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ABSTRACT 

 

Quantifying Non-Axial Deformations in Rat Myocardium.  (December 2004) 

Kristina Diane Aghassibake, B.S., Texas A&M University 

Chair of Advisory Committee: Dr. John C. Criscione 

 

 While it is clear that myocardium responds to mechanical stimuli, it is unknown 

whether myocytes transduce stress or strain.  It is also unknown whether myofibers 

maintain lateral connectivity or move freely over one another when myocardium is 

deformed.  Due to the lack of information about the relationship between macroscopic 

and cellular deformations, we sought to develop an experimental method to examine 

myocyte deformations and to determine their degree of affinity.  A set of protocols was 

established for specimen preparation, image acquisition, and analysis, and two 

experiments were performed according to these methods.  Results indicate that myocyte 

deformations are non-affine; therefore, some cellular rearrangement must occur when 

myocardium is stretched. 
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CHAPTER I 

INTRODUCTION 

 

Claiming the lives of over 700,000 Americans each year, heart disease has 

become the single most common cause of death for adults in the United States.  

According to the American Heart Association (2003), diseases of the heart kill more 

people than the next five leading causes of death – cancer, chronic lower respiratory 

diseases, accidents, diabetes mellitus, influenza, and pneumonia – combined.  It is 

estimated that, in the year 2004, the cost of heart disease in the United States will exceed 

$200 billion, including healthcare expenditures and lost productivity due to morbidity 

and mortality.  

In a diseased heart, myocardium experiences increased hemodynamic loads; 

consequently, the tissue grows and remodels in a compensatory manner (Emery and 

Omens, 1997).  In some cases, this growth is therapeutic and allows the heart to adapt to 

abnormal stresses.  For example, if stress is applied very gradually to a young, healthy 

animal, the resulting hypertrophic myocardium expresses normal contractility.  

However, if the animal is old or unhealthy or if stress is applied rapidly, the result is 

pathologic hypertrophy in which the tissue expresses decreased contractility.  Often, in 

this case, the hypertrophy is unable to match the inciting stress, cardiac pump function is 

diminished, and heart failure ensues (Grossman, 1980). 

_________ 
This thesis follows the style and format of Journal of Biomechanics. 
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While it is clear that myocardium responds to mechanical stimuli, it is unknown 

whether myocytes transduce stress or strain.  It is also unknown whether myofibers 

maintain lateral connectivity or move freely over one another when myocardium is 

deformed.  Due to the lack of information about the myocardial strain response, the 

constitutive laws currently in use make assumptions about the behavior of myocardium 

that have yet to be validated.  Hence, we seek to establish more accurate constitutive 

relations for myocardium and thus improve our experimental models.  In order to do so, 

we must first understand the manner in which myocardial geometry changes in response 

to deformation, i.e., strain. 

The goal of this research project is to develop an experimental method to 

examine the macroscopic deformations resulting from stretching of myocardium and the 

corresponding myocyte deformations; it also seeks to quantify the degree to which these 

deformations are affine.  This thesis describes the experimental procedures and protocols 

for specimen preparation, imaging, and image analysis, and presents the results from two 

experiments that were performed according to these methods. 
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CHAPTER II 

BACKGROUND 

 

As early as the seventeenth century, physicians had begun investigating the 

ultrastructure of muscle tissue.  In 1674, Leeuwenhoek observed striations, which he 

referred to as “spiral bands,” in skeletal muscle.  In his 1781 Croonian Lecture, John 

Hunter described his observations of the rearrangement of myofibril components during 

contraction (Peachey, 1978).  More recently, Huxley and Hanson’s 1954 essay “Changes 

in the cross-striations of muscle during contraction and stretch and their structural 

interpretation” presented their so-called sliding filament theory of muscle contraction, 

which contains some of the most enduring ideas about the mechanisms of muscle 

contraction (Huxley and Hanson, 1954).   

CONTRACTILE MECHANISM 

According to Huxley’s model, the contractile component of striated muscle 

consists of interdigitating arrays of thin actin and thick myosin filaments, which overlap 

in the contractile region (Fig. 1).  The overlapping of myofilaments in these arrays 

results in the repeating band pattern typically observed in striated muscle.  The region of 

overlap between the actin and myosin filaments is known as the A or anisotropic band, 

while the I or isotropic band contains only actin filaments (Fig. 2).  The area that 

contains only myosin filaments is known as the H zone.  Together, the A band, I band, 

and H zone comprise the sarcomere, the fundamental unit of contraction.  The sarcomere 
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is bounded on both sides by the Z line, which is the structural backbone of the actin 

filaments (Opie, 2004). 

 

Fig. 1.  Diagram of myofilament arrangement in striated muscle. 

 

In vertebrate striated muscle, the positioning of myofilaments within each array 

is very regular; the thick filaments are arranged hexagonally 400 to 450 angstroms apart, 

while the thin filaments occupy trigonal positions between the thick filaments (Fig. 2). 

The interfilamentous space is filled with sarcoplasm, which is composed primarily of 

proteins and other molecules suspended in water (Huxley, 1969).  These myofilament 

arrays combine to form myofibrils, which, in turn, make up larger fiber bundles.   
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Fig. 2.  Diagram of myofilament lattice in striated muscle. 

 

In Fig. 1, the thick myosin filament is shown enlarged with cross-bridges, 

irregularly spaced protrusions that Huxley proposed as the sites of mechanical force 

transmission during contraction.  The interaction between the myosin heads and the actin 

filaments pulls together the two ends of the sarcomere, causing both filaments to slide 

without shortening.  This process, known as cross-bridge cycling, is initiated by a wave 

of electricity passing through the ventricle, which causes an increase in intracellular 

calcium.  The presence of cytosolic calcium ions allows the myosin heads to bind to the 

actin filaments, flex, and slide the filaments toward the center of the sarcomere; this 

flexion shortens the sarcomere and is thought to be the fundamental mechanism of 

muscle contraction.  Relaxation occurs when, in the presence of ATP, the myosin heads 

detach from the actin filaments and resume their un-flexed configuration (Opie, 2004). 



 6

Nearly forty years after the introduction of the sliding filament theory, Zahalak 

expanded Huxley’s cross-bridge model from a uniaxial description of length changes in 

the fiber direction to a three-dimensional model that accounts for non-axial active stress 

(Zahalak, 1996). Zahalak argues that, due to the 180 degree rotation of cardiac muscle 

fibers from epicardium to endocardium, any ventricular deformation must induce non-

axial strains in the majority of fibers in the ventricular free wall.  His theory suggests 

that, while muscle is generally thought to generate force only in the fiber direction, large 

cross-fiber deformations may substantially affect both axial and non-axial stresses; he 

predicts that non-contractile proteins found in the sarcomere play a significant role in 

this equilibrating effect. 

In contrast to earlier studies, Zahalak proposes that altered myofilament spacing 

due to non-axial strains, rather than changes in ionic concentration, is primarily 

responsible for the changes in cross-bridge dynamics observed in osmotically perturbed 

cells.  To support his theory, he cites ionically controlled experiments by Metzger and 

Moss and Goldman, who observed osmotic influences on both isometric force and 

maximum shortening speed in skinned skeletal muscle fibers (Metzger and Moss, 1987; 

Goldman, 1987).  Other studies lend support with findings on osmotic influences on 

ATP hydrolysis, cross-bridge stiffness, and force generation in intact muscle fibers 

(Krasner and Maugham, 1984; Goldman and Simmons, 1986; Bagni et al., 1990). 

