1,378 research outputs found

    Type synthesis of 6-DOF mobile parallel link mechanisms based on screw theory

    Get PDF
    Mobile parallel mechanisms (MPMs), which are parallel mechanisms with moveable bases, have previously been proposed to resolve the limited workspace of conventional parallel mechanisms. However, most previous studies on the subject focused on the kinematic analysis of some specific MPMs and did not discuss a type synthesis method for MPMs. With this in mind, we propose a screw theory-based type synthesis method to find out possible 6-degrees-of-freedom (DOF) MPM structures. In our proposed method, the 6-DOF mobility is divided into 3-DOF planar motion and 3-DOF spatial motion, both of which are realized by the transmitted planar motions of the driving units. Separately, the type synthesis of the entire MPM is divided into that of the driving unit and connecting chain. To realize 3-DOF spatial motion, two methods, applying singularity configuration and adding an additional chain, are proposed as ways to restrict undesired motions for the synthesis of the connecting chain. The driving unit is synthesized via the same type-synthesis method as the connecting chain by considering the driving unit as a planar mechanism. The method used to integrate the driving unit and the connecting chain was constructed based on whether the end pair of the connecting chain should be connected with the driving unit directly or driven by it through an actuating mechanism. As a result, 284 possible types of MPM structure are suggested and four examples of MPMs with six DOFs were synthesized to verify the feasibility of the proposed method

    Master of Science

    Get PDF
    thesisIncreased demand for powered wheelchairs and their inherent mobility limitations have prompted the development of omnidirectional wheelchairs. These wheelchairs provide improved mobility in confined spaces, but can be more difficult to control and impact the ability of the user to embody the wheelchair. We hypothesize that control and embodiment of omnidirectional wheelchairs can be improved by providing intuitive control with three degree of freedom (3-DOF) haptic feedback that directly corresponds to the degrees of freedom of an omnidirectional wheelchair. This thesis introduces a novel 3-DOF Haptic Joystick designed for the purpose of controlling omnidirectional wheelchairs. When coupled with range finders, it is able to provide the user with feedback that improves the operator's awareness of the area surrounding the vehicle and assists the driver in obstacle avoidance. The haptic controller design and a stability analysis of the coupled wheelchair joystick systems are presented. Experimental results from the coupled systems validate the ability of the controller to influence the trajectory of the wheelchair and assist in obstacle avoidance

    Design of a Spherical UGV for Space Exploration

    Get PDF
    The paper presents the design of a spherical UGV (Unmanned Ground Vehicle) for exploration of critical, unknown or extended areas, such as planetary surfaces. Spherical robots are an emerging class of devices whose shape brings many advantages, e.g. omni-directionality, sealed internal environment and protection from overturning. Many dedicated sensors can be safely placed inside the sphere and the robot can roll in any direction without getting stuck in singular configurations. Specifically, the proposed UGV is thought to collect images and environmental data, so required sensors are firstly discussed to evaluate in sequence of the payload in terms of size and energy consumption. The most effective drive mechanism is selected considering several possible concepts and carrying a trade-off process based on the requirements for a space mission. The optimal solution involves the use of a single pendulum: a hanging mass, attached to the central shaft of the sphere, is shifted to produce rolling. The design issues due to the selected mechanism are discussed, showing the effect of design parameters on the expected performance. For instance, the barycenter offset from the center of the sphere plays a crucial role and affects the maximum step or inclines that can be overcomed. Therefore, the pre-design phase is conducted by discussing the functional design of the robot and introducing a differential mechanism for driving and steering. A quasi omni-directionality is achieved and the mechanical components, opportunely designed according to the loads acting on the device, are arranged to match the mission requirements. Moreover, the mechatronic integration is discussed: microcontrollers, drive electronics, sensors and batteries are sized in order to reach 3 hours of continuous operation. The multibody system is finally modelled in Matlab-Simscape to verify the mechanism for the UGV testing in specific cases. Results show that a suitable layout is a 0.5 m diameter spherical UGV with a steel main structure, mounting 2 DC motors that activate a bevel gear by means of pulleys and timing belts. The spherical shell, with the internal mechanism and electronics, has a total mass of 25 kg and from standstill it can climb up to 15 degrees inclines or steps up to 25 mm, as proved by Matlab simulations. Future works will focus on the realization of the physical prototype, as well as navigation and control strategies

