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ABSTRACT ECG (Electrocardiogram) data analysis is one of the most widely used and important tools in
cardiology diagnostics. In recent years the development of advanced deep learning techniques and GPU
hardware have made it possible to train neural network models that attain exceptionally high levels of
accuracy in complex tasks such as heart disease diagnoses and treatments. We investigate the use of ECGs as
biometrics in human identification systems by implementing state-of-the-art deep learning models. We train
convolutional neural network models on approximately 81k patients from the US, Germany and China.
Currently, this is the largest research project on ECG identification. Our models achieved an overall accuracy
of 95.69%. Furthermore, we assessed the accuracy of our ECG identification model for distinct groups of
patients with particular heart conditions and combinations of such conditions. For example, we observed that
the identification accuracy was the highest (99.7%) for patients with both ST changes and supraventricular
tachycardia. We also found that the identification rate was the lowest for patients diagnosed with both atrial
fibrillation and complete right bundle branch block (49%). We discuss the implications of these findings
regarding the reidentification risks of patients based on ECG data and how seemingly anonymized ECG
datasets can cause privacy concerns for the patients.

INDEX TERMS Biometrics, convolutional neural networks (CNN), deep learning, electrocardiogram
(ECG), ECG identification, privacy, reidentification.

I. INTRODUCTION
An Electrocardiogram (ECG) is a recording of the bioelec-
trical activity of the heart collected from the human body
surface. Figure 1 shows an ECG during one normal heart-
beat, consisting of several features including the P-wave,
QRS complex, T-wave, PR interval, QT interval, PR seg-
ment and ST segment. The amplitudes, time intervals and
other morphological features in different sections of the ECG
signal are used for diagnoses of cardiac conditions, making
ECG an important noninvasive tool for detection of heart
abnormalities. Arrhythmia is a group of conditions in which
the heartbeat has an irregular rate or rhythm. For exam-
ple, Figure 2 depicts the changes in ECG caused by atrial
fibrillation (AFIB), the most common type of arrhythmia

The associate editor coordinating the review of this manuscript and

approving it for publication was Adam Czajka .

that is associated with stroke and heart failure and affects
approximately 3% of the US population.

The shape of the ECG signal is unique for each person.
ECG is a universal biometric marker since it is present in
alive humans and is continuous meaning that we can always
capture the ECG from an individual. In the absence of major
cardiac events or conditions, an individual’s ECG stays rel-
atively unchanged over time, making it possible to create
high-accuracy ECG identification systems on multisession
ECG data. These qualities make ECG a good candidate as
a biometric identifier (electrophysiologic) that can be used
for human authentication and identification purposes, similar
to fingerprint and iris [1], [2]. Recently, off-the-person ECG
acquisition methods have gained more attention in ECG bio-
metric systems since these devices do not need to be attached
to the body and are noninvasive. For example, Apple Watch
series 6 is capable of capturing a single lead ECG. In addition
to being a unique and stable identifier, ECG eliminates the
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FIGURE 1. ECG waveform and segments in lead II for a normal cardiac
cycle.

FIGURE 2. Twelve-lead ECG showing atrial fibrillation rhythm with no
visible P waves that are replaced by coarse fibrillatory waves and an
irregularly irregular QRS complex.

aliveness test required in some other forms of biometric
systems since the heart signal is an inherently alive biometric.
ECG signals are difficult to counterfeit, which makes them
even more desirable as a biometric identifier.

The application of ECG as a biometric can be a use-
ful technology, but it also raises serious concerns regarding
the potential privacy leakages. For example, an ECG-based
biometric system can diagnose and store the heart condi-
tions of users without the patient’s consent. Privacy pro-
tection becomes even more critical as we collect and store
a constantly increasing volume of data from citizens. For
example, the emerging medical wearable device technologies
capture and store a continuous stream of sensitive health
data.