In constructing his model, Zahalak assumes that myofibers do not merely roll 

over one another “like a stack of greased pencils;” rather, the lateral connectivity of the 

myofilaments within the muscle fibers prevents simple rearrangement and allows for the 
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complete transmission of myocardial deformation to the myofibrils themselves (Zahalak 

et al., 1999).  However, in his discussion, Zahalak acknowledges that the actual 

relationship between macroscopic deformations of myocardium and local deformations 

of the myofilament lattice has yet to be determined.   

Zahalak’s simulations of normal myocardium demonstrated that, when non-axial 

deformations were accounted for, axial active stress was decreased by as much as 35 

percent at end-systole.  In simulations of compliant, ischemic regions, active stress was 

decreased by as much as 52 percent; in stiff, infarcted regions, however, the greatest 

decrease observed was only 29 percent.  In all cases, the most significant reductions in 

end-systolic fiber stresses were predicted at the endocardium, with increasingly larger 

stresses occurring at the midwall and epicardium.  These results, while based on a 

simplified model of myocardium, suggest that non-axial deformations produce 

substantial changes in fiber stress and should not be ignored in future models. 

MORPHOLOGY OF VENTRICULAR MYOCARDIUM 

 The cells of the atria and the ventricles differ significantly in function and, 

therefore, in structure.  Atrial contraction is responsible for filling the relaxed left 

ventricle, while ventricular contraction actually propels blood through the vasculature.  

Because the atria must generate less force than the ventricles, atrial myocytes are smaller 

and exhibit fewer contractile structures than those in the ventricles (Opie, 2004).  For the 

purposes of this study, our primary interest is the ventricular myocardium. 
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Ventricular Myocytes 

 The ventricular myocytes are cylindrical in shape and range from 50 – 100 µm in 

length and from 10-25 µm in diameter.  These highly branched cells also possess many 

transverse tubules (T tubules), invaginations of the sarcolemma which increase the 

surface area of the cell and assist in the transmission of polarizing electrical signals. 

Inside the cell, the contractile apparatus and organelles are not merely suspended 

in the cytosol as was previously thought.  In fact, the sarcoplasm contains a highly 

structured cytoskeleton, a collection of architectural proteins that serve as scaffolding for 

the contractile mechanism and connect the cell to extracellular structures.  For example, 

systems of cytoskeletal proteins known as costameres extend from the sarcomere, 

through the sarcolemma, and attach to the extracellular collagen matrix; these 

connections allow for bidirectional conduction of mechanical stimuli.  Desmin and actin 

filaments attached to the Z line of each sarcomere allow for the force transmission 

between sarcomeres that ultimately results in ventricular contraction (Opie, 2004).   

Cardiac myocytes are long, multinucleated muscle fibers that are thought to form 

from the fusion of multiple cells during development.  Individual myofibers are bound 

together by collagen to form muscle fiber bundles, which are arranged such that at any 

point within the ventricle, there is an appreciable fiber direction.  At most points in the 

normal heart, the fiber direction runs roughly parallel to the epicardial surface; this 

orientation varies transmurally, from 70° (with respect to the equator) at the 

endocardium to -60° at the epicardium (Humphrey, 2002). 
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Extracellular Matrix 

 The connective tissue that encompasses individual cardiac myocytes and holds 

together the myocardium is known as the extracellular matrix (ECM).  Composed 

primarily of the proteins collagen, fibronectin, and elastin, the ECM contributes to the 

structural stability of myocardium and is also thought to play a role in certain metabolic 

processes (Opie, 1998).  Fibroblasts, which are responsible for producing most of the 

fibrous proteins that make up the ECM, are the most plentiful cells in the myocardium, a 

fact which emphasizes the importance of the ECM.  The formation of fibrous myocardial 

connective tissue, also called fibrosis, is partially regulated by the peptidergic renin-

angiotensin-aldosterone system (Opie, 2004). 

The helical protein collagen is found in abundance in the ECM and is the primary 

determinant of myocardial stiffness.  Collagen I and collagen III are the two major types 

of collagen found in myocardium.  Collagen I forms thick chains that connect individual 

myoctes together and conduct mechanical force between the myofilaments and the 

ECM, while collagen III forms thinner fibers that cross-link with collagen I.  Collagen 

types IV and V are also present in the myocardium, comprising the basement membrane 

that separates myocytes from their surrounding connective tissue.  Collagen fibers also 

extend from the cytoskeleton to the ECM, attaching the cells to their structural backbone 

(Opie, 2004).  In this manner, cardiac myocytes are held in a fairly ordered 

configuration; the degree to which individual cells are free to move within this 

configuration is unknown.   
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While they were once considered to be passive structural elements of 

myocardium, Weber has shown that these collagen fibers are degraded and replaced 

often and therefore play a significant role in growth in remodeling (Weber et al., 1994).  

In addition, a mechanical model consisting only of coiled collagen fibers proved to be an 

excellent predictor of stress-strain behavior in canine and rat myocardium; this result 

indicates that the collagen matrix may in fact be the most important contributor to axial 

myocardial stiffness (MacKenna et al., 1997).  Due to its contribution to muscle 

stiffness, its ability to prevent myocardial stretch, and its role in cardiac growth, collagen 

formation in both healthy and diseased tissue is the subject of much investigation. 

 Elastin, another fibrous extracellular protein, is found wrapped around the 

collagen matrix and near the sarcolemma.  So named because of its rubber-like 

properties, elastin contributes in part to the ability of myocardium to stretch in response 

to mechanical factors.  Cross-bridge interactions also contribute to myocardial elasticity; 

the more cross-bridge interactions that occur, the less elastic the myocardium becomes.  

Also present in the ECM are proteoglycans, such as laminin and fibronectin, which form 

the underlying mesh on which the collagen matrix is constructed.  These proteins also 

influence cellular growth (Opie, 1998). 

According to Smaill and Hunter, Robinson and his colleagues propose other 

functions for the extracellular connective tissue.  The ECM, they argue, serves to limit 

axial muscle fiber strain, allowing sarcomeres to stretch to lengths of up to 2.25 µm but 

no further.  They attribute this “strain-locking” mechanism to a rearrangement of 

connective tissue that occurs upon stretching the myocardium and increases stiffness 
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(Smaill and Hunter, 1991).  The fact that sarcomere lengths increase when the collagen 

matrix is destroyed supports this theory (MacKenna et al., 1994).  Robinson also 

suggests that, during myocardial contraction, the ECM might store energy to be utilized 

for the rapid expansion that accompanies ventricular filling (Robinson et al., 1986). 

Laminar Myofiber Architecture 

 In addition to supporting and connecting myocytes, the extracellular collagen 

matrix arranges bundles of cells into sheets, or laminae; these laminae are, on average, 

three to four cells thick and exhibit multiple branches (Fig. 3). 

 

 

Fig. 3.  Multiphoton micrograph of rat myocardium showing myocytes  
organized into visible laminae (60x). 
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 Similar to the helical arrangement of myofibers, myocardial laminar orientation 

varies transmurally; LeGrice and colleagues showed that, in tangential section, the layers 

of myocardium run approximately parallel to the local fiber direction (LeGrice et al., 

1995).  In the right and left ventricle free walls, laminar orientation changes from -90° at 

the endocardium to 30-60° at the epicardium (Fig. 4a).  In the interventricular septum, 

however, the orientation changes a full 180° such that the laminae run longitudinally at 

both the right and left ventricle subendocardia (Fig. 4b).   
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Separating the laminae from one another are long collagen fibers that are 

attached to the connective tissue matrix.  While these fibers do link adjacent layers of 

myocardium, they also create distinct cleavage planes along which laminar slippage is 

thought to occur.  Also connecting adjacent laminae are sparse branches one to two cells 

thick.  The distribution of these cellular branches varies transmurally, with a minimum 

average branching density of 3.8 branches/mm2 at the midwall and higher branching 

densities of 6.6-8.4 branches/mm2 near the endocardium and epicardium.  The spacing of 

branches along a sheet of myocardium is quite irregular, and the distance between 

consecutive branches can be as much as 1-2 mm.  The local distribution of branches 

appears to be unrelated to the amount of extracellular space between adjacent laminae 

(LeGrice et al., 1995). 

