid. Hence, we design the matching procedure such that only very unlikely contexts

cause a hit removal, and that matching of contextual queries is facilitated. In addition to

adding as many valid contexts to the verification set for a query as possible, we expand

the query with left and right context individually in order to increase the possibilities

for matching a given contextual query.

Algorithm 5 describes the process for detecting hits without proper context. It can be

applied in the same manner to both approximate 1-best search and approximate lattice

search.

A possible drawback of this matching approach is the fact that for all non-exact

matches of the first STD pass, the spoken context of a query needs to be actually

observed in the parallel corpus. However, we can assume that virtually all valid word

contexts for a given query are available through web resources.

For highly spontaneous and non-professionally spoken utterances, the word context

might not be valid in terms of grammatical correctness, and it will become unlikely

that these spoken contexts can be observed in written text. For this special case, addi-

tional means for smoothing similar to language model smoothing [16] could be helpful.

However, this kind of data rarely exists in our evaluation scenario as defined in 2.4.2.

5.2.3. Contextual Query Optimization

Contextual pruning is a positive verification, where we would like to add all possible

contexts to the set of verification hypotheses. However, at query time, some scenarios will

require further possibilities for increasing precision, especially if the baseline precision

from the first STD pass is as low as shown in the hybrid approximate lattice experiments
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Algorithm 5 Verify an STD result o(q) with a set of contextual queries C(q).

o(q) = {s, ts, te, c}
if c < 1.0 then

contextual match = false
Let ssyll be the syllable ASR output for document s
for all contextual query d = d1 · · · dr ∈ C(q) do

Perform approximate search for d on ssyll
for all contextual hit occurrence o(d) = {s, tsd , ted , cd} do
midhit = ts + te−ts

2

midctx = tsd +
ted−tsd

2
if |midhit −midctx| > ε then

Continue
end if
if cd ≥ c then

contextual match = true
break

end if
end for

end for
if contextual match = false then

Remove o(q) from result set
end if

end if
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above.

Due to the Zipfian distribution of syllable frequencies (see section 6.1), we can assume

that many syllable contexts only occur rather infrequently. However, if the set of unique

contextual queries is sufficiently large, there will always be a contextual query that can

be found at the putative hit position using approximate STD, leading to an incorrect

verification of a false positive hit. Our idea is to remove the most infrequent contexts

for a given query to reduce this effect, and we expect to further increase STD precision

at small recall loss.

Hence, if additional precision is required, it can be beneficial to remove the most

unlikely contexts from the result set, and verify the putative hit only with a reduced

verification set. Similar to standard approaches in language modeling, we can estimate

the probability that a context occurs by obtaining its relative frequency on a parallel

textual corpus, i.e., the prior probability p(h) for the contextual query h obtained for a

syllabified query qs is given by:

p(h, qs) =
N(h)

N(qs)
(5.5)

where N(h) is the number of times h occurs in the syllabified parallel corpus, and

N(qs) is the number of times qs occurs in the same data set.

Then, at verification time, the user can specify a verification threshold κ, and we

remove all contexts where p(h, qs) < κ.

Another possible direction for the optimization of contexts is the context width, i.e.,

the number of syllables that are added to the original query. Our expectations when

increasing the number of syllables are twofold:

1. STD verification using a longer context hypotheses will be more reliable, as STD

results for longer queries are more accurate. Hence, we expect only few false

positive verifications caused by long contextual queries.

2. Increasing the context width will drastically increase the amount of contexts that

are available for verification. There might be need for combining this idea with

contextual query pruning as described above in order to limit the size of the veri-

fication query set.

We note that the number of syllables in the context should not be exceedingly high, as

we might loose topic independence, which is an important requirement for STD systems.

119



5. Verification of Spoken Term Detection Results

5.3. Anti-Query Verification

In [95] we have observed that false alarms for a particular query in approximate subword

retrieval are often caused by phonetically similar subword sequences in the reference

transcript. Consider the following example:

• The system searches for the query Bayern - Bavaria in the subword transcript

with the corresponding syllable sequence b aI 6 n .

• Consider the term Arbeitern - employees, which is syllabified Q a 6 b aI t 6 n .

If an occurrence of this term is transcribed correctly by the syllable ASR, than the

system will generate a false alarm, even at high confidence levels for the approxi-

mation. This is due to the high similarity between b aI 6 n and b aI t 6 n .

• The effect is increased because of the rich morphology of the German language. In

the example above, false alarms will also be caused by other flexions of the term

(such as Q a 6 b aI t 6 ).

• Even more false alarms are caused by compounding, if the word that causes the

false alarm is combined with another word yielding a new meaning (such as Ar-

beiterklasse - working class - Q a 6 b aI t 6 k l a s @ ).

Inspired by the work in [12], we call these word sequences that are likely to cause

a false alarm for a query q an anti-query for q. In the following, we formally describe

our approach to collecting such anti-queries from an external text corpus, and propose

a method for detecting false alarms caused by anti-query matches.

5.3.1. Collecting Anti-Queries

We collect a set of anti-queries for a query q using the following idea:

1. We mimic the search behavior of approximate search on a parallel corpus with

ground truth, i.e., on a corpus where we know whether a search result is correct

or not.

2. Then, for a query q, we inspect all positions in the corpus that caused a false alarm,

and construct an anti-query using the words that actually occur at the false hit

position.

However, we refrain from searching lattice or 1-best ASR output for collecting the

anti-queries. Audio data and corresponding aligned reference transcriptions would be
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required in order to generate anti-queries from ASR output. While we could closely

imitate the error behavior with this approach, it would not be feasible to collect enough

data for all possible queries, as the cost for producing manual transcriptions is to high

(see section 2.4.2).

Instead of searching ASR output directly, we collect anti-queries for a query q by

searching existing large textual corpora. Ideally, the set of anti-queries is collected from

a corpus with similar characteristics as the transcriptions that are typically generated

by the subword ASR, such that the differences between the predicted behavior and the

actual decoding output is small. Hence, we consider using the same text that was used

for training the subword language model in the evaluation (section 5.5).

We break down the external textual corpus to syllables. This resembles an ASR output

with 0% syllable error rate. Then, an approximate search for q is carried out on the

syllabified corpus. If q is found by the search and the hit is a false positive, then we

collect an anti-query from the hit position.

The syllabified textual corpus cs = s1 · · · sr does not contain time stamps, hence we

adapt the definition of an STD search hit occurrence from equation 2.3 as follows:

o(q) = {ss, se, c} (5.6)

where s and e are the indices of the first and last syllable that are covered by the

approximate STD alignment. Let A(q) be the set of anti-queries that will be used for

detecting false alarms for a query q. We construct A according to algorithm 6.

Algorithm 6 Construct set of anti-queries A(q) for a query q.

Let c = w1 · · ·wr be the external parallel corpus.
Break down c to syllables cs = s1 · · · sn.
Perform approximate search for syllabified q on cs and obtain set of textual STD
results o(q).
for all o(q) = {ss, se, c} is a hit with confidence below 1.0 do

Obtain word sequence wi · · ·wi+t of t words that is covered by the subword match:
wi = si,1 · · · ss · · · si,p and
wi+t = si+t,1 · · · se · · · si+t,k and
Store a(q) = si,1 · · · si+t,k as an anti-query for q.

end for

Consider again the query Bayern - bavaria and the corresponding syllable query b aI

6 n . Figure 5.3 illustrates the selection of the anti-query Arbeitern - employees using

the algorithm described above (only one word is covered by the match in this example).
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Word Query 
 

Bayern 

Approximate Syllable Search Approximate Syllable Search 

… d_e:_n_ Q_a_6_ (b_aI_ t_6_n_) m_u_s_ k_l_a_6_ s_aI_n_… 

Large parallel textual corpus 
 

… den Arbeitern muss klar sein … 

Syllable Query 

 

Syllable Query 
 

b_aI_ 6_n_ 

 

Large parallel textual corpus (syllabified) 
 

… d_e:_n_ Q_a_6_ b_aI_ t_6_n_ m_u_s_ 

k_l_a_6_ s_aI_n_… 

Select word sequence covered by approximate match Select word sequence covered by approximate match 

… den Arbeitern muss klar sein … 

Add Q_a_6_ b_aI_ t_6_n_ to anti-queries 

Figure 5.3.: Example: selection of anti-query.

As a baseline, we collect all anti-queries that cause a false alarm above the anti-query

approximation threshold. In section 5.3.3, we will describe possibilities for further im-

proving the anti-query set using additional anti-query context from the external corpus,

and by removing anti-queries that are likely to remove true positive hits.

In the next section, we describe how putative hits for a query q are verified against

the anti-query set A(q).

5.3.2. Detecting Anti-Query Matches

As motivated earlier, we will only verify non-exact matches, as the precision of exact

hits is already very high. For each query q, the system first obtains STD results using

error compensation as described in section 4, either from the 1-best or from the lattice

results. Then, for each each hit occurrence o(q), the verification decides whether the hit

is correct or not. Intuitively, we assume that a putative hit is a false positive result if

one of the queries in the anti-query set A(q) matches better than the original query q

at the same hit position. We assume two hits relate to the same temporal region if the

centers of the two approximate alignments differ only by a small time period ε (similar
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to the approach in section 5.2).

Anti-query verification is a negative verification where we verify that a result is in-

correct using a better-matching counter example. In order to further constrain the

verification and reduce the amount of true positive removals, we perform the anti-query

match on the 1-best transcript instead of the lattice output, even if the original ap-

proximate search was carried on the lattice. With this approach, it is more likely that

anti-queries will only match with a higher score than the original search if the anti-query

was actually spoken.

Let o(q) = {s, ts, te, c} be the hit occurrence as defined in section 2.1. Then, algo-

rithm 7 describes the process for verifying the result using the already collected anti-

queries A(q).

Algorithm 7 Verify an STD result o(q) with a set of anti-queries A(q).

o(q) = {s, ts, te, c}
Let ssyll = s1 · · · sn be the 1-best syllable transcript of s
if c < 1.0 then

for all anti-query a = a1 · · · ar ∈ A(q) do
Perform approximate search for a on ssyll
for all anti-query hit occurrence o(a) = {s, tsa , tsa , ca} do
midhit = ts + te−ts

2

midanti = tas + tse−tsa
2

if |midhit −midanti| > ε then
Continue

end if
if ca > c then

Remove o(q) from result set
end if

end for
end for

end if

Note that the same algorithm is used for both 1-best and lattice ASR output.

5.3.3. Anti-Query Optimization

The baseline approach to anti-query verification can also remove true positives from the

result set. In the following, we aim at (i) explicitly removing anti-queries from the anti-

query verification set that are likely to remove true positives from the STD result set

and (ii) extend queries such that they cover a larger amount of phonetic context. This

is particularly important for short queries.
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For the first goal, we remove those anti-queries that are a substring of the actual

query, and which are hence much easier to match. For example consider the query

Wirtschaftskrise, and its anti query Krise. We can decide whether the anti-query is a

substring on the word level, but also on the syllable or phoneme level. An example for

the subword case would be the anti-query Haus for the English query White House.

For the second goal, we consider the short query Wald - forest, and the anti-query

bald - soon. If bald is part of the syllable lattice but Wald is not, then the verification

will most likely remove the STD hypothesis (because the correct Wald could only be

matched with additional approximation). However, we could extend each anti-query

with context as follows: assume the subword anti-query a was collected from the training

text. Then, for each occurrence of a we obtain all left subword contexts cl and all right

subword contexts cr from the training text. We only want to include anti-queries if the

corresponding match is a strong indicator for a false alarm, and hence require both sides

to be present at the same time. We construct a new contextual anti-query clacr and

add it to the set of anti-queries. The original anti-queries without context which have

caused the recall decrease are removed from the verification set.

5.4. Verification Queries from Web Resources

In some cases knowledge about the verification queries time must be updated contin-

uously, if not immediately before the actual query is issued by the user. For example,

in the media monitoring scenario, a new company might be founded, and the company

name did not exist when the baseline contextual verification set was built. Another

example is context variation, where a word might be used in a different textual context,

possibly with a different meaning (an apple a day keeps the doctor away, my new ap-

ple iPhone). As a remedy, we use the following process to in order to cope with the

verification variability.

• Let K be the set of queries which the system can verify. Results for queries q /∈ K
are assumed to be correct, and are presented to the user.

• Let C be the set of contextual queries and A be the set of anti-queries, which are

both empty at system start.

• The system then continuously crawls a large set of relevant textual news feeds

from the Internet. The feeds must cover the topics of TV programs that will be

monitored, such as politics, sports and culture.
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• From each new text t that is crawled, all major keywords are extracted, e.g., with

the keyword extraction algorithm which we have proposed in [105].

• All new keywords from t are added to the set of queries K.

• Then, the system obtains verification queries for all queries q ∈ K from the new

text t. For contextual verification, contexts of true positive occurrences of q in t are

collected. For anti-query verification, an approximate search for each q is carried

out on t, and all false positive occurrences are collected as anti-query candidates.

All contextual queries and anti-queries that were collected from t are added to C

and A, respectively.

This process continuously updates the verification set with external knowledge from

the Internet, and thereby ensures that the query verification set is as complete and up-to-

date as possible. It is motivated by our work on continuous language model adaptation

using web resources, where we have successfully exploited news feeds for continuous lan-

guage model adaptation in German word and subword ASR. An experimental evaluation

of this work can be found in [36].

Obtaining the verification queries using web resources is completely decoupled from

the STD verification step, which just uses the most recent verification set produced by

the described process. Hence, the continuous update does not affect the runtime of the

actual query verification.

5.5. Experiments

In the following, we evaluate our proposed approaches to STD result verification. We

refrain from verifying matches with a confidence of 1.0 due to the inherent high precision

of these matches.

We focus on the following aspects throughout the evaluation:

1. We are particularly interested in the performance gain on short queries, i.e., those

queries that were not in the focus of the error compensation evaluation above. We

restrict the detailed evaluation below to queries with less than 10 phonemes, where

we expect the largest impact when applying verification. Results on the complete

query set are presented at the end of this section.

2. The error compensation approaches have been evaluated with varying levels of

confidence. Hence we could report MTWV as the configuration that yields the
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highest ATWV, and include ROC curves where appropriate. In the context of

verification, we are rather interested in increasing precision for high-recall config-

urations. Hence, for the evaluation below, we choose a fixed error compensation

setting at a low level of confidence, and report the ATWV for this particular set-

ting.

3. We will apply verification on both approximate 1-best and hybrid approximate

lattice search, both using low confidence thresholds as motivated above. This will

enable us to study the effect of verification on two levels of compensation. We

expect that the more intense compensation by hybrid approximate lattice search

will benefit most from the verification.

5.5.1. Contextual Verification

We start by investigating the effect of the contextual verification approach and measure

the performance on STD results with a low fuzzy threshold, i.e., with high recall and

low precision. We aim at removing false positives, if possible with no change in recall.

As a baseline experiment, we obtain all possible left and right contexts for each query

from the syllabified version of the DPA language model training text corpus. We start

with the smallest possible context constraint of one syllable, and verify each of the STD

results from approximate 1-best search with each of the available contextual expansions

of the query. Each result that cannot be verified is removed from the result set. The

bresults in table 5.1 show that despite the large number of running words in the DPA

corpus, about 1% of the correct hits in the STD result set cannot be verified using the

obtained contexts and are removed. The baseline language model training corpus was

collected between 2000 and 2006, and some of the queries in the DiSCo query set are not

well or not at all covered by the data. As defined above, the corpus contains insufficient,

inappropriate or even no contexts for these queries.

In order to reduce the amount of insufficient and inappropriate contexts, we extend the

corpus with additional text data collected from the German weekly newspaper Die ZEIT.

The additional corpus contains 18 million running words, summing up to about 180

million running words. Table 5.1 illustrates the characteristics of the different corpora.

Using only the DPA corpus, 1% of the correct STD hits cannot be verified due to missing

contexts from the corpus, despite the fact that on average, 363 contextual verfications

are available per query. Looking at the verifications from the ZEIT corpus, we observe

that despite its small size, we observe more required contexts in the data. As motivated

above, this is due to the fact that the ZEIT corpus was collected in a similar time span
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than the DiSCo corpus, and less inappropriate and insufficient contexts are observed.

There is an additional notable gain in context coverage by merging the two corpora, as

outdated contexts - such as Senator Obama - can still be used in a retrospective manner.

On the other hand, by adding more and more contexts to the contextual verification,

less and less false positives will be removed. This effect is increased as the contexts are

approximately matched with the ASR result. Hence, we observe the smallest precision

gain by verification when using the largest corpus.

Table 5.1.: Influence of different external knowledge sources on contextual verification of
approximate 1-best syllable STD results.

Falsely removed Correctly removed
Corpus true positives (%) false positives (%)

DPA 1.0 13.0

ZEIT 0.4 14.4

DPA+ZEIT 0.2 9.6

We will use the complete DPA+ZEIT corpus in the remainder of this chapter, as it

preserves almost all true positive hits from the original STD result. Here, only 0.2% of

the true positive hits are falsely removed due to missing contextual verification.

In order to limit the amount of contextual expansions we apply the contextual ex-

pansion threshold, and remove infrequent contexts from the expansion set. Figure 5.4

illustrates the behavior of the verification while varying the expansion threshold on the

baseline result shown in table 5.1. More and more expansions are removed from the

verification set as the context expansion threshold is increased, resulting in higher pre-

cision as more and more false positives cannot be verified anymore. At the same time,

an increasing amount of true positives is also removed from the result set, although the

ROC graph shows that recall decrease is slow compared to precision increase. Hence, the

contextual expansion threshold is an effective means for configuring a system towards

higher precision and thus tailoring the search configuration towards a specific user need.

Furthermore, we investigate the effect of different amounts of context by increasing

the context width. Extending the query only with a single context syllable on one side

of the query already increases overall precision while preserving the high recall from the

baseline as shown in table 5.1. More possible contexts become available for verification

when adding expansions with a context length of two syllables to the verification set.

