1,078 research outputs found

    A Novel Composite Material-based Computational Model for Left Ventricle Biomechanics Simulation

    Get PDF
    To model cardiac mechanics effectively, various mechanical characteristics of cardiac muscle tissue including anisotropy, hyperelasticity, and tissue active contraction characteristics must be considered. Some of these features cannot be implemented using commercial finite element (FE) solvers unless additional custom-developed computer codes/subroutines are appended. Such codes/subroutines are unavailable for the research community. Accordingly, the overarching objective of this research is to develop a novel LV mechanics model which is implementable in commercial FE solvers and can be used effectively within inverse FE frameworks towards cardiac disease diagnosis and therapy. This was broken down into a number of objectives. The first objective is to develop a novel cardiac tissue mechanical model. This model was constructed of microstructural cardiac tissue constituents while their associated volume contributions and mechanical properties were incorporated into the model. These constituents were organized in small FE tissue specimen models consistent with the normal/pathological cardiac tissue microstructure. In silico biaxial/uniaxial mechanical tests were conducted on the specimen models and corresponding stress-strain data were validated by comparing them with cardiac tissue data reported in the literature. Another objective of this research is developing a novel FE-based mechanical model of the LV which is fully implementable using commercial FE solvers without requiring further coding, potentially leading to a computationally efficient model which is easily adaptable to diverse pathological conditions. This was achieved through considering a novel composite material model of the cardiac tissue while all aspects of the cardiac mechanics including hyperelasticity, anisotropy, and active tissue responses were preserved. The model was applied to an in silico geometry of a canine LV under both normal and pathological conditions and systolic/diastolic responses of the model were compared with corresponding data of other LV mechanical models and LV contraction measurements. To test the suitability of the proposed cardiac model for FE inversion-based algorithms, the model was utilized for LV diastolic mechanical simulation to estimate the tissue stiffness and blood pressure using an ad-hoc optimization scheme. This led to reasonable tissue stiffness and blood pressure values falling within the range of LV measurements of healthy subjects, confirming the efficacy of this model for inversion-based diagnosis applications

    Myocardial tagging by Cardiovascular Magnetic Resonance: evolution of techniques--pulse sequences, analysis algorithms, and applications

    Get PDF
    Cardiovascular magnetic resonance (CMR) tagging has been established as an essential technique for measuring regional myocardial function. It allows quantification of local intramyocardial motion measures, e.g. strain and strain rate. The invention of CMR tagging came in the late eighties, where the technique allowed for the first time for visualizing transmural myocardial movement without having to implant physical markers. This new idea opened the door for a series of developments and improvements that continue up to the present time. Different tagging techniques are currently available that are more extensive, improved, and sophisticated than they were twenty years ago. Each of these techniques has different versions for improved resolution, signal-to-noise ratio (SNR), scan time, anatomical coverage, three-dimensional capability, and image quality. The tagging techniques covered in this article can be broadly divided into two main categories: 1) Basic techniques, which include magnetization saturation, spatial modulation of magnetization (SPAMM), delay alternating with nutations for tailored excitation (DANTE), and complementary SPAMM (CSPAMM); and 2) Advanced techniques, which include harmonic phase (HARP), displacement encoding with stimulated echoes (DENSE), and strain encoding (SENC). Although most of these techniques were developed by separate groups and evolved from different backgrounds, they are in fact closely related to each other, and they can be interpreted from more than one perspective. Some of these techniques even followed parallel paths of developments, as illustrated in the article. As each technique has its own advantages, some efforts have been made to combine different techniques together for improved image quality or composite information acquisition. In this review, different developments in pulse sequences and related image processing techniques are described along with the necessities that led to their invention, which makes this article easy to read and the covered techniques easy to follow. Major studies that applied CMR tagging for studying myocardial mechanics are also summarized. Finally, the current article includes a plethora of ideas and techniques with over 300 references that motivate the reader to think about the future of CMR tagging

    Tunable Acellular Hyaluronic Acid Hydrogel Systems to Attenuate Left Ventricular Remodeling

