

OMNI-DIRECTIONAL FORCE-FEEDBACK FOR ASSISTED

NAVIGATION OF OMNI-DIRECTIONAL ROBOTS

by

Rajat Tyagi

A thesis submitted to the faculty of
The University of Utah

in partial fulfilment of the requirement for the degree of

Master of Science

Department of Mechanical Engineering

The University of Utah

May 2017

Copyright © Rajat Tyagi 2017

All Rights Reserved

The University of Utah Graduate School

STATEMENT OF THESIS APPROVAL

The thesis of Rajat Tyagi

 has been approved by following supervisory committee members:

 Stephen A. Mascaro , Chair 12/20/2016
 Date Approved

 Sanford G. Meek , Member 12/20/2016
 Date Approved

 David E. Johnson , Member 12/20/2016
 Date Approved

and by Timothy A. Ameel , chair of

the department of Mechanical Engineering

and by David B. Kieda , Dean of The Graduate School.

ABSTRACT

The objective of this research is to improve the ability of a human operator to drive

an omnidirectional robot by using omnidirectional force-feedback. Omnidirectional

vehicles offer improved mobility over conventional vehicles and can potentially benefit

people requiring motorized transportation and industries where vehicles must operate in

confined spaces. However, omnidirectional vehicles require more skill to control due to

the additional degrees of freedom inherent in the vehicle’s design. We hypothesize that

providing force-feedback to the driver through an omnidirectional joystick will allow the

robot to assist the driver in navigating and avoiding collisions with obstacles in a manner

that is natural to the operator. This research is the first attempt to use true omnidirectional

3-DOF (degree of freedom) force-feedback to provide navigational assistance for a human

to drive an omnidirectional vehicle. While 2-DOF force-feedback has been used in a

limited capacity for obstacle avoidance on omnidirectional vehicles, this is the first study

to include a third rotational axis of force-feedback and use it to guide a driver along planar

collision-avoiding trajectories with a natural coordination of orientation. Unique

intellectual merits put forth by this research include use of a novel omnidirectional haptic

device and force-feedback strategies to guide operators and experiments to quantify the

ability of force-feedback to improve omnidirectional driving performance and driver

experience in a real time scenario.

TABLE OF CONTENTS

ABSTRACT ……………………………………………………………………….…….iii

LIST OF FIGURES…………………………………………………………...………….vi

ACKNOWLEDGEMENTS………………..……………………………………………..ix

Chapters

1 – INTRODUCTION……………………………………………………………….……1

1.1 Motivation …………………………………………………………………….1
1.2 Omnidirectional Robots……………………………………………………….4
1.3 Haptic Interface ……………………………………………………………….6
1.4 Compliance Center ……………………………………………………………8
1.5 Force-Feedback for Omnidirectional Wheelchairs ….………………...……...9

2 – EXPERIMENTAL SETUP……………………………………….………………….16

 2.1 Joystick Design ……………………………………………………………...16
 2.2 Joystick Control System …………………………………………………….19
 2.3 Omnidirectional Robot Hardware ………………………………………….. 21
 2.4 Omnidirectional Robot Simulation ………………………………………… 26

3 – STABILITY ANALYSIS ……….…………………………………………………. 31

3.1 Open Loop Transfer Function ……………………………………………….31

4 – HAPTIC FEEDBACK FOR COLLISION AVOIDANCE …………….……………36

 4.1 Feedback Objective and Force Field ………………………………………...36
 4.2 Force-Feedback as Natural Spring and Damper……………………………. 38
 4.3 Force-Feedback as Quadrant Approach…………………………….………..41
 4.4 Force-Feedback as Component Approach (Fy Law)……………….………...44
 4.5 Experiments ……………………………………………………….…………45

5 – RESULTS AND ANALYSIS ……………………………………………………… 50

 5.1 Number of Collisions and Time to Complete ……………………..………….50

v

 5.2 Feedback and Trajectory ………………………………………….………….55
 5.3 Survey …………………………………………………………….………….65

6 – CONCLUSION AND FUTURE WORK …………………………….……………...66

 6.1 Conclusion …………………………………………………….……………..66
 6.2 Future Work …………………………………………………….……………67

Appendices

A – SURVEY ……………………………………………………………………………69

B – PROGRAMMING CODE …………………………………….…………………….71

REFERENCES ………………………………………………….……………………...113

LIST OF FIGURES

1.1: Airtrax Sidewinder, manufactured by Vetex .. 2

1.2: A Kuka omniMove omnidirectional universal transport vehicle, manufactured by
 Kuka Robotics .. 3

1.3: Commercially available wheels .. 5

1.4: The University of Utah Haptic Paddle developed by Provancher and Doxon 8

1.5: Stages of assembly: approach, chamfer crossing, one-point contact, two-point
 contact ... 9

2.1: Solid model of final 3-DOF haptic joystick design .. 17

2.2: Final joystick .. 18

2.3: Joystick PD controller .. 19

2.4: Joystick PDF controller with gravity compensator .. 20

2.5: Inverted pendulum .. 21

2.6: Omnidirectional robot .. 22

2.7: Array of IR sensors attached to the robot ... 22

2.8: Complete block diagram with robot hardware ... 23

2.9: Testing feedback law with physical robot .. 25

2.10: IR sensor reading fluctuation in the corner scenario .. 26

2.11: Model of modified Kuka’s Youbot robot in V-REP .. 27

2.12: New block diagram for simulation ... 28

2.13: Circular (left) and rectangular (right) force field around robot 29

2.14: Comparison of circular and rectangular force field around robot 29

2.15: Spring analogy for (a) circular force field (b) rectangular force filed 30

2.16: Circular force field around corners and confined spaces 30

3.1: Setup for determining joystick response ... 31

3.2: Comparison of step response of the physical joystick system to the second order
 approximation ... 33

3.3: Simplified system block diagram ... 33

3.4: Reduced block diagram .. 34

3.5: Root locus ... 35

4.1: Rectangular force field boundary layer .. 37

4.2: Primitives for testing algorithms .. 38

4.3: Virtual springs in action ... 39

4.4: Robot stuck in corner scenario ... 40

4.5: Quadrant law .. 41

4.6: Quadrant law, rectangular quadrant transition ... 42

4.7: Quadrant law, sine smoothening curve .. 43

4.8: Virtual spring forces in Fy law .. 44

4.9: Comparison of theta feedback in quadrant law and Fy law 46

4.10: Complete scenario to test the feedback law ... 46

4.11: Different compliance center configurations ... 49

4.12: A door in the path of robot ... 49

5.1: Bar plot for average number of collisions .. 51

5.2: Bar plot for average time to completion ... 52

5.3: Bar plot for number of collisions, for best subject ... 53

vii

5.4: Bar plot for number of collisions, for worst subject ... 54

5.5: Datasets for analysis ... 56

5.6: Torque feedback vs. time plot for various compliance center configurations 57

5.7: Sample x trajectory vs. time pot with and without torque feedback 58

5.8: Sample y trajectory vs. time plot with and without torque feedback 58

5.9: Sample theta trajectory vs. time plot with and without torque feedback 59

5.10: Fast Fourier transform of y trajectory .. 60

5.11: Fast Fourier transform of y trajectory in frequency rang 0.8 to 2Hz 60

5.12: Power of noise in y trajectory between frequencies 0.8 to 2Hz 61

5.13: Average and standard deviation of noise in trajectories ... 64

5.14: Survey of joystick driving experience in terms of collision avoidance 65

viii

ACKNOWLEDGEMENTS

I would like to thank my advisor, Dr. Stephen Mascaro for his expert guidance,

encouragement, and mentorship. Thanks to all my colleagues and lab mates who have put

up with me during this time.

I would also like to thank Dr. Sanford Meek and Dr. David Johnson for being on

my committee and providing input on my work.

Most of all, I would like to thank my parents for their love, pastience and support.

They set my feet on this path by encouraging me to pursue my interests. Special thanks to

my sisters; without their assistance I would have never made it through.

CHAPTER 1

 INTRODUCTION

1.1 Motivation

The objective of this research is to improve the ability of a human operator to drive

an omnidirectional robot by using omnidirectional force-feedback. Omnidirectional

vehicles offer improved mobility over conventional vehicles and can potentially benefit

people requiring motorized transportation and industries where vehicles must operate in

confined spaces. However, they require more skill to control the additional degrees of

freedom inherent in the vehicle’s design. We hypothesize that by providing force-feedback

to the driver through an omnidirectional joystick, the omnidirectional robot can assist the

driver’s navigation such that targets are reached and collisions with obstacles are avoided

in an intuitive and efficient manner. Omnidirectional vehicles are becoming more common

as their unique mobility advantages are being exploited in an increasing number of

industries. Well-suited for confined spaces, they can be found in places such as loading

docks and warehouses, where space is limited and highly mobile loading equipment is

beneficial. A few examples of current production vehicles used in such scenarios include

the ODV (Omni Directional Vehicle) produced by Hammond Technical Services Inc.[1],

which can be used for a variety of tasks such as loading, towing, and plowing. Due to its

inherent zero turning radius, the driver can maintain any desired orientation while

2

performing a stationary task. A second example is the Airtrax Sidewinder (Figure 1.1), a

large scale forklift built by Vehicle Technologies, Inc. The entire vehicle maneuvers on an

omnidirectional platform, a highly desirable characteristic for a large and mobile loading

vehicle operating in often congested loading areas [2]. Another example is the Kuka

omniMove (Figure 1.2), manufactured by Kuka Robotics, which is a universal transport

vehicle that can lift and move heavy planes [3]. Omni directional vehicles can also be used

in urban search and rescue operations as scouts and in military as autonomous bomb-

sensing vehicles and personal robotic assistants.

 Figure 1.1: Airtrax Sidewinder, manufactured by Vetex.

3

Figure 1.2: A Kuka omniMove omnidirectional universal transport vehicle, manufactured
by Kuka Robotics.

While some tabe suitable for autonomous navigation, it is often required

or desirable for practical tasks that a human operator teleoperate the robot. Several factors

can make the use of an omnidirectional robot difficult, such as embodiment, difficulty of

control, and unintuitiveness of the three degrees of freedom. When operating robotic

vehicles, haptic feedback can greatly increase the amount of information that can be

intuitively conveyed to the user and improve the ability to safely and efficiently navigate a

particular path. However, commercially available force-feedback joysticks almost

exclusively apply force-feedback in the longitudinal and lateral directions only, and in the

case of omnidirectional robots, there may be a separate joystick to control the third degree

of freedom. We hypothesize that control and embodiment of an omnidirectional robot can

be significantly improved by providing intuitive omnidirectional haptic feedback in a

single joystick, such that the degrees of freedom of the joystick directly correspond to the

4

degrees of freedom of the omnidirectional robot.

This thesis offers a novel idea for control of omnidirectional robots that is expected

to improve operator comfort and navigational performance, while allowing the driver to

remain in control. To do this, we propose the use force-feedback. Our ultimate goal is to

experimentally quantify the navigational assistance provided by force-feedback.

This research is the first attempt to use true omnidirectional 3-DOF (degree of

freedom) force-feedback to provide navigational assistance for a human to drive an

omnidirectional vehicle. While 2-DOF force-feedback has been used in a limited capacity

for obstacle avoidance on omnidirectional vehicles, this would be the first research to

include a third rotational axis of force-feedback and to use it to guide a driver along planar

collision-avoiding trajectories with a natural coordination of orientation.

1.2 Omnidirectional Robots

Omnidirectional robots, unlike their conventional counterparts, are able to translate

laterally and rotate while staying in place. Holonomic omnidirectional robots are able to

simultaneously move in their three degrees of freedom in the plane of the floor. In other

words, they are able to simultaneously translate in X, translate in Y, and rotate about the Z

axis. The most prominent method used to produce holonomic omnidirectional motion

involves the use of Mecanum wheels [4]-[11] Figure 1.3(a), or Omni wheels [12] Figure

1.3(b) both are variations of same concept, a wheel comprised of a disk with rolling

elements. In both cases, the configuration of the rolling elements gives the wheels one

active degree of freedom and one passive degree of freedom. Mecanum wheel-based

platforms are robust and mechanically simple compared to other designs and are better at

operating in uneven terrain.

5

(a) (b)

Figure 1.3: Commercially available wheels. (a) Mecanum wheel produced by Nexus-
Robots. (b) Omni wheel developed by Vex Robotics.

The Mecanum wheel platforms are driven by a single motor per wheel and the

desired trajectory is input in the form of a three dimensional velocity vector. The inverse

kinematics given in equation 1.1 convert the desired omni robot velocities into the required

wheel velocities through the use of an inverse Jacobian matrix, which is derived from the

physical dimensions of the omni robot.

 [

𝑤1

𝑤2

𝑤3

𝑤4

] = 𝐽−1 𝑅𝑧
𝑇 (𝜃) [

𝑣𝑥

𝑣𝑦

�̇�

] (1.1)

Here, 𝐽 is the velocity jacobian, 𝑅𝑧(𝜃) is the rotational matrix, 𝑤𝑖 is the velocity of ith

wheel and [𝑣𝑥 𝑣𝑦 �̇�]
𝑇
 is the vehicle velocity.

One other mechanism to produce holonomic omnidirectional motion based on the

works of West and Asada [13] and improved upon by Mascaro [14] is to use spherical balls

as wheels. Their method of supporting the wheels with roller bearings enables each

6

1.3 Haptic Interface

Haptic feedback devices serve to present a user with the physical sensation that

mimics real world forces. These devices are often combined with visual displays to

enhance the user’s awareness of a virtual created world [23][24] or to assist in a specific

task [25][26]. Haptic feedback is being employed in an ever increasing range of operations

wheel to have one active and one passive degree of freedom [15]. The kinematics are

similar to that of Mecanum wheels, and while the resulting motion of the ball-wheeled

vehicle is smoother in comparison to Mecanum-wheeled vehicles, it has more difficulty

navigating rough terrain.

The use of haptic feedback in control devices is becoming increasingly common,

and can be found in familiar technologies like cellular phones, gaming controllers, and

complex precision instruments such as teleoperated surgical tools [16]. There are many

forms of 2- DOF joystick controllers which are commercially available, the most common

ones use potentiometers [16], Hall Effect sensors [18], or optical encoders [19] to measure

user input. While a standard joystick can be used for controlling an omnidirectional robot,

it will typically require a second input device to control the third degree of freedom of

holonomic motion. Integrating the translation and rotational controls for holonomic motion

into a single controller [20] can be accomplished using a joystick with a twist grip [21] as

is found on many joysticks in video game controllers. Gaming joysticks are widely

available, inexpensive and have frequently been employed in omnidirectional wheelchair

research [22]. However, no commercial joysticks offer force-feedback in the rotational

degree of freedom and experience has shown that the gaming joysticks lack the power,

resolution, and fidelity to accurately perform haptic rendering.

7

from education [27][28] to automotive interfaces [29] and is particularly useful in

situations requiring improved human control [30]. Research has shown that haptic

guidance enhances operator motor learning especially in steering oriented tasks. Because

of this, haptic feedback is being used to train young wheelchair-bound children [31] to

drive their wheelchairs. The application of haptic force-feedback in omnidirectional robot

control is a very active field of research [32]-[37], with large amounts of currently active

work dedicated to omnidirectional robots.

Most commercially available haptic devices are expensive, thus, many universities

have started developing their own version of haptic joystick. One of these is the haptic

paddle developed by Provancher and Doxon (Figure 1.4) at the University of Utah. This is

a low-cost 1-DOF haptic paddle which can generate forces up to 47N at the top of the

handle. This design was inspired from the haptic paddles invented at Stanford University

and Rice University [38][39]. All of these use a capstan drive mechanism to transmit forces

generated from motors to the haptic paddle handle and Hall Effect sensors to measure its

position. Another modification to improve functionality to the one DOF haptic paddle was

developed at the John Hopkins University, where they coupled two haptic paddles to form

a 2 DOF haptic device called Snaptic Paddle. There are several other commercially

available low-cost joysticks commonly used in research to drive various kind of robots.