On average, we observe over four times more bigram contexts per query compared to
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Figure 5.4.: Varying the amount of context for contextual verification of approximate
1-best syllable STD results.

the unigram expansion. Figure 5.4 also shows the results for bigram verification while

varying the expansion threshold. For all thresholds, precision is increased at equal

recall compared to unigram-only verification. Further extending the context width to

three syllables results in additional gain, however many typical contexts are already well

predicted by the syllable bigrams. Moreover, the number of queries that need to be

verified is almost twice as high compared to the bigram context verification.

Table 5.2 summarizes the results for contextual verification of the 1-best results. We

observe that contextual verification with 3-gram syllable contextual expansions and ap-

plied expansion threshold increases the precision by 7% absolute at equal recall compared

to the unverified baseline.

Table 5.2.: Contextual verification of approximate 1-best syllable STD results. At most
three syllables of left or right context used for verification.

Approach Precision Recall ATWV

Unverified 0.60 0.75 0.48

With contextual verification 0.67 0.75 0.51

In the next experiment, we apply the contextual verification on the best approximate
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lattice search result obtained in section 4.5. Again, we use the contextual query set

built from the merged DPA+ZEIT corpus. From table 5.3 we see that using the same

configuration as above, we obtain a precision gain of 6% absolute at equal recall com-

pared to the unverified approximate lattice search baseline. Hence, the gain through

verification is twice as high as in the case of approximate 1-best STD, which is caused

by the inherently less precise result set of approximate lattice search.

Table 5.3.: Contextual verification of approximate syllable lattice STD results. At most
three syllables of left or right context used for verification.

Approach Precision Recall ATWV

Unverified 0.38 0.81 0.35

With contextual verification 0.44 0.81 0.41

5.5.2. Anti-Query Verification

First we collect the anti-query set using the algorithm given in section 5.3.1. As mo-

tivated, we collect the anti-queries from the syllabified version of the language model

training corpus.

For the 152 queries with less than 10 phonemes, we obtain a total of 42571 anti queries.

Note that efficiency is a minor issue for the anti-query verification step, as on average,

a putative hit has to be verified against only 280 anti-queries.

The baseline results for anti-query verification of approximate 1-best syllable STD

results using all anti-queries are given by table 5.4. We observe that by verifying the

results on short queries using the anti-query approach, we obtain a drastic precision

increase of 31% absolute while recall decreases only by 3%. As a result of this, ATWV

is also increased by 8% absolute.

Table 5.4.: Anti-query verification of approximate 1-best syllable STD results.

System Precision Recall ATWV

Unverified 0.60 0.75 0.48

All anti-queries 0.91 0.72 0.56

Next, we look into the errors produced by anti-query verification in order to further

improve the results. A verification error occurs if the verification step removes a true

positive hit from the result set, thereby decreasing recall. First, we observe that some
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of the true positive removals are caused by exact substring matches of the anti-query as

described in section 5.3.3. We apply the proposed pruning and remove those anti-queries

where the anti-query is an exact substring of the query. Table 5.5 shows the results for

different configurations. Here, we focus on the decrease of true positive removal that we

can achieve by the pruning, while keeping precision gain as high as possible. First we

remove queries if the anti-query is an exact substring of the query on the word level.

We already obtain a decrease in TP removal of 19% absolute, while precision is only

slightly decreased by 1% absolute. In the next experiment, the match is based on the

phonetic representation, i.e., we would not apply the anti-query Haus for the query

White House. We can further decrease the TP removal by 5% absolute without notable

loss in precision. Further TP removals can be prevented by removing anti-queries also

in the case of a reverse match, i.e., where the phonetic representation of the query is a

subsequence of the phonetic representation of the anti-query. The resulting TP removal

is 27% absolute lower than the unpruned baseline, while STD precision remains at 90%

such that only few false positives are not removed anymore by the anti-query approach.

Examples include the removal of the anti-query Mark for the query Markt caused by

word level substring match or the pruning of the anti-query Wahlen for the query Wale,

caused by reverse phoneme level substring match. We note only few anti-queries cause

already many TP removals, as the average amount of anti-queries per query is only

reduced from 280 to 250 by anti-query pruning.

Table 5.5.: Anti-query match pruning of approximate 1-best syllable STD results.

True positive
System removal (%) Precision Recall

All anti-queries 100 0.91 0.72

Word match pruning 81 0.90 0.72
Phoneme match pruning 76 0.90 0.73
+ reverse match 73 0.90 0.73

Unverified 0 0.60 0.75

In the next experiment, we evaluate whether adding context to the anti-queries can

further reduce the amount of recall loss while keeping precision as high as possible.

With only a single syllable of context on both sides of the query, table 5.6 shows that

the removal of true positive hits is reduced by another 40% absolute, with only 3% loss

in precision. Next, we remove all contextual anti-queries that are detected only once

in the parallel corpus. This singleton-cutoff is often used in language model training,
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where very rare bi- and trigrams are removed from the language model, as they often

encode only noise. When removing singleton anti-queries, only 22% of the original true

positive removals persist, while precision remains high at 85%.

Using words instead of syllables as the unit for determining the anti-query syllable

context further decreases the amount of true positives that are removed. Words are

often longer than one or two syllables. The corresponding contextual anti-query becomes

longer, and the matching constraint becomes harder compared to using only one syllable

of context. Precision is also further decreased, hence the selection of the context unit

should depend on the scenario, i.e., recall-oriented applications should consider using

word-based context expansion.

Looking at the results after pruning, we observe that pruning can cope with the fact

that rare queries that are not well covered by the language model training data. For

example, consider again the football team Hoffenheim. The competing term Hocken-

heim occurs much more frequently in LM training data, and hence the corresponding

syllable trigram h O k @ n h aI m is more likely to be decoded in challenging decod-

ing situations. When collecting anti-queries for Hoffenheim, phonetically similar words

such as Hockenheim will be detected as anti-queries, causing a true positive removal in

the decoding example above. Adding context to the anti-query helps: Hockenheim is

often followed by the word Ring, as Hockenheim Ring is a well-known race course in

Germany. However, it is highly unlikely that (i) Hoffenheim gets decoded incorrectly by

h O k @ n h aI m (ii) and at the same time, the decoder outputs Ring - r I N after

Hoffenheim was spoken.

Only very few true positive hits are still removed after applying the most intense

pruning. These include short words that phonetically very close, and are also used

within exactly the same local context, such as the true positive Irak - Q i: r a: k which

is still removed by the anti-query Irak - Q i: r a: n . These special cases can only

be removed exploiting higher level contextual knowledge, which is beyond the scope of

Spoken Term Detection.

Figure 5.5 summarizes the main results for anti-query verification of 1-best STD re-

sults. We observe that applying all proposed pruning techniques, we can drastically

increase precision with a negligible loss in recall.

Next, we validate the results for 1-best verification on approximate syllable lattice

search. From the results shown in table 5.7, we can observe that recall is decreased by

2% absolute, which is similar to 1-best anti-query verification (3% decrease). At the

same time, precision is increased by 11% absolute. While this performance gain already
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Table 5.6.: Anti-query context pruning of approximate 1-best syllable STD results.

True positive
System removal (%) Precision Recall

Reverse phoneme match pruning 73 0.90 0.73

+ syllable context 33 0.87 0.74
+ no singletons 22 0.85 0.75

+ word context 19 0.86 0.75
+ no singletons 13 0.83 0.75

Unverified 0 0.60 0.75

provides a more usable system configuration for approximate lattice search, we note

that the precision increase using anti-query verification on approximate 1-best search is

almost three times higher. Anti-queries are designed for overcoming systematic errors

from the minimum edit distance alignment, and additional false positive errors that stem

from the lattice search itself are not taken care of explicitly.

As in the case of 1-best verification, pruning based on the phoneme match approach

recovers about one quarter of the true positives that were removed by the unrestricted

anti-query verification, while precision remains unchanged at 49%.

When extending the anti-queries with additional context, we observed that a single

context syllable at each side of the query is not sufficient for anti-query pruning. In this

case, pruning does not recover much additional recall, as the slightly extended queries

are still too easy to find on the lattice. When extending the query with whole single

words on the left and right side, we can recover almost all original true positives, while

precision is still increased by 6% absolute over the unverified baseline.

Table 5.7.: Anti-query verification of approximate syllable lattice STD results.

True positive
System removal (%) Precision Recall

Unverified 0 0.38 0.81

All anti-queries 100 0.49 0.79
Reverse phoneme match pruning 77 0.49 0.79
Word context pruning 6 0.44 0.81
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Figure 5.5.: Anti-query verification of approximate 1-best syllable STD results.

5.5.3. Hybrid Verification

In this section, we combine the two different variants for verification and evaluate whether

precision can be further increased by applying the methods in sequence, i.e., we remove

results using contextual verification, and then remove putative hits from the resulting

reduced set using anti-query verification. Note that the order is irrelevant. Again, we

verify the results when using a low approximation threshold during approximate search,

which enables high recall values of the unverified baseline. We use the best configurations

derived in the previous sections.

First, we look at the results obtained from approximate 1-best syllable retrieval. Com-

bining the two approaches only yields little additional precision at equal recall over the

anti-query approach. This indicates that most of the precision loss observed in the

unverified baseline stems from systematic errors caused by the approximate search.

The situation is different for lattice-based approximate retrieval. In contrast to the 1-

best baseline, additional gain is possible through the combination of the two approaches.

Here, we obtain a precision gain of 3% absolute over each individual baseline, and ATWV

is increased by 4% absolute. We conclude that verification does not only compensate for
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Table 5.8.: Hybrid verification of approximate 1-best syllable STD results.

Approach Precision Recall ATWV

Unverified 0.60 0.75 0.48

Contextual 0.67 0.75 0.51
Anti-query 0.85 0.75 0.57

Hybrid 0.86 0.75 0.57

systematic errors from approximate search, but also for errors caused by lattice retrieval.

All in all, we obtain an absolute precision increase of 9% over the unverified baseline,

while recall remains unchanged and high at 81%.

Table 5.9.: Hybrid verification of approximate syllable lattice STD results.

Approach Precision Recall ATWV

Unverified 0.38 0.81 0.35

Contextual 0.44 0.81 0.41
Anti-query 0.44 0.81 0.41

Hybrid 0.47 0.81 0.45

So far, we have used the contextual verification on an approximate lattice result set

with very low approximation threshold. This enables high recall of 81% at the cost

of still relatively low precision. Even with hybrid verification, precision is still below

50%. While this might be tolerated in recall-oriented applications, it is a prohibitive

characteristic in many scenarios, especially involving end-users.

Obviously, verification helps most if the threshold for the STD confidence is low,

such that a large phonetic distance between query and actually decoding output will be

tolerated by the STD approach. However, we also observe gain through verification at

higher levels of baseline STD confidence. Figure 5.6 compares the performance of the

unverified baseline to the three verification variants described in table 5.9 (Contextual,

Anti-Query and hybrid verification), while varying the approximation threshold in the

first STD pass. We observe the following characteristics:

1. Both Contextual and Anti-Query verification always outperform the baseline.

2. The performance of hybrid verification always exceeds the performance of the

individual approaches.

3. Contextual and Anti-Query verification show similar performance.
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Figure 5.6.: Hybrid Verification of approximate syllable lattice STD results with varying
approximate search threshold.

For comparison, we also evaluate the impact of verification on the complete set of

queries, i.e., also including the second half of the query set consisting of longer queries.

Table 5.10 compares the results for the hybrid approach to the unverified baseline on

the complete query set. As expected, we observe only little increase in ATWV, but still

obtain a precision improvement of 6% for high recall scenarios.

Table 5.10.: Hybrid verification on complete query set.

Approach Precision Recall ATWV

Unverified 0.45 0.77 0.61

Hybrid verification 0.51 0.77 0.63

5.6. Summary

Current approaches to STD do not exploit external query knowledge that is only avail-

able at search time. In the preceding chapter, we have described a generic process for

STD result verification based on this idea. In [95], we have proposed two verification

methods that implement this process: contextual verification and anti-query verifica-

tion. Applying both verifications in sequence on a subset of short queries improves
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recall-oriented ATWV on approximate lattice search from 0.35 to 0.45, and increases

precision by 9% absolute at constant high recall of 81%.

Contextual verification of a putative STD result is a positive verification, where we

attempt to find evidence in external knowledge that the local ASR context of the putative

hit is valid. If such evidence is not found, then the hit is rejected. In contrast to this, anti-

query verification is a negative verification: here, we reject the hit if we find evidence that

a phonetically similar query fits better at the putative hit position. From the evaluation

of both approaches, we can draw the following conclusions:

• Contexts for contextual verification should be collected from an up-to-date parallel

corpus, such that the number of inappropriate and insufficient contexts per query

is minimized. Larger contexts help, but gain saturates at three syllables of context.

• For anti-query verification, competing anti-queries and corresponding contexts

should be collected from the actual language model training data, which best

resembles the possible output from the subword ASR.

• The anti-query verification set should contain those anti-queries that most likely

cause a false alarm for a given query, and anti-query pruning should be applied to

further increase the STD accuracy.

• Applying both approaches in sequence yields the best overall results, since they

cover different verification aspects.

• Verification increases STD accuracy for both approximate 1-best and approximate

lattice retrieval. However, due to the lower precision of the unverified baseline,

impact is higher on the lattice result set.
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Retrieval efficiency is only rarely in the focus of STD research, and is often not reported

at all. This is a little surprising, since long response times during retrieval will render an

STD system unusable for many scenarios, even if it shows high performance in terms of

MTWV. The important role of efficiency is also reflected by the NIST STD evaluation

plan [82], which requires that ”search time is to be reported” by each participating

group.

In our contributions in [96] and [77], we have looked in detail at the performance char-

acteristics of selected promising subword STD approaches, and proposed fast retrieval

methods for German subword STD. Within the scope of this chapter, we will extend

these results and investigate the scalability of all major aspects that have been studied

within this thesis: vocabulary independent STD, error compensation in STD and STD

result verification. Our main goals for this section are to describe the actual implemen-

tation of the selected approach, and study its efficiency. Where required, we propose

optimizations and pruning strategies that reduce runtime while keeping accuracy at a

high level.

Scalability does not only mean that a system can scale up to large data sets with

reasonable response times. In the context of some scenarios, it might also be required

to move in the opposite direction, and increase STD accuracy at the cost of retrieval

efficiency. Hence, an additional goal is to get in control over the tradeoff between STD

response time and STD accuracy, which is a yet unexplored trail in STD research. This

will enable us to configure an STD approach for a new scenario with specific efficiency

and accuracy requirements. We are particularly interested in the following aspects:

• What is the largest possible archive that can be searched with a reasonable retrieval

time (e.g., response below one second)?

• What is the highest accuracy in terms of MTWV that can be achieved for medium-

sized audiovisual archives of up to 1,000 hours?

• What is the highest accuracy in terms of MTWV that can be achieved for the

media monitoring scenario, where about 10 hours of data need to be searched at
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once?1

Obviously, the runtime of an individual approach heavily depends on the hardware and

software platform that was used to run the experiment. For the retrieval experiments

below, a standard state-of-the-art desktop PC was used to generate the runtime numbers.

Table 6.1 contains the exact specification of the system. We note that exactly the same

platform was used for all reported experiments.

Table 6.1.: Specification of system used for scalability experiments.

CPU type Intel Core 2 Quad CPU Q9650
CPU clock 3.00GHz
RAM 8 GB

Operating system SuSE Linux 11.3 64Bit, Kernel 2.6.34

Only a single CPU core was used for the experiments below. However, we note that the

proposed implementations can be easily parallelized by the following simple procedure:

1. Segmenting the corpus into subcorpora of approximately equal size.

2. Perform search as described below on each sub-corpus, where each search is carried

out on a different CPU core.

3. Merge the verified STD results by a simple and fast union operation.

The decrease in computation time for a single query will then be proportional to the

number of used cores, i.e., the 4-core machine specified in table 6.1 will only use a quarter

of the efficiency values given in the experiments below for a single core.

6.1. Scalable Vocabulary Independent Spoken Term Detection

Searching 1-best word transcripts can be solved exactly as searching textual data, which

is a mature and well studied domain. Fast approaches exist and enable word search even

for extremely large corpora such as the English Wikipedia, which currently contains over

2.5 billion running words2. From the DiSCo statistics, we can expect that the size of

1-best ASR output for very large corpora will be in the same range. If we consider a

media archive of 100,000 hours of pure speech data, then we could expect more than a

billion running words based on the DiSCo estimate of 10,000 words per hour of speech

1Cf. the example in section 2.2, where the last 15 minutes from 50 TV stations were monitored
2Estimated from a Wikipedia dump taken at 2011-08-12
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data. However, in many scenarios, this number will be much lower, as there are many

non-speech fragments (for example, DiSCo contains only about 75% speech utterances),

and many interesting applications need to search far less data.

In [96], we have first described a large scale experiment for exact German syllable

retrieval on a simulated corpus of 10,000 hours, where we indexed and searched 5000

copies of a small STD evaluation set consisting of two hours. In this section, we will

describe our key findings, and extend this experiment as follows. First, the simulated

corpus will be synthesized from a larger and more complex evaluation corpus (12 hours

from DiSCo) instead of the only two hours used in [96]. This will yield more realistic

word frequency distributions due to the larger sample. Moreover, other than in [96], we

will obtain average runtimes on the complete DiSCo query set with its large variety of

realistic queries. Finally, we will look in more detail at the response time behavior while

increasing the amount of data.

We base our retrieval system on the idea of an inverted index data structure: For each

occurring term, the system stores all document indices where the term occurs, thereby

enabling fast retrieval without increasing the index size beyond the number of running

words.

As an example, consider the following three sentences produced by the ASR:

1. I would like to know how you feel.

2. You mean, how could I like this car?

3. Do you like this car?

For each utterance i ∈ {1, 2, 3}, we collect all occurring words. For each word wi

that occurs in utterance i, we store the index i in a set with label w. In the end,

this set contains all references to w across all utterances. If the utterances contain N

running words and U unique terms, then this will result in U term sets with all in all N

entries, hence the required storage is limited by the number of terms that occur in the

text. For the example above, table 6.2 illustrates the contents of the resulting inverted

index. Typically, in actually deployed systems, very frequent words (such as articles or

pronouns) are not stored in the index. Removing these so-called stop-words from the

index drastically reduces the index size, as only very few words make up most of the set

of running words.

