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Abstract 

To model cardiac mechanics effectively, various mechanical characteristics of cardiac muscle 

tissue including anisotropy, hyperelasticity, and tissue active contraction characteristics must 

be considered. Some of these features cannot be implemented using commercial finite element 

(FE) solvers unless additional custom-developed computer codes/subroutines are appended. 

Such codes/subroutines are unavailable for the research community. Accordingly, the 

overarching objective of this research is to develop a novel LV mechanics model which is 

implementable in commercial FE solvers and can be used effectively within inverse FE 

frameworks towards cardiac disease diagnosis and therapy. This was broken down into a 

number of objectives. The first objective is to develop a novel cardiac tissue mechanical model. 

This model was constructed of microstructural cardiac tissue constituents while their 

associated volume contributions and mechanical properties were incorporated into the model. 

These constituents were organized in small FE tissue specimen models consistent with the 

normal/pathological cardiac tissue microstructure. In silico biaxial/uniaxial mechanical tests 

were conducted on the specimen models and corresponding stress-strain data were validated 

by comparing them with cardiac tissue data reported in the literature. Another objective of this 

research is developing a novel FE-based mechanical model of the LV which is fully 

implementable using commercial FE solvers without requiring further coding, potentially 

leading to a computationally efficient model which is easily adaptable to diverse pathological 

conditions. This was achieved through considering a novel composite material model of the 

cardiac tissue while all aspects of the cardiac mechanics including hyperelasticity, anisotropy, 

and active tissue responses were preserved. The model was applied to an in silico geometry of 

a canine LV under both normal and pathological conditions and systolic/diastolic responses of 

the model were compared with corresponding data of other LV mechanical models and LV 

contraction measurements. To test the suitability of the proposed cardiac model for FE 

inversion-based algorithms, the model was utilized for LV diastolic mechanical simulation to 

estimate the tissue stiffness and blood pressure using an ad-hoc optimization scheme. This led 

to reasonable tissue stiffness and blood pressure values falling within the range of LV 

measurements of healthy subjects, confirming the efficacy of this model for inversion-based 

diagnosis applications. 
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Chapter 1  

1 Introduction 

1.1 Background and Motivation 

HE heart is a fundamental muscular organ in the body which pumps blood through 

the whole body via the circulatory system, supplying oxygen and nutrients such as 

water, sugar (glucose), salt, proteins, etc. to the different organs including all types of 

tissues (cells), and removing carbon dioxide and other metabolic waste materials from 

them. The crucial importance of the heart lies in the fact that without enough nutrition and 

wastes removal none of the cells in the body can remain viable, hence none of the tissues 

in the body can continue their physiological activities unless the heart performs its function 

properly. As such, any defect or impairment in the heart function can influence organs, 

affecting the overall body health quite significantly. 

The heart is located in the middle compartment of the mediastinum behind the breastbone 

in the chest. The mammalian heart has four chambers: two upper chambers (the atria) and 

two lower ones (the ventricles). The right atrium and right ventricle constitute the “right 

heart” and the left atrium and left ventricle form the “left heart.” These two parts of the 

heart are separated by a muscular wall called the septum. The heart is enclosed by a strong 

sac called the pericardium. The heart is protected and retained firmly in the chest by this 

sac. The pericardium has two major sacs: the outer sac (the parietal pericardium) and the 

inner sac (the serous pericardium). There is a liquid between these two sacs called the 

T 
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pericardial fluid which lubricates the heart during its contraction in addition to lubricating 

its contact surface with the lungs. The heart’s outer wall consists of three layers including 

the epicardium, myocardium and endocardium. The epicardium is the outermost wall layer 

which forms the inner part of the pericardium. The myocardium is the middle layer which 

is the muscular part of the heart containing the myofibers that generate the heart 

contraction. Finally, the endocardium is the inner layer which is the heart’s inner coating 

touching the blood [1]. 

As shown in Figure 1.1, the heart has a number of valves which are: 1) Atrioventricular 

(AV) valves including the tricuspid valve and the mitral valve which control the blood flow 

between the atria and the ventricles, 2) the pulmonary semi-lunar valve which separates 

the right ventricle from the pulmonary artery and 3) the aortic valve which separates the 

left ventricle from the aorta. The valves are attached to the heart muscle via heartstrings or 

chordae tendinae [1]. The sinoatrial node is another important anatomical part of the heart 

which generates the action potential that stimulates myofibers contractions and regulates 

heart rhythm through a precise electrophysiological procedure. 

The heart pumps blood through two pathways: the pulmonary circuit and the systemic 

circuit. In the pulmonary circuit, deoxygenated blood is transferred from the right ventricle 

to the lungs via the pulmonary artery and then oxygenated blood is guided to the left atrium 

via the pulmonary vein. In the systemic circuit, the heart’s function of pumping oxygenated 

blood to the body is accomplished by the left ventricle (LV) which is a strong muscular 

part of the heart. The blood is pushed out of the LV cavity and flows via the aorta before it 

is distributed to all organs through arterial networks. The deoxygenated blood is also 

directed from tissues and via veins to the venae cavae and then to the heart’s right atrium 

[1]. The abovementioned description of the heart and blood circulation system reveals the 

significance of the left ventricle, as the largest, most vigorous, and most muscular chamber 

of the heart, supplying most of the heart's pumping power. 
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Figure 1.1:  Major parts of the mammalian heart. 

There is a wide and prevalent range of diseases that are related to the heart, as a crucial 

organ in the body. Cardiovascular diseases (CVD) are the leading cause of death 

worldwide. They include ischemic heart disease (coronary heart disease), hypertensive 

heart disease, inflammatory heart disease, rheumatic heart disease, and congenital heart 

disease. They also include heart diseases caused by drugs, unhealthy diet, trauma, toxins, 

and alcohol, accounting for more than 67% of all CVD-related deaths [1]. In 2012, there 

were more than 17.5 million deaths due to CVD in addition to almost 11.2 million other 

deaths related to heart diseases [2]. These appalling statistics reinforces the importance of 

research in the area of cardiac mechanics in order to devise more effective diagnostic and 

therapeutic techniques to manage diverse cardiac conditions. Due to complexity of the 

cardiovascular system’s physiology and complex pathology, however, accurate heart 

diseases diagnosis and treatment are associated with many challenges. In most cases, 

cardiologists need a wide range of data acquired from various clinical testing and imaging 

techniques to be able to determine patients’ cardiac pathology necessary to adopt 

appropriate therapy plans [3-5]. Advances in science, technology and computation have 
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led to adaptation of a new paradigm of utilizing biophysical based models of the 

myocardium. Such models have three major advantages. Firstly, these computational 

models serve the interests of clinicians to gain insight into heart physiology, i.e. both heart 

mechano- and electrophysiology, as well as diverse cardiac pathological pathways. This 

has motivated considerable amount of progress in mechanical and electromechanical 

models of the heart to simulate the heart under physiological and pathological conditions 

[6-11]. Secondly, such models can provide invaluable supplementary information for 

cardiologists to achieve more precise prognosis of cardiac conditions [12-14]. This is 

indisputably quite vital since it prevents patients from receiving unnecessary and/or 

ineffective therapeutic procedures that may not only have some side-effects but may also 

impose unjustified expenses to already strained health care systems. Thirdly, it has been 

demonstrated in some research works that electromechanical models have a great potential 

to be combined with other non-invasive tools such as medical imaging for more efficient 

patient-specific therapy planning [15-17]. For instance, while cardiac computed 

tomography (CT) perfusion and contrasts-enhanced magnetic resonance imaging (CE-

MRI) techniques can specify ischemic tissue portions within the myocardium with less 

blood flow, they do not provide any information about their mechanical characteristics (e.g. 

stiffness and contractile ability). From a diagnostic point of view, it is highly advantageous 

to obtain such information using computer assisted tool involving patient-specific 

mechanical models of the heart to be fused with medical imaging data. Such fused data can 

enable more detailed assessment of the intensity and extension of ischemia through 

different parts of the myocardium. Considering the abovementioned merits of 

electromechanical models of the heart, this research is geared towards developing a novel 

and effective computational technique for mechanical modeling of the LV. The technique 

is designed to describe the LV mechanophysiology characteristics necessary for 

quantification of local contraction forces, which can be used as a direct mechanical 

measure of the functionality of the cardiac tissue. 

1.2 Anatomy, Microstructure, and Physiology 

An adult heart has a mass of ~300 grams (~10.5 oz). The human heart is typically the size 

of a fist: 12 cm in length, 8 cm wide, and 6 cm in thickness. As described earlier, the heart 
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includes four chambers as shown in Figure 1.2. The two upper chambers are the atria and 

the two lower chambers are the ventricles. The thickness of the four chambers varies 

consistently with their specific functions. The atria are typically thin-walled because they 

transfer blood into the adjacent ventricles while the ventricles are normally muscular and 

thick-walled as they pump blood through farther distances. The right and left ventricles 

operate as two separate pumps working simultaneously, however, the right one has a much 

smaller workload. The right ventricle only drives blood to the lungs, which are located 

close to the right ventricle, withstanding only small vascular resistance to blood flow. In 

contrast, the LV pumps blood to the whole body through much farther distances, hence 

facing much higher vascular resistance to blood flow. As such, the LV must work harder 

to establish sufficient blood flow throughout the body. The anatomy of the ventricular walls 

are influenced by their related workloads, therefore, the muscular LV wall is substantially 

thicker than that of the right ventricle [1]. As illustrated in Figure 1.2, while the LV has an 

ellipsoidal shape similar to a bullet, the right ventricle appears triangular from longitudinal 

view and crescent from transversal view. A human LV geometry obtained from processed 

medical image is illustrated in Figure 1.3. As shown in this figure, it has three major parts 

of lower part or apex, middle part which is called midventricular or equatorial area, and 

upper part which is referred to as base. The LV has two major surfaces, an inner surface 

which is called endocardium and an outer surface which is called epicardium. The length 

of the human LV from base to apex is ~7.5 cm [18]. The diameter of the LV typically refers 

to the maximum transverse (left-to-right) internal (luminal) distance, excluding thickness 

of the walls [19]. For different individuals, it ranges from ~36 mm to ~56 mm depending 

on the level of their activities, their diets, and health conditions [20]. The LV wall thickness 

is not uniform through the whole LV and it decreases from base to apex. It also varies 

among different individuals ranging from ~8.9 mm to ~9.6 mm within the midventricular 

area at end-diastolic state. It is noteworthy that when a normal LV contracts, its LV wall 

thickness increases significantly and varies from ~13.9 mm to ~15.7 mm at end-systolic 

state. This phenomenon is well-known in the LV contraction process and called LV wall 

thickening [21]. 
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Figure 1.2:  Chambers of the heart. 

The most important mechanical feature of the cardiac tissue and especially LV is its fibrous 

structure [22-24]. Myofibers are the active part of the cardiac tissue that generate 

contraction forces. Given their specific orientation within the LV volume, they lead to the 

well-known anisotropy of cardiac tissue. While the contraction of each individual myofiber 

may not be significant, superposition of the contractions of the myofibers distributed 

throughout the LV volume generates a considerable net contraction leading to a strong 

pumping characteristic for the LV. Fiber orientations of the LV can be represented by a 

complex network of the different bundles of the muscle fiber within the LV. This 

anisotropic structure plays an essential role in developing the LV mechanical 

characteristics, including the stress and strain distribution through the LV and contraction 

pattern, and in particular its torsional motion during ejection. According to ex-vivo 

morphological studies on LV wall tissue samples, which were performed using light 

microscopy [22-23], fiber orientation of the LV typically varies continuously when moving 

from endocardium towards epicardium. These studies suggest that the LV fiber orientation 

can be described using the helix angle (α) as shown in Figure 1.4. The helix angle is 

measured in the plane which is parallel to the epicardial surface with respect to the 

latitudinal line. Measured with respect to the epicardium, fiber angles are assumed to be 
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positive in the upper right quadrant and negative in the lower right quadrant. A zero helix 

angle means that, in the local system, the fiber is directed circumferentially. Also, +90° 

helix angle means that the fiber is oriented longitudinally from apex to base, while -90° 

helix angle means that the fiber is oriented longitudinally from base to apex. Based on 

morphological studies involving tissue samples from different parts of the LV, the helix 

angle on average varies from +60° at epicardium to -60° at endocardium [22-23]. These 

studies suggest that the fiber orientation is almost circumferential at mid-wall. These 

morphological measurements demonstrated a spiral network of fibers through the LV 

volume which is quantified by the helix angle such that discrete bundles of fibers located 

in the same depth along the LV wall thickness have similar helix angle (see Figure 1.5) 

[22-24]. Almost all LV mechanical models, which consider transverse isotropy, used this 

description of fiber orientation through the LV. They concluded that, from stress analysis 

perspective, this description can provide reasonable results as compared to measurements 

of the LV contraction [25-27]. While most LV models consider a linear change in the helix 

angle by moving from endocardium to epicardium, some models considered more accurate 

nonlinear variations which were fitted to measured data [22,28]. 

 

Figure 1.3:  Geometry of the LV at mid-diastole state obtained from segmentation of the MR 

images. 
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Figure 1.4:  Helix angle (α) model representing fiber orientation through the LV model [22]. 

 

Figure 1.5:  Helix angle (α) model describes fiber orientations as discrete bundles of the fibers 

with the same direction while they are in the same depth in the LV wall [23]. 

More recent studies suggest that cardiac tissue is composed of discrete layers of myofibers 

tightly bound by endomysial collagen, as depicted in Figure 1.6 [29-30]. These myofibers 

laminae have the capability to slide over each other and even produce complex 

rearrangements at different time instances during a cardiac cycle. These rearrangements 

are believed to reinforce the pumping characteristic of the LV. The thickness of each 

lamina is about four to six cells which is continuously divided in different branches 

(directions) throughout the LV wall. The orientation of each lamina is perpendicular to the 

LV surface except for subendocardial and subepicardial laminae which are almost parallel 

to the LV surface. This information agrees with previous studies which assume transverse 

isotropy, since they concluded that the fiber network is almost aligned with the LV surface 

near epicardial and enodcardial surfaces. Based on the laminar structure of the fiber 

orientation within the LV model, three distinct material axes can be identified at each 

specific point within the muscle including: 1) the fiber axis which is along the muscle fiber 
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direction, 2) the sheet axis which is transverse to the plane of the fiber layer, and 3) the 

sheet-normal axis which is perpendicular to the plane of the fiber layer. This assumption 

results in a more complex and higher level of anisotropy of the LV which can be 

characterized using an orthotropic material model as used in some of studies dealing with 

mechanical modeling of the heart [31-32]. 

 

Figure 1.6:  Laminar structure of myofiber distribution in the LV model [30]. 

Other recent studies use newer technologies such as the diffusion tensor magnetic 

resonance imaging (DT-MRI) technique to quantify fiber orientation more accurately [33-

35]. These studies focus on building a statistical atlas of the cardiac fiber architectures 

using human or animal datasets [33-35]. These atlases are useful for 1) providing an 

average quantification of the fiber orientation within the LV and myocardium for a specific 

specimen (animal or human) and 2) assisting clinicians and biomedical engineers to 

estimate fiber orientation variability in a given population [33-34]. In [33] the fiber 

architecture of the human heart has been studied and the results have shown that there is a 

good agreement between previous studies based on light microscopy with those based on 

DT-MRI measurements. This study follows fiber orientation models based on light 

microscopy which suggest that fiber helix angle varies with respect to the LV wall 

thickness while it starts from positive values (apex to base direction) at the endocardium 

and ends at the negative values at the epicardium (base to apex direction). In [35] canine 

cardiac fiber architecture has been studied and it was concluded that fiber orientation angle 

varies smoothly from endocardium towards epicardium while fiber transverse and sheet 

angles, which were described in the laminar model, involve significant variations at the 
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basal region especially at the positions where two populations of the fibers sheets intersect 

with each other. At these regions DT-MRI can provide more accurate estimation of fiber 

orientations through the myocardium [35]. 

More recently, the problem of quantifying fiber orientation within the myocardium was 

tackled using a very interesting mathematical approach [36]. For this purpose, the 

generalized helicoid, which was derived based on a special form of minimal surfaces, was 

utilized. This approach made it possible to describe fiber orientation variations through the 

myocardium using only three curvature parameters. The advantage of this mathematical 

form is that it provides a continuous network of fibers throughout the myocardium. In 

conjunction with mechanical models of the heart, this more realistic network continuity is 

expected to lead to improved overall modeling accuracy and, consequently, higher result 

reliability. This model was proven to provide accurate description of the cardiac fiber 

orientations in various species such as dog, human, and rat as validated by DT-MRI data 

[36]. In a more recent study relevant to this approach, the first order models of smooth 

frame fields were utilized to provide direct measurement of myofibers helix and transverse 

angles variations. This method was also used to measure the amount of the heart wall 

curvature and myocytes fanning and twisting using statistical analysis of the DT-MRI data 

[37]. 

Myocardial tissue has a very complex microstructure including two major parts: cardiac 

muscle cells (cardiomyocytes) and extracellular matrix (ECM). Cardiomyocytes are the 

major constituents of the cardiac tissue from the prospect of volume percentage and are 

composed of different constituents such as myofibrils, mitochondria, sarcolemma, 

sarcoplasmic reticulum, intercalated disk, nucleus, T-tubules, etc. (see Figure 1.7). 

Cardiomyocytes have a length of 120 µm and a diameter of 20–30 µm in a normal adult 

heart [38]. Each muscle cell has one or two large nuclei typically located in its central part. 

Cardiomyocytes are branched at their ends such that the branched adjacent cells are tightly 

bound together by complex junctions called the intercalated discs [38]. As demonstrated in 

Figure 1.7, the major constituent of cardiomyocytes is the myofibril. It is the active 

contractile part of the cardiac tissue that generates cardiac contraction forces [38]. 

Myofibrils are organized structurally into very basic contractile units called sarcomeres 
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that are located along the myofibrils. A sarcomere is composed of myosin and actin, two 

well-known types of proteins. The interaction of these proteins is responsible for active 

force generation as illustrated in Figure 1.8. The actin filaments are thin, causing the lighter 

bands (I bands) in the striated muscle while the myosin filaments are thicker, causing 

darker bands (A bands) under electron microscopy [38]. Adjacent sarcomeres are isolated 

from each other by z-discs. Each cardiomyocyte is enclosed in a membrane called 

sarcolemma. A T-tubule (or transverse tubule) is a deep invagination of the sarcolemma, 

which is the main location for the coupling of excitation and contraction where the 

distributed depolarization is converted into force by basic contractile elements, i.e. 

sarcomeres [38]. A tubular membrane-bound that encloses the myofibrils is sarcoplasmic 

reticulum which is a plexus for storage, release, and reaccumulation of calcium ions as the 

stimulators of active contraction and relaxation sequences in the cardiac cycle [38]. A 

major part in the cardiomyocyte is mitochondrion which is a cell organelle that produces 

adenosine triphosphate (ATP) as the source of chemical energy for the muscle cells. 

Myofibrils utilize ATP for their contraction and other cellular activities within the 

cardiomyocytes [38]. As such, mitochondria are known as the power plants of the 

cardiomyocytes [38]. The large mitochondria, with their dense folds in the inner membrane 

(cristae), reveal the high level of cellular metabolism of cardiac muscles. The volume 

contribution of mitochondria in cardiac muscle is even higher than that in the skeletal 

muscle cells [38]. Cardiomyocytes require considerable amount of oxygen for their cellular 

activities and, as such, high levels of myoglobin and a rich network of capillaries are 

present surrounding the myofibrils. It is noteworthy that from volume percentage 

perspective, myofibril and mitochondrion are the major constituents of the cardiac 

myocytes occupying ~90% of the volume of the cardiomyocytes [39]. Furthermore, 

mechanically, these two major constituents are very essential. Myofibrils are the active part 

of the tissue that generates contraction forces, hence is they form the main component 

necessary to achieve the active mechanical response of cardiac tissue. Its passive 

characteristics are also important, as it is built by the well-bounded protein chains [38] with 

considerable stiffness necessary to withstand external forces. This high stiffness is reflected 

in the stress-strain characteristics of the cardiac tissue along the fiber direction indicated in 

the literature frequently [40-41]. The mitochondria are also important from mechanical 

https://en.wikipedia.org/wiki/Muscle_contraction
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stiffness perspective since they can be assumed as fairly large spherical/elliptical shape 

particles filled with special fluid and distributed throughout the whole cardiac tissue as 

illustrated in Figure 1.7. Essentially, the mitochondria can be assumed isovolumic 

(incompressible) during mechanical deformation due to the presence of fluid in their 

structure [42]. 

 

Figure 1.7:  Microstructure of the cardiac muscle cells [38]. 

The other essential part of the myocardial tissue is ECM. It consists of various parts such 

as fibroblasts, connective tissue, glycosaminoglycans, glycoproteins, blood vessels, and 

nerves [38]. Fibroblasts which are responsible for synthesis of ECM specifically collagen 
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fibers are the most abundant cells in the myocardial tissue composition. They are a 

fundamental constituent of the normal ECM in terms of volume contribution. They occupy 

about 10% of the myocardial tissue. Connective tissue is another ECM constituent which 

is composed of collagen (mainly collagen type I) and insignificant amounts of fibronectin, 

laminin, and elastin [43]. Connective tissue plays an important role in joining the cardiac 

muscle cells to each other to preserve the integrity of the cardiac tissue such that it can 

properly accomplish the major function of the myocardium contraction. Collagen is an 

essential constituent of the connective tissue and cardiac ECM [38]. While the volume 

contribution of the collagen is not very high, from the mechanical function perspective it 

is a fundamental part of tissue microstructure. It contributes very significantly to stiffness, 

especially under tension while it provides structural support for the cardiac tissue. 

Glycosaminoglycans are long unbranched polysaccharides consisting of a repeating 

disaccharide unit. This repeating unit is made up of an amino sugar along with a uronic 

sugar or galactose. Glycosaminoglycans are highly polar molecules and thus have a high 

tendency to absorb water. Consequently, their major role in the cardiac tissue is that they 

act as a lubricant or as a shock absorber that is quite vital to preserve the elasticity of the 

myocardium while it contracts as well as contacts other parts of the body such as lungs 

during its function. Glycoproteins are located in cell walls and connective tissues in cardiac 

ECM. These proteins may also adhere to cells and enable development of functional 

tissues. They also give structural support to cells, serve as a constitutional component in 

production of the connective tissue, and facilitate digestion process of some nutrition by 

the muscle cells [38]. Blood vessels and nerves are the other cardiac ECM constituents 

with small volume contributions to the tissue structure. Their influences on the whole 

cardiac tissue mechanical function is also insignificant due to their low stiffness. From 

tissue mechanics perspective, it can be concluded that the major constituents of the cardiac 

ECM are fibroblast and collagen fibers. 
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Figure 1.8:  Structure of the myofibrils made by basic elements, i.e. sarcomeres (a), sarcomeres 

composed of thin filament, actin, and thick filament, myosin (b). 

As indicated previously, the myofibrils have distinct, repeating micro-anatomical units, 

called sarcomeres, which are considered as the basic contractile elements of 

cardiomyocytes as shown in Figure 1.8. A sarcomere is composed of thick filament 

(myosin) and thin filament (actin). Its length is defined as the space between two 

consecutive z-discs and it ranges from about 1.6 μm to 2.2 μm in the human heart. 

Electrochemical interactions between the actin and myosin in a single sarcomere results in 

shortening of the sarcomere, and in a larger scale the myocyte within the well-known 

process of excitation-contraction coupling (ECC). ECC is the process whereby a myocyte 

contracts by propagation of action potential. When an action potential depolarizes a 

cardiomyocyte, calcium ions (Ca2+) enter the cardiac myocyte by distribution of the action 

potential via L-type calcium channels located on the sarcolemma. The calcium ions 

accumulated in the sarcoplasmic reticulum are released by the newly-entered calcium ions. 

The calcium released by sarcoplasmic reticulum binds to troponin-C (TN-C) that is part of 

the actin protein in sarcomeres. This triggers a conformational change in a regulatory 

complex such that troponin-I (TN-I) opens a new location on the actin molecule that has 

the capability to bind to the myosin ATPase which is situated on the myosin head. ATP 

hydrolysis occurs due to this binding that provides energy for a conformational alteration 

in the sarcomere, leading to ratcheting between the myosin heads and the actin forming 

cross-bridges between these filaments and eventually leading to the contraction of the 

sarcomere. The activation of the TN-C propagates to the adjacent sarcomeres generating 

successive sarcomere contractions which continues as long as the concentration of the 

calcium ions is maintained above a minimum level [38]. From macroscopic view, at this 

stage isovolumetric contraction of the LV occurs and continues until the cavity blood 

http://www.cvphysiology.com/Cardiac%20Function/CF022.htm
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pressure evolves beyond the aortic pressure which opens the aortic valve and pumps the 

blood out of the LV cavity [44]. 

During sarcomere relaxation phase, an ATP-dependent calcium mechanism in 

sarcoplasmic reticulum sequesters calcium ions from the myofibrils. Hence the calcium 

ion concentration is gradually reduced and eventually washed out from the TN-C. When 

intracellular calcium ion concentration is reduced to a minimum level, a conformational 

alteration is prompted in the actin complex, leading to removal of the TN-I from the actin 

binding site and untangling myosin and actin from each other. At the end of the relaxation 

cycle, a new ATP is attached to the myosin head which replaces the hydrolyzed ATP 

(ADP), and sarcomere length returns to its initial state [38]. Macroscopically, this time 

coincides with the LV isovolumetric relaxation. This relaxation carries on until the LV 

cavity pressure descends to a lower level of the left atrium pressure opening the mitral 

valve. This is the time when the LV diastolic filling starts [45]. 

1.3 Theory 

1.3.1 Finite Elasticity 

The theory of elasticity deals with the deformation of elastic materials. It relates 

deformation of the material to external forces applied to it based on its stiffness 

(mechanical) properties. To start, as illustrated in Figure 1.9, we consider an elastic object 

geometry at its reference state at time 0t  when no deformation has occurred. Then we 

assume that the deformed geometry is at time t  when a displacement field ( , t)u X is 

generated throughout the object’s domain. 

 

Figure 1.9:  A general elastic geometry at its reference state (time 0t ) and at its deformed state 

(time t ) [46]. 
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With this assumption we can relate each point such as 
0(t )P  at position X  in the reference 

geometry to the corresponding point in the deformed geometry, (t)P , at its new position 

x  through the following Equation [46]: 

( , t) ( , t) x X X u X           (1.1) 

Considering the previous equation and using differential calculus principles, we can obtain 

the following relation [46]: 

( )d d d  x X u X           (1.2) 

where u  is the displacement gradient which can be defined as follows: 
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u           (1.3) 

In tensor notation Equation (1.2) can be rewritten as: 

d dx F X           (1.4) 

where F  is the deformation gradient tensor which can be defined as: 

 F I u           (1.5) 

where I  is the identity tensor. To define the relationship between the length of dx , ds , 

in the deformed configuration and the length of dX , dS , in the reference configuration, 

we use the dot product of Equation (1.4) which leads to the following Equation: 

2 . .d d d d d s x x X C X           (1.6) 
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where C  is the right Cauchy-Green deformation tensor which is defined based on the 

deformation gradient tensor as: 

TC F F           (1.7) 

Note that according to the Equation (1.6) when C I , 
2 2d ds S  which means that there 

is rigid body motion (translation and/or rotation). Using Equation (1.5) in conjunction with 

tensor calculus principles, the following relation for the right Cauchy-Green deformation 

tensor in terms of the displacement gradient can be obtained [46]: 

( ) ( ) ( )T T      C I u u u u           (1.8) 

This can be written in the form: 

2 C I E           (1.9) 

where tensor E  is the famous Green-Lagrange strain tensor which is related to the 

displacement gradient as: 

1
( ) ( ) ( )

2

T T        E u u u u           (1.10) 

Using Equation (1.9) and (1.7) the following Equation for the Green-Lagrange strain tensor 

in terms of the deformation gradient can be obtained: 

1

2

T   E F F I           (1.11) 

1.3.1.1 Infinitesimal Deformation 

We start with the assumption that the displacement vector and its partial derivatives are 

very small (mathematically infinitesimal), then all the components of the tensor  

( ) ( )T u u will be an infinitesimal value of higher order which may be ignored to simplify 

the relation (1.10) to:   



18 

 

1
( )

2

T     ε u u           (1.12) 

Tensor ε  is the well-known infinitesimal strain tensor where its components can be written 

in terms of the displacement components in Cartesian coordinates as [46]: 

1
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          (1.13) 

This is the type of strain we used for all finite element (FE) simulations when there are not 

nonlinear geometric and intrinsic nonlinearity effects during the deformation process of the 

elastic solid [47]. When ABAQUS uses this measure for strain it means that the FE 

simulation deals with a linear elastic material that undergoes infinitesimal deformations 

while geometric nonlinearity is insignificant [47]. 

1.3.1.2 Finite (Large) Deformation 

When we deal with a material which involves large displacements values during its 

deformation resulting from external or internal mechanical loads, Equation (1.10) and 

(1.11) cannot be simplified, hence they are used in their original forms. This means that 

the term ( ) ( )T u u  cannot be ignored, hence the proper strain measure will be the Green-

Lagrange strain tensor E . This is the strain measure that is used by ABAQUS software 

when we deal with FE simulations which involve large deformations with either elastic or 

non-linear elastic materials [47]. Components of the Green-Lagrange strain tensor in its 

general form based on Equation (1.10) can be written in the Cartesian coordinates system 

as follows [46]: 
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         (1.14) 

Using Equation (1.11) to describe the strain is highly advantageous as it involves the term 

T
F F  which was taken on the reference body configuration instead of the current one, 
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rendering all calculations in ABAQUS to be straightforward. For comparison, one can see 

Equations (1.6) and (1.7) which are written based on the reference configuration. Another 

important feature of E is that it can be calculated easily from the deformation gradient 

without any need to obtain principle directions and principle stretches. These important 

merits make the Green-Lagrange strain tensor computationally attractive for FE and other 

types of mechanical simulations where finite deformation is involved. 

1.3.1.3 Stress Tensor and Principle of Linear Momentum 

The internal traction vector, t , is defined as the force per unit area acting on a plane. As 

such the internal traction can be given as [46]: 

d

dA


F
t           (1.15) 

where dF  denotes the force applied to dA  which is a very small differential area over the 

surface. The components of the Cauchy stress (true stress), ij , can be mathematically 

expressed based on the traction vectors, 
ie

t s, applied to the faces of a very small differential 

volume of the material (see Figure 1.10) using the following Equations [46]: 
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          (1.16) 

Which can be written in a simpler from as: 

, 1,2,3ij j 
ie j

t e           (1.17) 

where j
e  denotes the unit vectors defined locally as normal to the faces of the infinitesimal 

cubic volume shown in Figure 1.10. After introducing the components of the Cauchy stress, 

we are going to derive the differential equations of motion for any continuum in motion 

based on the equilibrium of forces for a very small infinitesimal volume of the continuum 

material undergoing deformations. Newton’s law of motion must be satisfied for the small 
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volume of continuum. The stress vectors that act on the faces of a small volume of the 

continuum material are shown in Figure 1.10. We also assume that vector B  is the body 

force per unit mass through the continuum,   is the mass density at position
i

x representing 

the cube, and a  is the acceleration vector at point 
i

x . 

 

Figure 1.10:  Components of the Cauchy stress acting on a material when a very small cubic 

particle within the material has been considered. 