These are essentially manufactured for use in gaming controllers, but have been modified

in-house for experimental research. The Logitech force pro is one these available joysticks

and can provide force-feedback in 2 DOF, but these joysticks cannot produce a high

amount of torque as demanded by various research. Other expensive commercially

available haptic joysticks the Immersion Technologies’ Impulse Stick and Impulse Engine

that generate forces in the range of 8 to 14.5 N.

8

Figure 1.4: The University of Utah Haptic Paddle developed by Provancher and Doxon.

1.4 Compliance Center

One other important concept used in this research is the Compliance Center. In a

classic peg in hole situation the location of compliance center plays an important role for

proper alignment of a peg in a hole and avoids wedging or jamming [40]. The goal of

Whitney’s research was to describe rigid part mating during assembly which essentially is

the assembly of parts that do not substantially deform. The author suggested that there are

four stages of assembly – approach, chamfer crossing, one-point contact, and two-point

contact. These events are shown in Figure 1.5.

The part rotates and translates during mating as there are usually initial lateral and

angular errors between the parts that need to be corrected, hence, compliance support must

be provided for at least one of the two assembling parts both laterally and in rotation. The

compliance center is the point where all the forces are supposed to act so that the vehicle

rotates in the direction that prevents wedging or jamming.

9

Figure 1.5: Stages of assembly: approach, chamfer crossing, one-point contact, two-point
contact.

Whitney proved that the closer the compliance center is to the front of the part, the less

force is required to mate two parts. This concept could also be used in robots to prevent

jamming in confined spaces. So, only the rotational degree of freedom is dependent on the

position of the compliance center, the translation degrees acts as before. In order to explore

this concept further for use with omnidirectional robots, it was implemented on our robot

and multiple tests were done by moving the compliance center at different spots.

1.5 Force-Feedback for Omnidirectional Wheelchairs

The most relevant study regarding this research was done by Urbano and Kitagawa

at Toyohashi University of Technology and Gifu National College of Technology in Japan

[41]. Their paper presented a haptic feedback control of a holonomic omnidirectional

wheelchair with a haptic joystick for operation by disabled or elderly people. They

developed their own holonomic omnidirectional mobile wheelchair for this research,

comprising of three modes such as autonomous, semiautonomous, and power assist modes.

Their wheelchair operates under these modes using ultrasonic and position sensitive device

sensors for extracting environmental information. Their omnidirectional wheelchair has

10

four wheels and all of them are driven by separate individual motors, with each wheel

passively equipped with free rollers at circumference. The velocity of the omnidirectional

wheelchair is the vector sum of velocities of the four Omni wheels. For providing haptic

feedback, they designed a haptic joystick in which the desired velocity and moving

direction of the omnidirectional wheelchair was proportional to the tilt angle and direction

of the joystick. The impedance of the joystick was proportional to the distance to the

obstacle, with a closer obstacle having higher impedance. However their control algorithm

generated torques in only 2 DOF on the joystick, in only the X and Y direction with no

rotating torque.

 𝜏 = Jd �̈� + Dd �̇� + Kd q (1.2)

where 𝜏 and q are the torque and angular position of the joystick’s motor, Kd, Dd and Jd

are the joystick’s desired stiffness, damping, and inertia, respectively.

 Tr - 𝜏 = Ja �̈� + Da �̇� + Ka q (1.3)

where Ka, Da , and Ja are the joystick’s physical stiffness, damping, and inertia respectively.

Also, the desired inertia and damping of the joystick are assumed to be constant, which

makes stiffness the only variable in the setup and is given by the equation:

 𝐾𝑑 = 𝐾𝑜 . (

𝑣

𝑣𝑚𝑎𝑥
 +𝛼

(
𝑟

𝑟𝑚𝑎𝑥
)
2 + 1) (1.4)

where, Ko is the initial value of stiffness, 𝑣 is the omnidirectional wheelchair velocity, 𝑣𝑚𝑎𝑥

The desired dynamics equation of the joystick reference model of control counter-

torque is given by:

This makes the real dynamics of the joystick:

11

is the maximum velocity, 𝑟 is the distance to the obstacle, 𝑟𝑚𝑎𝑥 is maximum measurable

distance of ultrasonic sensors, and 𝛼 is constant which holds the effect of 𝑟 when 𝑣 is zero.

However, after preliminary trials they observed that there were problems of

vibrations on the joystick when the vehicle was very close to obstacles, due to the non-

linear behavior of the joystick. Thus, the authors decided to also vary the joystick’s

damping and inertia along with its stiffness. They chose the optimal values of stiffness,

damping, and inertia coefficients through simulations. They then conducted simulations to

test the effectiveness of their feedback algorithms and concluded that with the appropriate

values of Kd, Dd, and Jd a smooth haptic counter-torque can be generated. However, all of

their experiments were with feedback in just 1 DOF of the joystick with no evidence of

simulation being conducted in haptic feedback in multiple DOF of the joystick.

This work was further extended by another group at Toyohashi University of

Technology in Japan [42]. It is mostly based on a navigation guidance system for an

omnidirectional wheelchair to navigate it through narrow spaces, such as elevator doors,

using a haptic joystick. For this research, the authors used the same omnidirectional

wheelchair that was used by previous groups at the same university. A similar experimental

setup was used with two LIDAR sensors mounted at the front and back of the wheelchair

to obtain information on the surroundings. For implementation purposes they considered

the wheelchair as an eclipse and then generated another area called the recognition area,

which is the area between two lines that are parallel to the path of the wheelchair motion

and tangent to the eclipse vehicle area.

They designed a custom joystick for this purpose, which has one motor installed in

both the x and y directions, which helps in generating haptic feedback in 2 DOF with a

virtual spring-damper characteristic. The impedance of the joystick is based on the distance

12

to the obstacle and wheelchair’s linear velocity. The resultant feedback force can be

represented by the equation:

 𝜏 = 𝐷�̇� + 𝐾𝑞 (1.5)

Here 𝜏 is the motor torque, K is the stiffness of the virtual spring, D is the virtual

viscous damping coefficient, and q is the tilting angle of the joystick from the zero position.

The virtual stiffness of the joystick is found by equation 1.4, where Ko is the initial value

of stiffness, 𝑣 is the omnidirectional wheelchair velocity, 𝑣𝑚𝑎𝑥 is the maximum velocity, 𝑟

is the distance to the obstacle, 𝑟𝑚𝑎𝑥 is maximum distance in the effective range measured

my LIDAR sensors, and 𝛼 is a constant which depends on operator’s characteristic of

handling the wheelchair with the joystick. The velocity input is calculated by the position

measured by the potentiometers mounted on the joystick in both directions, which is then

converted to the velocity using a constant gain. The author’s results seems promising but

have haptic feedback in only 2 DOF, also there is no evidence of human trials done to

check the effectiveness of their algorithm. The tests which were done by the author are

very basic with only one obstacle in front of the robot and incudes no complex situations

which were initially proposed in the research.

Another group at Toyohashi University of Technology in Japan [43], extended this

work further. They presented a novel operational assistant system using laser scanning

sensors in the power assist system using the handle with a 6-DOF force/torque sensor in

order to induce operator simultaneously evading obstacle. They introduced a power assist

system for the omnidirectional wheelchair in which a handle for power assist control is

attached on the wheelchair with the 6-DOF force/torque sensor, which detects the added

force and torque. This added force is transformed into the velocity reference by the first-

order lag controller for power assist:

13

 [
𝑣𝑥

𝑣𝑦

𝑤
] =

[

𝐾𝑣𝑥

𝑇𝑣𝑥 𝑠 + 1
0 0

0
𝐾𝑣𝑦

𝑇𝑣𝑦 𝑠 + 1
0

0 0
𝐾𝑤

𝑇𝑤 𝑠 + 1

]

 [
𝑓𝑥
𝑓𝑦
𝑚

] (𝟏. 𝟔)

where [𝑣𝑥, 𝑣𝑦, 𝑤] are the reference velocity of the omnidirectional wheelchair, [𝑓𝑥, 𝑓𝑦, 𝑚]

are the added forces to the handle by operator, [𝐾𝑣𝑥, 𝐾𝑣𝑦, 𝐾𝑤] are the gains of the power

assist controller to transform the added forces into reference velocity, and [𝑇𝑣𝑥 , 𝑇𝑣𝑦 , 𝑇𝑤]

is a gain parameter which depends on skill level of operator. They used two LIDAR sensors

to map the environment on the back and sides of wheelchair, but not on the front side, due

to the placement of sensors and the assumption that the operator takes account obstacles

which are in front of the wheelchair. The operator’s input force and torque is restricted by

𝐾𝑣𝑥 and 𝐾𝑣𝑦, which also restricts the motion of the wheelchair. Another parameter is

introduced in the algorithm called collision risk, which is essentially the risk of a collision

on the path of robot and is given by the following equation:

 𝑘𝑖 = 1 − (
𝑟𝑚𝑖𝑛

𝑟
)
𝑘

 (𝟏. 𝟕)

𝑘 = (𝑣𝑖𝑚𝑎𝑥 − 𝑣𝑖𝛼)𝛽, 𝑖 = 𝑥, 𝑦

Here, r is the distance to the nearest obstacle on the path and 𝑣𝑖 is the velocity input of the

wheelchair. 𝛼 and 𝛽 are constants determined by the operability of the omnidirectional

wheelchair. Then, they performed some brief simulation testing to check the effectiveness

of the algorithm. In their simulation, the wheelchair advances towards a faraway wall with

certain amount of force. The result shows that when the operator tries to move the

wheelchair in the direction of the obstacles, the wheelchair decreases its speed by reducing

14

the power gain.

One of the other more relevant works done in this field is by Fattouh, Anas,

Mhamed Sahnoun, and Guy Bourhis [44]. They evaluated the use of a force-feedback

joystick for a powered wheelchair. The joystick they used was a Microsoft Sidewinder

force-feedback joystick and the factor used to determine the feedback force of the joystick

were the displacement vectors of the 16 sensors to the nearest obstacles. The authors first

tested their work in a virtual environment using a real time computer simulation, that give

them possibility for testing different control algorithms, different force-feedback laws for

the joystick and, at the end, different environment configurations. They then tested the final

algorithm on an actual wheelchair equipped with sixteen ultrasonic sensors. The human

operator applied a force on the input joystick in order to drive the wheelchair to the desired

position. The joystick position is interpreted as the desired speed of the wheelchair and is

then converted to the appropriate wheel velocities. The ultrasonic sensors read the direct

distance to the obstacle in their detection range and an appropriate feedback force is

generated on the joystick using the equations below:

 𝐹 = ∑𝛼𝑖𝑓𝑖

16

𝑖=1

 (𝟏. 𝟖)

Here, 𝛼𝑖 is a constant weight, 𝑓𝑖 is the feedback force for the ith sensor which is determined

by the equation:

 𝑓𝑖 =
1

𝑑𝑖
 𝑒𝑗 (𝜋+𝜃𝑖) (𝟏. 𝟗)

where 𝜃𝑖 is the angle of the vector between the ith reading from the sensor and the obstacle

and 𝑑𝑖 is the magnitude of that vector. The test was performed on 7 subjects and the

performance of each subject was evaluated based on of the number of collisions with

15

obstacles and the time needed to complete the run and the total travelled distance. The

mean of the results was calculated for analysis. The trial results show fewer collisions with

the force-feedback algorithm and no significant difference in terms of distance travelled

and the time to complete between the two driving modes; however, the wheelchair

trajectory is smoother with the proposed force-feedback algorithm. They also noticed that

the factors used for evaluation are not independent, as the time needed to complete a run

depends on the number of collisions. In their future work, they propose to use some

independent evaluation factor for better qualitative analysis. They also propose to test the

above algorithm on an actual wheelchair on persons with and without disabilities. Although

the collision results were promising the authors failed to provide any metric for the

smoothness of trajectory of the wheelchair with and without force-feedback.

The limitation of all the above research was that none of them used any actual 3-

DOF force-feedback. All the work in this area has been done with only 2-DOF haptic

joysticks. The research in this thesis is the first to implement 3-DOF haptic feedback on a

joystick for navigation of omnidirectional vehicles.

CHAPTER 2

EXPERIMENTAL SETUP

2.1 Joystick Design

In order to intuitively control the additional degrees of freedom inherent in

omnidirectional vehicle’s design, an omnidirectional haptic joystick is required. Due to the

lack of commercially available 3 DOF haptic joysticks, it was decided to manufacture a

custom-built haptic joystick with 3 DOF feedback. This haptic joystick was based on the

joystick designed by Mascaro and Christensen at University of Utah [46], modifying it

with an improved gear ratio and more powerful motors to generate higher torque. In this

joystick, all the desired inputs are integrated in one device to control all 3 degrees of

freedom of the omnidirectional robot simultaneously. The omnidirectional velocities are

determined by the angular displacement of all three motors on the joystick. The angular

displacements on the joystick are mapped to the corresponding linear and angular velocities

of the omnidirectional robot.

The final joystick design was a modified version of the haptic joystick designed at

the Bio Robotics lab, University of Utah, which in itself was a derivative of the 1-DOF

haptic paddle designed by Provancher and Doxon at University of Utah, see Figure 2.1.

This joystick was based on the capstan drive mechanism which helps with backlash-free

driving, low slip, and smooth operation.

17

 Figure: 2.1: Solid model of final 3-DOF haptic joystick design.

Each axis of the joystick is driven by a direct current (DC) motor with a 15:1 gear

ratio capstan drive to provide necessary torque required to provide force-feedback at the

joystick handle. This joystick was based on the capstan drive mechanism which helps with

backlash free driving, low slip, and smooth operation. Each axis of the joystick is driven

by a DC motor with a 15:1 gear ratio capstan drive to provide necessary torque required

to provide force-feedback at the joystick handle. All the motors have attached

incremental optical encoders for measuring the angular position of the joystick, which gets

mapped to the linear and angular velocities of the robot. The motors used for this

joystick are Maxon 310007 DC motors with a nominal torque of 85.6 mNm at the motor

shaft, driven by AMC 30A8 servo amplifiers in current mode. Each motor is attached

18

A capstan drive mechanism was used to transmit torque from the motor shaft to the

joystick handle, with capstan cable tensioned enough to maintain sufficient traction

between capstan pulley and cable for rapid response to input torque. A nylon-coated

stainless steel cable was used for the drive to reduce the wear and tear of cable and the

pulley. The final finished haptic joystick used for the experiments is shown in Figure 2.2.

 Figure 2.2: Final joystick.

with a U.S. Digital E4P encoder with 360 counts per revolution to read the angular

position of the joystick. This joystick can produce a force of 13.5 N at the center of

joystick handle in both the X and Y axis and a rotational torque of 4.4 Nm.

Figure 2.3: Joystick PD controller.

19		
	
	

2.2 Joystick Control System
	

As mentioned in the previous section, the above joystick has absolute incremental

encoders to determine the tilt angle in the x and y directions and rotation in . But the

joystick lacks any counterweights or springs to bring itself to the zero position or starting

position. This makes it very hard to drive in 3 degrees of freedom because at any point in

time the user has to provide the velocity input to the robot in all degrees, as well as bring

the joystick at center to stop the robot or stop actuation in that direction. The joystick

acts as a 2-DOF inverted pendulum as the handle of the joystick protrudes above the axes

of robot. In order to let the joystick bring itself back to its home position, a

proportional-derivative (PD) controller was implemented as shown in the Figure 2.3.

is the angular position of the joystick in all three degrees of freedom [];

where e is the error between zero position and the actual position of joystick. The P

and D gains for the controller are	selected using an iterative tuning process. Too high of

a P gain makes the joystick too stiff to be used as a haptic feedback device and too low of

a gain means the joystick will fail to bring itself to the zero position. An integral controller

was not used as it would have resulted in an accumulated integral error over the time, and

thus, a huge force-feedback when the joystick was maintained at a certain angular position

corresponding to a velocity for long duration of time.

	

𝜓𝑥, 𝜓𝑦 , 𝜓𝜃

𝜓

𝜃

20

This problem was overcome using a gravity compensator, which reduced the

effective PD gains required to bring the joystick to the zero position. This compensator

counteracts toques due to gravity by treating all the eccentrically positioned movable

components as a point load and calculates the effective torque due to gravity. Once this

torque in calculated it is fed back to the joystick to compensate for the gravity. The

modified control diagram with gravity compensation is shown in Figure 2.4, where 𝜏′ is

the gravity-compensated torque. The gravity compensator was implemented in only the x

and y directions as the rotation handle have all the components eccentric to its axis. The

compensation was calculated by equation 2.1.