Applications of machine learning techniques for auto-
mated analysis of ECG data have been the focus of many
recent cardiac research efforts such as arrhythmia classi-

fication [3] and accurate prediction of ventricular arrhyth-
mia origins [4]. ECG data have also been used for emotion
recognition applications [5], [6]. Automated ECG analysis
systems using machine learning techniques typically have
multiple steps such as denoising and baseline correction,
heartbeat segmentation and QRS detection, feature extrac-
tion and model training. Both temporal/morphological fea-
tures such as QRS duration or amplitude of the P-wave,
and frequency domain features such as Fourier or wavelet
transformation coefficients have been used by researchers.
A variety of machine learning techniques including support
vector machines (SVMs), naive Bayes, random forest and
neural networks have been used in ECG research. In the
recent years, neural networks have been the preferred method
for high-accuracy ECG analysis due to the advancements in
deep learning algorithms and the availability of fast proces-
sors such as GPUs.

In this study, we report our approach in creating a high-
accuracy ECG identification system and the implications of
such systems for the patients’ privacy. Themain contributions
of this paper are summarized as follows:

• We report the results from our deep learning-based ECG
identification system on the largest number of subjects
reported in the literature so far (around 81k).

• For the first time, we also assess the accuracy of an ECG
identification model for distinct groups of patients with
particular heart conditions and combinations of such
conditions.

• In a novel analysis, we discuss different reidentification
scenarios regarding ECG datasets and provide proba-
bility estimations for the reidentification risks in some
scenarios.

The results from our research show that ECG ismore sensitive
health care information than previously thought and needs to
be protected by the privacy laws and regulations. For instance,
we recommend that ECG data be included in the list of
HIPAA identifiers.

II. LITERATURE REVIEW
The idea of leveraging ECG as a biometric identifier was
introduced by Forsen et al. in 1977 [7]. Biel et al. [1] were
the first to implement an ECG biometric system in 1999.
Although, subsequent studies have reported high accuracies
in ECG identification, all of them were based on a small
number of subjects ranging from ten to a couple of hun-
dreds. This undermines the results since ECG identification
systems in real-world scenarios are supposed to run on a
large population. In this section, we will review the ECG
identification literature, focusing on the number of subjects
used in each study and the accuracy achieved. Labati et al. [8]
extracted features from ECG using a CNN-based deep
learning model and achieved 100% accuracy on approxi-
mately 50 human subjects. Belo et al. [9] leveraged a tem-
poral convolutional neural network (TCNN) and recurrent
neural network (RNN) for both ECG identification and
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authentication. Overall, the TCNN model outperformed the
RNN achieving 100%, 96% and 90% accuracy on the
Fantasia (40 subjects), MIT-BIH (47 subject), and CYBHi
(63 subjects) databases, respectively. Salloum and Kuo [10]
used recurrent neural networks (RNNs) with long short-
term memory (LSTM) and gated recurrent units (GRUs),
reaching a 100% identification rate on 90 subjects from the
public ECG-ID database. Deshmane and Madhe [11] pro-
posed a CNN-based approach that achieved 81.33%, 96.95%,
94.73% and 92.85% accuracies on theMITBIH (47 subjects),
FANTASIA (40 subjects), NSRDB (18 subjects) and QT
databases (105 subjects), respectively. Eduardo et al. [12]
used autoencoders for denoising and feature extraction in an
ECG biometric system. Zhang et al. [13] achieved an average
identification rate of 93.5% using a multiresolution CNN on
datasets of 18 to 47 subjects. Li et al. [14] implemented two
cascaded CNNs: one for feature extraction from ECG heart-
beats and another for identification. They achieved 99.52%
accuracy on 184 subjects.

In general, deep learningmodels and CNNs have been used
for different tasks in automated ECG analysis. Li et al. [15]
proposed a new technique that combines convolutional neu-
ral networks and distance distribution matrices (DDM) to
classify congestive heart failure patients from normal sub-
jects in the MIT-BIH dataset. DDMs were used in entropy
calculations, and CNN models such as S_Inception_v4 were
used to learn the pattern of the data distributions hidden in
the generated distribution matrices. They achieved an accu-
racy of 81.85. Oh et al. [16] proposed a method leveraging
a combination of a convolutional neural network (CNN) and
long short-term memory (LSTM) for the diagnosis of normal
sinus rhythm, left bundle branch block (LBBB), right bundle
branch block (RBBB), atrial premature beats (APB) and pre-
mature ventricular contraction (PVC) on ECG signals. They
used variable length segments from the MIT-BIT arrhyth-
mia dataset, achieving an accuracy of 98.10%, sensitivity of
97.50% and specificity of 98.70%.

