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ABSTRACT 
 

The following work focuses on the kinematic and dynamic study of a four-wheeled robot, 
which is equipped with omnidirectional Mecanum wheels. The main objective of the 
thesis is to obtain a mathematical model from which both the kinematics and kinetics of 
the robot can be analyzed. Furthermore, the study presents a methodology to optimize 
the torques (and subsequent associated voltages) provided by each of the motors on the 
robot for a given trajectory.  
 
A system in which a non-powered trailer pulled by the robot is also analyzed at a 
kinematic level. In this stage, four different cases are considered. The construction of the 
trailer is also described on this work.  
 
In the first chapter, the global state of the art on analysis and control of omnidirectional 
robots (with focus on robots with Mecanum wheels) is presented. In the second chapter, 
the physical considerations for the general movement of the robot are analyzed, in order 
to derive the kinematic constrain equations of the locomotion system. The differential 
equation of motion is then derived using Lagrange-equations with multipliers. This 
chapter presents as well the kinematic analysis for a robot-trailer system. The third 
chapter describes the general process on the design of the trailer, including the rejected 
ideas for its construction. The fourth chapter focuses on verifying the final results of the 
design process, as well as tests to check the mobility of the system. Conclusions and 
future work are analyzed on the final part of the document, as well as the references and 
the acknowledgments to all the people involved in the project. 
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CHAPTER ONE 
 

STATE OF THE ART 
 

 
 Development of mobile systems has acquired importance in the industry over the last 
years. One of the objectives which it pursuits is omnidirectional movement, which means 
that a vehicle can move in any direction while being on any orientation (Doroftei et al., 
2008). From the many methods that have been proposed to achieve such purpose, these 
can generally be classified as (1) methods based on conventional wheels and (2) methods 
based on special wheel designs (Tlale, 2006). In the first group, the presence of steering 
wheels in many designs (De Luca and Oriolo) gives the robot an omnidirectional (or 
almost omnidirectional) nature. Nevertheless, these systems require a considerable 
space for maneuvering, as their wheels are not allowed to move in the direction of their 
central axis. 
 
In contrast, the second group focuses on sorting this restriction. In particular, Mecanum 
wheels do not have such constrain, allowing the design of systems in which their total 
velocity could point in any direction on the plane of motion. This characteristic also solves 
the issue of immediate maneuvering and zero-radius curves, a fact which makes such 
systems truly omnidirectional. 
 
The original idea for the Mecanum wheels date as back as 1973, when engineer Bengt 
Ilon invented them during his time at the Swedish company Mecanum AB. The wheel 
design consists on a disc (which could also have an elliptical shape, such as in Ramirez-
Serrano and Kuzyk) which has rollers attached at a certain angle with respect to the disc 
axis on its perimeter. The rollers are free to rotate along its own axis, but no slipping is 
allowed between them and the surface. The general idea is that, even though the main 
disc spins steadily around its own axis, the rollers provide a force that is not entirely 
perpendicular to such axis. An example on a modern Mecanum wheel design can be seen 
on figure 1.1. 
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Fig. 1.1. Mecanum wheel design from AndyMark.  

Image taken from www.andymark.com 

 
Even though until today the idea of Mecanum wheels remains the same, worldwide 
companies, especially the ones who deal with robotic systems, have developed several 
designs. Nevertheless, most of the wheels include rollers whose axes have either a 45° 
angle or are parallel to that of the central disc. The latter, however, are usually called 
omnidirectional wheels, rather than Mecanum ones. 
 

 
Fig. 1.2. On the left, a Mecanum wheel. On the right, an omnidirectional wheel.  

Both designs are property of VEX Robotics. 
Image taken from www.vexrobotics.com 

 
While the Mecanum wheel itself is not entirely omnidirectional, a robot that uses four 
wheels is. The movement is achieved by adding the combined effect of each wheel’s 
rotational velocity on the system, which in the end produces a resultant force on the 
robot’s center of gravity to produce motion. Several examples of translation and rotation 
of a four-Mecanum-wheeled system can be seen on figure 1.2.  
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Fig 1.3. Different movement achieved by robot with Mecanum wheels and 

to the motion with conventional wheels. 
Image taken from Tlale,2006. 

 
As a result, the robot could achieve any trajectory (even non-continuous trajectories) by 
changing the speed on each of its wheels. This is especially useful for obstacle avoidance 
and movement optimization (the latter will be discussed briefly on a further chapter).  
 
Not only have the design focused on planar motion, but also, robots like the one 
presented in Doroftei et al., have considered that, even though this type of motion is 
most likely to occur during practical applications of this type of vehicles, small waves or 
perturbations on the ground could affect the control systems on the robot. This can cause 
problems while maneuvering it as the wheels could no longer rest on the ground. In the 
design by the author mentioned lines before, a suspension system is considered as part 
of the robot to overcome this problem. 
 

 
Fig 1.4. Robot prototype developed by Doroftei et al. 

Image taken from “Design and control of 
an Omni-directional Mobile Robot”  

 
Much interest has been shown in the way these robots are controlled, as they non-linear 
nature to achieve omnidirectional motion poses a challenge for both control systems and 
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robust actuator structures. Muir and Neuman discuss not only the kinematic approach to 
their robot Uranus, but also point out that, even though the actuators provide the right 
conditions for motion in three degrees of freedom, its structure is not robust, which could 
lead to actuator conflict. Just three of the four actuators are necessary to provide motion, 
leaving the fourth one dependent on the others. A solution is proposed by gearing to 
mechanically constrain the wheel motions so that all constrains are satisfied (Muir and 
Neuman, 1986). 
 
Omnidirectional robots have found a vast application in the industry, as their motion 
capabilities are able to maneuver in small areas, such as factory aisles. Companies such 
as Kuka Robotics have developed several designs aimed for industry purposes, which for 
example, allow large machine elements or products to be transported around in an 
practical and safe way. 
 

 
Fig. 1.5. Kuka’s KMP omniMove, design for heavy-duty-transport. 

Image taken from www.kuka-robotics.com 

 
The high maneuverability of these Mecanum robots can also make an impact on the 
mobility of disabled people. Abdelrahman uses a four-wheeled omnidirectional robot to 
improve a handicapped vehicle. It is mentioned that, even though theoretically all 
possible trajectories can be achieved with the robot, only simple “standard” trajectories 
can be achieved using a remote control, while a special software is required to control 
the driving moments applied to each wheel if trajectories that are more complex are to 
be achieved. 
 
Kang et al. has also developed a prototype to aid disabled people in a factory 
environment. A robot with lifting and obstacle detection capabilities was developed in 
order to help limbed impaired workers on a factory to perform tasks such as working on 
a table, transporting elements and moving freely through the factory passages. 
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Fig. 1.6. Omnidirectional vehicle for disabled workers. 

Image taken from Kang et al. 

 
Another branch in which omnidirectional wheels seem to have had a big impact is on the 
development of the so-called Automated Guided Vehicle (AGV). Designs, such as the 
Robotnik’s SUMMIT-X, allow automated omnidirectional movement both indoors and 
outdoors, thanks to its four Mecanum wheels, each one powered by one independent 
motor. 
 

 
Fig. 1.5. SUMMIT-X from Robotnik for automated omnidirectional motion. 

Image taken from www.robotnik.eu 

 
The kinematics of these robots can be solved in different ways. Authors like Yunan et al.  
 
Even though robots can be used individually to perform tasks, sometimes it is necessary 
to use articulate several vehicles, assembling the so-called robot-trailer systems. The 
kinematic constrains on these systems makes them in many cases, in the light of control 
engineering, highly nonlinear and underactuated, which naturally implies that their 
maneuverability has a high level of difficulty (Martínez et al. 2008). 
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Fig. 1.6. Robot and passive trailers system.  

Image taken from Park et al., 2004 

 
Most of the time, the driving part of the system is assumed by a non-omnidirectional 
robot, such as the one analyzed by De Luca and Oriolo. In their study, a steering-wheeled 
robot is assumed the driving part of the system, as well as their trailers being attached to 
each other’s axles midpoints (a condition called zero hooking).  
 

 
Fig. 1.7. Robot-trailer system analyzed by De Luca and Oriolo.  

Image taken from De Luca and Oriolo. 

 
Control of these systems can be even more challenging that the one of a non-holonomic 
robot itself. Park et al. suggested a method for the backward motion in which, if the 
trajectory of the n’th trailer is controlled, the trajectory of all the other trailers can be 
eventually controlled, even that of the driving robot. The method was further verified 
using a real robot-trailer system, which was to follow a linear and a circular path. 
 
  
 
The starting point for the development of an omnidirectional robot is the kinematic 
analysis. This can be solved from two approaches. Authors like Yunan et al., Kim et al. and 
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one of the kinematic models from Abdelrahman develop an approximate approach using 
a pseudo-inverse matrix (least squares method) to solve the kinematics equations for the 
robot. In the following chapter, the full kinematics and dynamics of a general Mecanum-
wheeled robot will be analyzed to present an exact solution to the equations of motion 
for an omnidirectional robot with Mecanum wheels.  
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CHAPTER TWO 
 

KINEMATICS AND DYNAMICS OF A ROBOT WITH FOUR MECANUM WHEELS AND A 
ROBOT- TRAILER SYSTEM 

 
2.1. Analysis of One Wheel 

The main objective of analyzing one wheel is to derive the constraint equation 

involved in the no-slip condition given to the roller. Given the following scheme: 

 

Fig. 2.1. Schematic drawing of a Mecanum wheel with an angle 𝜓 in the XY plane 

The point 𝑄𝑖 in Fig. 1 represents the center of the roller in contact with the ground at 

any time. Analyzing the velocity vectors in the XY plane will give the constraint 

equations needed  
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Fig. 2.2. Analysis of the wheel and the roller in the XY plane 

The main constraint is the fact that the velocity of the point 𝑄𝑖 has no component 

over the unit vector 𝑠𝑖⃗⃗ , which follows the axis of the roller. This guarantees the no-slip 

condition of the wheel in a direction along the mentioned axis.  

The unit vector 𝑠𝑖⃗⃗  can be described in terms of a pair of axis (𝑒1⃗⃗  ⃗, 𝑒2⃗⃗  ⃗) .The first one has 

an angle 𝜓 with the horizontal X axis; the second one, is perpendicular to the first one 

following the right-thumb rule. It can be observed that the vector 𝑠𝑖⃗⃗  has an angle 𝛿𝑖 

measured from the axis 𝑒2⃗⃗  ⃗. Thus: 

𝑠𝑖⃗⃗ = sin(𝛿𝑖) 𝑒1⃗⃗  ⃗ − cos(𝛿𝑖)𝑒2⃗⃗  ⃗ 

Both vectors (𝑒1⃗⃗  ⃗, 𝑒2⃗⃗  ⃗) can be also written by their components in the XY plane: 

𝑒1⃗⃗  ⃗ = (cos(𝜓) , sin(𝜓)) 

𝑒2⃗⃗  ⃗ = (− sin(𝜓) , cos(𝜓)) 

Then, rewriting the vector 𝑠𝑖⃗⃗  results in: 

𝑠𝑖⃗⃗ = (sin(𝜓 + 𝛿𝑖) , − cos(𝜓 + 𝛿𝑖)) 

Applying the no-slip condition in the direction of 𝑠𝑖⃗⃗  of the point 𝑄𝑖: 

𝑣𝑄𝑖
⃗⃗ ⃗⃗  ⃗ ∙ 𝑠𝑖⃗⃗ = 0 
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(�̇�𝑄𝑖
, �̇�𝑄𝑖

) ∙ (sin(𝜓 + 𝛿𝑖) , − cos(𝜓 + 𝛿𝑖)) = 0 

It is convenient to write the velocity of point 𝑄𝑖 in terms of the velocity of the center 

𝑂𝑖 of the wheel, for further analysis purposes. For this analysis, it will be considered 

that the wheel can turn around its axis with an angular velocity 𝜑𝑖̇ . Using rigid 

dynamics kinematics: 

𝑣𝑄𝑖
⃗⃗ ⃗⃗  ⃗ = 𝑣𝑂𝑖

⃗⃗ ⃗⃗  ⃗ + 𝜔𝑖⃗⃗⃗⃗ × 𝑂𝑖𝑄𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

(�̇�𝑄𝑖
, �̇�𝑄𝑖

) = (�̇�𝑂𝑖
, �̇�𝑂𝑖

) + (𝜑𝑖̇ 𝑒2⃗⃗  ⃗ + �̇�𝑒𝑧⃗⃗  ⃗) × (−𝑅𝑒𝑧⃗⃗  ⃗) 

(�̇�𝑄𝑖
, �̇�𝑄𝑖

) = (�̇�𝑂𝑖
, �̇�𝑂𝑖

) − 𝑅𝜑𝑖̇ (cos(𝜓) , sin(𝜓)) 

Therefore: 

�̇�𝑄𝑖
= �̇�𝑂𝑖

− 𝑅𝜑𝑖̇ cos(𝜓) 

�̇�𝑄𝑖
= �̇�𝑂𝑖

− 𝑅𝜑𝑖̇ sin(𝜓) 

Replacing these values in the constraint equation and operating: 

�̇�𝑂𝑖
sin(𝜓 + 𝛿𝑖) − �̇�𝑂𝑖

cos(𝜓 + 𝛿𝑖) − 𝑅𝜑𝑖̇ sin(𝛿𝑖) = 0 

Which is the constraint equation for a Mecanum wheel with no-slip condition along 

the axis of its roller. 

