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Abstract: 

Background: The application of artificial intelligence to interpret the electrocardiogram 

(ECG) has predominantly included the use of knowledge engineered rule-based algorithms 

which have become widely used today in clinical practice.  However, over recent decades, there 

has been a steady increase in the number of research studies that are using machine learning 

(ML) to read or interrogate ECG data.  

Objective: The aim of this study is to review the use of ML with ECG data using a time series 

approach. 

Methods: Papers that address the subject of ML and the ECG were identified by systematically 

searching databases that archive papers from January 1995 to October 2019. Time series 

analysis was used to study the changing popularity of the different types of ML algorithms that 

have been used with ECG data over the past two decades. Finally, a meta-analysis of how 

various ML techniques performed for various diagnostic classifications was also undertaken.  

Results: A total of 757 papers was identified. Based on results, the use of ML with ECG data 

started to increase sharply (p<0.001) from 2012. Healthcare applications, especially in heart 

abnormality classification, were the most common application of ML when using ECG data 

(p<0.001). However, many new emerging applications include using ML and the ECG for 

biometrics and driver drowsiness. The support vector machine was the technique of choice for 

a decade. However, since 2018, deep learning has been trending upwards and is likely to be the 

leading technique in the coming few years. Despite the accuracy paradox, accuracy was the 

most frequently used metric in the studies reviewed, followed by sensitivity, specificity, F1 

score and then AUC.  

Conclusion:  Applying ML using ECG data has shown promise. Data scientists and physicians 

should collaborate to ensure that clinical knowledge is being applied appropriately and is 

informing the design of ML algorithms. Data scientists also need to consider knowledge guided 

feature engineering and the explicability of the ML algorithm as well as being transparent in 

the algorithm’s performance to appropriately calibrate human-AI trust. Future work is required 

to enhance ML performance in ECG classification. 

Index terms: Machine learning, deep learning, electrocardiogram, artificial intelligence. 
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1. Introduction  
Electrocardiogram (ECG) signals represent the electrical activity of the heart muscle as 

sensed by electrodes that are placed on the skin. The ECG plays an important role in identifying 

normal and abnormal heart rhythms, acute coronary syndrome as well as other cardiac and non-

cardiac abnormalities (e.g. pericarditis, channelopathies). The ECG has also been used by other 

researchers to study sleep, emotions and stress. The ECG is one of the most widely used tools 

in medicine for patient monitoring and to assist in patient diagnosis. The ECG is commonly 

used because it is cost-effective, non-invasive and is an efficient diagnostic tool [1]. It is also 

the gold standard for identifying arrhythmias. Key components of the ECG signal are routinely 

analysed which include distinct morphological features such as the P wave (corresponding to 

excitation of the atria), QRS complex (corresponding to excitation of the ventricles) and the T 

wave (corresponding to repolarisation of the ventricular cardiomyocytes). Assessment of these 

components is used to interpret and discriminate between different ECG signals to help in 

patient diagnosis [2-3]. However, in some cases these morphological features are difficult for 

a human to interpret [4]. Furthermore, a number of studies have shown that physicians are often 

poor at reading ECGs in clinical practice [2][4].  Hence, machine learning (ML) has been used 

by a number of researchers to investigate if artificial intelligence (AI) can improve ECG 

interpretation and clinical decision-making. A basic rationale for using ML for ECG 

interpretation is that ML can potentially consider subtleties in the ECG signals that are beyond 

the ECG features that are routinely considered by humans. AI can be defined as the ability of 

machines to undertake tasks that are normally carried out by humans. ML is a branch of AI and 

is divided into three main categories, including: 1) supervised ML (for building algorithms to 

automatically interpret ECGs by using a dataset that include labels such as a gold standard 

disease classification), 2) semi-supervised ML (similar to supervised ML except that some 

cases in the dataset have labels and other cases do not - using such a partially labelled dataset 

can be used to refine the decision boundary in the algorithm), and 3) unsupervised ML (when 

the dataset is unlabelled and techniques such as clustering and association rule mining are used 

to discover labels or new knowledge and associations). Deep learning (DL) has become a 

popular ML technique and is most commonly used in supervised ML. DL is somewhat distinct 

from traditional supervised ML techniques, in that 1) DL algorithms can outperform other 

techniques when using big datasets [5], and 2) DL does not require handcrafted feature 

engineering which is an approach whereby a data scientist selects a set of variables that have 

predictive power, whereas DL can do this filtering automatically. In medicine, ML algorithms 

can be also used to augment or assist clinicians to improve their decision making, which can 

reduce unnecessary costs or delays - thus saving time and improving patient outcomes [6]. The 

aim of this work is to analyse and summarise as many as possible of the published studies that 

used ML algorithms and ECG data for the exemplary application areas such as ECG 

classification [7-8], ECG signal quality analysis [9-10], ECG lead misplacement detection [11-