Writing Newton’s law of motion in Cartesian coordinate systems for the cubic volume and 

assuming that 0ix  , leads to the following equation: 

1 2 3

j

j j

j

or B a
x x x x

   
 

     
   

31 2
eee e

j j

ttt t
B a e e           (1.18) 

By considering Equation (1.16), the above equation can be written based on the Cauchy 

stress tensor components as follows [46]: 
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          (1.19) 

The equivalent form of the above Equation in tensor form is: 

div   σ B a           (1.20) 

Equation (1.20) (or its equivalent form (1.19)) is referred to as the well-known Cauchy’s 

equation of motion which is an essential equation for describing the deformation of a 

continuum body. 
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1.3.1.4 Linear Elastic Material 

To describe the mechanical response of a material due to a given loading and specific 

boundary conditions, we must utilize five fundamental principles of continuum physics 

including the principle of conservation of mass, the principle of linear momentum, the 

principle of moment of momentum, the principle of conservation of energy, and the entropy 

inequality [46]. All these principles are valid for every continuum undergoing deformation 

since their derivations do not depend on the mechanical behavior of the material. However, 

the mentioned principles are not adequate to determine the mechanical response of the 

material. In addition to the mentioned continuum mechanics principles, we must have 

sufficient information about the intrinsic mechanical properties of the material such as its 

stiffness and compressibility as well as its active response to determine its deformation 

pattern due to a specific loading condition. In continuum mechanics, the intrinsic material 

mechanical behavior is typically determined through a relation between stresses and strains 

generated in the continuum body which is known as constitutive law [46]. The constitutive 

law for the simplest material model in continuum mechanics, i.e. a linear elastic material, 

is given by Hooke’s law which relates the Cauchy stresses, ij , introduced in Equation 

(1.17) to the infinitesimal strain tensor components, kl , introduced in Equation (1.13) 

within the material through a linear equation as follows: 

ij ijkl klC            (1.21) 

where ijklC ’s, are components of the fourth-order tensor known as the elasticity tensor. This 

tensor is a matrix with 81 coefficients in general, while it can be demonstrated that based 

on the continuum mechanics principles and symmetry it can be fully characterized by 21 

independent coefficients. For an isotropic linear elastic material, Hooke’s law reduces to 

a simpler form as: 

2ij kk ij ij               (1.22) 
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where  and   are Lame’s constants and ij is Kronecker delta. The equivalent form of 

Equation (1.22) in tensor form is [46]: 

2kk  σ I ε           (1.23) 

Lame’s constants can be written in terms of Poisson’s ratio and Young’s Modulus as 

follows [46]: 

,
(1 )(1 2 ) 2(1 )

E E
 

  
 

  
          (1.24) 

Equation (1.23) in addition to the Cauchy’s Equation of motion (Equation (1.20)) describe 

the mechanical response of an isotropic linear elastic material under a specific loading 

condition. 

1.3.1.5 Hyperelastic Material 

There can be two major types of nonlinearity in a material’s mechanical behavior. One is 

intrinsic nonlinearity which arises from intrinsic mechanical properties of the materials 

constituents. This leads to a nonlinear characteristic curve between stress and strain within 

the material. The other source of nonlinearity pertains to the geometric nonlinearity which 

is defined as the change of material stiff due to change of its geometry. This results in the 

redistribution of the internal forces within the material which typically occurs when large 

deformations (strain over 5%) are encountered. The latter is called intrinsic nonlinearity 

and can be encountered even if the material is linear elastic [48]. Hyperelastic materials are 

used to idealize materials that involve both type of nonlinearities. 

Theoretically, a hyperelastic material is defined based on this postulation that a Helmholtz 

free-energy function such as U exists which is defined as strain energy per unit volume of 

the reference geometry of the material. For cases where this energy function solely depends 

on the deformation gradient tensor ( F ), other forms of strain tensors, or strain scalar 

invariants, it is referred to as the strain energy function which is typically shown as ( )U F . 

This strain energy function characterizes the mechanical behavior of the material and its 
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constitutive law which is derived accordingly. The Cauchy stress tensor (true stress) can 

be derived based on the strain energy function for a homogenous hyperelastic material as: 

1 ( )dU
J

d


F

σ F
F

          (1.25) 

where J  is the volume ratio which can be obtained based on the deformation gradient 

tensor as: 

det( )J  F         (1.26) 

For the case of an incompressible hyperelastic material the relation (1.25) takes the 

following form [46]: 

( )
, det( ) 1

dU
p

d
   

F
σ I F F

F
          (1.27) 

where p  is an indeterminate Lagrange multiplayer which can be characterized as a 

hydrostatic pressure. It is noteworthy that p  can be determined based on the equilibrium 

equations and boundary conditions defined for the hyperelastic material. 

Throughout this thesis, we merely deal with isotropic hyperelastic materials that are 

modeled in ABAQUS software. Note that LV tissue anisotropy will be modeled following 

a novel approach which utilizes isotropic hyperelastic materials, leading to a self-contained 

anisotropy model. For isotropic hyperelastic material, the following constitutive law can 

be derived based on the strain energy function [46]: 

1 2

3 1

3 1 2 2

2
U U U U

J I I
I I I I


     

     
     

σ I B B           (1.28) 

The above Equation is considered as the basis for deriving various constitutive laws for 

different hyperelastic models. In the above Equation, the strain energy function is in the 

form of 1 2 3( , , )U I I I  which depends on first to third scalar invariants, i.e. 1I , 2I , and 3I  

defined as: 
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2 2 2

1 1 2 3( )I tr      B           (1.29-a) 

2 2 2 2 2 2 2 2

2 1 2 1 3 2 3

1
( ( )) ( )

2
I tr tr            B B           (1.29-b) 

2 2 2 2

3 1 2 3det( )I J     B           (1.29-c) 

where 
1 , 

2 , and 
3  are the principle stretches and B  is the left Cauchy-Green deformation 

tensor defined as: 

TB FF           (1.30) 

Equation (1.28) can be used for derivation of constitutive law of isotropic hyperelastic 

materials provided that the strain energy function is known. There are a number of 

hyperelastic models that are implemented in the ABAQUS software such as Arruda-Boyce, 

Marlow, Mooney-Rivlin, Neo-Hookean, Ogden, Polynomial, Reduced polynomial, Van 

der Waals, and Yeoh. Here, we describe strain energy functions of two hyperelastic models 

which were used more frequently in this project for modeling various parts of cardiac 

tissue. The first model is Yeoh model which is described using the following strain energy 

function [47]: 

3
2

1

1

1
( 3) ( 1)i i

i

i i

U C I J
D

 
    

 
           (1.31) 

where iC ’s are the material hyperelastic parameters, and iD ’s are the compressibility 

coefficients. Given the known incompressibility of tissue in the context of this research, 

iC ’s are the only parameters that are determined based on stress-strain data which can be 

achieved through mechanical testing (e.g. uniaxial, biaxial or indentation). The second 

hyperelastic model that was also used frequently in this research is Ogden model which is 

described as [47]: 
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          (1.32) 
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where 𝛼𝑖 and 𝜇𝑖 are hyperelastic coefficients, 𝜆𝑖’s are the principal stretches, and 
iD ’s are 

the compressibility coefficients. Once more, 𝛼𝑖 and 𝜇𝑖 are the only parameters that are 

needed to be determined based on stress-strain data. 

1.3.2 Mechanical Modeling of Cardiac Tissue 

Myocardial tissue has a complex mechanical behavior characterized by passive mechanical 

properties and active response. Passive behavior of cardiac tissue includes two major 

features: hyperelasticity and anisotropy [49]. It is well-known that the elastic behavior of 

cardiac tissue is nonlinear. Its intrinsic nonlinearity arises form cardiac tissue 

microstructural constituents, especially the diverse protein types present in the tissue such 

as collagen, elastin, actin, myosin, etc. [38]. As cardiac tissue undergoes large strains 

typically exceeding 20% in a majority portion of the myocardium during contraction, the 

other source of nonlinearity is geometric nonlinearity [50-51]. As such cardiac tissue 

behavior can be modelled effectively using hyperelastic models [49]. Another important 

feature of cardiac tissue is its anisotropy due to its fibrous structure which was described 

in Section 1.2. As such, anisotropic models must be employed to model cardiac tissue 

mechanical behavior accurately [49]. For modeling of the passive behavior of cardiac tissue 

we require mechanical models which are capable of mathematically accounting for both 

hyperelasticity and anisotropy. The other mechanical aspect of the cardiac tissue which 

adds to its mechanical complexity, is its active response. Myofibers are the active part of 

the cardiac tissue that generate cardiac contraction forces by propagation of the action 

potential through the heart muscle [52]. It is noteworthy that, microscopically, part of the 

cardiac tissue volume is not active as there is a non-myofiber part which does not contribute 

to contraction force generation. Throughout this thesis this part will be referred to as 

background tissue [53-54]. Based on the abovementioned description of cardiac tissue 

mechanics, models were proposed for simulating its mechanical behavior. One of these 

models is Hill’s model which forms the basis of all mechanical models of the LV and heart 

in the literature [53-54]. This tissue model is shown in Figure 1.11. In this model the 

myocardial tissue is simulated using two parallel elements (parts): the active element 

(myofiber) and the passive elastic element (non-myofiber part). The active and elastic 

elements represent the myofibers while the passive element mimics both the background 
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myofibers. According to Hill’s model, active contractile stress is developed within the 

active elements. This leads to contraction to both of the active (element connected in series) 

and passive elements (connected in parallel) since there is a bond between the fibers and 

background part which prevents slipping along interfaces of the tissue ultrastructural 

constituents. This contraction creates stresses in both of the fibers and background parts 

such that mechanical equilibrium is maintained according to the momentum balance 

principle. 

The Hill’s model provides a realistic description of cardiac tissue which considers both 

passive and active mechanics aspects of the tissue. As indicated earlier, two types of stress 

are developed in the tissue: active stress which is generated only in the myofibers and 

passive stress which is generated in both parts of the tissue. The active stress is controlled 

by active contraction model parameters such as time, action potential, length of the 

contractile elements (sarcomeres), etc. as discussed in active contraction models section. 

The passive stresses are distributed in both parts of the tissue such that mechanical 

equilibrium is established according to the conservation of linear momentum principle. 

This conceptual description of the Hill’s model leads to the fundamental idea of 

superimposing passive and active stresses at each cardiac tissue point to derive the 

governing constitutive law of cardiac tissue. To our knowledge, this is the basis of all 

mechanical models that are presented in the literature. If the passive part of the Cauchy 

stress is p
σ , and the active part of the Cauchy stress is a

σ , then the total stress within the 

cardiac tissue ( t
σ ) is [55]:   

t p a
σ = σ +σ           (1.33) 

 

Figure 1.11:  Hill’s model for cardiac tissue mechanical modeling. 

Active Element Elastic Element 

Passive Element 
F F 
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There are some cases that the total stress is written based on another well-known measure 

of the stress, the Second Piola-Kirchhoff (2nd PK) stress tensor which is denoted by S

throughout this thesis. For these cases Equation (1.33) can be rewritten as [56]: 

p a
S = S + S           (1.34) 

where p
S and 

a
S denote passive and active 2nd PK stresses within the cardiac tissue 

respectively. In Equation (1.33 or 1.34) the passive stress, p
σ ( p

S ), can be calculated based 

on a strain energy function (typically based on a hyperelastic anisotropic model) which has 

been considered for the cardiac tissue while the active stress, 
a

σ (
a

S ), can be derived based 

on the active contraction models considered for myofibers (sarcomeres). It is noteworthy 

that the 2nd PK stress is related to the deformation gradient tensor, F , and Cauchy stress, 

σ , using the following Equation: 

1 TJ  S F σF           (1.35) 

1.3.2.1 Cardiac Passive Mechanics Models 

In this section a commonly used constitutive law for passive modeling of the cardiac tissue 

will be introduced. As indicated earlier, such model must consider both hyperelasticity and 

anisotropy of cardiac tissue. The model was presented in [57-58] by J. D. Humphry et al. 

where the cardiac tissue is considered as a transversely isotropic material with the 

mechanical properties merely changing in fiber direction. The strain energy function for 

this model is as follows: 

2 3 2

1 1 2 3 1 4 1 5 1( , ) ( 1) ( 1) ( 3) ( 3)( 1) ( 3)U I c c c I c I c I                        (1.36) 

where 1I  is first scalar strain invariant and   is defined as follows [57-58]: 

2

4  TI   NCN           (1.37) 
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In the above relation C  is the right Cauchy-Green deformation tensor and N  is a unit 

vector coincident with the local muscle fiber direction. In the equation 
4I  can be interpreted 

as the fourth scalar invariant which appears in the strain energy functions of anisotropic 

hyperelastic models. Based on the strain energy function presented in (1.36) and assuming 

incompressibility for the tissue, the following constitutive law can be derived for Cauchy 

stress [57-58]: 

 12 / Tp W W     T I B FN NF           (1.38) 

where 𝑝 is a Lagrange multiplier enforcing incompressibility on the myocardial tissue, and 

1W  and W  are derivatives of the strain energy function given in the following [57-58]: 

1 1/  W W I             (1.39-a) 

/W W              (1.39-b) 

In Equation (1.38), the mathematical operation   denotes dyadic product of two vectors. 

Coefficients 1c  through 5c  in Equation (1.36) are hyperelastic parameters which are 

determined through a fitting procedure by matching experimental biaxial stress-strain data 

pertaining to heart specimens [57-58]. 

1.3.3 Active Contraction Models 

In this section, three mathematical models of active contraction of the sarcomeres are 

presented [59-60]. These models consider the sarcomere’s active stress as a function of 

peak intercellular calcium ion concentration, time after onset of contraction, sarcomere 

length history, and sarcomere velocity. If we assume that active stress is generated merely 

in the fibers direction with the Y-axis representing the sarcomere longitudinal direction, 

then the active Cauchy stress tensor may be written as follows: 

0

0 0 0

0 0

0 0

a T

 
 


 
  

σ           (1.40) 
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where T  is the sarcomere active stress which is governed by the following general 

Equation: 

0 vT T C           (1.41) 

where 
0T  denotes the isometric active stress and 

vC  is force-velocity function which 

incorporates the effect of the sarcomere velocity into the active stress generation process. 

Equation (1.41) is the basis for the following three different active stress models: 

1) Deactivation Model: This is the most complex model of active stress development 

presented in [59-60]. In this model isometric tension is governed by the following 

Equation: 

0 (0)
(0)

c

f
T A p

f g



          (1.42) 

where cA  and f  are constants and (0)p  is the value of the ( )p x  at 0x  with ( )p x  as 

the Hill’s hyperbolic function of force in terms of velocity. It is worth noting that x  is 

the displacement of an attached cross-bridge and 0x   denotes the point of attachment 

where the sarcomere contraction begins. A positive value of x  represents sarcomere 

shortening. ( )p x  is also described mathematically as follows: 

( )

0( ) ( 1)lx x
p x p e

 
            (1.43) 

In the above Equation 0p ,  , and lx  are constants. (0)g  in Equation (1.42) is the value 

of ( )g x , which is a piecewise cross-bridge detachment function, at 0x  . ( )g x  is also 

given as: 

0
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where 
LD  and 

sD are constants. This function enforces that the detachment rate of the 

cross-bridge is constant and finite between a yield point in lengthening, 
LD , and a 

working stroke for shortening, 
sD , otherwise it is infinite. It is consistent with the 

physiology of the cross-bridge formation within a sarcomere during its contraction.       

The force-velocity function, 
vC , during shortening of the sarcomere is given by the 

following Equation: 
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          (1.45) 

During lengthening of the sarcomeres, vC  is given by the following Equation: 
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          (1.46) 

In Equations (1.45) and (1.46), there are several parameters which are related to the 

active model of the sarcomeres. More details of these parameters, their values and their 

physical interpretation are provided in [59-60]. We just focus on important parameter 

v  which is the sarcomere velocity during its contraction. In fact Equations (1.45) and 

(1.46) only describe the dependence of active force generation on sarcomere velocity. 

2) Hill Model: In the Hill model, vC  is given by Equations (1.45) and (1.46) but it is 

described based on a phenomenological model instead of a structural model. In fact the 

Hill model takes into account the effect of sarcomere length on the duration of the 
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isometric twitch. This model is a function of internal variable 
tC  which is a function 

of time after onset of contraction t , and sarcomere length l . The following equation 

was derived based on Hill assumptions of the sarcomere contraction: 

2

0
0 max 2 2

0 50

t

Ca
T T C

Ca ECa



          (1.47) 

where 
maxT  is the isometric tension at the longest sarcomere length and 

0Ca  denotes 

the intercellular calcium concentration. 
50ECa  is also a length-dependent calcium 

sensitivity function which is given by: 

0 max
50

0

( )

exp[ ( )] 1

Ca
ECa

B l l


 
          (1.48) 

In the above equation B  is a constant and 0l  is the sarcomere length at which no active 

tension develops. Internal variable tC  in Equation (1.47) is governed by: 

1
(1 cos )

2
tC           (1.49) 

where   is a time dependent variable which shows the dependence of active stress to 

time and it is governed by the following equation: 
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          (1.50) 

where 0t  and rt  are time-to-peak tension which denote a constant and duration of 

relaxation, respectively. Duration of relaxation is a linear function of sarcomere length, 

l , as follows: 

rt ml b            (1.51) 
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where m  and b  are constants. The sarcomere length can also be described as a 

function of strain in the sarcomere longitudinal (fiber) direction, 
11E , and the stress-

free sarcomere length (reference sarcomere length), 
Rl , as follows: 

112 1Rl l E            (1.52) 

3) Elastance Model: In this model, which is a simpler model of sarcomere contraction, 

the dependence of the contraction with respect to the sarcomere velocity is removed by 

setting 
vC , force-velocity function, to unity [59-60]. The main Equation which 

describes active stress generation within the sarcomere is given by Equation (1.47) 

similar to the Hill model. This model has been used for mechanical modeling of the 

heart and LV more frequently than the other models and it has demonstrated its 

effectiveness for such simulations [61-62]. As such, we used it for modeling active 

contraction of the sarcomeres (myofibers) in our LV mechanical model development. 

1.4 Literature Review 

1.4.1 Cardiac Tissue Passive Mechanical Properties 

Computational models of cardiac mechanics and electrophysiology are regarded as 

effective techniques for simulating the contractile behavior of the heart. This computational 

simulation is beneficial for understanding underlying mechanisms of the heart’s function 

and its related pathological conditions. These biophysical-based models may be employed 

by clinicians as effective tools for planning successful patient-specific therapies [63-65]. 

One of the essential inputs of cardiac mechanics computational models is the intrinsic 

passive cardiac tissue mechanical properties. As such, accurate quantification of these 

properties is highly important for achieving simulation realism. A traditional approach for 

measuring cardiac tissue mechanical properties uses mechanical testing to acquire stress-

strain data necessary for fitting tissue constitutive models with varying complexities 

ranging from isotropic and linear elastic to anisotropic and hyperelastic. Another approach 

develops constitutive models based on cardiac tissue microstructure. Overall response of 

the heart calculated using computational cardiac mechanics models may enable gaining 

insight into the cardiac tissue microstructure and constituents using an inverse problem 
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framework. For example abnormally small LV deformation at diastole may indicate tissue 

stiffening resulting from pathological changes of the tissue ultrastructure. In addition to 

being effective in modeling various tissue related pathologies, the latter approach of 

developing a cardiac tissue constitutive model is suitable for modeling cardiac tissue 

treated using tissue engineering methods as the cardiac tissue microstructure may undergo 

extensive alterations in both cases [66-70]. 

In the context of myocardial infarction, the necrotic myocytes are cleared from the injured 

area within hours before being replaced by newly synthesized ECM which serves as a 

scaffold for deposition of new collagen fibers. ECM and collagen fibers generation ensue 

until the termination of the cardiac fibrotic phase when a heavily collagenous scar remains 

in the healed infarcted zone [71-72]. Another example of cardiac tissue microstructural 

changes occurs in dilated cardiomyopathy. In this case, the healthy ventricular myofibers 

stretch to contract more vigorously and compensate for the non-contractile injured part 

within the myocardium. When the cardiac scar is chronic and extensive, abnormal 

myofibers’ extension is prolonged, resulting in a dilated thin-walled flabby ventricles with 

new composition of tissue constituents which cannot pump the blood effectively [73]. 

Cardiac arrhythmias are also caused by pathological changes in tissue microstructure such 

as depressed coupling in gap junctions, myocardial fibrosis in cardiac injuries, and 

excessive amounts of ECM constituents especially collagen fibers amongst the bundles of 

the heart’s electrical conduction system [74]. These examples reveal that the overall 

intrinsic mechanical properties of the tissue is strongly dependent on the tissue 

microstructure, more specifically its constituents and their arrangements within the tissue 

[75-78]. Accordingly several studies investigated the influences of tissue microstructure 

and constituents on the macroscopic mechanical behavior of the tissue through developing 

tissue mechanics models based on its microstructure. These models are classified under 

three main categories: phenomenological, continuum, and structural tissue models [79]. In 

the phenomenological approach, the mechanical behavior of the tissue is delineated by a 

strain energy based constitutive equation. In this approach the stress-strain curves obtained 

from measurements are fitted to a constitutive equation to quantify unknown coefficients 

involved in the equation [80-82]. Phenomenological strategies are used extensively for 

characterization of the tissue passive behavior. However, a major limitation with them is 
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that the outcome of the fitting procedure is merely valid for the tissue specimens that were 

used in mechanical testing. Another drawback with methods derived from this approach is 

that they are not adaptable to account for tissue inhomogeneity, especially for cases with 

complex microstructural compositions [83-86]. Another approach employs continuum 

methods for tissue characterization which accounts for the tissue’s complex microstructure. 

This approach takes into account all tissue microstructural elements, including solid and 

liquid phases, ions, cells, etc. to obtain the macroscopic response of the tissue [87-88]. A 

limitation with this approach is that its theoretical and mathematical complexities may 

hinder application of their derived methods for tissue mechanics identification, especially 

when dealing with highly complex microstructure [79,89]. It is noteworthy that even these 

limitations, the approach is often used to derive accurate tissue mechanics model based on 

microstructure. The structural approach is another alternative for tissue mechanics 

characterization. This approach is based on the premise that the overall mechanical 

response of tissue is the result of the sum of mechanical responses of its microstructural 

constituents. Based on this assumption, tissue constituents and their individual responses 

are incorporated into the tissue mechanical model to derive a macroscopic constitutive law 

for the tissue [79,89]. A problem with such methods derived based on this strategy is that 

constitutive formulations developed using them require cost-effective superposition 

algorithms to integrate their tissue constituents’ responses for obtaining the overall tissue 

macroscopic response. Nevertheless, these approaches are of interest within the research 

community due to their relatively simple mathematical description compared to the 

continuum approaches [79,89]. 

The structural approach has been widely used to derive mechanical models for various 

types of tissues with different mechanical characteristics and compositions. Anisotropic 

properties of tissues have been studied in [90-91] based on their microstructure. A 

structural constitutive law was presented in [90-91] that considers angular distribution of 

collagen fibers within the tissue. This structural constitutive law was utilized to simulate 

biaxial mechanical responses of the arterial walls and aortic valve which both contain dense 

collagen fibers in their structure. In some research studies [79,89], finite element method 

(FEM)  was employed to develop a computational model for simulating tissue microscopic 

structure such as a fine network of  collagen fibers. In [79,89] the tissue volume was divided 
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into a number of finite elements. A fine microscopic collagen fiber network was considered 

in each element of the tissue model, leading to a 3D structure of collagen gel consisting of 

type I collagen which was simulated using this approach. By applying an appropriate 

mechanical loading and boundary conditions to the constructed 3D structure, macroscopic 

deformation of the collagen network was calculated. The approaches presented in [79,89] 

provide evidence that the FE technique is able to effectively integrate micro-responses of 

individual tissue constituents. Cardiac tissue microstructural mechanics have been also 

studied using structural approaches. Changes in mechanical properties of the right 

ventricular (RV) tissue due to hypertension was investigated in [92] where a biomechanical 

model, including two tissue constituents: myofibers and collagen fibers, was developed to 

obtain a constitutive law for the ventricular tissue. Parameters of the model were 

determined by fitting stress-strain data obtained from biaxial mechanical tests pertaining 

to ventricular tissue specimens to the derived constitutive law. In [92], it was concluded 

that the constitutive law in conjunction with the calculated parameters indicate presence of 

stiffer myofibers in the ventricular tissue as well as longitudinal reorientation of the 

myofibers and collagen fibers due to hypertension. Alterations of the RV tissue mechanical 

properties due to decellularization was also investigated in [93]. Numerous biaxial 

mechanical tests were conducted on several RV tissue specimens in [93]. It was inferred 

that neither anisotropy nor heterogeneity were altered due to decellularization of the RV 

tissue samples. In another research study [94], biaxial mechanical properties of various 

specimens of the murine RV were investigated by developing a novel anisotropic structural 

constitutive law. Extensive structural morphological analysis on the myofibers and 

collagen networks were also conducted using light microscopy. The study concluded that 

overall tissue mechanical properties show strong correlation with the orientations of 

myofibers and collagen fibers in the tissue which were measured by morphological studies. 

In chapter 2, we present a novel hyperelastic and anisotropic constitutive model of normal 

and pathological cardiac tissue. This model was developed based on the microstructural 

constituents of the cardiac tissue and their mechanical properties. The microscopic 

constituent’s composition and mechanical properties are incorporated directly into the 

presented tissue model to estimate overall macroscopic tissue passive response. Our 

method takes all major constituents of the cardiac tissue into consideration, while some 
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recent studies have incorporated only limited numbers of major tissue constituents, i.e. 

myofibers and collagen fibers [92]. In our strategy, as many tissue constituents as required 

can be incorporated into the overall tissue model without affecting the computational 

complexities and efficiency of our algorithm. This competence makes it feasible to achieve 

very accurate tissue models with numerous microstructural constituents. Our approach can 

also be effectively used for modeling pathological cardiac tissue. It is well-known that 

various cardiac pathologies are often associated with substantial alterations in the tissue’s 

composition and their related mechanical properties. These changes can be easily 

incorporated in our model with the abovementioned adaptability feature to derive 

structurally-based constitutive laws. Such pathological tissue mechanical properties are of 

great importance to conduct mechanical simulations of pathological myocardium since 

they are utilized as the major inputs for such simulations. 

1.4.2 Left Ventricle Mechanical Modeling 

Simulation of cardiac contraction and motion under normal as well as diverse 

pathophysiological conditions has attracted clinicians’ and cardiologists’ attentions over 

the past few decades. Recent technological and scientific advances in various fields (e.g. 

computer graphics, cardiac medical imaging, high-speed computer processors, 

computerized image processing algorithms, and cardiac microstructural mechanics) have 

enabled medical engineers and physicists to design realistic mechanical and 

electrophysiological models of the myocardium. These models can provide clinicians and 

scientists invaluable insight into the physiology of the heart such as heart’s 

electromechanics, blood pressure and cardiac tissue interactions, propagation of the 

electrical stimuli through the myocardium, development of active contraction forces in the 

myofibers, blood flow and perfusion mechanism through the myocardium etc. [25-27,95]. 

In this section, we focus on biomechanical-based models of the myocardium. Apart from 

their importance in understanding the heart’s function as a mechanical pump which pumps 

out the blood though all organs in the body, these models can be utilized to simulate various 

cardiac pathological conditions to understand their complications from mechanics 

perspective. The heart’s mechanical performance is affected by cardiac pathological 

condition. Resulting alterations can be quantified in terms of different mechanical 
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measures such as displacement, normal and shear strains and stresses, cardiac stroke 

volume, etc. The most prevalent cardiac disease is cardiac ischemia which typically 

happens by occlusion of the blood vessels within the heart muscle due to various adverse 

phenomena such as atherosclerosis and thrombosis leading to cardiac ischemic scars with 

shortage of blood flow and oxygen in some portions of the myocardium. This can lead to 

myocardial infarction (MI) in severe continual ischemic cases. MI pathology results in 

mechanical alterations of infarct regions. For instance, infarct areas do not show 

considerable active mechanical response and thus have fragile contractile power [96-98]. 

Infarct regions also have substantially higher stiffness due to myocardial fibrosis which 

typically occurs by deposition of stiffer myofibers and collagen fibers. Stiff collagenous 

scars undergo much higher mechanical stresses during contraction of the myocardium 

which are typically followed by abnormal tensile strains [96-97]. The situation can be even 

aggravated by cardiac remodeling and eventually heart failure as the worst scenario [96-

97]. Mechanical simulations have been used extensively to simulate the abovementioned 

mechanical alterations due to cardiac ischemia and MI [16,99-100]. For instance, 

myocardial infraction mechanics at its early stages in a canine left ventricle (LV) was 

studied in [99]. Early infarction was modeled by depressing the contractility within the 

ischemic region of the LV FE model. It was observed that LV geometrical variations are 

proportional to the extent and acuteness of ischemia [99]. It was also inferred that the 

ejection fraction (EF) and stroke volume of the LV model decreases considerably as a result 

of the ischemia. Dilated cardiomyopathy is another example of cardiac disease which is 

accompanied by alterations of the heart’s mechanical function. During this disease, 

ventricular walls become thinner with considerable stretching during myocardial 

contraction. Over time, cardiac mass and volume increase due to these biophysical changes. 

The major mechanical complication of dilated cardiomyopathy emerges with reduction of 

the myocardial systolic strains in all three directions: circumferential, radial, and 

longitudinal [101-102]. Another instance is prolonged hypertension which imposes extra 

mechanical loads to the myocardium, making the ventricular walls thicker known as 

ventricular hypertrophy. These pathological changes lead to remarkable increase in the 

systolic wall stresses whereas myofibers’ shortening decreases [103]. All the 

abovementioned samples exemplify alterations in cardiac mechanical measures due to 
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specific pathological condition. Hence, accurate quantifications of these alterations in 

mechanical responses (stress, strain, displacement, ejection fraction, etc.) can be exploited 

in the clinic as effective diagnostic data pertaining to cardiac pathologies. These 

mechanical measures can be quantified as outputs of mechanical models of pathological 

myocardium, reflecting their clinical relevance for diagnostic purposes. 

Another major advantage of myocardial mechanical models is that they can be utilized for 

new therapy planning to combat various cardiac diseases. This can be achieved by 

modeling alterations (e.g. using cardiac tissue graft) using cardiac mechanical simulation 

framework to test the relevant therapeutic strategy through assessing pathology treatment 

outcome obtained from the model. Ischemic cardiomyopathy is a heart condition that is 

gradually aggravated by ventricular remodeling which is often followed by heart failure. 

The Dor procedure is a novel surgical treatment method for size, shape, and wall stress 

restoration of the ventricles which involves planting a circular patch plasty within the 

ventricular walls exactly where the MI has occurred. The mechanical outcomes of the Dor 

procedure for a male sheep’s infarcted LV were studied using the LV mechanical modeling 

of replacing the infarct region with patch plasty [104]. Simulation results of the study 

confirmed the effectiveness of this procedure similar to what was observed in the animal 

model experiment. Another therapeutic approach to prevent cardiac remodeling involves 

injecting biocompatible hydrogels in the LV wall where the MI occurred. The mechanical 

outcomes of this procedure was investigated in a number of research works by mechanical 

modeling of the infracted LV [105-106]. These studies concluded that the average wall 

stresses in both infarcted and remote healthy regions were reduced by the injection of 

hydrogels, confirming the procedure’s effectiveness to size, shape, and wall stress 

restoration of the infarcted LV. 