 

2.2. Analysis of a four-wheeled Robot using Mecanum wheels  

The last analysis was made in order to derive the constraint equation for one 

Mecanum wheel in a random position in terms of the velocity of its center. This will 

be used to write the velocity of each wheel in terms of its position with respect to the 

center of gravity of the robot.  

For this purpose, fig. 3 shows the general dimensions of the robot, considering a 

random location of its center of gravity. 
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Fig. 2.3. Four wheeled robot with asymmetric center of gravity G 

To derive the velocities of the center 𝑥𝑂𝑖
 of the wheels, the location of these must be 

found: 

𝑥𝑂1
= 𝑥𝐺 + 𝑙1 cos(𝜓) − 𝑑1 sin(𝜓) 

𝑦𝑂1
= 𝑦𝐺 + 𝑙1 sin(𝜓) + 𝑑1 cos(𝜓) 

  

𝑥𝑂2
= 𝑥𝐺 + 𝑙1 cos(𝜓) + 𝑑2 sin(𝜓) 

𝑦𝑂2
= 𝑦𝐺 + 𝑙1 sin(𝜓) − 𝑑2 cos(𝜓) 

 

𝑥𝑂3
= 𝑥𝐺 − 𝑙2 cos(𝜓) − 𝑑1 sin(𝜓) 

𝑦𝑂3
= 𝑦𝐺 − 𝑙2 sin(𝜓) + 𝑑1 cos(𝜓) 

 

𝑥𝑂4
= 𝑥𝐺 − 𝑙2 cos(𝜓) + 𝑑2 sin(𝜓) 
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𝑦𝑂4
= 𝑦𝐺 − 𝑙2 sin(𝜓) − 𝑑2 cos(𝜓) 

 

 

From these equations, the velocities can be calculated: 

𝑥𝑂1
̇ = 𝑥�̇� − 𝑙1�̇� sin(𝜓) − 𝑑1�̇� cos(𝜓) 

𝑦𝑂1
̇ = 𝑦�̇� + 𝑙1�̇� cos(𝜓) − 𝑑1�̇� sin(𝜓) 

 

𝑥𝑂2
̇ = 𝑥�̇� − 𝑙1�̇� sin(𝜓) + 𝑑2�̇� cos(𝜓) 

𝑦𝑂2
̇ = 𝑦�̇� + 𝑙1�̇� cos(𝜓) + 𝑑2�̇� sin(𝜓) 

 

𝑥𝑂3
̇ = 𝑥�̇� + 𝑙2�̇� sin(𝜓) − 𝑑1�̇� cos(𝜓) 

𝑦𝑂3
̇ = 𝑦�̇� − 𝑙2�̇� cos(𝜓) − 𝑑1�̇� sin(𝜓) 

 

𝑥𝑂4
̇ = 𝑥�̇� + 𝑙2�̇� sin(𝜓) + 𝑑2�̇� cos(𝜓) 

𝑦𝑂4
̇ = 𝑦�̇� − 𝑙2�̇� cos(𝜓) + 𝑑2�̇� sin(𝜓) 

 

If these equations are replaced with the general equation of constraint for each 

wheel, the following system of constraint equations is achieved: 

𝑥�̇� sin(𝜓 + 𝛿1) − 𝑦�̇� cos(𝜓 + 𝛿1) − 𝑙1�̇� cos(𝛿1) − 𝑑1�̇� sin(𝛿1) − 𝑅𝜑1̇ sin(𝛿1) = 0 

𝑥�̇� sin(𝜓 + 𝛿2) − 𝑦�̇� cos(𝜓 + 𝛿2) − 𝑙1�̇� cos(𝛿2) + 𝑑2�̇� sin(𝛿2) − 𝑅𝜑2̇ sin(𝛿2) = 0 

𝑥�̇� sin(𝜓 + 𝛿3) − 𝑦�̇� cos(𝜓 + 𝛿3) + 𝑙2�̇� cos(𝛿3) − 𝑑1�̇� sin(𝛿3) − 𝑅𝜑3̇ sin(𝛿3) = 0 

𝑥�̇� sin(𝜓 + 𝛿4) − 𝑦�̇� cos(𝜓 + 𝛿4) + 𝑙2�̇� cos(𝛿4) + 𝑑2�̇� sin(𝛿4) − 𝑅𝜑4̇ sin(𝛿4) = 0 
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As there are four constraint equations (one for each wheel), and seven unknowns, the 

system has three degrees of freedom. Thus, three independent variables are required 

as data to solve the system. 

The constraint equations can be written in matrix form, with the angular velocities of 

the wheels as unknowns. This system can be considered the inversed kinematics 

system of equations, where for a given velocity of the center of mass G and a specific 

general angular velocity �̇� , the required angular velocities of the wheels can be 

calculated. 

[
 
 
 
sin(𝜓 + 𝛿1) −cos(𝜓 + 𝛿1) −𝑙1 cos(𝛿1) − 𝑑1 sin(𝛿1)

sin(𝜓 + 𝛿2) −cos(𝜓 + 𝛿2) −𝑙1 cos(𝛿2) + 𝑑2 sin(𝛿2)

sin(𝜓 + 𝛿3) −cos(𝜓 + 𝛿3) 𝑙2 cos(𝛿3) − 𝑑1 sin(𝛿3)

sin(𝜓 + 𝛿4) −cos(𝜓 + 𝛿4) 𝑙2 cos(𝛿4) + 𝑑2 sin(𝛿4) ]
 
 
 

[

𝑥�̇�

𝑦�̇�

�̇�

] =

[
 
 
 
𝑅𝜑1̇ sin(𝛿1)

𝑅𝜑2̇ sin(𝛿2)

𝑅𝜑3̇ sin(𝛿3)

𝑅𝜑4̇ sin(𝛿4)]
 
 
 

 

Likewise, three angular velocities 𝜑1̇, 𝜑2̇ and 𝜑3̇ can be given, resulting in the 

following system of equations: 

[
 
 
 
sin(𝜓 + 𝛿1) −cos(𝜓 + 𝛿1) −𝑙1 cos(𝛿1) − 𝑑1 sin(𝛿1) 0

sin(𝜓 + 𝛿2) −cos(𝜓 + 𝛿2) −𝑙1 cos(𝛿2) + 𝑑2 sin(𝛿2) 0

sin(𝜓 + 𝛿3) −cos(𝜓 + 𝛿3) 𝑙2 cos(𝛿3) − 𝑑1 sin(𝛿3) 0

sin(𝜓 + 𝛿4) −cos(𝜓 + 𝛿4) 𝑙2 cos(𝛿4) + 𝑑2 sin(𝛿4) −𝑅 sin(𝛿4)]
 
 
 

[
 
 
 
𝑥�̇�

𝑦�̇�

�̇�
𝜑4̇]

 
 
 
= [

𝑅𝜑1̇ sin(𝛿1)

𝑅𝜑2̇ sin(𝛿2)

𝑅𝜑3̇ sin(𝛿3)

0

] 

Nevertheless, as the velocity of the center of mass depends on 𝜓, the system cannot, 
in general, be solved by direct integration (non-holonomic) and thus, must be solved 
numerically. 

 
As it can be observed, functions of time for the angular velocities of the first three 

wheels can be used as inputs, resulting in different trajectories for the center of mass 

of the robot. 

To simulate the results, the following parameters were considered: 

𝑙1 = 100𝑚𝑚, 𝑙2 = 100𝑚𝑚, 𝑑1 = 50𝑚𝑚, 𝑑2 = 50𝑚𝑚, 𝛿1 = 𝛿4 = 45°, 

𝛿2 = 𝛿3 = −45°, 𝑅 = 10𝑚𝑚 

Also, a number of 50 iterations were used to solve the system. The following results 

were achieved by varying the angular velocities of the wheels. In all cases, the 

trajectory of the center of mass is shown in Fig. 4. 
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Fig.2.4. Trajectory obtained with �̇�1 = 0 and �̇�2 = �̇�3 = 𝑡  

 

 

 Fig.2.5. Trajectory obtained with �̇�1 = 0 , �̇�2 = sin(𝑡) , �̇�3 = cos(𝑡)  

The inverse kinematics equations can also be solved using Runge-Kutta methods, in order 
to obtain the functions 𝜑1(𝑡), 𝜑2(𝑡), 𝜑3(𝑡) and 𝜑4(𝑡). These functions are then utilized 
to follow a determined trajectory of the center of mass with a determined angular 
velocity. 
 
The advantage of solving the inverse kinematics equations is that, for a given trajectory, 

the required functions 𝜑𝑖(𝑡) can be calculated numerically. Several examples for different 

trajectories are illustrated in the following figures: 
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 Fig.2.6. From left to right: Trajectory of the center of mass, resultant function for 𝜑2 and 𝜑3. 

 

 

  

 

 Fig.2.7. From left to right, top to bottom: Trajectory of the center of mass, resultant function for 𝜑1,𝜑2 ,𝜑3  and 𝜑4. 
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Fig.2.8. From left to right, top to bottom: Trajectory of the center of mass, resultant function for 𝜑1,𝜑2 ,𝜑3  and 𝜑4. 
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2.3.  Effect of the roller’s angle on the angular speed of the wheels for a given 

trajectory 

As the equations have showed so far, the direct as well as the inverse kinematics of the 

robot can be solved for either a given angular velocity function on the first three wheels 

or for a given trajectory. A variation in the rollers’ angles will undoubtedly affect the 

trajectory which the robot follows. Nevertheless, if the robot is to achieve the same 

trajectory every time, a different angle between the wheel axis and that of the rollers will 

probably affect the angular velocity at which each of them must rotate. 

To visualize and confirm this hypothesis, the following test was performed: Given a simple 

trajectory 𝑇:𝑥 − 𝑦 = 0 and restricting the angular velocities of the wheels to: 

�̇�1 = 0, �̇�2 = 𝑎2𝑡, �̇�3 = 𝑎3𝑡 

The coefficients 𝑎2 and 𝑎3 were found as the angle of the rollers were changing in order 

for the center of mass of the robot to achieve such trajectory𝑇. Then, the distance 

traveled in either axis (as it is a symmetrical trajectory) was compared to determine in 

which case the robot had driven a longer distance. 

The following table shows the obtained results: 

Table 2.1. Results of the test through the trajectory 𝑇: 𝑥 − 𝑦 = 0 for a final time t=10 s 

Angle of the roller 𝑎2 𝑎3 𝑥𝑡=10𝑠 = 𝑦𝑡=10𝑠 
(mm) 

10° 0,2 1,05 49,97 

20° 0,285 0,705 71,1 

30° 0,31 0,488 77,41 

45° 0,5 0,5 124,73 

50° 0,527 0,473 131,42 

60° 0,559 0,431 139,31 

70° 0,5783 0,4227 144,02 

80° 0,5603 0,4397 139,43 

 

Figure 2.9 also show the angular velocities found for the fourth wheel. It is interesting to 

observe that the angle of 45° does not require this wheel to move. 
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Fig 2.9. From left to right, top to bottom: function 𝜑4(𝑡) for a roller angle of 10º, 30º, 45º and 60º 

2.4. Dynamics of the Mecanum-wheeled robot 

So far, the kinematics of the Mecanum wheeled robot have been analyzed assuming the 

velocities of three wheels are given. This is a valid assumption to test the different 

programs that were written as well as the response of the system to certain input data.  

Nevertheless, as these robots are often driven by electric motors, the differential 

equations that describe the movement of the robot must depend, at the very least, on 

the torque provided by them.  

As the internal forces on the joints of the robot do not require further analysis, an energy 

method may be used to obtain the differential equations of motion. The second order 

Lagrange equations with multipliers (as the general case of the robot is described by non-

holonomic constraint equations) are used on the entire system, so that the forces and 

torques that appear internally on the body are neglected.  

 If a number of 𝑛 generalized coordinates and 𝑟 additional constraints are being used to 

describe the system, the constraint equations that provide consistency, must be 

homogeneous: 
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𝑓𝑎
𝑏(𝑞 )�̇�𝑎 = 0, (𝑎 = 1,2, … , 𝑛; 𝑏 = 1,2, … , 𝑟), 𝑟𝑎𝑛𝑘(𝑓𝑎

𝑏) = 𝑟 

Where the vector 𝑞 = (𝑞1, 𝑞2, … , 𝑞𝑛) represents the  𝑛 coordinates used to describe the 

system. 

Taking this consideration, the Lagrange equations can be written in terms of 𝜆𝑎 

coefficients, each one affected by the function 𝑓𝑎
𝑏: 

𝑑

𝑑𝑡
(

𝜕𝑇

𝜕𝑞�̇�
) −

𝜕𝑇

𝜕𝑞𝑎
= 𝑄𝑎 − 𝜆𝑎𝑓𝑎

𝑏 

Where 𝑄𝑎 is the generalized force and 𝑇 is the total kinetic energy of the system. 

