278 research outputs found

    Exploring ECG Signal Analysis Techniques for Arrhythmia Detection: A Review

    Get PDF
    The heart holds paramount importance in the human body as it serves the crucial function of supplying blood and nutrients to various organs. Thus, maintaining its health is imperative. Arrhythmia, a heart disorder, arises when the heart's rhythm becomes irregular. Electrocardiogram (ECG) signals are commonly utilized for analyzing arrhythmia due to their simplicity and cost-effectiveness. The peaks observed in ECG graphs, particularly the R peak, are indicative of heart conditions, facilitating arrhythmia diagnosis. Arrhythmia is broadly categorized into Tachycardia and Bradycardia for identification purposes. This paper explores diverse techniques such as Deep Convolutional Neural Networks (CNNs), Long Short-Term Memory (LSTM), Support Vector Machines (SVM), Neural Network (NN) classifiers, as well as Wavelet and Time–Frequency Transform (TQWT), which have been employed over the past decade for arrhythmia detection using various datasets. The study delves into the analysis of arrhythmia classification on ECG datasets, highlighting the effectiveness of data preprocessing, feature extraction, and classification techniques in achieving superior performance in classifying ECG signals for arrhythmia detection

    HEART RHYTHM CLASSIFICATION FROM STATIC AND ECG TIME-SERIES DATA USING HYBRID MULTIMODAL DEEP LEARNING

    Get PDF
    Cardiovascular arrhythmia diseases are considered as the most common diseases that cause death around the world. Abnormal arrhythmia diseases can be identified by analyzing heart rhythm using an electrocardiogram (ECG). However, this analysis is done manually by cardiologists, which may be subjective and susceptible to different cardiologist observations and experiences, as well as to noise and irregularities in those signals. This can lead to misdiagnosis. Motivated by this challenge, an automated heart rhythm diagnosis approach from ECG signals using Deep Learning has been proposed. In order to achieve this goal, three research problems have been addressed. First, recognize the role of each single-lead of a 12-lead ECG to classify heart rhythms. Second, understanding the importance of static data (e.g., demographics and clinical profile) in classifying heart rhythms. Third, realizing whether the static data can be combined with the ECG time series data for better classification performance. In this thesis, different deep learning models have been proposed to address these problems and satisfactory results are achieved. Therefore, using this knowledge, an effective hybrid deep learning model to classify heart rhythms has been proposed. As per knowledge obtained from relevant literature, this is the first work to identify the importance of individual lead and combined lead as well as the importance of combining static data with ECG time series data in classifying heart rhythms. Extensive experiments have been performed to evaluate this algorithm on a 12-lead ECG database that contains data from more than 10,000 individual subjects and obtained a high average of accuracy (up to 98.7%) and F1-measure (up to 98.7%). Moreover, in this thesis, the distribution of heart rhythms from the database based on heart rhythm type, gender, and age group have been analyzed, which will be valuable for further improvement of classification performance. This study will provide valuable insights and will prove to be an effective tool in automated heart rhythm classification and will assist cardiologists in effectively and accurately diagnosing heart disease

    Detection of heart pathology using deep learning methods

    Get PDF
    In the directions of modern medicine, a new area of processing and analysis of visual data is actively developing - a radio municipality - a computer technology that allows you to deeply analyze medical images, such as computed tomography (CT), magnetic resonance imaging (MRI), chest radiography (CXR), electrocardiography and electrocardiography. This approach allows us to extract quantitative texture signs from signals and distinguish informative features to describe the heart's pathology, providing a personified approach to diagnosis and treatment. Cardiovascular diseases (SVD) are one of the main causes of death in the world, and early detection is crucial for timely intervention and improvement of results. This experiment aims to increase the accuracy of deep learning algorithms to determine cardiovascular diseases. To achieve the goal, the methods of deep learning were considered used to analyze cardiograms. To solve the tasks set in the work, 50 patients were used who are classified by three indicators, 13 anomalous, 24 nonbeat, and 1 healthy parameter, which is taken from the MIT-BIH Arrhythmia database

    Electrocardiogram Monitoring Wearable Devices and Artificial-Intelligence-Enabled Diagnostic Capabilities: A Review