The main and probably most recent application of cardiac mechanical models pertains to 

patient-specific clinical diagnosis and therapy planning. Such models can be personalized 

and along with other diagnostic tools (e.g. cardiac medical imaging, electrocardiography 

(ECG), blood works) may help provide valuable data to diagnose heart diseases, adopt 

appropriate therapies, and even optimize the outcome of these therapies by using the 

models to adjust their parameters [64,107-108]. To this end, personalized cardiac 
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mechanics models can be developed based on data obtained from imaging techniques to 

simulate normal and pathological heart’s contractile and passive functions more 

realistically [61-62,109-114]. Cardiac imaging techniques are utilized within two major 

strategic frameworks. In one framework, cardiac imaging techniques such as ultrasound or 

MR along with advanced image processing algorithms are utilized to obtain some image-

based features pertaining to myocardial function parameters. These features include 

myocardial wall motion and deformation, size, mass, geometry, and cardiac output 

evaluators such as stroke volume and EF. Acquired with predetermined diagnosis for a 

significantly large patient cohort, these features can be processed using machine learning 

algorithms to determine a set of threshold values which can be used to guide diagnosis in 

patients not included in the cohort [109-112]. The other framework benefits from available 

underlying science which relates image data to various pathologies quantitatively. In this 

framework, mechanical modeling of the myocardium is utilized in conjunction with inverse 

FE algorithm to attain accurate diagnosis [61-62,113-114]. For instance, in [61-62] an 

inverse problem algorithm was developed which uses an FE based mechanical model of 

infarcted LV as its forward model. The algorithm adjusts the active response of healthy 

and border zone tissues in the FE model systematically until the volume and strains 

obtained by the LV FE model is in agreement with those obtained from corresponding MR 

image analysis. Similar to [61-62], in [113-114] the active response of cardiac tissue was 

varied using a similar inverse FE framework where a non-homogeneous high resolution 

distribution of tissue active response was adjusted systematically to achieve better 

matching with the measurements obtained from imaging data. It is noteworthy that a major 

requirement of all inversion-based FE algorithms is a patient-specific forward cardiac 

mechanical model which is run iteratively to solve an optimization problem where regional 

cardiac passive and active mechanical characteristics are adjusted such that a realistic 

agreement is achieved between parameters obtained from cardiac mechanics model and 

imaging counterpart. Evidently, the forward cardiac mechanics model must provide 

sufficient realism, be computationally efficient and easily adaptable to various cardiac 

conditions. 

Over the past decade, different mechanical models of the myocardium have been 

introduced to simulate both passive and active aspects of cardiac mechanics. Simpler 
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models have considered tissue linearity and isotropy to develop cardiac mechanics models 

[115-117]. Recently, more realistic models have been developed where hyperelasticity and 

anisotropy, leading to nonlinear FE with higher degree of realism [118-120]. In these 

models, a single strain energy based constitutive law is often assumed for the entire 

myocardium to build the passive properties including anisotropy and hyperelasticity into 

the model [83,86,121-122]. The constitutive law is typically achieved by fitting the 

mathematical form corresponding to the hyperelastic and isotropic model to available 

biaxial / uniaxial test data pertaining to cardiac tissue specimens [57-58]. Considering a 

single constitutive law for the entire myocardium is problematic since the myocardial tissue 

has a complex microstructure with different tissue constituents as indicated in Section 1.2 

of this chapter [38]. Furthermore, different cardiac pathologies may alter the type and 

composition of the tissue constituents which may lead to substantial changes in the overall 

tissue passive mechanical properties [71-72,123]. As such, different constitutive laws were 

considered for pathological parts of the myocardium in more recent studies. For instance, 

different constitutive laws were assigned to areas with cardiac ischemia within the left 

ventricle model in [61-62]. Furthermore, with ischemic and MI scars within the myocardial 

walls, new developed biomaterials are typically used to substitute the pathological region 

[104-106]. Such biomaterials typically have different mechanical properties, hence their 

simulation using FE models requires assigning different parameters. Another major issue 

with FE-based cardiac mechanics models is that they often require complex non-linear FE 

algorithms which can be implemented by custom-developed FE computer codes [61-62, 

121-122]. In addition to not being available to the research and end-users communities, 

such codes are usually not optimized for computational efficiency and are likely to 

encounter numerical instability. Recently, endeavors have been made to implement 

realistic cardiac mechanics models in both diastole and systole using available off-the-shelf 

FE software packages [124-125]. While valuable, these models require user-defined 

subroutines which may again suffer from similar issues. To tackle these issues, in Chapter 

3 of this thesis, we propose a novel LV mechanics model which takes into account cardiac 

anisotropy, hyperelasticity, and active fiber’s contraction forces. An important feature of 

the proposed model is that while it can be implemented using available libraries of 

commercial FEM software packages, it is adaptive as it can simulate both normal and 
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pathological LV’s contraction scenarios. The novel aspect of the model lies in the approach 

of modelling the myofibers and their contraction forces. This model treats the myocardial 

tissue as a composite material, including a background tissue through which microscopic 

reinforcement bars are distributed to undergo variable contraction forces. These bars 

simulate the fibers within the myocardial tissue whereas their orientations are in 

accordance with the fibrous cardiac anatomy, leading to a self-contained anisotropic model. 

Both of the background tissue and myofibers are also considered as hyperelastic materials. 

As a result of applying contraction forces to the bars while blood pressure is applied to the 

LV endocardial surface, LV contraction occurs. This model can be developed and solved 

using many off-the-shelf FE software packages. It does not require highly sophisticated 

custom-developed computer codes while it incorporates all necessary mechanical 

complexities of the myocardial tissue. Moreover, it is anticipated that the proposed model 

is more computationally efficient and less prone to divergence and instability issues 

compared to custom-developed FE codes as commercial FE solvers are usually optimized 

to achieve high computational performance for diverse applications. The qualities of the 

proposed model cast it as a desirable forward model within inverse problem frameworks 

where the model is run iteratively. In Chapter 3, this model has been utilized to simulate 

normal LV mechanical behavior. To prove the capacity of our model for pathological LV 

modeling, in Chapter 4 it was applied to infracted LV geometry. In the infracted LV model, 

three different regions including healthy region, infarcted region, and border zone 

consistent with the pathology of the MI were considered while different passive mechanical 

properties and active responses were assigned to each region. The performance of both 

normal and infarcted LV models were compared with the in vivo and ex-vivo measurements 

and other validated mechanical models of the LV. 

1.4.3 Diastolic Heart Mechanics 

A complete cardiac cycle includes two major phases of passive diastolic phase followed 

by active-passive systolic phase. These two cycles are different from the cardiac 

mechanical behavior perspective. In diastole the myocardium is enlarged while its 

ventricular cavities are filled with blood. In contrast, the systolic phase involves strong 

contraction of the myocardium resulting from the superposition of contraction of individual 
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myocytes organized through the volume of the heart muscle. For comprehensive 

understanding of various heart diseases, it is essential to develop understanding of 

underlying mechanics of each of these phases as some cardiac pathological conditions are 

known to alter the mechanical characteristics of one phase only [126-128]. These phase-

dependent mechanical changes can be quantified using patient-specific cardiac mechanics 

model framework which can be used to determine the underlying mechanical causes of 

observed symptoms pertaining to the pathological condition [126-128]. Heart failure, 

which is a common cardiac disease with high mortality rate, is a good instance of such 

condition which can be caused by both systolic and diastolic dysfunctions. Heart failure 

occurs in ~2% of adults while it is even more common in people older than 65 years where 

the incidence rate is 6–10% [129-130]. Mortal heart failures are often caused by systolic 

dysfunctions where the heart cannot pump enough blood to appropriately nourish all organs 

in the body [7,131]. Surprisingly, more than 50% of heart failures occur when diastolic 

dysfunctions are observed without any symptoms of systolic dysfunctions [7,131]. In such 

cases abnormal LV relaxation, filling, or diastolic stiffness typically lead to diastolic heart 

failure where the LV diastolic capacity is suppressed. The latter is typically followed by 

subsequent LV EF reduction in the systolic phase under prolonged chronic conditions 

[128,132]. Diastolic stiffness can be considered as an essential mechanism among the 

abovementioned diastolic abnormalities. This mechanism can be effectively quantified by 

patient-specific inversion-based FE cardiac mechanics algorithms. The diastolic LV 

deformation data acquired using imaging technique can be processed within such inverse 

problem algorithms to determine the cardiac tissue stiffness such that the best tissue 

deformation match is attained between the patient-specific cardiac mechanics simulation 

and corresponding imaging based measurement. A computationally efficient forward 

cardiac mechanics model is essential as the core of such inversion-based algorithms as it 

must be run iteratively to determine blood pressure and cardiac tissue stiffness parameters. 

In Chapters 3 and 4, a forward cardiac mechanics model was presented. This model is 

anticipated to be computationally efficient and straight forward to be developed and 

utilized as it is implementable using off-the-shelf FE solvers. These features render the 

presented model appropriate for inversion-based strategies such as diastolic cardiac tissue 

stiffness estimations. In Chapter 5 the performance of the model presented in Chapters 3 
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and 4 was investigated to simulate the diastolic phase of cardiac cycle. In this chapter, MR 

image-based LV geometry of a healthy human volunteer was utilized to construct a subject-

specific cardiac mechanics model. The model was used to estimate the end-diastolic blood 

pressure and cardiac tissue stiffness properties using an ad-hoc optimization framework. 

1.5 Objectives 

The overarching objective of the research presented in this thesis is to develop and validate 

a novel LV mechanics model which can be effectively used within inverse FE frameworks 

aimed at improved cardiac disease and therapy. This was broken down into a number of 

objectives. The first objective is to develop a novel mechanical model of the cardiac tissue. 

Details of this model are presented in Chapter 2. The main feature of this tissue mechanical 

model is that it is built based on cardiac tissue microstructural constituents and their volume 

contribution in the cardiac tissue. These constituents and their associated mechanical 

properties are incorporated into FE model of small cardiac tissue samples. This approach 

was used for modelling intrinsic properties of both normal and pathological (infarcted) 

cardiac tissues. Uniaxial and biaxial mechanical test simulations were performed on those 

cardiac tissue sample models to generate their characteristic stress-strain data which 

describe their passive mechanical properties. These data was fitted to known hyperelastic 

models to obtain corresponding coefficients. To validate the proposed technique, data 

obtained from this study was compared with corresponding data acquired from mechanical 

testing of normal and infracted cardiac tissues. 

Another objective of our research is development of a novel FE-based mechanical model 

of the LV which is presented in Chapter 3. This model has two main features: 1) it is 

implementable using an off-the-shelf FE software package and 2) it is computationally 

efficient since it does not require custom-developed computer codes, and is optimally 

implemented using efficient and well-tested algorithms. The latter feature is quite 

important as it renders the presented LV model suitable for FE inversion-based algorithms 

in which the LV mechanical model must be run iteratively. A novel aspect of our LV 

model, which made its implementation using off-the-shelf FE software package possible, 

is that it is implemented using a composite model of the cardiac tissue which considers two 

main tissue parts of myofibers and background tissue. The model in Chapter 3 was applied 
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to an in silico geometry of a canine LV and systolic and diastolic responses of the model 

were compared with other LV mechanical models and with LV contraction measurements 

available in the literature. 

The LV mechanics model presented in Chapter 3 has another important feature. It is easily 

adaptable with various cardiac pathological conditions due to the novel composite material 

model used in the FE model development. This cardiac tissue decomposition make it 

feasible to assign different passive and active mechanical properties to each part of the 

tissue, i.e. background tissue and myofibers, in accordance with the specific cardiac disease 

considered in the simulation. This capability of our model was tested in Chapter 4 by 

applying the model to an in silico geometry of an infarcted LV. For validation, the results 

of the FE simulations of the infarcted LV model including stress and strain distributions 

were compared to measured data pertaining to infracted LV as well as to other validated 

LV mechanical simulations. 

In chapter 5, the performance of the LV forward mechanical model presented in Chapters 

3 and 4 was investigated towards implementation of a simplified inversion-based FE 

algorithm solved by an ad-hoc optimization procedure. As such, the model presented in 

Chapters 3 and 4 was applied to an LV geometry obtained from start-diastolic human MR 

image data to simulate diastolic inflation of the LV. Next, the diastolic cardiac stiffness 

properties and blood pressure were adjusted within an ad-hoc optimization framework. The 

target of this optimization framework was to minimize the difference between the 

calculated LV geometry (determined using the LV diastolic mechanical simulation 

displacements output) and the measured geometry obtained from segmenting the 

corresponding MR image. The results of this ad-hoc optimization were cardiac tissue 

stiffness properties and blood pressure which were within the normal range of human LV 

according to measurements of the LV diastolic function, lending credit to the reliability of 

the proposed model towards inversion-based algorithms’ implementations. 

1.6 Thesis Outline 

Based on the thesis objectives described above, we organized our thesis within five 

chapters which will be discussed in more details as follows: 
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1.6.1 Chapter 2 

In Chapter 2 a novel approach for mechanical modeling of cardiac tissue using FE approach 

is presented. This model considers all major myocardial tissue constituents which are 

distributed consistent with the cardiac tissue microstructure, anatomy and quantity 

throughout FE models of tissue samples. The mechanical properties of each cardiac tissue 

constituent was input to the FE model based on data pertaining to the constituent’s 

mechanical measurements. In this study, two important features are noteworthy. One is 

that the tissue sample FE models were constructed such that the fibrous structure of the 

cardiac tissue is preserved. As such the fibers were modeled as continuous bars to mimic 

the tissue anisotropy. The second is that for all tissue constituents, hyperelastic models 

were considered to in order to model cardiac tissue large deformations expected during the 

heartbeat with high degree of realism. To demonstrate the capability of the proposed 

approach for modeling normal cardiac tissue, strains up to 40% were applied to cylindrical 

and sheet FE samples of the cardiac tissue to simulate uniaxial and biaxial mechanical tests 

while corresponding stress-strain data of the tissue samples were generated. The resultant 

stress-strain data were then compared to those obtained from biaxial and uniaxial testing 

of cardiac tissue which confirmed accuracy of the presented approach. The cardiac tissue 

model was also utilized for simulating intrinsic mechanical behavior of pathological 

cardiac tissue. For this purpose infarcted cardiac tissue was chosen. Volume percentage 

and type of the cardiac tissue constituents were altered consistent with a realistic infarcted 

cardiac tissue. Biaxial and uniaxial mechanical testing was simulated on the infracted tissue 

sample models similar to the normal cardiac tissue. Finally, the resultant stress-strain data 

generated by the simulations were validated by comparing them corresponding data 

obtained from actual mechanical testing of infected cardiac tissue. 

1.6.2 Chapter 3 

Chapter 3 introduces a new mechanical model of the LV. In this model, a composite 

material model consistent with its anisotropy was developed for the cardiac tissue. This 

composite model has two major parts: background tissue and rebars (myofibers). The 

active stress was generated in the myofibers based on the elastance model while the 

background tissue is passive. This tissue decomposition is realistic and consistent with the 
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cardiac tissue physiology. Moreover, it is also consistent with well-known cardiac tissue 

models such as Hill’s model. In this model, the myofibers are distributed through the tissue 

volume such that it is consistent with the fibrous structure of the LV. Hyperelastic passive 

mechanical properties are considered for both tissue parts: myofibers and background 

tissue to account for large deformation of the LV model under physiological conditions. 

This model was implemented using a commercial FE software package and does not 

require any additional custom-developed nonlinear FE codes or subroutines. As such, it 

can be widely available to the research community for use in biomedical applications and 

further development. The model was applied to normal healthy LV in silico. The FE model 

output, including diastolic and systolic stress and strain distributions through the LV 

geometry and passive LV diastolic pressure-volume curve, were compared with 

corresponding data obtained from experimental measurements and other validated LV 

mechanical models, confirming validity of the proposed approach. 

1.6.3 Chapter 4 

In Chapter 4, the LV mechanical model introduced in Chapter 3 is applied for pathological 

LV modeling. As described in Section 1.4.2 of this chapter, mechanical modeling of 

pathological myocardium is quite important to understand the mechanical characteristics 

pertaining to cardiac diseases or to devise patient-specific therapeutic and diagnostic tools. 

To demonstrate effectiveness of our approach for modeling cardiac pathologies, it was 

applied for simulating transmural infarction at the mid-ventricular area. Again, the 

composite material model described in the previous section was used to model the cardiac 

tissue. For the pathological (infarct) region, the mechanical properties of the background 

tissue and reinforcement rebars (myofibers) were altered consistent with known cardiac 

infarction microstructure alteration. It is noteworthy that the fibers orientation within the 

infarcted region was also adjusted in the model according to the MI pathology. We 

considered no active contraction within the infarcted region assuming that viable and active 

myocytes are not present. Consistent with the MI pathology, a border zone region with 

depressed contractile function was considered surrounding the infract region. The active 

and passive properties of the healthy cardiac tissue was kept the same as those used with 

the normal LV model presented in Chapter 3. The performance of the proposed FE model 
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in this context was assessed by comparing stress and strain distributions through the infarct 

and healthy regions obtained from the model with those of experimental measurements and 

other relevant computational LV models presented in the literature. These comparisons 

demonstrated very good agreement, consolidating the proposed approach validity. It is 

noteworthy that there is some overlap between materials presented in Chapters 3 and 4. 

The reader can skip reading sections 4.2.1, the first part of 4.2.2, 4.2.3, and 4.2.4 without 

major disruption in this chapter’s comprehension. 

1.6.4 Chapter 5 

An important feature of the FE LV mechanical model presented in Chapters 3 and 4 is that 

it is easy to develop while it is anticipated to be computationally efficient and less prone to 

divergence since it is fully implementable using commercial FE solvers. These important 

characteristics make this model attractive for inversion-based strategies. To test this model 

for inverse problem applications within a preliminary simplified framework, the model was 

applied for estimation of the cardiac tissue passive stiffness mechanical properties as well 

as diastolic LV blood pressure. To this end, the model was applied to simulate diastolic 

inflation of the human LV. The start-diastolic LV geometry was obtained from MR image 

data segmentation of a healthy human volunteer. The LV geometry was discretized using 

FE meshing software, while similar to Chapters 3 and 4 a composite tissue model was 

considered for mechanical modeling of the LV muscle tissue. Next, the blood pressure was 

applied to the LV endocardial surface to dilate the LV model while no significant 

contraction was considered for the myofibers as the LV was in its passive diastolic phase. 

To initiate the diastolic LV mechanical simulation within the inversion framework, initial 

values of LV muscle tissue stiffness parameters and blood pressure were input using values 

pertaining to healthy subjects as reported in the literature. The mechanical properties and 

diastolic blood pressure parameters were adjusted through an ad-hoc scheme to achieve the 

best match between the calculated LV geometry and the one obtained from the 

corresponding end-diastolic MR image segmentation where maximum LV dilation was 

observed. The performance of the LV diastolic mechanical simulations using the optimal 

values of tissue stiffness and blood pressure parameters was validated by comparing the 

geometrical parameters of the dilated LV model as well as the stress and strain distributions 
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through the LV model with corresponding values available from reported measurements 

of the human LV at the end-diastolic state. 

1.6.5 Chapter 6 

This Chapter summarizes the material presented in Chapters 2 through 5. It also suggests 

possible future directions for the research described in the thesis and finally concludes this 

dissertation. 

1.7 Contributions of Thesis 

This thesis addresses the challenging computational cardiac mechanics modeling by 

considering the heart wall as a composite material which is made up of different cardiac 

tissue constituents with different mechanical properties. These constituents are organized 

within the cardiac tissue 3D space in accordance with the anatomical microstructure of the 

heart. In Chapter 2 we present an in-depth microscopic perspective of cardiac tissue 

mechanics with the aim of characterizing its intrinsic mechanical properties. The strategy 

taken in this chapter is to explicitly consider the distinct roles played by cardiomyocyte 

and ECM as the two major parts of cardiac tissue. The cardiomyocytes are mainly 

comprised of myofibrils and mitochondria while the ECM is comprised largely of 

fibroblasts and collagen fibers. This leads to a composite mechanical model of the cardiac 

tissue including two major parts: 1) background tissue as the mechanically passive part of 

the cardiac tissue with three major constituents of mitochondrion, collagen fiber, and 

fibroblast and 2) myofibrils as the mechanically active/passive part of the cardiac tissue. 

Next, the macroscopic passive mechanical properties of this composite tissue model were 

computed through FE simulations by setting the types and volume percentages of the major 

constituents of each part in accordance with the given normal and pathological cardiac 

tissue conditions. This resulted in a very good agreement with mechanical measurements 

of both normal and pathological cardiac tissue reported in the literature. In Chapters 3, 4, 

and 5 this composite material approach was utilized to mechanically model the LV diastolic 

and systolic functions using an FE commercial solver. This composite material model is 

quite advantageous as it allows using standard libraries of the commercial FE solvers for 

simulating all cardiac tissue mechanics aspects including anisotropy, hyperelasticity, and 
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active contraction forces simultaneously without need for further FE coding. Moreover, 

this model reduces the level of mathematical formulation complexity needed to capture the 

LV contraction physiology. This was achieved by incorporating the tissue anisotropy as a 

manifestation of the LV tissue composite model. This follows a totally different approach 

than the conventional approach of LV mechanics models which incorporates anisotropy 

and contractility within the tissue strain energy function. This approach led to a good 

agreement with reported measurements and with current mechanical models of the LV 

diastolic and systolic functions available in the literature. 
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Chapter 2  

2 A Novel Micro-to-Macro Approach for Cardiac 
Tissue Mechanics 

The material presented in this chapter is in Press in the Journal of the Computer Methods in 

Biomechanics and Biomedical Engineering. 

2.1 Introduction 

CCURATE quantification of the passive mechanical properties of cardiac tissue is 

an essential prerequisite for cardiac mechanics computational models used to 

describe its underlying physics of contractile deformation and contraction forces. It also 

provides a deep comprehension of the passive and active responses of the cardiac tissue as 

well as alterations of the tissue mechanical properties due to various pathological 

procedures or tissue engineering treatments [1-5]. It is well known that the overall intrinsic 

mechanical properties of tissue are functions of its microstructural constituents and their 

organization within the tissue [6-9]. As such several research studies have been conducted 

to develop effective approaches to characterize the macroscopic mechanical response of 

the tissue based on its microstructure and constituents. These approaches can be 

categorized in three main groups: phenomenological, continuum, and structural [10]. In 

phenomenological strategies, the mechanical behavior of the tissue is described using a 

strain energy based constitutive equation while the stress-strain data is fitted to the equation 

to obtain the unknown parameters of the model [9,11-13]. An essential issue with the 

phenomenological approach is that the calculated model parameters are valid merely for 

the tested tissue sample while they lack flexibility to model inhomogeneity arising from 

variations expected in the tissue microstructure composition [14-17]. The continuum 

approach incorporates all solid and liquid phases of the tissue including cells, fibers, ions 

etc. as well as their interactions within the tissue model to derive a comprehensive 

A 
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constitutive equation for the tissue as an intricate composite structure [18-19]. Although 

this method is powerful in modeling the details of the microstructure of the tissue, the 

theoretical complexity of this approach is an essential limitation especially in case of 

tissues with elaborate composition [10,20]. Finally, the structural approach assumes that 

the mechanical response of the tissue is characterized by the superposition of the micro-

responses of its built-in constituents and thus the constituents and their individual responses 

can be included directly in the tissue mechanical model [10,21]. This approach leads to 

methods which are more manageable in terms of mathematical complexities, nonetheless 

they require cost-effective computational algorithms to connect the tissue constituents and 

integrate their individual responses to yield the overall tissue response [10,20]. 

Over the recent few decades diverse structural approaches have been used to provide 

realistic mechanical models for various types of tissues. For instance, in [21] and [22] a 

structural constitutive framework was presented that accounts for angular distribution of 

the collagen fibers within the tissue. This framework was applied to simulate biaxial 

behavior of the arterial walls and aortic valve. In [10] and [20] a computational finite 

element (FE) model was developed to simulate tissue microscopic collagen fiber network. 

In this approach the macroscopic domain of the tissue was discretized into a number of 

finite elements while in each element a microscopic collagen fiber network was distributed. 

This method was applied to a 3D structure of type I collagen gels to obtain macroscopic 

deformation of the gels resulting from a given loading and boundary conditions. Structural 

approaches have also been utilized for cardiac tissue modeling. In [23] mechanical 

properties alterations of the right ventricular (RV) tissue in response to pulmonary 

hypertension (PH) was investigated. There the biomechanical modeling approach 

considered two major constituents of the tissue, namely myofibers and collagen fibers to 

derive a constitutive law for the RV tissue. The constitutive law’s parameters were then 

calculated by fitting biaxial stress-strain data obtained using the constitutive law to 

corresponding measurements pertaining to pathological tissue specimen. The calculated 

parameters suggested higher stiffness of the myofibers and longitudinal reorientation of the 

myofibers and collagen fibers within the tissue. Other works took the approach of relating 

the tissue macroscopic behavior of the cardiac tissue to its ultrastructural constituents. In 

[24] the biaxial mechanical properties of the various specimens of the murine RV was 
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quantified and compared to corresponding results obtained from the developed constitutive 

law. This comparison showed correlation with morphological analysis results of 

orientations of the myofibers and collagen fibers within the specimens, demonstrating the 

dependence of the tissue mechanical properties on its microstructure. In [25] changes in 

the RV tissue mechanical properties due to decellularization was investigated. This was 

carried out by performing biaxial mechanical testing of RV tissue specimens where they 

concluded that neither anisotropy nor heterogeneity was altered significantly after 

decellularization. In this article we present a novel hyperelastic and anisotropic constitutive 

model of the normal and pathological cardiac tissue which was developed based on its 

microstructural tissue constituents and mechanical properties. The proposed model 

incorporates the microscopic constituent’s composition and mechanical properties directly 

into the tissue model to predict its macroscopic mechanical response. While [23] considers 

only two major constituents of the cardiac tissue, including myofibers and collagen fibers, 

this method considers all major constituents of the tissue. The method is adaptable to add 

as many constituents as required along with their mechanical properties to the tissue model 

to attain accurate constitutive laws for describing tissue mechanical behavior. This 

adaptability feature is highly important since various cardiac pathologies are often 

associated with substantial alteration in the tissue’s composition and their related 

mechanical properties, making it possible to attain suitable constitutive model for such 

pathological tissue by modifying the type and volume fractions of the tissue constituents. 

Such models are invaluable as they can be input into cardiac mechanics computational 

models to predict cardiac mechanics under specific pathophysiological conditions. In this 

investigation, we applied this approach for normal and infarcted cardiac tissues by 

considering their known constituents to find their corresponding constitutive models. 

Resulting models led to very good agreement between stress-strain response these models 

predict and their measured counterparts reported in the literature. 

2.2 Materials and Methods 

2.2.1 Major Myocardial Tissue Constituents 

Myocardial tissue has a complex microstructure which has been examined using various 

morphometric techniques such as electron and light microscopy. These techniques aim at 
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quantifying the volume of myofibrils as the active/passive part and the background tissue 

constituents as the passive part of the myocardial tissue. Morphological studies of 

pathological tissue ultrastructure also provide valuable information about alterations in 

both tissue constituents’ type and their volume percentage caused by various pathologies. 

As such, cardiac morphometric studies are very important for tissue mechanical 

characterization. 

Cardiac morphological studies reveal that myocardial tissue consists of two main parts of 

cardiac muscle cells or cardiomyocytes and the ECM. Cardiomyocytes have a complicated 

microstructure including various constituents such as myofibrils, mitochondria, 

sarcolemma, sarcoplasmic reticulum, intercalated disk, nucleus, T tubes, etc. [26]. 

Myofibrils are the active/passive part of the myocytes generating the myocardial 

contraction forces. Mitochondrion is another important cell organelle of the myocytes and 

it is known as cellular power plants. Since the myocardium consumes considerable energy 

for its contraction, the volume percentage of the mitochondrion in the heart is higher 

compared to other organs in the body. According to morphological studies, ~90% of the 

myocyte’s volume is occupied by two cell organelle types including myofibrils and 

mitochondria [27]. Therefore, we considered myofibrils and mitochondria as the major 

constituents of the cardiomyocytes in our model. The second part of the myocardial tissue 

is the ECM. The ECM has various constituents including fibroblast, glycosaminoglycans 

and glycoproteins, blood vessels, nerves, and proteins, including collagen (mainly collagen 

type I), in addition to small amounts of fibronectin, laminin, and elastin [28]. Fibroblast is 

the most abundant cell type in the cardiac tissue and the most important constituent of the 

normal ECM as it occupies about 10% of the myocardial tissue volume. Due to its high 

stiffness, especially under tension, collagen is another essential constituent in cardiac ECM 

despite its small volume contribution in normal cardiac tissue. Hence, we selected 

fibroblast and collagen as the major constituents of the cardiac ECM. As such, in the 

proposed model, we consider the four major constituents of myofibril, mitochondrion, 

fibroblast, and collagen fibers. Table 2.1 shows each constituent’s volume percentage in 

normal cardiac tissue [29-30]. This table indicates that the tissue volume percentage 

occupied by the stated constituents is ~97%. This shows that the mechanical behavior 
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expected to result from these major constituents will predominantly determine the 

macroscopic cardiac tissue mechanics. 

Table 2.1: Major constituents of the normal myocardial tissue with their volume percentage 

Constituent Myofibril Mitochondrion Fibroblast Collagen Fiber 

Volume Percentage 62% 23% ~10% ~2% 

2.2.2 Finite Element Modeling of Cardiac Tissue Samples 

Myocardial tissue can be considered as a composite material including myofibrils and the 

remaining part through which microscopic myofibrils are distributed. Hereafter, this 

remaining non-myofibril part will be referred to as background tissue. By considering 

alignment of the myofibrils in a certain direction within the cardiac tissue volume leads to 

self-contained tissue anisotropy. Due to bonding between the myofibrils and background 

tissue, contraction of the myofibrils leads to contraction in the background part, creating 

stresses in both of the myofibrils and background tissue that maintain mechanical 

equilibrium. This description of the myocardial tissue is consistent with the renowned 

Hill’s model in which active contractile stress generated by active elements causes 

contraction in both of the active (element connected in series) and passive elements 

(connected in parallel). 

As stated earlier, cardiac tissue was resolved into two main parts: myofibrils (active/passive 

part) and background tissue (passive part). The background tissue is composed of three 

main constituents including mitochondrion, fibroblast, and collagen fiber. This tissue 

decomposition leads to a composite material model of the myocardial tissue. Our strategy 

for modeling the passive part of the cardiac tissue is shown in the flowchart illustrated in 

Figure 2.1. It involves constructing FE models of composite materials pertaining to normal 

and pathological tissues using known combinations of the described constituents. Using 

these models, stress vs. strain data of these in silico samples can be generated. As illustrated 

in the flowchart, developing the tissue’s FE model involves two steps. In the first step, 

hyperelastic models are developed for the background and myofibril parts of the cardiac 

tissue based on their known constituents. This is followed by developing a self-contained 
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anisotropic hyperelastic model of the whole cardiac tissue consisting of the two 

background and myofibril parts as described in the following sections. 

 



67 

 

 

Figure 2.1:  Flowchart illustrating the proposed cardiac tissue modeling approach. 
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2.2.2.1 Finite Element Modeling of Background Tissue 

A cylindrical sample was considered to construct the background tissue’s FE model. As 

indicated in the previous section, the background tissue is a composite structure of three 

constituents: mitochondria, fibroblasts, and collagen fibers. Thus, the composite 

background tissue’s FE model involves three types of elements corresponding to these 

three tissue constituents. Each element type within the sample has its own mechanical 

properties reported in the literature. Fibroblasts and collagen fibers are distributed 

uniformly throughout the cardiac ECM [31] while mitochondria are dispersed almost 

uniformly in cardiac myocytes [32]. As such, for constructing the sample’s FE model, these 

three types of element were randomly distributed throughout the sample in consistence 

with their known volume percentages (i.e. as given in Table 2.1). A cylindrical FE 

composite model of the background tissue with the three building elements is shown in 

Figure 2.2. 