In the case of the robot, the kinetic energy does not depend directly on the value of the 

coordinate 𝑞𝑎, from which the equation can be written as: 

𝜕

𝜕𝑡
(

𝜕𝑇

𝜕𝑞�̇�
) = 𝑄𝑎 − 𝜆𝑎𝑓𝑎

𝑏 

The kinetic energy of the robot can be calculated from the linear velocity of each 

component in it. For this calculation, it will be assumed that the center of mass of the 

body corresponds to all the elements in the robot except for the wheels. 

First, the linear velocities for each component must be calculated. For the first wheel, the 

following result is obtained: 

𝑣1
2 = �̇�𝑂1

2 + �̇�𝑂1

2

= �̇�𝐺
2 + �̇�𝐺

2 + (𝑙1
2 + 𝑑1

2)�̇�2 + 2�̇�𝐺�̇�(−𝑙1 sin(𝜓) − 𝑑1 cos(𝜓))

+ 2�̇�𝐺�̇�(𝑙1 cos(𝜓) − 𝑑1 sin(𝜓)) 

𝑣2
2 = �̇�𝑂2

2 + �̇�𝑂2

2

= �̇�𝐺
2 + �̇�𝐺

2 + (𝑙1
2 + 𝑑2

2)�̇�2 + 2�̇�𝐺�̇�(−𝑙1 sin(𝜓) + 𝑑2 cos(𝜓))

+ 2�̇�𝐺�̇�(𝑙1 cos(𝜓) + 𝑑2 sin(𝜓)) 

𝑣3
2 = �̇�𝑂3

2 + �̇�𝑂3

2

= �̇�𝐺
2 + �̇�𝐺

2 + (𝑙2
2 + 𝑑1

2)�̇�2 + 2�̇�𝐺�̇�(𝑙2 sin(𝜓) − 𝑑1 cos(𝜓))

+ 2�̇�𝐺�̇�(−𝑙2 cos(𝜓) − 𝑑1 sin(𝜓)) 

𝑣4
2 = �̇�𝑂4

2 + �̇�𝑂4

2

= �̇�𝐺
2 + �̇�𝐺

2 + (𝑙2
2 + 𝑑2

2)�̇�2 + 2�̇�𝐺�̇�(𝑙2 sin(𝜓) + 𝑑2 cos(𝜓))

+ 2�̇�𝐺�̇�(−𝑙2 cos(𝜓) + 𝑑2 sin(𝜓)) 
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Considering 𝑚𝑤 as the mass of each wheel, 𝐽𝑤22
 as the moment of inertia around an axis 

parallel to the global 𝑍 axis and 𝐽𝑤33
as the moment of inertia around its own geometric 

axis, the kinetic energy is calculated: 

𝑇1 =
1

2
𝑚𝑤 (�̇�𝐺

2 + �̇�𝐺
2 + (𝑙1

2 + 𝑑1
2)�̇�2 + 2�̇�𝐺�̇�(−𝑙1 sin(𝜓) − 𝑑1 cos(𝜓))

+ 2�̇�𝐺�̇�(𝑙1 cos(𝜓) − 𝑑1 sin(𝜓))) +
1

2
𝐽𝑤33

�̇�1
2 +

1

2
𝐽𝑤22

�̇�2 

𝑇2 =
1

2
𝑚𝑤 (�̇�𝐺

2 + �̇�𝐺
2 + (𝑙1

2 + 𝑑2
2)�̇�2 + 2�̇�𝐺�̇�(−𝑙1 sin(𝜓) + 𝑑2 cos(𝜓))

+ 2�̇�𝐺�̇�(𝑙1 cos(𝜓) + 𝑑2 sin(𝜓))) +
1

2
𝐽𝑤33

�̇�2
2 +

1

2
𝐽𝑤22

�̇�2 

𝑇3 =
1

2
𝑚𝑤 (�̇�𝐺

2 + �̇�𝐺
2 + (𝑙2

2 + 𝑑1
2)�̇�2 + 2�̇�𝐺�̇�(𝑙2 sin(𝜓) − 𝑑1 cos(𝜓))

+ 2�̇�𝐺�̇�(−𝑙2 cos(𝜓) − 𝑑1 sin(𝜓))) +
1

2
𝐽𝑤33

�̇�3
2 +

1

2
𝐽𝑤22

�̇�2 

𝑇4 =
1

2
𝑚𝑤 (�̇�𝐺

2 + �̇�𝐺
2 + (𝑙2

2 + 𝑑2
2)�̇�2 + 2�̇�𝐺�̇�(𝑙2 sin(𝜓) + 𝑑2 cos(𝜓))

+ 2�̇�𝐺�̇�(−𝑙2 cos(𝜓) + 𝑑2 sin(𝜓))) +
1

2
𝐽𝑤33

�̇�4
2 +

1

2
𝐽𝑤22

�̇�2 

The kinetic energy of the rest of the robot must also be calculated, considering 𝑚𝐺 as the 

mass and 𝐽𝐺𝑍𝑍
 as the moment of inertia around the global 𝑍 axis: 

𝑇𝑏𝑜𝑑𝑦 =
1

2
𝑚𝐺(�̇�𝐺

2 + �̇�𝐺
2) +

1

2
𝐽𝐺𝑍𝑍

�̇�2 

Now, the total energy of the system can be calculated: 

𝑇 =
1

2
(𝑚𝐺 + 4𝑚𝑤)(�̇�𝐺

2 + �̇�𝐺
2) + 2𝑚𝑤�̇�𝐺�̇�(−(𝑙1 − 𝑙2) sin(𝜓) − (𝑑1 − 𝑑2) cos(𝜓))

+ 2𝑚𝑤�̇�𝐺�̇�((𝑙1 − 𝑙2) cos(𝜓) − (𝑑1 − 𝑑2) sin(𝜓))

+
1

2
𝐽𝑤33

(�̇�1
2 + �̇�2

2 + �̇�3
2 + �̇�4

2) +
1

2
(𝐽𝐺𝑍𝑍

+ 4𝐽𝑤22
)�̇�2 

Partial derivatives of the total energy with respect to the chosen generalized coordinates 

are required to calculate the equations of motion. For 𝑥𝐺: 

𝜕𝑇

𝜕�̇�𝐺
= (𝑚𝐺 + 4𝑚𝑤)�̇�𝐺 + 2𝑚𝑤�̇�(−(𝑙1 − 𝑙2) sin(𝜓) − (𝑑1 − 𝑑2) cos(𝜓)) 



26 
 

𝑑

𝑑𝑡
(

𝜕𝑇

𝜕�̇�𝐺
) = (𝑚𝐺 + 4𝑚𝑤)�̈�𝐺 + 2𝑚𝑤�̈�(−(𝑙1 − 𝑙2) sin(𝜓) − (𝑑1 − 𝑑2) cos(𝜓))

+ 2𝑚𝑤�̇�2(−(𝑙1 − 𝑙2) cos(𝜓) + (𝑑1 − 𝑑2) sin(𝜓)) 

 

For 𝑦𝐺: 

𝜕𝑇

𝜕�̇�𝐺
= (𝑚𝐺 + 4𝑚𝑤)�̇�𝐺 + 2𝑚𝑤�̇�((𝑙1 − 𝑙2) cos(𝜓) − (𝑑1 − 𝑑2) sin(𝜓)) 

𝑑

𝑑𝑡
(

𝜕𝑇

𝜕�̇�𝐺
) = (𝑚𝐺 + 4𝑚𝑤)�̈�𝐺 + 2𝑚𝑤�̈�((𝑙1 − 𝑙2) cos(𝜓) − (𝑑1 − 𝑑2) sin(𝜓))

+ 2𝑚𝑤�̇�2(−(𝑙1 − 𝑙2) sin(𝜓) − (𝑑1 − 𝑑2) cos(𝜓)) 

For 𝜓: 

𝜕𝑇

𝜕�̇�
= 2𝑚𝑤�̇�𝐺(−(𝑙1 − 𝑙2) sin(𝜓) − (𝑑1 − 𝑑2) cos(𝜓))

+ 2𝑚𝑤�̇�𝐺((𝑙1 − 𝑙2) cos(𝜓) − (𝑑1 − 𝑑2) sin(𝜓)) + (𝐽𝐺𝑍𝑍
+ 4𝐽𝑤22

)�̇� 

𝑑

𝑑𝑡
(
𝜕𝑇

𝜕�̇�
) = 2𝑚𝑤�̈�𝐺(−(𝑙1 − 𝑙2) sin(𝜓) − (𝑑1 − 𝑑2) cos(𝜓))

+ 2𝑚𝑤�̈�𝐺((𝑙1 − 𝑙2) cos(𝜓) − (𝑑1 − 𝑑2) sin(𝜓))

+ 2𝑚𝑤�̇�𝐺�̇�(−(𝑙1 − 𝑙2) cos(𝜓) + (𝑑1 − 𝑑2) sin(𝜓))

+ 2𝑚𝑤�̇�𝐺�̇�(−(𝑙1 − 𝑙2) sin(𝜓) − (𝑑1 − 𝑑2) cos(𝜓)) + (𝐽𝐺𝑍𝑍
+ 4𝐽𝑤22

)�̈� 

For 𝜑𝑖, with 𝑖 = 1,2,3,4: 

𝜕𝑇

𝜕�̇�𝑖
= 𝐽𝑤33

�̇�𝑖 

𝑑

𝑑𝑡
(
𝜕𝑇

𝜕�̇�𝑖
) = 𝐽𝑤33

�̈�𝑖 

The constraint equations play an important role, as they define the functions that multiply 

each 𝜆𝑖 coefficient: 

𝑥�̇� sin(𝜓 + 𝛿1) − 𝑦�̇� cos(𝜓 + 𝛿1) − 𝑙1�̇� cos(𝛿1) − 𝑑1�̇� sin(𝛿1) − 𝑅𝜑1̇ sin(𝛿1) = 0 

𝑥�̇� sin(𝜓 + 𝛿2) − 𝑦�̇� cos(𝜓 + 𝛿2) − 𝑙1�̇� cos(𝛿2) + 𝑑2�̇� sin(𝛿2) − 𝑅𝜑2̇ sin(𝛿2) = 0 

𝑥�̇� sin(𝜓 + 𝛿3) − 𝑦�̇� cos(𝜓 + 𝛿3) + 𝑙2�̇� cos(𝛿3) − 𝑑1�̇� sin(𝛿3) − 𝑅𝜑3̇ sin(𝛿3) = 0 
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𝑥�̇� sin(𝜓 + 𝛿4) − 𝑦�̇� cos(𝜓 + 𝛿4) + 𝑙2�̇� cos(𝛿4) + 𝑑2�̇� sin(𝛿4) − 𝑅𝜑4̇ sin(𝛿4) = 0 

Finally, the Lagrange equations with multipliers can be written as follows: 

 (𝑚𝐺 + 4𝑚𝑤)�̈�𝐺 + 2𝑚𝑤�̈�(−(𝑙1 − 𝑙2) sin(𝜓) − (𝑑1 − 𝑑2) cos(𝜓))

+ 2𝑚𝑤�̇�2(−(𝑙1 − 𝑙2) cos(𝜓) + (𝑑1 − 𝑑2) sin(𝜓))
= 𝜆1 sin(𝜓 + 𝛿1) + 𝜆2 sin(𝜓 + 𝛿2) + 𝜆3 sin(𝜓 + 𝛿3)
+ 𝜆4 sin(𝜓 + 𝛿4) (1) 

  

(𝑚𝐺 + 4𝑚𝑤)�̈�𝐺 + 2𝑚𝑤�̈�((𝑙1 − 𝑙2) cos(𝜓) − (𝑑1 − 𝑑2) sin(𝜓))

+ 2𝑚𝑤�̇�2(−(𝑙1 − 𝑙2) sin(𝜓) − (𝑑1 − 𝑑2) cos(𝜓))
= −𝜆1 cos(𝜓 + 𝛿1) − 𝜆2 cos(𝜓 + 𝛿2) − 𝜆3 cos(𝜓 + 𝛿3)
− 𝜆4 cos(𝜓 + 𝛿4) (2) 

  
2𝑚𝑤�̈�𝐺(−(𝑙1 − 𝑙2) sin(𝜓) − (𝑑1 − 𝑑2) cos(𝜓))

+ 2𝑚𝑤�̈�𝐺((𝑙1 − 𝑙2) cos(𝜓) − (𝑑1 − 𝑑2) sin(𝜓))

+ 2𝑚𝑤�̇�𝐺�̇�(−(𝑙1 − 𝑙2) cos(𝜓) + (𝑑1 − 𝑑2) sin(𝜓))

+ 2𝑚𝑤�̇�𝐺�̇�(−(𝑙1 − 𝑙2) sin(𝜓) − (𝑑1 − 𝑑2) cos(𝜓))