14], emotion detection [15-16], activity classification [17-18], heart disease diagnostics [19], 

driver drowsiness detection [20], false alarm reduction [21-22], and biometric authentication 

systems [23-24]. This paper addresses the following research questions: 

1. What is the general growth in ML and ECG research according to the number of 

pertinent papers published? 

2. What are the trends and frequencies in the use of different ML techniques? 

3. What are the trends and frequencies in the use of various metrics that have been used 

by researchers to evaluate ML algorithms? 

4. What are the most common applications of ML when using ECG data? 

5. How has ML performed when being used to classify ECGs in order to assist in patient 

diagnoses? 
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2. Methods 
Online searches were performed using SCOPUS, PubMed and IEEE databases to seek 

relevant items published between 1995 and October 2019. The search terms: "ECG", "Machine 

Learning", "Artificial Intelligence", "Deep Learning" were combined as keywords in different 

sequences and combinations in order to achieve maximal search sensitivity. Inclusion criteria 

were used with the following conditions: 1) original studies related to machine learning 

involving ECG data that are written in the English, 2) a clearly defined ECG dataset and a clear 

specification of ML techniques. Studies were excluded if they did not use ML with ECG data. 

The type of ML technique and the results such as accuracy, sensitivity and specificity were 

extracted from each article. The five tribes taxonomy developed by Domingos [25] was applied 

for further analysis to categorise ML classifiers into five different types (tribes). These include 

1) symbolists (e.g. decision trees), 2) connectionists (e.g. artificial neural networks), 3) 

evolutionaries (e.g. genetic algorithms), 4) Bayesian (e.g. Bayesian networks) and 5) 

analogizers (e.g. k-nearest neighbour).  

 

2.1 Data analysis 

For data analysis, we used R programming (R Studio version 3.5.1) and R libraries such 

as ‘forestplot’, ‘ggplot’ and ‘metafor’ for meta-analysis. Chen and Liu's method [26] was used 

for time series analysis to detect change, trend and frequency in time series data. Statistical 

tests were applied using the Chi-square test where alpha=0.05. 

3. Results 
The database searches identified a total of 2116 articles. A total of 761duplicate articles 

were removed and the remaining articles (n=1355) were subject to screening based on title and 

abstract. After the screening, 598 articles were removed, and 757 articles were included as 

shown in figure 1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Literature search strategy and selection. 

Paper identified through online databases 

searching (n=2116) 
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Papers excluded 
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Papers excluded 

(n=598) as they did 

not use machine 

learning 

Papers included in the analysis n=757 as 

they used machine learning and ECG 
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All articles which passed primary screening based on the title and abstract were 

considered as shown in figure 1. Figure 2 clearly shows the significant increase in the amount 

of research that uses ML with ECG data.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Number of papers per year that address the use of ML with ECGs as identified in 

IEEE, PubMed and SCOPUS databases. The blue line represents the predicted number of 

published papers per year, while the grey line shows the actual number of published papers per 

year. Red dots represent the years where the number of published papers is different from the 

number of predicted published papers and the predicted number significantly increased. As this 

search ended at the beginning of October 2019, the last three months in 2019 were extrapolated 

by taking the average number of published papers per month in the previous nine months in 

the same year.   

 

According to Chen and Liu's analysis, the years 2012, 2014, 2016, 2017, 2018 and 2019 

are the years where the number of ML papers have a significant step change. After 2012, the 

number of publications that used ML with ECG data increased significantly, i.e. there were 

640 after 2012 out of 757 from 1995 until Oct 2019 (p<0.001). 

 

3.1 Machine learning techniques 

A large number of different ML techniques were used with ECG data (number of 

techniques=65). Figure 3 shows the time series of these frequencies over the past two decades. 