    Get PDF
    Following myocardial infarction (MI), left ventricular (LV) remodeling initiates a series of maladaptive events that may induce heart failure (HF). The use of injectable biomaterials is an attractive approach to attenuate negative remodeling; however, optimal properties for these systems have not been identified. The general hypothesis is that the properties of injectable hydrogels control the magnitude and duration of stabilization in the weakened myocardium and the ability to attenuate LV remodeling. To test this hypothesis, three specific aims were developed. Increased stress due to geometric alterations is thought to exacerbate LV remodeling, causing infarct expansion. Aim 1 utilized methacrylated hyaluronic acid (MeHA) hydrogels to demonstrate ex vivo that macromer modification and oxidation-reduction (redox) initiator concentrations influence the mechanical properties of hydrogel/myocardium composites and their distribution in tissue. Experimental data incorporation into a finite element model of the dilated LV validated previous in vivo geometric outcomes and generally demonstrated the largest stress reduction with higher mechanics and larger volumes. Aims 2 and 3 evaluated the influence of temporal mechanical support on LV remodeling in an in vivo MI model. Hydroxyethyl methacrylate groups were coupled to HA to produce hydrolytically degradable hydrogels (HeMA-HA) polymerized via redox reactions. In Aim 2, hydrogel gelation, mechanics, and degradation properties were varied by altering HeMA modification to yield low and high HeMA-HA with similar gelation and initial mechanics but accelerated degradation kinetics compared to previously studied low and high MeHA. High HeMA-HA was more effective than low HeMA-HA treatment in limiting remodeling; however, high HeMA-HA only limited LV dilation for 2 weeks, while its high MeHA counterpart sustained support up to 8 weeks. In Aim 3, a hydrogel/microsphere composite system was evaluated as an alternative approach to enhance temporal support via collagen bulking through controlled macrophage responses. The composite treatment increased myocardial thickness and decreased chamber volumes compared to hydrogel alone. This work demonstrates the significance of the magnitude and duration of mechanical support in attenuating LV remodeling and provides insight on optimal material properties for injectable biomaterials to develop better therapies to prevent HF

    Computational biomechanics of acute myocardial infarction and its treatment

    Get PDF
    The intramyocardial injection of biomaterials is an emerging therapy for myocardial infarction. Computational methods can help to study the mechanical effect s of biomaterial injectates on the infarcted heart s and can contribute to advance and optimise the concept of this therapy. The distribution of polyethylene glycol hydrogel injectate delivered immediately after the infarct induction was studied using rat infarct model. A micro-structural three-dimensional geometrical model of the entire injectate was reconstructed from histological micro graphs. The model provides a realistic representation of biomaterial injectates in computational models at macroscopic and microscopic level. Biaxial and compression mechanical testing was conducted for healing rat myocardial infarcted tissue at immediate (0 day), 7, 14 and 28 days after infarction onset. Infarcts were found to be mechanically anisotropic with the tissue being stiffer in circumferential direction than in longitudinal direction. The 0, 7, 14 and 28 days infarcts showed 443, 670, 857 and 1218 kPa circumferential tensile moduli. The 28 day infarct group showed a significantly higher compressive modulus compared to the other infarct groups (p= 0.0055, 0.028, and 0.018 for 0, 7 and 14 days groups). The biaxial mechanical data were utilized to establish material constitutive models of rat healing infarcts. Finite element model s and genetic algorithms were employed to identify the parameters of Fung orthotropic hyperelastic strain energy function for the healing infarcts. The provided infarct mechanical data and the identified constitutive parameters offer a platform for investigations of mechanical aspects of myocardial infarction and therapies in the rat, an experimental model extensively used in the development of infarct therapies. Micro-structurally detailed finite element model of a hydrogel injectate in an infarct was developed to provide an insight into the micromechanics of a hydrogel injectate and infarct during the diastolic filling. The injectate caused the end-diastolic fibre stresses in the infarct zone to decrease from 22.1 to 7.7 kPa in the 7 day infarct and from 35.7 to 9.7 kPa in the 28 day infarct. This stress reduction effect declined as the stiffness of the biomaterial increased. It is suggested that the gel works as a force attenuating system through micromechanical mechanisms reducing the force acting on tissue layers during the passive diastolic dilation of the left ventricle and thus reducing the stress induced in these tissue layers