 

Figure 2.2:  FE cylindrical sample of the background cardiac tissue which is composed of three 

types of elements: mitochondrion, fibroblast, and collagen. 

2.2.2.2 Whole Tissue Sample Construction 

We modelled the cardiac tissue as a composite structure containing two main parts: 

myofibrils and background tissue with the myofibrils distributed uniformly throughout the 

background tissue. As such, for FE modeling of the whole cardiac tissue, a composite 
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material model with two distinct parts of background tissue and myofibrils was considered. 

To construct the corresponding FE model, two element types corresponding to these two 

tissue parts were used. In this model, the myofibril elements were assembled to form 

continuous fibers aligned longitudinally within the background tissue in order to preserve 

the tissue’s fibrous structure. Figure 2.3 illustrates FE models of cylindrical and sheet 

samples of the cardiac tissue with the two types of myofibril and background tissue 

building elements. The quantity of each element type (material) in the sample was set to 

be proportional to the corresponding known volume percentage. It is noteworthy that for 

the sheet FE sample in Figure 2.3 the Y-axis represents the fiber direction while the X-axis 

coincides with the cross-fiber direction. 

 

Figure 2.3:  FE cylindrical and sheet samples of the whole cardiac tissue which is composed of 

two types of elements: myofibril and background tissue. 

2.2.3 Normal Cardiac Tissue Modeling 

Using the constructed FE models of the cylindrical and sheet samples, uniaxial and 

equibiaxial tests of normal cardiac tissue were simulated to obtain its mechanical 

parameters. For this simulation, two steps were performed including background tissue 

mechanical testing simulation followed by the whole normal tissue mechanical testing 

simulation using the sample models described in the previous section. It is noteworthy that 

we tried various hyperelastic model combinations for the tissue constituents of the 

background tissue (consisting of mitochondrion, fibroblast, and collagen fibers) and the 
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tissue constituents of the whole cardiac tissue (i.e. myofibers and background tissue) before 

arriving at the given combination which led to the highest accuracy and computational 

stability. 

2.2.3.1 Background Tissue Hyperelastic Model 

As indicated earlier, the proposed method involves developing a hyperelastic model for the 

background tissue based on its constituents. A major constituent in the background tissue 

is collagen fibers. More than 80% of these fibers are collagen type I [31], which act as a 

scaffold for cardiac ECM while predominantly providing tensile strength to the cardiac 

tissue. In our model development, we used the stress-strain curve shown in Figure 2.4 (a) 

which is reported in [33] for a 3D matrix of purified collagen type I. This curve was fitted 

to Yeoh hyperelastic model form given in the following equation for an incompressible 

material [34]. 

3
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            (2.1) 

where 
iC  represents the hyperelastic parameters reflecting the intrinsic mechanical 

properties of the tissue and 1I  is the first scalar invariant. Cardiac fibroblast is another 

constituent of the background tissue. The initial stiffness of this constituent is characterized 

by a Young’s modulus of ~5 kPa [35-36]. To account for large deformation, we again 

utilized a Yeoh hyperelastic form consistent with the 5 kPa Young’s modulus to model the 

fibroblast cells. 
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Figure 2.4:  (a): Stress-strain curve for a 3D matrix of type I collagen fiber reported in [33], 

(b): Stress-strain curve for an intact cardiac myofibril reported in [39]. 

The third constituent of the background tissue is the mitochondrion. Mitochondria are very 

small spherical/elliptical shape particles filled with fluid and distributed throughout the 

cardiac myocyte. Essentially, the mitochondria can be assumed isovolumic during 

mechanical deformations due to the presence of the fluid in its structure [37]. To our 

knowledge, stiffness data of mitochondrion has not been reported in the literature. 

However, given that lipid materials such as phospholipid in addition to proteins are present 

as structural material in the mitochondrion, especially in its outer membrane [38], the initial 

Young’s modulus of the mitochondria was set to be 3 kPa consistent with the Young’s 

modulus of fat. To account for large deformation, similar to the fibroblast cells, we utilized 

a Yeoh hyperelastic form consistent with the 3 kPa Young’s modulus to model the 

mitochondria. The calculated Yeoh hyperelastic parameters for three major background 

tissue constituents including mitochondrion, fibroblast, and collagen fibers are given in 

Table 2.2. 

With the Yeoh hyperelastic parameters of the three background part constituents obtained 

as described here, FE model of the sample shown in Figure 2.2 was completed for uniaxial 

test simulation. Uniformly distributed axial strains varying incrementally from 0 to 35% 

were applied to the cylindrical sample using prescribed displacement boundary conditions, 

leading to corresponding uniformly distributed axial stresses which were calculated by 

ABAQUS (Dassault Systèmes Simulia Corp, USA). The maximum 35% strain value was 

selected based on maximum cardiac tissue strain expected in normal contraction. 

Table 2.2: Yeoh hyperelastic parameters of the background tissue constituents obtained through 

fitting procedure 

Yeoh Hyperelastic Parameters Mitochondrion Fibroblast Collagen Fiber 

C1 (Pa) 500.0 833.3 277.8 

 C2 (Pa) 2000.0 1600.0 18931.3 

 C3 (Pa) 0.0 0.0 3146.6 
 

2.2.3.2 Normal Cardiac Tissue Hyperelastic Model 

To obtain normal cardiac tissue constitutive model, constitutive model of the myofibrils 

part is required. For this part, we used the stress-strain data shown in Figure 2.4 (b) which 
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is reported in [39] for an intact cardiac myofibril. With known stress-strain data of both of 

the background and myofibril parts, FE simulations of equibiaxial tests were performed to 

obtain equibiaxial stress-strain data of the whole cardiac tissue. It is noteworthy that these 

simulations were conducted where the stress-strain data of the myofibril and background 

parts of the tissue were fitted to the hyperelastic models of Arruda–Boyce, Marlow, 

Mooney-Rivlin, Neo-Hookean, Ogden, Polynomial, Reduced Polynomial, Van der Waals, 

and Yeoh models. Among them, the second order Ogden hyperelastic model for the tissue 

constituents (i.e. background tissue and myofibril) of the cardiac tissue led to the highest 

agreement with the biaxial measurements of the normal cardiac tissue available in the 

literature as described in the Results section. The Ogden model is described using the 

following strain energy function for an incompressible material [34]: 
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              (2.2) 

where N is the order of Ogden model,  ’s and  ’s are the hyperelastic parameters, and 

i ’s are the principle stretches. To simulate the equibiaxial test, the sheet tissue model was 

used where equal strains ranging from 0 to 35% along and across the fibers (X and Y) 

direction were applied. Corresponding stresses in the X and Y directions were calculated 

using ABAQUS FE solver. Stress-strain data of normal cardiac tissue which were obtained 

from the equibiaxial test simulation were fitted to the hyperelastic anisotropic model 

presented in [11] by Humphrey et al. 1990 and corresponding hyperelastic parameters were 

determined. The anisotropic hyperelastic model is described using the following strain 

energy function [11]: 
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where iC s are hyperelastic parameters, 1I  is the first scalar strain invariant, and   is a 

parameter related to the fourth scalar strain invariant as follows: 
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This strain energy function results into the following Cauchy stresses under equibiaxial 

extension experiment [11]: 
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where 
11t  and 

22t  denote the stresses in fiber and cross-fiber directions, respectively. 

Under equibiaxial extension and incompressibility condition the stretches are related such 

that 1 2     and 
2

3 1  . The stress-strain curves obtained from the FE simulations 

are fitted to the above equations for Cauchy stresses to determine the iC  parameters. 

2.2.4 Infarcted Cardiac Tissue Hyperelastic Model 

Similar to normal cardiac tissue, modeling of infarcted cardiac tissue was performed in two 

steps of modeling the background followed by modelling the whole tissue. Experimental 

data involving dogs and sheep indicate that 1 to 6 weeks after the onset of myocardial 

infarction, collagen fibers dilate and start to increase within the infarcted region as part of 

the healing phase, leading to scar tissue formation. Similar patterns have been observed in 

human myocardial infraction [40]. This stage of healing, which is known as cardiac 

fibrosis, leads to a heavily collagenous scar. Table 2.3 presents volume percentages of 

infarcted scar tissue constituents according to tissue morphology data reported in [41], 

which shows ~40 times increase in collagen content compared to normal cardiac tissue. 

Table 2.3: Major constituents of the infarcted myocardial tissue with their volume percentage 

Constituent Myofibril Mitochondrion Fibroblast Collagen Fiber 

Volume Percentage 5.26% 1.94% ~10% 80.74% 

The FE models of cylindrical and sheet tissue samples were constructed by distributing 

numbers of finite elements corresponding to each constituent type calculated according to 

this table. 
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2.2.4.1 Background Tissue Hyperelastic Model 

To perform FE simulation of a uniaxial test on the cylindrical sample model of background 

tissue, similar to the normal tissue, we incorporated the mechanical properties of each 

constituent into the FE model. For the collagen fiber part, histological studies have shown 

that collagen type I with higher thickness than in normal cardiac tissue is developed in 

infarcted region [42,43]. Other studies have also shown that these fibers are denser with 

more cross-links in infarct regions, leading to stiffer collagen compared to normal cardiac 

tissue [44,45]. To our knowledge, stiffness characteristics of collagen fibers in infarcted 

cardiac tissue have not been measured. As such, we assumed that the Yeoh hyperelastic 

parameters (
iC ’s) of collagen fibers in infarcted cardiac tissue are larger than those of 

normal cardiac tissue by a constant factor greater than one. This factor was determined 

using 1D optimization whereby it was changed systematically until the best agreement 

between calculated and experimental stress-strain data of infarcted cardiac tissue was 

achieved. We used the nonlinear least square optimization technique to calculate this 

factor. Cardiac fibroblast and mitochondrion are the two other constituents of the 

background tissue which we did not alter in comparison to what we used in modeling 

normal cardiac tissue. Similar to modeling normal cardiac tissue, we used the Yeoh 

hyperelastic model for all constituents in the background tissue and simulated a uniaxial 

test using axial strain values ranging from 0 to 35% in conjunction with the cylindrical 

sample model. Corresponding stresses were calculated using ABAQUS FE solver. 

2.2.4.2 Whole Tissue Hyperelastic Model 

Hyperelastic parameters of infarcted cardiac tissue were determined using the methods 

described earlier in Section 2.3.2 for normal cardiac tissue. For the myofibrils, we 

incorporated volume percentage data in Table 2.3 in conjunction with stress-strain data 

shown in Figure 2.4 (b). FE simulation of uniaxial test was performed using the cylindrical 

sample model. These simulations were conducted using ABAQUS FE solver with 

incremental strain values ranging from 0 to 35%. The stress-strain data of the myofibril 

and background parts were fitted to the hyperelastic models of Arruda–Boyce, Marlow, 

Mooney-Rivlin, Neo-Hookean, Ogden, Polynomial, Reduced Polynomial, Van der Waals, 

and Yeoh models. The fifth order Ogden hyperelastic model for both parts led to the highest 
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agreement with reported measurements of infarcted cardiac tissue. Next, the stress-strain 

data of infarcted cardiac tissue which were obtained from the uniaxial test FE simulation 

were fitted to Yeoh, second order Polynomial, and fifth order Ogden hyperelastic models 

and corresponding hyperelastic parameters of the whole infarcted cardiac tissue were 

determined. 

2.2.5 Sensitivity Analysis 

We conducted ad-hoc sensitivity analysis to investigate the variations of stress-strain 

curves, and consequently corresponding hyperelastic parameters, of the cardiac tissue with 

respect to alterations in the volume percentages of tissue constituents. For this purpose, the 

volume percentage of each tissue constituent was altered within a range of values reported 

in morphological studies of cardiac tissue and corresponding range of stress-strain curves 

was obtained. It is noteworthy that when the volume percentage of each tissue constituent 

was changed in the model, the volume percentages of the other tissue constituents were 

accordingly adjusted proportional to their volume contribution in the tissue model. For 

further sensitivity assessment, we also calculated the tissue’s hyperelastic parameter 

variation corresponding to the model presented in [11] with respect to variations in the 

tissue constituents’ volume percentages. According to these studies, in normal cardiac 

tissue, the volume percentage range of the myofibril, mitochondrion, collagen, and 

fibroblast are at 52% - 72%, 15.5% - 30%, 0.5% - 6.59% and 7% - 13 %, respectively 

[29,46-47]. For infarcted cardiac tissue, the volume percentage of the collagen was altered 

within the range of 73% to 89% according to [41,47]. It is noteworthy that, other than the 

collagen, we changed the volume percentages of other constituents according to the 

morphological studies of infarcted cardiac tissue. However, due to very low volume 

contribution as well as low stiffness of those constituents compared to the collagen fibers, 

their alteration influence was insignificant. Hence, we focused only on the collagen fibers 

in this part of the sensitivity analysis. 
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2.3 Results 

2.3.1 Normal Cardiac Tissue Modeling 

The calculated Yeoh model’s hyperelastic parameters of the mitochondrion, fibroblast cells 

and collagen fibers used to model the background part of the cardiac tissue were given in 

Table 2.2. The stress-strain curve resulting from the uniaxial test simulation of the 

background part of the tissue is illustrated in Figure 2.5. 

 

Figure 2.5:  Stress-strain curve of background tissue of normal myocardium obtained from the 

proposed method. 

Fitting of the stress-strain data of the background and myofibril parts of the tissue to second 

order Ogden model led to the hyperelastic parameters reported in Table 2.4. 

Table 2.4: Second order Ogden hyperelastic parameters of the background tissue and myofibrils 

Second Order Ogden Hyperelastic Parameters Myofibril Background Tissue 

µ1 (Pa) 18329.00 191431.00 

α1  0.015 0.007 

µ2 (Pa) 836.88 310.12 

α2 11.82 7.10 

FE simulation of normal cardiac tissue equibiaxial test performed using the sheet sample 

model in conjunction with these hyperelastic parameters led to the stress-strain data 

illustrated in Figure 2.6. Figure 2.6 (a) and 2.6 (b) illustrate the data in both fibers and 

cross-fiber directions, respectively. These figures also show corresponding experimental 

stress-strain data of normal cardiac tissue reported in [11]. This data shows average errors 

of 16.17% and 8.25% in the fiber direction and cross-fiber direction, respectively. 
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(a) (b) 

Figure 2.6:  Stress-strain data of normal myocardial tissue along fiber direction (a) and cross-

fiber direction (b) obtained from the equibiaxial test FE simulation compared to measurements 

reported in the literature [11]. 

The data in the fiber and cross-fiber directions were fitted to the hyperelastic model 

presented in [11], leading to the parameters reported in Table 2.5. It is noteworthy that the 

calculated hyperelastic parameters are in the range of the parameters presented in [11] for 

cardiac tissue. 

Table 2.5: Hyperelastic parameters of normal cardiac tissue calculated from the equibiaxial 

stress-strain data obtained from FE simulation compared to parameters given in [11] 

Hyperelastic Parameters of the Model 

Presented by Humphrey  
Normal Tissue modeling 

Parameters Given in 

[11] 

C1 (𝒈 𝒄𝒎𝟐⁄ ) 32.45 

 
24.44 

C2 (𝒈 𝒄𝒎𝟐⁄ ) 64.81 54.99 

C3 (𝒈 𝒄𝒎𝟐⁄ ) 0.99 

 
1.51 

C4 (𝒈 𝒄𝒎𝟐⁄ ) -14.98 -18.40 

C5 (𝒈 𝒄𝒎𝟐⁄ ) 20.79 19.39 

Results of the sensitivity analysis pertaining to normal cardiac tissue in fiber and cross-

fiber directions are presented in Figures 2.7 and 2.8. As shown in these figures, the greatest 

range of stress-strain curves in both fiber and cross-fiber directions is observed 

corresponding to volume percentage changes of the myofibrils which is the major 

constituent of the normal cardiac tissue. This constituent shows maximum  of 2.75 kPa 

at strain of 0.35 in fiber direction. Following the myofibrils, high ranges are observed 

corresponding to mitochondrion, fibroblast, and collagen where ’s at 0.35 in fiber 

direction are 1.88 kPa, 0.72 kPa, and 0.67 kPa, respectively. Figures 2.7 and 2.8 show 
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higher stress values with volume percentage of collagen or myofibril changed to the upper 

bound value (U) while for the mitochondrion and fibroblast the contrary is seen. This is 

quite justified as increasing the collagen or myofibril, which have higher stiffness, leads to 

overall increase of the tissue stiffness. In contrast, increasing the lower stiffness 

constituents of mitochondrion or fibroblast leads to overall reduction of tissue stiffness as 

increasing these constituents’ volume percentage must be associated with reduction of the 

collagen and myofibril volume percentages. 

  

(a) (b) 

Figure 2.7:  Stress-strain data of normal myocardial tissue along fiber direction vs. change in 

volume percentages (VP) of the tissue constituents (U: upper bound of VP, L: lower bound of 

VP). Change in VP of the myofibril and mitochondrion (a) and change in VP of the fibroblast 

and collagen fiber (b). 

 

  

(a) (b) 



79 

 

Figure 2.8:  Stress-strain data of normal myocardial tissue along cross-fiber direction vs. 

Change in volume percentages (VP) of the tissue constituents (U: upper bound of VP, L: lower 

bound of VP). Change in VP of the myofibril and mitochondrion (a) and change in VP of the 

fibroblast and collagen fiber (b). 

Variations of the hyperelastic parameter of the model presented in [11] over the range of 

the constituents volume percentage changes is presented in Table 2.6. In this table, 

percentages of the hyperelastic parameters variations in comparison to corresponding 

parameters of the normal tissue are reported. 

Table 2.6: Percentage variations of hyperelastic parameters of normal cardiac tissue obtained by 

varying volume percentages (VPs) of each tissue constituent 

Hyperelastic Parameters 

of the Model Presented 

by Humphrey 

∆C1 (𝒈 𝒄𝒎𝟐⁄ ) 

in percentage 

∆C2 (𝒈 𝒄𝒎𝟐⁄ ) 

in percentage 

∆C3 (𝒈 𝒄𝒎𝟐⁄ )   

in percentage 

∆C4 (𝒈 𝒄𝒎𝟐⁄ ) 

in percentage 

∆C5 (𝒈 𝒄𝒎𝟐⁄ ) 

in percentage 

 
High 

VP 

Low 

VP 

High 

VP 

Low 

VP 

High 

VP 

Low 

VP 

High 

VP 

Low 

VP 

High 

VP 

Low 

VP 

Myofibril 2.40 -4.13 2.75 -3.93 -49.49 35.35 -10.35 6.34 9.91 -9.62 

Mitochondrion -10.72 14.7 38.71 -62.64 -13.13 -45.45 4.54 -9.41 -4.62 9.14 

Collagen 11.43 -6.81 -76.13 47.96 -61.62 -15.15 -7.68 3.4 5.1 -2.07 

Fibroblast -1.2 13.41 -0.82 -62.98 -0.11 -44.44 2.07 -8.48 -4.91 3.51 

2.3.2 Infarcted Cardiac Tissue Modeling 

The 1D optimization procedure described in the Section 2.4.1, which was used to obtain 

the Yeoh model hyperelastic parameters of the collagen fibers led to a factor of 1.5 as, 

yielding the parameters given in Table 2.7. 

Table 2.7: Yeoh hyperelastic parameters of the collagen fibers in the infarcted cardiac tissue 

Yeoh Hyperelastic Parameters Collagen Fiber 

C1 (Pa) 416.67 
 C2 (Pa) 28396.97 
 C3 (Pa) 4719.87 
 

Using these parameters, stress-strain data of the background part of infarcted tissue was 

calculated using uniaxial test FE simulation as described earlier. This data is illustrated in 

Figure 2.9. 
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Figure 2.9:  Stress-strain curve of background tissue of infarcted myocardium obtained from the 

proposed method. 

For the myofibrils, we used the same parameters we obtained in modeling the normal 

cardiac tissue. Furthermore, for both the myofibrils and background parts, we used fifth 

order Ogden hyperelastic model which led to the highest agreement with experimental data. 

Corresponding parameters which led to the best fit are given in Table 2.8. 

Table 2.8: Fifth order Ogden hyperelastic model parameters of the background tissue and 

myofibril 

Fifth Order Ogden Hyperelastic Parameters Myofibrill Background Tissue 

µ1 (Pa) 834.21 279.46 

α1  12.41 12.69 

µ2 (Pa) 386.74 142.06 

α2 0.25 12.76 

µ3 (Pa) 273.43 169.45 

α3 0.20 12.75 

µ4 (Pa) 752.07 202.03 

α4 0.18 12.78 

µ5 (Pa) 53.39 269.83 

α5 0.22 12.72 

Incorporating these parameters in the uniaxial test simulation of infarcted cardiac tissue as 

described earlier led to the stress-strain data depicted in Figure 2.10 (a). The uniaxial stress-

strain data are compared to corresponding experimental data reported in [48]. This 

comparison shows an average error of 10%, demonstrating the reasonable accuracy of the 

proposed method for infarcted tissue modeling (see Figure 2.10 (b)). 
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(a) (b) 

Figure 2.10:  (a): Stress-strain data of infarcted myocardial tissue obtained from uniaxial 

simulation, (b): Stress-strain curve of infarcted myocardial tissue obtained from the proposed 

method compared to corresponding measurements. 

The data obtained from uniaxial FE simulation was fitted to Yeoh, second order 

Polynomial, and fifth order Ogden hyperelastic models, leading to the parameters reported 

in Table 2.9. 

Table 2.9: Hyperelastic parameters of the infarcted cardiac tissue 

Model Hyperelastic Parameters Infarcted Cardiac Tissue 

Yeoh 

C1 (Pa) 1221.45 

C2 (Pa) 20236.45 

C3 (Pa) 1449.49 

Second order Polynomials 

C10 (Pa) 0.00 

C01 (Pa) 500.31 

C11 (Pa) 22452.04 

C20 (Pa) 4673.99 

C02 (Pa) 0.00 

Fifth order Ogden 

µ1 (Pa) 134.78 

α1  13.03 

µ2 (Pa) 116.23 

α2 12.97 

µ3 (Pa) 84.25 

α3 13.01 

µ4 (Pa) 104.28 

α4 13.01 

µ5 (Pa) 195.85 

α5 12.93 

The results of the sensitivity analysis, where the variations of stress-strain data with respect 

to the range of variations of constituents’ volume percentage were calculated, are presented 
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in Figure 2.11. As shown in this figure, maximum change of   = 3.26 kPa at strain of 

0.35 occurs corresponding to change of collagen fiber volume percentage, representing the 

most significant change among those of other constituents. 

 

Figure 2.11:  Stress-strain data of infarcted myocardial tissue while the volume percentages 

(VP) of the collagen was changed (U: upper bound of VP, L: lower bound of VP). 

The variations of the Yeoh, second order Polynomial, and fifth order Ogden hyperelastic 

parameters with respect to changes in volume percentage of the collagen are given in Table 

2.10. In this table, the percentage of the hyperelastic parameters’ changes in comparison 

with the normal values given in Table 2.9 are reported. 

Table 2.10: Percentage variations of infarcted cardiac tissue hyperelastic parameters due to 

alterations of volume percentage (VP) of collagen fibers 

Model 
Hyperelastic 

Parameters 
Collagen (Low VP) Collagen (High VP) 

Yeoh 

∆C1 (Pa) -7.86 4.87 

∆C2 (Pa) -7.67 8.67 

∆C3 (Pa) -8.81 -3.27 

Second order 

Polynomials 

∆C10 (Pa) -5.33 11.22 

∆C01 (Pa) 17.13 -19.02 

∆C11 (Pa) -25.37 31.18 

∆C20 (Pa) 55.49 -79.63 

∆C02 (Pa) -5.36 4.34 

Fifth order Ogden 

∆µ1 (Pa) -6.22 3.98 

∆α1  -1.84 -1.53 

∆µ2 (Pa) 5.17 -5.31 

∆α2 -1.23 -0.54 

∆µ3 (Pa) -16.44 -8.51 

∆α3 -2.77 -0.46 
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∆µ4 (Pa) -4.21 4.63 

∆α4 -1.92 -0.54 

∆µ5 (Pa) 3.47 36.06 

∆α5 -1.08 -0.77 

2.4 Discussion and Conclusions 

This article presents a novel method for cardiac tissue mechanics modeling. The method 

employs FE framework to relate the ultrastructure of cardiac tissue to its intrinsic 

mechanical properties. To this end, it takes into account various aspects of the passive 

cardiac tissue mechanics including nonlinearity and anisotropy by incorporating essential 

tissue constituents and their associated mechanical properties into the FE model 

framework. The prominence of cardiac tissue microstructural constituents in shaping its 

macroscopic mechanical characteristics arises from the sophisticated myocardial tissue 

ultrastructure which is formed by an intricate fibrous organization of diverse tissue 

elements [26]. Various cardiac pathologies are often caused by significant alterations in the 

underlying tissue constituents and their mechanical properties [26,40,49-51]. As such, the 

proposed technique can be effectively used to find a range of models spanning all possible 

cardiac tissue pathologies associated with tissue microstructure alterations. The proposed 

modelling technique involves two steps of modeling the background part of cardiac tissue 

followed by modelling the whole cardiac tissue. In each step, respective ultrastructure 

elements, their known properties and volume percentages were taken into account. 

The technique was applied for normal cardiac tissue, leading to stress-strain curves 

pertaining to both fiber and cross-fiber directions. These curves were compared to cardiac 

tissue stress-strain data reported in [11]. For both directions good agreement was observed 

for the normal tissue with errors of 16.17% and 8.25% obtained in the fiber and cross-fiber 

direction, respectively. It is noteworthy that efforts were not made to change the volume 

percentage of various constituents and their parameters within acceptable range using 

systematic optimization algorithm to achieve minimum errors. While employing such an 

optimization algorithm is expected to force a higher degree of agreement, it is unnecessary 

in the context of this study given that there is always some variability in tissue constituents’ 

stiffness and volume percentage parameters among patients. Overall, the errors are 

sufficiently low which demonstrate a solid proof of concept to the proposed modeling 
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technique. The fiber and cross-fiber stress-strain curves obtained from the proposed 

method were fitted to the hyperelastic anisotropic model presented in [11] and it was 

observed that the calculated parameters were in the range of the parameters reported in 

[11], once more demonstrating the validity of the proposed method. We also performed ad-

hoc sensitivity analysis to assess the extent of tissue stress-strain curve alterations in the 

fiber and cross-fiber directions with respect to tissue constituent volume percentage 

alterations (see Figures 2.7 and 2.8). Results showed that the impact of myofibrils and 

mitochondria alteration are more significant than the impact of collagen fibers and 

fibroblasts alteration. One of the important outcomes of this work is demonstrating the 

significance of the mitochondria’s impact on cardiac tissue mechanical behavior. It is 

noteworthy that relevant structural studies of cardiac tissues [23-25] typically investigated 

the influence of myofibrils and collagen fibers as the major players influencing cardiac 

tissue mechanics whereas our results reveal that the mitochondria is also a major player. 

This conclusion is expected because of its high volume percentage in the cardiac tissue 

microstructure. The sensitivity analysis was also conducted to assess the hyperelastic 

parameters’ alterations with respect to tissue constituent changes. This was carried out in 

conjunction with the cardiac tissue hyperelastic model presented in [11], and it was 

observed that parameter alterations arising from myofibrils and mitochondria changes are 

more significant, which consolidates the fact that these constituents have major roles in 

influencing cardiac tissue mechanics. 

The proposed method was also applied for modeling infarcted myocardial tissue to 

demonstrate its validity in predicting intrinsic mechanical properties of common 

pathological cardiac tissue. In the fibrotic phase after the onset of myocardial infarction, it 

is known that a new network of collagen fibers is deposited in the infarction area which is 

composed of thicker fibers with more cross-linking, both contributing to higher stiffness. 

This stiffness elevation is justified by the theory of spring structures mechanics which can 

be used to model coiled collagen fibers. The following relation was developed in [52] for 

the spring constant: 

4

364

Gd
k

r N
           (2.7) 
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where G  is the shear modulus of the spring material, d  is the diameter of the rod from 

which the spring is made, r  is the distance from the axis of the spring to the centroid of 

the rod’s cross-section, and N  is the number of active coils of the spring. According to this 

equation, the spring constant (which reflects its stiffness) is proportional to the 4th power 

of d . It is known that thicker collagen fibers are developed in infarction area [42-43], 

implying higher d values and leading to significantly higher stiffness. It is also known that 

more extensive cross-linking is developed among the collagen fibers in infarction tissue 

area [44-45]. Such elevation in cross-linking can be accounted for by considering fewer 

active coils ( N ) for the collagen fibers, again leading to further elevation of stiffness 

according to the Equation (2.7). To our knowledge, no quantitative information is available 

to characterize the stiffness of collagen fibers developed in scar cardiac tissue. As such, we 

assumed that the Yeoh hyperelastic parameters ( iC ’s) of collagen fibers in infarcted cardiac 

tissue are larger than those of normal cardiac tissue by a constant factor larger than one. 

This factor was determined using 1D optimization whereby it was changed systematically 

until the best agreement between calculated and experimental stress-strain data of infarcted 

cardiac tissue was achieved. The uniaxial stress-strain curve obtained as such was 

compared to corresponding collagenous scar tissue data reported in [52], which showed an 

error of 10%, demonstrating a good agreement. While multi-dimensional optimization 

could potentially achieve parameters leading to better agreement, it is hard to assess 

resulting parameters because of potential convergence to incorrect optimum values. The 

uniaxial stress-strain data of infarcted cardiac tissue obtained in this part of the study were 

fitted to Yeoh, second order Polynomial, and fifth order Ogden hyperelastic models, and 

corresponding hyperelastic parameters were calculated. The sensitivity of the stress-strain 

curve of the infarcted cardiac tissue was also investigated with respect to changes in the 

volume fraction of the collagen as the main and dominant component of the infarcted scar. 

Resulting range of the stress-strain curves of infarcted tissue was also presented in Figure 

2.11 with respect to the variations in the collagen fiber content. The figure portrayed a 

relatively large range of stress-strain behavior especially at higher strains. Variations of the 

hyperelastic parameters of the scar tissue with respect to alterations in the collagen’s 

volume percentage was also investigated which also showed relatively large changes. 
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The chief advantage of the proposed tissue modeling approach lies in its great flexibility 

in mimicking diverse cardiac tissue pathologies, since pathology spectrum pertaining to a 

disease can be modeled by merely altering the volume percentage and type of the tissue 

constituents according to severity of the pathophysiological conditions. While most of the 

microstructural-based techniques presented in [23-25] only consider the contribution of the 

myofibrils and collagen in drawing the constitutive law of the cardiac tissue, the proposed 

method considers other constituents of the cardiac tissue such as fibroblast and 

mitochondrion while it is capable of accommodating more constituents if needed. The 

model presented in [23] which considers a network composed of myofibril and collagen 

fibers is based on a 2D in-plane Kirchhoff stress-strain relation; thus it has limitations in 

capturing the tissue’s actual 3D microstructure. The FE-based approach presented in 

[10,20] for modeling microscopic collagen networks in the tissue has better performance 

in modeling fine features of collagen fibers in the tissue microstructure. However, it 

requires solving a large scale nonlinear optimization problem while it considers the two 

parts collagen fibers and background tissue where the collagen fibers are embedded. An 

important advantage of the proposed technique is the utility of its straight forward concept 

of decomposition of cardiac tissue into the two main parts of background tissue (passive 

part) and myofibrils (active/passive part) where the mechanical properties of each part can 

be easily attained separately using the proposed approach. This tissue decomposition 

strategy is consistent with the Hill’s model used extensively for myocardial contraction 

modelling. As such, the proposed model can be effectively used in conjunction with 

myocardial contraction models where various pathologies and their impact on cardiac 

mechanics can be systematically investigated. A major limitation of the proposed method 

is its accuracy dependence on the input parameters of the model obtained from tissue 

morphological analysis. These parameters include normal and pathological cardiac tissue 

constituents and their associated volume percentages as well as intrinsic mechanical 

properties. The higher the accuracy of the input parameters the higher the accuracy of the 

proposed composite tissue model. 
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Chapter 3  

3 A Novel Biomechanical Computational Model of 
the Left Ventricle using a Composite Material 
Approach  

The material presented in this chapter is under review at the International Journal of Engineering 

Science. 