Then, retrieving the utterances that contain a single term is a simple operation with

constant time, as we just have to obtain the corresponding utterance index set. The
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Table 6.2.: Inverted index example.

Term Utterance index set

car {2,3}
could {2}
do {3}
feel {1}
how {1,2}
I {1,2}
know {1}
like {1,2,3}
mean {2}
this {2,3}
to {1}
would {1}
you {1,2,3}

inverted index concept is also used in the popular open source search engine Lucene3,

which we use as the basis for our further investigations in the following.

For exact subword STD, phrase queries play an important role. If we consider the case

of syllable STD, then all queries with more than one syllable become phrase queries on

the subword level, hence the indexing and retrieval system must not only be efficient for

single terms, but also for multi-word queries where the order of the query terms must

be correctly found.

The current implementation for phrase queries in Lucene relies on the following strat-

egy, which is specified by algorithm 8. First, a Boolean AND-Query is carried out on the

complete set of documents, such that the resulting set of documents already contains

all terms. Boolean operations can be executed in a very efficient manner on inverted

indices. For example, a Boolean AND over n terms is equal to intersecting the n corre-

sponding index sets, while a Boolean OR can be easily solved by constructing the union

of the n index sets. In order to further speed up the Boolean AND query, the terms are

first sorted by their respective inverse frequency in the corpus, i.e., the term with the

smallest number of occurrences is considered first. Its index set is intersected with the

index set of the second most infrequent term. Hence, the two smallest index sets are

intersected, reducing the overall cost for intersection.

Then, an exact search for the complete phrase on each document in the result set is

carried out. Only documents where the phrase terms are found in the correct order are

added to the final result set. We can expect that the amount of candidates for this exact

3http://lucene.apache.org/
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matching is already drastically reduced by the AND query described above.

Algorithm 8 Collect set D of all documents that contain phrase query s = s1 · · · sn.

D ← ∅
Sort s by ascending size of corresponding index set:
obtain o1 · · · on, where oi = sj , and sj is the term with the i− th smallest index set
for all i = 1 · · ·n do
Di = {d|oi occurs in document d}
if i == 1 then
D = D1

else
D = D ∩Di

end if
if D == ∅ then

break
end if

end for

There exist other, even more efficient approaches to exact phrase search such as suffix

arrays [73] or suffix trees [106], yet they typically require more complex operations in

order to build and update the index. These alternatives could be considered if the

index is only rarely updated, and the corpus size exceeds the maximum size that can be

handled by our inverted index approach (see below).

In order to generate the full STD result as required by the NIST evaluation plan, we

also store the timestamps for each 1-best ASR transcription. Then, for each document

that contains the exact query phrase, we obtain the corresponding start timestamp and

duration from the stored array of timestamps, such that we can asses whether a putative

hit is within the tolerance boundaries of a reference occurrence.

We use the described system to index and search the 1-best output from word ASR and

syllable ASR. For comparison, we also index the results which we obtain from breaking

down the syllable results to phoneme sequences. We have shown earlier that this step

results in slightly higher accuracy, however, we expect drastically higher search times

for the phoneme-based index.

We note that text produced by ASR has a key characteristic which differs significantly

from text produced by humans: the ASR decoding dictionary is fixed and relatively

small. The number of unique words that occur in the transcripts can never exceed the size

of our decoding dictionary, even if we would index billions and billions of hours of video.

This has negative impact on the expected performance of retrieval from the inverted file,

as the number of terms that can be indexed by the inverted file is also limited. As the
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corpus increases, the slots for each term are more and more filled, because no new terms

can be observed due to the fixed decoding lexicon. The situation is different for indexing

of arbitrary texts generated by humans: here, the number of unique words is not fixed,

and for large corpora much larger than in the case of word-based ASR. For example,

our language model training corpus contains about 900,000 unique words, compared

to about 200,000 unique words that can be produced by our word-based ASR. Hence,

one could expect a more linear increase in response time with respect to the data size

when indexing and searching ASR output. This has even greater impact when indexing

subwords such as syllables or phonemes, where the size of the decoding dictionary is

further reduced (in our case to about 10,000 syllables and 50 phonemes).

As motivated above, we generate an artificially large corpus by duplicating the original

DiSCo ASR output. Note that we cannot simply index and search a large textual source.

We could only evaluate 1-best approaches on such data, and it would not be realistic as

it would resemble a perfect transcription. We are particularly interested in the response

time on 1,000 hours of data, as many interesting media archive scenarios fall below this

boundary. Table 6.3 contains some statistics for (i) the baseline DiSCo corpus consisting

of 12 hours of data and (ii) a large corpus that was built by concatenating 85 copies

of the ASR output on DiSCo, resembling a corpus of 1,000 hours of data. The large

corpus contains about 1.5 million utterances, and over 12 million decoded words. In a

similar fashion, we multiplied the syllable and phoneme outputs and created artificial

syllable and phoneme transcripts for 1,000 hours of data, containing 20 million syllables

and about 70 million phonemes. In the following, the large corpus will be denoted by

DiSCo1k.

Table 6.3.: Size of 1-best ASR results used for scalability experiments.

DiSCo DiSCo1k

Hours 12 1,000

Utterances 17,152 1,455,615

ASR words 145,085 12,312,730

ASR syllables 240,927 20,446,421

ASR phonemes 822,995 69,843,989

In the following experiments, we obtain the average query response time tavg over all

N = 501 DiSCo queries. Here, query response time for a single query includes all steps

which are necessary to produce the final set of STD results o(q) for a query q. This
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includes performing the actual search as well as collecting timestamp, hit duration and

hit confidence. Time for setting up the system (e.g., index loading time) is not included.

The average time per query is then defined as follows:

tDiSCo =
1

N

N∑
i=1

t(qi) (6.1)

where t(qi) is the query response time for query qi on the complete DiSCo corpus.

From the inverted file structure used within Lucene we can expect linear search time

increase as we increase the size of the corpus by copying the original data: the number of

indexed terms remains stable, but the size of the indexed documents per term is linearly

increased. We note that we expect better sub-linear performance if we would increase the

corpus with new unseen data. Here, more and more unseen word types are indexed, and

the size of the document index per term increases slower than in our artificial experiment.

However, this effect is less dramatic for syllables, and even less for phonemes, where the

finite vocabulary is covered rather fast. Based on this observations, we expect a linear

correlation between corpus size and query response time when artificially increasing the

corpus, and lower response times for random unseen data.

The efficiency measurements given below are always averaged over a series of 10 ex-

periments with identical setup in order to remove the influence of outliers. For a single

measurement below, all 501 queries are searched 10 times in all indexed utterances in

order to obtain the average value. For example, the result for the 1,000 hour sylla-

ble STD result was estimated by searching each of the 10 ∗ 501 = 5, 010 queries in

85 ∗ 17, 152 = 1, 457, 920 utterances.

Table 6.4 contains the average response times for word, syllable and phoneme-based

exact STD. All experiments were carried out on both DiSCo and DiSCo1k. First, we

observe that retrieval is highly efficient on the baseline DiSCo corpus. With all units,

we can obtain very low response times, and even phoneme retrieval can be carried out

with a search time below 10ms. However, on the large corpus, word STD is almost twice

as fast as syllable retrieval. Compared to the word decoding lexicon, the finite syllable

is about 20 times smaller, causing the index sets per term to be larger. Moreover, most

queries consist of more than one syllable, which requires an expensive exact phrase search

for the syllable sequence, whereas many queries contain only one word, where a lookup

in constant time is possible. However, syllable retrieval is still very fast on the large

corpus, with an average retrieval time below 10ms. Even more interestingly, both word

and syllable retrieval outperform phoneme search. The latter is almost 40 times slower
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than syllable retrieval. This relatively slow performance on 1,000 hours of data is caused

by the very small alphabet over which the inverted index is constructed: only 50 index

sets for the 50 phonemes take up all 70 million running phonemes of DiSCo1k. Moreover,

a phoneme phrase query for a certain query word contains more query terms than the

corresponding syllable phrase query.

Another cause for the different runtimes can be found in the different frequency distri-

butions. Word frequencies in large collections are known to follow a Zipfian distribution,

i.e., very few common words (such as articles or pronouns) make up most of the set of

running words. More formally, Zipf’s law states that frequencies are inversely propor-

tional to the corresponding frequency rank. This has a major impact on the assumption

that the least frequent part of a query term has a small index set, which in turn enables

fast AND operations during Lucene’s phrase search.

We carried out the following experiment in order to compare the frequency distribu-

tions of words, syllables and phonemes on ASR output. First, we collect the absolute

frequency c(w) for each of occurring word type w. Next, we sort all n word types by

frequency into a list w1 · · ·wn, such w1 has the highest frequency and wn has the lowest

frequency. Then, for the i − th word wi in the ordered list, we obtain the accumulated

relative frequency r(wi) over the complete word ASR output as follows:

r(wi) =

∑i
k=1 c(wk)∑n
k=1 c(wk)

(6.2)

We obtain the same values for the syllable and phoneme ASR outputs, respectively.

Using the accumulated relative frequencies, we can observe which fraction of the running

words can be covered with a given percentage of the unit vocabulary. This allows us to

compare the frequency distributions across units with very different vocabulary sizes.

Figure 6.1 illustrates the different frequency distributions, using the accumulated rela-

tive frequency as a function of the number of covered unique terms ordered by frequency.

We observe that similar to words, syllables follow a Zipfian distribution, and a large frac-

tion of running syllables is already covered after accumulating a few very frequent unique

syllable types. Hence, many syllables have very small index sets, and can contribute to

speeding up phrase search. However, unlike words and syllables, phoneme frequencies

decrease much faster if ordered by rank, hence the AND operation in the phrase query

search becomes more expensive. Combined with the typically longer phrase queries

for phoneme sequences and a large phoneme index, it is clear that phoneme search is

outperformed by both word and syllable STD.
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Figure 6.1.: Distribution of word, syllable and phoneme frequencies in ASR output on
DiSCo.

So far, we have tested our hypothesis regarding word, syllable and phoneme distri-

butions only on the ASR output of the relatively small DiSCo corpus. In the next

experiment, we would like to compare the frequency distributions for the three units

on a very large ASR output corpus. We simulate this corpus with the language model

training text specified in 3.3, consisting of over 150 million words. Based on the DiSCo

statistics of about 10,000 hours per word of speech, this corpus can be used as an ex-

ample for perfect 1-best ASR output on about 15,000 hours of data. For the phoneme

and syllable frequency distributions, we break down the text into phoneme and syllable

sequences, respectively, and count the frequencies. For the word frequency distribution,

we omit all words that are not in the 200,000 word lexicon of the word decoder used for

generating figure 6.1 in order to simulate ASR output from the same speech recognizer.

For comparison, we also calculate the word frequency distribution using the full word

vocabulary (913,041 unique words).

First, we observe that the relative behavior between phoneme, syllable and word distri-

butions remains unchanged compared to the results on DiSCo: few syllables and words
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already cover most of the running tokens, while the number of accumulated running

phonemes increases much slower. Comparing the results to figure 6.1, we can observe

that the phoneme frequency distributions are almost equal, because all phonemes have

already been observed in a similar distribution in the DiSCo results. On the other hand,

relative syllable and word frequencies of the most frequent tokens are even higher in the

case of the DPA corpus. Here, the amount of observed unique terms is much greater

than in the case of DiSCo, where only 3,793 out of 10,816 possible syllables and 14,267

out of 200,000 possible words were actually decoded by the ASR. Terms which were not

decoded in DiSCo despite being part of the decoding dictionary are likely to be of low

frequency in the DPA corpus. Adding such low-frequency terms to the frequency dis-

tribution increases the impact on accumulated relative frequency for the high frequent

terms, hence the DPA curves for words and syllables are much steeper than the DiSCo

curves. This is also confirmed by looking at the difference between using ASR decoding

vocabulary and full vocabulary when calculating the DPA word frequency distribution.

In the latter case, many more low-frequency words are added to the distribution, further

increasing the relative impact of the highly frequent words. We can conclude that words

and syllables follow a Zipfian distribution on ASR output, which can be exploited for

efficient indexing and retrieval.

Table 6.4.: Response times of vocabulary independent STD.

Response time (ms)

Retrieval unit DiSCo DiSCo1k

Word 0.1 5.2

Syllable 0.2 9.2

Phoneme 4.2 362.6

Table 6.5 shows that the storage requirements of all three approaches are moderate,

and the differences between the units reflect the relation between words, syllables and

phonemes as described in table 6.3. Storing the index for the output from word ASR

together with the corresponding time stamps requires 264 MB of space per 1,000 hours

of data. For syllables, only about 50% more storage is required per thousand hours,

while the phoneme index is almost 2.5 times larger than the word index.

Next, we verify whether our assumption about the linear correlation between corpus

size and response time can be observed in the actual implementation. Figure 6.3 illus-

trates the response time behavior of word and syllable STD while varying the amount
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Figure 6.2.: Distribution of word, syllable and phoneme frequencies in ASR output on
DPA.

of indexed data. In both cases, amount of data and response time are clearly linearly

correlated (word: r=0.997, syllable: r=0.999), however the increase per 1,000 hours of

data of the corresponding linear function is higher in the syllable case (word: 5 ms per

1,000 hours, syllable: 10 ms per 1,000 hours). However, syllable STD is still far more

scalable than phoneme-based retrieval, where the response time is increased by 367 ms

with each 1,000 hours of data.

In the experiment above, we assume that the 120,000 running words of the DiSCo cor-

pus already represent the expected word and syllable distributions well. As mentioned

before, we expect even lower query response times per 1,000 hours of data when extend-

ing the corpus with unseen data, as there will be more indexed terms in the inverted

file structure, and the existing term indices will be less filled due to more vocabulary

variability. Even with the upper boundary given by the linear extrapolation of the pre-

sented results, a large archive of up to 100,000 hours of data could be searched using

either word or syllable-based STD, with a low response time below one second. The
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Table 6.5.: Storage requirements of vocabulary independent STD, for DiSCo1k.

Retrieval Unit Required storage (MB)

Word 264

Syllable 378

Phoneme 645

storage requirements for the large archive scenario would still be relatively small (about

25GB for the word and about 31 GB for the syllable case, linearly extrapolated from

the experiments above).

Phoneme-based STD offers only little accuracy increase over syllable-based STD, and

only if the phonemes were obtained by breaking down decoded syllables instead of direct

phoneme decoding. On the other hand, phoneme indices are substantially larger than

syllable indices, and the retrieval time increases drastically when increasing the amount

of data. Hence, from the experiments above we can conclude that phoneme-based STD

should only be used if the amount of data is small and limited, and maximum STD

accuracy has high priority.

6.2. Scalable Error-Tolerant Spoken Term Detection

In this section, we investigate selected aspects of the presented techniques for error

compensation. We will concentrate on the scalability of syllable STD approaches. As

shown in section 6.1, phoneme STD is inherently less efficient than word or syllable STD

due to the large amount of tokens that need to be stored and retrieved, and already

exact 1-best phoneme STD yielded relatively high response times. Compared to word

STD, syllable retrieval allows for more complex error compensation approaches, and has

hence been selected as representative for this section.

In the first part, we will investigate the CPU and memory requirements of the approx-

imate search on 1-best and propose several optimizations and pruning ideas in order to

increase the efficiency of the process without sacrificing too much STD accuracy. Then,

we will describe the implementation of our anchor-based filter approach for fast approx-

imate subword STD. The second part will transfer the ideas from approximate 1-best to

the more complex approximate lattice search.
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Figure 6.3.: Correlation between corpus size and query response time for vocabulary
independent STD.

6.2.1. Approximate Search on 1-best Syllable Transcripts

As shown in section 4.5.2, approximate search using minimum edit distance (MED) is a

powerful approach to overcome errors in STD. This is especially the case if we explicitly

exploit phonetic knowledge through the use of a syllable distance metric for the syllable

substitution cost, in our case again based on MED.

In principle, the time complexity for estimating the minimum edit distance between

two strings of the same size is quadratic, and the time complexity for approximate

syllable search for a query with m syllables on a window with n syllables taken from a

1-best transcript is in O(n ∗m). Typically, both m and n are small, but depending on

the size of the corpus, the calculation needs to be executed very often.

In a baseline experiment, we estimate the full two-stage minimum edit distance as

defined in section 4.3.1 for each window position in the transcript of each utterance. A

window position is assumed to be an STD hit if the local alignment between query and

windowed transcription is above the confidence threshold. Table 6.6 contains the runtime

per query on the DiSCo corpus (11.6 hours), averaged over all 501 DiSCo queries. On
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average, the system requires almost two seconds to calculate the alignments between the

query and all transcription windows for the small DiSCo corpus. The high runtime is

caused by two different aspects:

1. The cost for a single MED alignment is local, but very high due to the two-stage

approach.

2. The linear scan through the complete transcription yields a high lower bound for

the response time.

We will address both issues in the following. First, we look more closely at the

second stage of the MED distance calculation, where the phonetic distance between

two syllables is estimated using the Levenshtein distance. This estimation does neither

depend on the query syllable sequence nor on the windowed transcript sequence, and is

thus independent of the input. Hence, we can pre-calculate the distances between all

possible syllable pairs offline, i.e., before the retrieval system is deployed.

With about 10,000 syllables in the system, we estimate the pairwise distance for

all 100 million possible syllable pairs, and store it in a 10,000 × 10,000 matrix. The

syllable distance matrix is kept in main memory for fast access during alignment of

the syllable sequences, such that the syllable substitution cost can be obtained in O(1).

This approach substantially reduces the amount of calculations that is required at query

time, and thereby drastically decreases the average response time on DiSCo to about 160

ms per query. With the proposed optimization, approximate search on 1-best syllable

transcripts becomes a feasible option for small-scale recall-oriented scenarios such as

media monitoring. However, the linear extrapolation to 1,000 hours shown in table 6.6

indicates that this approach is still not applicable to larger corpora.

Table 6.6.: Average response time of approximate search on 1-best syllable transcripts.