 While its exact role is not well understood, the laminar fiber architecture of 

myocardium is thought to contribute substantially to ventricular function.  In systole, the 

left ventricle free wall and interventricular septum thicken as sheets of myocardium 

extend and shear; the opposite occurs during diastole.  The extent to which each of these 

mechanisms – sheet shear and sheet extension – is responsible for wall thickening varies 

regionally and transmurally.  In addition, the degree of laminar reorientation is load-

dependent, with increased rearrangement observed in response to increased end-diastolic 

pressure (Takayama et al., 2002).  Based on their examination of the effects of fiber 

shortening and laminar reorientation on ventricular systolic strain, Costa and colleagues 

suggest that myocytes may also rearrange within the laminae to produce the ventricular 

wall thickening that is observed at end systole (Costa et al., 1999). 
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MODELING VENTRICULAR MYOCARDIUM 

 In cardiac mechanics, we typically view myocardium as a material continuum, 

and we therefore employ a continuum mechanics approach in our analyses of stress, 

strain, and other mechanical characteristics.  Classically, a material continuum defines a 

relationship between material particles such that between any two particles lies another 

particle, and each particle within the continuum has mass.  In a biological system, 

however, it is clear that the scale at which we consider a material is critical to the 

continuum approach.  At the atomic level, for example, the motion and interaction of 

particles cannot be described by Newtonian mechanics, and the vast amount of empty 

space between particles makes continuum mechanics inappropriate for atomic 

investigation.  Yet, if we choose to consider very large collections of atoms, such as a 

group of cells, the continuum mechanics approach is fitting (Fung, 1993).  While it is 

true that there is space between the cells of the myocardium, the amount of space is 

small in relation to the particle size (i.e., the size of the cell); hence, this simplification 

results in only small errors but greatly facilitates mechanical analysis.   

 Adopting the continuum approach, a model of cardiac mechanics consists 

of the following components: kinematics, applied and body forces, boundary conditions 

for pressure and displacement, balance relations for mass, momentum, and energy, and 

constitutive relations describing the material behavior of ventricular myocardium 

(Humphrey, 2002).   
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General Characteristics of Ventricular Myocardium 

 As previously discussed, myofiber orientation, laminar architecture, and the 

extracellular collagen matrix all contribute to the underlying mechanism of ventricular 

contraction.  These elements are also responsible for the material symmetry observed in 

ventricular myocardium.  Inspection of muscle fiber orientation, for example, suggests 

transverse isotropy, while the laminar fiber organization suggests orthotropy; elements 

of the ECM contribute to both types of symmetry (Humphrey, 2002).  Nevertheless, for 

convenience, most models of myocardium assume that the tissue behaves isotropically in 

the plane perpendicular to the muscle fiber direction.  In addition, the composite nature 

of myocardium leads to regional differences in response to mechanical stimulus. 

 The response of myocardium to stress and strain is not unlike that of other soft 

tissues.  In general, the mechanical behavior of soft tissue is said to be viscoelastic, that 

is, the tissue exhibits stress relaxation, creep, and hysteresis.  Stress relaxation occurs 

when a body subject to constant strain experiences a corresponding stress that decreases 

with time.  When a body is subjected to a sudden stress, the body deforms (strains) 

accordingly; if the stress is held constant but the body continues to deform, it is said to 

exhibit creep.  Often, under cyclic loading, the stress-strain relationship of the tissue 

differs during loading and unloading, a phenomenon known as hysteresis.  Ventricular 

myocardium demonstrates all three of these characteristics, and is therefore a 

viscoelastic material.  However, in the case of cyclic loading, myocardium behaves 

elastically when the loading and unloading phases are considered independently; hence, 
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many investigators choose to treat myocardium as a pseudoelastic material, a convenient 

simplification (Fung, 1993). 

 Also critical to myocardial constitutive relations is residual stress, the stress 

present in an unloaded body.  While its exact source is unknown, residual stress is 

thought to originate from growth and remodeling, and it has been shown to change when 

pathologic or adaptive growth occurs (Costa et al., 2001b).  These stresses, also known 

as body stresses, are accompanied by residual strains of 4-7% (Costa et al., 1997).  

Because they ensure that myocardium is never really “stress-free,” residual stresses must 

be considered when developing constitutive relations and models for both active and 

passive (i.e., non-contracting) myocardium. 

Theoretical Framework 

While it is possible to obtain descriptors of material behavior from experimental 

data or by trial and error, Humphrey (2002) contends that constitutive relations should 

be theoretically derived.  Theoretical formulations, he argues, are superior because they 

are based on the microstructure, which ultimately determines the observed material 

behaviors.  However, difficulty in mathematically describing the constituents and their 

interactions often precludes investigators from adopting this approach.  Clearly, more 

information about the nature of the microstructural response of myocardium would 

facilitate the development of better constitutive relations; this study seeks to provide 

exactly this kind of information. 

Humphrey discusses a landmark study which established that constitutive 

relations for rubber-like materials could be formulated based directly on information 



 17

gleaned from in-plane biaxial testing on thin, rectangular specimens; this result led many 

investigators to develop protocols for biaxial testing on myocardium.  For 

demonstration, we will consider two theoretically derived models of myocardium: one 

which aims to determine a strain-energy function for biaxially stretched passive 

myocardium, another which describes active stress in contracting cardiac myofibers. 

Modeling Passive Myocardium 

 While it remains the simplest and most common method of material testing, the 

uniaxial extension test provides only one-dimensional view of myocardium.   Because 

myocardium deforms three-dimensionally in vivo, three-dimensional testing would yield 

the most complete results.  However, due to technical limitations, biaxial testing is often 

used to gain valuable insight into the myocardial stress-strain response (Costa et al., 

2001a).   

Humphrey et al. (1990) established a theoretical framework for biaxial tests on 

passive myocardium based on myocardial histology and assumptions of transverse 

isotropy, incompressibility, local homogeneity, and pseudoelasticity.  Humphrey and 

colleagues seek to develop a strain-energy function based on invariants I1 and I4, where 

BC trtrI ==1       (1a) 

NCN ••=4I       (1b) 

and B and C are the left and right Cauchy-Green deformation tensors and N is “a unit 

normal vector defining the preferred direction of the material in the undeformed 

configuration” (Humphrey, 1990).  Note that, for the deformation gradient F, C = FT•F 

and B = F•FT.  The strain-energy function, then, is defined as 
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),( 41 IIWW =       (2a) 

or, because, I4 = α2, where α is the axial stretch ratio, 

),( 1 αIWW = .      (2b) 

For a material described by W, the Cauchy stress is 

TWWp FNNFBIt •⊗•++−= )(2 1 αα    (3) 

where p is a Lagrange multiplier, I is the identity tensor, W1 = ∂ W/ ∂ I1, and Wα = 

W/ α. ∂ ∂

 Following their theoretical formulations, Humphrey and colleagues performed 

biaxial tests on six samples of excised canine myocardium.  Based on their observations 

that 

(i) W1 and I1 are (almost) linearly related 

(ii) W1 and α are (almost) inversely related 

(iii) Wα and α are nonlinearly, but not exponentially, related 

(iv)  Wα and I1 are (almost) inversely related, 

they propose the following form of the pseudo-strain energy function to describe passive 

myocardium: 
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where cij are material parameters.  Setting n = 3, expanding (4), and enforcing the 

aforementioned observations yields 

2
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2
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 This pseudo-strain energy function was the first of its kind, i.e., the first 

descriptor of the mechanical behavior of myocardium based on information gleaned 

from rigorous biaxial testing.  Subsequent studies provided more information about 

myocardial stiffness and transmural variations in material parameters.  For example, 

ventricular myocardium was observed to be up to three times stiffer in the fiber direction 

than in the cross-fiber direction (Costa et al., 2001a).  This result suggests that myofibers 

may be only loosely bound laterally and thus could potentially experience some degree 

of translational motion upon ventricular deformation; the possibility of this type of 

motion is under investigation in the current study. 