3.1 Introduction 

OMPUTATIONAL models of cardiac mechanics and electrophysiology can be 

utilized as effective tools in clinical systems of diagnosis and patient-specific therapy 

planning [1-3]. These models can assist clinicians to classify myocardial pathologies, adopt 

appropriate therapeutic procedures, and even predict outcome of therapies [2,4-5]. The 

heart function is similar to that of a mechanical pump while any pathological condition is 

associated with mechanical alteration that may alter its efficiency. These alterations can be 

quantified in terms of parameters such as ejection fraction (EF), displacement, strain, and 

stress fields. For instance, prolonged hypertension yields significant elevation of end-

systolic wall stress and depression of fractional fiber shortening, leading to thick-walled 

hypertrophic ventricles which is a cardiac physiological response to the associated 

excessive workload [6]. Cardiac ischemia is another prevalent coronary artery disease 

which may be followed by myocardial infarction (MI) in acute cases. Infarcted scar 

immediately exhibits a mechanical response (e.g. considerably weaker contraction 

compared to normal tissue) [7-9]. It is subsequently replaced by stiffer fibrous tissue 

following fibrosis phase. Stiffer collagenous scar remaining after fibrosis amplifies 

mechanical stress in the infarct region, leading to irregular stretching patterns within the 

myocardium [7-8]. Accordingly, local and global alterations of the mechanical response of 

C 
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pathological myocardium can be utilized as valuable clinical data for effective diagnosis. 

Such alterations are quantifiable using accurate cardiac mechanics models. 

Over the past few decades, diverse computational models of cardiac mechanics were 

developed based on various assumptions characterizing the cardiac tissue mechanics. 

While linearity and isotropy have been utilized as simplifying assumptions for myocardial 

modeling [10-12], it is well-known that cardiac tissue can be accurately characterized by 

anisotropic hyperelastic models [13-15]. The majority of hyperelastic anisotropic models 

postulate a constitutive law in the form of an overall strain energy function of cardiac tissue 

[16-20]. While efficient, such models are not easily adaptable for cardiac pathologies 

which are associated with substantial alterations in tissue microstructure and their 

corresponding properties [21-25]. Recent models consider different constitutive laws for 

the pathological part of the myocardium. For instance, [26-27] assign different constitutive 

laws to regions with left ventricular (LV) aneurysm. Moreover, with advances in cardiac 

tissue engineering and biomaterial therapies, pathological parts (e.g. ischemic lesions) are 

replaced by biomaterial with different mechanical properties [28-30] to improve the heart 

mechanical function and prevent further remodeling. Hence, it is desirable to have cardiac 

mechanics models adaptable to diverse pathological and therapeutic conditions by locally 

assigning altered mechanical properties based on existing knowledge of corresponding 

tissue microstructure alteration. Conventional FE-based cardiac computational models 

involve complex non-linear FE algorithms which are often implemented by custom-

developed computer codes [16-19]. Such models are not easily adaptable for 

implementation in commercial software FE packages [5, 20]. Recently, valuable endeavors 

have been made to implement realistic diastolic and systolic cardiac mechanics models 

using available off-the-shelf FE software packages [31-32]. However, such 

implementations require user-defined subroutines which are not publicly available for the 

research community. Here, we propose a novel LV mechanical model which takes into 

account tissue anisotropy, hyperelasticity, and active fiber’s contraction forces. An 

important feature of the proposed model is that it can be implemented in commercial FE 

software packages without requiring user-defined subroutines while it is easily adaptable 

to both normal and pathological LV’s contraction scenarios. The novelty of the model is 

that it treats the myocardial tissue as a composite material including a background tissue 
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through which microscopic reinforcement bars (fibers) are distributed to undergo variable 

contraction forces. The model was utilized to mimic LV diastolic and systolic mechanical 

behavior and its contractile performance was compared with other in silico models and 

corresponding in vivo measurements. 

3.2 Materials and Methods 

3.2.1 Composite Material Model 

The LV contracts as a result of contraction force generation within the cardiac fibers, 

leading to blood pressure alteration applied to its endocardial surface. In fact, cardiac 

contraction forces work to maintain this evolving blood pressure and to continue the LV 

contraction necessary for pumping the blood out of its cavity. As shown in Figure 3.1 (a), 

in the proposed FE mechanical model cardiac tissue is decomposed into two major parts: 

myofiber and background tissue (non-myofiber). The myofibers’ contraction forces 

represent the active stress distribution through the LV fibers. This is consistent with well-

established models of the heart muscle such as the three-element Hill’s model [18]. In this 

model, the myocardial tissue is mechanically simulated using two parallel elements: active 

element (fiber) and passive elastic element (see Figure 3.1 (b)). The active and elastic 

elements represent the fibers while the passive element mimics the whole tissue. According 

to Hill’s model, active contractile stresses are developed within the active elements. This 

leads to contraction in both of the active (element connected in series) and passive elements 

(connected in parallel) since there is bonding between the fibers and background part which 

prevents slipping along interfaces of the tissue ultrastructural parts. As illustrated in Figure 

3.1 (a), this contraction creates stresses in both of the fibers (tension) and background 

(compression) such that mechanical equilibrium is maintained according to the momentum 

balance principle [33]. This tissue decomposition provides great flexibility to model 

patient-specific transverse isotropy of cardiac tissue [4-5,7-8], and to assign different 

passive mechanical properties and active contraction inputs to each part consistent with 

health/pathology state. It is noteworthy that alteration of each tissue part’s mechanical 

properties influences both parts due to their bond. Furthermore, since each part consists of 

a single material, it is possible to use typical constitutive equations implemented in 

commercial FE software packages to describe its passive behavior. This approach allows 
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effective modeling of pathological microstructure alteration manifested differently in each 

part. 

3.2.2 Major Elements of the LV Model 

The FE based LV modeling approach is illustrated in Figure 3.2 [18]. A realistic LV 

geometry is used for FE simulation which may be obtained from cardiac MR image 

segmentation. In this work, we used realistic in silico geometry based on canine heart 

anatomy. This geometry was discretized into a FE mesh. All FE simulations presented in 

this study were conducted using the commercially available Abaqus/Standard FE solver 

[34]. In the proposed model, the myocardial tissue is considered as composite material 

consisting of two main parts: myofibers and background tissue. These parts are considered 

as building blocks of tissue in the FE model consisting of background tissue and 

reinforcement bars (fibers). The bars are prestressed incrementally to simulate myofibers’ 

contraction as described in Section 3.2.3. Their orientations are in accordance with the 

fibrous cardiac anatomy, leading to a self-contained anisotropic model. As a result of 

applying prestress to the bars in each element while blood pressure is applied to the LV 

endocardial surface, the 3D LV model deforms. Since the LV undergoes large deformation 

during contraction while its tissue is intrinsically nonlinear, hyperelastic models are used 

 
 

 

 

(a) (b) 

Figure 3.1: Schematic of composite model of cardiac tissue including two parts: myofibers 

and background while active contractile myofiber forces generate stresses in both parts of the 

tissue to maintain equilibrium according to the momentum balance principle (a), three-element 

Hill’s model for cardiac tissue (b). 
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for modeling both of the background and fibers. The active contraction force is mimicked 

by applying longitudinal fibers’ prestress along their directions. This prestress is input 

through ABAQUS as initial stress condition at the start of each loading increment. The 

blood pressure is assumed to be applied uniformly to the LV’s endocardial surface. The 

model works based on equilibrium of the active stresses, passive stresses, and blood 

pressure of the LV tissue at each contraction instance of the cardiac cycle in accordance 

with the Cauchy’s Equation of motion [33]. As shown in Figure 3.2, by applying the active 

stress and blood pressure to the LV model and through solving FE equations through 

ABAQUS, the LV’s 3D displacement field can be achieved. 

 

Figure 3.2: Flow chart illustrating biomechanical simulation of the LV. 

The proposed model has three major inputs to conduct the FE modeling. The first input is 

endocardial LV blood pressure quantified according to the canine LV blood pressure data 

measured in vivo during a cardiac cycle [35]. The second input is time variable active fiber 

directional stress component which is generated according to the time-varying elastance 

model as described in Section 3.2.3. The third input is the mechanical properties of 

background tissue and myofibers. 
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3.2.3 Contraction Model and Elasticity Theory 

Myocardial active fiber directional stress, which is a major input of the proposed model, is 

defined using the elastance model governed by the following Equation [36-37]: 

2

0
0 max 2 2

0 50

1

2
t

Ca
T T C

Ca ECa



          (3.1) 

where 
50ECa  is the length-dependent calcium sensitivity parameter [36-37]: 
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          (3.2) 

Here 0 max( )Ca , B , l , and 0l  are maximum peak calcium concentration, a constant, current 

sarcomere length, and sarcomere length at which no active tension develops, respectively.

tC  is dependent on time after contraction onset, t , and l  as follows [36-37]: 
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          (3.4) 

Here 0t and rt  are time-to-peak tension constant and relaxation duration which is a linear 

function of l , i.e. rt ml b   where m  and b  are constants. l  is calculated using fiber 

strain, 11E , i.e. 112 1Rl l E   where Rl  is the stress-free sarcomere length at reference 

configuration. The material constants used for our FE simulations were chosen according 
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to [37]: 0 4.35 /Ca mol L , 0 max( ) 4.35 /Ca mol L , 
14.75B m  , 0 1.58l m , 

0 0.1t s , 11.0489 .m s m  , 1.429b s  , and 1.85Rl m . In this work, 
0T  is 

applied to the LV model incrementally through [0, t0+tr] using the above equations. This 

incremental active stress is applied as initial stress which leads to transfer of part of the 

stress to the background tissue after equilibrium is reached. The incremental approach used 

in ABAQUS for FE analysis under initial stresses is described in the next section. To model 

nonlinearity in both background tissue and myofibers, we considered the 2nd order Ogden 

hyperelastic model [33]: 

�̃� = ∑
2𝜇𝑖

𝛼𝑖
2
(𝜆1

−𝛼𝑖 + 𝜆2
−𝛼𝑖 + 𝜆3

−𝛼𝑖 − 3)𝑁
𝑖=1 + ∑

1

𝐷𝑖
(𝐽𝑒𝑙 − 1)2𝑖𝑁

𝑖=1           (3.5) 

where 𝛼𝑖 and 𝜇𝑖 are hyperelastic coefficients, and 𝜆𝑖s are principal stretches. 

3.2.4 Calculation of LV Stresses under Initial Stress Condition 

In the proposed method, the active stress is considered as initial stress in the LV myofibers. 

Assuming fiber direction along the local Z axis, this initial stress in tensor form is: 

𝜏0 = [
0 0 0
0 0 0
0 0 𝑇0

]          (3.6) 

where 𝑇0 is the time varying active stress as given in Equation (3.1) in the paper. To 

conduct FE analysis of composite hyperelastic material under initial stress (𝜏0), one 

approach is founded based on deriving a strain energy function of deformation gradient 𝐹 

and the initial stress 𝜏0 in the form of 𝑈 = 𝑈(𝐹, 𝜏0) [38-39]. Such strain energy functions 

have been derived for only few hyperelastic models with simple mathematical form (e.g. 

Neo-Hookean model). Derivation of such function for more complex hyperelastic models 

(e.g. Ogden model) is mathematically quite involved. ABAQUS follows a more general 

numerical approach that does not require deriving such a strain energy function, and it uses 

the material’s original strain energy function. It follows the incremental loading method in 

conjunction with iterative nonlinear equations solution that ABAQUS uses to solve 

nonlinear FE models. This approach is described in the form of a pseudo code for 
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calculating stresses in LV model as follows. It is noteworthy that this code follows the 

composite background-rebar structure used to model the myocardial tissue in this work. 

1. For current active fiber (rebar) stresses Tij (i = 1, …, M; j = 1, …, N where M and N are 

number of elements in the LV model and number of rebars in each element, 

respectively), which are calculated using Equation 1 in the paper, perform the 

following:  

a. Obtain solution of the LV using the incremental loading approach by adding a 

very small increment Tij to the current loading of Tij. 

b. In each element i (i = 1, …, M), calculate the start and end displacements of 

each fiber corresponding to Tij by ignoring the presence of background tissue. 

For this purpose, use fixed boundary conditions or current displacement 

estimate of the fiber’s start as its start point displacement ijs. To calculate its 

end point’s displacement ije, use the fiber’s loading increment Tij and its 

tangent modulus consistent with the fiber’s hyperelastic model and current Tij 

to calculate the fiber’s elongation corresponding to Tij. This elongation is 

added to the start point’s displacement to obtain its end point displacement. This 

is performed for all fibers (rebars) in element i (j = 1, …, N).  It is noteworthy 

that fibers’ start and end points displacements are calculated sequentially for 

the elements such that the fibers’ start point displacements of the next element 

(for i = i + 1) are known from the previous sequence. 

c. Use the displacements obtained in b in conjunction with the element’s shape 

function to calculate the element’s nodal displacements corresponding to Tij.  

d. At this stage, fibers’ active stresses are zero as they reached their current “l0” 

length. This happens at the expense of compressing the background tissue, 

leading to disequilibrium. In order to reach equilibrium, ABAQUS uses the 

incremental loading approach towards -Tij (i = 1, …, M; j = 1, …, N). At a 

loading point -αTij where α < 1 in the incremental loading procedure, 

convergence towards force equilibrium cannot be achieved. The loading point 

prior to this point will be regarded as the solution corresponding to Tij +Tij. 
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2. Set Tij to Tij +Tij and go to 1 unless Tij +Tij has reached Tij =Tij +Tij which is the next 

active stress of interest through the heart beat cycle. 

3. Stop 

3.2.4.1 Rebar Stress Calculation 

To calculate the myofiber (rebar) stress using ABAQUS output which only pertain to 

background tissue, we start with myofiber’s strain energy function
1 2 3( , , )U I I I where I1, I2, 

and I3 are the strain invariants. For this strain energy function the Cauchy stress can be 

calculated using the following Equation [33]: 

1 2

3 1

3 1 2 2

2
U U U U

J I I
I I I I


     

     
     

σ I B Β           (3.7) 

where σ , I , and B  denote Cauchy stress tensor, identity tensor, and left Cauchy-Green 

deformation tensor, respectively. In addition, 𝐽 is the volume ratio and B  is the left 

Cauchy-Green deformation tensor which is a function of the deformation gradient tensor 

F. These parameters are defined as follows [33]: 

𝐽 = √𝐼3 = 𝜆1𝜆2𝜆3           (3.8) 

TB FF           (3.9) 

where 𝜆𝑖s represent principal stretches. Also, F u +𝐼 where 𝐼 is the identity matrix 

and 𝑢 is the displacement field. This tensor’s components can be calculated as follows: 

i
ij ij

j

u
f

x



 


          (3.10) 

where ij  is Kronecker delta and jx  denotes the jth component of the coordinate system.  

In the Ogden model, the strain energy function is in terms of principle stretches instead of 

strain scalar invariants. In this case the following derivatives need to be calculated before 

substituting in Equation (3.7): 
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          (3.11-c) 

Equation (3.7) can be used for rebar stress calculation with the rebars’ left Cauchy-Green 

deformation tensor of each element calculated using Equation (3.9). The left Cauchy-Green 

deformation tensor obtained based on the above description is valid for the background 

tissue only as it is calculated using ABAQUS displacements pertaining to this tissue. 

Hence, it must be modified to obtain the rebar’s counterpart. We assumed that the 

deformation field of the rebar is the same as the deformation field of the background tissue 

except the component in the rebar’s direction. This component should be updated based on 

the initial stress of the rebar. We start with the strain 
0  that occurs in the rebar to achieve 

its zero state of stress which corresponds to l0. This can be calculated using the rebar’s 2nd 

order Ogden model in conjunction with the myofiber’s current stress T0 calculated using 

Equation (3.1). As illustrated in Figure 3.3, the actual strain of the rebar is smaller than 0  

as the background part prevents it from full contraction. Assuming that the background 

tissue deformation is ∆𝒃 and that of the rebar corresponding to 0  is ∆𝒓, ∆𝒓,𝒃𝒐𝒏𝒅 the rebar’s 

actual deformation considering its bonding with the background tissue is ∆𝒓,𝒃𝒐𝒏𝒅= ∆𝒓 −

∆𝒃. 
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Figure 3.3: The rebar and background tissue in the reference state before contraction (a) and 

after contraction (b). 

As such, the Cauchy-Green deformation tensor component of the rebar part which is in the 

rebar direction ( zzb ) is: 

0 ,zz zz backgroundb b             (3.12) 

In developing Equation (3.12), it is assumed that the rebar is along the Z direction. The 

other components of the Cauchy-Green deformation tensor should be left intact as it is 

equal to those of the background tissue. The modified Cauchy-Green deformation tensor (

B ) is used in conjunction with Equation (3.7) to calculate the Cauchy Stress tensor of the 

rebars within each element. 

3.2.5 In silico LV modeling 

We applied the proposed technique to a canine LV in silico model [18] where we 

discretized the geometry into a FE mesh shown in Figure 3.4 (a). The fibers were simulated 

as bars (rebars in ABAQUS) aligned in layers in each element, occupying ~60% of its 

volume according to morphological measurements of the LV [40]. The rest of each 

element’s volume was considered as non-myofiber part or background tissue where the 

fibers were distributed. The “rebars” orientations were incorporated into the LV geometry 

through alteration of the fiber helix angle from ~-60º at endocardium to ~+60º at 

epicardium [41-42]. To account for transmural fiber helix angle variations, the analytical 

model fitted to measurement data, as described in [18], was utilized. 
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For both of the background tissue and fibers, we applied hyperelastic models based on 

stress-strain data given in [43]. 

3.2.5.1 Passive Inflation during Diastole 

A major determinant of the passive mechanical function of the LV model is diastolic cavity 

pressure and volume variations. To assess these variations, following [44-46], the LV 

model was highly inflated using a maximum endocardial blood pressure of 3 kPa through 

12 equal loading steps. For strain results comparison, blood pressure of 1 kPa was also 

applied [47-48]. 

3.2.5.2 Systolic LV Mechanics 

Two phases were contemplated for systolic LV mechanics. The first is diastole where the 

LV model was inflated by 0.63 kPa blood pressure [49]. The second is systole where the 

myofibers contract with time-variable active stresses while the maximum isometric tension 

achieved at the longest sarcomere length, maxT  in Equation (3.1), was set to 150 kPa 

[37,47]. This parameter was iteratively determined such that reasonable EF value of 55% 

was observed. This EF value is within the normal range for a canine LV as reported in [50-

51]. As indicated in [37,47], end-systole starts 350 ms after the end-diastolic instance. The 

contraction forces, were defined as initial stresses applied to the “rebars”. These stresses 

were applied incrementally in 10 separate time instances throughout a cardiac cycle 

according to the elastance model described in Section 3.2.3. The time-varying endocardial 

 
 

(a) (b) 

Figure 3.4: The In silico LV model constructed using finite elements (a), and blood pressure 

variations during a cardiac cycle [35-36]. 
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LV blood pressure is illustrated in Figure 3.4 (b) where the maximum magnitude of blood 

pressure is ~14 kPa [35,37,47]. This pressure was also applied incrementally in 10 separate 

time instances as a uniform pressure to the endocardial surface of the in silico model. The 

LV mechanical model presented here does not include the heart’s atria, valves, or valve 

plane. As a result, the LV base is free to move and deform. Since the atria and valves 

hamper the deformation of the LV basal nodes, the longitudinal displacement of the LV 

basal nodes was restricted while the circumferential displacements of the epicardial basal 

nodes were also constrained, reflecting the LV model’s boundary conditions. It is 

noteworthy that no boundary condition has been applied to the septum area where there is 

an interface between the LV and RV. This assumption is very common in the area of 

computational LV models as the lack of such a boundary condition is not expected to have 

a significant impact on the LV mechanical behavior due to its much thicker and more 

muscular structure compared to the RV wall. Such marked differences in the thickness and 

muscularity between the LV and RV imply minimal relative effect of the flabby RV wall 

on the LV mechanics. 

3.3 Results 

3.3.1 Passive Inflation during Diastolic Phase 

The LV volume was computed for each loading step corresponding to the 3 kPa pressure 

before being normalized to the unloaded volume of 40 ml. The calculated normalized 

pressure-volume relationship obtained using our model is shown in Figure 3.5. In this 

figure the pressure-volume curves obtained from another simulation study [42] and results 

of ex vivo measurements of a canine LV [45-46] are illustrated. Corresponding to the 1 kPa 

diastolic blood pressure, Figure 3.6 illustrates all passive strain components which are 

compared with those obtained from corresponding measurements [48] and another model 

[47]. Stress distribution through the LV model during diastolic phase was also assessed as 

illustrated in Figures 3.7 and 3.8. As composite material of background tissue and fiber is 

considered to model cardiac tissue, different stresses develop in each part that satisfy force 

equilibrium and deformation consistency. ABAQUS outputs stress distribution in the 

background tissue but not fiber stresses. Figure 3.7 illustrates transmural variations of 

maximum principle, radial, circumferential, and longitudinal stresses in the background 
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tissue. The longitudinal fiber stresses were calculated using T0 and the LV displacement 

field based on force equilibrium and deformation continuity at background/myofiber 

interface. This was further described in section 3.2.4.1. The transmural distribution of these 

fiber stresses along the LV wall thickness is illustrated in Figure 3.8 where the stresses at 

three regions of equatorial area, near base, and near apex are given. 

 

Figure 3.5: LV pressure-volume variations in diastolic phase. 

 

 
 

(a): Radial strain variation (b): Circumferential strain variation 

  
(c): Longitudinal strain variation (d): Rad-circ. strain variation 
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(e): Rad-long strain variation (f): Circ.-long strain variation 

Figure 3.6: Transmural variations of the passive strain components at the LV equatorial area 

from endocardium (indicated by 0) towards epicardium (indicated by 100) when a diastolic 

blood pressure of 1 kPa was applied to the LV model. The strains are referenced w.r.t the zero-

stress unloaded configuration. 

 

 
 

(a) (b) 

  

(c) (d) 

Figure 3.7: Transmural variations of the diastolic stress components within the background at 

the LV equatorial area from endocardium towards epicardium when a diastolic blood pressure 

of 1 kPa was applied to the LV model. Maximum principle stress (panel a), radial stress (panel 

b), circumferential stress (panel c), and longitudinal stress (panel d) are shown. 
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(a) (b) (c) 

Figure 3.8: Transmural variations of end-diastolic fibers stress at the equatorial area (a), transmural variations of 

end-diastolic fibers stress near the base (b), and transmural variations of end-diastolic fibers stress near the apex 

(c). 

3.3.2 Systolic LV Mechanics 

The systolic contraction of the model resulting from the time-variable loading described in 

Section 3.2.5.2 was evaluated by investigating all strain tensor components at end-systolic 

state which are illustrated in Figure 3.9. These strain components were compared with 

those obtained from corresponding LV function measurements [35] and the model 

presented in [47]. As an essential mechanical output of LV contraction, we also illustrated 

simulation results of stress distribution at end-systole through the LV model. Similar to 

diastolic phase, we presented distribution of these stresses within the background tissue 

part as provided by the FE solver (Figure 3.10) while the myofibers’ stresses illustrated in 

Figure 3.11 were calculated using the FE solver outputs in conjunction with mechanical 

equilibrium conditions as described in section 3.2.4.1. 

  

(a): Radial strain variation (b): Circumferential strain variation 



108 

 

  

(c): Longitudinal strain variation (d): Rad-circ. strain variation 

  
(e): Rad-long strain variation (f): Circ.-long strain variation 

Figure 3.9: Transmural variations of end-systolic strain components at the LV equatorial area 

from endocardium (indicated by 0) towards epicardium (indicated by 100) when time-variable 

active stress and blood pressure were applied to the LV model. The strains are referenced w.r.t 

end diastole. 

 

 

  

(a) (b) 
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(c) (d) 

Figure 3.10: Transmural variations of end-systolic stress components within the background 

at the LV equatorial area from endocardium towards epicardium when time-variable active 

stress and blood pressure were applied to the LV model. Maximum principle stress (panel a), 

radial stress (panel b), circumferential stress (panel c), and longitudinal stress (panel d) are 

shown. 

 

   

(a) (b) (c) 

Figure 3.11: Transmural variations of end-systolic fibers stress at the equatorial area (a), transmural 

variations of end-systolic fibers stress near the base (b), and transmural variations of end-systolic fibers stress 

near the apex (c). 

3.4 Discussion and Conclusions 

In this article a novel approach for cardiac mechanics modeling is presented. The novelty 

of this model lies in decomposing the myocardial tissue into background tissue and 

microscopic reinforcement bars distributed throughout its volume. These “rebars” simulate 

myofibers where their orientation follow the LV fibrous anatomy, leading to a self-

contained anisotropic model. Both of the background and myofibers parts were considered 

as hyperelastic materials. A major strength of the proposed model is that it can be 

implemented using off-the-shelf FE solvers with nonlinear analysis capability. It does not 

require complex custom-developed computer codes or user-defined subroutines while it 

incorporates all necessary mechanical complexities of the myocardial tissue. Moreover, it 
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is predicted that the proposed technique is more computationally efficient and less prone 

to divergence and computational instability as commercial FE codes are typically well 

integrated and optimized for high computational efficiency. The model was applied in 

silico to simulate a canine LV. Resulting parameters at diastole and systole phases were 

compared to corresponding canine experimental measurements and relevant LV computer 

models. The passive LV inflation quality was assessed based on pressure-volume 

variations obtained using the model illustrated in Figure 3.5. As seen in this figure, the 

calculated pressure-volume curve agrees reasonably well with experimental data acquired 

from 6 isolated potassium-arrested canine LVs [45]. These curves also show a good 

agreement with results obtained from Nash et al. model, especially at higher extensional 

blood pressures [44]. Passive transmural strain components distribution is also illustrated 

in Figure 3.6 where all three radial, circumferential, and longitudinal strain components 

agree well with the measurements and mechanical model. Moreover, the results show 

similar reduction or growth trends of corresponding strain components while moving from 

endocardium to epicardium. The good agreement achieved for pressure-volume variations 

and strains confirms validity of the diastolic performance of the presented LV model. The 

shear strain component results all fall within available measured range except 

circumferential-longitudinal strain component which is slightly underestimated at 

endocardium. It was noticed that calculated shear strain component profiles along LV 

thickness deviate slightly from patterns of corresponding experimental data. As indicated 

in [44,47,52], heterogeneity of LV tissue and imperfect anisotropy consistency maybe 

responsible for this deviation. 

The passive stress distribution at end diastole in both parts of the cardiac tissue (i.e. 

background and myofiber) are shown in Figures 3.7 and 3.8. Figures 3.7 (a) and 3.7 (c) 

indicate that the maximum principle and circumferential stresses decrease from 

endocardium towards epicardium reflecting the higher influence of blood pressure loading 

at the endocardium. The radial stress is negative at endocardium and negligible at 

epicardium as observed in Figure 3.7 (b). This is reasonable since it is expected that the 

compressional effect of the blood pressure on the LV declines by moving from endocardial, 

reaching zero at epicardium consistent with boundary-conditions. The longitudinal stresses 

are tensile; they slightly increase from endocardium towards epicardium (see Figure 3.7 
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(d)). These stresses are consistent with the positive longitudinal strains which indicate LV 

elongation expected at diastole. The fiber stress variations are illustrated in Figures 3.8 (a), 

(b), and (c). It is maximum at the endocardial region and minimum at mid-wall which 

agrees with results presented in [31,47]. The maximum stress attained at the diastolic state 

in the fiber direction is 3.6 kPa which is in the range of the maximum stress reported in 

[31,47]. 

The systolic contraction of the LV model was validated by comparing all diementional 

strain components distribution through the LV model (Figure 3.9). All three radial, 

circumferential, and longitudinal strains exhibit at least qualitative agreement while they 

are almost within measurement values obtained from anterior equatorial LV free wall of 

seven open-chest dogs reported in [35]. It is noteworthy that for radial strain, there is some 

insignificant overestimation at endocardial region and underestimation at epicardial region. 

However, considering the complexities of systolic ventricular function and comparing our 

systolic strains with those of the mechanical model presented in [47], confirm acceptable 

performance at systolic phase. Except the radial-circumferential strain component which 

are close to measured data, similar to other models [36-37,47], our model did not predict 

other shear stain components accurately. 

The ventricular end-systolic stress distribution in both background tissue and myofibers 

was illustrated in Figures 3.10 and 3.11. The maximum principle stresses as shown in 

Figure 3.10 (a), increases from endocardium towards mid-wall where it has maximum 

value, then decreases towards epicardium. As observed in this figure, a uniform negative 

principle stress is generated through the midventricular area reflecting the overall 

contraction of the LV. The radial stress is also negative (Figure 3.10 (b)) except at the 

farthest epicardial region. It deceases uniformly from endocardium towards epicardium, 

again confirming validity of the model’s contraction in the radial direction. The 

circumferential and longitudinal stresses (Figures 3.10 (c) and (d)) also decline from 

endocardium towards epicardium while their magnitude is negative (except for the most 

epicardial region for longitudinal stress), showing the LV model contraction in all 

directions. The longitudinal fiber stress (Figure 3.11) is maximum at mid-wall which is 

consistent with other LV models [31,41], again consolidating the validity of the proposed 



112 

 

model. The maximum fiber stress attained by the model is ~40 kPa which agrees well with 

values reported in [31,41]. 

Based on the systolic and diastolic performance of the LV model, it can be concluded that 

the concept of decomposition of cardiac tissue into background and myofibers part is 

effective for simulating cardiac mechanics using off-the-shelf FE solver while it provides 

more control on both active response and passive properties of various parts of the tissue 

which is necessary for modeling various pathologies. Such flexibility is essential in 

developing FE-based inversion algorithm for quantification of more accurate stress 

distribution through realistic LV model obtained from imaging data. 
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Chapter 4  

4 A Biomechanical Model of the Pathological Left 
Ventricle using a Composite Material Approach 

The material presented in this chapter has been submitted to Journal of Medical Engineering and 

Physics. 

4.1 Introduction 

EART diseases have attracted considerable attention in the medical community as 

the leading cause of death worldwide in all genders and ethnicities [1]. There is a 

wide spectrum of cardiac conditions such as rheumatic, hypertensive, ischemic, and 

inflammatory heart disease that can potentially hamper the critical heart role as a 

mechanical pump required to provide oxygen and nutrition throughout the body. 