𝜏 = 𝑚𝑔𝑟 𝑠𝑖𝑛(𝜓) (2.1)

As shown in Figure 2.5, m is the total mass of the motor, capstan mechanism, and

joystick handle, 𝜓 is the tilt angle from the center of joystick in that axis, r is the moment

arm, and g is the acceleration due to gravity.

 Figure 2.4: Joystick PD controller with gravity compensator.

21

Figure 2.5: Inverted pendulum.

Implementing the PD controller with gravity compensation and a low value of PD

gains successfully let the joystick bring itself to its zero position when no disturbance from

the user’s hand is provided. Gravity compensation eliminates the nonlinear response of the

joystick due to gravity and thus the system can be treated as a linear system. The angular

position of the joystick from the encoders is read by an Arduino microcontroller connected

to the joystick using the quadrature output of the optical encoders. This microcontroller

also provides the pulse-width-modulation (PWM) commands to the servo amplifier

connected to the joystick motors to generate necessary force-feedback as determined by

the feedback algorithm.

2.3 Omnidirectional Robot Hardware

The initial testing was done on an omnidirectional robot with Mecanum wheels,

this robot is made by Nexus Robots (Figure 2.6). It has four DC Faulhaber motors with a

voltage rating of 12 V and optical encoders to read the wheel position. The motors are

controlled by motor driver boards provided by Nexus, and an Arduino microcontroller. 6

infrared sensors (IR) sensors were mounted on the robot to read the distance to the

obstacles, as shown in Figure 2.7.

22

 Figure 2.6: Omnidirectional robot.

Figure 2.7: Array of IR sensors attached to the robot.

23

 [

𝑤1

𝑤2

𝑤3

𝑤4

] = 𝐽−1 𝑅𝑧
𝑇 (𝜃) [

𝑣𝑥

𝑣𝑦

�̇�

] (2.2)

Here, 𝑱 is the Velocity Jacobian, 𝑅𝑧(𝜃) is the Rotational Matrix, 𝑤𝑖 is the velocity of ith

wheel, and [𝑣𝑥 𝑣𝑦 �̇�]
𝑇
 is the vehicle velocity. 𝐽−1 is given by the equation 2.3:

 𝐽−1 =
1

𝑅𝑤
[

1 −1 −𝑙
1 1 −𝑙

−1 1 −𝑙
−1 −1 −𝑙

] (2.3)

 Here 𝑙 is the length of the vehicle and 𝑅𝑤 is the radius of the Mecanum wheel. The

omnidirectional robot velocity was maintained using a PID controller, the complete control

diagram is shown in Figure 2.8. Here 𝛹 is the angular position of the joystick [𝜓𝑥 , 𝜓𝑦, 𝜓𝜃]

and 𝑘𝑣 is the gain to convert angular position of joystick to the X, Y, and angular velocities

of the robot.

Figure 2.8: Complete block diagram with robot hardware.

	
The omnidirectional wheel velocity is calculated from the joysticks angular positions

using the inverse kinematics given in equation 2.2.

24

̇

𝐾 = [
0 −𝑘 𝑠𝑖𝑛𝜃 −𝑘 −𝑘 𝑘 𝑠𝑖𝑛𝜃 0

−𝑘 −𝐾 𝑐𝑜𝑠θ 0 0 𝑘 𝑐𝑜𝑠θ 𝑘
0 𝑎𝑘 𝑐𝑜𝑠𝜃 − 𝑏𝑘 𝑠𝑖𝑛𝜃 0 0 −𝑎𝑘 𝑐𝑜𝑠𝜃 + 𝑏𝑘 𝑠𝑖𝑛𝜃 0

] (2.4)

𝐵 = [
0 −𝑑 𝑠𝑖𝑛𝜃 −𝑑 −𝑑 𝑑 𝑠𝑖𝑛𝜃 0

−𝑑 −𝑑 𝑐𝑜𝑠θ 0 0 𝑑 𝑐𝑜𝑠θ 𝑑
0 𝑎𝑑 𝐶𝑜𝑠𝜃 − 𝑏𝑑 𝑆𝑖𝑛𝜃 0 0 −𝑎𝑑 𝐶𝑜𝑠𝜃 + 𝑏𝑑 𝑆𝑖𝑛𝜃 0

] (2.5)

[
𝐹𝑥

𝐹𝑦

𝜏𝜃

] = 𝐵𝑥�̇� + 𝐾𝑥𝑠 (2.6)

Here k is the spring constant, d is the damping constant, 𝑥𝑠 is the 6 x 1 array of distance

measured from IR sensor, and 𝑥�̇� is a 6 x 1 array of relative velocities between the robot

and the obstacle measured from the wheel velocities from the encoders. The feedback is

also proportional to the velocity of robot, which provides feedback strongly when

approaching obstacles rapidly and weakly when approaching obstacles slowly. The

readings from IR range sensors were filtered by first averaging values and then

implementing a low pass filter to further remove noise from the sensors. This algorithm

was tested with the robot and the joystick in a real time scenario, shown in Figure 2.9. In

this scenario, the user operates the robot from the start of the tunnel, traverses to the end,

rotate 180°, and then comes back to the start position with force-feedback. After testing it

was realized that there are vibrations in the joystick due to force-feedback caused by the

discreteness of the force field, as there were only 6 IR range sensors to provide distance.

The Jacobian inverse transforms these velocities into Φ̇ , the desired motor

velocities of robot, Φ is the actual wheel positions of robot and Φ is the desired position.

 is the wheel position error which is to be penalized by the PID controller. The

feedback law is a modified form of potential field which provides feedback as a virtual

spring and virtual damper setup and is given by the equation 2.6.	
	

𝑑

𝑑

𝑒

25

 Figure 2.9: Testing feedback law with physical robot.

This vibration was amplified on the corners as the distance values switched from

high to low or vice-versa in a matter of milliseconds, as illustrated in Figure 2.10. Also,

since the sensors were in close proximity to each other, they caused interference with each

other. This error is amplified as a result of the P gains used to generate force-feedback. The

user misinterprets these vibrations as force-feedback, causing the control of robot to not be

smooth and intuitive. Thus, it was realized that in order to generate smoother force-

feedback, more sensors in closer proximity to generate more data points in the force field

were required. However, this would also increase interference between the sensors, and

thus, more vibrations on the joystick. It was obvious that some other sensor was needed

which could provide more data points.

26

Figure 2.10: IR sensor reading fluctuation in the corner scenario.

2.4 Omnidirectional Robot Simulation

In order to get multiple data points of the obstacle distances, it was decided to use

LIDAR sensors as they provide a complete environment scan with angular resolution as

low as 0.25° and a scanning rate of 40 – 50 Hz. This would provide an almost continuous

force field so as to generate fewer vibrations. However good LIDAR sensors are expensive,

costing around $ 2500 to 5000 dollars per sensor, and at least two sensors were required to

cover the full 360° environment. Also, processing that much data would require a higher

quality onboard processor. In order to avoid such an investment, it was decided to move to

simulations instead of using a real omnidirectional robot. There are many simulation

software packages which provide real-time simulation for various robotic platforms.

Virtual Robot Experimentation Platform (V-REP) made by Coppelia Robotics was used.

This is a commercially available simulation software, which is free and open source for

educational purposes. V-REP was used in ROS (Robot Operating System) on a computer

running Ubuntu 14.04. The joystick is connected to the Arduino microcontroller as before

with the Arduino sending the joystick’s angular position to ROS using a ROS node which

communicates the data to the V-REP simulation. For the V-REP model of the

omnidirectional robot, we modified a preexisting Kuka’s Youbot robot (Figure 2.11).

27

Figure 2.11: Model of modified Kuka’s Youbot robot in V-REP.

The existing code which we used to run the real robot was modified to suit the robot

in the simulation platform. Conceptually only the robot’s velocity Jacobian was changed

for the new robot model, as the length of Kuka’s Youbot is bigger than the Nexus

omnidirectional robot that was used before. The control law was changed accordingly, as

there was no need of a PID controller to control the robot’s velocity in the simulation. The

new block diagram is shown below in Figure 2.12. It should be noted that only the robot

side of control is changed for simulation, while the joystick’s control is the same as before

with no change whatsoever.

28

 Figure 2.12: New block diagram for simulation.

A Hukoyu LIDAR sensor was placed at the center of the robot to create a uniform

force field around the robot. The program script of the LIDAR sensor was modified to

completely scan the 360° environment, and the angular resolution was increased to 2.8° to

save computation time. The data obtained from the LIDAR Sensor are used to generate a

circular force field originating at the center of robot, as shown in Figure 2.13 (left). A few

primitive test scenarios were created in the simulation, and it was observed that the circular

force field was creating instability in confined spaces as there was always some part of the

force field which was in contact with the wall, see Figure 2.14. The spring force generated

by a circular force field are not uniform with the rectangular footprint of robot, as the

distance from the robot to the edge of the force field is not uniform.

Figure 2.15(a) shows the spring analogy of the force field. The spring force is at a

maximum if there is any obstacle near the center axis of robot and at a minimum around

the corner of the robot given the same amount of deflection. This created spikes in the

force-feedback on the joystick. This effect was magnified on corners or narrow passages

and created instability in the joystick, see Figure 2.16. This was overcome by creating a

29

Figure 2.13: Circular (left) and rectangular (right) force field around robot.

 Figure 2.14: Comparison of circular and rectangular force field around robot.

rectangle force field around the robot, as shown in Figure 2.13 (right). As illustrated in the

spring analogy of rectangular force field in Figure 2.15(b), all the springs provide uniform

force now regardless of their position. This eliminated the spikes in the force-feedback on

the joystick.

30

(a) (b)

 Figure 2.15: Spring analogy for (a) circular force field (b) rectangular force field.

 Figure 2.16: Circular force field around corners and confined spaces.

CHAPTER 3

STABILITY ANALYSIS

3.1 Open Loop Transfer Function

 In order to determine the stability of the control system given in Figure 2.12 using

classical control techniques, it had to be reduced to a single-input single-output system.

Since, for these experiments, we are using a simulation instead of a real robot, the closed

loop dynamics of the robot can be treated as unity, which simplifies the block diagram. It

is assumed that the response in the x and y directions will be symmetric and with gravity

compensation. The response of the joystick can be modelled as a second-order linear

system. Other nonlinearities must be neglected in order to generate an approximate linear

model of the joystick system. The closed loop response of the joystick system to a step

input was used to find the transfer function of the joystick and this response was generated

only by using a P controller to close the loop. The block diagram in Figure 3.1 illustrates

the setup used for step response.

 Figure 3.1: Setup for determining joystick response.

32

𝜓

𝜏
=

𝜔𝑛
2

𝑠2 + 2𝜁𝜔𝑛 𝑠 + 𝜔𝑛
2

 (𝟑. 𝟏)

The system is treated as follows:

𝜏 = 𝐼�̈� + 𝐵�̇� + 𝐾𝜓

�̇�

𝜏
=

1

𝑠(𝐼𝑆 + 𝐵)

𝜓

𝜏
=

1

𝐼𝑠2 + 𝐵𝑠 + 𝐾

Substituting the real value of P in equation 3.1 and calculating 𝜁 𝑎𝑛𝑑 𝜔𝑛 from the step

response of joystick, the transfer function of the joystick was found.

The model of the joystick was derived as the following:

�̇�

𝜏
=

899

(𝑠 + 17.20)𝑠
 (𝟑. 𝟐)

In order to validate this model, the response of the transfer function is plotted with the

response of the physical system (see Figure 3.2). Even though the physical system is not a

perfect match to the derived transfer function, it is sufficient for the root locus stability

analysis. Once the model of joystick was derived, the overall block diagram in Figure 2.12

needs to be simplified in order to get an open loop transfer function for root locus stability

analysis of the complete system. Figure 3.3 is a simplified version of the block diagram of

the complete system, where the robot dynamics is considered as unity because it is being

implemented in simulation rather than hardware.

	
This response was used to find the second order characteristic equation that

	
approximates the joystick response:

33

Figure 3.2: Comparison of step response of the physical joystick system to the second
order approximation.

 Figure 3.3 Simplified system block diagram.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (Seconds)

A
n

g
u

la
r

P
o

s
it

io
n

 (
n

o
rm

a
li
z
e
d

)

Response of Joystick and a Second Order Approximation to Step Input

Joystick Response

2nd order Approximation

34

̇

𝑌(𝑆)

𝑋(𝑆)
 =

101.2 (𝑠 + 6.25)

𝑠 (𝑠2 + 54.95𝑆𝑠 + 629.3)
 (3.3)

The feedback law adds a zero to the system at K’p / K’d = - 6.25. The root locus of

the complete system is shown in Figure 3.5. The closed loop poles are marked by a cross

in red on the root locus plot. Given the current position of closed loop poles, higher

damping ratio (0.8 to 0.9) and faster settling time is expected. If the poles are moved up

further, the damping ratio will reduce, which would result in more oscillations on the

joystick. It would also result in more overshoot, which is undesirable as that would make

joystick oscillate between positive and negative direction and ultimately the robot would

also oscillate back and forth. If the poles are moved to right, that would result in slower

settling time and if they moved to left, it would result in much faster settling time.

Figure 3.4 Reduced block diagram.

	
Here, Kp, Kd are the PD gains for returning the joystick to the zero position, Kp’,

Kd’ are the force-feedback gains, I is the inertia, B is the damping of the joystick hardware,

𝜏 is the input torque to joystick, 𝜙 is the velocity command for robot, and 𝜙 is the

desired robot position. By using block diagram reduction techniques this is further

reduced to the minimal version required for root locus, see Figure 3.4. The open loop

transfer function with respect to the feedback law after substituting all the values is given

by:

35

 Figure 3.5 Root locus.

-40 -30 -20 -10 0 10
-80

-60

-40

-20

0

20

40

60

80

Real Axis (seconds
-1

)

Im
a
g
in

a
ry

 A
x
is

 (
s
e
c
o
n
d
s-1

)

Root Locus

CHAPTER 4

HAPTIC FEEDBACK FOR COLLISION AVOIDANCE

4.1 Feedback Objective and Force Field

 The key idea is to assist the driver’s navigation such that targets are reached and

collisions with obstacles are avoided in an intuitive and efficient manner. The joystick

should exert 3 degrees of freedom force-feedback on the user’s hand in the direction

opposite to the obstacle. All 3 degrees are important as the user has to run the robot from a

first person view, which is usually the case in real time scenarios like rescue missions where

the only view is from a camera mounted on the robot. It is hard to navigate through

obstacles without collisions when the user cannot see them in the first person view For

example, when taking a turn, the back of the robot might hit a wall. There also might be

multiple obstacles through which the robot has to navigate, and only few of them might be

visible to the user through the camera.

To improve the quality of feedback in confined spaces, the force field was made

rectangular as discussed in Chapter 2. A force field boundary layer was created around the

robot, and for initial trials the boundary layer was kept same in the x and y directions. Later

after multiple experiments, an optimal boundary layer thickness was tuned and the

boundary was kept larger in the x direction and smaller in the y direction to reduce joystick

oscillations in the y direction during navigation in narrow spaces (see Figure 4.1).

37

 Figure 4.1: Rectangular force field boundary layer.

Various algorithms for implementing force-feedback in 3 DOF were proposed, and

their effectiveness was measured using the primitive test scenarios as shown in Figure 4.2.

These 3 different scenarios are considered in experiments for their complexity, and are

representative of situations where robots have a hard time navigating. In scenario (a) the

user has to drive the robot to the end of a tunnel then turn around and return to the start

position, while in (b) and (c), the user has to exit at other end of the tunnel.

After driving the robot through these primitives, it was decided to implement the

feedback law as a virtual spring-damper system. The virtual damping was introduced to

dampen the sudden feedback due to the spring force as it was creating very quick motions

in the joystick, resulting in discomfort to the user. The virtual damping encourages slower

velocities when approaching obstacles whereas a virtual spring generates feedback so as to

maintain a minimum distance between robot and obstacle. Three different force-feedback

algorithms are discussed in next subsequent subsections, and these algorithms are tested in

the above primitives to select the best one.