Biaxial tests and theoretical formulations allow for the development of 

increasingly descriptive constitutive relations and, consequently, increasingly 

sophisticated models of the mechanical behavior of myocardium.  However, this type of 

analysis does have limitations, namely the exclusion of shear deformations from testing 

protocols and the use of thin samples of myocardium, the material properties of which 

may not be representative of intact tissue (Costa et al., 2001a). 

Modeling Active Myocardium 

 Because myocardium is a contractile tissue, it is highly unlikely that a single 

constitutive law based on passive material properties can accurately describe its 

mechanical behavior throughout the cardiac cycle.  A complete constitutive law would 

account for both the passive and active properties of myocardium, but due to 

experimental difficulties, there is currently a lack of information available about the 

fundamental nature of contracting myocardium.   
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Like passive myocardium, active myocardium is most often modeled one-

dimensionally, and these models consider only axial fiber stress and force generation.  

However, in biaxial tests on barium-contracted excised rabbit myocardium, Lin and Yin 

(1998) measured significant cross-fiber stresses, which were on average 46% of the axial 

fiber stresses observed in their seven specimens.  Based on these results, it is apparent 

that future models of active myocardium must incorporate non-axial components of 

mechanical parameters.  One such model developed by Zahalak (1996, 1999) was 

discussed previously and suggests that axial fiber stresses are greatly affected by non-

axial muscle fiber deformations.  However, Zahalak’s model maked assumptions about 

myocardial geometry that have yet to be validated, and he highlighted the need for more 

investigation in this area. 

GROWTH AND REMODELING 

 During development and disease, the heart grows and remodels in response to 

increased hemodynamic loads and this growth often involves changes in the morphology 

of ventricular myocardium.  In particular, disease has been shown to alter wall thickness, 

myocyte size, and muscle fiber orientation.  It is likely that myocardial growth is 

regulated, at least in part, at the cellular level by mechanical factors such as stress and 

strain, but it is unknown whether myocytes themselves are capable of transducing 

mechanical stimuli (Omens, 1998).  Whatever the inciting stimulus, myocardial 

remodeling probably occurs in a compensatory manner that returns the stimulus to a 

normal level (Emery and Omens, 1997). 
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 Muscle fiber orientation is critical to ventricular contraction as it contributes to 

ventricular torsion and wall thickening.  Even in the developing fetus, the heart exhibits 

a complex myofiber arrangement (McLean et al., 1989).  It comes as no surprise, then, 

that disruptions of the myofiber architecture substantially alter ventricular mechanics.  In 

a study of transgenic mice, Karlon et al. (2000) found that myofiber disarray is 

associated with reduced septal torsion and reduced systolic shortening on the septal 

surface.  Altered myofiber orientation has also been observed in pressure overload 

hypertrophied canine hearts (Carew and Covell, 1979).  These results and the fact that 

myofiber disarray is observed in certain diseases of the human heart underscore the fact 

that myofiber arrangement is a substantial contributor to cardiac mechanics. 

 Another change in ventricular morphology that occurs during myocardial growth 

and remodeling is increased cellular size.  Myocyte cross-sectional area has been shown 

to increase as a result of pressure overload hypertrophy (Omens et al., 1996), while 

ischemic and dilated cardiomyoapathies are characterized by increased myocyte length 

(Gerdes and Capasso, 1995).  Because disease clearly alters myocardial geometry, this 

study considers only normal, healthy, adult myocardium.    
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CHAPTER III 

METHODS 

 

ANIMAL MODEL 

 Two male Sprague-Dawley rats were housed at the Laboratory Animal 

Resources and Research facility at Texas A&M University for use in this experiment.   

The animals were used in accordance with the Public Health Service’s Guide to the Care 

and Use of Laboratory Animals.  The adult rats underwent nonsurvival thoracotomies, 

which were performed by Dr. John C. Criscione.  Hearts were arrested by cold 

cardioplegia, harvested, immediately submerged in potassium phosphate buffered saline, 

and transported. 

SPECIMEN PREPARATION 

Each animal was weighed, sacrificed by CO2 asphyxiation, and placed in the 

supine position.  Using scissors, a transverse incision was made distal to the xiphoid 

process; a second transverse incision was made through the diaphragm, resulting in 

bilateral pneumothorax.  A midline incision was then made from the distal aspect of the 

sternum to the clavicle, severing the rib cage and exposing the thoracic cavity.  

Approximately 5 ml of cold .02 M potassium phosphate buffered saline were injected 

into the apex of the heart to perfuse the tissue and arrest contraction of the myocardium.  

The inflow and outflow tracts were cut, allowing the heart to be removed from the 

thoracic cavity and submerged in potassium phosphate buffered saline.  The harvested 
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tissue was then transported to the Cardiovascular Mechanics Research Group 

Laboratory. 

Once in the laboratory, each heart was weighed and dissected to isolate the 

interventricular septum.  Using the conus arteriosus as a guide, a vertical incision was 

made down the right ventricle free wall.  The right ventricle was opened to expose the 

papillary muscles, which were severed.  Vertical incisions were made along the anterior 

and posterior interventricular sulci to remove the two segments of right ventricle free 

wall.  The left ventricle free wall was removed in a similar fashion; a vertical incision 

allowed for opening of the left ventricle, severing of the papillary muscles, and removal 

of the anterior and posterior segments of the left ventricle free wall.   Once isolated, a 

final vertical incision separated the septum into anterior and posterior segments.  The 

two segments of the septum were then photographed alongside a metric length scale 

using a Kodak Easy Share DX4900 Zoom digital camera (Eastman Kodak Company, 

Rochester, NY) (Fig. 5a, b); these digital photos were later used to precisely determine 

pre-fixation reference lengths for the anterior and posterior segments of the septum.   
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Fig. 5a. Unstretched segments of septum alongside metric length scale (Animal 1). 

 

 

 

Fig. 5b. Unstretched segments of septum alongside metric length scale (Animal 2). 
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EXPERIMENTAL PROTOCOLS 

 For each animal, one segment of the septum was stretched before formalin 

fixation, while the other segment was fixed unstretched.  Using 4-0 silk suture, a 

modified mattress stitch was made near the proximal aspect of the anterior segment of 

the septum and tied to point A on the stretching device; similarly, the distal aspect of the 

anterior segment of the septum was tied to point B on the stretching device (Fig. 6).   

 

 

 

Fig. 6. Anterior segment of septum attached to stretching device. 

 

The posterior segment of the septum was sutured in a similar fashion but was not tied to 

a stretching device, creating visual reference points on the posterior segment (Fig. 7a,b).   
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Fig. 7a. Stretched and unstretched segments of septum prior to fixation (Animal 1). 