Response time (ms)

Retrieval unit DiSCo DiSCo1k

Two-stage online MED 1,846 156,658

+ syllable distance matrix 164 13,918

As indicated above, the query response time depends directly on the length of the

query. In order to verify this behavior on our corpus, we estimated the individual

runtimes for each occurring query length in DiSCo. For query length i, we estimated

tavg(i) as the average runtime for all DiSCo queries of length i. Figure 6.4 illustrates
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the linear increase in response time while increasing the query length. Each data point

was estimated as the average over 5 independent runs on the queries of that particular

length. In section 2.4.2 we already observed that only few queries have more than 20

phonemes, hence we can expect runtimes of 250 ms or less for most queries on corpora

that have comparable size to DiSCo (such as in the media monitoring use case).
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Figure 6.4.: Correlation between query length and query response time for approximate
search on 1-best syllable transcripts.

The decrease in response time when using the offline syllable distance estimation comes

at the cost of increased memory requirements for keeping the distance matrix in main

memory. If all the pair-wise distances for all possible syllable pairs are stored as floating

point values, then about 0.5GB of main memory is required for storing the matrix. This

can be further reduced without negative effect on accuracy and response time by two

ideas: assuming symmetric distance and quantization.

First, we assume that the pair-wise syllable distance is symmetric. We estimate the

distance between syllables i and j as the average over the two pair-wise distances, and

store the same value in the both the upper and lower triangle of the syllable distance
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matrix. While this assumption is reasonable, it could have a negative impact on STD

accuracy as it ignores evidence obtained from the parallel corpus through the (non-

symmetric) phoneme confusion matrix.

If the distance is symmetric for all syllable pairs, then the syllable distance matrix will

also be symmetric. Then, it is sufficient to store only the upper triangle of the matrix,

thereby reducing the required amount of storage by 50%. In order to store the matrix

in a flat list, we first note that the number of elements in the upper triangle (including

the diagonal elements) of a n× n matrix is equal to

n∑
i=1

i =
(n · (n+ 1))

2
(6.3)

Then, we can create a flat syllable distance list of this size, and populate it using

the original symmetric distance matrix. During alignment of two syllable sequences,

one needs to calculate the list index for a given syllable pair (i, j), which could have a

negative effect on the search runtime.

In the next step, we reduce the amount of memory required for storing a single sylla-

ble distance. As we already quantized the distance between phonemes in the phoneme

confusion matrix to three classes (equal - similar - dissimilar), it is natural to also quan-

tize the distance between short phoneme sequences, namely syllables. Hence, instead of

using 4-byte floats for the original distance d ∈ [0, . . . , 1], we quantize d to the range

[−127, . . . , 127]. Similar to the case above, this changes the actual syllable distance,

which might have an impact on the STD accuracy, while runtime is not be affected here.

Table 6.7 compares the resulting storage requirements. As expected, storing only the

upper triangular matrix requires only half of the original storage. Quantization from

4-byte floats to bytes further reduces the size of the data structure to about 13% of the

original matrix. We found that neither MTWV nor response time were affected by the

symmetry assumption or the quantization.

Table 6.7.: Storage requirements of syllable distance matrix for fast approximate search
on 1-best syllable transcripts.

Approach Required storage (MB)

Full float matrix 448

+ symmetry assumption 224

+ distance quantization 57

Next, we would like to overcome the linear scan through the complete syllable tran-

152



6.2. Scalable Error-Tolerant Spoken Term Detection

scription in order to further reduce the response time. Some solutions exist to fast

approximate MED, e.g., using suffix arrays [48], but they suffer from the same chal-

lenges described in the exact case above (such as relatively large index size and complex

update operations). In [54], the authors successfully used suffix arrays for large scale

approximate phoneme retrieval on a Japanese STD task, however configurations tuned

towards higher recall values still lead to relatively high response times (especially for

longer queries).

For the scenarios described in section 2.2, we are rather interested in robust indexing

strategies with compact indices and fast update operations, such as the inverted index

data structure used in section 6.1.

We propose the following idea in order to make use of the inverted index in approximate

syllable STD. The core idea is to first filter the whole set of transcripts by assuming

that the query was at least partially decoded correctly, and then perform the expensive

approximate matching only on the filtered set.

• We assume that at least one of the syllables in the query was correctly decoded for

a particular reference occurrence. Syllables that are candidates for exact match are

called anchor syllables. Hence, in this case, all query syllables are anchor syllables.

• The system retrieves all utterance transcripts that contain one of the query sylla-

bles, i.e., we execute a Boolean OR query over all query syllables on the complete

index.

• Then, the system detects whether there is an approximate match for the whole

query in each of the filtered transcripts.

• A hit is added to the final result set if the phonetic similarity between the query

and a sub-sequence of the transcript is above the confidence threshold. This copes

with errors that occur on non-anchor syllables.

In order to speedup the search, we exploit the assumption that at least one query syl-

lable was correctly decoded, and can thus efficiently retrieve exact matches of this anchor

syllable from an inverted index. Assuming that at least one query syllable is reasonable,

since almost 70% of the syllables in the ranscript are correctly decoded according to

the syllable error rate obtained in section 3.3.2. In order to understand the impact of

the assumption, we looked in detail at the STD results for a fixed confidence threshold,

and compared the unrestricted baseline to the proposed approach. We observed that

exactly the same true positives were found despite the restriction, which indicates that

our assumption is reasonable. Moreover, the proposed approach even produces over 9%
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absolute less false alarms. The reduction is mainly caused by preventing false alarms for

monosyllabic queries, which must be matched exactly with the proposed approach. For

longer monosyllabic queries, an approximate match often leads to completely different

meanings (i.e., from S p r I t - gasoline to S p r I C t - speaking), which in turn can

cause many false alarms.

However in principle, true positives can also be omitted when using this approach for

the following reasons:

• With this approach, monosyllabic queries can only be matched exactly, although

errors can occur here as well (especially for longer monosyllabic queries).

• Moreover, ambisyllabic movement can cause reduction in recall. Consider a bi-

syllabic query, where the final consonant of the first syllable moves to the coda

position of the second syllable (e.g., from p a6 t n 6 to p a6 t n 6 ). Here, both

syllables are corrupted by the consonant movement, and the canonical form p a6 t

n 6 cannot be found on the transcript using our anchor-based filter approach.

With the proposed approach, we can reduce the runtime by over 75% absolute at

equal MTWV, yielding an average response time of 35 ms per query on DiSCo. As

described above, the overall high system performance does not decrease, because all

true positive hits are still found with the proposed approach. Although the approach

is substantially faster than the linear baseline, it is still not applicable to medium-sized

corpora such as DiSCo1k, where the average response time exceeds 3 seconds per query.

Next, we reduce the time required for approximate search by reducing the region for the

approximate match. In the baseline above, the system searches for the position with

minimum alignment cost in each complete utterance which contains at least one of the

query syllables. This can be improved by the following regional approach:

• As above, the system retrieves all utterance transcripts that contain one of the

query syllables.

• For each matching syllable, we store the hit environment around the matching

syllable as a putative hit region.

• Then, the system aligns the query sequence with each putative hit region.

• A putative hit is added to the final result set if the similarity between the query

sequence and the putative hit region is above the confidence thresholds.
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Table 6.8 indicates that using the regional approach, we can further reduce the runtime

by about 17% absolute at equal system accuracy. However, this approach requires that

information about term positions is stored in the index, such that we can obtain the hit

position for each utterance directly from the index. This requires about 35% more storage

compared to the values given in table 6.7, hence it depends on the actual application

requirements whether this is tolerable in order to decrease the runtime. In the following

experiments, we will use the regional approach as a baseline.

Table 6.8.: Fast approximate syllable search using index filter.

Response time
per query (ms)

Approach MTWV on DiSCo on DiSCo1k

All correct (exact search) 0.50 0.2 9.2

No restriction, linear scan 0.61 164.0 13,918.0

At least one correct syllable 0.61 35.1 3,036.9
+ region alignment 0.61 29.0 2,431.3

When using all query syllables as anchors, about 1700 documents survive the filtering

for each query on average, which is about 10% of the original size. In the next series of

experiments, we investiage whether we can remove some of the anchor syllables when

filtering the initital set of lattices in order to further reduce the size of this set. Removing

syllables from the anchor set will speed-up the search, as the number of OR clauses is

reduced and the resulting filtered set of utterances will be smaller. However, if the only

query syllable that was decoded correctly is not part of the anchor set, we will not be

able to retrieve the corresponding utterance in the filter step, thus decreasing STD recall.

Hence, our goal for anchor selection is twofold:

1. The system should keep those anchor syllables that are unlikely to be substituted,

deleted or inserted by the ASR, and rather remove those syllables that are likely

to cause ASR errors. Therefore, we need to obtain a list for all syllables sorted

by ASR instability A. We define the ASR instability A(s) for a syllable s as the

number of times s was deleted, inserted, or substituted with another syllable while

aligning representative ASR output to the canonical syllable reference. We can

obtain A(s) for each syllable from a parallel corpus such as the WDR/DW corpus

described section 2.4.2.

2. Moreover, we should aim at removing frequent syllables, as they contribute most
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to the set of documents found in the inverted index. The syllable frequency distri-

bution of a given corpus can be obtained directly from the inverted index.

For the following experiment, we only keep the most infrequent and the most stable

syllable in the respective anchor set and compare the results to the baseline using all

query syllables as anchors. The results for this experiment are given in table 6.9. First,

we remove all but the least frequent query from the query set, and obtain all utterances

that contain the anchor syllable. Obviously, this drastically reduces the amount of

utterance hits we obtain from the inverted index. When using all query syllables as

anchors as in the experiment above, we obtain 874,914 hits from the DiSCo index for

all 501 queries. When using only the least frequent syllable as an anchor, this number

is reduced to only 16846 hits that need to be processed by the approximate alignment

search. Naturally, the overall response time of this approach is substantially lower,

and requires only 54 ms on average on a corpus of 1,000 hours compared to over three

seconds for the baseline. The efficiency increase comes at the cost of accuracy decrease,

as ATWV is reduced by 5% absolute over approximate baseline. However, it exceeds

exact syllable search by 6% absolute. As we add more frequent syllables to the query,

we approach the performance of the baseline with only three anchor syllables per query,

while reducing retrieval time on 1,000 hours by 98% absolute.

If we keep the most stable syllable in terms of ASR stability, the number of hits that

need to be processed is also greatly reduced (23882 hits for the most stable syllable),

which indicates that syllables that tend to be correctly decoded also tend to be infre-

quent. This is not obvious from an ASR point of view, since infrequent syllables typically

also occur infrequently in AM and LM training data, and hence are more likely to pro-

duce errors. However, our observation could be explained from a linguistic angle: It has

been shown that compared to rare syllables, high-frequency syllables have a ”tendency

towards stronger coarticulation and greater coarticulatory variability” [9], which are a

major source of ASR errors. As the anchor syllables have been selected based on their

ASR stability, we can expect that an anchor is more likely to be found in the index than

an anchor that was selected only based on frequency. As expected, STD performance

is slightly higher in this case (0.57 vs. 0.56). Again, the STD performance reaches the

accuracy of the full query set when adding three stable syllables to the anchor set.

Next, we compare the behavior of the different approaches while varying the decision

boundary of the approximate search that is carried out on the filtered putative hit

regions. We find that the relative behavior between the different approaches is the same

as observed on the single-point MTWV metric above. If efficiency is a major requirement,

a single anchor based on the ASR stability criterion yields the most promising result.
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Table 6.9.: Comparing different approaches for anchor selection, using regional approxi-
mate matching on the filtered set of utterances. LFS = least frequent syllable,
MSS = most stable syllable.

Response time
Anchor per query (ms)

Selection MTWV on DiSCo on DiSCo1k

All correct (exact search) 0.50 0.2 9.2

LFS = 1 0.56 0.6 54.0
LFS = 2 0.60 2.5 217.2
LFS = 3 0.61 6.4 548.1

MSS = 1 0.57 0.8 73.5
MSS = 2 0.60 3.0 254.7
MSS = 3 0.61 6.8 582.8

All query syllables 0.61 35.1 3,036.9

With only two anchor syllables, the baseline STD accuracy can be approached with both

anchor selection techniques.

We can conclude that ASR result filtering by anchor selection is a viable means for

fast approximate syllable STD on medium sized corpora. When using only the least

frequent query syllable as a retrieval anchor, the system can search almost 20,000 hours

in the given response time requirement of one second, while MTWV is increased by 6%

absolute over exact syllable search. If the most stable query syllable is used instead,

MTWV is increased by another 1% absolute, still enabling search below one second on

over 10,000 hours of data. With three anchor syllables, medium-sized archives of 1,000

hours can be searched yielding the same STD accuracy as the exhaustive approximative

linear scan, while the response time is substantially reduced from 13 to 0.6 seconds.

6.2.2. Approximate Search on Syllable Lattices

Next, we investigate the efficiency of the most complex approach for error compensation

that was presented in section 4.2: hybrid error compensation by approximate search on

lattice paths. As shown in section 4.5, this technique is particularly suited for recall-

oriented applications such as media monitoring, hence we aim at providing a suitable

configuration for this scenario.

For implementation, we apply the same idea as in the case of approximate 1-best

search above, where the system first filters promising utterances from the complete
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Figure 6.5.: Different approaches to anchor selection, while varying the approximate
search threshold.

corpus by some criterion, and then performs the expensive approximate search only on

a relatively small subset. In the following, we intuitively describe our filter approach

for fast approximate lattice retrieval for a single query. The exact specification of the

process is given by algorithm 9.

• First, we filter the complete set of lattices by keeping only promising candidates

that contain at least one correctly decoded syllable. As a result, we obtain a set

of lattices G where at least one query syllable occurs as a node label.

• For each matching lattice, we extract paths that contain one of the query syllables.

These paths will be candidates for approximate alignment. We use the same idea

as in the case of 1-best transcripts, hence we extract only regions that have the

same size as the query sequence. Moreover, we require that the matching syllable

is at about the same position as in the query sequence.

• Each path is then aligned with the query sequence, exactly as in the 1-best case

above. Again, a putative hit path is added as a result, if the similarity between

path and query sequence is above the decision threshold.

The actual implementation consists of three parts, namely lattice filter, path extraction

and approximate path alignment, which are described in the following.

158



6.2. Scalable Error-Tolerant Spoken Term Detection

Algorithm 9 Filter approach for fast approximate lattice retrieval for a syllable query
s = s1 · · · sn corresponding to a word query q.

G = {lattice g|g contains a node with label l ∈ {s1, . . . , sn}}
for all gu = (E, V ) ∈ G is a lattice for utterance u do

for all nodes r = (i, l, tsr , ter , c) ∈ V where l = si ∈ {s1, . . . , sn} do
Obtain all node label paths p = p1 · · · pn through r of length n
where pi = si.
for all paths p = p1 · · · pn that meet this criterion do

if c = (1− d(s, p)) > δ then
Add o(q) = (u, tsp1 , tepn , c) to the list of results.

end if
end for

end for
end for

Lattice filter. For each utterance in the corpus, we store the corresponding lattice such

that the system can efficiently

1. decide whether one of the nodes has a certain syllable label, and

2. obtain the identity of the node, such that paths through this node can be obtained

during path extraction in the next step.

Again, we are applying an inverted index in order to enable efficient retrieval of both

aspects. First, all k lattice nodes of a given lattice are assigned with an ID i ∈ {1 · · · k}.
Then, the corresponding node labels (i.e., the corresponding syllable IDs) are ordered

by node ID, yielding a sequence s1 · · · sk of syllable IDs, where si is the syllable ID

corresponding to the lattice node with ID i. Then, this sequence of syllable IDs is

indexed by Lucene, including the token positions and the document ID of the utterance

to which the lattice corresponds. This approach results in a relatively small index of size

O(N) where N is the total number of nodes in all lattices.

During retrieval, the system can then retrieve all documents that contain a given

syllable ID, and for each hit obtain all positions of that syllable within the document.

These positions are equal to the actual node ID within the lattice corresponding to the

retrieved document.

Path extraction. Next, the system needs to extract all paths through each identified

node, following the path specifications given in algorithm 9. Extracting and storing

all possible paths prior to retrieval can be very expensive in terms of required storage,

especially if we consider the typically long subword queries. As an alternative, we propose
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to keep an optimized variant of the actual lattices in memory, and retrieve the required

paths on the fly during retrieval.

We use the following compact lattice definition, which still allows for extracting paths

through a node with a given ID. A compact lattice is defined by an array of compact

lattice nodes, which contain the following information:

1. Node start time (Float).

2. Node end time (Float).

3. ID of the corresponding syllable (Integer)

4. Set of incoming node IDs (Shorts), each pointing to an index in the array of

compact lattice nodes.

5. Set of outgoing node IDs (Shorts), each pointing to an index in the array of compact

lattice nodes.

For the lattices that were used for approximate lattice search in section 4.5, approx-

imately 50,000 compact lattice nodes need to be stored per hour. Together with an

average number of 1.5 incoming edges and 1.5 outgoing edges for each node, all com-

pact lattices for 1,000 hours of data require less than 1 GB of main memory. With the

ever-increasing availability of large RAM capacities, even larger corpora can be kept in

memory using the given specification of compact lattices.

We require that the order in the array of compact lattice nodes is the same that was

used during Lucene indexing above. Then, we can obtain the compact lattice node ni

for a node ID i retrieved from the index by a simple array lookup at position i. The

actual construction of the path set for alignment is then implemented as follows:

• First, a depth-first search starting in ni towards the final node is carried out. The

system collects all syllable sequences that can be generated while traversing the

lattice starting in ni. If ni is the p− th query syllable of a query with t syllables,

we restrict the search to terminate after t−p steps, and obtain a set of right partial

paths R where all initial nodes have incoming edges from ni, and are at most of

length t− p.

• Then, a reverse depth-first search starting in ni towards the initial node is carried

out, again collecting the corresponding syllable sequences that are generated. If ni

is the p − th query syllable, we restrict the search to terminate after p − 1 steps.

We obtain a set of left partial paths L where the final node of each path has an

edge pointing to ni, and each path has at most length p− 1
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• Finally, all path combinations are merged into the final set of paths through ni.