This shows that support vector machines (SVM) have been the most dominant technique. All 

65 ML techniques and their frequency of use can be seen in Table 1. 

 

When collapsing the ML techniques down into just five categories using the five tribes 

taxonomy, the connectionist algorithms were trending upwards in the years 1995, 1996, 2006 

and then re-emerged as a popular trend in 2019. Analogizers which include KNN and SVM 

techniques set the trend in the years 2000 to 2004 and again from 2007 to 2018. Bayesian 

techniques were trending upwards in 1997 and 1998 as shown in Figure 4. 
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Figure 3: Time series of the frequency of each ML technique over the last two decades. The 

support vector machine (SVM) has been the most dominant algorithm. Year 2005 was not 

included because either it did not have published works that used ML or full articles were not 

available. In 2019, the last three months were extrapolated by taking the average number of 

published papers per month in the previous nine months in the same year. 

 

Table 1: ML techniques and their frequency of use from 1995 to 2019. 
ML # % ML # % 

SVM: Support Vector Machine  332 43.9% ENL: Elastic Net Logistic  1 0.1% 

ANN: Artificial Neural Network 125 16.5% SM: Statistical Model 1 0.1% 
KNN: K-Nearest Neighbour 73 9.6% KLR: Kernel Logistic Regression 1 0.1% 
DT: Decision Tree 69 9.1% SPDR: Sample Percentage in the Dynamic Range 1 0.1% 
RF: Random Forest 63 8.3% ZCR: Zero-Crossing Rate 1 0.1% 
CNN: Convolutional Neural Network 62 8.2% SDSM: Smart Decision Support Module 1 0.1% 
ELM: Extreme Learning Machine  46 6.1% TDEBOOST 1 0.1% 
NB: Naive Bayes 31 4.1% SL: Supper Learner 1 0.1% 
DL: Deep Learning 29 3.8% TREEBOOST 1 0.1% 
LOG: Logistic Regression 23 3.0% TASOM: Time-Adaptive Self-Organizing Map 1 0.1% 
LDA: Linear Discriminant Analysis 22 2.9% BICO: Online Clustering Algorithm 1 0.1% 
LSTM: Long Short-Term Memory  16 2.1% RB: Rule-Based 1 0.1% 
HMM: Hidden Markov Model 10 1.3% ESS: Ensemble Based Score System 1 0.1% 
DBN: Deep Belief Network 8 1.1% AMGLVQ: Adaptive Multilayer Generalized Learning 

Vector Quantization 
1 0.1% 

AdaBOOST: Adaptive Boosting 8 1.1% CFM: C-F model 1 0.1% 
GA: Genetic Algorithm 7 0.9% VF15: Voting Feature Intervals 1 0.1% 
LR: Linear Regression 7 0.9% DTW: Dynamic Time Warping 1 0.1% 
K-means 6 0.8% SKF: Switching Kalman Filter 1 0.1% 
BPN: Back Propagation Network 5 0.7% D-Logic: Decision Logic 1 0.1% 
GMM: Gaussian Mixture Model 5 0.7% ADMM: Alternating Direction Method of Multipliers 1 0.1% 
DL-SVD: Dictionary Learning Algorithm Based on Singular 
Value Decomposition  

4 0.5% HDC-MER: HD Computing-based Multimodality Emotion 
Recognition 

1 0.1% 

SVR: Support Vector Regression 3 0.4% ZC: Zero Crossing 1 0.1% 
ESN: Echo State Networks 3 0.4% LTMIL: Latent Topic Multiple Instance Learning  1 0.1% 
ANFIS: Adaptive Neuro-Fuzzy Inference System  3 0.4% AIRS: Artificial Immune Recognition System  1 0.1% 
SOM: Self-Organizing Map 2 0.3% XGBOOST 1 0.1% 
GBM: Gradient Boosting Machines 2 0.3% FIA: Fuzzy Immune Approach 1 0.1% 
MLC: Maximum-Likelihood Classifier 2 0.3% FCM: Fuzzy C-Means 1 0.1% 
CRF: Conditional Random Fields 2 0.3% SRC: Sparse Representation Classifier  1 0.1% 
LVQ: Learning Vector Quantization 2 0.3% BOOSTSTRAP 1 0.1% 
J48 2 0.3% DFA: Discriminant Function Analysis 1 0.1% 
SMO: Sequential Minimal Optimization  2 0.3% NCA: Neighbourhood Components Analysis 1 0.1% 
BEAT: Beat-to-Beat Estimation by Adaptive Training  2 0.3% RVM: Relevance Vector Machine  1 0.1% 
EMD: Empirical Mode Decomposition 2 0.3%    
%= #/757 (where 757 is the total number of papers) 
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Figure 4: Five tribes analysis, a: represents the percentage of studies using algorithms in each 

tribe in each year and b: represents the total number of times an algorithm from each tribe has 

been used. The last three months in 20119 were extrapolated by taking the average number of 

published papers per month in the previous nine months in the same year. 
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3.2 Machine learning evaluation metrics 

Figure 5 shows the time series of metrics that have been used over the past number of 

decades to evaluate ML models. Accuracy was the most used metric (49.2% of studies) 

followed by sensitivity (20.3% of studies) and specificity (17.1% of studies) from 1995 to 2019. 