+ (𝐽𝐺𝑍𝑍
+ 4𝐽𝑤22

)�̈�

= 𝜆1(−𝑙1 cos(𝛿1) − 𝑑1 sin(𝛿1))
+ 𝜆2(−𝑙1 cos(𝛿2) + 𝑑2 sin(𝛿2))
+ 𝜆3(𝑙2 cos(𝛿3) − 𝑑1 sin(𝛿3))
+ 𝜆4(𝑙2 cos(𝛿4) + 𝑑2 sin(𝛿4)) (3) 

  
𝐽𝑤33

�̈�1 = 𝑀1(𝑡) − 𝜆1R sin(𝛿1) (4) 
  

𝐽𝑤33
�̈�2 = 𝑀2(𝑡) − 𝜆2R sin(𝛿2) (5) 

  
𝐽𝑤33

�̈�3 = 𝑀3(𝑡) − 𝜆3R sin(𝛿3) (6) 
  

𝐽𝑤33
�̈�4 = 𝑀4(𝑡) − 𝜆4R sin(𝛿4) (7) 

 

From equations (4) through (7), the four coefficients can be calculated: 

𝜆𝑖 =
𝑀𝑖(𝑡) − 𝐽𝑤33

�̈�𝑖

𝑅sin(𝛿𝑖)
 

For 𝑖 = 1,2,3,4 

Finally, to solve the system, the functions �̈�𝑖 must be calculated in terms of the other 

generalized coordinates. This can be achieved through the examination of the constraint 

equations and further derivation with respect to time: 
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�̈�1

=
�̈�𝐺 sin(𝜓 + 𝛿1) − �̈�𝐺 cos(𝜓 + 𝛿1) + �̈�(−𝑙1 cos(𝛿1) − 𝑑1 sin(𝛿1)) + �̇�𝐺�̇� cos(𝜓 + 𝛿1) + �̇�𝐺�̇� sin(𝜓 + 𝛿1)

𝑅 sin(𝛿1)
 

 

�̈�2

=
�̈�𝐺 sin(𝜓 + 𝛿2) − �̈�𝐺 cos(𝜓 + 𝛿2) + �̈�(−𝑙1 cos(𝛿2) + 𝑑2 sin(𝛿2)) + �̇�𝐺�̇� cos(𝜓 + 𝛿2) + �̇�𝐺�̇� sin(𝜓 + 𝛿2)

𝑅sin(𝛿2)
 

 

�̈�3

=
�̈�𝐺 sin(𝜓 + 𝛿3) − �̈�𝐺 cos(𝜓 + 𝛿3) + �̈�(𝑙2 cos(𝛿3) − 𝑑1 sin(𝛿3)) + �̇�𝐺�̇� cos(𝜓 + 𝛿3) + �̇�𝐺�̇� sin(𝜓 + 𝛿3)

𝑅sin(𝛿3)
 

 

�̈�4

=
�̈�𝐺 sin(𝜓 + 𝛿4) − �̈�𝐺 cos(𝜓 + 𝛿4) + �̈�(𝑙2 cos(𝛿4) + 𝑑2 sin(𝛿4)) + �̇�𝐺�̇� cos(𝜓 + 𝛿4) + �̇�𝐺�̇� sin(𝜓 + 𝛿4)

𝑅sin(𝛿4)
 

 

Replacing the values for �̈�𝑖 in equations (1) through (3) and rearranging the terms, the 

following system of equations is obtained: 

 𝑎11�̈�𝐺 + 𝑎12�̈�𝐺 + 𝑎13�̈� + 𝑎14�̇�𝐺�̇� + 𝑎15�̇�𝐺�̇� + 𝑎16𝜓2̇ = 𝑓1(𝑡, 𝜓) (8) 
  

𝑎21�̈�𝐺 + 𝑎22�̈�𝐺 + 𝑎23�̈� + 𝑎24�̇�𝐺�̇� + 𝑎25�̇�𝐺�̇� + 𝑎26𝜓2̇ = 𝑓2(𝑡, 𝜓) (9) 
  

𝑎31�̈�𝐺 + 𝑎32�̈�𝐺 + 𝑎33�̈� + 𝑎34�̇�𝐺�̇� + 𝑎35�̇�𝐺�̇� = 𝑓3(𝑡, 𝜓) (10) 

 

Where the functions 𝑓𝑖(𝑡, 𝜓) are: 

𝑓1(𝑡, 𝜓) = ∑
𝑀𝑖(𝑡) sin(𝜓 + 𝛿𝑖)

𝑅sin(𝛿𝑖)

4

𝑖=1

 

 

𝑓2(𝑡, 𝜓) = −∑
𝑀𝑖(𝑡) cos(𝜓 + 𝛿𝑖)

𝑅sin(𝛿𝑖)

4

𝑖=1
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𝑓3(𝑡, 𝜓) =
𝑀1(𝑡)(−𝑙1 cos(𝛿1) − 𝑑1 sin(𝛿1))

𝑅sin(𝛿1)
+

𝑀2(𝑡)(−𝑙1 cos(𝛿2) + 𝑑2 sin(𝛿2))

𝑅sin(𝛿2)

+
𝑀3(𝑡)(𝑙2 cos(𝛿3) − 𝑑1 sin(𝛿3))

𝑅sin(𝛿3)
+

𝑀4(𝑡)(𝑙2 cos(𝛿4) + 𝑑2 sin(𝛿4))

𝑅sin(𝛿4)
 

 

And the coefficients 𝑎𝑖𝑗  are: 

𝑎11 = 𝑚𝐺 + 4𝑚𝑤

+
𝐽𝑤33

𝑅2
(
sin2(𝜓 + 𝛿1)

sin2(𝛿1)
+

sin2(𝜓 + 𝛿2)

sin2(𝛿2)
+

sin2(𝜓 + 𝛿3)

sin2(𝛿3)
+

sin2(𝜓 + 𝛿4)

sin2(𝛿4)
) 

 

𝑎12 = −
𝐽𝑤33

𝑅2
(
sin(𝜓 + 𝛿1) cos(𝜓 + 𝛿1)

sin2(𝛿1)
+

sin(𝜓 + 𝛿2) cos(𝜓 + 𝛿2)

sin2(𝛿2)

+
sin(𝜓 + 𝛿3) cos(𝜓 + 𝛿3)

sin2(𝛿3)
+

sin(𝜓 + 𝛿4) cos(𝜓 + 𝛿4)

sin2(𝛿4)
) 

𝑎13 = 2𝑚𝑤(−(𝑙1 − 𝑙2) sin(𝜓) − (𝑑1 − 𝑑2) cos(𝜓))

+
𝐽𝑤33

𝑅2
(
sin(𝜓 + 𝛿1) (−𝑙1 cos(𝛿1) − 𝑑1 sin(𝛿1))

sin2(𝛿1)

+
sin(𝜓 + 𝛿2) (−𝑙1 cos(𝛿2) + 𝑑2 sin(𝛿2))

sin2(𝛿2)

+
sin(𝜓 + 𝛿3) (𝑙2 cos(𝛿3) − 𝑑1 sin(𝛿3))

sin2(𝛿3)

+
sin(𝜓 + 𝛿4) (𝑙2 cos(𝛿4) + 𝑑2 sin(𝛿4))

sin2(𝛿4)
) 

 

𝑎14 =
𝐽𝑤33

𝑅2
(
sin(𝜓 + 𝛿1) cos(𝜓 + 𝛿1)

sin2(𝛿1)
+

sin(𝜓 + 𝛿2) cos(𝜓 + 𝛿2)

sin2(𝛿2)

+
sin(𝜓 + 𝛿3) cos(𝜓 + 𝛿3)

sin2(𝛿3)
+

sin(𝜓 + 𝛿4) cos(𝜓 + 𝛿4)

sin2(𝛿4)
) 
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𝑎15 =
𝐽𝑤33

𝑅2
(
sin2(𝜓 + 𝛿1)

sin2(𝛿1)
+

sin2(𝜓 + 𝛿2)

sin2(𝛿2)
+

sin2(𝜓 + 𝛿3)

sin2(𝛿3)
+

sin2(𝜓 + 𝛿4)

sin2(𝛿4)
) 

 

𝑎16 = 2𝑚𝑤(−(𝑙1 − 𝑙2) cos(𝜓) + (𝑑1 − 𝑑2) sin(𝜓)) 

 

𝑎21 = −
𝐽𝑤33

𝑅2
(
sin(𝜓 + 𝛿1) cos(𝜓 + 𝛿1)

sin2(𝛿1)
+

sin(𝜓 + 𝛿2) cos(𝜓 + 𝛿2)

sin2(𝛿2)

+
sin(𝜓 + 𝛿3) cos(𝜓 + 𝛿3)

sin2(𝛿3)
+

sin(𝜓 + 𝛿4) cos(𝜓 + 𝛿4)

sin2(𝛿4)
) 

 

𝑎22 = 𝑚𝐺 + 4𝑚𝑤

+
𝐽𝑤33

𝑅2
(
cos2(𝜓 + 𝛿1)

sin2(𝛿1)
+

cos2(𝜓 + 𝛿2)

sin2(𝛿2)
+

cos2(𝜓 + 𝛿3)

sin2(𝛿3)
+

cos2(𝜓 + 𝛿4)

sin2(𝛿4)
) 

𝑎23 = 2𝑚𝑤((𝑙1 − 𝑙2) cos(𝜓) − (𝑑1 − 𝑑2) sin(𝜓))

−
𝐽𝑤33

𝑅2
(
cos(𝜓 + 𝛿1) (−𝑙1 cos(𝛿1) − 𝑑1 sin(𝛿1))

sin2(𝛿1)

+
cos(𝜓 + 𝛿2) (−𝑙1 cos(𝛿2) + 𝑑2 sin(𝛿2))

sin2(𝛿2)

+
cos(𝜓 + 𝛿3) (𝑙2 cos(𝛿3) − 𝑑1 sin(𝛿3))

sin2(𝛿3)

+
cos(𝜓 + 𝛿4) (𝑙2 cos(𝛿4) + 𝑑2 sin(𝛿4))

sin2(𝛿4)
) 

 

𝑎24 = −
𝐽𝑤33

𝑅2
(
cos2(𝜓 + 𝛿1)

sin2(𝛿1)
+

cos2(𝜓 + 𝛿2)

sin2(𝛿2)
+

cos2(𝜓 + 𝛿3)

sin2(𝛿3)
+

cos2(𝜓 + 𝛿4)

sin2(𝛿4)
) 

 

𝑎25 = −
𝐽𝑤33

𝑅2
(
sin(𝜓 + 𝛿1) cos(𝜓 + 𝛿1)

sin2(𝛿1)
+

sin(𝜓 + 𝛿2) cos(𝜓 + 𝛿2)

sin2(𝛿2)

+
sin(𝜓 + 𝛿3) cos(𝜓 + 𝛿3)

sin2(𝛿3)
+

sin(𝜓 + 𝛿4) cos(𝜓 + 𝛿4)

sin2(𝛿4)
) 
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𝑎26 = 2𝑚𝑤(−(𝑙1 − 𝑙2) sin(𝜓) − (𝑑1 − 𝑑2) cos(𝜓)) 

 

𝑎31 = 2𝑚𝑤(−(𝑙1 − 𝑙2) sin(𝜓) − (𝑑1 − 𝑑2) cos(𝜓))

+
𝐽𝑤33

𝑅2
(
sin(𝜓 + 𝛿1) (−𝑙1 cos(𝛿1) − 𝑑1 sin(𝛿1))

sin2(𝛿1)

+
sin(𝜓 + 𝛿2) (−𝑙1 cos(𝛿2) + 𝑑2 sin(𝛿2))

sin2(𝛿2)

+
sin(𝜓 + 𝛿3) (𝑙2 cos(𝛿3) − 𝑑1 sin(𝛿3))

sin2(𝛿3)

+
sin(𝜓 + 𝛿4) (𝑙2 cos(𝛿4) + 𝑑2 sin(𝛿4))

sin2(𝛿4)
) 

 

𝑎32 = 2𝑚𝑤((𝑙1 − 𝑙2) cos(𝜓) − (𝑑1 − 𝑑2) sin(𝜓))

−
𝐽𝑤33

𝑅2
(
cos(𝜓 + 𝛿1) (−𝑙1 cos(𝛿1) − 𝑑1 sin(𝛿1))

sin2(𝛿1)

+
cos(𝜓 + 𝛿2) (−𝑙1 cos(𝛿2) + 𝑑2 sin(𝛿2))

sin2(𝛿2)

+
cos(𝜓 + 𝛿3) (𝑙2 cos(𝛿3) − 𝑑1 sin(𝛿3))

sin2(𝛿3)

+
cos(𝜓 + 𝛿4) (𝑙2 cos(𝛿4) + 𝑑2 sin(𝛿4)

sin2(𝛿4)
) 

 

𝑎33 = 𝐽𝐺𝑧𝑧
+ 4𝐽𝑤22

+
𝐽𝑤33

𝑅2
(
(−𝑙1 cos(𝛿1) − 𝑑1 sin(𝛿1))