    Systems Modeling to Predict Mechano-Chemo Interactions In Cardiac Fibrosis

    Get PDF
    Cardiac fibrosis poses a central challenge in preventing heart failure for patients who have suffered a cardiac injury such as myocardial infarction or aortic valve stenosis. This chronic condition is characterized by a reduction in contractile function through combined hypertrophy and excessive scar formation, and although currently prescribed therapeutics targeting hypertrophy have shown improvements in patient outcomes, pathological fibrosis remains a leading cause of reduced cardiac function for patients long-term. Cardiac fibroblasts play a key role in regulating scar formation during heart failure progression, and interacting biochemical and biomechanical cues within the myocardium guide the activation of fibroblasts and expression of extracellular matrix proteins. While targeted experimental studies of fibroblast activation have elucidated the roles of individual pathways in fibroblast activation, intracellular crosstalk between mechanotransduction and chemotransduction pathways from multiple biochemical cues has largely confounded efforts to control overall cell behavior within the myocardial environment. Computational networks of intracellular signaling can account for complex interactions between signaling pathways and provide a promising approach for identifying influential mechanisms mediating cell behavior. The overarching goal of this dissertation is to improve our understanding of complex signaling in fibroblasts by investigating the role of mechano-chemo interactions in cardiac fibroblast-mediated fibrosis using a combination of experimental studies and systems-level computational models. Firstly, using an in vitro screen of cardiac fibroblast-secreted proteins in response to combinations of biochemical stimuli and mechanical tension, we found that tension modulated cell sensitivity towards biochemical stimuli, thereby altering cell behavior based on the mechanical context. Secondly, using a curated model of fibroblast intracellular signaling, we expanded model topology to include robust mechanotransduction pathways, improved accuracy of model predictions compared to independent experimental studies, and identified mechanically dependent mechanisms-of- ction and mechano-adaptive drug candidates in a post-infarction scenario. Lastly, using an inferred network of fibroblast transcriptional regulation and model fitting to patient-specific data, we showed the utility of model-based approaches in identifying influential pathways underlying fibrotic protein expression during aortic valve stenosis and predicting patient-specific responses to pharmacological intervention. Our work suggests that computational-based approaches can generate insight into influential mechanisms among complex systems, and such tools may be promising for further therapeutic development and precision medicine

    Computational Simulation: Selected Applications In Medicine, Dentistry, And Surgery

    Get PDF
    This article presents the use of computational modelling software (e.g. ANSYS) for the purposes of simulating, evaluating and developing medical and surgical practice. We provide a summary of computational simulation mo delling that has recently been employed through effective collaborations between the medical, mathematical and engineering research communities. Here, particular attention is being paid to the modelling of medical devices as well as providing an overview o f modelling bone, artificial organs and microvascular blood flows in the machine space of a High Performance Computer (HPC)

    MRI Evaluation of Injectable Hyaluronic Acid Hydrogel Therapy to Attenuate Myocardial Infarct Remodeling