The use of sensitivity and specificity might be expected to be identical, but this was not the 

case. Different metrics were used to complement sensitivity such as positive detection rate and 

precision instead of specificity. The significant increase in the use of accuracy is surprising 

given the obvious problem of the ‘accuracy paradox’ [27] and the no-information rate (NIR), 

which represents the largest proportion of the observed classes especially in the case of an 

unbalanced dataset [27]. A total of 99 articles (13.01%) out of 757 articles used only accuracy 

in their work (p<0.001). Of these 99, all author backgrounds were from computing and 

engineering (computing=56/99, electrical and electronic engineering=32/99 and biomedical 

engineering=11/99). The significant increase of using accuracy only started from 2008 (95/99, 

p<0.001). The significant use of the accuracy metric occurred because it was used to compare 

the relative accuracy achieved between different ML classifiers that were trained and tested 

using the same data. Since 2016 there has been an increase in the use of AUC, precision (or 

positive predictive value (PPV)), sensitivity, specificity and F1 scores (F1 is the harmonic mean 

between sensitivity and specificity).  

Figure 5: Time series of the number of studies that use each of the respective ML evaluation 

metrics. Regression metrics such as root mean square error (RMSE) were excluded, because 

few papers (n<4) used them. In 2019, the last three months were extrapolated by taking the 

average number of published papers per month in the previous nine months in the same year. 

 

3.3 ECG applications 

The studies analysed in this paper used and evaluated ML algorithms for different 

purposes or applications as shown in Figure 6. The majority of these studies (n=400/757) 

focused on classifying different cardiac abnormalities as shown in Figure 6a and Figure 6b. 

Cardiac abnormality classification algorithms have been categorised into two different groups: 

1) arrhythmias (AR) (n=202/400) and 2) non-arrhythmias (Non AR) (n=62/400) (p<0.001) as 

shown in Figure 6b. A large proportion of the AR group (57.53%) focused on detecting atrial 

fibrillation followed by premature ventricular contraction (17.8%), ventricular fibrillation 

(9.5%), bradycardia (5.5%), tachycardia (4.1%), ventricular tachycardia (4.1%) and 

supraventricular tachycardia (1.4%) as shown in Figure 6c.  
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Figure 6: ECG application topics. a represents frequency of each application topic using ML. 

b is the frequency of each arrhythmia and non-arrhythmia group. c shows the frequency of each 

type in the arrhythmia group. d represents the frequency of each type in the non-arrhythmia 

group. 
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In the non-arrhythmia group, most studies focused on detecting ischemia and infarction 

(44.79%) followed by heart failure, structural abnormalities, coronary atherosclerosis, cardiac 

fibrosis, hypertrophic cardiomyopathy, abnormal myocardial relaxation, congenital heart 

disease, intradialytic hypotension and ventricular dysfunction as shown in Figure 6d. 

 

3.4 Meta-analysis for ECG classification  

Meta-analysis was applied to the arrhythmia and non-arrhythmia group to show the 

performance of ML algorithms for classifying each arrhythmia and non-arrhythmia based on 

the mean sensitivity and the mean specificity. In the arrhythmia group, as shown in Figure 7, 

using ML to detect tachycardia (it can be detected from simple threshold crossing and in some 

situations with relevant age related definitions) achieved the highest scores of sensitivity and 

specificity with 94.5% and 97.3% respectively, while algorithms to detect other arrhythmias 

achieved lower performance scores. As shown in Figure 7, KNN models outperformed the 

other classifiers for AF recognition (sensitivity 99% and specificity 95%), while SVM achieved 

the best sensitivity (92.5%) and specificity (98.5%) scores for premature ventricular 

contraction detection. These results demonstrate the ‘no free lunch theorem’ which postulates 

that no single ML technique can be the winning classifier for all problems. Some results being 

reported also seem likely to be dependent on a clean test set and are unlikely to transfer or 

generalise to other hospital ECG data sets that perhaps exhibit noise and artefacts with greater 

variations.  