2

sin2(𝛿1)
+

(−𝑙1 cos(𝛿2) + 𝑑2 sin(𝛿2))
2

sin2(𝛿2)

+
(𝑙2 cos(𝛿3) − 𝑑1 sin(𝛿3))

2

sin2(𝛿3)
+

(𝑙2 cos(𝛿4) + 𝑑2 sin(𝛿4))
2

sin2(𝛿4)
) 
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𝑎34 = 2𝑚𝑤(−(𝑙1 − 𝑙2) cos(𝜓) − (𝑑1 − 𝑑2) sin(𝜓))

+
𝐽𝑤33

𝑅2
(
cos(𝜓 + 𝛿1) (−𝑙1 cos(𝛿1) − 𝑑1 sin(𝛿1))

sin2(𝛿1)

+
cos(𝜓 + 𝛿2) (−𝑙1 cos(𝛿2) + 𝑑2 sin(𝛿2))

sin2(𝛿2)

+
cos(𝜓 + 𝛿3) (𝑙2 cos(𝛿3) − 𝑑1 sin(𝛿3))

sin2(𝛿3)

+
cos(𝜓 + 𝛿4) (𝑙2 cos(𝛿4) + 𝑑2 sin(𝛿4)

sin2(𝛿4)
) 

 

𝑎35 = 2𝑚𝑤(−(𝑙1 − 𝑙2) sin(𝜓) − (𝑑1 − 𝑑2) cos(𝜓))

+
𝐽𝑤33

𝑅2
(
sin(𝜓 + 𝛿1) (−𝑙1 cos(𝛿1) − 𝑑1 sin(𝛿1))

sin2(𝛿1)

+
sin(𝜓 + 𝛿2) (−𝑙1 cos(𝛿2) + 𝑑2 sin(𝛿2))

sin2(𝛿2)

+
sin(𝜓 + 𝛿3) (𝑙2 cos(𝛿3) − 𝑑1 sin(𝛿3))

sin2(𝛿3)

+
sin(𝜓 + 𝛿4) (𝑙2 cos(𝛿4) + 𝑑2 sin(𝛿4))

sin2(𝛿4)
) 

 

Equations [8] through [10] stablish a system of second order nonlinear ordinary 

differential equations, for which the fourth order Runge-Kutta method will be used to 

solve it. However, this requires an additional step in order to transform the second order 

differential equations into first order. The following change of variables becomes 

necessary: 

�̇�𝐺 = 𝑢 → �̈�𝐺 = �̇�;�̇�𝐺(0) = 𝑢(0) 

�̇�𝐺 = 𝑣 → �̈�𝐺 = �̇�;�̇�𝐺(0) = 𝑣(0) 

�̇� = 𝑤 → �̈� = �̇�;�̇�(0) = 𝑤(0) 

Thus, resulting in the following system: 

 𝑎11�̇� + 𝑎12�̇� + 𝑎13�̇� = 𝑓1(𝑡, 𝜓) − (𝑎14𝑢𝑤 + 𝑎15𝑣𝑤 + 𝑎16𝑤
2) (11) 

  
𝑎21�̇� + 𝑎22�̇� + 𝑎23�̇� = 𝑓2(𝑡, 𝜓) − (𝑎24𝑢𝑤 + 𝑎25𝑣𝑤 + 𝑎26𝑤

2) (12) 
  

𝑎31�̇� + 𝑎32�̇� + 𝑎33�̇� = 𝑓3(𝑡, 𝜓) − (𝑎34𝑢𝑤 + 𝑎35𝑣𝑤) (13) 
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Writing the complete system using matrix notation: 

[
 
 
 
 
 
𝑎11 𝑎12 𝑎13 0 0 0
𝑎21 𝑎22 𝑎23 0 0 0
𝑎31 𝑎32 𝑎33 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1]

 
 
 
 
 

∙

[
 
 
 
 
 
�̇�
�̇�
𝑤
�̇�𝐺

�̇�𝐺

�̇�

̇

]
 
 
 
 
 

=

[
 
 
 
 
 
𝑓1(𝑡, 𝜓) − (𝑎14𝑢𝑤 + 𝑎15𝑣𝑤 + 𝑎16𝑤

2)

𝑓2(𝑡, 𝜓) − (𝑎24𝑢𝑤 + 𝑎25𝑣𝑤 + 𝑎26𝑤
2)

𝑓3(𝑡, 𝜓) − (𝑎34𝑢𝑤 + 𝑎35𝑣𝑤)
𝑢
𝑣
𝑤 ]

 
 
 
 
 

 

The system can now be solved using the Runge-Kutta method for different functions 
𝑀𝑖(𝑡) to obtain 𝑥𝐺(𝑡), 𝑦𝐺(𝑡) and 𝜓(𝑡). 

 
Different trajectories of the center of mass (𝑥𝐺 , 𝑦𝐺) are presented in the following 

graphics, which correspond to different functions 𝑀𝑖(𝑡).  All the inertial parameters (mass 

and moment of inertia) are taken as the unit. 

 

Fig 2.10. Trajectory of the center of mass for 𝑀1 = 𝑀2 = 𝑀3 = 𝑀4 = 1𝑁.𝑚𝑚 

 

Fig 2.11. Trajectory of the center of mass for 𝑀1 = 𝑀2 = 𝑀3 = 𝑀4 = 𝑡[𝑁.𝑚𝑚] 

2.5. Inverse kinematics and optimization of driving torques for a specific robot 

So far, the direct kinematics of the system were solved, as the torque functions were 

already given. The inverse kinematics problem, however, cannot be easily solved, as from 



34 
 

a given trajectory only 𝑥𝐺(𝑡), 𝑦𝐺(𝑡) and 𝜓(𝑡) and its derivatives can be calculated, but 

the system still lacks a fourth equation which would allow the calculation of the four 

torque functions. Physically, this means that there exists an infinite combination of 

functions 𝑀𝑖(𝑡), which can together achieve the given trajectory.  

 

From the mechanical point of view, the fact of posing a fourth equation on the system 

would mean that an additional restriction must be given to it. To take advantage of this 

equation, the restriction must be such, that the total energy consumed by the robot to 

follow a given trajectory must be a minimum.   

For the case of a DC motor, the torque is linearly dependent on the voltage (Gorinevsky: 

1997) , meaning that: 

𝑀𝑖 = 𝐶𝑢𝑈𝑖 − 𝐶𝑣�̇�𝑖 

With 𝐶𝑢 and 𝐶𝑣 being constants which depend on the characteristics of the motor. In 

particular, they depend on the nominal torque 𝑀𝑛, the nominal angular velocity 𝜔𝑛 , the 

nominal tension 𝑈𝑛 and the starting torque 𝑀1: 

𝐶𝑢 =
𝑀1

𝑈𝑛
 

𝐶𝑣 =
(𝑀1 − 𝑀𝑛)

𝜔𝑛
 

For example, the Maxon Motor DC-Max 16 S has the following characteristics: 

𝑈𝑛 = 6𝑉; 𝑀𝑛 = 4,04𝑚𝑁 ∙ 𝑚;𝜔𝑛 = 506,8
𝑟𝑎𝑑

𝑠
;𝑀1 = 10,5𝑚𝑁 ∙ 𝑚 

Hence, the values for the coefficients 𝐶𝑢 and 𝐶𝑣 are: 

𝐶𝑢 = 1,75
𝑁

𝑉
;𝐶𝑣 = 0,013𝑁 ∙ 𝑠 

It is also known that power consumed in a DC motor is proportional to the square of the 

voltage: 

𝑃𝛼𝑈𝑖
2 

From this, it can be inferred that the power is also proportional to the square of the 

torque. 
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𝑃𝛼𝑀𝑖
2 

Thus, the energy consumed by the robot will be minimized if the sum 

∑ 𝑀𝑖
24

𝑖=1  can be also minimized. This constitutes an additional restriction to the system, 

which means the functions 𝑀𝑖(𝑡) can be fully defined for a given trajectory. 

In this study, the general equations, which were found in previous analysis, will be 

reduced doing the following considerations: 

𝛿1 = 𝛿4 = −𝛿2 = −𝛿3 = 45º 

𝑙1 = 𝑙2 = 𝑙; 𝑑1 = 𝑑2 = 𝑑 

 

In addition, the following terms will be defined: 

𝑚 = 𝑚𝐺 + 4𝑚𝑤 

𝐽𝑐 = 𝐽𝐺𝑧𝑧
+ 4𝐽𝑤22

+ 4𝑚𝑤(𝑙2 + 𝑑2) 

And to simplify the notation, 𝑀𝑖(𝑡) = 𝑀𝑖. This does not mean in any way that the driving 

torque is constant.  

Simplifying the differential equations of motion: 

 
�̈�𝐺 (𝑚 +

4𝐽𝑤33

𝑅2
)

= −
4𝐽𝑤33

𝑅2
�̇�𝐺�̇� +

cos(𝜓) + sin(𝜓)

𝑅
(𝑀1 + 𝑀4)

+
cos(𝜓) − sin(𝜓)

𝑅
(𝑀2 + 𝑀3) (14) 

  

�̈�𝐺 (𝑚 +
4𝐽𝑤33

𝑅2
)

=
4𝐽𝑤33

𝑅2
�̇�𝐺�̇� −

cos(𝜓) − sin(𝜓)

𝑅
(𝑀1 + 𝑀4)

+
cos(𝜓) + sin(𝜓)

𝑅
(𝑀2 + 𝑀3) (15) 

  

�̈� (𝐽𝑐 +
4𝐽𝑤33

𝑅2
(𝑙2 + 𝑑2)) =

𝑙 + 𝑑

𝑅
(𝑀2 − 𝑀1 + 𝑀3 − 𝑀4) (16) 
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In order to calculate de torque functions, the functions 𝑀𝑖  must be expressed in terms of 

the generalized coordinates. Equations (14) through (16) can be rearranged as: 

𝑀2 + 𝑀3 =
𝑅√2

2
((�̈�𝐺 (𝑚 +

4𝐽𝑤33

𝑅2
) +

4𝐽𝑤33

𝑅2
�̇�𝐺�̇�) cos (𝜓 +

𝜋

4
)

+ (�̈�𝐺 (𝑚 +
4𝐽𝑤33

𝑅2
) −

4𝐽𝑤33

𝑅2
�̇�𝐺�̇�) sin (𝜓 +

𝜋

4
)) 

 

𝑀1 + 𝑀4 =
𝑅√2

2
((�̈�𝐺 (𝑚 +

4𝐽𝑤33

𝑅2
) +

4𝐽𝑤33

𝑅2
�̇�𝐺�̇�) sin (𝜓 +

𝜋

4
)

− (�̈�𝐺 (𝑚 +
4𝐽𝑤33

𝑅2
) −

4𝐽𝑤33

𝑅2
�̇�𝐺�̇�) cos (𝜓 +

𝜋

4
)) 

 

𝑀2 − 𝑀1 + 𝑀3 − 𝑀4 =
𝑅

𝑙 + 𝑑
�̈� (𝐽𝑐 +

4𝐽𝑤33

𝑅2
(𝑙2 + 𝑑2)) 

 

Conveniently, the equations have been arranged in such a way that allows the 

manipulation of all torque functions as dependent on the generalized coordinates. 