    Get PDF
    Worldwide, population aging and unhealthy lifestyles have increased the incidence of high-risk health conditions such as cardiovascular diseases, sleep apnea, and other conditions. Recently, to facilitate early identification and diagnosis, efforts have been made in the research and development of new wearable devices to make them smaller, more comfortable, more accurate, and increasingly compatible with artificial intelligence technologies. These efforts can pave the way to the longer and continuous health monitoring of different biosignals, including the real-time detection of diseases, thus providing more timely and accurate predictions of health events that can drastically improve the healthcare management of patients. Most recent reviews focus on a specific category of disease, the use of artificial intelligence in 12-lead electrocardiograms, or on wearable technology. However, we present recent advances in the use of electrocardiogram signals acquired with wearable devices or from publicly available databases and the analysis of such signals with artificial intelligence methods to detect and predict diseases. As expected, most of the available research focuses on heart diseases, sleep apnea, and other emerging areas, such as mental stress. From a methodological point of view, although traditional statistical methods and machine learning are still widely used, we observe an increasing use of more advanced deep learning methods, specifically architectures that can handle the complexity of biosignal data. These deep learning methods typically include convolutional and recurrent neural networks. Moreover, when proposing new artificial intelligence methods, we observe that the prevalent choice is to use publicly available databases rather than collecting new data

    Classification techniques for arrhythmia patterns using convolutional neural networks and Internet of Things (IoT) devices

    Get PDF
    The rise of Telemedicine has revolutionized how patients are being treated, leading to several advantages such as enhanced health analysis tools, accessible remote healthcare, basic diagnostic of health parameters, etc. The advent of the Internet of Things (IoT), Artificial Intelligence (AI) and their incorporation into Telemedicine extends the potential of health benefits of Telemedicine even further. Therefore, the synergy between AI, IoT, and Telemedicine creates diverse innovative scenarios for integrating cyber-physical systems into medical health to provide remote monitoring and interactive assistance to patients. Data from World Health Organization reports that 7.4 million people died because of Atrial Fibrillation (AF), recognizing the most common arrhythmia associated with human heart rate. Causes like unhealthy diet, smoking, poor resources to go to the doctor and based on research studies, about 12 and 17.9 million of people will be suffering the AF in the USA and Europe, in 2050 and 2060, respectively. The AF as a cardiovascular disease is becoming an important public health issue to tackle. By using a systematic approach, this paper reviews recent contributions related to the acquisition of heart beats, arrhythmia detection, IoT, and visualization. In particular, by analysing the most closely related papers on Convolutional Neural Network (CNN) and IoT devices in heart disease diagnostics, we present a summary of the main research gaps with suggested directions for future research

    Assessing the Reidentification Risks Posed by Deep Learning Algorithms Applied to ECG Data

    Get PDF
    ECG (Electrocardiogram) data analysis is one of the most widely used and important tools in cardiology diagnostics. In recent years the development of advanced deep learning techniques and GPU hardware have made it possible to train neural network models that attain exceptionally high levels of accuracy in complex tasks such as heart disease diagnoses and treatments. We investigate the use of ECGs as biometrics in human identification systems by implementing state-of-the-art deep learning models. We train convolutional neural network models on approximately 81k patients from the US, Germany and China. Currently, this is the largest research project on ECG identification. Our models achieved an overall accuracy of 95.69%. Furthermore, we assessed the accuracy of our ECG identification model for distinct groups of patients with particular heart conditions and combinations of such conditions. For example, we observed that the identification accuracy was the highest (99.7%) for patients with both ST changes and supraventricular tachycardia. We also found that the identification rate was the lowest for patients diagnosed with both atrial fibrillation and complete right bundle branch block (49%). We discuss the implications of these findings regarding the reidentification risks of patients based on ECG data and how seemingly anonymized ECG datasets can cause privacy concerns for the patients

    Detection of shockable heart rhythms with convolutional neural networks : Based on ECG spectrograms