 

 

 

Fig. 7b. Stretched and unstretched segments of septum prior to fixation (Animal 2). 
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The anterior segment was submerged in formalin while still attached to the 

stretching device; the posterior segment was also submerged in formalin.  Both segments 

of the septum were kept refrigerated in formalin to allow infiltration and fixation of the 

tissue.  Specimens from the animals were used according to the schedule outlined in 

Table 1. 

 

Table 1. Schedule of stretching for anterior and posterior segments of septum. 

Animal Stretched Segment Unstretched Segment 
1 Anterior Posterior 
2 Posterior Anterior 

 

 

Following fixation, the tissue was removed from formalin and photographed a 

third time alongside a metric length scale using the same digital camera (Fig. 8a, b).   
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Fig. 8a. Segments of septum following fixation,  
with anterior segment sutured to stretching device (Animal 1). 

 

 

 

Fig. 8b. Segments of septum following fixation,  
with posterior segment sutured to stretching device (Animal 2). 
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The stretched segment was cut free from the stretching device and both segments 

of the septum were blotted dry and photographed a fourth time (Fig. 9a, b).  The tissue 

was then submerged in formalin once again and transported to the Image Analysis 

Laboratory at the College of Veterinary Medicine. 

 

 

Fig. 9a. Stretched and unstretched segments of septum following fixation,  
with anterior segment cut free from stretching device (Animal 1). 
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Fig. 9b. Stretched and unstretched segments of septum following fixation,  
with posterior segment cut free from stretching device (Animal 2). 

 

 

IMAGE ACQUISITION 

 In order to determine the best imaging method for this project, several techniques 

were tried using excess tissue.  Originally, we planned to obtain images from thin 

sections of tissue using light microscopy and sought only to select an embedding 

medium.  First, a sample was dehydrated in graded ethanols, cleared in Histoclear 

(National Diagnostics, Atlanta, GA), and embedded in Paraplast tissue embedding 

medium (Tyco Healthcare/Kendall, Mansfield, MA).  The embedded sample was then 

sectioned, with much difficulty, using a microtome.  Due to the tissue distortion that 

occurred upon dehydration and the inability to obtain useful sections, this method was 

found to be unsuitable.  In order to avoid the dehydration process and the consequent 

tissue distortion, other samples were embedded in JB-4 plastic (Polysciences, 



 31

Warrington, PA) and sectioned.  Though the plastic embedding medium was better 

suited to the project than paraffin, we were still unable to section the samples to our 

satisfaction.  As a result, we opted to circumvent the issue of sectioning our tissue 

samples altogether and chose instead to employ multiphoton microscopy, which does not 

require that specimens be thinly sectioned. 

Imaging was performed at the Image Analysis Laboratory under the supervision 

of Dr. Alvin Yeh and Dr. Roula Mouneimne.  Specimens were examined using a Bio-

Rad Radiance 2000 MP multiphoton microscope (Bio-Rad Laboratories, Hercules, CA), 

using a Tsunami mode-locked Ti:sapphire laser (Spectra-Physics, Mountain View, CA) 

tuned to 840 nm.  Micrographs were captured using the Bio-Rad LaserSharp software 

that complements the Radiance 2000 MP system. 
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CHAPTER IV 

RESULTS 

 

 Data were collected for two animals.  The animals were determined to be 

healthy, adult specimens by comparison of their heart and total body weights with 

established standards (Table 2).  When evaluating the data, only images that contained 

10 or more distinguishable cells were analyzed.   

 

Table 2. Comparison of heart weights of Animals 1 and 2 with standard for healthy, adult, male Sprague-
Dawley rats (Taconic Technical Library, 2002).  *Heart weights expressed as percent of total body weight. 

 
Model Heart Weight*

Standard 0.29-0.54 

Animal 1 0.29 

Animal 2 0.30 

 

 

IMAGE ANALYSIS 

 Image analysis was performed using Matlab; the annotated code is available in 

Appendix A.  The raw images were converted from tagged image file format (TIFF) to 

bitmap format in Microsoft Photo Editor and were then imported into Matlab.  Using a 

cursor, points on the boundary of each cell were individually selected (Fig. 10) and the 

corresponding pixel values were used to plot the cell’s boundary (Fig. 11), interior, and 

centroid (Fig. 12).  All cells whose boundaries were clearly visible were selected; no 
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preference was given to cells that appeared to be more circular in cross-section.  When 

boundaries between cells were unclear, the entire region in question was considered to 

be one “cell group,” and points were selected on the group’s boundary.  In addition, as 

shown in Fig. 10, the centroids from previously selected cells on each micrograph were 

plotted to ensure that cell data was not duplicated.  Each micrograph used to obtain cell 

data is available in Appendix B; the centroids of selected cells are shown on these 

images. 

 

 

 

Fig 10.  Matlab figure showing points selected on cell boundary and centroids of previously selected cells. 
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Fig. 11.  Plot of cell boundary generated from selected points. 

 

 

 

Fig. 12.  Plot of cell interior and centroid generated from selected points. 
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For each unsretched cell, we then calculated the second moments of area about 

the centroid, which are given by 

∫∫= dAxIx
2      (6a) 

∫∫= dAyI y
2      (6b) 

For our purposes, we computed the moments by summation and considered their square 

roots: 

2

x
xI
A

∑=      (7a) 

   
2

y
yI

A
∑=      (7b) 

where A is the cell area in pixels and  x and y represent the distance from a point P in the 

interior of the cell to the cell’s centroid in the x- and y-directions, respectively (Fig. 13).  

The ratio of square roots of the moments for unstretched cells, ρundeformed, was determined 

by 

x
undeformed

y

I

I
ρ =      (8) 

 

We also calculated what this ratio would be for the selected myocytes if they deformed 

with complete affinity: 

2 x
affine

y

I
I

ρ λ=      (9) 

where λ is the stretch ratio measured for the specimen of interest. 
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Fig. 13. Diagram of cell showing X- and Y-coordinate axes, interior point P, and centroid C. 

  

 In the stretched images, the actual direction of stretch was unknown and it was 

necessary to perform a transformation of coordinates before calculating ρ.  In order to do 

so, we determined the major and minor axes of each cell and found the orientation angle, 

α, between the minor and x-axes (Fig. 14). 

 

 

Fig. 14. Stretched cell plotted with major, minor, and x-axes and orientation angle α. 

x α 
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 We determined an average α for each image and assumed the stretch direction to 

be defined by α + п/2.  Ix and Iy were found by 

2 2 2 2
' ' 'cos sin 2 sin cosx x avg y avg x y avg avgI I I Iα α α= + − α      (10a) 

2 2 2 2
' ' ' 'sin cos 2 sin cosy x avg y avg x y avg avgI I I Iα α α= + + α   (10b) 

where x’ and y’ refer to an orthogonal coordinate system defined by the cell’s major and 

minor axes and Ix’y’ is the area product of inertia: 

' '
' '

x y
x yI
A

∑=      (11) 

 A second Matlab code was written to quantify the macroscopic deformations that 

resulted from stretching the tissue samples (Appendix A).  Using photographs of the 

samples before and after stretching and fixation (see Fig. 7, 9) and the metric length 

scales they contain, stretch ratios were calculated for each sample as follows: 

OL
L

=λ      (12) 

where λ is the stretch ratio, L0 is the length of the fresh sample prior to stretching and 

fixation, and L is the length of the sample following stretching, fixation, and removal 

from the stretching device.  The photographs used to determine the stretch ratios of the 

specimens can be found in Appendix C; these images show the marker points that were 

used for measurement of L and L0.