Moreover: 

𝑀2 + 𝑀3 = 𝐴 

𝑀1 + 𝑀4 = 𝐵 

𝑀2 − 𝑀1 + 𝑀4 − 𝑀3 = 𝐶 

With: 

𝐴 =
𝑅√2

2
((�̈�𝐺 (𝑚 +

4𝐽𝑤33

𝑅2
) +

4𝐽𝑤33

𝑅2
�̇�𝐺�̇�) cos (𝜓 +

𝜋

4
)

+ (�̈�𝐺 (𝑚 +
4𝐽𝑤33

𝑅2
) −

4𝐽𝑤33

𝑅2
�̇�𝐺�̇�) sin (𝜓 +

𝜋

4
)) 
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𝐵 =
𝑅√2

2
((�̈�𝐺 (𝑚 +

4𝐽𝑤33

𝑅2
) +

4𝐽𝑤33

𝑅2
�̇�𝐺�̇�) sin (𝜓 +

𝜋

4
)

− (�̈�𝐺 (𝑚 +
4𝐽𝑤33

𝑅2
) −

4𝐽𝑤33

𝑅2
�̇�𝐺�̇�) cos (𝜓 +

𝜋

4
)) 

𝐶 =
𝑅

𝑙 + 𝑑
�̈� (𝐽𝑐 +

4𝐽𝑤33

𝑅2
(𝑙2 + 𝑑2)) 

It is evident here that the only way to solve the system is by imposing an additional 

restriction. The system can be arranged so that all depends on one single torque: 

 𝑀2 + 𝑀3 = 𝐴 (17) 
  

𝑀1 = 𝐵 − 𝑀4 (18) 
  

𝑀2 − 𝑀1 − 𝑀3 = 𝐶 − 𝑀4 (19) 

 

Solving the equations (17), (18) and (19) for 𝑀1, 𝑀2 and 𝑀3: 

𝑀1 = 𝐵 − 𝑀4 

𝑀2 =
𝐴 + 𝐵 + 𝐶

2
− 𝑀4 

𝑀3 =
𝐴 − 𝐵 − 𝐶

2
+ 𝑀4 

 

Imposing now the energy condition, the function to minimize should be: 

𝑃(𝑡) = 𝑀𝑇
2 = 𝑀1

2 + 𝑀2
2 + 𝑀3

2 + 𝑀4
2 

Replacing the function in terms of 𝑀4: 

𝑃(𝑡) = (𝐵 − 𝑀4)
2 + (

𝐴 + 𝐵 + 𝐶

2
− 𝑀4)

2

+ (
𝐴 − 𝐵 − 𝐶

2
+ 𝑀4)

2

+ 𝑀4
2 

To find the minimum, the derivative of 𝑃(𝑡) with respect to 𝑀4 must be equal to zero: 

𝑑𝑃(𝑡)

𝑑𝑀4
= 0 
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𝑀4𝑚𝑖𝑛
=

𝐵

2
+

𝐶

4
 

Which is the value of 𝑀4 for a given trajectory, which minimizes the energy added to the 

system. The remaining values of the driving torques can be also calculated: 

𝑀1𝑚𝑖𝑛
=

𝐵

2
−

𝐶

4
 

𝑀2𝑚𝑖𝑛
=

𝐴

2
+

𝐶

4
 

𝑀3𝑚𝑖𝑛
=

𝐴

2
−

𝐶

4
 

Several driving torque functions can be calculated for different trajectories of the center 

of mass, as shown in the following pictures: 

 

 

Figure 11. From top to bottom, left to right: Driving torques 𝑀1,𝑀2,𝑀3 and 𝑀4 for a trajectory 𝑥 = 𝑦 = 𝑡 
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Figure 2.12. From top to bottom, left to right: Driving torques 𝑀1,𝑀2,𝑀3 and 𝑀4 for a trajectory 𝑥 = cos(2𝑡) , 𝑦 = sin(𝑡) 

In spite of all the equations developed so far, in a real mechatronic system, the variable 

which is usually controlled is the voltage signal 𝑈𝑖 on each motor. This fact poses the need 

to develop equations that will allow controlling such signal for any given trajectory. 

It was mentioned earlier that the equation for the torque provided by a DC motor was 

the following: 

𝑀𝑖 = 𝐶𝑢𝑈𝑖 − 𝐶𝑣�̇�𝑖 

This relation can be easily replaced in equations (*), (**) and (***) to establish a relation 

between the voltage and the generalized coordinates. It will be assumed that all motors 

have the same characteristics: 

𝐶𝑢(𝑈2 + 𝑈3) − 𝐶𝑣(�̇�2 + �̇�3) = 𝐴 

𝐶𝑢(𝑈1 + 𝑈4) − 𝐶𝑣(�̇�1 + �̇�4) = 𝐵 

𝐶𝑢(𝑈2 − 𝑈1 + 𝑈4 − 𝑈3) − 𝐶𝑣(�̇�2 − �̇�1 + �̇�4 − �̇�3) = 𝐶 

Leaving all the voltage signals on the left side of the equation: 
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𝑈2 + 𝑈3 =
𝐴

𝐶𝑢
+

𝐶𝑣

𝐶𝑢

(�̇�2 + �̇�3) 

𝑈1 + 𝑈4 =
𝐵

𝐶𝑢
+

𝐶𝑣

𝐶𝑢

(�̇�1 + �̇�4) 

𝑈2 − 𝑈1 + 𝑈4 − 𝑈3 =
𝐶

𝐶𝑢
+

𝐶𝑣

𝐶𝑢

(�̇�2 − �̇�1 + �̇�4 − �̇�3) 

 

As it can be recalled, the terms 𝐴, 𝐵 and 𝐶 are functions of the generalized coordinates. 

The missing relationship between the wheels angular velocity �̇�𝑖 and the kinematic 

variables is given by the constraint equations. For this particular case, they are simplified 

to: 

�̇�1 =
�̇�𝐺(cos(𝜓) + sin(𝜓)) − �̇�𝐺(cos(𝜓) − sin(𝜓)) − �̇�(𝑙 + 𝑑)

𝑅
 

�̇�2 =
�̇�𝐺(cos(𝜓) − sin(𝜓)) + �̇�𝐺(cos(𝜓) + sin(𝜓)) + �̇�(𝑙 + 𝑑)

𝑅
 

�̇�3 =
�̇�𝐺(cos(𝜓) − sin(𝜓)) + �̇�𝐺(cos(𝜓) + sin(𝜓)) − �̇�(𝑙 + 𝑑)

𝑅
 

�̇�4 =
�̇�𝐺(cos(𝜓) + sin(𝜓)) + �̇�𝐺(sin(𝜓) − cos(𝜓)) + �̇�(𝑙 + 𝑑)

𝑅
 

The right hand of the 3 voltage equations can be the written as new terms 𝐴′, 𝐵′ and 𝐶′, 

which are all functions of the generalized coordinates: 

  

𝑈2 + 𝑈3 = 𝐴′ 

𝑈1 + 𝑈4 = 𝐵′ 

𝑈2 − 𝑈1 + 𝑈4 − 𝑈3 = 𝐶′ 

Where: 

𝐴′ =
𝐴

𝐶𝑢
+

𝐶𝑣

𝐶𝑢

(�̇�2 + �̇�3) 

𝐵′ =
𝐵

𝐶𝑢
+

𝐶𝑣

𝐶𝑢

(�̇�1 + �̇�4) 
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𝐶′ =
𝐶

𝐶𝑢
+

𝐶𝑣

𝐶𝑢

(�̇�2 − �̇�1 + �̇�4 − �̇�3) 

The last equation to solve the system is provided by the energy requirement. As it has 

been shown before, this corresponds to minimizing the function 𝑃′(𝑡) = 𝑈1
2 + 𝑈2

2 +

𝑈3
2 + 𝑈4

2. This is exactly the same system of equations which was deduced to minimize 

the driving torques. In consequence, the solution is similar: 

𝑈1𝑚𝑖𝑛
=

𝐵′

2
−

𝐶′

4
 

𝑈2𝑚𝑖𝑛
=

𝐴′

2
+

𝐶′

4
 

𝑈3𝑚𝑖𝑛
=

𝐴′

2
−

𝐶′

4
 

𝑈4𝑚𝑖𝑛
=

𝐵′

2
+

𝐶′

4
 

The following pictures correspond to simulations with given trajectories, considering the 

constants 𝐶𝑢 = 1,75
𝑁

𝑉
 ; 𝐶𝑣 = 0,013𝑁 ∙ 𝑠. 

 

 

 

Figure 2.13. From top to bottom, left to right: Tension 𝑈1, 𝑈2, 𝑈3 and 𝑈4 for a trajectory 𝑥 = 𝑦 = 𝑡 
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Figure 2.14. From top to bottom, left to right: Tension 𝑈1, 𝑈2, 𝑈3 and 𝑈4  for a trajectory 𝑥 = cos(𝑡) , 𝑦 = sin(𝑡) 
 

2.6. Analysis of a Truck and Trailer System 

Now that the equations of the robot with Mecanum wheels are completely known, it is 

of further interest of the research to evaluate systems on which a trailer is attached to 

the robot through a single rod. Four possible scenarios will then be analized: 

 First scenario: Trailer with regular wheels, free angle between the rod and the 

trailer. 

 Second scenario: Trailer with regular wheels, fixed angle of 90º between the rod 

and the trailer. 

 Third scenario: Trailer with Mecanum wheels, free angle between the rod and the 

trailer. 

 Fourth scenario: Trailer with Mecanum wheels, fixed angle of 90º between the 

rod and the trailer. 

In all scenarios, a free angle between the rod and the robot is assumed. 
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Table 2.2. Robot-Trailer scenarios to be examined 

 Conventional  
Wheel 

Mecanum  
Wheel 

𝜃 ≠ 𝛽  

 

 

 
𝜃 = 𝛽  

 

 

 
 

 

 

Figure 2.15. Scheme showing the robot-trailer system 
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a. First scenario 

The truck consists of the Mecanum-wheeled robot, while the trailer consists on a two 

wheeled vehicle with radius 𝑅𝑡, which is connected to the truck via a rod between both 

centers of gravity.  

The center of gravity will be assumed to be contained on the axis connecting both wheels. 

Thus, the coordinates for the center of the wheels 5 and 6 can be written as: 

𝑥𝑂5
= 𝑥𝑇 − 𝑝sin(𝜃) 

𝑦𝑂5
= 𝑦𝑇 + 𝑝cos(𝜃) 

 

𝑥𝑂6
= 𝑥𝑇 + 𝑝sin(𝜃) 

𝑦𝑂6
= 𝑦𝑇 − 𝑝cos(𝜃) 

And the velocities: 

�̇�𝑂5
= �̇�𝑇 − 𝑝�̇�cos(𝜃) 

�̇�𝑂5
= �̇�𝑇 − 𝑝�̇�sin(𝜃) 

�̇�𝑂6
= �̇�𝑇 + 𝑝�̇�cos(𝜃) 

�̇�𝑂6
= �̇�𝑇 + 𝑝�̇�sin(𝜃) 

These equations will be of further use. Now, analyzing the velocities on both ends of the 

rod: 

𝑣 𝐺 = 𝑣 𝑇 + �⃗⃗� 𝑇 × 𝑇𝐺⃗⃗⃗⃗  ⃗ 

Where 𝜔𝑇 is the angular velocity of the rod. This rod is considered to rotate freely and 

thus, has its own angular velocity �̇�. 

The equation can be written using generalized coordinates 𝑥𝑇 , 𝑦𝑇 , 𝜃, 𝑥𝐺  and 𝑦𝐺 . 

(�̇�𝐺 , �̇�𝐺) = (�̇�𝑇 , �̇�𝑡) + (�̇�𝑒 𝑧) × ((𝑙 cos(𝛽))𝑒 𝑥 + (𝑙 sin(𝛽))𝑒 𝑦) 

Two scalar equations can then be written: 

�̇�𝑇 = �̇�𝐺 + �̇�𝑙 sin(𝛽) 
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�̇�𝑇 = �̇�𝐺 − �̇�𝑙 cos(𝛽) 

The velocities of the wheel’s center of mass are then rewritten as: 

�̇�𝑂5
= �̇�𝐺 + �̇�𝑙 sin(𝛽) − �̇�𝑝 cos(𝜃) 

�̇�𝑂5
= �̇�𝐺 − �̇�𝑙 cos(𝛽) − �̇�𝑝 sin(𝜃) 

 

�̇�𝑂6
= �̇�𝐺 + �̇�𝑙 sin(𝛽) + �̇�𝑝 cos(𝜃) 

�̇�𝑂6
= �̇�𝐺 − �̇�𝑙 cos(𝛽) + �̇�𝑝 sin(𝜃) 

Now, the kinematic constrains of the system will be considered. 

In this scenario, the wheels from the trailer are considered to be regular wheels.  

Considering the constrain equations for a conventional wheel on a plane, as considered 

in Zimmermann et al., the following constrain equations can be written. 

�̇�𝑂𝑖
cos(𝜃) + �̇�𝑂𝑖

sin(𝜃) = 𝑅𝑡�̇�𝑖 

−�̇�𝑂𝑖
sin(𝜃) + �̇�𝑂𝑖

cos(𝜃) = 0 

Where 𝑖 = 5,6. Replacing the expressions as functions of the velocity of the robot’s 

center of mass, three constrain equations can be deduced: 

�̇�𝐺 cos(𝜃) + �̇�𝐺 sin(𝜃) − �̇�𝑙 sin(𝛽 − 𝜃) − �̇�𝑝 = 𝑅𝑡�̇�5 

�̇�𝐺 cos(𝜃) + �̇�𝐺 sin(𝜃) + �̇�𝑙 sin(𝛽 − 𝜃) + �̇�𝑝 = 𝑅𝑡�̇�6 

−�̇�𝐺 sin(𝜃) + �̇�𝐺 cos(𝜃) − �̇�𝑙 cos(𝛽 − 𝜃) = 0 

Together with the robot’s constrain equation, the system can be described as follows: 
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[
 
 
 
 
 
 
 
sin(𝜓 + 𝛿1) −cos(𝜓 + 𝛿1) −𝑙1 cos(𝛿1) − 𝑑1 sin(𝛿1) 0 0

sin(𝜓 + 𝛿2) −cos(𝜓 + 𝛿2) −𝑙1 cos(𝛿2) + 𝑑2 sin(𝛿2) 0 0

sin(𝜓 + 𝛿3) −cos(𝜓 + 𝛿3) 𝑙2 cos(𝛿3) − 𝑑1 sin(𝛿3) 0 0

sin(𝜓 + 𝛿4) −cos(𝜓 + 𝛿4) 𝑙2 cos(𝛿4) + 𝑑2 sin(𝛿4) 0 0

cos(𝜃) sin(𝜃) 0 𝑙 sin(𝛽 − 𝜃) −𝑝

cos(𝜃) sin(𝜃) 0 𝑙 sin(𝛽 − 𝜃) 𝑝

−sin(𝜃) cos(𝜃) 0 −𝑙 cos(𝛽 − 𝜃) 0 ]
 
 
 
 
 
 
 

[
 
 
 
 
 
𝑥�̇�

𝑦�̇�

�̇�

�̇�

�̇� ]
 
 
 
 
 

=

[
 
 
 
 
 
 
𝑅𝜑1̇ sin(𝛿1)

𝑅𝜑2̇ sin(𝛿2)

𝑅𝜑3̇ sin(𝛿3)

𝑅𝜑4̇ sin(𝛿4)
𝑅𝑡�̇�5

𝑅𝑡�̇�6

0 ]
 
 
 
 
 
 

 

This shows clearly that there are eleven generalized coordinates and seven constrain 

equations, which means the system has four degrees of freedom. The system could be 

solved if four values of the angular velocities are given.  