    Robotic Search and Rescue through In-Pipe Movement

    Get PDF
    So far, we have been engaged in the research and development of various kinds of robots that could be applied to in-pipe inspections that existing methods (screw-drive type, parallel multi-modular type, and articulated wheeled type) cannot perform. In this chapter, we categorized each in-pipe inspection robot depending on its configuration and structure, which includes the design of the propulsive mechanism, steering mechanism, stretching mechanism, and the locations of the wheel and joint axes. On the basis of this classification and from a developer’s point of view, we also discussed the various kinds of robots that we have developed, along with their advantages and disadvantages

    Master of Science

    Get PDF
    thesisThe objective of this research is to improve the ability of a human operator to drive an omnidirectional robot by using omnidirectional force-feedback. Omnidirectional vehicles offer improved mobility over conventional vehicles and can potentially benefit people requiring motorized transportation and industries where vehicles must operate in confined spaces. However, omnidirectional vehicles require more skill to control due to the additional degrees of freedom inherent in the vehicle’s design. We hypothesize that providing force-feedback to the driver through an omnidirectional joystick will allow the robot to assist the driver in navigating and avoiding collisions with obstacles in a manner that is natural to the operator. This research is the first attempt to use true omnidirectional 3-DOF (degree of freedom) force-feedback to provide navigational assistance for a human to drive an omnidirectional vehicle. While 2-DOF force-feedback has been used in a limited capacity for obstacle avoidance on omnidirectional vehicles, this is the first study to include a third rotational axis of force-feedback and use it to guide a driver along planar collision-avoiding trajectories with a natural coordination of orientation. Unique intellectual merits put forth by this research include use of a novel omnidirectional haptic device and force-feedback strategies to guide operators and experiments to quantify the ability of force-feedback to improve omnidirectional driving performance and driver experience in a real time scenario

    Dynamic model of a spherical robot from first principles

    Get PDF
    Department Head: Allan Thomson Kirkpatrick.2010 Summer.Includes bibliographical references (pages 77-78).A prototype of a pendulum driven spherical robot has been developed during previous research and shown to exhibit unique dynamic behavior. Starting from first principles, a mathematical model for this spherical robot rolling on flat ground was developed in order to determine if this unique behavior was inherent to spherical robots in general or simply peculiar to this prototype. The complete equations of motion were found using Lagrangian methods, and numerically integrated using computer tools. A 3D simulation program was written to animate the results of integrating the equations. The dynamics apparent in the simulations were found to closely match the observed dynamics of the physical prototype

    Modelling, simulation and experimental verification of a wheeled-locomotion system based on omnidirectional wheels

    Get PDF
    The following work focuses on the kinematic and dynamic study of a four-wheeled robot, which is equipped with omnidirectional Mecanum wheels. The main objective of the thesis is to obtain a mathematical model from which both the kinematics and kinetics of the robot can be analyzed. Furthermore, the study presents a methodology to optimize the torques (and subsequent associated voltages) provided by each of the motors on the robot for a given trajectory. A system in which a non-powered trailer pulled by the robot is also analyzed at a kinematic level. In this stage, four different cases are considered. The construction of the trailer is also described on this work. In the first chapter, the global state of the art on analysis and control of omnidirectional robots (with focus on robots with Mecanum wheels) is presented. In the second chapter, the physical considerations for the general movement of the robot are analyzed, in order to derive the kinematic constrain equations of the locomotion system. The differential equation of motion is then derived using Lagrange-equations with multipliers. This chapter presents as well the kinematic analysis for a robot-trailer system. The third chapter describes the general process on the design of the trailer, including the rejected ideas for its construction. The fourth chapter focuses on verifying the final results of the design process, as well as tests to check the mobility of the system. Conclusions and future work are analyzed on the final part of the document, as well as the references and the acknowledgments to all the people involved in the project.Tesi

    Implementation of Controlled Robot for Fire Detection and Extinguish to Closed Areas Based on Arduino

    Get PDF
    The wireless control systems are taking a special importance in the recent years, where the wireless control system provide several advantages; including the disposal of the using wire and periodic maintenance of data transmission wires, in the science of robot wireless control unit is the main part of the fire treatment and extinguish robot system. The lives of firefighters exposed to the risk of death and Rima, therefore the use of remote control systems more secure is necessary. In this, paper a fire-extinguish robot used for extinguishing the fire in general and in treatment fires in the closed areas for protecting employees in the field of fire suppression from combustion, exposure or inhalation to the toxic gases. The basic idea of fire detection and treatment robot based on detect the fire by the wireless camera and flame sensor then suppression the fire by send command from mobile phone through Bluetooth connection to make water pump turn "ON", and the fire then extinguished
    corecore