MACROSCOPIC DEFORMATIONS 

 Stretch ratios were determined for both the stretched and unstretched segments of 

the septum.  These ratios are summarized in Table 3, where λ1U denotes the stretch ratio 
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for the unstretched segment from Animal 1, λ1S denotes the stretch ratio for the stretched 

segment from Animal 1, etc. 

 

Table 3. Stretch ratios for stretched and unstretched segments of septum. 

λanimal,segment Result

λ1U 0.98 

λ2U 1.01 

λ1S 1.35 

λ2S 1.37 

 

 

MYOCYTE DEFORMATIONS 

 At the cellular level, the deformation measure of interest was the ratio of the 

second moments of the area, ρ.  Using an unpaired t test, we compared the distributions 

of ρaffine and ρactual to determine whether the cells moved affinely when the samples were 

stretched; we also compared ρundeformed and ρactual.  The p-values from these tests are 

summarized in Table 4. 

 

Table 4. Summary of p-values from unpaired t tests on ρ distributions. 

 Ratios of Interest 
Model ρaffine & ρactual ρundeformed & ρactual

Animal 1 p = 4.4631e-14 p = 0.0336 
Animal 2 p = 0 p = 0.2879 
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 Figs. 15-20 are histograms and box plots comparing the ρ distributions for the 

undeformed case with the distributions for the affine and actual cases.  Visual inspection 

of the box plots, in particular, reveals that ρactual and ρaffine are very different; in fact, 

ρundeformed and ρactual seem to be more similar.  The Matlab code used to generate these 

plots is available in Appendix A. 
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Fig. 15. Histograms of ρ distributions for Animal 1. 
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Fig. 16. Box plots comparing ρaffine and ρactual for Animal 1. 
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Fig. 17. Box plots comparing ρundeformed and ρactual for Animal 1. 
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Fig. 18. Histograms of ρ distributions for Animal 2. 
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Fig. 19. Box plots comparing ρaffine and ρactual for Animal 2. 
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Fig. 20. Box plots comparing ρundeformed and ρactual for Animal 2. 
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CHAPTER V 

DISCUSSION 

 

 Quantifying a relationship between macroscopic myocardial strain and myocyte 

deformation would allow for the formulation of better constitutive relationships.  

Currently, there is only a very limited understanding of the changes in myocyte 

geometry that accompany deformations of the ventricles.  Based on theoretical models 

and biaxial tests, several studies suggest that non-axial deformations may significantly 

contribute to the underlying mechanism of ventricular contraction; they also highlight 

the need for more information about the nature of myocyte deformation (Lin and Yin, 

1998; Zahalak, 1996, 1999).  In an attempt to provide this information, we established 

experimental protocols and selected an imaging technique that allowed us to examine 

stretched myocardium at the cellular level. 

 Prior to performing a statistical analysis of our data, we selected a significance 

level of 0.05.  This selection required that, when comparing ρ distributions, we obtain p-

values less than 0.05 in order to say that the distributions were significantly different.  

When we compared ρ for an affine deformation with ρ for the actual deformations, the 

resulting p-values were indeed less than 0.05 (see Table 4), indicating that the myocyte 

deformations were non-affine in both specimen.   

 To determine the degree of affinity, we compared ρ for the undeformed cells 

with ρ for the actual deformations.  However, our results in this case varied based on the 

animal model in use.  For Animal 2, we obtained a p-value greater than 0.05, which 
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indicates that there was no statistically significant difference between the distributions 

for ρundeformed and ρactual.  This result implies that the myocyte deformations were 

completely non-affine and that only cellular rearrangement occurred upon stretching of 

the specimen.  The result for Animal 1, however, was different, with a p-value less than 

0.05.  This variability may be due to inconsistencies in cell selection or simply the small 

number of specimen used in our experiments; in any case, the lack of a consistent result 

means that we are unable to say with certainty to what degree the myocyte deformations 

were affine. 

 Although we defined specific criteria for cell selection, our method of analysis 

allows user error because it requires the investigator to select points on an image, and the 

manner in which these points are selected clearly affects the results obtained.  For 

demonstration, we repeated our stretch ratio analysis several times, selecting different 

but plausible points of measurement on each repetition.  Comparing the stretch ratios 

measured from a single image, we found variablities of up to 2.5%.  While this error 

itself is small, the fact that many images were used in our analysis and many points were 

selected on these images means that this error could be multiplied several times.  This 

kind of error is not limited to our stretch ratio measurements; in fact, due to the increased 

number of measurements, it is probably more prevalent in our analysis of cell size.  

While every effort was made to consistently choose points in accordance with our 

protocols, the very method by which we gathered data inevitably introduces a measure 

of error. 
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 Despite its novelty, our experimental methods had numerous limitations and 

would benefit from several improvements.  While any information about changes in 

myocyte geometry would be helpful in developing constitutive relationships, the uniaxial 

stretching we performed is not representative of the ventricular deformations that occur 

during contraction; biaxially stretched myocardium subjected to the same kind of 

analysis would provide more complete data.  In addition, because cardiac myocytes tend 

to be irregularly shaped, the same sample should be imaged stretched and unstretched, 

rather than using two samples (i.e., anterior and posterior segments) from one septum.  

Also, because elastin cannot be fixed in formalin, release of stretched, formalin-fixed 

tissue from the stretching device can cause recoil and bucking of the sample; use of fresh 

tissue would eliminate recoil and any resulting tissue distortion.  However, the use of 

fresh tissue would necessitate the development of an improved stretching device that 

allows the sample to be imaged while still attached to the device.  It would also be 

interesting to label individual cells with fluorescent markers and follow their 

deformation and/or rearrangement as the sample is stretched.   
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CHAPTER VI 
 

CONCLUSION 

 

 Affecting over 18,000,000 people, heart disease is the leading cause of death for 

adults in this country (American Heart Association, 2003).  In the year 2004 alone, an 

estimated 1.2 million Americans will suffer at least one heart attack; 500,000 of these 

will be recurrent attacks.  As our population ages and the incidence of cardiovascular 

disease continues to rise, there will be a need for more effective therapies and 

treatments.  However, the development of such treatments is contingent upon an 

increased understanding of the mechanical properties of myocardium and the underlying 

nature of ventricular contraction. 

 Data on the cellular deformations resulting from ventricular contraction is very 

limited.  Such data is necessary in order to formulate better constitutive relations for 

myocardium, which would lead to more accurate whole-heart models and, ultimately, to 

better therapies for diseased hearts.  Due to the lack of information about the relationship 

between macroscopic and cellular deformations, the goal of this project was to develop 

an experimental method to examine these deformations and to determine their degree of 

affinity.  A set of protocols was established for specimen preparation, image acquisition, 

and analysis, and two experiments were performed according to these methods. 

 While current models of myocardium assume that myocytes deform affinely 

when myocardium is deformed, our results show that cellular deformations are non-

affine.  Variability in our data leads to uncertainty about the degree of affinity, but it 
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appears that myocyte deformations may be completely non-affine; in this case, cells 

would not stretch at all but would simply rearrange to produce the observed macroscopic 

deformations.  Because our results were inconsistent, more investigation is needed in 

this area. 