Nevertheless, �̇�𝑖 must be carefully chosen in order to solve the system. For instance, if 

�̇�1, �̇�2, �̇�3 and �̇�4 are given in order to do so, the resultant matrix is singular. Hence, the 

system cannot be solved. At least one of the angular velocities from 𝜑1̇ to 𝜑4̇ must remain 

unknown in order not to over-constrain the system, more specifically, the robot’s 

movement. 

The singularity arises from the first four equations. This is physically explained by the fact 

that the first three coordinates 𝑥�̇� , 𝑦�̇� , �̇� are determined just by 𝜑1̇, 𝜑2̇ and 𝜑3̇. As the 

robot’s movement is fully defined by the movement of three of its wheels, adding a fourth 

angular velocity would over-constrain the system. For this reason, an angular velocity 

other than 𝜑4̇ should be chosen in order to solve the equations.  

 

 

b.  Second Scenario 

In this scenario, the trailer and the rod are considered to have a fixed angle for the 

entire motion. Thus, both bodies have now the same angular velocity, this is: �̇� = �̇� 

Considering this fact, the velocity for the trailer center of mass can be written as: 

�̇�𝑇 = �̇�𝐺 + �̇�𝑙 sin(𝜃) 
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�̇�𝑇 = �̇�𝐺 − �̇�𝑙 cos(𝜃) 

As last step, the velocities are expressed as functions of the velocity of the robot’s center 

of mass: 

�̇�𝑂5
= �̇�𝐺 + �̇�(𝑙 sin(𝜃) − 𝑝 cos(𝜃)) 

�̇�𝑂5
= �̇�𝐺 − �̇�(𝑙 cos(𝜃) + 𝑝 sin(𝜃)) 

 

�̇�𝑂6
= �̇�𝐺 + �̇�(𝑙 sin(𝜃) + 𝑝 cos(𝜃)) 

�̇�𝑂6
= �̇�𝐺 − �̇�(𝑙 cos(𝜃) − 𝑝 sin(𝜃)) 

Similarly to the first scenario, three constrain equations can be written from these 

formulas: 

�̇�𝐺 cos(𝜃) + �̇�𝐺 sin(𝜃) − �̇�𝑝 = 𝑅𝑡�̇�5 

�̇�𝐺 cos(𝜃) + �̇�𝐺 sin(𝜃) + �̇�𝑝 = 𝑅𝑡�̇�6 

−�̇�𝐺 sin(𝜃) + �̇�𝐺 cos(𝜃) − �̇�𝑙 = 0 

The complete system of equations, including those of the robot, are represented in the 

following matrix: 

[
 
 
 
 
 
 
 
sin(𝜓 + 𝛿1) −cos(𝜓 + 𝛿1) −𝑙1 cos(𝛿1) − 𝑑1 sin(𝛿1) 0

sin(𝜓 + 𝛿2) −cos(𝜓 + 𝛿2) −𝑙1 cos(𝛿2) + 𝑑2 sin(𝛿2) 0

sin(𝜓 + 𝛿3) −cos(𝜓 + 𝛿3) 𝑙2 cos(𝛿3) − 𝑑1 sin(𝛿3) 0

sin(𝜓 + 𝛿4) −cos(𝜓 + 𝛿4) 𝑙2 cos(𝛿4) + 𝑑2 sin(𝛿4) 0
cos(𝜃) sin(𝜃) 0 −𝑝
cos(𝜃) sin(𝜃) 0 𝑝
−sin(𝜃) cos(𝜃) 0 𝑙 ]

 
 
 
 
 
 
 

[
 
 
 
𝑥�̇�

𝑦�̇�

�̇�

�̇� ]
 
 
 
=

[
 
 
 
 
 
 
𝑅𝜑1̇ sin(𝛿1)

𝑅𝜑2̇ sin(𝛿2)

𝑅𝜑3̇ sin(𝛿3)

𝑅𝜑4̇ sin(𝛿4)
𝑅𝑡�̇�5

𝑅𝑡�̇�6

0 ]
 
 
 
 
 
 

 

There are seven constrain equations against ten generalized coordinates, which gives the 

system 3 degrees of freedom. These means that 𝜑1̇ through 𝜑3̇ can still be chosen in 

order to know the rest of variables. To do so, the equations must be rearranged as: 
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[
 
 
 
 
 
 
 
sin(𝜓 + 𝛿1) −cos(𝜓 + 𝛿1) −𝑙1 cos(𝛿1) − 𝑑1 sin(𝛿1) 0 0 0 0

sin(𝜓 + 𝛿2) −cos(𝜓 + 𝛿2) −𝑙1 cos(𝛿2) + 𝑑2 sin(𝛿2) 0 0 0 0

sin(𝜓 + 𝛿3) −cos(𝜓 + 𝛿3) 𝑙2 cos(𝛿3) − 𝑑1 sin(𝛿3) 0 0 0 0

sin(𝜓 + 𝛿4) −cos(𝜓 + 𝛿4) 𝑙2 cos(𝛿4) + 𝑑2 sin(𝛿4) 0 −𝑅 sin(𝛿4) 0 0
cos(𝜃) sin(𝜃) 0 −𝑝 0 −𝑅𝑡 0
cos(𝜃) sin(𝜃) 0 𝑝 0 0 −𝑅𝑡

−sin(𝜃) cos(𝜃) 0 𝑙 0 0 0 ]
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
𝑥�̇�

𝑦�̇�

�̇�

�̇�
𝜑4̇

�̇�5

�̇�6]
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
𝑅𝜑1̇ sin(𝛿1)

𝑅𝜑2̇ sin(𝛿2)

𝑅𝜑3̇ sin(𝛿3)
0
0
0
0 ]

 
 
 
 
 
 

 

 

Introducing the following velocities 𝜑1̇ = 𝜑2̇ = 𝜑3̇ = 0,5𝑡, the following results are 

achieved for the trajectory and the angular velocity of the driven wheels: 

 

Figure 2.16. Trajectory of the robot’s center of mass 

 

Figure 2.17. Trajectory of the trailer’s center of mass 
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Figure 2.18.  Angular velocities of wheels 5 (left) and 6 (right). 

 

a. Third scenario 

In this scenario, Mecanum wheels are considered for the trailer, as well as a non-fixed 

angle between the trailer and the connection rod. As with the second scenario, two 

constrain equations can be written from these conditions: 

�̇�𝑂5
sin(𝜃 + 𝛿5) − �̇�𝑂5

cos(𝜃 + 𝛿5) + �̇�𝑙 cos(𝛽 − 𝜃 − 𝛿5) − �̇�𝑝 sin(𝛿5) = 𝑅𝜑5̇ sin(𝛿5) 

�̇�𝑂6
sin(𝜃 + 𝛿6) − �̇�𝑂6

cos(𝜃 + 𝛿6) + �̇�𝑙 cos(𝛽 − 𝜃 − 𝛿5) + �̇�𝑝 cos(𝛿5) = 𝑅𝜑6̇ sin(𝛿6) 

The system can be described then by the following equations: 

[
 
 
 
 
 
 
sin(𝜓 + 𝛿1) −cos(𝜓 + 𝛿1) −𝑙1 cos(𝛿1) − 𝑑1 sin(𝛿1) 0 0

sin(𝜓 + 𝛿2) −cos(𝜓 + 𝛿2) −𝑙1 cos(𝛿2) + 𝑑2 sin(𝛿2) 0 0

sin(𝜓 + 𝛿3) −cos(𝜓 + 𝛿3) 𝑙2 cos(𝛿3) − 𝑑1 sin(𝛿3) 0 0

sin(𝜓 + 𝛿4) −cos(𝜓 + 𝛿4) 𝑙2 cos(𝛿4) + 𝑑2 sin(𝛿4) 0 0

sin(𝜃 + 𝛿5) − cos(𝜃 + 𝛿5) 0 𝑙 cos(𝛽 − 𝜃 − 𝛿5) 𝑙 cos(𝛿5) − 𝑝 sin(𝛿5)

sin(𝜃 + 𝛿6) − cos(𝜃 + 𝛿6) 0 𝑙 cos(𝛽 − 𝜃 − 𝛿5) 𝑙 cos(𝛿6) + 𝑝 sin(𝛿6)]
 
 
 
 
 
 

[
 
 
 
 
 
𝑥�̇�

𝑦�̇�

�̇�

�̇�

�̇� ]
 
 
 
 
 

=

[
 
 
 
 
 
 
𝑅𝜑1̇ sin(𝛿1)

𝑅𝜑2̇ sin(𝛿2)

𝑅𝜑3̇ sin(𝛿3)

𝑅𝜑4̇ sin(𝛿4)

𝑅𝑡�̇�5 sin(𝛿5)

𝑅𝑡�̇�6 sin(𝛿6)]
 
 
 
 
 
 

 

With six constrain equations and eleven generalized coordinates, the system has now five 
degrees of freedom. Moreover, as with the first scenario, at least one angular velocity 
between 𝜑1̇ and 𝜑4̇ must remain unknown in order to properly solve the system of 
equations. 
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b.  Fourth scenario 

This scenario, as well as the second one, considers now a fixed angle between the trailer 

and the rod, which implies that both bodies share the same angular velocity. 

Replacing the expressions for �̇�𝑂5
 ,�̇�𝑂5

, �̇�𝑂6
 and �̇�𝑂6

 as functions of �̇�𝐺 and �̇�𝐺  obtained in 

the analysis of the second scenario in the constrain equations for Mecanum wheels, the 

constrain equations for this system are deduced: 

�̇�𝑂5
sin(𝜃 + 𝛿5) − �̇�𝑂5

cos(𝜃 + 𝛿5) + �̇�(𝑙 cos(𝛿5) − 𝑝 sin(𝛿5)) = 𝑅𝜑5̇ sin(𝛿5) 

�̇�𝑂6
sin(𝜃 + 𝛿6) − �̇�𝑂6

cos(𝜃 + 𝛿6) + �̇�(𝑙 cos(𝛿6) + 𝑝 sin(𝛿6)) = 𝑅𝜑6̇ sin(𝛿6) 

Combining these new equations with the robot’s constrains, the new system of equations 

can be written as: 

[
 
 
 
 
 
 
sin(𝜓 + 𝛿1) −cos(𝜓 + 𝛿1) −𝑙1 cos(𝛿1) − 𝑑1 sin(𝛿1) 0

sin(𝜓 + 𝛿2) −cos(𝜓 + 𝛿2) −𝑙1 cos(𝛿2) + 𝑑2 sin(𝛿2) 0

sin(𝜓 + 𝛿3) −cos(𝜓 + 𝛿3) 𝑙2 cos(𝛿3) − 𝑑1 sin(𝛿3) 0

sin(𝜓 + 𝛿4) −cos(𝜓 + 𝛿4) 𝑙2 cos(𝛿4) + 𝑑2 sin(𝛿4) 0

sin(𝜃 + 𝛿5) − cos(𝜃 + 𝛿5) 0 𝑙 cos(𝛿5) − 𝑝 sin(𝛿5)

sin(𝜃 + 𝛿6) − cos(𝜃 + 𝛿6) 0 𝑙 cos(𝛿6) + 𝑝 sin(𝛿6)]
 
 
 
 
 
 

[
 
 
 
𝑥�̇�

𝑦�̇�

�̇�

�̇� ]
 
 
 

=

[
 
 
 
 
 
 
𝑅𝜑1̇ sin(𝛿1)

𝑅𝜑2̇ sin(𝛿2)

𝑅𝜑3̇ sin(𝛿3)

𝑅𝜑4̇ sin(𝛿4)

𝑅𝑡�̇�5 sin(𝛿5)

𝑅𝑡�̇�6 sin(𝛿6)]
 
 
 
 
 
 

 

There are 6 equations and 10 generalized coordinates, which gives the system 4 degrees 

of freedom. The system could be solved if four values of the angular velocities are given. 

It should be noted that here, as it happened with the first and third scenarios, the angular 

velocities chosen as known must be carefully evaluated.  

