research

Automatsko raspoznavanje hrvatskoga govora velikoga vokabulara

Abstract

This paper presents procedures used for development of a Croatian large vocabulary automatic speech recognition system (LVASR). The proposed acoustic model is based on context-dependent triphone hidden Markov models and Croatian phonetic rules. Different acoustic and language models, developed using a large collection of Croatian speech, are discussed and compared. The paper proposes the best feature vectors and acoustic modeling procedures using which lowest word error rates for Croatian speech are achieved. In addition, Croatian language modeling procedures are evaluated and adopted for speaker independent spontaneous speech recognition. Presented experiments and results show that the proposed approach for automatic speech recognition using context-dependent acoustic modeling based on Croatian phonetic rules and a parameter tying procedure can be used for efficient Croatian large vocabulary speech recognition with word error rates below 5%.Članak prikazuje postupke akustičkog i jezičnog modeliranja sustava za automatsko raspoznavanje hrvatskoga govora velikoga vokabulara. Predloženi akustički modeli su zasnovani na kontekstno-ovisnim skrivenim Markovljevim modelima trifona i hrvatskim fonetskim pravilima. Na hrvatskome govoru prikupljenom u korpusu su ocjenjeni i uspoređeni različiti akustički i jezični modeli. U članku su uspoređ eni i predloženi postupci za izračun vektora značajki za akustičko modeliranje kao i sam pristup akustičkome modeliranju hrvatskoga govora s kojim je postignuta najmanja mjera pogrešno raspoznatih riječi. Predstavljeni su rezultati raspoznavanja spontanog hrvatskog govora neovisni o govorniku. Postignuti rezultati eksperimenata s mjerom pogreške ispod 5% ukazuju na primjerenost predloženih postupaka za automatsko raspoznavanje hrvatskoga govora velikoga vokabulara pomoću vezanih kontekstnoovisnih akustičkih modela na osnovu hrvatskih fonetskih pravila

    Similar works