 

 

 

Figure 7: A meta-analysis showing the performance of ML for cardiac arrhythmia 

classification. a summarised mean sensitivity and specificity of ML methods (using forest plot) 

for detecting each arrhythmia. b shows mean sensitivity and specificity of each ML algorithm 

for detecting each arrhythmia.  

a 
b 
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For tachycardia, all ML classifiers obtained a high similar performance showing that 

the obvious ECG morphological features of tachycardia are prominent in most cases which 

enable almost any ML technique to detect them easily.  However, these studies are very small 

in number and good test sets of ventricular tachycardia, for example, are rare. 

In the non-arrhythmia group, some types were not included in the meta-analysis 

because they used different metrics such as accuracy or F1 score instead of sensitivity and 

specificity. SVM outperformed the other classifiers for detecting coronary atherosclerosis 

(sensitivity 92% and specificity 94%). KNN and the decision tree achieved the best 

performance with a sensitivity of 99% and specificity 99% for detection of heart failure which 

strictly is not an ECG diagnosis. Such results might suggest that the control population 

consisted of healthy individuals and the heart failure population was selected from those in the 

most severe category.    In ischemia and infarction detection [28], latent topic multiple instance 

learning obtained the best sensitivity (95%) and specificity (82%) as shown in Figure 8.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: A meta-analysis showing the performance of ML for cardiac abnormality 

classification in the non-arrhythmia group. a summarise mean sensitivity and specificity of ML 

generally (using forest plot) to detect some abnormality in the non-arrhythmia group. b shows 

mean sensitivity and specificity of each ML algorithm particularly to detect coronary 

atherosclerosis (CA), heart failure (HF) as well as myocardial ischemia and infarction (ISMI). 

a 

b 
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As shown in Figures 6 and 7 and according to the five tribes taxonomy, analogizer 

algorithms such as KNN and SVM achieved the highest sensitivity and specificity in three 

classification problems related to cardiac arrhythmias (AF, premature ventricular contraction 

and tachycardia) and in two out of three classification problems in the non-arrhythmia group 

(coronary atherosclerosis and heart failure).     

4. Discussion 
According to the articles reviewed, different ML algorithms were applied using ECG 

data for different purposes, from disease classification to detection of driver drowsiness. The 

meta-analysis focused more on the use of ML and ECG data for detecting cardiac problems, 

while other topics such as emotion detection and activity classification were not meta-analysed 

due to a lack of multiple independent studies. In addition, there was significant variability in 

the use of different metrics (e.g. accuracy, sensitivity, specificity and AUC), ML classifiers and 

databases in the studies that were reviewed. This kind of variability made it difficult to compare 

or combine the results from different studies and different ML algorithms.  According to the 

meta-analysis results, ECG analysis using ML showed promising results, especially in 

detecting cardiac abnormalities. However, ML generally and DL especially do not perform 

well when using small datasets. Another key issue is the lack of transparency when using some 

of the ML algorithms that are being used. DL algorithms are considered a ‘black box’ which 

means that there is no transparency and as a consequence, there is no explanation available to 

the user to provide some rationale as to what is going on inside the black box or why the DL 

algorithm provides a specific output or disease classification. Experts suggest that there is an 

inverse relationship between ML performance/accuracy and explainabilty, where the higher 

performing techniques such as DL are less explainable, and hence Occam’s razer does not seem 

to hold true for ML algorithms (a ML algorithm can be considered a hypothesis, hence the 

reference to Occam’s razer) [29]. Computer scientists have suggested new methods such as 

attention maps to show which feature is considered important to the DL network before it 

makes a prediction. Most AI interventions, particularly diagnostic algorithms, were evaluated 

only in the context of diagnostic accuracy. Hence, the CONSORT (Consolidated Standards of 

Reporting Trials) and SPIRIT (Standard Protocol Items: Recommendations for Interventional 

Trials) groups are trying to prepare an international consensus to address challenges such as 

transparency and the reporting of the new AI intervention or ML results. CONSORT and 

SPIRIT plan to publish a standard reporting guideline very shortly. Hence, this review paper 

could be used to help them in their first steps which include “a systematic literature search for 

any existing recommendations and current practice for clinical trials of AI interventions” [30]. 

The US Food and Drug Administration (FDA) needs to ensure the safety and effectiveness of 

AI algorithms which might take considerable time, because the FDA requires a premarket 

submission to approve new AI algorithms [30][31]. Since 2019, the FDA has approved more 

than 30 artificial intelligence (AI) algorithms [30].  