Limited research has been conducted on predicting
demographics such as age, sex and race from ECG sig-
nals. Attia et al. [17] trained a CNN to predict age and
sex on 10-second samples of 12-lead ECG signals from
499,727 patients. They achieved an accuracy of 90.4% for
sex classification and an average error of 6.9±5.6 years
for age estimation on a separate validation set of 275,056
patients. Khan et al. [18] trained a sex classification model
with an accuracy of 95.2%. Cabra et al. [19] reported
94% accuracy in automated classification of sex using
ECG samples. Wiggins et al. [20] presented a genetically
evolved Bayesian classifier for age detection capable of
assigning patients into young and elderly groups with
an AUC of 86.25%. Noseworthy et al. [21] built neu-
ral network models to discern racial subgroups includ-
ing African American, White, Hispanic/Latino, Asian and
Indigenous People or Alaskan Native with an accuracy
of 56.2%.

III. DATA
The 12-lead ECG data used in this work consisted of four
open-access research resources and a new open dataset from
the Ningbo First Hospital. The first open access dataset [22]
was used in the China Physiological Signal Challenge in
2018. This source contains 10,330 ECGs. Each recording is
between 6 and 144 seconds long with a sampling frequency
of 500 Hz. The second source is the Physikalisch-Technische
Bundesanstalt (PTB) ECG dataset [23], which consists
of 21,837 clinical 12-lead ECGs from 18,885 patients of
10 seconds in length. The raw waveform data were annotated
by up to two cardiologists, who potentially assigned mul-
tiple ECG statements to each record. The third source is a
Georgia database [24] that encompassed 10,334 ECGs and
represented a unique demographic of the southeastern United
States. Each recording is between 5 and 10 seconds long with
a sampling frequency of 500 Hz. The fourth database [25]
contains 12-lead ECGs from 10,646 patients with a 500-Hz
sampling rate that features 11 common rhythms and 67 addi-
tional cardiovascular conditions all labeled by professional
experts. This dataset consists of 10-second, 12-dimensional
ECGs and labels for rhythms and other conditions for each
subject. In addition, a new dataset from the Ningbo First
Hospital, including 34,320 ECG recordings, was collected
for study. The institutional review board of Ningbo First
Hospital approved this study and waived the requirement to
obtain informed consent. Cardiologist-supervised physicians
interpreted each recording and gave cardiac condition labels
and ECG findings. Finally, there were 88 cardiac conditions
present in the combined data that contained 87,467 ECG
recordings.

IV. PREPROCESSING
To improve the data input quality supplied to the neural
network, we carried out a three-stage noise reduction pro-
cess including a Butterworth low-pass filter to remove high-
frequency noise (above 50 Hz), Robust LOESS to eliminate
baseline wandering, and Nonlocal Means (NLM) to remove
residual noise [3]. These filters help to reduce the noise in
ECG signals caused by known sources such as power line
interference, electrode contact noise, motion artifacts, skele-
tal muscle contraction and random noise. The low-frequency
(<0.5 Hz) baseline wandering noise component could be
caused by respiration. Power line interference is the major
cause of the high-frequency (50-60 Hz) noise component.
R-peak to R-peaks are extracted from each ECG recording
and downsampled to 300 points.