 Although we have determined that myocytes do not deform affinely when 

myocardium is stretched, a need remains to quantify the relationship between ventricular 

deformation and changes in myocyte geometry.  While our results do not allow us to 

mathematically define this relationship, we are able to suggest improved experimental 

methods that should lead future investigators to this information.  When combined with 

our current knowledge of the mechanism of ventricular contraction, this information 

could result in significantly improved models of myocardium and, subsequently, a better 

understanding of how to heal the diseased heart. 
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Cell Selection Program 
 
clear all 
close all 
 
%Allows user to input image filename. 
filename = input('Input image filename now.') 
I = imread(filename); 
imagesc(I); hold on 
load data 
%output = [0 0 0 0 0 0 0 0]; 
s = size(output); 
r = s(1) 
for q=1:r 
   plot(output(q,5),output(q,6),'+','color','r'); 
end 
 
%Allows user to pick points on boundary of cell. 
'Pick points now and press enter.' 
in_pt=[4; 0]; 
pts_in=[]; 
while isempty(in_pt) == 0 
    in_pt = round(ginput(1))'; 
    if isempty(in_pt) == 0 
        plot(in_pt(1),in_pt(2),'r.');  
        pts_in=[pts_in in_pt] 
    end 
end 
 
%pts_in will be the array of pixel coordinates. 
 pts_in = [pts_in]'; 
n = size(pts_in,1); 
pts_centroid = sum(pts_in)/n; 
pts_in=[pts_in; pts_in(1,:)]; 
 
%Plots the given pixels. 
figure(1) 
plot (pts_in(1,:), pts_in(2,:),'o'); hold on 
 
%Plots the centroid. 
plot(pts_centroid(:,1),pts_centroid(:,2),'+') 
pts_boundry = []; 
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% D will be an array of the lengths of the sides. 
D=[]; 
 
% i will iterate the x values, while j iterates the y values. 
for i = 1:n; 
    d = sqrt((pts_in(i,1) - pts_in(i+1,1))^2 + (pts_in(i,2) - pts_in(i+1,2))^2); 
    D = cat(1,D,d); 
end 
 
% sides will be an array of all the pixels along the outer edge. 
sides = []; 
for k=1:n; 
    n_seg_pts = round(1.25*(D(k))); 
    for q=1:n_seg_pts; 
        x = round(pts_in(k,1)+(pts_in(k+1,1)-pts_in(k,1))*(q/n_seg_pts)); 
        y = round(pts_in(k,2)+(pts_in(k+1,2)-pts_in(k,2))*(q/n_seg_pts)); 
        sides = [sides;x y];       
   end 
    k = k+1; 
end 
figure(2) 
plot(sides(:,1),sides(:,2),'o') 
n_s_pts = size(sides,1); 
sides = sortrows(sides,2); 
y_min = sides(1,2); 
y_max = sides(n_s_pts,2); 
n_ys = y_max - y_min +1; 
lft_x = zeros(n_ys,1); 
rt_x = zeros(n_ys,1); 
i=1; 
j=1; 
while j < n_ys 
    begin_i = i; 
    while sides(i,2) == sides(i+1,2) 
        i = i+1; 
        end_i = i; 
    end 
    lft_x(j+1) = min(sides(begin_i:end_i,1)); 
    rt_x(j+1) = max(sides(begin_i:end_i,1)); 
    j = j+1; 
    i = i+1; 
end 
   
    solid_pts = []; 
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    for i = 1:n_ys 
              for j = lft_x(i):rt_x(i) 
                       solid_pts = [solid_pts; j i-1+y_min]; 
        end 
    end  
    m = size(solid_pts,1); 
    centroid = sum(solid_pts)/m;     
    r_vecs=sides-ones(n_s_pts,1)*centroid; 
    r_tensor_r=[sum(r_vecs(:,1).*r_vecs(:,1)) sum(r_vecs(:,1).*r_vecs(:,2));      
 sum(r_vecs(:,2).*r_vecs(:,1)) sum(r_vecs(:,2).*r_vecs(:,2))]/m; 
    [tmp_dirs tmp_vals]=eig(r_tensor_r); 
    if tmp_vals(1,1) >= tmp_vals(2,2) 
        major_val=tmp_vals(1,1); minor_val=tmp_vals(2,2); 
        major_vec=tmp_dirs(:,1); minor_vec=tmp_dirs(:,2); 
    else 
        major_val=tmp_vals(2,2); minor_val=tmp_vals(1,1); 
        major_vec=tmp_dirs(:,2); minor_vec=tmp_dirs(:,1); 
    end 
     
    maj_to_min_ratio = sqrt(major_val/minor_val) 
%    minor_lngth=sqrt(minor_val)*2; 
    minor_lngth=sqrt(m/(pi*maj_to_min_ratio))*2 
    major_lngth=maj_to_min_ratio*minor_lngth 
    area=m 
    figure(3) 
    plot(solid_pts(:,1),solid_pts(:,2),'.'); hold on 
 
 
    major_axis_vector=major_vec 
    alpha=atan2(minor_vec(2),minor_vec(1)); 
    if alpha < 0; alpha=alpha+2*pi; end 
    tmp_pts=[centroid+major_lngth*major_vec'/2; centroid-major_lngth*major_vec'/2]; 
    plot(tmp_pts(:,1),tmp_pts(:,2),'c')     
    plot(tmp_pts(:,1),tmp_pts(:,2),'k+')     
    tmp_pts=[centroid+minor_lngth*minor_vec'/2; centroid-minor_lngth*minor_vec'/2]; 
    plot(tmp_pts(:,1),tmp_pts(:,2),'r')     
    plot(tmp_pts(:,1),tmp_pts(:,2),'k+')     
    axis('image')     
    plot(centroid(:,1),centroid(:,2),'+','color','r'); axis('image')  
    cent_x = centroid(:,1); 
    cent_y = centroid(:,2); 
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    num_pixels_in_cell=m 
   
    %Calculates second moments of the area. 
    m2y = sqrt(sum((solid_pts(:,2)-ones(m,1)*centroid(2)).^2)/m) 
    m2x = sqrt(sum((solid_pts(:,1)-ones(m,1)*centroid(1)).^2)/m) 
    mxy = sum((solid_pts(:,1)-ones(m,1)*centroid(1)).*(solid_pts(:,2)-
 ones(m,1)*centroid(2)))/m  
    %m2xnew= sqrt(m2x^2*(cos(alpha))^2 + m2y^2*(sin(alpha))^2 - 
 2*mxy*(cos(alpha))*(sin(alpha))); 
    %m2ynew= sqrt(m2y^2*(cos(alpha))^2 + m2x^2*(sin(alpha))^2 + 
 2*mxy*(cos(alpha))*(sin(alpha))); 
    x_to_y_ratio = m2x/m2y; 
     
   output = [output; x_to_y_ratio m2x m2y num_pixels_in_cell cent_x cent_y mxy 
 alpha];   
    
   %Writes output data to file. 
   save data output 
   %wk1write('E:\data',output); 
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Stretch Ratio Program 
 

clear all  
close all 
 
%Prompts user to input filename and loads image file. 
filename1 = input('Input unstretched image filename now.') 
I = imread(filename1); 
imagesc(I); hold on 
 
%Prompts user to input unstretched coordinates and calculates unstretched length. 
'Choose Ymax (unstretched) now.' 
YmaxU = round(ginput(1)); 
plot(YmaxU(1),YmaxU(2),'r.'); 
'Choose Ymin (unstretched) now.' 
YminU = round(ginput(1)); 
plot(YminU(1),YminU(2),'r.'); 
'Choose high number on ruler.' 
A = round(ginput(1)); 
plot(A(1),A(2),'r.'); 
HighP = A(2); 
HighPM = input('Enter measurement (cm) from high number and press enter.'); 
'Choose low number on ruler.' 
B = round(ginput(1)); 
plot(B(1),B(2),'r.'); 
LowP = B(2); 
LowPM = input('Enter measurement (cm) from low point and press enter.'); 
Ratio1 = ((HighPM-LowPM)./(HighP-LowP)); 
LengthU = Ratio1*(YmaxU-YminU); 
hold off 
 