For example, choosing 𝜑1̇, 𝜑2̇ ,𝜑3̇ and 𝜑6̇ as the known angular velocities, the following 

results are achieved: 
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Figure 2.19. Trajectory of the robot’s center of mass 

 

Figure 2.20. Trajectory of the trailer’s center of mass 

 

 

Figure 2.21. Angular velocity 𝜑4̇ from the fourth wheel of the robot 
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CHAPTER THREE 
 

DESIGN AND CONSTRUCTION OF THE TRAILER 
 

Besides the theoretical models developed in the previous chapters, another of the 
objectives of this thesis is to design and build a trailer, which is to be attached to the 
robot. The main objective of this construction is to be able to compare the mathematical 
models obtained in the previous chapter to the physical results. 
 
The trailer was design with the overall perspective of it being as simple as possible. 
Therefore, almost all parts were selected from the local market and only few of them 
were manufactured. This procedure allowed the simplicity of the design as well as the 
rapid construction of it. 
 
3.1. General requirements 
 
Though of simple construction, the trailer’s design must fulfill some general 
requirements, which are listed below. 
 

a) Dimensions: the trailer must have similar dimensions as the ones of the robot, 
both in height and width. A general tolerance of ±15𝑚𝑚 was placed as constrain 
in order to achieve this goal. The length has no restrictions. 

b) Number of wheels: the trailer must use two Mecanum wheels, placed on the same 
axis with no shaft connecting them (each wheel can turn independently from each 
other). No power on the wheels is to be used. 

c) Connection between robot and trailer: this must be achieved using a rod which 
length is variable. Additionally, a free rotation joint around an axis perpendicular 
to the robot’s motion was considered for the connection on the robot, while a 
free rotation joint as well as a fixed joint were considered for the trailer. 

 
3.2. Existing parts 
 
The only existing part, which played an important role in the general design of the trailer, 
was the Mecanum wheel, which was manufactured at the Technische Universität 
Ilmenau. The main advantage of this wheel, when compared to the wheels on the robot, 
is that the angle of the rollers are not fixed. This is achieved via a gear mechanism in the 
interior of the wheel. 
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Fig 3.1. General dimensions of wheel manufactured at TU Ilmenau. The rollers on this representation have an angle 𝛿 = 0° 

 
Three main aspects of the wheel were taken into consideration for the trailer’s design: 
 

a) External diameter of 129𝑚𝑚. The lowest part must be at the same level of that 
of the robot’s wheels, which have a diameter of 100𝑚𝑚. 

b) Available length on the shaft. The length of the shaft that was proper to machine 
was 17𝑚𝑚, as the rest of the shaft is used to configure the rollers’ angles. 

c) Shaft diameter of 24,2𝑚𝑚. 
 
3.3. Design of the structure 
 
To mount the wheels on to the trailer, a support structure had to be designed. This had 
to be light, so as to reduce the inertia of the trailer, but also stable and able to support 
the wheels and the joint properly. Many elementary alternatives were devised, which are 
shown on figures 3.2 to 3.5. 
 

 
Fig. 3.2. Structure based on thin metal plates, assembled using L-shape profiles and screws (front and back views) 
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Fig. 3.3. Structure based on thin welded metal plates 

 

 
Fig 3.4. Structure based on folded metal plates joined with L-shaped profiles and screws 
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Fig. 3.5. Structure based on Square-section aluminum rods with connectors 

 
As the main objective of the structure is to provide support for the wheels and the joint, 
while at the same time being light as well as providing an uncomplicated assemble, a 
structure based on aluminum rods was chosen. Nevertheless, the structure was further 
modified due to space and configuration reasons. The final structure achieved can be 
seen in figure 3.6. 
 

 
Fig. 3.6. Structure’s final design 
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3.4. Design of the joints 
 
The connection between robot and trailer requires an adequate design of the joint 
mechanisms, so that no interference with any other part, for instance, the wheels, is 
encountered. 
 
As for the joint on the robot, it was decided that this joint should allow free movement 
around an axis perpendicular to the motion. On the other hand, the trailer should have 
two alternatives: one which allows a movement similar to that on the robot as well as 
one which fixes the angle between the rod and the trailer on 90°. Additionally, these joint 
alternatives should be interchangeable with each other. 
 
A handful of options were considered for all the possible scenarios, which are presented 
on figures 3.7 to 3.10. 
 

 
Figure 4.7. Joint system using a roller bearing to provide the tangential motion 

 

 
Fig 4.8. Connection using a spherical joint (model taken from MBO-Osswald) 
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Fig. 4.9. Joint system using an eyebolt to provide the tangential motion 

 

 
Fig. 4.10. Rigid joint using a 90° elbow connection 

 
Considering that the trailer would only have two wheels on the same axis, any possibility 
which could lead to potential motion around such axis was ruled out due to stability 
reasons. Moreover,  as both the fixed-angle alternative as well as the free-rotation one 
shall be interchangeable with each other, the joints depicted in figures 3.9 and 3.10 were 
chosen for the design. 
 
Similarly to the case of the structure, these alternatives were further modified during the 
design phase until the configurations shown in figures 3.11 and 3.12 were achieved. 
 

 
Fig. 3.11. Fixed connection final design 
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Fig. 3.12. Joint final design 

 
 
4.5. Wheel support design 
 
As it has been noted on section 3.2, the wheels which were to be used on the trailer 
design had already been built. To assembly them properly to the trailer, a support had to 
be design to meet the specific geometric requirements of both the trailer and the wheel 
itself. 
 
As the shaft where the wheel has a diameter of 24,2𝑚𝑚, there is no standard roller 
bearing which could be suitable. Thus, a compensating ring with a standard outer 
diameter had to be manufactured in order to properly assembly the wheel to the 
structure. The roller bearing which was chosen has an inner diameter of 30𝑚𝑚, as the 
compensating ring had to have a proper thickness in order not to be damaged during 
operation. 
 
Additionally, the length of the shaft which could be used to support the wheel was 
17𝑚𝑚, as a longer dimension would interfere with the rollers mechanism to change its 
angle with respect to the wheel axis. 
 
With these ground requirements, the support for the wheel was designed. It consists of 
five parts: (1) the roller bearing, (2) a locking ring, (3) the compensating ring, (4) the 
housing for the bearing and the ring and (5) the cover for the housing. All the parts, with 
exception of the roller bearing and the locking ring, were manufactured at TU Ilmenau. 
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Fig 3.13. Main views and sectionsof the housing for the roller bearing and wheel shaft 

 

 
Fig. 3.14. Main view and section of the housing cover 
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Fig. 3.15. Main views of the compensating ring 

 

 
Fig. 3.16. Selected roller bearing (image taken from SKF at www.skf.com/de/) 
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Fig. 3.17. Main view and section view of the whole assembly 

 
3.6. Additional parts 
 
Besides the components which were required and design in the previous points, the 
following pieces were either buy or designed: 
 

a) A twist-and-lock bar (usually used to support shower curtains), in order to connect 
both robot and trailer and to make the length of the connection variable.  

b) A base plate for the robot, in order to ensure the stability on the joint. 
c) Various screws, nuts and threaded connectors to assembly the parts mentioned 

in the above sections. 
d) Yellow flexible plates to cover the structure and give aesthetics to the assembly. 
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CHAPTER FOUR 
 

FULL ASSEMBLY AND DESIGN VERIFICATION 
 

All the elements mentioned in the previous chapter were either bought or manufactured 
at the workshops of the TU Ilmenau. Photos of the assembled trailer can be seen in figures 
4.1 to 4.5. 

 
Figure 4.1. Assembled trailer without the Mecanum wheels. 

 

 
Figure 4.2. Back side of the trailer and detail of the structure. 
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Figure 4.3. Roller bearing housing manufactured at TU Ilmenau 

 
 
The trailer, as was seen on the pictures above, has conventional wheels attached to each 
side. The Mecanum wheel that was manufactured at TU Ilmenau can be seen on picture 
4.4. 
 

 
Fig. 4.4. Front (right) and back (left) views of the Mecanum wheel manufactured at TU Ilmenau. 

 
As it can be seen on the figure above, the gear mechanism inside the wheel allow the user 
to change the relative angle between the wheel and the rollers.  
 
The trailer can be used with both conventional wheels or Mecanum wheels. Figures 4.5 
and 4.6 show the Mecanum wheels manufactured at TU Ilmenau attached to the trailer. 
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Figure 4.5. Manufactured Mecanum wheels mounted on the trailer. 

 

 
Figure 4.6. Side view of the trailer assembly 

 
On figure 4.7 both can be observed: the conventional wheel mounted on the trailer, the 
Mecanum wheel on one side. 
 

 
Fig. 4.7. Mecanum wheel and conventional wheel. 
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The robot used to drive the trailer was the 100 mm Mecanum Wheel robot kit 100111 – 
Nexus Robot, property of the department of technical mechanics at the TU Ilmenau. It 
has four independent motors on each wheel, which allow the motion of the system to be 
controlled remotely.  

 

 
Fig. 4.8. Nexus robot before being attached to the trailer 

 

 
Fig. 4.9. Detail of the Mecanum wheel on the Nexus robot 

 
The robot’s structure was further modified in order to assembly the joint. A circular metal 
base was connected to the top plate of the robot using screws. The base itself has a M8 
screwed through hole to connect the large screw in which the joint was assembled. A 
detail of the connection can be seen on figure 4.10. 
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Fig. 4.10. Circular metal base, screw and nut on the robot’s top plate 

 
After the full assembly was made, the model was tested for functionality and mobility, 
both with conventional and Mecanum wheels. Figures 4.11 and 4.12 show the different 
views of the final assembly. 
 

 
Fig. 4.11. View of the final assembly using mobile joints on both robot and trailer 
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Fig. 4.12. The telescopic pole, which connects robot and trailer, allow the connecting distance 

to vary between the two bodies of the system 
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CONCLUSIONS AND FUTURE WORK 
 
A mathematical model was developed in order to calculate and simulate the trajectories 
of the center of mass that a four-Mecanum-wheeled robot would follow given various 
parameters, which can be controlled. Through the deduction of the equations, it could be 
verified that it could be modelled as a three-degree-of-freedom body.  
 
At a first stage, the model just considered the kinematic variables on the system, and so 
the parameters that were given to the model were the angular velocities on three wheels 
for the direct kinematics approach. The inverse kinematics could also be solved for a 
defined trajectory.  
 
It is worth mentioning that, in this stage, an exact solution to the differential equations 
was given without the use of an approximation method, such as the use of the pseudo-
inverse matrix. Nevertheless, as stated by Muir and Neuman, the actuators present on 
the robot are sufficient to provide motion on the three degrees of freedom on the plane, 
but can lead to actuator conflict. The fact that only three angular velocities are needed to 
solve the equations clearly shows that the motion on the fourth wheel could be in conflict 
with any, if not all, the remaining motors. This can be also observed in a further chapter 
with a robot-trailer system. 
 
At a second stage, Lagrange equations with multipliers were used to deduce the kinetic 
system of differential equations of motion. Using this kind of equations allows the 
deduction of the latter for non-holonomic systems. Once they were calculated, the 
parameters given to the simulation were the driving torques on each wheel to solve the 
system of equations. 
 
Furthermore, an optimization condition was given as an additional equation to calculate 
the optimal driving torque on each wheel for any given trajectory.  The linear dependence 
proposed by Gorinevsky was used to stablish a relation between the torque and the 
voltage on each driving motor. No loses were assumed due to friction, heat generation 
or eddy current. Thus, all the power generated by the motor was assumed to be 
transferred to the robot.  
 
The power on each driving motor was assumed to be proportional to the square of the 
voltage applied to it. Thus, the total power of the motor was proportional to the sum of 
the powers of each individual motor. The relation between the torque and the voltage 
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allows to assume that this total power should also be proportional to the driving torques 
provided by each motor. 
 
In order to minimize the total power, a dependency had to be stablished between three 
driving torques and the remaining one. This was possible thanks to the three equations 
of motion deduced from the Lagrange equations. Once a relation was stablished, the 
power equation could be written in terms of just one driving torque. This equation was 
derived with respect to the latter, allowing writing the fourth torque in terms of 𝑥(𝑡), 𝑦(𝑡) 
and their time derivatives. Hence, the remaining torques were calculated once one of 
them was known. 
 
A robot and trailer system was also modeled only at a kinematic level, showing the 
degrees of freedom for each of the four scenarios that were considered for such system. 
In this scenarios, it was also evident the fact that, even though the system has more 
degrees of freedom and thus, more variables are required to solve the system of 
equations, only three angular velocities corresponding to the robot kinematics are to be 
specified.   
 
The entire modelling was done for a general robot with an unsymmetrical center of mass 
and a general angle between the rollers and the main body axes. As for the trailer, the 
center of gravity was considered to be in the same axis as the wheels. 
 
The results obtained in the simulation must be further verified with real data obtained 
from the models that were described in chapter four. Once verified, optimal operation 
routines for a determined task could be programmed for the robot to optimize the energy 
used in each operation. 
 
Furthermore, the dynamics of the robot-trailer system must be calculated in order to 
obtain the differential equations of motion for the entire system. The Lagrange equations 
with multipliers method is also valid for this model, as the system is still non-holonomic. 
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