V. ECG IDENTIFICATION MODEL
As shown in Figure 3, we implemented a convolutional neural
network with six one-dimensional convolutional sequences,
of which the first five layers (i.e. layers 1-1, 1-2, 2-1, 2-2
and 3) are horizontal (temporal) convolutions of kernel size
1×5 and the sixth layer (layer 4) is a vertical (spatial) convo-
lution of kernel size 12× 1. Each convolution is followed by
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FIGURE 3. Architecture of the deep learning model for ECG identification.

batch normalization, and there is a max-pooling layer after
convolutional layers 1-2, 2-2, 3 and 4 with a pool size of
1 × 2. The convolutional layers are followed by a flattening
layer, and two sequences of dense and dropout layers. The
final layer consists of softmax units equal to the number of
patients in the dataset. We used relu activation function for all
of the convolutional and dense layers. Overall, the architec-
ture resembles a temporal-spatial model where the first five
convolutional sequences try to discover patterns across each
of the 12 ECG leads and the last sequence looks for patterns
across all leads at one point in time. The input vector is a
12× 300 vector representing the 12-lead data consisting of
R-to-R interval measurements. The labels are the encoded
IDs for the patient in the database. The Adam optimizer is
used with a sparse categorical cross entropy loss function.
We tuned the model parameters by trying different values for
a set of different parameters and choosing the best param-
eter. For example, we tried different ranges of values for
parameters such as dropout rate, size of convolutionwindows,
number of neurons, activation function, optimizer, learning
rate and batch size.

A. OVERALL IDENTIFICATION RATE
An intrapatient validation method was adopted, as it is a fair
evaluation method for identification systems. We randomly
selected 20% of heartbeats from each patient to be used in
the validation set, and the rest of the heartbeats were used
in the training set. Thus, all patients were present in both
the training and validation sets but with distinct, nonoverlap-
ping heartbeat data. There were a total of 1,142,859 R-to-R
interval data from 80,746 patients split into two sets of
sizes (914,287 and 228,572) for the training and valida-
tion samples, respectively. Figure 4 shows the good fit in
the convergence curve from the model training. Our opti-
mal CNN model attained an overall accuracy of 95.69%
over all R-to-R interval validation data for the entire sample
of 80,746 patients.

The deep learning model employed to reidentify subjects
based on their ECG recordings needs to possess exceptional

inherent quality, especially as the number of patients in the
data increases. A large sample of subjects simultaneously
provides two challenges, increases the probability of observ-
ing subgroups of similar ECG profiles and dramatically
increases the number of possible incorrect identities for any
accuracy level. For example, given a sample size of n, the
proportion of identification selections that entail an accuracy
of p100% is:( n

np

)
[
∑n−np

i=1 (−1)i+11/i!](n− np)!

n!
. (1)

Equation (1) can be approximated and simplified:

1
(np)!e

. (2)

Last, using Stirling’s approximation Equation (2) yields:

enp−1
√
2πnp(np)np

. (3)

In our study, with a sample size n of 80,746, we attained an
accuracy of 95.69%. Formula (3) shows that the proportion of
such favorable reidentification selection is practically zero.

B. IDENTIFICATION RATE PER CONDITION
To assess the privacy risks for cardiology patients posed by
ECG identification systems, we calculated the identification
rates for patients suffering from several heart conditions.
Obviously, for a specific group of patients, the higher the
misidentification rate, the lower the privacy risk. In the dis-
cussion section, we explain how ECG identification can be
used to reidentify patients from anonymized datasets.

In our per-condition analysis, we considered single- and
multiple-condition scenarios. In the single-condition analy-
sis, a misidentified patient with one or several conditions was
counted as misidentified for all conditions. The total misiden-
tification rates per condition were calculated as the propor-
tion of misidentified patients with each condition among all
patients with the same condition. In the multiple-condition
analysis, we considered all diagnoses of a patient as a single
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complex category. This allowed us to assess the identification
rates for patients suffering from a particular combination
of conditions. The identification accuracies per all single
conditions are shown in Table 5. The identification rates for
all joint conditions with more than one hundred samples are
listed in Table 6. Note that in the joint condition analysis
results table, we have rows representing a single condition
since some patients had only a single diagnosis in the original
data. Table 7 shows the full diagnosis names for the condition
codes in Tables 5 and 6.
Based on Table 5, some single conditions, such as ventricu-