38

(a) (b) (c)

 Figure 4.2: Primitives for testing algorithms.

4.2 Force-Feedback as Natural Spring and Damper

This is a basic algorithm representing the natural behavior of springs and dampers,

so that when an obstacle comes in the vicinity of the force field, the spring pushes the robot

in the opposite direction. Each ray of LIDAR is split into spring’s x and y components as

shown in Figure 4.3. The force-feedback on joystick was generated according to the

following equations:

 𝑓𝑥𝑖 = 𝑘𝑥 . (𝑥0 − 𝑥𝑖) (𝟒. 𝟏)

 𝑓𝑦𝑖 = 𝑘𝑦 . (𝑦0 − 𝑦𝑖) (𝟒. 𝟐)

 𝑓𝑥 = 𝑏𝑥 . 𝑣𝑥 + (∑𝑓𝑥𝑖

𝑛

𝑖=1

) 𝑛⁄ (𝟒. 𝟑)

 𝑓𝑦 = 𝑏𝑦 . 𝑣𝑦 + (∑𝑓𝑦𝑖

𝑛

𝑖=1

) 𝑛 (𝟒. 𝟒)⁄

 𝜏 = 𝑏𝜏 . 𝜔 + 𝑘𝜏 . (∑𝑓𝑥𝑖

𝑛

𝑖=1

. 𝑟𝑦𝑖 + ∑𝑓𝑦𝑖

𝑛

𝑖=1

. 𝑟𝑥𝑖) 𝑛 (𝟒. 𝟓)⁄

39

 Figure 4.3: Virtual springs in action.

Here, 𝑓𝑥 and 𝑓𝑦 are the respective cumulative forces in the x and y directions, 𝜏 is

the effective torque, 𝑣𝑥 , 𝑣𝑦 , and, 𝜔 are the linear and rotational velocities of the

omnidirectional robot, 𝑏𝑥 , 𝑏𝑦 , 𝑏𝜏, 𝑘𝑥 , 𝑘𝑦 , 𝑘𝜏 are the virtual damping and spring

coefficients in the respective degrees of freedom, 𝑥0 and 𝑦0 are the boundary layer

thicknesses, 𝑟𝑥𝑖 and 𝑟𝑦𝑖 are the moment arms to the point where each spring is acting, and

n is the actual number of LIDAR rays detecting obstacle. The effective rotational feedback

is the torque exerted by each spring in the x and y directions multiplied by a gain. The

force/torque values 𝑓𝑥, 𝑓𝑦, and 𝜏 are fed to the joystick to generate haptic feedback so as

to avoid collision of the robot with obstacles, and these feedback values are updated after

every LIDAR scan.

40

The problem with this algorithm is that in corners, an equal and opposite torque is

generated from the springs in the x and y directions, such that the net torque doesn’t assist

the user to take the turn, instead pushing the joystick in the wrong direction, as illustrated

in Figure 4.4. Here the x component of the spring applies a torque (𝑓𝑥𝑖 x 𝑟𝑦𝑖) in the

clockwise direction, but the spring component in the y direction applies a torque of (𝑓𝑦𝑖 x

𝑟𝑥𝑖) in the counterclockwise direction, counteracting each other. However in most cases

𝑓𝑥𝑖 is much larger than 𝑓𝑦𝑖, forcing the robot to turn clockwise, which is counterproductive

to the user, who is trying to rotate the joystick/robot counter clockwise to avoid collisions.

This creates confusion and the robot gets stuck in that corner and creates a counter-intuitive

user experience. Therefore, some modifications were required in the feedback algorithm

so as to make the joystick assist the user in rotating the robot around corners.

 Figure 4.4: Robot stuck in corner scenario.

41

4.3 Force-Feedback as Quadrant Approach

Due to the limitations of the natural spring and damper approach in corners a new

feedback law was introduced, which was named the Quadrant Law. In this approach the

robot’s force field is divided into Quadrants as shown in Figure 4.5. In this case, 𝐹𝑥 and 𝐹𝑦

are calculated as before, but the torque is calculated with a different approach. A resultant

force was derived from the x and y components of the spring force, and the resultant force

was calculated by using the equation 4.6.

 𝑓𝑟 = √((∑𝑓𝑥𝑖

𝑛

𝑖=1

)

2

 + (∑𝑓𝑦𝑖

𝑛

𝑖=1

)

2

) 𝑛2⁄ (𝟒. 𝟔)

where 𝑓𝑟 is the magnitude of resultant force and 𝑘𝜏 is the torque gain.

 Figure 4.5: Quadrant law.

42

The torque is calculated using equation 4.7:

 𝜏 = 𝑏𝜏 . 𝜔 + (𝑓 𝐱 𝑟𝑎) (4.7)

where 𝑟𝑎 is an imaginary moment arm across which the torque is calculated. For

experiments, different values of 𝑟𝑎 were tried and the best feedback was achieved when it

was 10 cm away from center.

The direction of the torque was calculated using the quadrants in which the resultant

force acts: if the resultant force is in quadrant I or III, commands are given to generate

counter clockwise torque, while if the resultant is in quadrant II or IV, clockwise torque is

generated. This approach generated desired trajectories as needed to drive robot out of the

corner situations. However, it was realized that since only the direction of the torque was

changed when there was a quadrant jump and the magnitude was constant as the moment

arm was constant, it was creating a discontinuity in feedback as the feedback abruptly

changes direction while maintaining the same magnitude (see Figure 4.6).

 Figure 4.6: Quadrant law, rectangular quadrant transition.

-180 -135 -90 -45 0 45 90 135 180

-1

0

1

Quadrant Angle

F
e
e
d
b
a
c
k
 M

u
lt
ip

lie
r

43

This caused a sudden jerk on the joystick handle that was hard for the user to

interpret. In order to get rid of this discontinuity, we implemented a smoothing curve across

the theta feedback. This smoothing factor was a sine curve multiplied with the magnitude

of the theta feedback, where the direction is determined the same as before on the basis of

quadrants. This gave us a smooth transition in between quadrants (see Figure 4.7). This

made the magnitude a maximum at the -45°, -135°, 45°, 135° angles, as the smoothing

curve was sin(2𝜃), and a minimum near the quadrant boundaries. This smoothed out the

jerkiness in the joystick during the transition between quadrants. However, after multiple

tests in the primitives discussed in Figure 4.2, and after plotting the theta feedback data vs.

time, it was found that there was still some undesirable behavior occurring in the torque

feedback. Although the magnitude was small, the change in direction caused some

counterintuitive behavior on the joystick. The plots for this law are discussed in the next

subsection for comparison with the new feedback law.

 Figure 4.7: Quadrant law, sine smoothening curve.

-180 -135 -90 -45 0 45 90 135 180

-1

0

1

Quadrant Angle

F
e
e
d
b
a
c
k
 M

u
lt
ip

lie
r

44

4.4 Force-Feedback as Component Approach (Fy Law)

This approach is derived from the two laws, the natural spring and damper feedback

law, and the quadrant law. In this approach the Fx and Fy forces to the joystick are calculated

as in the before two approaches (see equations 4.3 and 4.4), but the torque is calculated in

a different manner. In the quadrant approach, it was noted that there was a jerk while there

was a transition of quadrants, and in the natural spring and damper approach the robot was

being pushed back by the virtual spring in the x direction, so a new law was derived based

on what was learned from these two. It was proposed that the torque will only be generated

by the virtual springs in the y direction and the torque generated by virtual springs in x

direction will be zero (see Figure 4.8).

 Figure 4.8: Virtual spring forces in Fy law.

45

 Thus, the modified feedback law for rotational torque on joystick is:

 𝜏 = 𝑏𝜏 . 𝜔 + 𝑘𝜏 . (∑ 𝑓𝑦𝑖

𝑛

𝑖=1

. 𝑟𝑥𝑖) 𝑛 (𝟒. 𝟖)⁄

Here, 𝜏 is the effective torque, 𝜔 is the rotational velocity of the omnidirectional

robot, 𝑏𝜏 𝑎𝑛𝑑 𝑘𝜏 are the virtual damping and spring coefficients in the rotation, 𝑟𝑥𝑖 is the

moment arm to the point where each spring is acting, and n is the actual number of LIDAR

rays detecting obstacles. The effective rotational feedback is the torque exerted by the

spring’s y direction multiplied by a gain. The 𝑓𝑥, 𝑓𝑦, and 𝜏 values are fed to the joystick to

generate haptic feedback so as to avoid collisions of the robot with obstacles, and these

feedback values are updated after every LIDAR scan. This approach and the corresponding

feedback law was named the Fy Law, as only Fy forces are responsible for generating

rotational moments.

This algorithm was also tested on the primitives in the Figure 4.2. and it was

observed that the Fy law did not make unnecessary transitions in between quadrants and

has a smooth feedback law without the need of any smoothing curve. This can be observed

in Figure 4.9 at around 7.5 seconds where the quadrant laws make a transition in positive

feedback which results in a momentarily clockwise feedback on the joystick while the Fy

law never makes any transition to positive feedback.

4.5 Experiments

 For testing the functionality of the feedback law given in section 4.4 (Fy law), a

complete three-dimensional scenario was created in V-REP to run the omnidirectional

robot (see Figure 4.10). This simulation was based on the primitives (Figure 4.2) used

 Figure 4.9: Comparison of theta feedback in quadrant law and Fy law.

 Figure 4.10: Complete scenario to test the feedback law.

0 2 4 6 8 10 12 14
-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

Time in Seconds

T
h

e
ta

 F
e
e
d

b
a
c
k
 (

N
m

)

Theta Feedback Vs Time

Quadrant Law

Fy Law

46

earlier for testing effectiveness of different algorithms. The task for the operator was to

drive the robot using the haptic joystick through all the colored blocks and then return back

to the starting position and touch the small blue block. In each trial, the number of

collisions, the total time to complete the maze, the x, y, and torque feedback vs. time, and

the x, y, and theta trajectory vs. time were recorded. Two different sets of human trials

were done to prove the hypothesis of this research as per University of Utah Institutional

Review Board (IRB) regulations, IRB Number: 00064011.

The first set of trials was done by 8 human subjects using the quadrant feedback

law. However, later, it was realized that a better law could be designed in order to

eliminate the quadrant switching, and therefore the data from those tests were ultimately

disregarded. However, some of that data will be analyzed in the next section. The second

set of human trials was done again by 8 different human subjects using the Fy feedback

law, and the tests were repeated for each subject with different parameters. Since there

were many parameters that could have been varied for trials, the ones that were thought to

be most worth experimenting were selected. Also the total experiment time for each user

was limited to a maximum of 1 hour, and the number of runs was limited to 10 per subject.

We tested the effectiveness of the Fy force-feedback law by comparing it with no force-

feedback, by changing the compliance center of robot, and also with zero rotational

feedback. Four different compliance centers were chosen so as to see its effect on the

quality of feedback as observed in the traditional peg in hole problem (see Figure 4.11).

The first configuration was with the compliance center at the center of robot, the

second with the compliance center moved 10 cm towards front of the robot, the third was

20 cm away, and, in the fourth configuration, it was moved 10 cm towards the back of

robot. The 10 trials were ordered as follows:

47

 3 with no force-feedback

 3 with force-feedback, compliance center at center of robot

 1 with force-feedback, compliance center at +10 cm

 1 with force-feedback, compliance center at +20 cm

 1 with force-feedback, compliance center at -10 cm

 1 with x and y force-feedback but zero torque feedback

For each subject the order of first 6 trials were changed, i.e, some subjects started with

force-feedback on the joystick and some started with the no force-feedback, but the order

of last 4 was same, as we already tested the effectiveness of these in the primitives designed

before. The user had to take a different route to complete each round; and there were colors

on the path to mark different routes. Three different combinations of routes were chosen:

Red-Green-Blue, Red-Blue-Green, and Blue-Green-Red to eliminate the subject’s learning

curve of the path. The above sequences were chosen as the path length is same in all these

3 routes, and therefore, a good comparison of time to completion could be made. These 3

route sequences were also shuffled for every user so as to generate complete randomness

in the trials. A closed door was also put in path in the scenario (see Figure 4.12) so as show

the importance of force-feedback over autonomous robots, as an autonomous robot would

consider a door as a wall and turn back, but if a user is driving they can break open the

door by overriding the haptic feedback on the joystick.

48

49

 Figure 4.11: Different compliance center configurations.

 Figure 4.12: A door in the path of robot.

CHAPTER 5

RESULTS AND ANALYSIS

5.1 Number of Collisions and Time to Complete

The number of collisions and time to complete the run was recorded manually on

the paper and was analyzed later after all the trials were done. The bar plot in Figure 5.1

shows the average number of collisions for all test subjects, T1 to T3 are the tests with force-

feedback, T4 to T6 are the tests without force-feedback, in T7 the compliance center is

moved 10 cm towards front of robot, T8 has a compliance center 20 cm away, and the T9

has a compliance center 10 cm towards back of robot. T10 trials were done by turning off

the rotational feedback, such that the user observes only the X and Y feedback. Tavg is the

average of all the trials while the robot was running with force-feedback and without force-

feedback for all subjects.

 From the bar plot it is evident that the total average number of collisions without

force-feedback are as high as 34 collisions while with force-feedback they are reduced to

5. It can also be observed that from T1 to T3 as well as from T4 to T6, there is a strong

learning curve, and as the user learns how to drive the omnidirectional robot using the

joystick, the number of collisions decreases substantially. Also, for most of the users the

number of collisions with force-feedback converges to zero with as low as in 2 trials, but

without force-feedback, this is still high at around 25 even after 3 trials.

51

 Figure 5.1: Bar plot for average number of collisions with standard deviation.

The number of collisions appears with force-feedback appears to remain small even when

changing the other parameters like compliance center and rotational feedback; therefore,

these parameters are explored more in the next subsection by comparing them in terms of

smoothness in trajectories and feedback.

Comparisons were also made in terms of time to complete the run, but surprisingly

there is no significant difference in between them, see Figure 5.2. The average time to

completion with force-feedback is little less than the time in other categories, but it is not

a significant difference. This difference can be attributed to more collision without force-

feedback and the user trying to control robot after collision.

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 Tavg Tavg
-10

0

10

20

30

40

50

60

70

80

Trial Number

N
u

m
b

e
r

o
f

C
o

ll
is

io
n

s

Number of Collisions vs Feedback, Average

With Feedback

Without Feedback

C.C +0.10

C.C +0.20

C.C -0.10

Zero Rotational Feedback

52

 Figure 5.2: Bar plot for average time to completion with standard deviation.

We also analyzed the best and worst user data, from the pool of various participants,

see plots in Figure 5.3. This is the best user data and the maximum number of collisions

for this participant was 1 with haptic feedback as compared to 19 without haptic feedback.

The haptic feedback data converge at zero in the second trial, but the one without haptic

feedback does not seem to converge and has 18 collisions towards the end, thus putting the

average at 17 collisions. Figure 5.4 below depicts the worst user data from the pool of

participants, here, the maximum number if collisions starts at 11 with haptic feedback and

eventually narrows down to 4 collisions, but without haptic feedback the number of

collisions is rather high, starting from 124 collisions and narrowing down to around 60

collisions. On average this user made approximately 7 collisions with haptic feedback and

83 colisions without haptic feedback.

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 Tavg Tavg
0

50

100

150

200

250

300

Trial Number

T
im

e
 i
n

 S
e
c
o

n
d

s

Time to Complete vs Feedback, Average

With Feedback

Without Feedback

C.C +0.10

C.C +0.20

C.C -0.10

Zero Rotational Feedback

53

 Figure 5.3: Bar plot for number of collisions, for best subject.

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 Tavg Tavg
0

2

4

6

8

10

12

14

16

18

20

Trial Number

N
u

m
b

e
r

o
f

C
o

ll
is

io
n

s

Number of Collisions vs Feedback, Best Data

54

Figure 5.4: Bar plot for number of collisions, for worst subject.