For each path l ∈ L and r ∈ R we store the concatenation lnir as a path through

ni of at most length t in the final list of paths P . In the experiments below, we

extend each path by at most one syllable on each side, such that the approximate

match can also allow for syllable insertions.

Approximate path alignment. Finally, each path is aligned with the query syllable

sequence, exactly as in the case of approximate 1-best retrieval above. Each path that

has a similarity to the query above the decision threshold is added to the final result set.

However, the number of paths that are generated can be huge, and many paths will

yield very low similarities during approximation, as they where only retrieved based on

a single anchor syllable.

As each path will be aligned with the query syllable sequence using the relatively ex-

pensive minimum edit distance alignment, we propose an inexpensive pruning technique

which removes those paths from P which are very unlikely to yield a high similarity

during approximate alignment.

Our idea is that for each query syllable, a promising path should contain at least one

syllable that is phonetically close. We define the average lowest distance da(q, h) for

measuring whether this is the case for a given query syllable sequence q = q1 · · · qn and

a putative hit path h = h1 · · ·hr as follows:

da(q, h) =
1

n

n∑
i=1

min
j∈1···r

{d(qi, hj)} (6.4)

If q and a are equal, then da(q, h) will be 0. Moreover, da(q, h) can never reach 1,

as at least the anchor syllable is found in both sequences. The system removes a path

from the list if da(q, h) is above a given threshold. Our assumption is that most of the

paths will produce values for da(q, h) above the threshold, and that the more expensive

full approximate alignment is carried out only for the most promising candidates. On

DiSCo, even low pruning thresholds (< 0.4) did not remove any true positives, hence we

can safely use this technique to reduce the amount of paths that need to be aligned.

Using only the least frequent query syllable as an anchor, we already obtain an MTWV

of 0.59, exceeding the same 1-best configuration by 2% absolute. Looking at the response

time, the system delivers the result on the 1,000 hours of DiSCo1k in 566 ms, compared to

the 54 ms that were needed for approximate 1-best retrieval above. Profiling the retrieval

implementation revealed that most of the time is spent on the actual approximate path

alignment. Figure 6.6 illustrates that index retrieval and path extraction only require

161



6. Scalability Investigations

about 15% of the total time each, while the alignment of all extracted paths with the

query syllable sequence requires about 400 ms on average for each query. When using

path pruning with a conservative pruning threshold of 0.5, we observe the following:

• The path pruning is carried out on each extracted path, but due to its low local

cost, it requires only about 10% of the time that is required for the full approximate

matching.

• The additional invest caused by path pruning pays off, as the time required by

approximate matching is reduced from 395 to 276 ms, yielding an overall gain in

response time of about 15% absolute over the unpruned baseline.

• As indicated above, the efficiency improvement does not affect the STD accuracy.

One might think that we could just use to the inexpensive pruning score as a confidence

measure, and completely skip the expensive approximate alignment. However, this would

drastically reduce STD performance in terms of MTWV (from 0.59 to 0.49). We note

that the proposed path pruning could also be applied to fast approximate 1-best retrieval

as described above, however, the gain will be lower as the amount of putative hit regions

for a single query syllable is substantially lower than the amount of putative lattice hit

paths for the same syllable on the same corpus.

Recently, several improvements of the lattice structure have been investigated in the

STD community, including more compact representations such as word confusion net-

works [74] or position-specific posterior lattices (PSPL) for words [15] and subwords [86],

which aim at further reducing storage requirements and increasing retrieval efficiency

without loss in retrieval accuracy [87]. We note that our filter approach to hybrid error

compensation could be further improved in terms of retrieval efficiency by exchanging the

baseline lattice structure with one of these approaches. However, as described above,

lattice filtering only plays a minor role in the overall retrieval costs for approximate

lattice search.

Next, we look in more detail at the actual STD accuracy while using only the least

frequent syllable as a query anchor. Table 6.10 shows that using two anchors substan-

tially increases the STD accuracy, exceeding the best approximate 1-best configuration

by 2% absolute. However, retrieval time increases considerably from 6.2 ms to 25.9 ms

on DiSCo when using two anchor syllables, which is caused by the large amounts of paths

that are added when increasing the maximal length during path extraction. Using more

anchors only increases runtime, while MTWV remains stable, as all relevant paths have
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Figure 6.6.: Response time analysis of approximate lattice retrieval, with and without
path pruning.

been already extracted. We note that the more expensive lattice configuration might not

be suitable for very large corpora, however it is still applicable to smaller archives and

delivers the best results in terms of STD accuracy for the media monitoring use case.

The relatively low MTWV increase of LFS-based approximate lattice retrieval compared

to LFS-based 1-best search is again caused by the low precision of the approach on short

queries (see section 5).

We close the scalability investigations for error compensation in STD with the follow-

ing conclusions:

• For medium-sized scenarios, anchor-based fast approximate 1-best retrieval out-

performs exact search in terms of STD accuracy and full approximate alignment

in terms of retrieval efficiency.

• Anchor-based fast approximate lattice retrieval enables efficient STD in recall-

oriented scenarios such as media monitoring, where its accuracy exceeds the per-

formance of the 1-best approach.
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Table 6.10.: Comparing different LFS anchor sets, using path pruning on DiSCo.

Anchor Response time
selection MTWV per query (ms)

All correct (exact search) 0.50 0.2

Lattice LFS = 1 0.59 6.2
Lattice LFS = 2 0.63 25.9
Lattice LFS = 3 0.63 64.0

Best 1-best (LFS = 2) 0.61 6.4

We note that the anchor-based two-stage retrieval idea is particularly suited for flexible

known-item search in large archives, where users tolerate interaction and longer response

times. A first very fast run could present the results using only the most stable syllable

as an anchor. The user could then request more results if the known item is not in the

result set, and new anchors would be added to the anchor set, while already searched

anchors would be removed. Subsequent runs will take longer, as anchor syllables become

more and more frequent.

6.3. Scalable Result Verification

Scalability is not an issue for STD result verification, neither in terms of time nor space

complexity. Even if we obtain as many contexts per query as possible without any

pruning and scale up to three syllables of context, only about 2,300 contextual queries

need to be stored for contextual verification per query in the experimental setup used in

section 5.5. On average, storing all required contextual information including contexts

and relative frequencies requires only about 20 kilobyte per query. Here, we assume that

syllable contexts are stored as sequences of maximum three two-byte short values, and

relative frequencies are stored as four-byte floats. With this configuration, the contextual

verification set for over 350,000 queries could be stored in the 8GB main memory of the

standard desktop PC specified in above. With a very small expansion threshold (0.01)

which yields almost equal recall at further increased precision, we could store the contexts

for over 10 million queries using the same amount of memory. The storage requirements

for anti-query are even lower, as only the most promising anti-queries are kept in the

verification set.

When performing the actual verification, the putative hit needs to be verified against

all queries in the verification set, which is achieved by searching for the verification query
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in the putative hit document. In the unpruned example above, this requires 2,300 STD

runs, one with each verification query. However, each run is only carried out on a single

document, namely the one which contains the putative hit.

6.4. Summary

Starting from our contributions in [96] and [77], we investigated efficient implementations

and scalable variants for the STD approaches presented within this thesis. We have pro-

posed a two step filter approach, which exploits the assumption that the subword query

sequence is at least partially decoded correctly. Furthermore, we have found restricting

this assumption to the least frequent syllable is particularly helpful: it maximizes the

reduction of the search space without sacrifycing too much STD accuracy. Based on

this assumption, we could reduce the response time for approximate search on a corpus

of 1,000 hours from 3 to 0.6 seconds, without any loss in STD accuracy. The same idea

was then successfully applied to approximate lattice retrieval, where we assume that at

least one path through the lattice contains at least one of the query syllables. Regarding

the target scenarios, we can draw the following conclusions from our investigations on

STD scalability, which will be discussed in more detail in the following chapter:

• Exact retrieval from inverted subword indices enables efficient vocabulary indepen-

dent STD in very large media archives of up to 100,000 hours of data.

• For medium-sized scenarios of several thousand hours of video, anchor-based fast

approximate 1-best retrieval outperforms exact search in terms of STD accuracy.

• Anchor-based fast approximate lattice retrieval enables efficient STD in recall-

oriented scenarios such as media monitoring, where its accuracy exceeds the per-

formance of the approximate 1-best approach.

We found that scalability is not an issue for result verification, as only relatively few

putative hit documents need to be verified against the verification set.
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Practices

Applying Spoken Term Detection in real-world applications can bring up new questions,

which are often neglected in the STD research community. From the experimental

results above, we have learned that approximate STD on the output from subword ASR

outperforms any word-based STD approach on rare OOV queries. However, depending

on the application, an STD system can reach very low OOV rates: for example, in media

monitoring, a continuous update of the word decoding lexicon using Internet news feeds

can lead to high lexical coverage when transcribing daily news broadcasts [25], and

the overall impact of OOV-STD will become smaller. Hence, an interesting question is

whether augmenting word-based STD with subword-based STD could still increase STD

performance - not only on OOV queries, but also on IV queries. In that case, we could

recommend the hybrid use of both approaches even in low-OOV scenarios.

Another interesting question is the selection of the best search strategy for a particular

scenario. While a new approach might perform well in a particular application scenario

with specific precision and recall requirements, it might be inappropriate for a scenario

which has tight constraints on low response times. Within this chapter, we will focus on

two different aspects that need to be considered when deploying STD systems:

1. Given a word-based STD baseline, is it reasonable to augment it with syllable-

based STD in an actual STD application? This question is especially interesting

if we can expect a low OOV rate, either through lexical adaptation or the usage

of large vocabularies for word decoding.

2. Given an STD application scenario with specific data and response time require-

ments, what is the best search strategy that maximizes STD accuracy within the

given constraints?

While word and subword STD have been studied in isolation in the preceding chapters,

it is natural to combine the two approaches into a hybrid system for real-life speech search

applications that need to handle both frequent and rare queries, and where recall needs
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to be maximized at tolerable precision. In section 7.1, we describe and evaluate our

approach for merging results from two individual word and syllable-based German STD

systems.

Then, based on our investigations in accurate and scalable STD so far, we provide

best practices for the representative scenarios introduced in section 2.2, namely search

in media archives and media monitoring. For each scenario, we select the most accurate

approach which still delivers the result set within the given response time constraint on

the expected amount of data. Again, we will consider the impact of hybrid STD by

merging syllable retrieval with our LVCSR system, and observe whether the additional

burden of having two parallel decoding systems pays off in terms of STD accuracy.

7.1. Hybrid Spoken Term Detection

In chapter 3.2, we have shown that both word- and subword-based retrieval have indi-

vidual strengths and weaknesses. Hence, it is natural to combine the two approaches

into a hybrid variant, which can be deployed in actual systems that need to handle both

IV and OOV queries. We expect additional STD performance gain from combining the

two result sets for two reasons:

1. Word STD typically outperforms syllable-based STD on IV queries. However,

word-based STD is unable to detect OOV queries, and shows only limited search

performance even if the words are broken down to subwords for retrieval. Hence,

using word STD for IV terms and subword STD for OOV terms is a straightforward

idea for increasing the STD performance of the overall system.

2. In addition, using both word and syllable STD for IV terms can further increase

the system performance. If an IV query is not detected by the word system due

to inevitable ASR errors, it might still be found by subword STD using error

compensation.

Two different families of merging approaches have been studied in the literature on

STD systems with comparable characteristics: hybrid decoding using mixed word and

subword decoding units and hybrid retrieval from the output of two parallel word and

subword decoders.

Hybrid decoding is an integrated hybrid retrieval approach, where the decoding vo-

cabulary typically consists of word and subword units as in [10] or [102]. In [102], the

authors evaluate a decoding system with word and phoneme units, which outputs mixed
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unit transcriptions that can then be used for retrieval. While the authors observe re-

duced runtime and storage requirements, they also conclude that this approach leads to

lower STD accuracy compared to parallel decoding and hybrid retrieval.

In [93], the authors investigated hybrid retrieval from parallel word and phoneme

decoders on an English STD task. Three different types of combination were evaluated:

• Combined search, where both word and subword STD are carried out for each

query, and the corresponding result sets are merged with a union operation into a

single hybrid result set.

• OOV search, where subword STD search is only carried out if the query contains

an OOV word.

• No result search, where subword STD search is only carried out if word search

returns an empty result set.

The authors conclude that in all three cases hybrid retrieval outperforms the individual

STD results. The three different merging methods showed similar performance. In [77],

we evaluated both combined and OOV search and could confirm the findings for hybrid

German syllable lattice STD. We found that the Combined method yields the highest

overall recall at tolerable precision.

Moreover, combined search allows for evaluating the impact of hybrid retrieval on both

IV and OOV queries. While the performance gain of hybrid retrieval over pure word

search is not surprising on OOV queries, we are particularly interested in the question

whether approximate subword search also adds new aspects to the search on IV terms.

Earlier sections of this thesis have already shown that word STD outperforms subword

STD on IV terms, however, approximate subword STD might perform better on different

queries than word STD (such as hard-to-recognize in-vocabulary proper names).

The same evaluation is obviously not possible for OOV search, where subword STD is

not even activated for IV terms. It is also hard to asses the effects for on-no-result-search.

In the following, we describe our approach for combined hybrid STD in detail. This

method will then be evaluated in the following section, merging the results from two

most promising word and subword STD runs.

Intuitively, a combined search result is obtained by (i) constructing the union of word

and subword result for a query and (ii) removing duplicate results from the individual

systems that correspond to the same hit.

In [93], the authors normalize the individual scores from the two individual sub sys-

tems, such that the joint result list can be reasonably ranked for retrieval above the STD
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decision threshold. However, this is only possible if the two scores stem from a similar

retrieval approach. In the mentioned publication, the authors use exact lattice search

for both sub systems, and hence are able to use the node posteriors as the basis for the

normalized score calculation.

Within the scope of this thesis, we have developed a wider range of retrieval ap-

proaches, where the resulting confidence scores are hard to compare and normalize.

However, a meaningful joint ranking of word and subword results is only important if

only a single decision boundary is used within the retrieval system. This is not a definite

requirement in an actual deployed STD application, where we can both parts of the re-

trieval system can be tuned and configured individually. Hence, as an alternative to the

approach in [93], we evaluate the use of individual decision boundaries per subsystem.

We first obtain two optimal thresholds that yield the maximum term-weighted value

on word and subword STD, respectively. Then, we merge the results, and obtain the

MTWV for the joint system, which we expect to exceed the MTWV when using only a

single decision boundary. Algorithm 10 gives the exact specification of combined search

using individual decision boundaries as described above.

Algorithm 10 Perform combined hybrid STD for a given query q, word STD decision
boundary cw and subword STD decision boundary cs.

Ow(q) = {o(q)|o(q) = {s, ts, te, c} has been found by word STD with c ≥ cw}
Os(q) = {o(q)|o(q) = {s, ts, te, c} has been found by subword STD with c ≥ cs}
O(q) = Ow(q) ∪Ow(q)
for all o(q) = {s, ts, te, c} ∈ O(q) do

if ∃ô(q) =
{
ŝ, t̂s, t̂e, ĉ

}
∈ O(q) at similar time where ĉ ≥ c then

Remove o(q) from O(q)
end if

end for

When evaluating hybrid word and subword STD, we might take up two different

positions. First, we can mimic and evaluate the performance of an actually deployed

STD system. Here, the resulting performance will inevitably depend heavily on the

configuration of the word ASR, including many factors such as the size of the lexicon,

and how well it matches the vocabulary of actual decoding scenario. Even though we

can relate the results to the OOV rate of the system, it is hard to predict the behavior

on unseen data.

On the other hand, we can look at the performance on queries that can be handled

by both word and subword STD, namely the set of IV queries. This will enable us (i) to

study the difference between the best word and syllable systems on the same task and
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then (ii) observe whether additional gain is available through combined search on the

same query set.

Table 7.1 shows the hybrid STD results for both aspects on the DiSCo query set.

For word retrieval, we use a lattice retrieval system with online pruning. For syllable

STD, we apply hybrid approximate lattice STD with hybrid verification and phonetic

result pruning. In both cases, the decision boundary is selected such that ATWV is

maximized (hence MTWV is slightly higher than ATWV of the best recall-oriented

result in chapter 5).

Table 7.1.: Hybrid Spoken Term Detection.

Queries

Approach IV OOV All

Word lattice 0.71 - 0.65
Approx. syllable lattice with verification 0.65 0.59 0.64

Hybrid 0.72 0.59 0.71
+ indiv. thresholds per subsystem 0.76 0.59 0.74

First, we look at the performance on IV queries only. As expected, the word system

outperforms syllable STD, although the difference between the most advanced systems

is drastically smaller compared to the difference between exact 1-best word and syllable

search. Combining the two systems with the same decision boundary only yields a small

improvement of 1% absolute MTWV increase over the word baseline on IV queries, as

the two systems are controlled with two different confidence metrics (lattice posteriors

vs. approximate lattice path matching). However, MTWV is increased by 5% absolute

on in-vocabulary queries when using individual thresholds per sub-system.

Looking in detail at the IV results, we observe the following detection capabilities.

• The word system misses 538 out of 2601 IV occurrences.

• The syllable system misses 613 out of 2601 IV occurrences.

• When merging the results of the best performing configurations, we miss only 388

out of 2601 IV occurrences.

Hence, the syllable system detects 150 additional query occurrences which were not

found by the word system, even though the queries did not contain OOV terms. All but

one of these 150 occurrences are nouns or noun phrases. Over 50% of the additional true

positives are named entities such as rare or phonetically complex people names (Andrea
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Ypsilanti, General Nkunda, Murad Kurnaz, Tarik al Wazir). Such named entities are

often of very high interest in STD applications, and the additional recall gain through

hybrid search on IV queries increases the overall value of the search system.

The system produces 773 additional false alarms on the IV queries compared to the

word system. However we observe that

1. Over 50% of the additional false alarm occurrences are caused by only 10 queries.

All but one consist of only one or two syllables, and only 2 out of 10 are named

entities (Irak and Bayern).

2. The most frequent false alarm (Wahlen - elections) causes 21% of the false alarms.

The query is phonetically very close to the highly frequent verb waren - have been.