lar fibrillation, sinus arrest, left bundle branch block, myocar-
dial infarction and premature ventricular contractions had
low identification rates ( 54.96%,66.67%,83.43%, 85.14%
and 86.04%, respectively), while healthy sinus rhythm and
conditions such as shortened PR interval, supraventricular
tachycardia or counterclockwise vector cardiographic loop
had high identification rates (98.15%, 100%, 99.55% and
98.76%, respectively). Physiologically speaking, one poten-
tial hypothesis could be since the ECG morphologies of
ventricular fibrillation, sinus arrest, left bundle branch block,
myocardial infarction and premature ventricular contractions
among patients are similar and do not have many individu-
alized features, the identification rate will be lower than nor-
mal rhythm. Based on the joint condition analysis (Table 6),
patients with both atrial fibrillation and complete right bundle
branch block had a very low identification rate (48.95%),
making it almost impossible to identify these groups of
patients based on their ECG. On the other hand, patients with
both ST changes and supraventricular tachycardia had a very
high identification rate (99.7%), putting these patients in a
very high-risk group regarding privacy. One observation is
that in contrast to common expectations, some conditions
such as patients with both ST changes and supraventricular
tachycardia or patients diagnosed with sinus tachycardia had
an even better identification rate than normal sinus rhythm.
Finally, for patients with pacemakers, the identification rate
was 91.11% in the joint list (i.e. patients with pacemakers and
no other condition) and 89.29% in the single disease analysis
(i.e. patients with pacemakers and other potential conditions).

For example, consider the scenario where a patient diag-
nosed with both ST changes and supraventricular tachycardia
contributes to two different research datasets. Both datasets
are fully anonymized. One of them contains an ECG sample,
age and sex, and the other contains an ECG sample and zip
code. If we join these two datasets using an ECG identifi-
cation system, then we can find the subjects who appear in
both, giving us age, sex and zip code for the patients who
appear in both. The uniqueness for this combination in the
United States is 0.04%. We also know that the average iden-
tification rate for patients diagnosed with both ST changes
and supraventricular tachycardia is 0.997. Multiplying these
two numbers (under independence) gives us the probability
of identifying this patient uniquely and correctly: 0.997 ×
0.0004 ≈ 0.0004. Now, if we have birth date instead of age,
then this probability increases to 0.997× 0.871 ≈ 0.8684.

TABLE 1. Identification rate per sex.

TABLE 2. Identification rate per sex for sinus rhythms only.

TABLE 3. Uniqueness of US population [27].

FIGURE 4. Training loss convergence curve.

C. IDENTIFICATION RATE PER SEX AND AGE
We also assessed the identification rates across sexes and age
groups. There were 2,996 patients with unknown sex and
649 with unknown age in the data, which were removed from
this analysis. Table 1 and Figure 5 summarize our results,
which indicate that males had a slightly lower identification
rate than females and that older patients had a lower identifi-
cation rate than younger patients. This implies higher privacy
risks for female or younger subjects.

We performed a similar analysis on the subset of patients
with healthy normal sinus rhythms to investigate the presence
of differences in identification accuracies across sexes or age
groups among healthy individuals. The results are shown
in Table 2 and Figure 6. Again, male patients had a lower
identification rate than females, and older patients had lower
identification rates than the younger subjects.

VI. DISCUSSION
We designed and implemented a deep learning model capable
of identifying subjects based on 12-lead ECG data. Previous
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TABLE 4. HIPAA 18 identifiers.

FIGURE 5. Identification rate per age group.

results had severe limitations due to limited sample sizes
ranging from a couple of dozen to approximately one thou-
sand subjects. In this study, we trained a model with the
largest number of subjects: 80,746. We attained an excep-
tionally high overall accuracy of 95.69%. In the following
subsections, we discuss the implications of our findings for
the privacy of patients.

FIGURE 6. Identification rate per age group for sinus rhythms only.