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 Tavg Tavg
0

20

40

60

80

100

120

140

Trial Number

N
u

m
b

e
r

o
f

C
o

ll
is

io
n

s

Number of Collisions vs Feedback, Worst Data

With Feedback

Without Feedback

C.C +0.10

C.C +0.20

C.C -0.10

Zero Rotational Feedback

55

5.2 Feedback and Trajectory

By this point it is evident from the data that the use of haptic feedback on the

joystick for obstacle avoidance reduces the number of collisions. In order to prove

statistical significance an ANOVA was done, and it could be said by 99% confidence that

the number of collisions is reduced significant when compared to no haptic feedback. In

this subsection, we will extend our discussion so as to see which parameter performs better

in terms of providing a smooth feedback and trajectory. The trajectory in x, y, and theta

with haptic feedback is compared with the respective trajectories when the compliance

center is moved to different spots as well as with trajectories where there is no rotation

feedback. Similar comparisons were made for the haptic feedback in the x, y, and theta

directions.

These comparisons were made from the dataset recorded from the various user

trials; since the whole scenario is big we decided to use a partial dataset based on the

primitives discussed before (see Figure 5.5). Please note that the subscenario with the blue

block in it corresponds to the primitive in Figure 4.2 (a) and (c) merged together and the

dataset obtained from it is called the blue dataset, while the subscenario with the green

block corresponds to the merged primitives from Figure 4.2 (a) and (b) and the subsequent

dataset is called the green dataset. The blue and green datasets for all the trials were

compared against the dataset from the trials with haptic feedback and the compliance center

at the center of robot. The plot in Figure 5.6 is a rotational feedback comparison plot

between various compliance center configurations proposed in Figure 4.11 vs. when the

compliance center is at the center of robot. This is based on the green dataset, but similar

observations were made for the blue datasets too. Visually it was noticed in a qualitative

sense that the torque feedback was smoother when the compliance center was at the center

56

Figure 5.5: Datasets for analysis.

of robot as when compared to the other compliance center positions, and similar trends

were noticed for the feedback in x and y directions. The trajectory was also smoother in all

3 DOF when the compliance center was located at the center of the robot, as shown in

Figures 5.7, Figure 5.8, and Figure 5.9. From these plots it can be said that the trajectory

was smoother when compared to the other compliance center configurations under

observation.

57

 Figure 5.6: Torque feedback vs. time plot for various compliance center configurations.

0 5 10 15 20 25 30 35
-10

-5

0

5

10

F
e

e
d

b
a

c
k

 i
n

 N
m

Torque Feedback Vs Time

C.C at 0

C.C at +1.0

0 5 10 15 20 25 30 35
-10

-5

0

5

10

F
e

e
d

b
a

c
k

 i
n

 N
m

C.C at 0

C.C at +2.0

0 5 10 15 20 25 30 35
-10

-5

0

5

10

Time in Seconds

F
e

e
d

b
a

c
k

 i
n

 N
m

C.C at 0

C.C at -1.0

58

Figure 5.7: Sample x trajectory vs. time plot with and without torque feedback.

 Figure 5.8: Sample y trajectory vs. time plot with and without torque feedback.

0 5 10 15 20 25 30 35

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

Time in Seconds

T
ra

je
c
to

ry
 (

m
)

X Trajectory Vs Time

With Torque Feedback

Zero Torque Feedback

0 5 10 15 20 25 30 35
2

2.5

3

3.5

4

4.5

5

Time in Seconds

T
ra

je
c
to

ry
 (

m
)

Y Trajectory Vs Time

With Torque Feedback

Zero Torque Feedback

59

 Figure 5.9: Sample theta trajectory vs. time plot with and without torque feedback.

In order to draw conclusions about the results in general, a quantitative metric was

derived for determining the smoothness of the trajectory and the the haptic feedback. First,

a Fast Fourier Fransform (FFT) of all the individual datasets of the primitives in the

scenario was done (a FFT of Y-trajectory is shown in Figure 5.10). The smoothness of the

data can then be observed by looking at the frequency content in the FFT.

The DC gain/low frequencies in the FFT represent the intended motion of the robot,

while the unintended/unwanted oscillations that were qualitatively observed appeared to

show up as quantifiable noise in the 0.8 Hz to 2 Hz range of the FFT (see Figure 5.11).

0 5 10 15 20 25 30 35
-200

-150

-100

-50

0

50

100

150

200

Time in Seconds

T
ra

je
c
to

ry
 (

d
e
g

re
e
s
)

Theta Trajectory Vs Time

With Torque Feeedback

Zero Torque Feedback

60

 Figure 5.10: Fast Fourier transform of y trajectory.

 Figure 5.11: Fast Fourier transform of y trajectory in frequency range 0.8 to 2Hz.

1 2 3 4 5 6

0

20

40

60

80

100

Frequency(Hz)

F
F

T
 o

f
T

ra
je

c
to

ry
(m

)

Fast Fourier Transform of Y Trajectory

With Torque Feedback

Zero Torque Feedback

0.8 1 1.2 1.4 1.6 1.8 2

0

0.5

1

1.5

2

Frequency(Hz)

F
F

T
 o

f
T

ra
je

c
to

ry
 (

m
)

Fast Fourier Transform of Y Trajectory between 0.8 Hz to 2 Hz

With Torque Feedback

Zero Torque Feedback

61

By looking at the picture it was evident that there was more noise in the trajectory

when the rotational feedback was turned off as compared to when the rotational feedback

was on. The power of these signals was found in order to generate a metric for noise

comparison. This power of noise was calculated using the sum of the squares of the

absolute value of the FFT curve in the frequency range 0.8 to 2 Hz (see Figure 5.12). For

a fair comparison between the trajectory and feedback data between different trials by a

user, these data were normalized by dividing the power in the 0.8 to 2 Hz range by the

power in the entire frequency range.

 𝑃𝑜𝑤𝑒𝑟 = ∑𝑎𝑏𝑠(𝑓𝑓𝑡𝑇𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦)2 (𝟓. 𝟏)

This power of noise in the trajectory or feedback is inversely proportional to the

smoothness of the data, i.e, the smaller the power value the more smooth the trajectory is

and vice versa.

 Figure 5.12: Power of noise in y trajectory between frequencies 0.8 to 2Hz.

0.8 1 1.2 1.4 1.6 1.8 2
0

0.05

0.1

0.15

0.2

0.25

Frequency(Hz)

P
o

w
e
r

o
f

N
o

is
e

Power of Noise, Y Trajectory between 0.8 Hz to 2 Hz

With Torque Feedback

Zero Torque Feedback

62

After finding all the power of the signal by fast Fourier transform, an Anova of

variance that produces a “u” value for the feedback as well as trajectory was used. Only

“u” values less than 37 (95% confidence) could be used to claim a statistically significant

effect on the means of the data, according to the U test. First the “u” values for the force-

feedback data were analysed, comparing the algorithm when the compliance center was at

center of robot to when the compliance center is moved to different spots, as well as the

case when there is no rotational feedback. All of the “u” values were greater than 37,

meaning that changing the compliance center has no statistically significant effect on the

smoothness of the force-feedback data in all three degrees of freedom. Then we analyzed

the “u” value for the trajectory data in the theta direction (Table 5.1) comparing the

different positions of the compliance center, and it was found out that there is no statistical

significance when the compliance center is moved to either +20 cm or -10 cm or +10 cm.

	
Table 5.1: Different ‘u’ values and their statistical significance.

	
	 	

Data 1
	

Data 2
	

'u' value Statistical
Significance

	
	

Theta
Trajectory

	
	
	

C.C at 0

C.C at +10 cm 50 Not Significant
C.C at +20 cm 65 Not Significant
C.C at -10 cm 59 Not Significant

zero torque
feedback

	

63
	

Not Significant

	 	 	 	 	
	
	

X
Trajectory

	
	
	

C.C at 0

C.C at +10 cm 51.5 Not Significant
C.C at +20 cm 31 Significant
C.C at -10 cm 8 Significant

zero torque
feedback

	

12
	

Significant

	 	 	 	 	
	
	

Y
Trajectory

	
	
	

C.C at 0

C.C at +10 cm 38 Significant
C.C at +20 cm 40 Significant
C.C at -10 cm 19 Significant

zero torque
feedback

	

24
	

Significant

63

This means that there is no statistical change in the smoothness of the theta

trajectory when the compliance center is at any other place than center or when there was

no rotational feedback. The “u” values for X trajectory were also calculated and it was

noticed that there was some statistical significance when the compliance center was moved

at -10 cm and +20 cm, as well as when there was no rotational feedback but not much when

the compliance center was moved to +10 cm. So the X trajectory becomes noisier when

the compliance center is moved to -10 cm or +20 cm and there is no statistically significant

change in the +10cm compliance center positions.

The Y trajectory was also analyzed and it was interpreted from “u” values that if

there is no rotational feedback on the joystick, the Y trajectory is statistically worse when

compared to the trajectory with rotational feedback. The trajectory was also worse when

the compliance center was moved to +20 cm, +10 cm, and -10 cm. The average and

standard deviation of the noise in trajectories when the compliance center was moved to

different spots and with no rotational feedback is shown in Figure 5.14.

From all the analysis above it is concluded that the trajectory is better when the

compliance center of the robot is at center of robot. With no rotational feedback there is

statistically no alteration in the theta and x trajectory but a statistically significant

degradation in y-trajectory with a confidence interval of 95%. Hence, the best trajectories

in all 3-DOF combined are generated by the 3-DOF haptic feedback with the compliance

center at the center of robot. It should be noted that these results are not similar to the peg

in hole problem as in the typical peg in hole problems it works best when the compliance

center is at front of robot. This points to some interesting differences between the classic

peg in hole scenario vs. more complex navigational scenarios like the corner.

64

 Figure 5.13: Average and standard deviation of noise in trajectories.

0 +10 +20 -10 0 Rot feedback
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Average X - Trajectory Noise vs C.C Position

Compliance Center Position (cm)

X
 T

ra
je

c
to

ry
 N

o
is

e
 (

%
)

0 +10 +20 -10 0 Rot feedback
-0.5

0

0.5

1

1.5

2

Average Y - Trajectory Noise vs C.C Position

Compliance Center Position (cm)

Y
 T

ra
je

c
to

ry
 N

o
is

e
 (

%
)

0 +10 +20 -10 0 Rot feedback
0

1

2

3

4

5

6

Average Rotational Trajectory Noise vs C.C Position

Compliance Center Position (cm)

T
h

e
ta

 T
ra

je
c

to
ry

 N
o

is
e

 (
%

)

65

5.3 Survey

A survey was done with all the human subjects with questions asking their

experience on driving an omnidirectional robot using a 3 DOF joystick with and without

haptic feedback. This survey was on a scale of 1 to 5 with 1 being very poor and 5 being

very good. The survey was mainly focused on user joystick driving experience in terms of

collision avoidance and comfort. In Figure 5.15, it can be seen that user rated driving with

3-DOF force-feedback is better than with no feedback and zero rotational feedback. The

average rating of driving with 3-DOF force-feedback is 4.75 while with no force-feedback

is 1.87 and is 3.75 with zero rotational feedback.

The last question of survey asked users to pick the best algorithm out of the above

three, i.e, with 3-DOF force-feedback, no force-feedback, and zero rotational feedback.

87.5 % said the trial with 3-DOF force-feedback was the best and 12.5 % said the trial with

zero rotational feedback was best.

 Figure 5.14: Survey of joystick driving experience in terms of collision avoidance.

CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

This research is the first attempt to use true omnidirectional 3-DOF (degree of

freedom) force-feedback to provide navigational assistance for a human to drive an

omnidirectional vehicle. While 2-DOF force-feedback has been used in a limited capacity

for obstacle avoidance on omnidirectional vehicles, this is the first research to include a

third rotational axis of force-feedback, and to use it to guide a driver along planar collision,

avoiding trajectories with a natural coordination of orientation. This research successfully

accomplished use of a novel omnidirectional haptic device and force-feedback strategies

to guide operators drive omnidirectional robots along collision-avoiding trajectories in an

environment with obstacles. This is the first experiment to quantify the ability of

omnidirectional force-feedback to improve omnidirectional driving performance and

driver experience in real time scenario.

The primary aim of this research was to improve the intuitive control and

embodiment of omnidirectional robots to optimize the driving performance of human

operators. Omnidirectional robots could be used in operations requiring situational

awareness as in search and rescue operations, first response, and law enforcement [50].

They also have lot of scope in industrial environments, for example, in bridges, tunnels,

67

pipelines, and power plant boilers inspections [51]. Omni robots could be used in military

operations too, such as for detection of unexploded ordinance or for carrying weight of

soldiers in confined spaces. However, omnidirectional robots are hard to control and

embodiment to the driver is not easy, as the driver has to control the x, y, and θ DOF from

a remote location merely on the video feed from a camera (usually a single camera), due

to the limited data bandwidth. Also, in most of the cases, complete autonomy is not

preferred. Therefore, this research provides solutions to those control challenges posed by

the limitations of intuitive control on omnidirectional robots, so the user could be

assisted/encouraged to navigate on the obstacle free path.

The omnidirectional feedback law design worked as expected in terms of avoiding

collisions on the path as well as improving the smoothness of the trajectory of the robot.

From the results in previous sections, it can be concluded that by using omnidirectional

haptic feedback collisions can be drastically improved. Significant improvements in

smoothness of trajectories were also observed by the use of haptic feedback. Furthermore,

it was shown that smoothness of trajectories was maximized by placing the compliance

center at the center of the robot, an interesting result that is in contrast to more traditional

strategies (associated with peg in hole scenarios) of placing the compliance center at the

front of the robot.

6.2 Future Work

In the near future, continued research should focus on implementing these

algorithms on a real omnidirectional robot instead of simulation. The existing Nexus robot

could be used with improvements such as a LIDAR sensor to map the physical environment

and a small onboard computer with ROS for faster processing. This onboard computer can

68

communicate a LIDAR distance map over Wi-Fi to the computer connected to the joystick.

The joystick setup can be used as is.

This research could also be used to impact the lives of the 1.3 % of our population

[52]-[55] (and growing) that is wheelchair-bound. Omnidirectional powered-wheelchairs

have the potential to increase the mobility and independence of the disabled, which are key

factors in maintaining quality of life. New commercially available robots such as the

Segway 440 Omni have the potential to jumpstart the availability of such wheelchairs.

However, omnidirectional powered wheelchairs present a challenge to control, as operators

must coordinate forward, lateral, and rotational motion. This research also seeks for

intuitive and comfortable driving of omnidirectional wheelchairs, providing navigational

guidance, while still allowing the driver to be in control. In addition, we can use the

independent rotation of the omnidirectional wheelchair to assist occupants to maintain a

visual connection with targeted people or television screens while they move about,

restoring their sense of social connectivity.

The scope of this research could also later be extended to control of quadcopters

using omnidirectional force-feedback as used in omnidirectional robots, with minor

changes in the algorithms and approach. Control of quadcopters also poses some similar

challenges as omnidirectional robots, for example: lack of intuitive control, lack of

embodiment, and limited data bandwidth. Thus, similar schemes could be used to improve

intuitive control on quadcopters.

APPENDIX A

 SURVEY

Please answer questions below on the scale of 1 to 5,

(1) Very Poor, (2) Poor, (3) Average, (4) Good and (5) Very Good

1. How would you rate your Joystick driving experience with Force-feedback in terms of
Collision Avoidance?

1 2 3 4 5

2. How would you rate your Joystick driving experience with Force-feedback in terms of
Comfort level?

1 2 3 4 5

3. How would you rate your Joystick driving experience without Force-feedback in terms
of Collision Avoidance?

1 2 3 4 5

4. How would you rate your Joystick driving experience without Force-feedback in terms
of Comfort level?

1 2 3 4 5

5. How would you rate your Joystick driving experience when the Compliance Center was
moved to front of Robot, in terms of Collision Avoidance?

1 2 3 4 5

70

7. How would you rate your Joystick driving experience with Zero Rotational Feedback in
terms of Collision Avoidance?

1 2 3 4 5

8. How would you rate your Joystick driving experience Zero Rotational Feedback in
terms of Comfort level?

1 2 3 4 5

9. Out of all 4 different set of trials below, which one do you think was best:

 With Force-feedback Without Force-feedback

 Zero Rotational Feedback

10. How good are your Video game playing skills?

1 2 3 4 5

Any other Comments:

6. How would you rate your Joystick driving experience when the Compliance Center was
moved to front of Robot, in terms of Comfort Level?