 

Limitations 

The full text of some papers was not freely accessible using the databases available to 

the research team. Hence, they were only included in the frequency analysis, but were excluded 

in the meta-analysis. Most papers used different datasets and applied different ML techniques 

which may explain the variability in results that can be partly explained by the different types 

of datasets and the size of the dataset. Some papers that were published by authors who are not 

from computer science backgrounds did not specify which DL algorithm was applied, and 

hence most of those papers were combined into one category called DL which might include 

convolutional neural networks, deep neural networks or long short-term memory networks. 
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This emphasises the importance of engineers/computer scientists co-authoring and 

collaborating with medical experts to ensure that the right terminology is being used and that 

clinical knowledge is being applied appropriately. In addition, it is critically important that 

engineers and data scientists work with medical experts so that clinically useful contributions 

can be presented. 

5. Conclusion 
This study was conducted to evaluate the performance of ML on ECG data in the last 

~24 years regardless of the application area. Table 2 shows the general research questions 

presented mapped to the answers according to our findings which highlight the fact that ML is 

a rapidly evolving area in electrocardiology.  

 

Table 2: Key research questions that have been answered by this work. 
Research question Answers 

1. What is the general growth in ML and 

ECG research according to the number of 

pertinent papers published? 

According to this study, the total number of 

publications that used ML with ECG data before 

2012 was 117, while the total number after 2012 

was 640 (P<0.001).  

2. What are the trends and frequencies in the 

use of different ML techniques? 

ANN was the leading technique from 1995 to 

1997. From 1997 to 2000, NB and HMM were 

trending upwards. SVM has since been the trend 

and the most frequently used ML algorithm for 

almost two decades from 2000-2019 with two 

significant peaks in 2012 and 2018. However, 

from 2018, DL has appeared and used for ECG 

classification with promising results.   

3. What are the trends and frequencies in the 

use of various metrics that have been used 

by researchers to evaluate ML algorithms? 

Accuracy has been trending upwards 

significantly from 2006 to 2019 for evaluating 

ML algorithms. Before 2006, there was no 

significant trend towards using a specific metric. 

From 2008, sensitivity and specificity started 

increasing significantly, while from 2016, the use 

of F1 scores started increasing in use and has 

become the fourth most popular metric. However, 

accuracy still remains the dominant metric in 

terms of reporting ML performance [30].   

4. What are the most common applications of 

ML when using ECG data? 

The most common applications are healthcare 

applications/cardiac abnormality classification 

(p<0.001) as shown in Figure 6. There is a 

specific dominance for AF detection followed by 

myocardial ischemia and infarction and 

premature ventricular contraction. New emerging 

areas were included such as detection of ECG 

electrode misplacement and real time cardiac 

monitoring. 

5. How has ML performed when using it to 

classify ECGs to assist in patient 

diagnosis? 

ML outperformed physicians in detecting some 

arrhythmias such as AF. However, ML 

algorithms still require physician over-reading 

because ML is sub-optimal for many 

classifications according to the meta-analyses 

presented in Figures 6 and 7.  
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It shows promising results in medical applications, which emphasises the importance 

of applying ML in healthcare. However, DL requires future investigation in terms of 

performance when being trained using a large amount of ECG data. Hence, availability of large 

digital health records that include ECGs could motivate researchers to investigate the 

performance of DL models to detect different cardiac problems. However, DL has a number of 

challenges such as a lack of transparency and explicability, so new techniques and methods 

should be developed to provide explainable DL approaches to show which features are 

responsible for influencing the algorithmic decision. One implication of this work is a need for 

standardised reporting of data provenance and a standard protocol for presenting ML results 

with the use of universal metrics that would allow for unambiguous meta-analysis. Presenting 

a sample of the ECGs that are being used to test the algorithm is important. For example, an 

algorithm might perform very well when trained and tested using archetypical textbook quality 

ECGs. However, the real environment can involve ECGs that exhibit mains noise and baseline 

wonder along with other artefacts caused for example by poor electrode connections. The 

algorithm may become useless when applied to these datasets. In forthcoming years, around 

50% of hospitals plan to invest in ML because they realise that ML could improve patient 

outcomes and reduce costs. However, only 50% of decision makers in healthcare are familiar 

with the concept of AI and ML, and hence there remain a number of challenges before ML can 

be used in routine clinical practice [32].  
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