Significant research efforts have been dedicated to various aspects of heart disease. Some 

of these efforts have been geared towards understanding of various cardiac pathologies 

including gaining insight into their early and late symptoms and complications, developing 

accurate methods for diagnosis and prognosis of these pathologies, and eventually treating 

them effectively and possibly least invasively [2-6]. To achieve these goals, a suite of tools 

are being developed including tools for mechanical modeling of pathological heart [7-10]. 

One of the important applications of cardiac mechanical models is to provide insight into 

normal heart’s pump function [2-3]. These models can also provide valuable insight into 

how specific pathological changes ensue certain mechanical alterations in the heart, leading 

to specific impediment in the heart function [11-13]. For instance, a mechanical model of 

the canine left ventricle (LV) under ischemic states, including immediate myocardial 

infarction, was developed using finite element (FE) method by applying instantaneous 

partial or complete loss of contractility to the ischemic region of the LV [14]. This study 

concluded that geometrical changes of the LV is directly related to the level and size of the 

H 
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ischemia within the LV wall, leading to depression of the stroke volume and ejection 

fraction (EF). Short QT syndrome (SQTS) is a cardiac arrhythmogenic disease which was 

investigated using an electromechanical model of the LV [15]. Through 3D displacements 

of the LV model obtained from simulations under SQTS condition, this investigation 

confirmed dissociation between ventricular repolarization and the end-systole mechanics 

which is in accordance with qualitative clinical observations. 

Other than their applications in generating LV functional data covering various types of 

pathologies with variable severities, myocardial mechanical models are applied to devise 

novel computer assisted therapeutic techniques for cardiac diseases and to predict outcome 

of planned treatments. Heart failure is a common adverse medical incident after ischemic 

cardiomyopathy. It gradually progresses as a result of cardiac remodeling. The Dor 

procedure is a surgical procedure used for restoring LV size, shape, and wall stress by 

replacing infarcted LV wall with endoventricular circular patch plasty. Using an LV 

biomechanical model, a Dor procedure performed on a male sheep was modeled and its 

anticipated mechanical function was studied through mechanical simulation [16]. The 

simulation showed remarkable increase in the EF matching experimental data obtained six 

weeks after the procedure, hence confirming the effectiveness of this therapy. Other 

research work used similar approach to investigate the mechanical consequences of 

injecting biocompatible hydrogels within infarcted LV regions, demonstrating the 

applicability of this treatment to prevent LV remodeling by reducing the average wall stress 

in both infarcted and remote areas [17-18]. 

Given its strength in modeling arbitrary geometries and tissue intrinsic properties, cardiac 

mechanical models have been used for an exciting application of patient-specific clinical 

diagnosis and therapy planning. For this purpose medical imaging in conjunction with 

cardiac mechanical simulators are utilized to personalize heart mechanical models towards 

more accurate simulations of patients’ pathologic heart [19-25]. Typical methods proposed 

for clinical diagnosis of heart diseases using imaging data utilize two approaches of 1) 

machine learning algorithms and 2) mechanical modeling in addition to inverse FE 

methods. In the first approach, visual clinical features such as LV wall motion, size, mass, 

geometry, and function characterizers such as EF pertaining to patients with known 
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diagnosis are identified/determined using cardiac imaging data such as ultrasound or 

magnetic resonance (MR) [19-22]. This processed data is used to train a mathematical 

function using a machine learning framework. After training and validation such function 

can be used to diagnose new cases. Some other studies utilized similar strategies such as 

Bayesian inference and Markov Chain Monte Carlo method for cardiac mechanics and 

electrophysiology model personalization through polynomial chaos and compressed 

sensing [21-22]. The second approach of utilizing inverse FE methods received significant 

attention over the past decade [23-28]. In [23-24,26-27], inverse FE approach was 

employed to match infarcted LV FE model based volume and strains with those of 

corresponding MR imaging data through systematically adjusting active response of the 

remote and border zones of cardiac tissue in the FE model. In [25,28] the same strategy 

was applied to adjust the active response of the cardiac tissue but a more complex non-

homogeneous distribution of tissue active response with higher resolution was utilized, 

providing more flexibility in mimicking local variations of the tissue response. In the case 

of inversion algorithm schemes, the core of all presented methods is a forward mechanical 

model of the LV which should be run iteratively within an optimization framework. Such 

a model must meet two essential requirements including computational efficiency and 

adaptability to model a heart disease with a range of severity. In this paper, we propose a 

novel mechanical model of the infarcted LV. This model can be utilized to investigate 

cardiac function under various forms and degrees of LV infarction. Furthermore, because 

of its effective implementation, it is expected to be highly adaptable for a broad range of 

infarction forms and intensities, rendering it suitable for inversion-based strategies. The 

model can be implemented using off-the-shelf FE software packages. It is founded on a 

composite model which decomposes cardiac tissue into background tissue and myofibers 

modeled as bars under initial stresses. The model was applied to an in silico infarcted LV 

and results showed good agreement with data obtained through in vivo measurements. 

4.2 Materials and Methods 

4.2.1 Composite Material Model 

Contraction force development within cardiac tissue fibers is the major element in the 

contractile function of the myocardium. Superposition of local active contraction forces 
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yields a considerable net shortening force through the whole myocardium which 

overpowers the evolving endocardial blood pressure leading to pumping the blood out of 

heart’s cavity. Through the entire cardiac cycle, mechanical equilibrium between different 

forces, i.e. active contractile forces, passive tissue stresses and blood pressure, is 

maintained at each point within the LV. To mathematically describe the mechanical 

equilibrium at each point of the myocardium, in accordance with the three-element Hill’s 

model [29] the myocardial tissue is modeled using two parallel elements: active element 

(fiber) and passive elastic element (see Figure 4.1). The active and elastic elements 

simulate the mechanical function of the fibers while the passive element represents the 

contribution of the background part of the tissue encompassing the fiber part. Consistent 

with this model, the proposed FE model decomposes the cardiac tissue into two parts of 

myofiber and background tissue (non-myofiber). The myofibers’ contraction forces 

represent the active stress distribution through the LV fibers. Due to connection between 

fibers and background tissue, contraction in the fibers during systole leads to contraction 

in both parts of the tissue. As suggested by Hill’s model (Figure 4.1), this contraction 

creates stresses in both of the fibers (tension) and background (compression) which 

continues until the mechanical equilibrium is reached under the well-known momentum 

balance principle in continuum mechanics [30]. The described tissue decomposition into 

passive and active (fibers) parts make it technically feasible to model cardiac tissue 

anisotropy in a self-contained way [4,31-33]. Moreover arbitrary intrinsic mechanical 

properties and active contraction force inputs can be assigned to each part of the tissue, 

rendering the model adaptable to model diverse pathologies. In the proposed model, the 

cardiac tissue strain compatibility is consistent with assuming full bonding between 

myofibers and background tissue. A major advantage of the tissue decomposition scheme 

used in the model is that each tissue part can be assigned intrinsic mechanical properties 

independent from the other. This is quite advantageous as it facilitates utilizing off-the-

shelf FE software packages to model a wide range of pathological tissues based on our 

understanding of tissue ultrastructure changes resulting from the pathologies. 
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Figure 4.1: Three-element Hill’s model for cardiac tissue. 

4.2.2 Major Elements of the LV Model 

The flowchart of the proposed FE based model is shown in Figure 4.2. In this work, we 

used a realistic in silico LV geometry developed based on canine heart anatomy [29]. A 

more realistic subject-specific LV geometry may be obtained by segmenting the subject’s 

cardiac MR or ultrasound image. The LV geometry was discretized into a number of finite 

elements to create the FE mesh shown in Figure 4.3. All FE simulations presented in this 

study were conducted using the commercially available Abaqus/Standard FE solver [34]. 

 

Figure 4.2: Flow chart illustrating biomechanical simulation of the LV. 

The model was applied to an infarcted LV case using the chosen geometry, leading to the 

FE mesh shown in Figure 4.3 (b). This infarcted LV model was constructed by considering 
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an almost circular infarction within the LV wall similar to the one in [24]. The infarction 

area is transmural while it expands from endocardium towards epicardium [23-24]. As 

illustrated in Figure 4.3 (c), this in silico infarction model also includes myocardial thinning 

and remodeling which were introduced by reducing the LV wall thickness at the infarct 

area by about 40% in comparison with the thickness of the normal wall region [32]. A 

border zone surrounding the infarcted region with depressed contractile function was also 

introduced consistent with myocardial infarction (MI) pathological features [23-24]. The 

thickness of the LV wall at the border zone was reduced by about 20% compared to the 

normal region [32]. A cross section view of the LV with the border zone is shown Figure 

4.3 (c). 

 

 
 

(a) (b) 

    

(c) (d) 

Figure 4.3: In silico normal and infarcted LV models constructed using finite elements: 

normal LV model (a), infarcted LV model with a circular infarcted region and border zone (b), 

and cross-section of the infarcted LV model with myocardial thinning from different views 

(c,d). 
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In the proposed model, the LV muscle tissue is idealized as a composite material consisting 

of two parts of myofibers and background tissue. These parts are utilized as the building 

blocks of the proposed LV finite element model. These blocks consist of fibers modeled 

by reinforcement rebars (fibers) and background tissue where the fibers are embedded. The 

rebars are prestressed incrementally to simulate myofibers’ active contraction within the 

tissue while their orientations follow the fibrous cardiac anatomy, leading to a self-

contained anisotropic model. The prestress is applied as an initial stress condition at the 

start of each loading increment. To incorporate large deformations and intrinsic 

nonlinearity into the mechanical modeling of the LV, hyperelastic models are used for 

modeling both of the background tissue and fibers. Blood pressure is assumed to be 

uniformly distributed on the LV’s endocardial surface. The model works based on the well-

known Cauchy’s Equation of motion enforcing the equilibrium of the active stresses, 

passive stresses, and blood pressure of the LV tissue at each contraction instance of the 

cardiac cycle [30]. To conduct FE analysis, the mechanical loads of active stress and blood 

pressure are applied to the LV model and the FE equations are solved, leading to the LV’s 

3D displacement field. Accordingly, the FE LV simulation in the proposed method has 

three major inputs. The first is endocardial LV blood pressure quantified according to the 

canine LV blood pressure data measured in vivo during a cardiac cycle [35]. The second is 

time variable longitudinal active fiber stress which is governed by the time-varying 

elastance model presented in [36-37]. The last is the hyperelastic parameters of background 

tissue and myofibers. For the normal cardiac tissue, measured stress-strain data given in 

[38] were used to determine the hyperelastic parameters of the passive background tissue 

and myofibers along their direction. For the infarct, the stress-strain curves given in [39] 

for infarcted myocardium were used to calculate the hyperelastic parameters of the 

background tissue and myofibers in their directions. 

4.2.3 Contraction Model and Elasticity Theory 

In the proposed model, the time variations of the active fiber longitudinal stress follow the 

elastance model which is described using the following Equation [36-37]: 



124 

 

2

0
0 max 2 2

0 50

1

2
t

Ca
T T C

Ca ECa



          (4.1) 

Here maxT and 0( )Ca  are the maximum isometric tension at the longest sarcomere length 

and intercellular calcium concentration, respectively. 50ECa  is the length-dependent 

calcium sensitivity parameter which is a function of maximum peak calcium concentration, 

current sarcomere length, and sarcomere length at which no active tension develops, 

respectively. tC  is a time-dependent parameter described as follows: 
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where   depends on time after contraction onset, sarcomere length, time-to-peak tension, 

and relaxation duration [37]. Mathematical details of the elastance model including 

Equations and the values chosen for the constants of this model are given in [36-37]. Active 

fiber directional stress, 0T , in the proposed model is applied to the myofibers incrementally 

following this elastance model. This incremental active stress is exerted as initial stress to 

the myofibers which is partially transferred to the background tissue due to the bond 

between myofibers and background tissue. A description of FE analysis of the LV model 

under this incremental active stress using ABAQUS is given in Section 4.2.4. 

Nonlinear elastic behavior has been considered for both background tissue and myofibers 

according to the 2nd order Ogden hyperelastic model described by the following strain 

energy function [30]: 

𝑈 = ∑
2𝜇𝑖

𝛼𝑖
2
(𝜆1

−𝛼𝑖 + 𝜆2
−𝛼𝑖 + 𝜆3

−𝛼𝑖 − 3)𝑁
𝑖=1           (4.3) 

where 𝛼𝑖 and 𝜇𝑖 are hyperelastic coefficients, and 𝜆𝑖s are principal stretches. Mechanical 

properties given in [38,39] for normal and infarcted cardiac tissues were fitted to the above 

hyperelastic model and the acquired parameters were utilized for the FE analysis. 
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4.2.4 Finite Element Analysis of LV under Incremental Initial 
Stresses 

4.2.4.1 FE Analysis using Incremental Loading Scheme 

In our strategy, for active cardiac contraction modeling, the active stress is applied as initial 

stress to the myofiber part of the tissue. The myofiber’s initial stress tensor assuming 

myofibers along the local z-axis can be written as: 

𝜏0 = [
0 0 0
0 0 0
0 0 𝑇0

]          (4.4) 

where 𝑇0 is the active fiber longitudinal stress described in Equation (4.1). For 

computational modeling of this active stress, FE formulation of hyperelastic material 

undergoing initial stress (𝜏0) can be achieved using one of two possible approaches. One 

is founded on a strain energy function of deformation gradient 𝐹 and the initial stress 𝜏0 

[40-41] which can be derived through a complex mathematical procedure. Apart from 

complexity encountered in deriving the required strain energy function, its incorporation 

in the ABAQUS FE solver requires coding extra subroutines before analysis can be 

conducted. The other approach, which fits the objective of the proposed technique, is 

implemented in ABAQUS and uses its incremental formulation scheme in conjunction with 

an iterative procedure for nonlinear FE analysis under initial stress loading. The numerical 

technique involved in this approach is described through the following pseudo code which 

is given for computing the LV fiber parts’ stress: 

1. Active fiber (rebar) stresses Tij (i = 1, …, M; j = 1, …, N where M and N denote number 

of elements in the model and number of rebars in each specific element, respectively), 

given in Equation (4.1) are updated for the current time through the following 

algorithm: 

a. Use the incremental loading approach by adding a small increment Tij to the 

fiber stress of Tij and solving new FE equilibrium equations of the LV model. 

b. Obtain displacements of the start and end of each fiber in each element resulting 

from stress change Tij while disregarding the interactions of the myofibers and 
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background tissue. This can be carried out for each fiber based on the 

hyperelastic model of the myofiber describing its stiffness. 

c. Calculate the element’s nodal displacements arising from fiber stress change 

Tij using the displacements attained in step b and the element’s shape 

functions. 

d. With ignoring the interaction between the myofibers and background tissue in 

steps a through to c the myofibers are at zero state of stress while the 

background is compressed, leading to dissatisfaction of the LV force 

equilibrium equations. To restore force equilibrium, ABAQUS uses this 

disequilibrium state as an initial guess and incrementally changes fiber stress 

loading iteratively using its Newton Raphson nonlinear solver until 

convergence is achieved. At this stage the solution sought for the Tij +Tij 

loading point is reached. 

2. Update the initial fiber stress Tij to Tij +Tij and go back to step 1 unless Tij +Tij exceeds 

the last active stress point in the heartbeat cycle. 

Stop. 

4.2.4.2 Myofiber’s Stress Calculation 

ABAQUS merely outputs the stress of the background tissue while the rebar stress is also 

needed to have a more precise evaluation of the heart function. To obtain myofiber’s stress, 

we use strain energy function of the myofibers, 1 2 3( , , )U I I I , where I1, I2, and I3 are the 

strain invariants. As such, the myofiber’s Cauchy stress can be calculated based on the 

strain energy function as follows [42]: 

1 2

3 1

3 1 2 2

2
U U U U

J I I
I I I I


     

     
     

σ I B Β           (4.5) 

In the above equation σ  and B  are Cauchy stress and left Cauchy-Green strain tensor, 

respectively. The left Cauchy-Green strain tensor, B , is a function of the deformation 

gradient tensor F as follows [42]: 
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TB FF           (4.6) 

Also, F u +𝐼 where 𝐼 is the identity matrix and 𝑢 is the displacement field. Ogden 

strain energy function used to describe myofibers hyperelastic behavior (Equation 4.3), is 

in terms of principle stretches not strain scalar invariants. As such the following Equations 

can be utilized to obtain the derivatives of the strain energy function with respect to the 

scalar invariants: 

1 1 1 2 2 3 3

1 1 1 1
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U U U U
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Now Equation (4.5) can be used for rebar stress calculation with the rebars’ left Cauchy-

Green deformation tensor of each element calculated using Equation (4.6). The only 

component we need to use Equation (4.5) for rebar’s stress calculation, is rebar’s 

displacements to calculate rebars’ left Cauchy-Green strain tensor. ABAQUS 

displacements outputs pertain to the background tissue while the displacement of the 

myofibers can be achieved by manipulation of the background tissue displacement data. 

The deformation field of the rebar is assumed to be the same as the deformation field of 

the background tissue in all directions except for the component in the rebar’s direction. 

To obtain this component, we can first calculate the rebar deformation with ignoring the 

rebar and background interactions using the rebar’s Ogden model and the myofiber’s 

current stress obtained from Equation (4.1). The actual rebar deformation is smaller than 

the calculated deformation as the background part attaches the rebars precluding its full 

contraction. In fact, under equilibrium condition longitudinal rebar deformations can be 

attained by subtraction of the computed displacement with no background tissue effects 

from the background tissue displacement in the rebar direction obtained from ABAQUS 
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output. Assuming that the background tissue deformation is ∆𝒃 and that of the rebar 

corresponding to l0 is ∆𝒓, ∆𝒓,𝒃𝒐𝒏𝒅 the rebar’s actual deformation is ∆𝒓,𝒃𝒐𝒏𝒅= ∆𝒓 − ∆𝒃. As 

such, the longitudinal Cauchy-Green deformation tensor component of the rebar is 

0 ,zz zz backgroundb b   where 
0 corresponds to rebar full contraction corresponding to l0. 

4.2.5 In silico Infarcted LV Modeling 

The contraction of normal LV model attained by applying previously described time-

variable blood pressure and active stress to the LV geometry using a similar modeling 

approach was investigated elsewhere [43]. For the infarcted canine LV, the geometry was 

first discretized into a FE mesh consisting of 6336 8-noded hexahedral elements and 13880 

nodes. Further refinement of this mesh did not lead to substantial changes in the resulting 

strain and stress fields. After FE meshing, layers of “rebars” were distributed in each 

element in the healthy tissue part, mimicking the myofibers. For this part the “rebars” 

occupied ~60% of each element volume according to LV morphological measurements 

[44]. The background part of the tissue occupied the remaining element volume. The 

myofiber directions within the LV was determined according to the analytical helical 

model presented in [45-46]. As indicated earlier, Ogden hyperelastic parameters fitting the 

measured stress-strain data [38] was utilized to model background tissue and myofibers at 

non-infarcted parts. For elements in the infarct region, according to morphological studies 

[47], merely 5% of the tissue volume was considered to be myofibers while the rest is 

occupied by the background tissue (see Figure 4.4). While the myofiber orientations in the 

normal LV tissue follows a helix angle varying from ~-60º at endocardium to ~+60º at 

epicardium [45-46], the myofibers within the infarct region were aligned mainly 

circumferentially where the fibers helix angle was set to zero [24,48-49]. Compared to 

healthy LV muscle tissue, at the infarct region (hyperelastic parameters) consistent with 

higher stiffness were assigned to fibers and background tissue in accordance with the 

measurements reported in [39]. 

Two phases were considered for the LV function modeling including diastole and systole. 

In the diastolic phase, the LV model was inflated by blood pressure [50], while in the 

systolic phase the myofibers contract with active stresses varying with time according to 
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the elastance model. The maximum isometric tension at the longest sarcomere length, maxT  

in Equation 1, was set to 150 kPa for normal LV modeling [37,51]. At the border zone, the 

active fiber stress was depressed by adjusting maxT  at 75 kPa which entails 50% reduction 

in comparison to normal tissue [23-24]. This parameter was set to zero at the infarct region, 

implying no active contraction at this part due to expected death of the majority of 

myocytes [23-24]. 

 

Figure 4.4: Infarcted region with lower volume percentage of myofibers surrounded by 

normal cardiac tissue with higher volume percentage of myofibers. 

As indicated earlier, the active contraction forces in the proposed model, which follow the 

elastance model, were mimicked as initial stresses on the “rebars” which were applied 

incrementally to the model. Time varying endocardial LV blood pressure consistent with 

LV measurements illustrated in Figure 4.5 was applied incrementally to the LV endocardial 

surface [35,37,51]. As boundary condition of the model, the longitudinal displacements of 

the LV basal nodes and circumferential displacements of the epicardial basal nodes were 

set to zero. 
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Figure 4.5: Blood pressure variations during a cardiac cycle [35]. 

4.3 Results 

Full results of the normal canine LV model are reported in [43]. In this case EF of 58% 

was achieved by setting maxT  to 150 kPa. This EF value is within the normal range for a 

canine LV [52-53]. Result highlights pertaining to the normal LV model are summarized 

in Tables 4.1 and 4.2 where they summarize end-systolic strain and stress results, 

respectively. 

Table 4.1: End-systolic radial, circumferential, and longitudinal strains in normal LV 

Radial Positive at equatorial area with a maximum value of ~30% at endocardium 

Circumferential Mainly negative with a maximum value of ~-24% at endocardium 

Longitudinal 
Negative at midventricular area with maximum value of ~8% at 

endocardium 

These results agree well with those obtained from corresponding LV function 

measurements [35] and the mechanical model presented in [51]. 

Table 4.2: Transmural variations of end-systolic radial, circumferential, longitudinal, and fiber 

stresses in normal LV 

Principal 
Maximum is negative at the equatorial area with a value of ~20 kPa at 

endocardium 

Radial 
Negative at endocardium and positive at epicardium with greater magnitudes 

at endocardium while the maximum value in the background part is ~20 kPa 

Circumferential 

Mainly negative with large negative values at endocardium and small 

positive values at epicardium. The endocardial stress is ~38 kPa at 

midventricular area 

Longitudinal 

Mainly negative with large negative values at endocardium and small 

positive values at epicardium. The endocardial stress is ~35 kPa at 

midventricular area 
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Fiber 
Maximum occurring at mid-wall are ~7 kPa, ~10 kPa, and ~24 kPa near 

base, at equatorial area, and near apex, respectively 

The infarcted LV contracts as a result of development of active stress within the fibrous 

part of the healthy cardiac tissue while the blood pressure is applied to the LV endocardial 

surface as described in section 4.2.5, maintaining equilibrium. For FE analysis, we 

considered different mechanical properties for healthy and infarcted tissue based on the 

stress-strain data presented in [38-39]. The second order Ogden hyperelastic model was 

used to fit the given data corresponding to the background tissue and myofibers for both 

healthy and infarcted tissues, leading to the following hyperelastic parameters which were 

used for the FE simulation: 

Table 4.3: Hyperelastic parameters of the 2nd order Ogden model used for normal tissue 

mechanical simulation 

Second Order Ogden Hyperelastic Parameters Myofiber Background Tissue 

µ1 (Pa) 330.68 283.73 

α1  13.21 8.81 

µ2 (Pa) 0.0345 45.14 

α2 38.96 17.73 

Table 4.4: Hyperelastic parameters of the 2nd order Ogden model used for infarcted tissue 

mechanical simulation 

Second Order Ogden Hyperelastic Parameters Myofiber Background Tissue 

µ1 (Pa) 47194 41375 

α1  0.0817 0.25 

µ2 (Pa) 407.25 99.99 

α2 37.06 31.22 

The proposed FE model showed that the contraction of the infarcted LV leads to an EF 

value of 48%, implying over 10% reduction compared to the healthy LV. The performance 

of the infarcted LV model was further assessed by evaluating the three major strain 

components at end-systolic state which are illustrated in Figure 4.6. This figure indicates 

that the radial strain is tensile and non-uniformly distributed within the healthy tissue part. 

Moving towards the infarction region, it becomes relatively uniform with small 

magnitudes. The figure also shows that, in contrast to radial strain, circumferential strains 

in the healthy part are compressive with small spatial variability. These strains become 

tensile within the infarction region. Finally, the figure shows that longitudinal strains are 

compressive but slightly smaller in magnitude within the infarct region. 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 4.6: End-systolic strain distribution through the infarcted LV model. The strains are 

referenced w.r.t end diastole. Radial strain distribution (a), cross sectional view of the radial 

strain distribution at midventricular area (b), circumferential strain distribution (c), cross 

sectional view of the circumferential strain distribution at midventricular area (d), 

longitudinal strain distribution (e), cross sectional view of the longitudinal strain distribution 

at midventricular area (f). 

The average values of radial, circumferential, and longitudinal strains in different regions 

of the LV were also calculated and reported in Table 4.5: 
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Table 4.5: Average values of end-systolic radial, circumferential, and longitudinal strains at the 

three regions of the infarcted LV 

                 Strain (%)  

     Region 
Radial Circumferential Longitudinal 

Remote (non-infarcted) 17.50 -16.18 -5.27 

Border Zone 5.22 -7.55 -1.87 

Infarcted -4.31 4.48 -1.17 

For comparison, corresponding circumferential strain values in different regions of the 

infarcted LV measured using tagged MR images in addition to the ones obtained using 

other mechanical models are given in the following Table [24]: 

Table 4.6: Average values of end-systolic circumferential strains in the three regions of 

infarcted LV [24] 

                    Strain (%)                                                                    

Region 
Proposed LV FE model Tagged MR imaging Other LV FE model 

Remote (non-infarcted) -16.18 -14.2 -13.01 
Border Zone -7.55 -8.44 -7.16 

Infarcted 4.48 2.70 4.70 

For further evaluation, the end-systolic circumferential and longitudinal strains variations 

at the equatorial area are depicted in Figures 4.7 and 4.8. These strains are given along the 

circumference of the LV for the healthy (presented in Chapter 3) and infarcted LV models. 

For comparison, Figures 4.7 and 4.8 also illustrate strain changes obtained from 

measurements and other mechanical model of the LV contraction with MI [24]. It is 

noteworthy that the circumferential and longitudinal strain variations along the 

circumference pertaining to the normal model are very smooth. The positive spiky pattern 

of the strains pertaining to the infarcted region in the infarcted LV model is due to the lack 

of contraction in this region. 
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Figure 4.7: Circumferential strain variations with respect to the circumference of the LV at the 

equatorial area of the infarcted and normal models. 

 

Figure 4.8: Longitudinal strain variations with respect to the circumference of the LV at the 

equatorial area of the infarcted and normal models. 

For a more comprehensive performance demonstration of the proposed LV model, stress 

distribution at end-systole was also calculated. Distribution of the three normal stresses and 

the maximum principal stress components pertaining to the background tissue are shown 

in Figure 4.9 while the transmural variations of myofibers’ longitudinal stress in the three 

tissue regions of healthy, border zone, and infarction are illustrated in Figure 4.10. These 

were calculated using the FE solver displacement outputs and T0  0 in conjunction with 

mechanical equilibrium conditions as described in Section 4.2.4. Figure 4.9 indicates that 

the maximum principal stress is mainly negative in the healthy tissue region and it becomes 
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tensile with little spatial variation within the infarct region. The figure also shows that the 

first normal stress S11 in the infarct region is similar in magnitude to that of healthy region 

but somewhat less regularly distributed. It also shows that S22 is significantly higher in the 

infarct region compared to healthy region while S33 exhibits only little elevation in the 

infarct region compared to the healthy region. Figure 4.10 illustrates the transmural 

variations of end-systolic fiber stresses in the infarct, border zone, and healthy regions. 

Figures 4.10 (a) and (b) indicate that the minimum fibers stresses in the infarct and border 

zone regions occur in the mid-wall region while they are close to zero and compressive, 

respectively. Figure 4.10 (c) demonstrates that the maximum tensile fiber stress in the 

healthy tissue region occurs in the mid-wall region. 

  

(a) (b) 

  

(c) (d) 

Figure 4.9: Transmural variations of end-systolic stress components within the background at 

the LV equatorial area from endocardium towards epicardium when time-variable active stress 

and blood pressure were applied to the infarcted LV model. Maximum principle stress (a), 

radial stress (b), circumferential stress (c), and longitudinal stress (d) are shown. 
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(a) (b) (c) 

Figure 4.10: Transmural variations of end-systolic fibers stress: within the infarct region (a), 

within the border zone (b), and within the healthy region (c). 

The average fiber stresses within the infarct, border zone, and healthy regions are reported 

in Table 4.7: 

Table 4.7: End-systolic average values of the fiber stress in the three regions of infarcted LV 

Region Average Fiber Stress (kPa) 

Healthy 4.32 

Border Zone 7.73 

Infarct 5.42 

4.4 Discussion and Conclusions 

In this article a novel approach for mechanical modeling of the pathological myocardium 

is presented. The novel aspect of this model is that the LV muscle tissue is idealized as a 

composite material including two main parts of background tissue and myofibers. In the 

proposed model, myofiber contraction is simulated by applying initial stresses to 

reinforcement bars (rebars) distributed throughout the LV volume. The rebar’s directions 

in the LV volume are adjusted based on the known spatially variable fibers orientation 

through the LV volume forming a self-contained anisotropy through the model. To obtain 

the contraction strain and stress fields FE modeling was used. In this model, both of the 

background and myofibers parts were considered as hyperelastic materials. Different 

mechanical properties have been considered for the normal and pathological tissue parts of 

the LV. Myofibers active stress variation through the cardiac cycle was modelled using the 

elastance model implemented as initial stresses applied to the rebars. For infarcted LV 

modeling, the maximum isometric tension at the longest sarcomere length, maxT  in 

Equation (4.1) of the elastance model was set at different values for the infarct, border 

zone, and healthy tissue regions. This parameter was set to 150 kPa at the normal tissue 
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region while lower values of zero and 75 kPa, were considered for the infarct and border 

zone regions, respectively. A major strength of the proposed model is that it can be 

implemented using off-the-shelf FE solvers with nonlinear analysis capability. It does not 

require complex custom-developed computer codes while it incorporates all necessary 

mechanical complexities of the myocardial tissue. Moreover, it is anticipated that the 

proposed model is computationally efficient and less prone to numerical instability and 

divergence issues. This stems from the effective prestressed rebar approach used to model 

the myofibers and model development using commercial FE solvers which are usually 

optimized for computation efficiency. Another key feature in the model is its easy 

adaptability with various cardiac pathologies since diverse mechanical parameters such as 

passive mechanical properties and active response of the pathological parts of the 

myocardium can be easily adjusted by manipulating the FE model input file without the 

need to modify the underlying FE codes. 