    Get PDF
    Purpose Automated feature extraction combined with deep learning has had and continues to have a strong impact on the improvement and implementation of pattern recognition driven by machine learning. Systems without prior expertise about a problem but with the ability to iteratively learn strategies to solve problems, tend to outperform concepts of manual feature engineering in vari-ous fields. In ECG data analysis as well as in other medical domains, models based on manual feature extraction are tedious to develop, require scientific expertise, and are oftentimes not easily adaptive to variations of the problem to be solved. This work aims to examine automated feature extraction and classification of ECG data, specifically of shockable heart rhythms, with convolu-tional neural networks and residual neural networks. The precise and rapid determination of shockable cardiac conditions is a decisive step to improve the chances of survival for patients having a sudden cardiac arrest. Conventional, commercially available automated external defib-rillators (AEDs) deploy algorithms based on manual feature extraction. Approximately 1 out of 10 shockable conditions is not recognized by the AED. Consequently, strategies for improvement need to be explored. Methods 125 ECG recordings from four annotated cardiac arrhythmia databases (American Heart Association Database, Creighton University Tachyarrhythmia Database, MIT-BIH Arrhythmia Da-tabase, MIT-BIH Malignant Ventricular Arrhythmia Database) with a duration of 30 mins or 8 mins (Creighton University Tachyarrhythmia Database) per recording were processed. Shockable con-ditions are identified as ventricular tachycardia, ventricular fibrillation, and ventricular flutter. The 1 channel ECG recordings (modified limb lead II) were normalized to 250 Hz sampling frequency, high-pass filtered (1 Hz cutoff and 0.85 filter steepness), second order Butterworth low-pass fil-tered (30 Hz cutoff), and notch filtered at 50 Hz. Consistent wavelet transformation with 5 octaves, 20 voices per octave, and a time bandwidth product parameter of 50 was applied to generate greyscale spectrogram representations of the ECG data (pixel value range from 0 to 255). The recordings were segmented into 3 s segments. Data augmentation around the borders of shock-able episodes and along shockable episodes was carried out to create balanced datasets con-sisting of 60340 samples. 45% of samples in the balanced dataset contain shockable rhythms with more than 60% temporal prevalence within each sample. Conventional convolutional neural networks and residual neural networks with varying architectures and hyperparameter settings were trained and evaluated on balanced datasets (train/val/test: 70/15/15). The approach focused on examining a broader range of parameter settings and model architectures rather than optimiz-ing a specific configuration. The best performing model was evaluated in a 5-fold cross-validation. Exemplarily, a leave-one-subject-out cross-validation was deployed with 3 randomly chosen re-cordings, with the constraints that each subject must come from a different database and contain a different shockable condition. Results and Conclusion The best performing model was a residual neural network with 96 residual blocks. The 5-fold cross-validation results on average in an accuracy of 0.987, a sensitivity of 0.992 on shock-able rhythms, and a specificity of 0.984 for non-shockable rhythms on the test sets. The ROC AUC score is 0.998 on average. The 3-fold leave-one-subject-out cross-validation reaches on average an accuracy of 0.984, a sensitivity of 0.984, and a specificity of 0.980. The ROC AUC score reaches 0.997 on average. The analysis of misclassified segments reveals that the classi-fier performs less accurately on border segments containing a shockable and at least one non-shockable rhythm. While the test set contains 4.73% border segments, the set of misclassified samples includes 11.29% border segments. The label distributions of the test set and the set of misclassified samples show that segments annotated as “not defined” (ND) and “ventricular fibril-lation or flutter” (VF-VFL) are significantly more prevalent in the set of misclassified samples. Histogram analysis, referring to the mean pixel intensity of the spectrograms, indicates that the classifier works less accurately on spectrograms with mean pixel values below 2 (practically flat-line signals or signals with very small amplitude). The results indicate that it is possible to improve the analysis of ECG data by deploying automated feature detection combined with artificial neural networks. The methods presented in this work are not restricted to the detection of shockable cardiac arrhythmias, they likewise em-phasize the potential of machine learning in the domain of biosignal analysis and correlated med-ical data. In the next step, the approach needs to be verified on a broader database. The tech-nology can even help create more comprehensive databases of clinical ECG data by supporting automated annotation
    corecore