A. RE-IDENTIFICATION RISKS DUE TO DEEP
LEARNING-BASED ECG ANALYSIS
ECG identification algorithms create the potential for rei-
dentification of individuals in ECG databases. Reidentifica-
tion is the practice of discovering the identity of individuals
in an anonymized database by matching the records with
publicly available information (auxiliary data). There is an
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TABLE 5. Identification rate per single condition.
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TABLE 5. Identification rate per single condition.

incorrect historical belief that anonymizing data obtained
by removing identifiers from a dataset protects the privacy
of subjects. There have been many instances of reidentifi-
cation of individuals in anonymized research datasets. For
example, in 1997, a researcher from MIT reidentified the
governor of Massachusetts in an anonymized research health
care dataset [26] by matching these data with the publicly
available voter registration data.

A potential reidentification scenario in ECG datasets could
occur when an individual contributes data to two or more
different research datasets. For example, database A has an
ECG sample, sex and date of birth, while database B has

an ECG sample and zip code. By simply matching the ECG
columns in both databases using an identification system,
one can discover the individuals who appear in both datasets
and obtain a complete profile of the individual by joining
their records. In this case, we have sex and date of birth
from database A and zip code from database B. These three
demographic attributes might be enough to uniquely identify
someone, as 87% of US citizens can be uniquely identified
only by having their date of birth, sex and zip code [27], [28].
While each of these demographics alone (quasi-identifiers)
is insufficient to identify someone, their combination can
be unique for a considerable percentage of the population.
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TABLE 6. Identification rate considering joint conditions.

Table 3 shows how different combinations of quasi-identifiers
such as sex, birth date, age and race can uniquely identify
citizens of the United States [27]. The table reports average
numbers across the United States. However, some specific
geographic regions have much higher uniqueness rates for
these identifiers. Additionally, rare scenarios such as patients
over 90 years old or a very small population of an ethnic/race
group living in a zip code can make them more vulnerable to
reidentification attacks.

B. RE-IDENTIFICATION RISKS DUE TO ECG-BASED
DEMOGRAPHICS PREDICTION
There have been reports regarding high accuracies of
ECG-based age and sex detection models [17]. Therefore,
we can extract the age and sex of the patient from the sample.
Typically, patients live in the proximity of the hospital or
clinic where their ECG was captured. Consequently, if we
know the hospital where the ECG sample was recorded, then
we can assume that the patient lives in that zip code, city or
county with some probability. Thus, by just having a sample
ECG and knowing the hospital where it was captured, we can
know the age, sex and zip code of the patient with some prob-
abilities. The combination of these three elements (age, sex
and zip code)might be enough to fully identify the patient and

locate their residence via online people search databases and
auxiliary public database searches. In this scenario, we might
be able to identify and locate a patient merely using an ECG
sample and no other information.

Although we cannot estimate the exact value for the birth
date (year, month and day) based on ECG deep learning
analysis, we can precisely estimate the age. If our database
has the date for capturing the ECG from the patient, then we
can reference the value of age to that date and calculate the
value for the year of birth. Year of birth is 365 times less
identifiable than an exact date of birth but is more informative
in terms of uniqueness than age. Additionally, race might
be detectable from an ECG sample, which can significantly
narrow down the search for the patient.

C. IMPLICATIONS FOR PRIVACY LAWS
There are different opinions on the criminalization of wrong-
ful reidentification. Some advocates of reidentification crim-
inalization believe that doing so will eventually have a great
impact on health and medical discoveries through big data
analysis since clear laws and regulations will ease the data
collection and analysis [29]–[31]. There are also opponents
who believe that fewer restrictions in data sharing will revo-
lutionize medical research [32].
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TABLE 7. Diagnosis codes mapping table.
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TABLE 7. (Continued.) Diagnosis codes mapping table.

The Health Insurance Portability and Accountability Act
(HIPAA or the Kennedy–KassebaumAct) of 1996 is a United
States federal statute that establishes regulatory thresholds
regarding data from health records to protect all individu-
ally identifiable health information from patients. Similarly,
in the European Union, the General Data Protection Regula-
tion (GDPR) is a data protection and privacy regulation that
sets guidelines for the collection and processing of all types

of personal information (including medical and health care)
for citizens. It gives individuals control over their personal
data. For instance, GDPR-compliant pseudonymization is a
set of guidelines to reduce privacy risks by assuring that data
cannot be attributed to a specific subject without the use of
separately kept additional information.