3. Over 58% of the queries that did not cause a false alarm in word STD only produce

a single false alarm in hybrid STD.

We can conclude that augmenting a word-based STD system with recall-oriented syl-

lable STD results can further increase recall, especially for interesting named entities.

This increase comes at the cost of precision loss for some search terms, especially for

short non-named-entity queries, which are often not in the focus of search.

As expected, hybrid retrieval yields further improvements on the complete query set

as OOVs cannot be detected by the word lattice baseline. The best configuration with

individual MTWV thresholds for word and syllable STD as well as MTWV thresholds

for IV and OOV queries respectively yields an absolute improvement of 9% absolute over

the word-only baseline. Again, the possible gain depends directly on the word decoding

lexicon and whether it matches the domain of the evaluation data. We expect even

larger gains if there is a more severe mismatch between decoding lexicon and vocabulary

occurring in the evaluation data.

Finally, we investigate whether restricting the hybrid approach to longer queries on

the IV set might be beneficial for the overall system performance. Figure 7.1 confirms

the assumption that very short queries do not benefit from hybrid STD, and that the

overall MTWV can be increased if the augmentation with approximate syllable STD

is restricted to longer queries. However, available recall gain through hybrid STD is

sacrificed if the minimum length constraint for syllable STD becomes too tight (MTWV

drops below baseline above 12 phonemes).

In summary, we can conclude that augmenting word-based STD with full-fledged

approximate syllable STD yields large improvements in terms of MTWV. Table 7.2
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Figure 7.1.: Varying the minimal number of required query phonemes before word STD
is augmented with syllable STD, IV queries only.

indicates the possible performance gains for IV queries, and also illustrates the superior

performance on the complete query set for a particular word ASR lexicon configuration,

where the hybrid exceeds the MTWV baseline by 11% absolute.

Table 7.2.: Hybrid Spoken Term Detection, augmentation with syllable STD only for
queries with at least six phonemes.

Queries

Approach IV OOV All

Word lattice 0.71 - 0.65

Best hybrid 0.78 0.59 0.76
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7.2. Search Strategies for Selected Scenarios

In the following, we summarize our findings from the preceding chapters, and match

the results to the requirements for the representative scenarios presented in section 2.2,

namely large and medium media archive search as well as media monitoring.

The summary follows the workflow of a holistic STD system as depicted at the be-

ginning of this thesis (see figure 1.1 for a schematic overview). First, automatic speech

recognition is performed to extract a textual representation of the spoken words found

in the acoustic signal. The best ASR configuration already depends on the scenario:

• If there is no restriction regarding storage size and retrieval efficiency, both word

and subword output should be stored, since this increases accuracy on both IV

and OOV terms.

• If efficiency matters, than 1-best syllable transcripts should be stored instead of lat-

tices. This will reduce accuracy, but enable error-tolerant vocabulary independent

STD on media archives of medium size.

• If resources are limited (and especially if the set of search terms is finite and known

a priori), then a well-adapted word-based LVCSR system should be used as the

baseline. This system can then be used for approximate subword retrieval from

syllabified word output.

From our findings, we can derive the following best practices for the retrieval step:

• Approximate search on the ASR output will increase the STD accuracy in all

configurations (e.g., on syllable 1-best and lattice or on syllabified word output).

• A linear approximate scan through the archive is prohibitive in most use cases,

hence one could apply the proposed anchor filtering to prune the search space with

little STD accuracy loss.

• More anchors will increase accuracy at the cost of efficiency. Hence, the size of the

anchor set should be chosen depending on the size of the data set.

• For recall-oriented scenarios which apply one of the approximate search approaches,

STD result verification should be applied. This effectively removes false alarms

with virtually no loss in STD recall. However, for large-scale exact search on

1-best, verification is not needed since baseline precision is already high.

• The benefits of contextual and anti-query verification add up, and they should

always be applied in sequence.
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For each scenario, we select the strategy that yields the highest STD performance

in terms of MTWV while still fulfilling the efficiency requirements of the given use

case. Table 7.3 summarizes the best strategies for subword-based STD. As found in

section 3.3.2, syllables represent the most powerful recognition unit for rare queries which

are likely to be OOV with respect to standard word dictionaries. Moreover, syllables

are ideally suited for retrieval. Similar to phonemes, syllables allow for approximate

matching and effective retrieval of rare query words, however the size of the syllable

dictionary allows for much more efficient storage and retrieval using inverted indices.

For very large archives of up to 100,000 hours, we have shown that exact retrieval on

the 1-best output can already yield relatively high STD performance. However, MTWV

on rare query tends to be low due to inevitable subword recognition errors on such words,

which are caused by a lack of acoustic and language training data for infrequent syllable

sequences.

For small and medium-sized media archives, approximate subword search can be in-

tegrated in order to overcome this drawback. Using a combination of fast 1-best filter

through anchor selection by most stable syllables (proposed in chapter 6), followed by a

hybrid verification with anti-queries and contextual verification (proposed in chapter 5),

we can enable precise approximate search on 1-best transcripts for archives of up to

10,000 hours of speech data. Verification at query time enables further control over the

tradeoff between recall and precision without influence on search time.

Next, we consider media monitoring, a recall-oriented scenario with relatively small

amounts of data that need to be searched. Here, we can further increase recall at

equal precision by applying the full-fledged approximate lattice search. As in the case

of 1-best above, we approach the scalability challenge using our proposed lattice filter

through anchor syllable selection. As efficiency requirements are less strict, we increase

the anchor set until the MTWV gain saturates (at LFS=4). Together with our proposed

hybrid verification scheme, this enables search on 100 hours of data within the given

response time constraints. We note that in the case of media monitoring, response time

is less critical: here, searching for a list of specified queries of interest is carried out

automatically, and search response time does not add up notably to the latency of the

tolerated speech recognition system.

Considering the output from word-based ASR, we found that first breaking down

the word transcripts to syllable sequences and then retrieving from the subword output

outperforms the 1-best word baseline. This is true both for exact and approximate

subword search, while the approximate variant further increases STD performance as

in the case of STD on syllable ASR output. As above, retrieving from phonemes is
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Table 7.3.: Summary: Efficiency of best strategies for each scenario (syllable ASR).

Scenario Best strategy maxh < 1s

Large media archives Exact 1-best search 100,000

Medium media archives Approximate 1-best search with verifi-
cation and anchor selection (MSS = 1)

10,000

Media monitoring Approximate lattice search with verifi-
cation and anchor selection (LFS = 4)

100

prohibitive, hence we consider words broken down to syllables to represent the best

retrieval unit for word ASR output in terms of STD accuracy and retrieval efficiency.

For the large scale media archive case, we again consider exact retrieval from the syllable

output obtained from word ASR, which of course has the same efficiency characteristics

than in the case of syllable ASR above (see table 7.4). The same holds for medium-sized

archives of up to 10,000 hours of data, where we apply our proposed approximate 1-best

search using anchor selection on the syllable level in the same manner as above, again

using hybrid verification on the result set. However, in the case of media monitoring, we

refrain from syllabifying the word lattice, as the overall gain through word lattices was

relatively low compared to the approximate 1-best approach (see chapter 4). Hence, we

simply allow for more anchor syllables on 1-best (LFS =4), yielding the most accurate

STD results on word ASR output on up to 1,000 hours of data.

Table 7.4.: Summary: Efficiency of best strategies for each scenario (word ASR).

Scenario Best strategy maxh < 1s

Large media Archives Exact 1-best search on word-to-syllable 100,000

Medium media Archives Approximate 1-best search with verifi-
cation and anchor selection (MSS = 1)
on word-to-syllable

10,000

Media monitoring Approximate 1-best search with verifi-
cation and anchor selection (LFS = 4)
on word-to-syllable

1000

Finally, table 7.5 summarizes the STD accuracy for each scenario using the selected

STD strategies on IV, OOV and all queries. From the results obtained in the considered

scenarios, we can draw the following conclusions:

• The search strategy should be selected depending on the amount of data that can
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be expected in a given scenario, as more complex search approaches always yield

more accurate STD results.

• All proposed methods outperform the STD accuracy of the word LVCSR baseline

(MTWV = 0.62 on the complete query set).

• On IV queries, retrieval from syllabified word ASR output is more accurate than

direct retrieval from syllable ASR output.

• On OOV queries, direct retrieval from syllable ASR output is more accurate than

retrieval from syllabified word ASR output.

• Combining the output from word and syllable ASR into a hybrid system outper-

forms the individual systems in all considered scenarios on the complete query

set. Note that the response time will double if the two subsystems for word and

subword STD are called in sequence. However, if efficiency really matters, the

processes could as well be carried out in parallel.

Table 7.5.: Summary: Accuracy of best strategies for each scenario on IV, OOV and all
queries.

MTWV

Query set Scenario Syllable ASR Word ASR Hybrid

IV 0.52 0.68 0.71
Large media archives OOV 0.24 0.15 0.31

All 0.50 0.64 0.68

IV 0.60 0.72 0.74
Medium media archives OOV 0.36 0.28 0.48

All 0.58 0.68 0.72

IV 0.63 0.73 0.75
Media monitoring OOV 0.56 0.43 0.66

All 0.62 0.71 0.74

We can conclude that applying our proposed methods substantially increases STD

accuracy in all considered scenarios. With the best hybrid configuration for media

monitoring, we obtain a recall of 0.82 on the complete DiSCo query set, which exceeds

the performance of the LVCSR baseline by over 10% absolute despite the low OOV rate

of the word decoder.
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In the following, we will summarize the main conclusions of our work on holistic vo-

cabulary independent Spoken Term Detection, and point out the main contributions in

relation of the thesis at hand. Then, we will highlight possible directions for further

research in the field.

8.1. Contributions

Specification of system requirements for Spoken Term Detection. Spoken Term De-

tection is an appealing research topic with approaches to speech search beyond searching

the word transcript. However, there is no single STD approach that is equally well suited

for all kinds of application scenarios, which is often neglected when new results are pub-

lished. Hence, we have started our investigations on STD by analyzing representative

STD use cases, namely media archive search and media monitoring. A set of system

requirements was collected, including STD accuracy, time and space efficiency as well

as system flexibility. This enables us to select the best STD strategy for a given sce-

nario based on the importance of a particular requirement, resulting in a more holistic,

scenario-dependent view on Spoken Term Detection.

Design of an evaluation corpus for STD on heterogeneous German broadcast data.

The NIST STD Evaluation in 2006 has kick-started many research activities in the area

of Spoken Term Detection, with a vital and growing community of researchers. However,

the official NIST evaluation data contains only English, Mandarin Chinese and Arabic

data. As a remedy, we prepared DiSCo, a new German corpus comparable to the NIST

evaluation set, which allows for STD evaluation on German data. Over 17,000 speech

utterances, summing up to about 12 hours of pure speech were selected from German

television recordings and manually transcribed. A set of 501 queries was chosen semi-

automatically, and we have shown that it reflects the characteristics of queries typically

chosen by human archivists. The corpus specifications and the corresponding STD

evaluation plan were published in [6].
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Design and implementation of a word-based STD baseline for heterogeneous Ger-

man broadcast data. We have set up a state-of-the-art LVCSR decoder for heteroge-

neous broadcast data, which was used to generate word-level 1-best transcripts from the

evaluation data. The system produced word error rates close to published results on

comparable corpora. Details about our baseline system can be found in [94].

Investigation of subword units suitable for German subword indexing. Based on

our investigations in [96], we have studied different setups for German Spoken Term

Detection using exact search on 1-best ASR transcripts. Three differen unit types were

selected, depending on the amount of phonetic context covered by a single unit: very

large units (words), very small units (phonemes), and intermediate units (syllables).

Syllables represent a powerful unit for STD on German data, since they are the natural

phonologic segmentation of a word, and are particularly suited for segmenting words

from inflecting languages such as German. A distinction was made between decoding

and retrieval unit, i.e., we also investigated the impact of decoding a larger unit and

breaking it down for retrieval.

For in-vocabulary queries, word-based approaches perform best. Breaking down words

to syllables and further to phonemes for retrieval increases STD accuracy due to implicit

handling of compounds and ambisyllabic phoneme movement. However, even with our

large 200,000 in-domain word dictionary, many interesting queries are outside the de-

coding dictionary and cannot be retrieved by the word-based system. In some cases,

OOVs could also be detected by breaking down words to subwords, but these are mostly

compound words, where the query was a compound part. However, we found that about

60% of the OOVs are proper names. STD based on syllable ASR output performs best

on OOV retrieval, and outperforms the poor results based on unconstrained phoneme

decoding.

All exact searches are highly precise (> 90% precision), however, especially the exact

subword-based approaches suffer from relatively low recall, as the complete subword

sequence must be decoded correctly for an exact hit in the transcript.

Investigation of new approaches for error-tolerant subword speech retrieval. Based

on our preliminary investigations in [78], we have analyzed the error spaces in subword

Spoken Term Detection, and found that errors stem from two different sources, namely

(i) ASR errors caused by model mismatch or decoding errors, and (ii) pronunciation

variation caused by deviation between canonical query sequence and the actual acous-

tic realization of a query. We have exploited this finding by adapting and combining
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two methods for error compensation, namely lattice search for compensation of ASR er-

rors [77], and approximate syllable search using minimum edit distance for compensation

of pronunciation variation [96].

We obtain the best overall results in terms of MTWV when merging both methods

into a hybrid recall-oriented variant. On in-vocabulary queries, most ASR errors are

already compensated by the lattice, and additional restriction of the approximate search

using position-specific clusters (PSCs) instead of phonemes as the confusion unit further

increases STD accuracy. On rare OOV queries, the phoneme-based syllable distance

performs best, since it can cope better with variations that do not stem from pronun-

ciation variation. Here, MTWV for syllable retrieval is increased by 40% absolute over

the exact syllable baseline.

Exploiting external knowledge for result verification at search time. We have derived

a novel paradigm for exploiting external knowledge about the query at search time.

In conventional STD, external knowledge is only incorporated into the system during

indexing, e.g., by means of training resources for ASR. The advantage from exploiting

external knowledge at search time is twofold: first, we can exploit query-dependent

knowledge. Second, we can exploit up-to-date knowledge resources that might not have

been available or in the focus of interest during the time of indexing.

Based on the results of our contribution in [95], we have proposed two actual imple-

mentations of this paradigm, namely contextual verification and anti-query verification.

Contextual verification exploits typical contexts for a given query from a parallel textual

corpus. Then, we can verify whether a putative STD result is actually correct by check-

ing whether the decoded contexts in the ASR output are valid. Anti-query verification

detects systematic false alarms that are caused if a phonetically similar competitor of

the query was actually spoken. Here, we exploit the external knowledge to identify those

competing terms that most likely generate false alarms for a given query.

Both verification approaches increase precision without notable effect on recall by

removing a substantial amount of false alarms from the putative results set. Since

both ideas cover different verification aspects we obtain the best results from a hybrid

combination. If applied in sequence, verification increases STD precision on approximate

lattice search by 9% absolute at equal recall.

Design of scalable algorithms for error-tolerant speech search on large corpora. We

have found that search approaches can differ drastically in terms of retrieval efficiency,

and that small accuracy degradations through pruning can already lead to large effi-
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ciency gains. Motivated by our finding in [77], we have derived a flexible efficient filter

approach for fast two-stage approximate lattice and 1-best retrieval. It is based on the

assumption that the canonical representation of a query was at least partly decoded

correctly. We exploit this assumption by applying the expensive approximate alignment

only on documents where the ASR output contains at least parts of the query. With this

generic approach, we obtain a flexible means for adjusting the search behavior between

search time and accuracy: adding more and more anchor syllables to the filter set will

increase retrieval accuracy, but reduce efficiency at the same time.

We have found that the most stable syllables in terms of ASR decoding errors are typ-

ically also relatively infrequent. This property allows for drastic search space reduction

while preserving most of the STD accuracy gain obtained by approximate search. With

three anchor syllables, search time on the syllable ASR output from 1,000 hours of data

is reduced from 13 to 0.6 seconds compared to the exhaustive approximate baseline.

The approach can be applied to both approximate 1-best and lattice search, and is

particularly suited for scenarios requiring flexibility at search time such as known-item

search in large media archives, where users tolerate interaction and longer response times

(see section 6.2).

Best practices for selected STD scenarios. Based on our findings, we have selected

the best STD strategies for each of the considered scenarios, which return the final STD

result set with a response time below one second on the given corpus size. The selected

configurations are summarized below:

• For recall-oriented applications with relatively small data sets that need to be

searched (such as media monitoring), we recommend to use the full-fledged vari-

ant including all approaches discussed within this thesis. First, we apply the hybrid

approximate lattice cascade, using anchor-based lattice filtering with a large anchor

set such that all but the most frequent query syllables are used as path anchors

for approximate alignment. All results should be verified with hybrid verifica-

tion, using contextual verification and anti-query verification in sequence. Then,

the syllable result set is merged for both IV and OOV queries with anchor-based

approximate retrieval from syllabified word-ASR output using a relatively large

least-frequent anchor set. Again, we apply hybrid verification on the putative re-

sult set. With this configuration, we can obtain an MTWV of 0.74 within the

response time limit on 100 hours of data.

• For medium-scale media archive search, a hybrid approximate 1-best approach
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should be used. For the syllable sub-system, we apply the anchor-based transcript

filtering, using only the most stable syllable as an anchor such that the search space

for approximate alignment is already substantially reduced. Again, verification is

applied as above. For the word-subsystem, we suggest again to use the syllabified

version, and perform the same approximate alignment as in the case of the syllable

sub-system (MSS-based anchor retrieval followed by hybrid verification). With

this hybrid configuration, we obtain an MTWV of 0.72 within the time constraints

on up to 10,000 hours of data.

• For large-scale media archive search, we resort to exact search on the 1-best ASR

output. Again, a combination of word and syllable output yields the best results

given the time constraints. Words should be broken down to syllables to cope with

misses due to German compounding. Result pruning through verification is not

needed since the results from exact search are typically highly precise. With this

setup, we obtain an MTWV of 0.68 within the time constraints on up to 100,000

hours of data.