1 2 3 4 5

 APPENDIX B

PROGRAMMING CODE

 Arduino Main Code

/*

Joystick Force-feedback

Author: Rajat Tyagi
Date: 10/15/2016

This Program reads joystick encoder values using Encoder.h library and send them to
VREP Simulation via ROS Node as user Input
It also receives Force-feedback data from VREP via another ROS Node and uses i to
produce haptic Feeedback on Joystick
This program also implements the force-feedback

Interrupt rate 100 KHz
Interrupt pins: Encoder-X (20,21); Encoder-Y(18,19); Encoder-Theta(2,3);

*/
#include <ros.h>
#include <std_msgs/String.h>

#include <Encoder.h>
#include <JoystickEncoderRos.h>
#include <JoystickFeedbackRos.h>

ros::NodeHandle nh;

std_msgs::String str_msg;
String msg;

72

float force[]={0,0,0};

void messageCb(std_msgs::String& toggle_msg)
 {
 msg = String(toggle_msg.data);
 // Serial3.print(msg);

int commaIndex = msg.indexOf(',');

int secondCommaIndex = msg.indexOf(',', commaIndex+1);

String firstValue = msg.substring(0, commaIndex);
String secondValue = msg.substring(commaIndex+1, secondCommaIndex);
String thirdValue = msg.substring(secondCommaIndex+1);

force[0] = firstValue.toFloat();
force[1]= secondValue.toFloat();
force[2] = thirdValue.toFloat();

}

 ros::Subscriber<std_msgs::String> forceSub("feedForce", &messageCb);

 ros::Publisher chatter("omniVel", &str_msg);

String outVel;
char outVelChar[25];
int inByte;
const int len=12;
int sonarVals[len];
int i=0; //dataBuffer index
bool record=0; //Flag to start storing data
bool setControl; //Flag to set control values

unsigned long lastT;

int joyPos[]={0,0,0};
float joyVel[]={0,0,0};

void setup()

73

{

nh.initNode();
nh.advertise(chatter);
nh.subscribe(forceSub);

//Serial.begin(9600);
//Serial3.begin(9600);

initEncoder(); //Initialize encoder parameters and change frequency of PWM output
initFeedback(); //Initialize all pins for force-feedback
}

void loop() {

unsigned long nowT = millis();
double timeDiff = (double) (nowT - lastT);

//Serial3.print(force[2]);
encoderPos(joyPos, joyVel);

forceFeedback(joyPos,force, joyVel, timeDiff);

lastT = nowT;

 outVel += joyVel[0];
 outVel += ",";
 outVel += joyVel[1];
 outVel += ",";
 outVel += joyVel[2];
 //outVel += "\n";

 outVel.toCharArray(outVelChar,25);

 str_msg.data = outVelChar;
 chatter.publish(&str_msg);
 nh.spinOnce();

 outVel = String("");
lastT = nowT;

}

74

 Joystick Encoder.h

/*
JoystickEncoderRos.h

Author: Rajat Tyagi
Date: 4/28/2016

This code is a support library for joystickforcefeedback.ino, and should be saved in
it's own directory in your Arduino Libraries folder.

This library provides functions to interact Encoders.
*/

#ifndef JoystickEncoderRos_h
#define JoystickEncoderRos_h

#include "Arduino.h"
//Initialize Encoders

void initEncoder();

void encoderPos(int *encPos, float *joyVel);

#endif

 Joystick Encoder.cpp
/*

JoystickEncoder.cpp

Author: Rajat Tyagi
Date: 1/15/2016

This Program reads joystick encoder values using Encoder.h library

Interrupt rate 100 KHz
nterrupt pins: Encoder-X (20,21); Encoder-Y(18,19); Encoder-Theta(2,3);

*/

75

#include "JoystickEncoderRos.h"
#include <Encoder.h>

Encoder encoder_x(20, 21);
Encoder encoder_y(18, 19);
Encoder encoder_Q(3,2);
String outVelocity;

void initEncoder()
 {

int Eraser = 7; //This is 111 in binary and is used as an eraser
TCCR2B &=~Eraser; // This operation (AND plus NOT), set the three bits in TCCR3B
and TCCR4B to 0
TCCR1B &=~Eraser;
TCCR4B &=~Eraser;

int myPrescaler = 1; // This could be number [1,6], 1 corresponds 001 in binary and sets
prescaler for frequency 31000 HZ
TCCR2B |= myPrescaler; // This changes last 3 bits in TCCR3B with 001
TCCR1B |= myPrescaler;
TCCR4B |= myPrescaler; // This changes last 3 bits in TCCR4B with 001

// For more information visit http://forum.arduino.cc/index.php?topic=72092.0
 encoder_x.write(0);
 encoder_y.write(0);
 encoder_Q.write(0);

 outVelocity = String("");

}

void encoderPos(int *encPos, float *joyVel)
{

int int_mask=256;
int trunc_x=0;
int trunc_y=0;
int trunc_Q=0;

int dec_x=0;
int dec_y=0;
int dec_Q=0;

double position_x = 0;
double position_y = 0;
double position_Q = 0;

76

 double new_x_enc, new_y_enc, new_Q_enc;
 double new_x, new_y, new_Q;
 new_x = encoder_x.read();
 new_y = encoder_y.read();
 new_Q = encoder_Q.read();

 new_x_enc=new_x;
 new_y_enc=new_y;
 new_Q_enc=new_Q;

if (new_x>300)
{
 new_x=300;
}

if (new_x<-300)
{
 new_x=-300;
}

if (new_y>300)
{
 new_y=300;
}

if (new_y<-300)
{
 new_y=-300;
}

if (new_Q>1440)
{
 new_Q=1440;
}

if (new_Q<-1440)
{
 new_Q=-1440;
}

 position_x = new_x*0.003; //Converts encoder count to linear velocity of omni robot
in X-direction
 position_y = new_y*0.003; //Converts encoder count to linear velocity of omni robot

77

in Y-direction
 position_Q = new_Q*0.012; //Converts encoder count to Rotational velocity of omni
robot

// put a deadzone in X, Y and theta for better control
 if (position_x > -0.2 && position_x < 0.2) // Previous was +-0.1
 {
 position_x = 0;
 }

 if (position_y> -0.2 && position_y < 0.2) // Previous was +-0.1
 {
 position_y = 0;
 }

 if (position_Q < -3)
 {
 position_Q = -3;
 }

 if (position_Q > 3)
 {
 position_Q = 3;
 }

 if (position_Q < 0.5 && position_Q > - 0.5)
 {
 position_Q = 0;
 }

joyVel[0] = position_x;
joyVel[1] = position_y;
joyVel[2] = position_Q;

 // Serial.print(position_x);
 // Serial.print(" ");
 // Serial.print(position_y);
 // Serial.print(" ");
 // Serial.println(position_Q);

//Convert velocity to integer and decimal part to send via xbee, this will be converted
back when recived at robot

78

trunc_x=(int)position_x;
trunc_y=(int)position_y;
trunc_Q=(int)position_Q;

dec_x=(position_x-trunc_x)*100;
dec_y=(position_y-trunc_y)*100;
dec_Q=(position_Q-trunc_Q)*100;

// Peprare array to send via xbee, containing velocities with start and end byte
// An int mask is added to convert all values from 0 to 255

int array_transmit[] = {-127+int_mask, trunc_x+int_mask, dec_x+int_mask,
trunc_y+int_mask, dec_y+int_mask, trunc_Q+int_mask, dec_Q+int_mask, -
128+int_mask};

// Send Data via Serial 3 to xbee

 // Serial.print(joyVel[0]);
 // Serial.print(" ");
 // Serial.print(joyVel[1]);
 // Serial.print(" ");
 // Serial.println(joyVel[2]);

 // outVelocity += joyVel[0];
 // outVelocity += ", ";
 // outVelocity += joyVel[1];
 // outVelocity += ", ";
 // outVelocity += joyVel[2];
 // outVelocity += "\n";
 // str_msg.data = outVelocity;
 //Serial.print(outVelocity);
 outVelocity = String("");

//Serial.println();

 encPos[0] = new_x_enc;
 encPos[1] = new_y_enc;
 encPos[2] = new_Q_enc;

}

79

 JoystickFeedbackRos.h

/*
JoystickFeedbackRos.h

Author: Rajat Tyagi
Date: 4/28/2016

This code is a support library for JoystickForceFeedback_ROS.ino, and should be saved
in
it's own directory in your Arduino Libraries folder.

This library provides Force-feedback commands for joystick
*/

#ifndef JoystickFeedbackRos_h
#define JoystickFeedbackRos_h

#include "Arduino.h"
//Initialize Encoders

void initFeedback();

int saturate(int value, int satVal);

void zeroFeedbackLaw(int *joyPos, double timed);

void writePwm(float matVal, int axisPos);

void feedbackLaw(float *forceVal, float *joyVel);

void forceFeedback(int *joyPos, float *forceVal, float *joyVel, double timed);

#endif

 JoystickFeedbackRos.cpp

/*

JoystickFeedbackRos.cpp

Author: Rajat Tyagi

80

Date: 4/28/2016

This library provides Force-feedback commands for joystick

*/

#include "JoystickFeedbackRos.h"
#include <math.h>

float pwmVal[]={0,0,0,0,0,0};
float pwm_max=240;
float slope= 12;
float int_error=0;
float error_def_prev=0;
float GainP= 0.2;
float GainD= 2;
float GainI=0;
float pwm_def=0;
String outBuffer;
int cycleCount = 0;

// below parameters are for joystick zero position PD contoller
float posActual[3];
float lastPos[3];
float posDesired[]={0,0,0};
float controlEffort[3];
float lastError[3];

float Kp = 0.7; // P Gain for Zero Position Feedback, old Gain = 0.7;
float Kd = 42; // D Gain for Zero Position Feedback, old Gain = 42;

float error;
float diff;
float zeroPos[6];
float joyAngle[]={0,0,0};
const float pi = 3.14;

//int timed = 8; // approx loop time in ms from main program, used for calculating

81

damping feedback

void initFeedback()
 {

// Sets pimode to output
outBuffer = String("");
pinMode(8,OUTPUT);
pinMode(9,OUTPUT);
pinMode(6,OUTPUT);
pinMode(7,OUTPUT);
pinMode(10,OUTPUT);
pinMode(11,OUTPUT);

}

//Saturate to a threshold

int saturate(int value, int satVal)
{
 if(value > satVal)
 return satVal;
 else if (value < -satVal)
 return -satVal;
 else
 return value;
}

void zeroFeedbackLaw(int *joyPos,double timed) // This function brings joystick to zero
position using PD contoller
{

joyAngle[0] = (float)joyPos[0] / 12; // Calculates angle of Joystick from
encoder position
joyAngle[1] = (float)joyPos[1] / 15;
joyAngle[2] = (float)joyPos[2] * 360/1440;

for (int i=0; i<3; i++)
 {
 //Calculate wheel speeds [rpm]: 1 tick/10ms=1.95 rpm
 joyPos[i] = (float)joyPos[i]*360/1440 ;
 }

82

 for (int i=0; i<3; i++)
 {
 error = posDesired[i] - joyPos[i]; //Proportional term
 diff= (float)((error-lastError[i])/timed); //Derivative term

 controlEffort[i]=Kp*error + Kd*diff;

if(i==2)
 {
 controlEffort[i]=Kp*error*1.9 + Kd*diff*1.1;
 }
 //controlEffort[i]=saturate(controlEffort[i], 255); //Saturate PMW to +/- 255
 lastError[i]= error;
 }

 for (int i=0; i<6 ;++i)
 {
 zeroPos[i]= 0;
 }

float alphaGrav_X = 100;
float alphaGrav_Y = 70;

// float alphaGrav_X = 100;

 //Saves Control Effort for Zero Position in all directions in an array (See header of this
code for detail)

 if (controlEffort[0] >= 0) // From - X to +X
 {
 zeroPos[0] = controlEffort[0] - alphaGrav_X * sin((joyAngle[0]) *pi/180);
 }

 else if (controlEffort[0] < 0) // From + X to +X
 {
 zeroPos[1] = - controlEffort[0] + alphaGrav_X * sin(joyAngle[0] *pi/180);
 }

 if (controlEffort[1] >= 0) // From - Y to +Y
 {
 zeroPos[2] = + controlEffort[1] - alphaGrav_Y * sin((joyAngle[1]) *pi/180);

83

 }

 if (controlEffort[1] < 0) // From + Y to -Y
 {
 zeroPos[3] = - controlEffort[1] + alphaGrav_Y * sin(joyAngle[1] *pi/180);;
 }

 if (controlEffort[2] >= 0) // -Theta to + Theta
 {
 zeroPos[4] = controlEffort[2];
 }

 if (controlEffort[2] < 0) // +Theta to - Theta
 {
 zeroPos[5] = - controlEffort[2];
 }

}

// This function calculates and writes pwm value to amplifier

void writePwm(float matVal, int axisPos)
{

double write1,write2 = 0;

 if (matVal >0)
 {
 write1 = matVal;
 write2 = 0;
 }

 else
 {
 write2 = -matVal;
 write1 = 0;
 }

float sendPositive = constrain(write1 + zeroPos [axisPos*2],0,255);
float sendNegative = constrain(write2 + zeroPos [axisPos*2 + 1],0,255);

// int sendPositive = constrain(write1 + zeroPos [axisPos*2],0,255);
// int sendNegative = constrain(write2 + zeroPos [axisPos*2 + 1],0,255);

analogWrite(axisPos*2 + 6, sendPositive);
analogWrite((axisPos*2 + 6)+1, sendNegative);

84

//analogWrite(axisPos*2 + 6, 255);
//analogWrite((axisPos*2 + 6)+1, 0);

}

// This function calculates feedback based on sensor values
// The Feedback Law have to be implemented in this function

void feedbackLaw(float *forceVal, float *joyVel)
{

writePwm(forceVal[0], 0);
writePwm(forceVal[1], 1);
writePwm(forceVal[2], 2);

// writePwm(0, 0);
// writePwm(0, 1);
// writePwm(0, 2);

}

void forceFeedback(int *joyPos, float *forceVal, float *joyVel, double timed)

{

// Serial.print(joyPos[0]);
// Serial.print(" ");
// Serial.print(joyPos[1]);
// Serial.print(" ");
// Serial.println(joyPos[2]);

zeroFeedbackLaw(joyPos, timed);
feedbackLaw(forceVal, joyVel);

}

85

 VREP Youbot Code
--- This example script is non-threaded (executed at each simulation pass)
-- The functionality of this script (or parts of it) could be implemented
-- in an extension module (plugin) and be hidden. The extension module could
-- also allow connecting to and controlling the real robot.