To assess the capability of the proposed model, it was applied in silico to simulate a normal 

canine LV [43]. The simulation results were compared to corresponding canine 

experimental measurements and those of other LV computer models. The LV strain 

distribution at end-systolic state was evaluated. Radial strain was positive throughout the 

volume while decreasing from endocardium towards epicardium. This is reasonable as it 

is consistent with myocardial thickening at end-systolic state. The circumferential and 

longitudinal strains were mainly negative throughout the volume, demonstrating the LV 

contraction at end-systolic phase. The systolic contraction of the LV model was further 

validated by comparing the distribution of all three major components of the strain 

throughout the LV volume with measurements obtained from anterior equatorial LV free 

wall of seven open-chest dogs [35] and to those of LV mechanical model presented in [51], 

which confirmed good agreement. The ventricular end-systolic stress distribution in both 

background tissue and myofibers were also assessed. Negative and almost uniform 

distribution patterns of principal stresses were predominantly present in the midventricular 

area, confirmed the general trend of contraction through the LV. The directional fiber stress 

magnitude varied from negative values at endocardium to positive values at mid-wall and 

it reached maximum value of 38 kPa which is consistent with other LV models [45,54]. 
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The performance of the model was assessed for infarcted LV where a border zone was also 

considered. Again, strain and stress distributions obtained from this LV model were 

compared with corresponding values obtained from measurements and other mechanical 

models of the infarcted LV. The distribution of normal components of the end-systolic 

strain tensor throughout the LV volume are shown in Figure 4.6. Similar to the normal 

case, as shown in Figures 4.6 (a) and 4.6 (b), the radial strain is tensile in the normal 

midventricular region while it decreases from endocardium towards epicardium. This is 

consistent with the myocardial thickening in the healthy part. In the infarct region, 

however, the radial strain are compressive while in the border zone they have smaller 

positive values. This is also consistent with myocardial thinning of the infarct region at 

end-systolic state which has been reported in the literature as a mechanical feature of 

infarction where active contraction within the LV wall is insignificant [55-56]. As shown 

in Figures 4.6 (c) and (d), the circumferential strains are compressive within the normal 

region of the LV as expected, representing the contractile function of the cardiac tissue at 

end-systole. These figures also show that the circumferential strains are tensile in the 

infarct regions marked by the red color in the figures. This agrees very well with the 

frequently described circumferential stretching of the infarcted cardiac tissue resulting 

from lack of contraction [23-24]. As illustrated in Figures 4.6 (e) and 4.6 (f), longitudinal 

strain is compressive at the healthy tissue part which indicates anticipated longitudinal 

contraction of the model. Its magnitude is smaller at the infarct region and border zone, 

proving less contraction at these regions [24,57]. For further validation, as seen in Table 

4.6, average values of the circumferential strains obtained by the proposed method were 

compared with corresponding values acquired from tagged MR images and those obtained 

from LV mechanical modeling reported in [24]. Overall, there is a good agreement among 

results obtained for the three tissue regions, especially the healthy and border zone regions 

[24]. It is noteworthy that all these values are positive showing the circumferential 

stretching in the infarct region consistent with [24,57]. Variations of the circumferential 

strain with respect to LV circumference at the equatorial area where the infarct region 

intersects, which is shown in Figure 4.7, was investigated. This figure shows that the strain 

variations obtained from the proposed model are reasonably consistent with the MR 

tagging measurements and with those of another mechanical FE model of infracted LV 
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[24]. Compared to matching our results exhibit with the MR strain measurements, the LV 

model presented in [24] shows better matching. However, it must be noted that the latter 

model was specifically constructed to be consistent with the experimental animal model. 

Circumferential variations of the longitudinal strain at the equatorial area with the MI is 

also depicted in Figure 4.8 where they are compared with results of the MR measurements 

and LV mechanical model presented in [24]. This figure shows that our model exhibits 

reasonable agreement with the measurements especially within the infarcted region where 

the longitudinal strain becomes positive, again consolidating the validity of the proposed 

model. The ventricular end-systolic stress distribution in both background tissue and 

myofibers are shown in Figures 4.9 and 4.10. Figure 4.9 (a) illustrates the volumetric 

distribution of background tissue maximum principal stresses, which shows increase from 

large negative values at endocardium towards small positive values at epicardium in the 

healthy tissue region. A mainly uniformly distributed compressive principal stress in the 

healthy region is consistent with the contraction pattern expected in this part. Figure 4.9 

(a) also shows development of tensile principle stress in the infarct region, demonstrating 

the tissue extension in that part due to lack of active contraction. The radial background 

stress in the normal areas of the LV model is also negative compressive as illustrated in 

Figure 4.9 (b) except at the most epicardial portions similar to the normal LV case. In the 

infarct region, the radial background stress is mainly tensile, especially by moving toward 

the epicardium, reflecting tissue stretching in that region which is consistent with lack of 

active contraction in that region. The circumferential and longitudinal stresses (Figures 4.9 

(c) and (d)) are also mainly compressive in the healthy midventricular region consistent 

with normal LV contraction. In the border zone and infarct regions, however, these stresses 

are tensile while slightly non-uniform in both of the infarct and border zone regions, 

particularly the circumferential stresses, which is again reasonably consistent with little or 

lack of active contraction in those regions. Figure 4.10 illustrates the directional fiber stress 

variations at midventricular regions pertaining to healthy, infarct and border zone. As 

illustrated in Figures 4.10 (a) and (b), these fiber stresses increase from endocardium to 

epicardium in both of the infarct and border zone regions consistent with what is reported 

in [24]. The fiber stresses in the border zone are higher compared to the infarct region as 

illustrated in Figure 4.10 and Table 4.7. This agrees very well with the corresponding fiber 
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stress distribution presented in [18,24], consolidating the validity of the presented 

simulation. The maximum fiber stress obtained by the proposed model, which occurs at 

the border zone, is ~40 kPa which is within the range of values reported in [24]. As shown 

in Figure 4.10 (c), the fiber stress in the healthy tissue region is much lower compared to 

both of the infarct and border zone regions, confirming the higher fiber stresses in the 

infarct region which is consistent with similar observations tied to cardiac remodeling as 

reported in the literature [17-18,23-24]. Our results indicate that the maximum value of 

fibers stress in the healthy region occurs in mid-wall region which is also consistent with 

the literature. 

Based on the results obtained from the proposed model and their reasonable consistency 

with corresponding data obtained from MR tagging measurement or other FE models, it 

can be concluded that the proposed approach of cardiac tissue decomposition into passive 

background and active myofibers parts is highly effective as it makes possible utility of 

off-the-shelf FE solvers for accurate cardiac mechanical modeling. While potentially 

computationally efficient, this approach facilitates straight-forward adaptability to both 

myofiber active stress characteristics and passive properties of various parts of the tissue 

which is quite essential for effective modeling of various cardiac pathologies. Such 

adaptability is a major requirement for developing FE-based inversion algorithm to 

accomplish more accurate active stress distribution in realistic LV models obtained from 

imaging data. 
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Chapter 5  

5 Human Left Ventricle Biomechanics using Medical 
Imaging Data and Composite Material Mechanics 
Approach 

5.1 Introduction 

UANTITATIVE understanding of cardiac mechanics under normal and 

pathophysiological conditions is vital for many medical applications. It  can pave 

the way for in-depth understanding of the heart physiology under normal and pathological 

conditions and better comprehension of the genesis of cardiac mechanical function 

alterations resulting from cardiac conditions [1-2]. Such understanding can be exploited to 

utilize observed mechanical alterations as quantitative measures for diagnosis, prognosis, 

and even effective treatment of cardiac diseases [3-6]. In-depth comprehension of cardiac 

mechanics of both systole and diastole phases are often necessary to interpret symptoms 

associated with various cardiac conditions [7-8]. Some cardiac abnormalities and 

dysfunctions, however, pertain to abnormalities in one of the phases [7,9]. In such cases, 

data of that phase can be utilized for effective diagnosis and therapy purposes. Heart failure 

is a serious and widespread cardiac condition which could possibly lead to death. It occurs 

when the heart cannot pump enough blood and oxygen to support normal function of all 

organs in the body. Clinically, it is accompanied by increase in tissue water content and 

decrease in tissue perfusion in different parts of the body [9]. According to recent statistics 

in developed countries, ~2% of adults are diagnosed with heart failure while 6–10% of 

adults over the age of 65 have this cardiac condition [10-11]. Heart failure arises from two 

major types of cardiac disorders, i.e. diastolic and systolic dysfunctions. Systolic 

dysfunctions are the most common causes of mortal heart failures, however, 

epidemiological studies reveal that more than 50% of heart failure patients suffer from 

diastolic dysfunctions while they have normal systolic function and EF [12–13]. Diastolic 

dysfunction is a clinical term which refers to a wide range of cardiac conditions when the 

Q 
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diastolic phase is protracted, slowed, or incomplete [9,14]. It is typically caused by diverse 

conditions such as myocardial infarction, hypertension, atrial fibrillation, heart valve 

disease, overuse of alcohol, presence of infection, cardiomyopathy, etc. Long-term 

diastolic dysfunctions can lead to abnormal LV relaxation, filling, diastolic distensibility, 

or diastolic stiffness typically followed by diastolic heart failure. The latter occurs when 

the LV cannot receive sufficient blood volume within the diastolic phase under normal 

blood pressure to preserve an acceptable level of stroke volume in the systolic phase [9,14]. 

Among the above diastolic failure mechanisms, diastolic stiffness is a highly important and 

prevalent mechanism. Quantitative assessment of this mechanism is feasible using LV 

deformation imaging data of diastole in conjunction with inverse problem framework. Such 

framework can be utilized to estimate LV tissue stiffness using the imaging data. Such 

inverse problem framework requires a robust cardiac mechanics forward model that can be 

used effectively for this application. This forward model should ideally include tissue 

anisotropy and hyperelasticity in accordance with its microstructure [15-16]. Conventional 

cardiac mechanics models utilize different constitutive laws for simulation of the passive 

behavior of the cardiac tissue [15-18]. While the majority of these constitutive laws assume 

transversely anisotropy for cardiac tissue [15-16], some more complex constitutive laws 

contemplate orthotropic material properties [17-18] which are based on this hypothesis that 

the myocardial fibers are organized within bundles of fiber layers that are bound together 

by endomysial collagen [19]. These constitutive laws cannot be implemented easily using 

most of available FE solvers, hence highly complex custom-developed nonlinear FE codes 

have been implemented to fill this gap [20-21]. Furthermore, such hyperelastic anisotropic 

constitutive laws impose high computational burden to the inversion-based FE algorithms 

where the forward model must be run iteratively. These issues render the hyperelastic 

anisotropic constitutive laws less appealing, specifically in comparison with the cardiac 

mechanics model presented in Chapters 3 and 4 where an effective composite material 

model was introduced to mimic anisotropy. In this chapter, we use the forward model 

concept of cardiac mechanics which was introduced in Chapters 3 and 4 to investigate the 

diastolic phase mechanics of a healthy volunteer. The LV geometry of this subject was 

developed using MRI data. This study includes preliminary assessment of the proposed 

model to estimate blood pressure and cardiac tissue stiffness properties in the diastolic 
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phase. This part was carried out using a simplified inverse problem scheme where an ad-

hoc optimization approach as utilized. 

5.2 Materials and Method 

5.2.1 Image Acquisition 

Cardiac MR imaging is used to obtain images with high resolution to delineate cardiac 

tissue, particularly endocardial and epicardial contours, accurately without the need for 

additional contrast improvement and noise reductions techniques. Accordingly, MR is 

considered as the preferred imaging modality for high-quality dynamic cardiac image 

acquisition which is typically utilized to construct subject-specific FE models of the heart 

and its individual compartments such as LV. As such, in this research we used cardiac MR 

image data to acquire accurate geometry of a human subject LV. For this purpose, a set of 

4D cardiac MR image data including 20 3D cardiac volumes (time frames) of a healthy 

human was acquired. The 3D volumes were acquired through 20 equal time steps during a 

cardiac cycle while the time interval between each two consecutive frames was 50 ms. The 

MR imaging procedure was carried out using a 1.5 T GE CVi scanner (GE medical 

systems, WI, USA) where a fast cine SPGR pulse sequence in the coronal plane was 

utilized with NEX = 4 and flip angle of 20. This led to an image matrix of 256 128 with 

eight views per segment. The resulting 3D cardiac volumes have an in-plane resolution of 

1.5 mm2 with 75 coronal slices of 1.5 mm spatial space. Each time frame of the image 

dataset was obtained with a complete breath-hold to minimize motion artifacts and noise 

in the final MR images [22]. Figure 5.1 shows the MR image of the myocardium at start 

diastole where the myocardium is almost at its static state. 
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(a) (b) (c) 

Figure 5.1: 3D Cardiac MR image of a healthy human subject at the start-diastole: coronal 

view (a), sagittal view (b), and axial view (c). 

5.2.2 Left Ventricle Model Construction 

The 3D volume pertaining to the start diastole corresponds to the state where the 

myocardium is relaxed, hence it was considered to represent the reference geometry of the 

myocardium (LV) for the mechanical model construction. It is noteworthy that at this time 

frame the heart is relatively static and, as such, motion artefacts are minimized allowing 

for the subsequent LV segmentation with high accuracy. Through manual segmentation of 

the start diastole frame, the LV geometry was extracted while the segmentation was 

performed in both short axis and long axis slices to minimize errors pertaining to 

segmentation, especially errors of delineating the endocardial and epicardial boundaries. 

The entire segmentation process was performed using the Editor module in 3D Slicer 

software where the endocardial and epicardial contours were segmented slice by slice [23]. 

After segmenting the LV boundaries in the MR image slices, the 3D model of the LV was 

generated using the Model Maker module of 3D Slicer software [23]. To remove uneven 

lines from the LV model boundaries, which were regarded as segmentation artifacts, the 

3D model was smoothed using Laplacian filter. The result of the segmentation process and 

corresponding 3D LV model are illustrated in Figures 5.2 and 5.3, respectively.  
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Figure 5.2: 3D surface model of the healthy subject’s LV obtained from MR image slices 

segmentation (shown using green color) which is superimposed onto arbitrary 3 orthogonal slices 

of the 3D MR image pertaining to start diastole. 

 

Figure 5.3: 3D LV model of the healthy subject at start diastole constructed by MR image 

segmentation. 

The 3D LV model obtained from segmentation was discretized into hexahedral elements 

using the IA-FEMesh module in 3D slicer [24]. It is noteworthy that the FE mesh resolution 
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was adjusted such that enough elements were embedded within the LV wall to account for 

transmural variations of the helix fiber angle which play a crucial role in mimicking 

anisotropy through the model, hence insuring mesh convergence. The resulting FE mesh 

obtained from this procedure is illustrated in Figure 5.4. 

 

 

(a) (b) 

Figure 5.4: FE model of the human subject LV: whole LV model view (a) and the model’s 

short axis cross section view (b). 

5.2.3 Composite Material Model of the Cardiac Tissue 

In the diastolic phase, the ventricular blood pressure descends considerably from high 

values occurring in the systolic phase as a result of the relaxation of the myofibers and 

ejection of the blood out of the LV cavity. This reduction persists until the ventricular 

pressure reaches a level lower than that of the left atrium. At this instance, the mitral valve 

opens, establishing a steady blood flow from the left atrium towards the LV. Afterwards, 

the ventricular pressure increases gradually as a consequence of filling of the LV cavity 

which continues until the end-diastolic phase where the LV cavity is fully inflated by blood. 

As such, during this phase the myocardial tissue within the LV undergoes passive 

deformation caused by endocardial blood pressure [7,12,25]. In the diastolic phase, 

consistent with the Hill’s model and the fibrous microstructure of the myocardial tissue, 

the cardiac tissue can be decomposed into the two major parts of myofiber and background 
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tissue (non-myofiber) part. This tissue decomposition arises from the well-known 

difference in passive mechanical properties of the myofiber and non-myofiber part of the 

tissue [15-18], which requires considering different passive material models for each of 

these tissue parts. As indicated in Chapters 3 and 4, the full mechanical bond between these 

two tissue parts is considered, hence stress developments in each part affects stress 

distribution within the other part such that mechanical equilibrium is maintained according 

to the momentum balance principle [26]. The described composite model of the cardiac 

tissue follows the actual myocardial tissue fibrous structure. It lends itself well for 

considering arbitrary passive mechanical properties for each part of the tissue in 

accordance with the healthy/pathological condition of the diastolic phase. It is noteworthy 

that alteration of the mechanical properties of any of the two tissue parts influences the 

overall properties of the whole tissue. The major advantage of this tissue decomposition is 

that since each tissue part is composed of a single material, classic isotropic hyperelastic 

constitutive laws available in typical off-the-shelf FE solvers can be used to model that 

part. Consequently, the issue of using complex hyperelastic anisotropic constitutive laws 

for modeling cardiac tissue is circumvented. This feature increases the computational 

efficiency of the presented cardiac mechanics model. 

5.2.4 Major Elements of the Left Ventricle Model 

The flow chart of the presented LV mechanical model is shown in Figure 5.5. The FE 

model of the LV geometry obtained from segmenting the MR image at start diastole is 

illustrated in Figure 5.4. All FE simulations presented in this study were conducted using 

quasi static module of the commercially available Abaqus/Standard FE solver [27]. As 

indicated earlier, the composite material approach used in the model considers myofibers 

and background tissue parts. As such, the hexahedral finite elements which are regarded as 

building blocks of tissue in the FE model consist of two major materials: background tissue 

and rebars (fibers). The orientations of the rebars, which mimic the myofibers, model 

anisotropy of the cardiac tissue in accordance with the fibrous LV structure. In fact, 

systematic dispersal of the rebars in different directions consistent with the LV anatomy 

induces a self-contained transverse isotropy to the FE LV model. During diastole phase, 

the LV cavity is filled with blood leading to LV blood pressure elevation as the blood 
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volume increases in the LV cavity. As such, through passive diastolic inflation, the 

increasing endocardial blood pressure pushes the LV wall tissue outward while no 

significant contraction is developed within myofibers [7,12,25]. Figure 5.6 shows a typical 

instance of the active stress variations along a sarcomere of length 1.7 m  during a cardiac 

cycle [28]. As observable in this figure, the active stress is insignificant after the start-diastole 

instance ( 400ms ). Based on this mechanical description of the diastole phase, the only 

significant load applied to the LV is the blood pressure which is modeled as a uniform 

pressure acting on the LV endocardial surface. Similar to the cardiac mechanics model 

presented in Chapter 3 and 4, hyperelastic models were used for simulating the mechanical 

behavior of both of the background tissue and myofibers. This is due to the fact that even 

in the diastole phase the LV undergoes large deformations during inflation while its tissue 

is intrinsically nonlinear. Parameters of these models were used as the mechanical 

properties of the background tissue and myofibers for FE simulations. The model described 

here is developed to simulate the LV diastole phase mechanics based on equilibrium of 

blood pressure and passive stresses throughout differential material points of the LV 

composite tissue at each instance of the phase. This equilibrium was mathematically 

enforced by satisfying the Cauchy’s Equation of motion [26]. The 3D displacements field 

of the LV model was calculated through solving these equilibrium equations using Abaqus 

FE solver (Dassault Systèmes Simulia Corp., Providence, RI, USA). The LV model’s 

boundary conditions included restricting the longitudinal displacements of the basal nodes 

while the circumferential displacements of the epicardial basal nodes were set to zero. 
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Figure 5.5: Flow chart illustrating biomechanical simulation of the LV at the diastolic phase. 

 

 

Figure 5.6: Active stress variations along a sarcomere of length 1.7 m during a cardiac 

cycle [28]. 

5.2.5 Anisotropy of the FE-based Left Ventricle Model 

The fibers within the FE-based LV model introduced in Figure 5.4 were simulated by 

rebars aligned within layers in each element. The fibers occupied ~60% of the volume of 

the elements according to morphological studies of the LV tissue composition [29]. The 

remaining 40% was filled by a non-myofiber material (background tissue). Anisotropy of 
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the LV model was simulated by altering the helix angle fiber, as the major parameter 

defining the fiber orientation in 3D space, by moving from endocardium towards 

epicardium. Hence, the helix angles of the fibers were changed linearly from ~-40º at 

epicardium to ~+66º at endocardium according measurements of human LV fiber 

orientation obtained from a database developed using LV DT-MRI of a cohort of healthy 

subjects [30]. 

5.2.6 Ad-hoc Inversion-based Approach for End-diastolic LV Blood 
Pressure Estimation 

To estimate the LV diastolic blood pressure of the subject, we altered the pressure and 

hyperelastic parameters of the background tissue and myofibers iteratively following an 

ad-hoc scheme such that the best match was achieved between measured and calculated 

end-diastolic geometries. The calculated geometry was computed using the proposed 

forward model described in Section 5.2.4. The measured LV geometry was acquired from 

the 4D MR image dataset of the cardiac cycle and through segmentation of the end-

diastolic 3D volume. As an initial guess of the mechanical properties of both of the 

background tissue and myofibers, we utilized a 2nd order Ogden hyperelastic model based 

on the cardiac tissue stress-strain data given in [31]. This Ogden hyperelastic model is 

described using the following strain-energy function [26]: 

�̃� = ∑
2𝜇𝑖

𝛼𝑖
2
(𝜆1

−𝛼𝑖 + 𝜆2
−𝛼𝑖 + 𝜆3

−𝛼𝑖 − 3)𝑁
𝑖=1 + ∑

1

𝐷𝑖
(𝐽𝑒𝑙 − 1)2𝑖𝑁

𝑖=1           (5.1) 

where 𝛼𝑖 and 𝜇𝑖 are the hyperelastic model coefficients, and 𝜆𝑖s are principal stretches. The 

initial guess of the blood pressure was considered to vary between 400 Pa to 1600 Pa which 

is the diastolic blood pressure range of a healthy human according to reported 

measurements of the LV diastolic function [32]. It is noteworthy that the forward model 

only provides the deformed configuration of the LV resulting from the diastolic blood 

pressure. The final LV configuration obtained from mechanical LV simulations, however, 

includes significant rigid body motion. To account for this rigid body motion, iterative 

closest point (ICP) algorithm was performed to achieve the best alignment of the calculated 

and measured LV geometries [33]. 
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5.2.7 Performance Evaluation of the LV Mechanical Model at End 
Diastole 

Through the ad-hoc optimization scheme described in the previous section the optimum 

mechanical properties of the myofibers and background tissue as well as the optimum 

diastolic pressure which led to the best match between the calculated and measured end-

diastolic geometries were attained. The calculated mechanical properties and blood 

pressure were applied to the start-diastole LV geometry, which represent the reference 

configuration, to obtain corresponding stress and strain distribution through the LV 

geometry. For further validation of the proposed model, distributions of the calculated 

stresses and strains were assessed and validated by comparing with measurements and 

other mechanical models of the LV diastolic function. 

5.3 Results 

5.3.1 Ad-hoc Optimization 

During the ad-hoc optimization procedure described in Section 5.2.6 we observed less 

sensitivity to changes in the mechanical properties of the myofibers and background tissue. 

As such, only small changes were made to the mean stress-strain data presented in [31] for 

healthy cardiac tissue samples. It is noteworthy that the stress-strain data utilized for FE 

simulation as the optimum mechanical properties were within the range of the 

measurements reported in [31]. The optimum hyperelastic parameters of the 2nd order 

Ogden model for both background issue and myofibers obtained from the ad-hoc 

optimization process is reported in Table 5.1. Accordingly, our primary target during 

optimization was to optimize the magnitude of the endocardial LV blood pressure such that 

the best match is attained between the deformed LV geometry as the output of the FE 

simulation and the one obtained from segmentation of the end-diastolic image. For 

quantitative assessment of the performance of the ad-hoc optimization, the ICP algorithm 

was utilized to measure the differences between the calculated and measured LV surface, 

including endocardial and epicardial surfaces. It should be noted that the ICP algorithm 

compensates for the rigid body motion of the LV which arises from body and respiratory 

motions which are not accounted for in the LV mechanical model. Errors matching surfaces 

obtained by the ICP are reported in the Table 5.2. 
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Table 5.1: Optimum hyperelastic parameters of the 2nd order Ogden model used for diastolic LV 

mechanical simulation 

Second Order Ogden Hyperelastic Parameters Myofiber Background Tissue 

µ1 (Pa) 335.41 278.06 

α1  13.08 8.55 

µ2 (Pa) 0.0331 44.24 

α2 38.18 17.02 

Table 5.2: Variations of the surface matching errors obtained from the ICP algorithm with 

variable end-diastolic blood pressure values  

End-Diastolic Blood Pressure (Pa) 

ICP error in root mean squared of the Euclidean 

distance between surfaces of the measured and 

Calculated LV Geometries (mm) 

400 3.1657 

600 3.0773 

800 3.0433 

1000 3.1178 

1200 3.2698 

1400 3.3694 

1600 3.3989 

According to Table 5.2, the best match between measured and calculated geometry with 

the minimum ICP error was achieved corresponding to blood pressure value of p = 800 Pa. 

The two surfaces of the measured and calculated LV geometry at the optimum blood 

pressure and mechanical properties are illustrated in Figure 5.7. 
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Figure 5.7: Surfaces of the calculated and measure LV geometries at the end-diastolic state 

corresponding to the best match achieved through ad-hoc optimization. 

5.3.2 Diastolic LV Mechanical Model with Optimum Parameters 

After calculating the optimum values of the diastolic blood pressure and tissue hyperelastic 

parameters, the accuracy of the LV mechanical simulation corresponding to these optimum 

parameters was assessed. One important geometric measure is the midventricular diameter 

of the LV at the end-diastolic state. This was calculated at 41.1 mm which is within the 

normal range of human LV diameter (i.e. 36 mm to 56 mm [34]), indicating good 

performance of the model. Another measure of LV diastolic mechanics is end-diastolic 

strain distribution through the LV model which was also investigated. Figure 5.8 shows 

the normal strains’ distribution through the LV volume at the end-diastolic state 

corresponding to the blood pressure value of p = 800 Pa. The main feature of these strain 

distributions is that the radial strain (Figure 5.8 (a)) is mostly negative at the midventricular 

region while the other two strain components, i.e. circumferential (Figure 5.8 (c)) and 
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longitudinal (Figure 5.8 (e)), are mostly positive. This is consistent with both 

measurements and simulation results of other LV diastole mechanics models [35-36]. The 

negative radial strain values reflect the compressional effect of the blood pressure in the 

radial direction that leads to thinning of the LV wall while approaching the maximum 

dilation of the LV volume at the end-diastole phase. The positive values of the 

circumferential and longitudinal strains illustrate dilation of the model by stretching strains 

in circumferential and longitudinal directions. As shown in Figure 5.8 (a) the end-diastolic 

radial strain at the midventricular area changes from -16.4% to -7.76% while moving from 

endocardium towards epicardium. It is also evident that the equatorial circumferential 

strain decreases from 17.77% at the endocardium to 4.6% at the epicardium (Figure 5.8 

(c)) while the equatorial longitudinal strain varies from 7.6% at endocardium to 3.3% at 

epicardium (Figure 5.8 (e)). 

 

 

(a) (b) 
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(c) (d) 

 

 

(e) (f) 

Figure 5.8: Normal strains distributions through the LV volume at the end-diastolic state: 

cross-sectional views of the radial strain distribution (a) along with the whole radial strain 

distribution (b), cross-sectional view of the circumferential strain distribution (c) along with the 

whole circumferential strain distribution (d), cross-sectional view of the longitudinal strain 

distribution (e) along with the whole longitudinal strain distribution (f). 

For further investigation of the performance of the end-diastolic simulation, shear strains 

distributions within the LV model are also illustrated in Figure 5.9. The midventricular 

radial-circumferential strain is positive across the LV wall as shown in Figure 5.9 (a) while 

it varies from ~9.8% at endocardium to ~2% at epicardium. The equatorial radial-

longitudinal strain varies form ~5% to ~-2% by moving from endocardium to epicardium 

(Figure 5.9 (c)). Furthermore, the circumferential-longitudinal strain transmurally changes 
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from ~-3.9% to ~1% (Figure 5.9 (e)). The validity of these strain distributions comparing 

with measurements and with simulations obtained from other LV mechanical models will 

be discussed in the Discussion and Conclusions section. 

 

 

(a) (b) 

 

 

(c) (d) 
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(e) (f) 

Figure 5.9: Shear strains distributions through the LV volume at the end-diastolic state: 

cross-sectional view of the rad-circ. strain distribution (a) along with the whole rad-circ. strain 

distribution (b), cross-sectional view of the rad-long strain distribution (c) along with the whole 

rad-long strain distribution (d), cross-sectional view of the circ.-long strain distribution (e) 

along with the whole circ.-long strain distribution (f). 

For further assessment, we illustrate the LV tissue stress distributions at end diastole phase 

in Figure 5.10. The major feature of all of these stresses is that all of their maximum 

principal, radial, circumferential, and longitudinal stress components except the 

endocardial radial stresses are positive. This is consistent with the dilation of the LV model. 

 

 

(a) (b) 
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Figure 5.10: Distribution of the background tissue stresses through the LV model at the end-

diastolic state: cross-sectional view of the maximum principal stress distribution (a) along with 

the whole maximum principal stress distribution (b), cross-sectional view of the radial stress 

distribution (c) along with the whole radial stress distribution (d), cross-sectional view of the 

circumferential stress distribution (e) along with the whole circumferential stress distribution 

(f), cross-sectional view of the longitudinal stress distribution (g) along with the whole 

longitudinal stress distribution (h). 

5.4 Discussion and Conclusions 

In this chapter the LV diastolic function was simulated using the mechanical modeling 

approach presented in Chapters 3 and 4. In this method, a human subject LV geometry at 

the start diastole was acquired from MR image segmentation. This geometry was used for 

mechanical modeling of the LV during the passive inflation at the diastolic phase. 

Accordingly, the research work conducted in this chapter can be considered as a step 

forward towards more realistic modeling of the LV since a realistic geometry of the human 

LV was utilized. In the proposed mechanical model, a composite material model was 

considered for the LV muscle tissue. As such the tissue was decomposed into myofibers 

(microscopic reinforcement bars) and background tissue. These components were 

distributed throughout the tissue volume consistent with the LV anatomy and 

morphological analysis of fibrous structure of the LV muscle tissue. Distribution of the 

“rebars” in the LV geometry in fact reflects the fibrous structure of the cardiac tissue. For 

simulation of the mechanical behavior of the background tissue and myofibers, 

hyperelastic models were considered. As a result of applying the diastolic blood pressure 

to the LV endocardial surface, the model was inflated while both parts of the cardiac tissue 

underwent passive deformation. The proposed model has this special merit that it is 

implementable using off-the-shelf FE solvers without any need for further FE module 

coding. Since a well validated and computationally efficient commercial FE solver was 

utilized for our simulations, we were able to conduct the simulations presented in this work 

with high efficiency while divergence and instability issues were rarely encountered. 

To demonstrate the effectiveness of the proposed model in simulating natural deformation 

of the LV during diastole phase, we used an ad-hoc optimization scheme to adjust the 

diastolic blood pressure and stiffness parameters of the LV muscle tissue parts (myofibers 
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and background tissue) such that the LV surface, including both endocardial and epicardial 

surfaces, of the calculated end-diastolic LV model has the best match with that of the 

measured end-diastolic LV geometry obtained from segmentation of the MR image. It is 

noteworthy that the LV mechanical model accounts for tissue deformation only and it does 

not consider the LV rigid motion arising from body and respiratory motions. As such, the 

ICP algorithm was used to eliminate the rigid motion through finding the best surface 

alignment before surface matching can be assessed. The ICP algorithm calculates the 

surface matching error, providing a reasonable cost function optimization which was used 

to find the subject’s blood pressure at the end diastole phase non-invasively. Through an 

ad-hoc optimization procedure, both of the diastolic pressure and tissue hyperelastic 

parameters were varied to obtain the best surface match. However, the variations of 

hyperelastic parameters were bounded within a small range to reflect high certainty of their 

measured values. Using this optimization procedure, the diastolic blood pressure was 

determined at 800 Pa while the determined mechanical properties were slightly different 

from the ones corresponding to average stress-strain data given in [31]. This reinforces the 

validity of the proposed method as calculated optimum parameters pertaining to both 

diastolic blood pressure and mechanical properties of the myofibers and background tissue 

are within the normal range of the LV measurements [31-32]. 