8.2. Opportunities for Future Research

Taking up a holistic position on Spoken Term Detection has enabled us to derive STD

systems for selected scenarios with very different requirements, from large scale media

archive search to recall-oriented media monitoring. In the following, we sketch possible

directions for further investigations.

Exploiting external knowledge at search time. Within the scope of this thesis, we

have proposed the paradigm for exploiting external knowledge at search time, and have

described two successful approaches to query verification which implement this idea. So

far, we have only exploited parallel textual corpora for building up our query and anti-

query models. Future endeavors could also build upon other external knowledge sources

at search time. As an example, we could consider implicit or explicit relevance feedback,

which has been recently successfully exploited for Spoken Term Detection [67]. While

the authors used the manual feedback examples for re-training acoustic ASR models, we

could also exploit the data for direct verification of putative STD results. For example,

we could use ASR lattice paths from the positive feedback examples for a query for

positive verification of STD results corresponding to the same query. In a similar fashion,

we could build the anti-queries from negative feedback examples.
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8. Conclusions

From cascades to integrated approach. Throughout this thesis, we have been in favor

of loosely coupled components for the individual steps of our full-fledged holistic STD

system. Individual approaches come to a decision, and than pass on that decision in a

cascading manner to the next level. For instance, we accept the output from approximate

lattice search for a given query as a definite decision from that step in the cascade, and

then prune the corresponding putative result set with the verification step. While this

allows for flexible configuration of STD systems depending on the actual requirements

of an STD scenario, it could be interesting to investigate the possibility of an integrated

approach, i.e., aiming at a single global decision which takes into account all signals

provided to the system at the same time.

Cross-site, cross-language evaluation of query verification. In [80], we have collabo-

rated with two other STD research sites (NTNU Trondheim and QUT Brisbane) with the

aim of evaluating selected STD approaches on several data sets, including different lan-

guages, data challenges and evaluation metrics. Such cross-site and cross-language STD

evaluations are very helpful in understanding the impact of new approaches across data

sets, languages and evaluation metrics, and we suggest to perform a similar comparative

study on our novel approach to STD result verification.
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A. List of Evaluation Queries

For reference, this appendix contains a list of all 501 DiSCo queries used in the evalu-

ations presented within this thesis. For each query, table A.1 gives the corresponding

syllabification that was used by the subword retrieval approaches. This subword repre-

sentation was obtained automatically using a data-driven approach based on the Bonn

Open Synthesis System (BOSS) [13]. Note that the syllabifications have not been man-

ually corrected, and some syllable sequences are not correct. Incorrect syllabification

occur particularly for foreign proper names, such as YouTube - j u: t u: b @ . In this

case, approximation is already required to cope with the incorrect syllabification of the

query.

Table A.1.: List of evaluation queries. OOV queries are marked with an asterisk (*)

Query Syllabification

Abenteuer Forschung Q a: b @ n t OY 6: f O6 S U N

Abgeordnete Homann Q a p g @ Q O6 t n @ t @ h o: m a n

Abwrackprämie (*) Q a p v r a k p r E: m j @

Adolf Merkle Q a: d O l f m E6 k l @

Afghanistan Q a f g a: n I s t a: n

Afro Amerikaner Q a f r o: Q a m e: r i: k a: n 6:

Ahmadinedschad Q a x m a: d i: n @ d Z a t

Ahmadinedschads Q a x m a: d i: n @ d Z a t s Q a

Atombombenträumen (*) t o: m b O m b @ n t r OY m @ n

Aktien Q a k t s j @ n

Aktion Mensch Q a k t s j o: n m E n S

Aktuelle Sportstudio Q a k t u: E l @ S p O6 t S t u: d i: o:

Altenberg Q a l t @ n b E6 k

Amerikaner Q a m e: r i: k a: n 6:

Amerikas Wirtschaft Q a m e: r i: k a: s v I6 t S a f t
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A. List of Evaluation Queries

Table A.1 – continued from previous page

Query Syllabification

Amnesty International Q E m n @ s t i: Q I n t 6: n E S @ n @ l

Andrea Nahles Q a n d r e: a: n a: l @ s

Andreas Huppert Q a n d r e: a s h U p E6 t

Andreas Kappler Q a n d r e: a s k a p l 6:

Andrea Ypsilanti Q a n d r e: a: Q Y p s i: l a n t i:

Angela Merkel Q a N g e: l a: m E6 k @ l

anglo amerikanischen Q a N l o: Q a m e: r i: k a: n I S @ n

Anne Will Q a n @ v I l

Ansprüche Q a n S p r Y C @

Arbeitnehmer Q a6 b aI t n e: m 6:

Arbeitslosigkeit Q a6 b aI t s l o: z I C k aI t

Arbeitsplatz Q a6 b aI t s p l a t s

Arbeitsplätze Q a6 b aI t s p l E t s @

ARD Morgenmagazins Q a: Q E6 d e: m O6 g @ n m a g a

t s i: n s

Armenhaus Europas Q a6 m @ n h aU s Q OY r o: p a: s

Arminia Bielefeld Q a6 m i: n i: a: b i: l @ f E l t

Arsenal London Q a6 z e: n a: l l O n d O n

Arsene Wenger (*) Q a6 s e: n @ v E N 6:

Arthur Abraham Q a: 6: t u: 6: Q a: b r a h a m

Attac Deutschland Q a t a k d OY t S l a n t

Aufbau Ost Q aU f b aU Q O s t

Auflösung Guantanamos Q aU f l 2: z U N g u: a n t a: n a m o: s

Aufschwung Chinas Q aU f S v U N C i: n a: s

Auschwitz Q aU S v I t s

Ausländische Marken Q aU s l E n d I S @ m a6 k @ n

Außenminister Colin Powell Q aU s @ n m i: n I s t 6: k O l I n p aU

@ l

Außenminister Hans Dietrich

Genscher

Q aU s @ n m i: n I s t 6: h a n s d i:

t r I C g E n S 6:

Außenminister Steinmeier Q aU s @ n m i: n I s t 6: S t aI n m aI

6:

Außenpolitik Q aU s @ n p o: l i: t I k
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Table A.1 – continued from previous page

Query Syllabification

Automobilindustrie Q aU t o: m o: b i: l Q I n d U s t r i:

Baden Württemberg b a: d @ n v Y6 t @ m b E6 k

Bad Tölz b a: t t 9: l t s

Bahnchef Mehdorn b a: n S E f m e: d O6 n

Bakterielle Erreger b a k t e: 6: j E l @ Q E6 r e: g 6:

Banken b a N k @ n

Barack Obama b a r a k Q o: b a: m a:

Bastian Schulz b a s t j a: n S U l t s

Bayer Leverkusen b aI 6: l e: v 6: k u: z @ n

Bayern b aI 6: n

Bayern München b aI 6: n m Y n C @ n

Bela Rethy (*) b e: l a: r e: t i:

Berichterstattung aus China b @ r I C t Q E6 S t a t U N Q aU s C i:

n a:

Berlin b E6 l i: n

Berlin Mitte b E6 l i: n m I t @

bester Mann auf dem Platz b E s t 6: m a n Q aU f d e: m p l a t s

Beziehungen nach Russland b @ t s i: U N @ n n a: x r U s l a n t

Biathlon Weltcup b i: Q a t l O n v E l t k a p

Big Apple b I k Q E p @ l

Bildungspolitik b I l d U N s p o: l i: t I k

Bildungsrepublik Deutschland

(*)

b I l d U N s r e: p u: b l I k d OY t S

l a n t

Bill Clinton b I l k l I n t @ n

Bischof Richard Williamson b I S o: f r I C a: 6: t v I l j @ m z @ n

Blutbad b l u: t b a: t

Bochum b o: x U m

Bochumer Kindertafel (*) b o: x U m 6: k I n d 6: t a: f @ l

Boris Jelzin b o: r I s j E l t s I n

Börse b 9: 6: z @

Borussia Dortmund b o: r U s j a: d O6 t m U n t

Borussia Mönchengladbach b o: r U s j a: m 9: n C @ n g l a t b a x

Boxen b O k s @ n
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A. List of Evaluation Queries

Table A.1 – continued from previous page

Query Syllabification

Boxlegende Schwergewichts-

champion Nikolai Walujew

(*)

b O k s l e: g E n d @ S v e: 6: g @

v I C t s t S E m p j @ n n i: k o: l aI v a

l u: j E f

Brandenburger Tor b r a n d @ n b U6 g 6: t o: 6:

Bremer Trainer Thomas Schaaf b r e: m 6: t r E: n 6: t o: m a s S a: f

Buenos Aires b u: E: n O s Q aI r @ s

Bundesagentur b U n d @ s Q a g E n t u: 6:

Bundesdrogenbeauftragte Sabine

Bätzing

b U n d @ s d r o: g @ n b @ Q aU f

t r a: k t @ z a b i: n @ b E t s I N

Bundesinnenminister Schäuble b U n d @ s Q I n @ n m i: n I s t 6:

S OY b l @

Bundespräsident Köhler b U n d @ s p r E z i: d E n t k 2: l 6:

Bundesregierung b U n d @ s r e: g i: r U N

Bundesrepublik Deutschland b U n d @ s r e: p u: b l I k d OY t S

l a n t

Bundesumweltminister Jürgen

Trittin

b U n d @ s Q U m v E l t m i: n I s t 6:

j Y6 g @ n t r I t i: n

Bürgerrechtler Jesse Jackson b Y6 g 6: r E C t l 6: d Z E s i: d Z E k

s @ n

Burkina Faso b U6 k i: n a: f a: z o:

Bush b U S

Candle Light Diner k E n d @ l l aI t d i: n e:

Cash Flow (*) k E S f l O U

CDU t s e: d e: u:

CDU Chefin t s e: d e: u: S E f I n

CDU CSU t s e: d e: u: t s e: Q E s Q u:

CDU Fraktion t s e: d e: u: f r a k t s j o: n

CDU Generalsekretär Pofalla t s e: d e: u: g e: n @ r a: l z e: k r e:

t E: 6: p o: f a l a:

CDU Ministerpräsident Roland

Koch

t s e: d e: u: m i: n I s t 6: p r E z i:

d E n t r o: l a n t k O x

CDU Vorsitzende t s e: d e: u: f o: 6: z I t s @ n d @

Cem Özdemir t S E m Q 9: t s d e: m I6
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Table A.1 – continued from previous page

Query Syllabification

Champions League t S E m p j @ n s l i: k

Chancen S O s @ n

Charlotte Knobloch S a6 l O t @ k n o: b l O x

Claudia Roth k l aU d i: a: r o: t

Commerzbank k o: m E6 t s b a N k

Computer k O m p j u: t 6:

CSU t s e: Q E s Q u:

CSU Politiker t s e: Q E s Q u: p o: l i: t I k 6:

CSU Positionen t s e: Q E s Q u: p o: z i: t s j o: n @ n

Dänische Telekommunikations-

unternehmen

d E: n I S @ t e: l @ k O m U n I k a

t s j o: n s Q U n t 6: n e: m @ n

das Weiße Haus d a s v aI s @ h aU s

Datenbank d a: t @ n b a N k

Demokratie d e: m o: k r a t i:

deutsche Bahn d OY t S @ b a: n

deutsche Bank d OY t S @ b a N k

deutsche Bank Chef Ackermann d OY t S @ b a N k S E f Q a k 6: m a n

deutschen Badminton Verbandes d OY t S @ n b E: t m I n t @ n f E6

b a n d @ s

Deutschland d OY t S l a n t

DFB Pokal d e: Q E f b e: p o: k a: l

Diabakir (*) d i: a b a k i: 6:

die Ärztliche Schweigepflicht d i: Q E: 6: t s t l I C @ S v aI g @

p f l I C t

Dieter Kronzucker d i: t 6: k r o: n t s U k 6:

Dietmar Hopp d i: t m a: 6: h O p

Dimitri Medwedew d i: m i: t r i: m E t v e: d E f

diplomatischen Beziehungen d i: p l o: m a: t I S @ n b @ t s i: U

N @ n

Discounter d I s k aU n t 6:

Disney World d I s n E I v 9: 6: l t

Duell d u: E l

DVD Shops d e: f aU d e: S O p s
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A. List of Evaluation Queries

Table A.1 – continued from previous page

Query Syllabification

Ecuador Q e: k U a d O6

Edeka Q e: d e: k a:

Ehegatten Splitting Q e: @ g a t @ n s p l I t I N

eines Schwarzen Loches Q aI n @ s S v a6 t s @ n l O x @ s

Eintracht Frankfurt Q aI n t r a x t f r a N k f U6 t

Eisenbahnorchester Sankt Wen-

del (*)

Q aI z @ n b a: n Q O6 k E s t 6:

z a N k t v E n d @ l

Election Party (*) Q i: l E k t S @ n p a: 6: t i:

Energiewende Q e: n E6 g i: v E n d @

Epizentrum Deutschland Q e: p i: t s E n t r U m d OY t S l a n t

Eric Holder Q e: r I k h O l d 6:

erneuerbarer Energien Q E6 n OY 6: b a: r 6: Q e: n E6 g i:

@ n

Erwin Huber Q E6 v i: n h u: b 6:

EU Agrarminister Q e: Q u: Q a g r a: 6: m i: n I s t 6:

EU Beschluss Q e: Q u: b @ S l U s

EU Mitgliedsstaat Q e: Q u: m I t g l i: t s S t a: t

Europa Q OY r o: p a:

europäsche Union Q OY r o: p E: I S @ Q U n j o: n

europäische Zentralbank Q OY r o: p E: I S @ t s E n t r a: l

b a N k

Europa Parlament Q OY r o: p a: p a6 l a m E n t

EU Staaten Q e: Q u: S t a: t @ n

Ex Präsident Q E k s p r E z i: d E n t

Fach Ethik f a x Q e: t I k

Familie Deichmann f a m i: l j @ d aI C m a n

FC Bayern Q E f t s e: b aI 6: n

FC Köln Q E f t s e: k 9: l n

FDP Q E f d e: p e:

Felix Sturm f e: l I k s S t U6 m

Fidel Castro f i: d @ l k a s t r o:

Finanzkrise f i: n a n t s k r i: z @
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Table A.1 – continued from previous page

Query Syllabification

Finanzminister Steinbrück f i: n a n t s m i: n I s t 6: S t aI n

b r Y k

First Lady f I6 s t l E I d i:

Forschungsprogramm f O6 S U N s p r o: g r a m

Frank Plasberg f r a N k p l a s b E6 k

Frank Walter Steinmeier f r a N k v a l t 6: S t aI n m aI 6:

Franz Josef Strauß f r a n t s j o: z E f S t r aU s

Franz Maget f r a n t s m a: g E t

Franz Müntefering f r a n t s m Y n t @ f e: r I N

Freenet Mobilcom f r i: n E t m o: b i: l k O m

freie Demokraten f r aI @ d e: m o: k r a: t @ n

freien Wählern f r aI @ n v E: l 6: n

Gabor Halazs (*) g a: b o: 6: h a l a S

Gefangenenlagers g @ f a N @ n @ n l a: g 6: s

Gegenspieler g e: g @ n S p i: l 6:

Gegner g e: g n 6:

Generals Nkunda g e: n @ r a: l s Q E n k U n d a:

Generation g e: n @ r a t s j o: n

Genossin Merkel g @ n O s I n m E6 k @ l

George Bush d Z O d Z b U S

Gerhard Schröder g e: 6: h a6 t S r 2: d 6:

Gesundheitsministerin Schmidt g @ z U n t h aI t s m i: n I s t @ r I n

S m I t

Gewissensentscheidung g @ v I s @ n s Q E n t S aI d U N

Gott g O t

Grundgesetz g r U n t g @ z E t s

Grünen g r y: n @ n

Guantanamo g u: a n t a: n a m o:

Guido Westerwelle g i: d o: v E s t 6: v E l @

Guitar Hero g i: t a6 h e: r o:

Hamas h a m a s

Hamburger Parteitag h a m b U6 g 6: p a6 t aI t a: k

Hamburger SV h a m b U6 g 6: Q E s f aU
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Table A.1 – continued from previous page

Query Syllabification

Handwerker h a n t v E6 k 6:

Hans Tietmeyer h a n s t i: t m aI 6:

Hartz vier h a: 6: t s f i: 6:

Harvard University h a6 v 6: t j u: n i: v 9: 6: s I t i:

Hasardeuren h a z a6 d 2: r @ n

Haschisch Konsumenten h a S I S k O n z u: m E n t @ n

Hauptschule Vilseck h aU p t S u: l @ v I l z E k

Haushalte h aU s h a l t @

Heavy Metal h E v i: m E t @ l

Heide Simonis h aI d @ z i: m o: n I s

Heiner Brand h aI n 6: b r a n t

Helmut Kohl h E l m u: t k o: l

Herzlich Willkommen h E6 t s l I C v I l k O m @ n

Hessen CDU h E s @ n t s e: d e: u:

Himalaya h i: m a: l a j a:

Hip Hop h I p h O p

Hisbollah h I s b O l a:

Hoffenheim (*) h O f @ n h aI m

Hoffnungsträger John F Kennedy h O f n U N s t r E: g 6: d Z O n Q E f

k E n @ d i:

Hollywood Film h O l i: v U t f I l m

Holocaust h o: l o: k aU s t

Holocaust Leugner h o: l o: k aU s t l OY g n 6:

Hot Spots h O t S p O t s

Houston j u: s t @ n

Humboldt Universität h U m b O l t Q U n i: v E6 z i: t E: t

Hutu (*) h u: t u:

Hyde Park h aI t p a6 k

Hypo Bank h y: p o: b a N k

Hypo Real h y: p o: r e: a: l

Hypo Real Estate h y: p o: r e: a: l Q E s t E I t

IBF Gürtel (*) Q i: b e: Q E f g Y6 t @ l

ICE Trassen Q i: t s e: Q e: t r a s @ n
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Query Syllabification

IG Metall Q i: g e: m e: t a l

Ilse Aigner Q I l z @ Q aI g n 6:

Immanuel Kant Q I m a: n u: E l k a n t

Immobilienboom Amerikas (*) Q I m o: b i: l j @ n b u: m Q a m e: r i:

k a: s

Industrienationen Q I n d U s t r i: n a t s j o: n @ n

injiziert Q I n j i: t s i: 6: t

ins Heilige Land Q I n s h aI l I g @ l a n t

Investitionspaket (*) Q I n v E s t i: t s j o: n s p a k e: t

Investitionsprogramm Q I n v E s t i: t s j o: n s p r o: g r a m

Irak Q i: r a: k

Irlands Wirtschaft Q I6 l a n t s v I6 t S a f t

Island Q i: s l a n t

Jamaika Koalition d Z a m aI k a: k o: a l i: t s j o: n

Joachim Löw j o: Q a x i: m l 2: f

Johannes B Kerner j o: h a n @ s b e: k E6 n 6:

Johnny Depp d Z O n i: d E p

Juden j u: d @ n

jüdisches Leben j y: d I S @ s l e: b @ n

Justizminister j U s t i: t s m i: n I s t 6:

Kanalinsel Jersey k a n a: l Q I n z @ l d Z 2: 6: z i:

Kannegiesser k a n @ g i: s 6:

Kanzlerkandidat k a n t s l 6: k a n d i: d a: t

Kanzlerkandidat Frank Walter

Steinmeier

k a n t s l 6: k a n d i: d a: t f r a N k

v a l t 6: S t aI n m aI 6:

Kanzlerkandidat Steinmeier k a n t s l 6: k a n d i: d a: t S t aI n

m aI 6:

Kanzlerschaft Angela Merkels k a n t s l 6: S a f t Q a N g e: l a: m E6

k @ l s

Karl Liebknecht k a: 6: l l i: p k n E C t

Kasinokapitalismus (*) k a z i: n o: k a p i: t a l I s m U s

Kenias Hauptstadt Nairobi k e: n j a s h aU p t S t a t n aI r o: b i:

KFZ Steuer k a: Q E f t s E t S t OY 6:
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Query Syllabification

KFZ Steuerersparnis k a: Q E f t s E t S t OY 6: Q E6

S p a: 6: n I s

Kigali k i: g a: l i:

Kinder k I n d 6:

Klagemauer in Jerusalem k l a: g @ m aU 6: Q I n j e: r u: z a

l E m

Klaus Wowereit k l aU s v o: v @ r aI t

Klitschko Brüder k l I t S k o: b r y: d 6:

Knecht Ruprecht k n E C t r u: p r E C t

KO (*) k a: Q o:

Koalitionspartner SPD k o: a l i: t s j o: n s p a6 t n 6: Q E s

p e: d e:

Kochs Wahlschlappe k O x s v a: l S l a p @

Kölns Oberbürgermeister k 9: l n s Q o: b 6: b Y6 g 6: m aI s t 6:

Kölns Oberbürgermeister Fritz

Schrammer (*)

k 9: l n s Q o: b 6: b Y6 g 6: m aI s t 6:

f r I t s S r a m 6:

Kölsche Mentalität k 9: l S @ m E n t a l i: t E: t

Kommando Spezialkräfte KSK k O m a n d o: S p e: t s j a: l k r E f t @

k a: Q E s k a:

Kompetenz k O m p e: t E n t s

König Artur k 2: n I C Q a: 6: t u: 6:

König Herodes k 2: n I C h e: r o: d E s

Konjunktur k O n j U N k t u: 6:

Konjunktur ankurbeln k O n j U N k t u: 6: Q a n k U6 b @ l n

Konjunkturpaket k O n j U N k t u: 6: p a k e: t

Konjunkturprogramm k O n j U N k t u: 6: p r o: g r a m

Konjunkturspritzen (*) k O n j U N k t u: 6: S p r I t s @ n

konkrete Zusagen k O N k r e: t @ t s u: z a: g @ n

Konstrukteurs WM k O n s t r U k t 2: 6: s v e: Q E m

KO Sieg (*) k a: Q o: z i: k

Krötensonderkommando (*) k r 2: t @ n z O n d 6: k O m a n d o:

Kurt Beck k U6 t b E k
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Query Syllabification

Landeskriminalamt Saarbrücken l a n d @ s k r I m i: n a: l Q a m t z a: 6:

b r Y k @ n

Landtagsabgeordneten l a n t t a: k s Q a p g @ Q O6 t n @

t @ n

Las Vegas l a: s v e: g a s

Lebewesen l e: b @ v E s @ n

Lehman Brothers l e: m a n b r O z a s

Lewis Hamilton l u: I s h E m I l t @ n

Libanon l i: b a n O n

Linkskurs l I N k s k U6 s

Linkspartei l I N k s p a6 t aI

LKW Maut Q E l k a: v e: m aU t

Londoner Schmuddelwetter l O n d o: n 6: S m U d @ l v E t 6:

Long Island l O N Q i: s l a n t

Lothar Bisky l o: t a: 6: b I s k i:

Lothar Matthäus l o: t a: 6: m a t E: U s

Luca Toni l u: k a: t o: n i:

Ludwig Erhard l u: t v I C Q e: 6: h a6 t

Lukas Podolski l u: k a s p o: d O l s k i:

Mailänder Dom m aI l E n d 6: d o: m

Manila m a n i: l a:

Margarete Teiner (*) m a: 6: g a r e: t @ t aI n 6:

Marins erstes Bundesligator (*) m a r i: n s Q E6 s t @ s b U n d @ s l i:

g a: t o: 6:

Markt m a: 6: k t

Markus Söder m a: 6: k U s s 2: d 6:

Martin Luther King m a: 6: t i: n l U t 6: k I N

McLaren Mercedes m E k l a: r @ n m E6 t s e: d @ s

Mecklenburg Vorpommern m E k l @ n b U6 k f o: 6: p O m 6: n

Mehrwegflasche m e: 6: v e: k f l a S @

Merkels Außenminister m E6 k @ l s Q aU s @ n m i: n I s t 6:

Merkels Widersacher m E6 k @ l s v i: d 6: z a x 6:

Michael Glos m I C a e: l g l o: s
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Michael Schumacher m I C a e: l S u: m a x 6:

Michael Steinbrecher m I C a e: l S t aI n b r E C 6:

Michelle Obama m I C E l Q o: b a: m a:

Milchbauern m I l C b aU 6: n

Milliarden Euro Konjunktur-

paket

m I l j a6 d @ n Q OY r o: k O n j U N k

t u: 6: p a k e: t

Millionen Wanderarbeiter m I l j o: n @ n v a n d 6: Q a6 b aI t 6:

Ministerpräsident m i: n I s t 6: p r E z i: d E n t

Ministerpräsident Oettinger m i: n I s t 6: p r E z i: d E n t Q 9: t I

N 6:

Monte Carlo m O n t @ k a: 6: l o:

Moralische Empörung m o: r a: l I S @ Q E m p 2: r U N

MTV Q E m t i: v i:

MTV Awards Q E m t i: v i: Q @ v O t s

Murad Kurnaz m u: r a t k U6 n a t s

Nachbarschaft n a x b a6 S a f t

Nachtraser (*) n a x t r a: z 6:

NATO Gipfel n a: t o: g I p f @ l

NATO Mitglied n a: t o: m I t g l i: t

Nazis n a: t s i: s

Neckar n E k a6

Nettoeffekt (*) n E t o: Q E f E k t

Neuankömmlinge ohne gültige

Aufenthaltserlaubnis

n OY Q a n k 9: m l I N @ Q o: n @

g Y l t I g @ Q aU f Q E n t h a l t s

Q E6 l aU p n I s

New Deal n j u: d i: l

New York n j u: j O6 k

New York Times n j u: j O6 k t aI m s

Nordkoreas Militär n O6 t k o: r e: a s m i: l i: t E: 6:

NPD Verbot Q E n p e: d e: f E6 b o: t

NS Zeit Q E n Q E s t s aI t

Obama Q o: b a: m a:

Obama Feeling Q o: b a: m a: f i: l I N
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ohne Antwort Q o: n @ Q a n t v O6 t

Olaf Scholz Q o: l a f S O l t s

Oliver Kahn Q O l i: v 6: k a: n

olympischen Spiele Q o: l Y m p I S @ n S p i: l @

Online Durchsuchung Q O n l aI n d U6 C z u: x U N

Opel Q o: p @ l

Opel Autohaus Q o: p @ l Q aU t o: h aU s

Opfer Q O p f 6:

Oprah Winfrey Q o: p r a: v I n f r E I

Oskar Lafontaine Q O s k a: 6: l a f O n t E: n

Ostalgie Q O s t a l g i:

OSZE Q o: Q E s t s E t Q e:

Panathinaikos Athen p a n a t I n a: i: k o: s Q a t e: n

Papst p a: p s t

Papst Johannes Paul p a: p s t j o: h a n @ s p aU l

Paralympics p a r a l Y m p I k s

Parteivorstand p a6 t aI f o: 6: S t a n t

Party p a: 6: t i:

Patchwork Familie p E t S v 9: 6: k f a m i: l j @

Peer Steinbrück p e: 6: S t aI n b r Y k

per Schiff transportiert p E6 S I f t r a n s p O6 t i: 6: t

Peter Frey p e: t 6: f r aI

Peter Hahne p e: t 6: h a: n @

Peter Kloeppel p e: t 6: k l 9: p @ l

Peter Ramsauer p e: t 6: r a m z aU 6:

Peter Struck p e: t 6: S t r U k

Petra Gerster p e: t r a: g E6 s t 6:

Pharaonen f a r a Q o: n @ n

Pisa Studie p i: s a: S t u: d j @

Pius Bruderschaft p i: U s b r u: d 6: S a f t

Podolski p o: d O l s k i:

Pogrom p o: g r o: m

Politik p o: l i: t I k
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Politikwissenschaftler p o: l i: t I k v I s @ n S a f t l 6:

Politische Probleme p o: l i: t I S @ p r o: b l e: m @

Postchef Klaus Zumwinkel p O s t S E f k l aU s t s U m v I N k @ l

Präsident p r E z i: d E n t

Präsident Clinton p r E z i: d E n t k l I n t @ n

Präsidenten des Deutschen

Bauernverbandes

p r E z i: d E n t @ n d E s d OY t S @ n

b aU 6: n f E6 b a n d @ s

Präsident Sarkozy p r E z i: d E n t z a6 k o: z i:

PR Berater Huntzinger (*) p e: Q E6 b @ r a: t 6: h U n t s I N 6:

Prinz Poldi (*) p r I n t s p O l d i:

Probleme weg geschoben p r o: b l e: m @ v e: k g @ S o: b @ n

Profil schärfen p r o: f i: l S E6 f @ n

Programme p r o: g r a m @

Prozent p r o: t s E n t

PR Termin p e: Q E6 t E6 m i: n

Puerto Rico p u: E6 t o: r i: k o:

Putin p u: t i: n

Ralf Rangnick r a l f r a N n I k

Rassismus in Amerika r a s I s m U s Q I n Q a m e: r i: k a:

Rauchmelder r aU x m E l d 6:

Rebellengeneral Nkunda (*) r e: b E l @ n g e: n @ r a: l Q E n k U n

d a:

Regentschaft r e: g E n t S a f t

Regierungsära (*) r e: g i: r U N s Q E: r a:

reizvollen r aI t s f O l @ n

Rekordolympiasiegerin Claudia

Pechstein (*)

r e: k O6 t Q o: l Y m p j a: z i: g @ r I n

k l aU d i: a: p E C S t aI n

Rendite r E n d i: t @

Reykjavik r aI k j a v I k

Rezept r e: t s E p t

Rezession r e: t s E s j o: n

Rheinland Pfalz r aI n l a n t p f a l t s

Ribery (*) r i: b @ r i:
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Richard Williamson r I C a: 6: t v I l j @ m z @ n

Riesenautos (*) r i: z @ n Q aU t o: s

Rodelherren (*) r o: d @ l h E r @ n

Rohölpreise r o: Q 2: l p r aI z @

Roland Berger r o: l a n t b E6 g 6:

Roland Koch r o: l a n t k O x

Romantik r o: m a n t I k

Rosa Luxemburg r o: z a: l U k s @ m b U6 k

russische Führung r U s I S @ f y: r U N

Russlands Vordenker r U s l a n t s f o: 6: d E N k 6:

Sachsen Anhalt z a k s @ n Q a n h a l t

Sachverständigenrat z a x f E6 S t E n d I g @ n r a: t

Saddam Hussein z a d a m h U s e: i: n

Sahra Wagenknecht z a: r a: v a: g @ n k n E C t

SAP Q E s Q a: p e:

Sarah Palin (*) z a: r a: p E I l I n

Schäfer Gümbel (*) S E: f 6: g Y m b @ l

Schrotthändler S r O t h E n t l 6:

Schulsanierung (*) S u: l z a n i: r U N

Schwesterpartei S v E s t 6: p a6 t aI

Schwesterpartei CSU fordert

Entlastungen

S v E s t 6: p a6 t aI t s e: Q E s Q u:

f O6 d 6: t Q E n t l a s t U N @ n

sechs Prozent weniger z E k s p r o: t s E n t v e: n I g 6:

SED Erbe Q E s Q e: d e: Q E6 b @

Senator Obama z e: n a: t o: 6: Q o: b a: m a:

Shooting Star S u: t I N s t a: 6:

Sichtbarkeit z I C t b a: 6: k aI t

Sommerinterview z O m 6: Q I n t 6: v j u:

soziales Profil z o: t s j a: l @ s p r o: f i: l

spanische Wirtschaft S p a: n I S @ v I6 t S a f t

SPD Finanzminister Q E s p e: d e: f i: n a n t s m i: n I s t 6:

SPD Führung Q E s p e: d e: f y: r U N
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SPD Haushaltsexperten Q E s p e: d e: h aU s h a l t s Q E k s

p E6 t @ n

SPD Innenminister Q E s p e: d e: Q I n @ n m i: n I s t 6:

SPD Politik Q E s p e: d e: p o: l i: t I k

SPD Spitze Q E s p e: d e: S p I t s @

Spielwarenmesse S p i: l v a: r @ n m E s @

Spitzenkandidatin S p I t s @ n k a n d i: d a: t I n

Sprit S p r I t

Staatsanwaltschaft S t a: t s Q a n v a l t S a f t

Steuerreform S t OY 6: r e: f O6 m

Steuerstreit S t OY 6: S t r aI t

Südkorea z y: t k o: r e: a:

Superlative z u: p 6: l a t i: v @

Synagoge z y: n a g o: g @

Tabellenende (*) t a b E l @ n Q E n d @

Tagesthemen t a: g @ s t e: m @ n

Taliban t a l i: b a: n

Tango auf Türkisch t a N g o: Q aU f t Y6 k I S

Tarifstreit t a r i: f S t r aI t

Tarik Al Wazir t a: r I k Q a l v a z i: 6:

Tengelmann t E N @ l m a n

Terroristen t E r o: r I s t @ n

Thema Steuerentlastungen t e: m a: S t OY 6: Q E n t l a s t U

N @ n

Thorsten Schäfer Gümbel (*) t O6 s t @ n S E: f 6: g Y m b @ l

Tibet t i: b E t

Tim Borowski t I m b o: r O f s k i:

Trainer t r E: n 6:

Tribüne t r i: b y: n @

TV Sender t e: f aU z E n d 6:

Umweltminister Jürgen Trittin Q U m v E l t m i: n I s t 6: j Y6 g @ n

t r I t i: n

UN Friedenstruppen Q u: Q E n f r i: d @ n s t r U p @ n
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Union Q U n j o: n

unsere Sprit fressenden Monster-

autos (*)

Q U n z @ r @ S p r I t f r E s @ n d @ n

m O n s t 6: Q aU t o: s

US Filme Q u: Q E s f I l m @

US Präsident Q u: Q E s p r E z i: d E n t

Valentinstag v a l E n t I n s t a: k

Venedig v e: n e: d I C

Vereinigten Arabischen Emi-

raten

f E6 Q aI n I C t @ n Q a r a: b I S @ n

Q e: m i: r a: t @ n

Vereinigten Staaten f E6 Q aI n I C t @ n S t a: t @ n

Vereinten Nationen f E6 Q aI n t @ n n a t s j o: n @ n

Verhältnissen f E6 h E l t n I s @ n

Vertrauen f E6 t r aU @ n

Viertel ihres Werts f I6 t @ l Q i: r @ s v e: 6: t s

Völkermord f 9: l k 6: m O6 t

Vorbild f o: 6: b I l t

Vulkanausbrüche v U l k a: n Q aU s b r Y C @

VW f aU v e:

VW Aktien f aU v e: Q a k t s j @ n

Waffen v a f @ n

Waffenstillstand v a f @ n S t I l S t a n t

Wahlen v a: l @ n

Wahlkampfthema Bildung v a: l k a m p f t e: m a: b I l d U N

Wahlparty v a: l p a: 6: t i:

Wahlschlappe v a: l S l a p @

Wahlsieg v a: l z i: k

Wall Street v a l s t r i: t

Washington v O S I N t @ n

Weltmeister v E l t m aI s t 6:

wichtige Personalentscheidungen v I C t I g @ p E6 z o: n a: l Q E n t S aI

d U N @ n

Wirren der Wirtschaftskrise v I r @ n d e: 6: v I6 t S a f t s k r i: z @

Wirtschaft v I6 t S a f t
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Wirtschaftliche Leistung der EU v I6 t S a f t l I C @ l aI s t U N d e: 6:

Q e: Q u:

Wirtschaftskrise v I6 t S a f t s k r i: z @

Wirtschaftsmacht v I6 t S a f t s m a x t

Wirtschaftspolitik v I6 t S a f t s p o: l i: t I k

Wirtschaftswunderland v I6 t S a f t s v U n d 6: l a n t

Wladimir Klitschko v l a d i: m i: 6: k l I t S k o:

WWW v e: v e: v e:

You Tube j u: t u: b @

Ypsilanti Q Y p s i: l a n t i:

Zeitschrift t s aI t S r I f t

Zentralrats der Juden t s E n t r a: l r a: t s d e: 6: j u: d @ n

Zick Zack Laufen t s I k t s a k l aU f @ n

zusätzliche Steuer t s u: z E t s l I C @ S t OY 6:
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