-- Rajat Tyagi
--10/16/2016

-- THis Script is to run Youbot in VREP simulation mode in ROS,
-- It needs the Huloyu script along with it

function string:split(inSplitPattern, outResults)
 if not outResults then
 outResults = { }
 end
 local theStart = 1
 local theSplitStart, theSplitEnd = string.find(self, inSplitPattern, theStart)
 while theSplitStart do
 table.insert(outResults, string.sub(self, theStart, theSplitStart-1))
 theStart = theSplitEnd + 1
 theSplitStart, theSplitEnd = string.find(self, inSplitPattern, theStart)
 end
 table.insert(outResults, string.sub(self, theStart))
 return outResults
end

function joyStickMessage_callback(msg)

--simAddStatusbarMessage = string.split(msg.data, ",")
 local myString = msg.data

 local myVel = myString:split(",")
 VelsX = 0.4 * tonumber(myVel[1])
 VelsY = 0.4 * tonumber(myVel[2])
 VelsQ = 0.4 * tonumber(myVel[3])

if(VelsX > 0 or VelsY > 0 or VelsQ > 0) and timeFlag == 0 then
 timerStart = simGetSimulationTime()
 timeFlag = 1
 -- print("asadsadfghdfs")
end

86

 end

if (sim_call_type==sim_childscriptcall_initialization) then
 -- First time we execute this script.
 count = 0
 collsRed =0
 collsBlue =0
 collsGreen =0
 collisionNumber = 1
 collisionR = 0
 collisionB = 0
 collisionG = 0
 timeFlag = 0

 objPosXold = 0.62

 lastTime = 0
 currentTime = 0
 --Prepare initial values and retrieve handles:
 wheelJoints={-1,-1,-1,-1} -- front left, rear left, rear right, front right
 wheelJoints[1]=simGetObjectHandle('rollingJoint_fl')
 wheelJoints[2]=simGetObjectHandle('rollingJoint_rl')
 wheelJoints[3]=simGetObjectHandle('rollingJoint_rr')
 wheelJoints[4]=simGetObjectHandle('rollingJoint_fr')

 youBot=simGetObjectHandle('youBot')
 rect=simGetObjectHandle('ME_Platfo2_sub1')

 -- wheel_rl=simGetObjectHandle('swedishWheel_rl')
-- wheel_rr=simGetObjectHandle('swedishWheel_rr')
 -- wheel_fl=simGetObjectHandle('swedishWheel_fl')
 -- wheel_fr=simGetObjectHandle('swedishWheel_fr')

 wheel_rl=simGetObjectHandle('wheel_respondable_rl')
 wheel_rr=simGetObjectHandle('wheel_respondable_rr')
 wheel_fl=simGetObjectHandle('wheel_respondable_fl')
 wheel_fr=simGetObjectHandle('wheel_respondable_fr')

 -- inter_rl=simGetObjectHandle('wheel_respondable_rl')
 -- wheel_rr=simGetObjectHandle('swedishWheel_rr')
 -- inter_fl=simGetObjectHandle('wheel_respondable_fl')
 -- wheel_fr=simGetObjectHandle('swedishWheel_fr')

87

 youBotRef=simGetObjectHandle('youBot_ref')

 wall=simGetObjectHandle('80cmHighWall100cm_visible')
 wall0=simGetObjectHandle('80cmHighWall100cm_visible0')
 wall1=simGetObjectHandle('80cmHighWall100cm_visible1')
 wall2=simGetObjectHandle('80cmHighWall100cm_visible2')
 wall3=simGetObjectHandle('80cmHighWall50cm_visible11')
 wall4=simGetObjectHandle('80cmHighWall100cm_visible4')
 wall5=simGetObjectHandle('80cmHighWall100cm_visible5')
 wall6=simGetObjectHandle('80cmHighWall100cm_visible6')
 wall7=simGetObjectHandle('80cmHighWall100cm_visible7')
 wall8=simGetObjectHandle('80cmHighWall100cm_visible8')

 wall9=simGetObjectHandle('80cmHighWall50cm_visible')
 wall10=simGetObjectHandle('80cmHighWall50cm_visible0')
 wall11=simGetObjectHandle('80cmHighWall50cm_visible1')
 wall12=simGetObjectHandle('80cmHighWall50cm_visible2')
 wall13=simGetObjectHandle('80cmHighWall50cm_visible3')
 wall14=simGetObjectHandle('80cmHighWall50cm_visible4')
 wall15=simGetObjectHandle('80cmHighWall50cm_visible5')
 wall16=simGetObjectHandle('80cmHighWall50cm_visible6')
 wall17=simGetObjectHandle('80cmHighWall50cm_visible7')
 wall18=simGetObjectHandle('80cmHighWall50cm_visible8')
 wall19=simGetObjectHandle('80cmHighWall50cm_visible9')
 wall20=simGetObjectHandle('80cmHighWall50cm_visible10')

 wall21=simGetObjectHandle('80cmHighWall200cm_visible')
 wall22=simGetObjectHandle('80cmHighWall200cm_visible0')
 wall23=simGetObjectHandle('80cmHighWall200cm_visible1')
 wall24=simGetObjectHandle('80cmHighWall200cm_visible2')
 wall25=simGetObjectHandle('80cmHighWall200cm_visible3')
 wall26=simGetObjectHandle('80cmHighWall200cm_visible4')
 wall27=simGetObjectHandle('80cmHighWall200cm_visible5')
 wall28=simGetObjectHandle('80cmHighWall200cm_visible6')
 wall29=simGetObjectHandle('80cmHighWall200cm_visible7')
 wall30=simGetObjectHandle('80cmHighWall200cm_visible8')
 wall31=simGetObjectHandle('80cmHighWall200cm_visible9')
 wall32=simGetObjectHandle('80cmHighWall200cm_visible10')
 wall33=simGetObjectHandle('80cmHighWall200cm_visible11')
 wall34=simGetObjectHandle('80cmHighWall200cm_visible12')
 wall35=simGetObjectHandle('80cmHighWall200cm_visible13')
 wall36=simGetObjectHandle('80cmHighWall200cm_visible14')
 wall37=simGetObjectHandle('80cmHighWall200cm_visible15')
 wall38=simGetObjectHandle('80cmHighWall200cm_visible16')
 wall39=simGetObjectHandle('80cmHighWall200cm_visible17')
 wall40=simGetObjectHandle('80cmHighWall200cm_visible18')

88

 wall41=simGetObjectHandle('80cmHighWall200cm_visible19')
 wall42=simGetObjectHandle('80cmHighWall200cm_visible20')

 --block=simGetObjectHandle('ConcretBlock')
 block1=simGetObjectHandle('ConcretBlock0')
 blockG=simGetObjectHandle('ConcretBlock#0')
 blockB=simGetObjectHandle('ConcretBlock#1')
 blockR=simGetObjectHandle('ConcretBlock#2')

 target=simGetObjectHandle('youBot_positionTarget')

 VelsX = 0
 VelsY = 0
 VelsQ = 0

 Jinv11 = 20 ; Jinv12 = -20; Jinv13 = -5.8;
 Jinv21 = 20 ; Jinv22 = 20 ; Jinv23 = -5.8;
 Jinv31 = -20; Jinv32 = 20 ; Jinv33 = -5.8;
 Jinv41 = -20; Jinv42 = -20; Jinv43 = -5.8;

 --forwBackVelRange={-240*math.pi/180,240*math.pi/180} -- min and max wheel
rotation vel. for backward/forward movement
 -- leftRightVelRange={-240*math.pi/180,240*math.pi/180} -- min and max wheel
rotation vel. for left/right movement
 -- rotVelRange={-240*math.pi/180,240*math.pi/180} -- min and max wheel
rotation vel. for left/right rotation movement

 sub=simExtRosInterface_subscribe('/omniVel', 'std_msgs/String',
'joyStickMessage_callback')

 --simAddStatusbarMessage('asdsf')
end

if (sim_call_type==sim_childscriptcall_cleanup) then

89

end

if (sim_call_type==sim_childscriptcall_actuation) then

--

 compCenter=simGetScriptSimulationParameter(sim_handle_self,'complianceCenter')

--

 currentTime=simGetSimulationTime()

 -- compC = simGetFloatSignal("compC")
 simSetFloatSignal("VeloX",VelsX)
 simSetFloatSignal("VeloY",VelsY)
 simSetFloatSignal("VeloQ",VelsQ)
 simSetFloatSignal("Time",currentTime)
 simSetFloatSignal("compC",compCenter)

-- simSetFloatSignal("yCord",objPosY)

 VelsY = VelsY + VelsQ * compCenter
 omegaDesiredFL=(Jinv11*VelsX+Jinv12*VelsY+Jinv13*VelsQ);
 omegaDesiredRL=(Jinv21*VelsX+Jinv22*VelsY+Jinv23*VelsQ);
 omegaDesiredRR=(Jinv31*VelsX+Jinv32*VelsY+Jinv33*VelsQ);
 omegaDesiredFR=(Jinv41*VelsX+Jinv42*VelsY+Jinv43*VelsQ);
 --simAddStatusbarMessage(omegaDesiredFR)

 simSetJointTargetVelocity(wheelJoints[1],omegaDesiredFL)
 simSetJointTargetVelocity(wheelJoints[2],omegaDesiredRL)
 simSetJointTargetVelocity(wheelJoints[3],-omegaDesiredRR)
 simSetJointTargetVelocity(wheelJoints[4],-omegaDesiredFR)
 --simAddStatusbarMessage('asdsf')

 if ((simCheckCollision(wheel_rr,wall) ==1) or (simCheckCollision(wheel_rl,wall) ==1)
or (simCheckCollision(wheel_fr,wall) ==1) or (simCheckCollision(wheel_fl,wall) ==1)
or (simCheckCollision(youBot,wall) ==1)) then
 colls = 1
 elseif ((simCheckCollision(wheel_rr,wall0) ==1) or
(simCheckCollision(wheel_rl,wall0) ==1) or (simCheckCollision(wheel_fr,wall0) ==1)
or (simCheckCollision(wheel_fl,wall0) ==1) or (simCheckCollision(youBot,wall0) ==1))
then
 colls = 1
 elseif ((simCheckCollision(wheel_rr,wall1) ==1) or
(simCheckCollision(wheel_rl,wall1) ==1) or (simCheckCollision(wheel_fr,wall1) ==1)

90

or (simCheckCollision(wheel_fl,wall1) ==1) or (simCheckCollision(youBot,wall1) ==1))
then
 colls = 1
 elseif ((simCheckCollision(wheel_rr,wall2) ==1) or
(simCheckCollision(wheel_rl,wall2) ==1) or (simCheckCollision(wheel_fr,wall2) ==1)
or (simCheckCollision(wheel_fl,wall2) ==1) or (simCheckCollision(youBot,wall2) ==1))
then
 colls = 1
 elseif ((simCheckCollision(wheel_rr,wall3) ==1) or
(simCheckCollision(wheel_rl,wall3) ==1) or (simCheckCollision(wheel_fr,wall3) ==1)
or (simCheckCollision(wheel_fl,wall3) ==1) or (simCheckCollision(youBot,wall3) ==1))
then
 colls = 1
 elseif ((simCheckCollision(wheel_rr,wall4) ==1) or
(simCheckCollision(wheel_rl,wall4) ==1) or (simCheckCollision(wheel_fr,wall4) ==1)
or (simCheckCollision(wheel_fl,wall4) ==1) or (simCheckCollision(youBot,wall4) ==1))
then
 colls = 1
 elseif ((simCheckCollision(wheel_rr,wall5) ==1) or
(simCheckCollision(wheel_rl,wall5) ==1) or (simCheckCollision(wheel_fr,wall5) ==1)
or (simCheckCollision(wheel_fl,wall5) ==1) or (simCheckCollision(youBot,wall5) ==1))
then
 colls = 1
 elseif ((simCheckCollision(wheel_rr,wall6) ==1) or
(simCheckCollision(wheel_rl,wall6) ==1) or (simCheckCollision(wheel_fr,wall6) ==1)
or (simCheckCollision(wheel_fl,wall6) ==1) or (simCheckCollision(youBot,wall6) ==1))
then
 colls = 1
 elseif ((simCheckCollision(wheel_rr,wall7) ==1) or
(simCheckCollision(wheel_rl,wall7) ==1) or (simCheckCollision(wheel_fr,wall7) ==1)
or (simCheckCollision(wheel_fl,wall7) ==1) or (simCheckCollision(youBot,wall7) ==1))
then
 colls = 1
 elseif ((simCheckCollision(wheel_rr,wall8) ==1) or
(simCheckCollision(wheel_rl,wall8) ==1) or (simCheckCollision(wheel_fr,wall8) ==1)
or (simCheckCollision(wheel_fl,wall8) ==1) or (simCheckCollision(youBot,wall8) ==1))
then
 colls = 1
 elseif ((simCheckCollision(wheel_rr,wall9) ==1) or
(simCheckCollision(wheel_rl,wall9) ==1) or (simCheckCollision(wheel_fr,wall9) ==1)
or (simCheckCollision(wheel_fl,wall9) ==1) or (simCheckCollision(youBot,wall9) ==1))
then
 colls = 1
 elseif ((simCheckCollision(wheel_rr,wall10) ==1) or
(simCheckCollision(wheel_rl,wall10) ==1) or (simCheckCollision(wheel_fr,wall10)
==1) or (simCheckCollision(wheel_fl,wall10) ==1) or
(simCheckCollision(youBot,wall10) ==1)) then

91

 colls = 1
 elseif ((simCheckCollision(wheel_rr,wall11) ==1) or
(simCheckCollision(wheel_rl,wall11) ==1) or (simCheckCollision(wheel_fr,wall11) ==1)
or (simCheckCollision(wheel_fl,wall11) ==1) or (simCheckCollision(youBot,wall11)
==1)) then
 colls = 1
 elseif ((simCheckCollision(wheel_rr,wall12) ==1) or
(simCheckCollision(wheel_rl,wall12) ==1) or (simCheckCollision(wheel_fr,wall12)
==1) or (simCheckCollision(wheel_fl,wall12) ==1) or
(simCheckCollision(youBot,wall12) ==1)) then
 colls = 1
 elseif ((simCheckCollision(wheel_rr,wall13) ==1) or
(simCheckCollision(wheel_rl,wall13) ==1) or (simCheckCollision(wheel_fr,wall13)
==1) or (simCheckCollision(wheel_fl,wall13) ==1) or
(simCheckCollision(youBot,wall13) ==1)) then
 colls = 1

 elseif ((simCheckCollision(wheel_rr,wall14) ==1) or
(simCheckCollision(wheel_rl,wall14) ==1) or (simCheckCollision(wheel_fr,wall14)
==1) or (simCheckCollision(wheel_fl,wall14) ==1) or
(simCheckCollision(youBot,wall14) ==1)) then
 colls = 1
 elseif ((simCheckCollision(wheel_rr,wall15) ==1) or
(simCheckCollision(wheel_rl,wall15) ==1) or (simCheckCollision(wheel_fr,wall15)
==1) or (simCheckCollision(wheel_fl,wall15) ==1) or
(simCheckCollision(youBot,wall15) ==1)) then
 colls = 1
 elseif ((simCheckCollision(wheel_rr,wall16) ==1) or
(simCheckCollision(wheel_rl,wall16) ==1) or (simCheckCollision(wheel_fr,wall16)
==1) or (simCheckCollision(wheel_fl,wall16) ==1) or
(simCheckCollision(youBot,wall16) ==1)) then
 colls = 1
 elseif ((simCheckCollision(wheel_rr,wall17) ==1) or
(simCheckCollision(wheel_rl,wall17) ==1) or (simCheckCollision(wheel_fr,wall17)
==1) or (simCheckCollision(wheel_fl,wall17) ==1) or
(simCheckCollision(youBot,wall17) ==1)) then
 colls = 1
 elseif ((simCheckCollision(wheel_rr,wall18) ==1) or
(simCheckCollision(wheel_rl,wall18) ==1) or (simCheckCollision(wheel_fr,wall18)
==1) or (simCheckCollision(wheel_fl,wall18) ==1) or
(simCheckCollision(youBot,wall18) ==1)) then
 colls = 1
 elseif ((simCheckCollision(wheel_rr,wall19) ==1) or
(simCheckCollision(wheel_rl,wall19) ==1) or (simCheckCollision(wheel_fr,wall19)
==1) or (simCheckCollision(wheel_fl,wall19) ==1) or
(simCheckCollision(youBot,wall19) ==1)) then