The performance of the LV model was further evaluated by investigating the distribution 

of the end-diastolic strains within the LV model while the optimum values of blood 

pressure (800 Pa) and mechanical properties were used for mechanical simulation. Figure 

5.8 shows the distribution of the normal strain through the model. As observed in Figure 

5.8 (a), the radial strain is mainly negative through the model reflecting the thinning of the 

LV model by approaching to the end-diastolic phase while blood pressure is increasing 

[7,35-37]. It is also evident that the magnitude of the radial strains decreases by moving 

from endocardium towards epicardium, reflecting the greater compressional effect of the 

blood pressure in the radial direction on the endocardial surface [7,35-37]. The end-

diastolic radial strain at the midventricular area changes from -16.4% to -7.76% by moving 

from endocardium towards epicardium (Figure 5.8 (a)). This is consistent with other 

mechanical models of the LV diastolic inflation [7] in which the radial strain changes from 

-14% to -9% in the same region. These values are also in a fairly good agreement with 
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measurements of the LV diastolic function [36] where the transmural radial strain 

alterations is reported at -18% to -12%. The circumferential strain in our model is mainly 

positive (contrary to the radial strain), reflecting the circumferential dilation of the model 

caused by the blood pressure (Figure 5.8 (c)) [7,35-37]. The circumferential strain 

magnitude declines from 17.77% at the endocardium to 4.6% at the epicardium, showing 

greater extensional influence of the blood pressure near the endocardial region. This is in 

a good agreement with measurements of the human LV dilation [37] where the transmural 

variations of the radial strains is reported to vary from 15% to 7%. Other LV mechanical 

models (e.g. [38]) reported circumferential strain variations form endocardium to 

epicardium is 15% to 9%, showing good consistency with our model. Similar to the 

circumferential strain, longitudinal strain has a positive strain distribution through the 

model while varies from ~7.6% at endocardium to ~3.3% at epicardium at the equatorial 

area (see Figure 5.8 (e)). These strain alterations are normal since it shows the dilation of 

the model while the greater stretches occur near the endocardium where the LV tissue is in 

close contact with the blood pool and is affected more by its dilatational effect [7,35-38]. 

Quantitatively, these strain values are in good accordance with the measurements of the 

LV diastolic function [36] where it changes from 12% to 3.6% by moving from 

endocardium towards epicardium. It is also in a fairly good agreement with other 

mechanical models of the LV dilatation [38] in which the longitudinal strain alters from 

8.5% to 7.6% transmurally which is tensional across the LV wall. On the whole, the 

quantitative assessment of the transmural end-diastolic normal strain variations within the 

LV wall in our model agrees very well with those reported from measurements and other 

mechanical models of the LV dilation, reinforcing the validity of the proposed model. 

Furthermore, the diameter of the dilated LV at the end-diastolic instance was calculated at 

41.1 mm which was within the normal range of the end-diastolic diameter of the human 

LV based on values reported in the literature [34], once more providing evidence of reliable 

performance of the proposed LV FE model. 

The shear strain distribution within the LV model at the end-diastolic instance was also 

probed as another measure of performance of the model during diastole phase. It is 

noteworthy that capturing shear strain variations of the LV accurately is more challenging 

as this strain is more sensitive to heterogeneous anisotropic tissue properties. This 
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sensitivity has led to higher diversity in values reported by both experimental and 

mechanical modeling studies of the LV diastolic function [7,35-38]. The radial-

circumferential strain is positive through the LV wall and at the midventricular region 

while it varies from ~9.8% at endocardium to ~2% at epicardium as illustrated in Figure 

5.9 (a). This agrees fairly well with other validated mechanical models of the LV at the 

diastolic phase [12] especially in predicting positive values of the strain through the LV 

wall. The radial-longitudinal strain also changes form ~5% at endocardium to ~-2% at 

epicardium, showing good agreement with the LV mechanical model presented in [12] 

which reports that this strain component varies form 4% to -2% transmurally (see Figure 

5.9 (c)). The circumferential-longitudinal strain also changes from ~-3.9% to ~1% from 

endocardium to epicardium (see Figure 5.9 (e)), showing a good agreement with the 

mechanical model presented in [35], while this shear strain changes from -3% to zero by 

moving from endocardium towards epicardium. Other mechanical models of the LV have 

reported results which show fairly good agreement with our results [7,12,39]. It also agrees 

well with measurements presented in [36] for LV dilation which shows a variation of the -

5% to -0.5% from endocardium to epicardium. Overall, it can be concluded that the shear 

strain components in the presented LV model at the end-diastolic instance is also consistent 

with values reported from experimental and other mechanical modeling studies of the LV, 

again consolidating the validity of the FE LV simulation conducted in this chapter. 

The passive stress distributions at end diastole in the background tissue which was 

produced by Abaqus software are shown in Figure 5.10. The maximum principle stress 

distribution through the model is illustrated by Figure 5.10 (a) and (b). The major 

observation of this stress component is the positive stress distribution throughout the LV 

volume which indicates tensile stress distribution throughout the model as a result of the 

dilating blood pressure. The maximum value of this stress at midventricular area is ~3.5 

kPa at endocardium which is in the range of the LV tissue stress values reported for end 

diastole [25,35]. The radial stress distribution were shown in Figures 5.10 (c) and (d). As 

observed in Figure 5.10 (c) at the equatorial area, the radial stress changes from positive 

tensional values at endocardium towards very small negative compressional values at 

epicardium, reflecting expected reduction of the dilatational effect of the blood pressure by 

moving towards epicardium. The circumferential and longitudinal stress distributions 
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through the LV model are illustrated in Figures 5.10 (e), (f), (g), and (h). Both of these 

stresses are mainly positive, reflecting the LV model expansion resulting from the dilating 

blood pressure. Overall, the stress distributions presented in Figure 5.9 are in good 

agreement with other mechanical models of the LV, again reinforcing the validity of the 

proposed LV model. 

In this chapter we used an ad-hoc method to estimate the blood pressure and tissue 

mechanical properties. This was done as the main purpose of this study is to demonstrate 

the accuracy and effectiveness of the proposed cardiac mechanical model based on 

composite material model of the cardiac tissue to capture the LV diastolic phase mechanics. 

For more effective assessment systematic optimization can be utilized to provide more 

accurate estimate of the blood pressure and tissue mechanical properties. It should be 

emphasized that while a rough ad-hoc method was utilized to estimate tissue stiffness and 

diastolic blood pressure, the performance of the LV diastolic mechanical simulations at the 

calculated optimum values was consistent with other mechanical models and 

measurements of the LV diastolic function available in the literature. This was concluded 

based on quantitative and qualitative evaluations of the LV strain and stress distributions 

as well as end diastolic diameter at the end of the diastolic phase. 
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Chapter 6  

6 Conclusion and Future Work 

6.1 Conclusion 

IFFERENT aspects of the LV mechanics were investigated in this research where 

the major focus was to develop an LV mechanics model using a novel approach. 

Two levels of biomechanical modeling pertaining to the myocardium were tackled through 

the investigations presented in this dissertation. The first level involved developing a 

framework to characterize intrinsic mechanical properties of healthy and pathological 

myocardial tissue based on its microstructure. The second level involved studying the LV 

mechanics at health and disease sate. As explained in Chapter 1, myocardial tissue has a 

very sophisticated microstructure, including various constituents such as myofibers, 

mitochondria, and collagen fibers. These constituents have been adeptly organized within 

a fibrous structure to accomplish the contractile performance required to push out the blood 

with sufficient pressure out of ventricular cavities. Moreover, diverse cardiac 

pathophysiological conditions are known to change the type, mechanical properties, and 

organization of the tissue constituents, which leads to overall alteration in the heart 

mechanical function characterized by EF, stroke volume, and pressure-volume curve. As 

such the microscopic organization of cardiac tissue plays a crucial role in generating the 

overall mechanical performance of the myocardium. Connecting the overall macroscopic 

performance of the cardiac tissue to the tissue constituents’ organization is of interest to 

the medical community as it aids gaining insight into how tissue pathology leads to 

measurable symptoms pertaining to heart disease. This can be accomplished effectively 

using computational biomechanics technique. In the area of cardiac mechanics and 

specifically LV mechanics, there are a few methods presented in the literature. However, 

none of them are implementable using commercial FE software packages, unless additional 

custom-developed codes are augmented as subroutines. This arises from the fact that 

D 
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myocardial contractile function modeling involves hyperelastic anisotropic mechanical 

tissue models with the cardiac myofibers which need to be modeled as active elements 

generating contraction. These intricate features are not available in typical modules of 

commercially available FE software packages. Current FE models idealize cardiac tissue 

as a mono-phase material with hyperelasticity and anisotropy as its major mechanical 

properties. Another possible approach follows a composite material idealization which is 

capable of idealizing cardiac tissue anisotropy more effectively by incorporating actual 

myofiber orientation with high accuracy. This approach is expected to lead to a model that 

mimic cardiac mechanics characteristics with improved accuracy. This approach also 

offers high adaptability and ease of modeling various pathologies at cardiac tissue level. 

As such, our research was geared towards a number of major objectives which were tackled 

through different chapters of this thesis. In the first stage of our research we developed a 

novel cardiac tissue mechanical model for accurate quantification of the cardiac tissue 

intrinsic mechanical properties. This model takes into account all major cardiac tissue 

constituents and their associated mechanical properties to acquire the overall intrinsic 

properties of cardiac tissue. This tissue model is capable of accounting for cardiac tissue 

microstructural alterations in terms of composition, types, and volume distributions of each 

constituent corresponding to various pathologies. In the next stage of our investigation, a 

novel mechanical model of the LV was developed based on a composite tissue material 

model. This model considers all aspects and complexities of cardiac mechanics including 

anisotropy, hyperelasticity, and active contraction forces. The model was developed based 

on the composite material tissue approach of cardiac tissue. A highly important feature of 

this model is that it can be implemented using commercial FE software packages. The 

advantage of this feature is two-fold; one is possibility of its development with minimal 

efforts and paving the way for its wide availability to the research community and the other 

is its stability and computational efficiency built in most commercial FE solvers. The 

model was employed to simulate both a normal and a pathological LV mechanics during a 

complete heartbeat, to demonstrate its adaptability for heart disease mechanical simulation. 

The presented cardiac mechanics model is computationally efficient as it is fully 

implementable using commercial FE solvers, therefore, it is attractive for FE inversion-

based approaches. Accordingly, for a preliminary assessment of this model towards FE 
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inversion-based applications, the model was applied to a human LV model constructed 

using MR imaging data. Using this model, an ad-hoc optimization scheme was used to 

estimate the LV tissue muscle stiffness parameters and blood pressure of the diastole phase. 

The studies conducted in this research were presented in four chapters. The highlights of 

research achievements and results from these studies are presented briefly in the following 

sections. 

6.1.1 Chapter 2: A Novel Micro-to-Macro Approach for Cardiac 
Tissue Mechanics 

A novel approach for characterizing cardiac tissue mechanics under normal and various 

pathological conditions was proposed in this chapter where hyperelasticity and anisotropy 

were modeled. This approach is based on the cardiac tissue composition and organization 

of its microstructural tissue constituents. To develop cardiac tissue constitutive model 

following this approach, two major parts were considered for the tissue: 1) the background 

tissue including the three major constituents of mitochondria, collagen fibers and 

myofibroblasts, and 2) myofibrils. The major cardiac tissue constituents were chosen 

carefully based on morphological studies of the cardiac tissue which are available in the 

literature. The variations of type, volume percentage, and organization of the cardiac tissue 

constituents which are consistent with the pathophysiological state of the tissue is known 

to determine variations of cardiac tissue intrinsic properties. To obtain the tissue 

constitutive model following the proposed strategy, FE tissue samples of composite models 

pertaining to normal and pathological tissues were constructed by combining the tissue 

constituents as infinitesimal elements with different mechanical properties distributed 

throughout the samples’ volumes. The FE models were employed to simulate necessary 

uniaxial or biaxial mechanical tests to obtain corresponding stress vs. strain data. In the 

proposed approach, a two-step FE simulation was devised. In the first step, mechanical 

properties of the background tissue (non-myofiber part) and myofibers of the cardiac tissue 

were quantified in terms of hyperelastic parameters. In the second step, a self-contained 

anisotropic hyperelastic composite model of the whole cardiac tissue consisting of the two 

background and myofiber parts was constructed and used for biaxial and uniaxial FE 
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simulations. The major outcome of this two-step FE simulation is the overall intrinsic 

properties of cardiac tissue (stress-strain curve) in terms of its microstructural constituents. 

The technique was applied for normal cardiac tissue, leading to stress-strain datasets 

pertaining to both fiber and cross-fiber directions. These datasets were compared to 

measured cardiac tissue stress-strain datasets available in the literature and good agreement 

was observed. Moreover, the biaxial stress-strain datasets obtained in this study were fitted 

to the hyperelastic anisotropic models of normal cardiac tissue available in the literature 

and, as expected, the calculated parameters were in the range of parameters reported in the 

literature. Ad-hoc sensitivity analysis was also conducted to assess variations of the tissue 

stress-strain characteristics with respect to changes in the volume percentages of the tissue 

constituents. It was observed that the stress-strain characteristics are more sensitive to the 

myofibrils and mitochondria alterations. The significance of the mitochondria’s volume 

contribution alterations on cardiac tissue mechanical behavior is very interesting, and it 

arises from its high volume contribution to the cardiac tissue. It is noteworthy that most of 

the structural analysis merely investigate the influence of myofibrils and collagen fibers as 

the major players in determining the overall cardiac tissue mechanics. We also evaluated 

the hyperelastic parameters’ alterations with respect to tissue constituent changes as 

another measure of sensitivity, and once more the parameter alterations due to myofibrils 

and mitochondria changes were found to be more substantial. This agrees with our previous 

findings of the stress-strain relationship sensitivity analysis. 

Our method was also applied for modeling infarcted cardiac tissue as an important instance 

of cardiac pathological tissue. In our analysis of the MI mechanics, due to well-known 

development of the thick collagen fibers with more cross-linking within the infarct area, 

collagen fibers with stiffer mechanical properties were used. As such, the stiffness of the 

collagen fibers were adjusted such that a stress-strain curve with a good agreement between 

our results and experimental data (errors smaller than 10%) was achieved. The uniaxial 

stress-strain data of infarcted cardiac tissue obtained from the proposed method was also 

fitted to Yeoh, second order Polynomial, and fifth order Ogden hyperelastic models to 

compute the corresponding hyperelastic parameters. These hyperelastic parameters are 

very important since they can be utilized as input parameters for mechanical simulations 
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of the heart and LV with MI. The sensitivity of the stress-strain relationship to volume 

fraction variations of tissue constituents was also investigated, and it was observed that 

collagen fibers as the main constituent of the infarcted scar with the highest volume 

contribution plays a more important role in determining the cardiac tissue mechanics with 

MI. As another measure of sensitivity, infarcted cardiac tissue’s hyperelastic parameters 

variations by change in the collagen’s volume percentage was evaluated. Our results 

demonstrated significant changes due to these alterations, once more confirming the 

importance of collagen fiber network and its decisive effect in characterizing the intrinsic 

characteristics of infarcted cardiac tissue. 

6.1.2 Chapter 3: A Novel Biomechanical Computational Model of 
the Left Ventricle using a Composite Material Approach 

In this chapter, a novel mechanical model of the LV was presented. The model was devised 

based on a composite material model of the cardiac tissue. Based on this composite model, 

cardiac issue is decomposed into two major parts a background tissue in which the 

microscopic reinforcement rebars (fibers) are distributed. This composite model is 

consistent with the cardiac physiology, its fibrous structure, and available mechanical 

models of the cardiac tissue such as Hill’s model. In such models, typically two major parts 

are considered for the tissue: a mechanically active/passive part (myofibers) and a passive 

part (background tissue). The model was implemented using nonlinear FE approach and 

applied to an in silico geometry of a canine LV. To conduct the FE analysis, LV geometry 

was discretized into a FE mesh. The elements of this model were built as a composite 

material including two major constructive material (tissues): myofibers and background 

tissue. Myofibers were distributed through the elements of the FE LV model such that their 

directions were consistent with the fibrous structure of the LV anatomy based on the 

mathematical helical model presented in the literature. This element-based directional 

myofibers dispersal results in a self-contained anisotropy for the model which agrees with 

the realistic LV fiber orientations. To account for nonlinearity of the cardiac tissue as a 

major attribute of its passive behavior especially considering the large deformations though 

the myocardium, hyperelastic material model was considered for both myofibers and 

background tissue. Taking this description of the proposed model into consideration, both 
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aspects of the cardiac passive mechanics, i.e. hyperelasticity and anisotropy, were 

incorporated into our model. To model another important mechanical aspect of the cardiac 

mechanics, i.e. active myofibers stress, the elements’ rebars were prestressed incrementally 

to simulate time-variable myofibers’ contraction according to the well-known elastance 

model. Blood pressure alterations were also simulated by exerting a time-dependent 

uniform pressure to the endocardial surface of the model quantified according to available 

ventricular blood pressure data acquired during a cardiac cycle. 

The performance of the LV contractile function, which was constructed based on 

abovementioned method, was evaluated in both diastolic and systolic phases. As an 

important feature of the LV passive inflation, the LV model was pressurized by an 

incremental blood pressure up to 3 kPa while no significant active contractile stress was 

applied to the rebars. The pressure-volume characteristic curve obtained from our model 

was compared with experimental measurements of the LV contraction as well as other 

mechanical models presented in the literature, confirming the validity of our model. 

Passive transmural strain components through the model at end diastolic state were also 

evaluated. Our results indicated similar variations in all six components of the passive 

strains by moving from endocardium towards epicadium to those presented by other valid 

mechanical simulations of the LV, properly validating the diastolic performance of our 

model. The passive stress distribution through both parts of the tissue, i.e. background 

tissue and myofibers, at the end diastolic state agrees very well with stress distributions 

presented in other research works. The values of the fiber stress attained by our approach 

at the diastolic state also were in the range of stresses reported by other validated models, 

confirming the accuracy of our simulation. 

The LV model contraction at end systolic state was also investigated by comparing all six 

components of the strains through the LV model with the measurements as well as other 

mechanical models of the LV. All normal strains, i.e. radial, circumferential, and 

longitudinal strains, were found to be within the range of measurements reported for the 

strains within the anterior equatorial LV free wall. The calculated normal strains also 

demonstrated a very good agreement with other validated mechanical model of the LV. 

With radial strain, our results show slightly higher near endocardium and slightly lower 
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near epicardium. However, these strains are on par with other validated mechanical models. 

In case of shear strain components, due to the high level of complexity of the LV 

contraction arising from its heterogeneity and geometrical irregularities, similar to other 

validated mechanical models of the LV our model did not provide shear strain values close 

to the measured data for all three components of the shear strains. However, considering 

the radial-circumferential strain resulting from our simulation, which is almost within the 

range of the measured data, the performance of the presented model is quite acceptable. 

The end-systolic stress distributions resulting from our simulation in both background 

tissue and myofibers were also assessed. They showed that the maximum principle, radial, 

circumferential, and longitudinal stresses are mainly negative except within some small 

portions of the LV model, confirming the overall contraction within the model. It was also 

observed that the longitudinal fiber stress in the proposed model varies from negative 

values at endocardium to positive values at epicardium while the maximum values occur 

at mid-wall. These results are consistent with other LV models, again reinforcing the 

validity of the proposed model. The maximum value of fiber stress achieved by our model 

is also in the range of values reported by other validated mechanical models of the LV. In 

conclusion, considering the performance of the presented LV model in both systolic and 

diastolic phases, composite material model for cardiac tissue decomposition can be 

considered as an effective approach for cardiac mechanical simulations. This tissue 

decomposition strategy offers an outstanding opportunity to use off-the-shelf FE software 

packages which are usually computationally cost-effective with better convergence 

characteristics for modeling both passive and active aspects of cardiac mechanics. The 

model developed in this chapter can be considered as a core element for inversion-based 

finite element algorithms which are implemented by FE commercial software packages. 

6.1.3 Chapter 4: A Biomechanical Model of the Pathological Left 
Ventricle using a Composite Material Approach 

In Chapter 3, the LV mechanical model was applied to a normal LV geometry. In Chapter 

4, to investigate the performance of our model under pathological conditions, we utilized 

this model for pathological LV modeling. For this purpose an infarcted region was 

considered at the equatorial area of the LV model with a border zone enclosing it consistent 
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with known MI related tissue changes. The passive mechanical properties of the infarct 

region were changed such that the stiffness is higher in accordance with mechanical testing 

data pertaining to infarcted cardiac tissue. Fiber orientation within the infarct region was 

adjusted mostly in the circumferential direction consistent with known MI pathological 

alteration reported for cardiac ischemic scars. Similar to the normal LV model, the 

elastance model was used to account for time variations of the myofibers’ active stress 

during a cardiac cycle. The same parameters were assigned for the elastance model within 

the healthy regions of the infarcted LV model. However, the maximum isometric tension 

at the longest sarcomere length, which is an essential parameter of the elastance model, 

was set to zero and to half of the value used for healthy tissue at the infarct region and 

border zone, respectively, in accordance with other validated mechanical models of the 

infarcted LV. It is noteworthy that setting maximum isometric tension at the longest 

sarcomere length to zero at the infarct region implies zero contraction at this part which is 

expected due to the death of the majority of the cardiomyocytes. All other parameters and 

loadings of the infarcted model were similar to those used for normal LV mechanical model 

presented in Chapter 3. 

The LV model with MI was evaluated by investigating the distribution of normal strains at 

end-systolic state. It was observed that while stretching radial strain occurred at the normal 

midventricular areas as a sign of myocardial thickening at this parts, negative 

compressional strains developed at the infarct region, reflecting the well-known MI related 

thinning at this area. As another sign of infarction, the circumferential strain was positive 

at the infarct region consistent with other mechanical simulations of the infarcted LV. This 

was mainly because of depression of the contractile power of the tissue at this area, whereas 

it was negative within the normal LV parts due to their normal contraction. Longitudinal 

strains were also mainly negative in the healthy parts of the midventricular area while, 

similar to the other normal strain components, they were less negative and even positive at 

the infract region and border zone compliant with lack of contraction at these parts. The 

average values of the circumferential strains obtained by our method were also compared 

with the ones of tagged MR images and LV mechanical models to reinforce the validity of 

the proposed model. The stress distribution through our LV model at end-systolic state in 

both background tissue and myofibers were also investigated for further evaluations. All 
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stress components within the background tissue including maximum principle, radial, 

circumferential, and longitudinal strain components were mainly negative in the healthy 

parts, reflecting the compressional behavior of the tissue at these parts. These strains took 

less negative values or small positive values especially in case of circumferential stresses 

at both infracted region and border zone, reflecting the depression of the contraction at 

these parts. Consistent with other LV mechanical simulation with MI, fiber stress 

distribution also showed elevation of the stresses from endocardium to epicardium at both 

the infarct area and border zone. The highest values of fiber stress occurred at the border 

zone consistent with values reported by other MI mechanics studies. The maximum value 

of fiber stresses in our model was ~40 kPa which is in the range of values reported by other 

validated mechanical model of the infarcted LV, once more reinforcing the validity of our 

model. Overall, the performance of the model in simulating contraction of infarcted LV, 

especially at end systolic state consolidated the validity of the cardiac tissue composite 

concept for fast and easily adaptable modeling of LV mechanics under pathological 

conditions. Similar to the healthy LV case, the model was implemented using off-the-shelf 

commercial FE solver without any need for further subroutine coding, making it widely 

available to the research community for use and further development. 

6.1.4 Chapter 5: Human Left Ventricle Biomechanics Using 
Medical Imaging Data and Composite Material Mechanics 
Approach 

LV tissue stiffening is regarded as a common diastolic dysfunction which gradually results 

into depression of the LV contractile function, and eventually leading to heart failure. 

Consequently, quantification of the LV tissue stiffness in the diastolic phase is of great 

importance to determine cardiac tissue stiffening as a symptom of diastolic dysfunction in 

diastolic heart patients. To tackle this problem using a simplified inversion-based strategy, 

the mechanical model presented in Chapters 3 and 4 was applied for diastolic mechanical 

simulation of the human LV. To this end, human MR image data of a complete cardiac 

cycle was acquired. To obtain start-diastolic LV FE model, the LV geometry was acquired 

by segmenting the MR image data pertaining to the start-diastolic frame. The LV model 

was discretized into a FE mesh composed of hexahedral element. Next, the cardiac 

mechanics model presented in Chapter 3 was applied to the FE model to simulate dilation 
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of the LV by moving from start-diastolic instance to the end-diastolic instance. Similar to 

Chapters 3 and 4, composite material model including two main parts myofibers (rebars) 

and background tissue was used for the finite elements within the LV model. Myofiber 

orientations were also incorporated into the LV model by changing the fiber helix angle 

from endocardium towards epicardium according to data pertaining to human LV fiber 

direction obtained from DT-MRI technique. Again, similar to Chapters 3 and 4, 

hyperelastic models were considered for both background tissue and myofibers to account 

for large deformations and intrinsic nonlinearity of the cardiac tissue during LV passive 

filling. Since no significant contraction occurs during the diastole phase, no active 

properties were considered for cardiac myofibers. Our model takes into account all aspects 

of the cardiac passive mechanics including anisotropy and hyperelasticity which are needed 

for accurate diastolic mechanics simulation of the LV. The described forward model was 

utilized to adjust passive mechanical properties of the cardiac tissue and blood pressure 

such that the best match was achieved between calculated and measured LV geometries. It 

is noteworthy that the measure LV geometry was obtained from segmenting the end-

diastolic MR image frame while the calculated LV geometry was determined using forward 

LV model’s displacements output. The matching procedure was accomplished using an ad-

hoc optimization scheme. 

While the optimization scheme led to a blood pressure value of 0.8 kPa, it led to only small 

alteration of the tissue mechanical properties of the myofibers and background tissue from 

the initialized values adapted from the literature. It is noteworthy that the calculated values 

of the mechanical properties and blood pressure were within the range of reported LV 

measurements data pertaining to healthy subjects, consolidating the validity of the 

proposed cardiac mechanics model in conjunction with the ad-hoc inversion-based 

strategy. Furthermore, the diameter of the dilated LV model resulting from the LV 

mechanics model run with the optimal stiffness and blood pressure parameters was ~41 

mm, which is again within the range of measurements reported for normal human subjects. 

Further validation of the model involved the strain and stress distributions of the LV model 

at the end-diastolic state attained using the optimal stiffness and blood pressure values. The 

results confirmed that all normal strains’ distributions including radial, circumferential, and 

longitudinal strain distributions were within the range of corresponding data obtained from 
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measurements pertaining to healthy subjects. The results indicated that the equatorial end-

diastolic radial strain is negative through the model, reflecting the well-known myocardial 

thinning during diastolic expansion. They also showed that both circumferential and 

longitudinal strains are positive, confirming the passive LV dilation due to the endocardial 

blood pressure. These results confirm good agreement with corresponding measurements 

of the LV diastolic function, consolidating the validity of the proposed model. The shear 

strain components at the end-diastolic state except radial-circumferential strain component 

were both quantitatively and qualitatively consistent with corresponding measured data and 

data reported from other LV mechanics models, which again strengthen the validity of the 

proposed model. The stress distribution throughout the dilated LV model was also 

assessed. All stress components in the background tissue including maximum principle, 

radial, circumferential, and longitudinal stresses except very epicardial stresses were 

positive throughout the model, reflecting the expected tensile effect of the dilating blood 

pressure on the LV. The maximum value of the maximum principle stress was about 3.5 

kPa which is in the range of those obtained from other diastolic LV mechanical models. 

Overall, the end-diastolic stresses’ distributions throughout the LV model are in good 

accordance with other validated mechanical models of the LV, confirming the reliable 

performance of the proposed LV mechanics model in the diastole phase. 

6.2 Future Directions 

The forward mechanical model of the LV presented in Chapters 3 and 4 of this thesis can 

be considered as a core element to be run iteratively within an inverse FE problem 

framework towards diverse patient-specific diagnosis and therapy planning applications. 

One interesting application of the inverse FE problem method which uses our forward 

mechanical model and cardiac imaging data is assessing the severity of myocardial 

infarction. For this purpose, infarct region and border zone as well as displacement field of 

the LV model can be acquired from various imaging modalities such as MR imaging and/or 

US data pertaining to cardiac cycles of the MI patient. The proposed mechanical model of 

the infarcted LV can be used in conjunction with the geometry obtained from MR imaging 

data and the methods described in Chapters 3 and 4 of this thesis. Quantitative assessment 

of the infarction severity, involves setting the maximum isometric tension at the longest 



184 

 

sarcomere length (
maxT  in Equation (3.1) of Chapter 3) as a variable in the model to be 

determined iteratively through an optimization algorithm. As such, initial guess values of 

this parameter can be initialized in the optimization algorithm for different regions 

including the normal regions, infarct regions, and border zones. The optimization algorithm 

changes these values systematically with the aim of achieving the best match between the 

LV’s displacement field obtained from our mechanical simulation and the corresponding 

one obtained from MR imaging data. Values of this parameter, especially at the infarct 

region and border zone can be used as indicators of the acuteness of the infarction. Very 

low values of maxT  (e.g. values close to zero) at the infarcted region, may indicate nonviable 

cardiomyocytes at this region. In such a case, clinicians may determine that there would be 

no chance of recovery of the cardiomyocytes in this region using revascularization 

therapies and vice versa. Accordingly, this computational scheme along with cardiac 

imaging technique may aid cardiologists to decide appropriate and effective therapeutic 

strategies for the MI patients. 

6.3 Closing Remarks 

Diverse cardiac mechanics models of normal and pathological heart have been developed 

during the recent decades. The major goal of all of these developments is to achieve 

accurate computer-based techniques aimed at diagnosis and treatment of different cardiac 

conditions. Taking into account the complexities of the heart mechanics, these models were 

implemented using intricate nonlinear FE algorithms which are not implemented in 

available commercial FE software packages. The mechanical model of the LV presented 

in this work is implementable using conventional FE software without need to any custom-

developed codes. The presented model was implemented using a novel composite material 

model of the cardiac tissue and can be considered as a step forward towards wide 

accessibility of computational tools for patient-specific diagnosis and therapies. The 

presented model is easily adaptable to diverse cardiac pathological conditions by easy 

adjustment of the passive and active mechanical properties through different parts of the 

LV geometry, rendering this model even more attractive for clinical applications. For 

preliminary assessment of the suitability of this model for FE inversion-based cardiac 

mechanics characterization towards patient-specific diagnosis and therapy planning, the 
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model was also utilized within an ad-hoc optimization framework. In this framework, the 

passive LV tissue stiffness parameters and diastolic blood pressure were successfully 

determined, confirming the merits of the proposed model for such applications. 

Another important contribution of this research is development of an effective technique 

to estimate cardiac tissue intrinsic properties on its microstructural constituents. As such a 

novel FE-based cardiac tissue mechanics model was developed in which type, volume 

percentage, and organization of the tissue constituents can be easily changed according to 

the physiology of the normal and pathological cardiac tissue to obtain the sought tissue 

intrinsic properties. It was also observed that volume percentage, type, and organization of 

the major cardiac tissue constituents affect the overall cardiac tissue intrinsic properties 

significantly. This cardiac tissue model can be used as a highly effective alternative to 

using uniaxial and biaxial mechanical testing while it is capable to catalogue a wide range 

of pathologies without the need of scarce cardiac tissue samples. As such it can be 

considered as another step forward in the field of cardiac mechanics modeling by providing 

required inputs for such simulations. 
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