    Get PDF
    Left ventricular (LV) remodeling following myocardial infarction (MI) leads to maladaptive processes that often progress to heart failure. Injectable biomaterials can alter the mechanical signaling post-MI to limit this progression. To design optimal therapies, noninvasive techniques are needed to elucidate the reciprocal interaction between the injected material and the surrounding myocardial tissue. Towards this goal, the general hypothesis of this dissertation was that magnetic resonance imaging (MRI) can be used to characterize the properties of injectable materials once delivered to the myocardium and evaluate the temporal effects of injectable materials on myocardial tissue properties post-MI. To test this hypothesis, injectable hyaluronic acid (HA) hydrogels were developed with a range of gelation, degradation and mechanical properties by altering the initiator concentration, macromer modification, and macromer concentration, respectively. Non-contrast MRI was then used to characterize the properties (e.g., distribution, chemical composition) of injectable HA hydrogels in myocardial explants. Altering hydrogel gelation led to differences in distribution in myocardial tissue, as quantified by T2-weighted MRI. As an alternative to conventional (i.e.T2-weighted) MRI where contrast depends on differences in MR properties and thus, is non-specific for the material, chemical exchange saturation transfer (CEST) MRI was used to specifically image hydrogels based on their functional (i.e. exchangeable proton) groups. CEST contrast correlated with changes in material properties, specifically macromer concentration. Furthermore, CEST MRI was shown to simultaneously visualize and discriminate between different injectable materials based on their unique chemistry. Finally, the effect of injectable HA hydrogels on myocardial tissue properties was temporally evaluated in a porcine infarct model up to 12 weeks post-MI. Outcome assessment using MRI (e.g. cine, late-gadolinium enhancement, and spatial modulation of magnetization MRI) and finite element (FE) modeling demonstrated that hydrogel therapy led to improved global LV structure and function, increased wall thickness, preserved borderzone contractility, and increased infarct stiffness, respectively. This work demonstrates that MRI can be used to simultaneously study hydrogel properties after injection into the myocardium and evaluate the ability of injectable hydrogels to alter myocardial tissue properties to ultimately improve cardiac outcomes and enable future optimization of biomaterial therapies to attenuate adverse remodeling post-MI

    Myocardial biomechanics and the consequent differentially expressed genes of the left atrial ligation chick embryonic model of hypoplastic left heart syndrome

    Get PDF
    Left atrial ligation (LAL) of the chick embryonic heart is a model of the hypoplastic left heart syndrome (HLHS) where a purely mechanical intervention without genetic or pharmacological manipulation is employed to initiate cardiac malformation. It is thus a key model for understanding the biomechanical origins of HLHS. However, its myocardial mechanics and subsequent gene expressions are not well-understood. We performed finite element (FE) modeling and single-cell RNA sequencing to address this. 4D high-frequency ultrasound imaging of chick embryonic hearts at HH25 (ED 4.5) were obtained for both LAL and control. Motion tracking was performed to quantify strains. Image-based FE modeling was conducted, using the direction of the smallest strain eigenvector as the orientations of contractions, the Guccione active tension model and a Fung-type transversely isotropic passive stiffness model that was determined via micro-pipette aspiration. Single-cell RNA sequencing of left ventricle (LV) heart tissues was performed for normal and LAL embryos at HH30 (ED 6.5) and differentially expressed genes (DEG) were identified.After LAL, LV thickness increased by 33%, strains in the myofiber direction increased by 42%, while stresses in the myofiber direction decreased by 50%. These were likely related to the reduction in ventricular preload and underloading of the LV due to LAL. RNA-seq data revealed potentially related DEG in myocytes, including mechano-sensing genes (Cadherins, NOTCH1, etc.), myosin contractility genes (MLCK, MLCP, etc.), calcium signaling genes (PI3K, PMCA, etc.), and genes related to fibrosis and fibroelastosis (TGF-β, BMP, etc.). We elucidated the changes to the myocardial biomechanics brought by LAL and the corresponding changes to myocyte gene expressions. These data may be useful in identifying the mechanobiological pathways of HLHS

    Quantifying non-axial deformations in rat myocardium

    Get PDF
    While it is clear that myocardium responds to mechanical stimuli, it is unknown whether myocytes transduce stress or strain. It is also unknown whether myofibers maintain lateral connectivity or move freely over one another when myocardium is deformed. Due to the lack of information about the relationship between macroscopic and cellular deformations, we sought to develop an experimental method to examine myocyte deformations and to determine their degree of affinity. A set of protocols was established for specimen preparation, image acquisition, and analysis, and two experiments were performed according to these methods. Results indicate that myocyte deformations are non-affine; therefore, some cellular rearrangement must occur when myocardium is stretched
    corecore