The HIPAA Safe Harbor standard states that a dataset
derived from health records should not contain any of the 18
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HIPAA identifiers to be considered deidentified [33]. Table 4
lists the 18 identifiers stated by HIPAA. Some of these iden-
tifiers are explicit, such as address, phone number or email,
which could be used to directly contact the patient [27]. Even
though identifier number 16 is for biometric identifiers, ECG
is not explicitly mentioned. In addition to being a biometric
identifier, ECG can also potentially reveal other information
about patients such as age, sex, race and health conditions.
As shown in the previous subsections, this information can
be used to identify the person and even find their explicit
identifiers such as address, phone number and name, which
are HIPAA identifiers 1, 2 and 4. Benitez and Malin [34]
estimated that the percentage of a state’s population to be vul-
nerable to unique reidentification attacks even when HIPAA
Safe Harbor is applied ranges from 0.01% to 0.25%. The
findings from our research indicate that ECG is more sensi-
tive health information than previously thought and requires
more attention from a privacy perspective. The results from
our research suggest that ECG should be added to the list of
HIPAA identifiers as the HIPPA 19th identifier; otherwise,
it should be clearly mentioned as part of identifier 16.

HIPAA also has regulations regarding the right to access
your Protected Health care Information (PHI) including
health condition, treatment plan, notes, images, lab results
and billing information. Likewise, the European GDPR
defines the right of access to personal data and information
for subjects. To comply with the GDPR, the data collector
must provide a copy of the actual data upon the subject
request, i.e., what we have stored about you.

However, data access rights become tricky in regard to
data such as ECG, based on which other information such
as age, sex and diseases can be extracted on the fly. While
a single ECG sample without any other data related to it
seems to be harmless with respect to the owner’s privacy,
it can reveal sensitive derivative information about its owner.
In this case, we recommend that in addition to the right to
access the actual copy of data, data collectors must provide
the subject with enough information on the potential of data
privacy infringement associated with that piece of data. For
instance, organizations collecting ECG data could provide
enough information to patients regarding potential derivative
data such as age, sex, race, heart conditions and life habits
(such as smoking and level of alcohol consumption).

VII. CONCLUSION
ECG has the potential to uniquely identify individuals in
a large population. Although deep learning models such as
convolutional neural networks are difficult to interpret and
understand, they are able to learn complex tasks such as
ECG identification with high accuracy. This has revolution-
ized application areas such as ECG as a biometric where
interpretability of the model is not a concern. Additionally,
we showed that identification accuracy per condition, age
and sex differs significantly. These facts imply that patients
with different conditions and demographics are exposed to
different levels of reidentification risks when contributing

data to ECG datasets. As discussed in this paper, the amount
of this privacy risk can be quantified in terms of how uniquely
and accurately an individual in an ECG dataset can be identi-
fied. Patients can use these risk estimations to decide whether
they contribute their ECG recording to a research dataset. Our
research suggests that ECG ismore sensitive information than
considered today. Thus, privacy regulations such as HIPAA in
the United States or the European GDPR should add explicit
guidelines related to the collection and sharing of ECG data
to reduce privacy risks for patients.

VIII. DATA AND CODE AVAILABILITY STATEMENT
The data that support the findings of this study are openly
available at the following URLs:
• PTB-XL dataset from https://physionet.org/content/ptb-
xl/1.0.1/

• 2018 China Physiological Signal Challenge dataset from
http://2018.icbeb.org/Challenge.html

• The Georgia 12-lead ECG Challenge dataset from
https://physionetchallenges.org/2020/

• The Ningbo First Hospital 12-lead ECG dataset from
https://physionetchallenges.org/2021/

The source code for ECG denoising is available at
https://github.com/zheng120/ECGDenoisingTool, and the
source code for training the models and the analysis used in
this paper is also openly available at https://github.com/arin-
gzn/ECG-Identification.
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