%Repeats processed with stretched image. 
filename2 = input('Input stretched image filename now.') 
I = imread(filename2); 
imagesc(I); hold on 
 
%Prompts user to input stretched coordinates and calculates unstretched length. 
'Choose Ymax (stretched) now.' 
YmaxS = round(ginput(1)); 
plot(YmaxS(1),YmaxS(2),'r.'); 
'Choose Ymin (stretched) now.' 
YminS = round(ginput(1)); 
plot(YminS(1),YminS(2),'r.'); 
'Choose high number on ruler.' 
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C = round(ginput(1)); 
plot(C(1),C(2),'r.'); 
HighQ = C(2); 
HighQM = input('Enter measurement (cm) from high number and press enter.'); 
'Choose low number on ruler.' 
D = round(ginput(1)); 
plot(D(1),D(2),'r.'); 
LowQ = D(2); 
LowQM = input('Enter measurement (cm) from low number and press enter.'); 
Ratio2 = ((HighQM-LowQM)/(HighQ-LowQ)); 
LengthS = Ratio2*(YmaxS-YminS); 
 
%Calculates stretch ratio. 
StretchRatio = LengthS/LengthU 
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P-Value Calculation and Histogram Plotting Program 
 

clear all 
close all 
 
%Prompts user to input sheet name and plots histograms for unstretched data. 
Filename1 = input('Input file name for unstretched specimen.') 
Sheetname1 = input('Input sheet name for unstretched specimen.') 
A=xlsread(Filename1,Sheetname1); 
MA=mean(A); 
SA=std(A); 
x=min(A):.2:max(A); 
subplot(3,1,1); hist(A,x); 
xlabel('sqrt(Ix)/sqrt(Iy)'); ylabel('Frequency'); 
title('Undeformed','FontSize',14); 
Ratio = input('Input stretch ratio.') 
NA = numel(A); 
 
%Calculates Ix/Iy for an affine deformation with a given stretch ratio. 
B=A.*(Ratio^2); 
MB=mean(B); 
SB=std(B); 
y=min(B):.2:max(B); 
subplot(3,1,2); hist(B,y); 
xlabel('sqrt(Ix)/sqrt(Iy)'); ylabel('Frequency'); 
title('Affine Deformation','FontSize',14); 
 
%Prompts user to input sheet name and plots histograms for stretched data. 
Filename2 = input('Input file name for stretched specimen.') 
Sheetname2 = input('Input sheet name for stretched specimen.') 
C=xlsread(Filename2,Sheetname2); 
MC=mean(C); 
SC=std(C); 
NC=numel(C); 
z=min(C):.2:max(C); 
subplot(3,1,3); hist(C,z); 
xlabel('sqrt(Ix)/sqrt(Iy)'); ylabel('Frequency'); 
title('Actual Deformation','FontSize',14); 
 
%Generates box plots of deformations. 
figure(2) 
subplot(1,2,1); boxplot(B); 
xlabel(' '); ylabel('sqrt(Ix)/sqrt(Iy)'); 
title('Affine Deformation','FontSize',14); 



 63

subplot(1,2,2); boxplot(C); 
xlabel(' '); ylabel('sqrt(Ix)/sqrt(Iy)'); 
title('Actual Deformation','FontSize',14); 
 
figure(3) 
subplot(1,2,1); boxplot(A); 
xlabel(' '); ylabel('sqrt(Ix)/sqrt(Iy'); 
title('Undeformed','FontSize',14); 
subplot(1,2,2); boxplot(C); 
xlabel(' '); ylabel('sqrt(Ix)/sqrt(Iy'); 
title('Actual Deformation','FontSize',14); 
 
%Calculates the p-value. 
NTotal=NA+NC 
PooledSD=sqrt((((NA-1)*SB^2) + ((NC-1)*SC^2))/(NA+NC-2)); 
SEdiff=PooledSD*(sqrt(1/NA + 1/NC)); 
t=(MB-MC)/SEdiff; 
p=2*(1-tcdf(abs(t),NTotal-2)) 
 
%PooledSD=sqrt((((NA-1)*SA^2) + ((NC-1)*SC^2))/(NA+NC-2)); 
%SEdiff=PooledSD*(sqrt(1/NA + 1/NC)); 
%t=(MA-MC)/SEdiff; 
%p=2*(1-tcdf(abs(t),NTotal-2)) 
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APPENDIX B 
 

MICROGRAPHS WITH CELL MARKERS 
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Fig. 21. Micrograph from anterior segment of Animal 1, image A1-1 (60x). 

 
 
 

 
Fig. 22. Micrograph from anterior segment of Animal 1, image A1-2 (60x). 
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Fig. 23. Micrograph from anterior segment of Animal 1, image A1-3 (60x). 

 
 

 
Fig. 24. Micrograph from anterior segment of Animal 1, image A1-4 (60x). 
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Fig. 25. Micrograph from posterior segment of Animal 1, image P1-1 (60x). 

 
 

 
Fig. 26. Micrograph from posterior segment of Animal 1, image P1-2 (60x). 
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Fig. 27. Micrograph from anterior segment of Animal 2, image A2-1 (60x). 

 
 
 

 
Fig. 28. Micrograph from anterior segment of Animal 2, image A2-2 (60x). 
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Fig. 29. Micrograph from anterior segment of Animal 2, image A2-3 (60x). 

 
 
 

 
Fig. 30. Micrograph from anterior segment of Animal 2, image A2-4 (60x). 
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Fig. 31. Micrograph from anterior segment of Animal 2, image A2-5 (60x). 

 
 
 
 

 
Fig. 32. Micrograph from posterior segment of Animal 2, image P2-1 (60x). 
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Fig. 33. Micrograph from posterior segment of Animal 2, image P2-2 (60x). 

 
 
 
 
 

 
Fig. 34. Micrograph from posterior segment of Animal 2, image P2-3 (60x). 
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Fig. 35. Micrograph from posterior segment of Animal 2, image P2-4 (60x). 

 
 
 
 

 
Fig. 36. Micrograph from posterior segment of Animal 2, image P2-5 (60x). 
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APPENDIX C 
 

PHOTOS USED FOR STRETCH RATIO CALCULATION 
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Fig. 37. Unstretched septum with marker points on anterior segment (Animal 1). 

 
 
 
 
 

 
Fig. 38. Unstretched septum with marker points on posterior segment (Animal 1). 
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Fig. 39. Stretched septum with marker points on anterior segment (Animal 1). 

 
 
 
 

 
Fig. 40. Stretched septum with marker points on posterior segment (Animal 1). 

 
 
 
 



 76

 

 
Fig. 41. Unstretched septum with marker points on anterior segment (Animal 2). 

 
 
 
 

 
Fig. 42. Unstretched septum with marker points on posterior segment (Animal 2). 

 



 77

 
Fig. 43. Stretched septum with marker points on anterior segment (Animal 2). 

 
 
 
 
 

 
Fig. 44. Stretched septum with marker points on posterior segment (Animal 2). 



 78

VITA 
 
 
 

Name:   Kristina Diane Aghassibake 
 
Permanent Address: 605 San Juan Court 
   Irving, TX 75062 
 
Date of Birth:  July 13, 1982 
 
Education:  Texas A&M University 
   College Station, TX 77843 
   Bachelor of Science, Biomedical Engineering, 2002 
 
   Texas A&M University 
   College Station, TX 77843 
   Master of Science, Biomedical Engineering, 2004 
 

 