92

 colls = 1
 elseif ((simCheckCollision(wheel_rr,wall20) ==1) or
(simCheckCollision(wheel_rl,wall20) ==1) or (simCheckCollision(wheel_fr,wall20)
==1) or (simCheckCollision(wheel_fl,wall20) ==1) or
(simCheckCollision(youBot,wall20) ==1)) then
 colls = 1
 elseif ((simCheckCollision(wheel_rr,wall21) ==1) or
(simCheckCollision(wheel_rl,wall21) ==1) or (simCheckCollision(wheel_fr,wall21)
==1) or (simCheckCollision(wheel_fl,wall21) ==1) or
(simCheckCollision(youBot,wall21) ==1)) then
 colls = 1
 elseif ((simCheckCollision(wheel_rr,wall22) ==1) or
(simCheckCollision(wheel_rl,wall22) ==1) or (simCheckCollision(wheel_fr,wall22)
==1) or (simCheckCollision(wheel_fl,wall22) ==1) or
(simCheckCollision(youBot,wall22) ==1)) then
 colls = 1
 elseif ((simCheckCollision(wheel_rr,wall23) ==1) or
(simCheckCollision(wheel_rl,wall23) ==1) or (simCheckCollision(wheel_fr,wall23)
==1) or (simCheckCollision(wheel_fl,wall23) ==1) or
(simCheckCollision(youBot,wall23) ==1)) then
 colls = 1
 elseif ((simCheckCollision(wheel_rr,wall24) ==1) or
(simCheckCollision(wheel_rl,wall24) ==1) or (simCheckCollision(wheel_fr,wall24)
==1) or (simCheckCollision(wheel_fl,wall24) ==1) or
(simCheckCollision(youBot,wall24) ==1)) then
 colls = 1
 elseif ((simCheckCollision(wheel_rr,wall25) ==1) or
(simCheckCollision(wheel_rl,wall25) ==1) or (simCheckCollision(wheel_fr,wall25)
==1) or (simCheckCollision(wheel_fl,wall25) ==1) or
(simCheckCollision(youBot,wall25) ==1)) then
 colls = 1
 elseif ((simCheckCollision(wheel_rr,wall26) ==1) or
(simCheckCollision(wheel_rl,wall26) ==1) or (simCheckCollision(wheel_fr,wall26)
==1) or (simCheckCollision(wheel_fl,wall26) ==1) or
(simCheckCollision(youBot,wall26) ==1)) then
 colls = 1
 elseif ((simCheckCollision(wheel_rr,wall27) ==1) or
(simCheckCollision(wheel_rl,wall27) ==1) or (simCheckCollision(wheel_fr,wall27)
==1) or (simCheckCollision(wheel_fl,wall27) ==1) or
(simCheckCollision(youBot,wall27) ==1)) then
 colls = 1

 elseif ((simCheckCollision(wheel_rr,wall28) ==1) or
(simCheckCollision(wheel_rl,wall28) ==1) or (simCheckCollision(wheel_fr,wall28)
==1) or (simCheckCollision(wheel_fl,wall28) ==1) or
(simCheckCollision(youBot,wall28) ==1)) then

93

 colls = 1
 elseif ((simCheckCollision(wheel_rr,wall29) ==1) or
(simCheckCollision(wheel_rl,wall29) ==1) or (simCheckCollision(wheel_fr,wall29)
==1) or (simCheckCollision(wheel_fl,wall29) ==1) or
(simCheckCollision(youBot,wall29) ==1)) then
 colls = 1
 elseif ((simCheckCollision(wheel_rr,wall30) ==1) or
(simCheckCollision(wheel_rl,wall30) ==1) or (simCheckCollision(wheel_fr,wall30)
==1) or (simCheckCollision(wheel_fl,wall30) ==1) or
(simCheckCollision(youBot,wall30) ==1)) then
 colls = 1
 elseif ((simCheckCollision(wheel_rr,wall31) ==1) or
(simCheckCollision(wheel_rl,wall31) ==1) or (simCheckCollision(wheel_fr,wall31)
==1) or (simCheckCollision(wheel_fl,wall31) ==1) or
(simCheckCollision(youBot,wall31) ==1)) then
 colls = 1
 elseif ((simCheckCollision(wheel_rr,wall32) ==1) or
(simCheckCollision(wheel_rl,wall32) ==1) or (simCheckCollision(wheel_fr,wall32)
==1) or (simCheckCollision(wheel_fl,wall32) ==1) or
(simCheckCollision(youBot,wall32) ==1)) then
 colls = 1
 elseif ((simCheckCollision(wheel_rr,wall33) ==1) or
(simCheckCollision(wheel_rl,wall33) ==1) or (simCheckCollision(wheel_fr,wall33)
==1) or (simCheckCollision(wheel_fl,wall33) ==1) or
(simCheckCollision(youBot,wall33) ==1)) then
 colls = 1
 elseif ((simCheckCollision(wheel_rr,wall34) ==1) or
(simCheckCollision(wheel_rl,wall34) ==1) or (simCheckCollision(wheel_fr,wall34)
==1) or (simCheckCollision(wheel_fl,wall34) ==1) or
(simCheckCollision(youBot,wall34) ==1)) then
 colls = 1
 elseif ((simCheckCollision(wheel_rr,wall35) ==1) or
(simCheckCollision(wheel_rl,wall35) ==1) or (simCheckCollision(wheel_fr,wall35)
==1) or (simCheckCollision(wheel_fl,wall35) ==1) or
(simCheckCollision(youBot,wall35) ==1)) then
 colls = 1
 elseif ((simCheckCollision(wheel_rr,wall36) ==1) or
(simCheckCollision(wheel_rl,wall36) ==1) or (simCheckCollision(wheel_fr,wall36)
==1) or (simCheckCollision(wheel_fl,wall36) ==1) or
(simCheckCollision(youBot,wall36) ==1)) then
 colls = 1
 elseif ((simCheckCollision(wheel_rr,wall37) ==1) or
(simCheckCollision(wheel_rl,wall37) ==1) or (simCheckCollision(wheel_fr,wall37)
==1) or (simCheckCollision(wheel_fl,wall37) ==1) or
(simCheckCollision(youBot,wall37) ==1)) then
 colls = 1
 elseif ((simCheckCollision(wheel_rr,wall38) ==1) or

94

(simCheckCollision(wheel_rl,wall38) ==1) or (simCheckCollision(wheel_fr,wall38)
==1) or (simCheckCollision(wheel_fl,wall38) ==1) or
(simCheckCollision(youBot,wall38) ==1)) then
 colls = 1
 elseif ((simCheckCollision(wheel_rr,wall39) ==1) or
(simCheckCollision(wheel_rl,wall39) ==1) or (simCheckCollision(wheel_fr,wall39)
==1) or (simCheckCollision(wheel_fl,wall39) ==1) or
(simCheckCollision(youBot,wall39) ==1)) then
 colls = 1
 elseif ((simCheckCollision(wheel_rr,wall40) ==1) or
(simCheckCollision(wheel_rl,wall40) ==1) or (simCheckCollision(wheel_fr,wall40)
==1) or (simCheckCollision(wheel_fl,wall40) ==1) or
(simCheckCollision(youBot,wall40) ==1)) then
 colls = 1
 elseif ((simCheckCollision(wheel_rr,wall41) ==1) or
(simCheckCollision(wheel_rl,wall41) ==1) or (simCheckCollision(wheel_fr,wall41)
==1) or (simCheckCollision(wheel_fl,wall41) ==1) or
(simCheckCollision(youBot,wall41) ==1)) then
 colls = 1
 elseif ((simCheckCollision(wheel_rr,wall42) ==1) or
(simCheckCollision(wheel_rl,wall42) ==1) or (simCheckCollision(wheel_fr,wall42)
==1) or (simCheckCollision(wheel_fl,wall42) ==1) or
(simCheckCollision(youBot,wall42) ==1)) then
 colls = 1

 else
 colls =0
 end

 if (colls == 1 and count==0) then
 a = "!!!!!!!!!!!!!!!!!!!!!!!!!!!! Collision num !!!!!!!!!!!!!!!!!!!!!!"
 b = string.gsub(a, "num",collisionNumber)
 dialogHandle = simDisplayDialog('Drive away from
wall',b ,sim_dlgstyle_ok,false,nil,{0,0.5,0,0,0,0},{0.5,0,0,1,1,1})
 count = 1
 collisionNumber = collisionNumber + 1
 end

 simSetIntegerSignal("collFlag",colls)

 if(colls == 0 and count == 1) then
 simEndDialog(dialogHandle)
 count = 0
 colls = 0
 end

95

--- Red Block-----------

 if ((simCheckCollision(wheel_rr,blockR) ==1) or
(simCheckCollision(wheel_rl,blockR) ==1) or (simCheckCollision(wheel_fr,blockR)
==1) or (simCheckCollision(wheel_fl,blockR) ==1) or
(simCheckCollision(youBot,blockR) ==1)) then
 collsBlockR = 1
 else
 collsBlockR =0
 end

--

--- Blue Block----------

 if ((simCheckCollision(wheel_rr,blockB) ==1) or
(simCheckCollision(wheel_rl,blockB) ==1) or (simCheckCollision(wheel_fr,blockB)
==1) or (simCheckCollision(wheel_fl,blockB) ==1) or
(simCheckCollision(youBot,blockB) ==1)) then
 collsBlockB = 1
 else
 collsBlockB =0
 end

--[[
 if (collsBlockB == 1 and collsBlue == 0) then
 dialogHandle2 = simDisplayDialog('!!!!!!! Good Job !!!!!!! '," Move to
Next Block" ,sim_dlgstyle_ok,false,nil,{0,0.5,0,0,0,0},{0,0,0.2,1,1,1})
 collsBlue = 1
 end

 if(collsBlue == 1 and collsBlockB == 0) then
 simEndDialog(dialogHandle2)
 collsBlue = 0
 collsBlockB = 0
 end

--]]
--

96

--- Green Block---------

 if ((simCheckCollision(wheel_rr,blockG) ==1) or
(simCheckCollision(wheel_rl,blockG) ==1) or (simCheckCollision(wheel_fr,blockG)
==1) or (simCheckCollision(wheel_fl,blockG) ==1) or
(simCheckCollision(youBot,blockG) ==1)) then
 collsBlockG = 1
 else
 collsBlockG =0
 end

--[[
 if (collsBlockG == 1 and collsGreen == 0) then
 dialogHandle3 = simDisplayDialog('!!!!!!! Good Job !!!!!!! '," Move to
Next Block" ,sim_dlgstyle_ok,false,nil,{0,0.5,0,0,0,0},{0,0,0.2,1,1,1})
 collsGreen = 1
 end

 if(collsGreen == 1 and collsBlockG == 0) then
 simEndDialog(dialogHandle3)
 collsGreen = 0
 collsBlockG = 0
 end

--]]
--

 if ((collsBlockR == 1 or collsBlockB == 1 or collsBlockG == 1) and collisionR == 0)
then
 dialogHandle1 = simDisplayDialog('!!!!!!! Good Job !!!!!!! '," Move
to Next Block" ,sim_dlgstyle_ok,false,nil,{0,0.5,0,0,0,0},{0,0,0.2,1,1,1})
 collsRed = 1
 lastTime = currentTime
 collisionR = 1
 end

 if(collsRed == 1 and (currentTime - lastTime) > 4) then
 simEndDialog(dialogHandle1)
 collsRed = 0
 collisionR = 0
 end

97

 if ((simCheckCollision(wheel_rr,block1) ==1) or
(simCheckCollision(wheel_rl,block1) ==1) or (simCheckCollision(wheel_fr,block1)
==1) or (simCheckCollision(wheel_fl,block1) ==1) or
(simCheckCollision(youBot,block1) ==1)) then
 collsLaptop1 = 1
 else
 collsLaptop1 =0
 end

 if (collsLaptop1 == 1) then
 a2 = " Round Complete.... Total Collision = Tcoll "
 b2 = string.gsub(a2, "Tcoll",collisionNumber-1)
 dialogHandle2 = simDisplayDialog('Game Over - Next Round
',b2 ,sim_dlgstyle_ok,false,nil,{0,0.5,0,0,0,0},{0,0,0.2,1,1,1})
 print(currentTime-timerStart)
 end

end
 Modified Hukoyu Code

-- This is a ROS enabled Hokuyo_04LX_UG01 model (although it can be used as a
generic
-- ROS enabled laser scanner), based on the existing Hokuyo model. It performs
instantaneous
-- scans and publishes ROS Laserscan msgs, along with the sensor's tf.

-- Rajat Tyagi
--10/12/2016
-- This scripts converts the Hukoyu LIdar into a 360 LIDAR and
-- makes a rectangular forece field around the omnirobot , calculates the 3- DOF force-
feedback using the Fy Law and transmits the force-feedback to the joystick controller via
a ROS Node.

function round(num, idp)
 local mult = 10^(idp or 0)
 return math.floor(num * mult + 0.5) / mult
end

if (sim_call_type==sim_childscriptcall_initialization) then
 laserHandle=simGetObjectHandle("Hokuyo_URG_04LX_UG01_ROS_laser")
 jointHandle=simGetObjectHandle("Hokuyo_URG_04LX_UG01_ROS_joint")

98

 modelRef=simGetObjectHandle("Hokuyo_URG_04LX_UG01_ROS_ref")
 modelHandle=simGetObjectAssociatedWithScript(sim_handle_self)
 objName=simGetObjectName(modelHandle)

 scanR = 360
 stepN = 16
 maxDistance = 0.5
 -- compC = 0.1

 boundLayX = 0.15 -- Previous Value: 0.15
 boundLayY = 0.12 -- Previous Value: 0.15

 gainX = 250 * boundLayX --30 -- 200
 gainY = 200 * boundLayY --30 -- 200

gainQ = 2100 * boundLayX --120
dgainQ = 100 * boundLayY --100

 dgainX = 100 * boundLayX --100
 dgainY = 750* boundLayY --120

 ForceVecX = {}
 ForceVecY = {}
 momentVecX = {}
 momentVecY = {}

 mcm = 100

 feedbackString={}
 valsTransmit={}
 lastT = 0
 scanRange=scanR*math.pi/180 --You can change the scan range. Angle_min=-
scanRange/2, Angle_max=scanRange/2-stepSize
 stepSize=stepN*math.pi/1024
 pts=math.floor(scanRange/stepSize)
 --print(pts)
 dists={}
 ForceVec = {}
 points={}
 segments={}
 anglesT={}

 xVelocity = 0
 yVelocity = 0

99

 qVelocity = 0

 simSetObjectFloatParameter(laserHandle,sim_visionfloatparam_far_clipping,0.5)

 for i=1,pts*3,1 do
 table.insert(points,0)
 end
 for i=1,pts*7,1 do
 table.insert(segments,0)
 end

 black={0,0,0}
 red={0,0.6,0.9}
 redT={0,1,0}
 red1={1,0,0}
 green={0,1,0}
 blue={0,0,1}
 purple={0.5,0,0.5}
 gray={0.5,0.5,0.5}

 lines100=simAddDrawingObject(sim_drawing_lines,1,0,-
1,1000,black,black,black,red)
 lines1001=simAddDrawingObject(sim_drawing_lines,1,0,-
1,1000,black,black,black,redT)
 points100=simAddDrawingObject(sim_drawing_points,4,0,-
1,1000,black,black,black,red)
 linesFx=simAddDrawingObject(sim_drawing_lines,3,0,-
1,1000,black,black,black,green)
 linesFy=simAddDrawingObject(sim_drawing_lines,3,0,-
1,1000,black,black,black,blue)
 linesTq1=simAddDrawingObject(sim_drawing_lines,3,0,-
1,1000,black,black,black,red1)
 linesTq2=simAddDrawingObject(sim_drawing_lines,3,0,-
1,1000,black,black,black,purple)
 linesFr=simAddDrawingObject(sim_drawing_lines,3,0,-
1,1000,black,black,black,gray)

 pub=simExtRosInterface_advertise('/feedForce', 'std_msgs/String')
 pubData=simExtRosInterface_advertise('/data', 'std_msgs/String')
 pubDataTimed=simExtRosInterface_advertise('/dataT', 'std_msgs/String')

 -- pubX=simExtRosInterface_advertise('/feedForceX', 'std_msgs/Float64')
 -- pubY=simExtRosInterface_advertise('/feedForceY', 'std_msgs/Float64')
 -- pubQ=simExtRosInterface_advertise('/feedForceTheta', 'std_msgs/Float64')

100

end

if (sim_call_type==sim_childscriptcall_cleanup) then
 simRemoveDrawingObject(lines100)
 simRemoveDrawingObject(points100)
 simRemoveDrawingObject(linesFx)
 simRemoveDrawingObject(linesFy)
 feedbackString.data = tostring(0).. "," .. tostring(0)..",".. tostring(0)
 simExtRosInterface_publish(pub,feedbackString)

end

if (sim_call_type==sim_childscriptcall_sensing) then

showLaserPoints=simGetScriptSimulationParameter(sim_handle_self,'showLaserPoints')

showLaserSegments=simGetScriptSimulationParameter(sim_handle_self,'showLaserSeg
ments')

forceFeedback=simGetScriptSimulationParameter(sim_handle_self,'forceFeedbackParam
eter')
 ThetaFeedback=simGetScriptSimulationParameter(sim_handle_self,'ThetaFeedback')

 dists={}
 angle=-scanRange*0.5
 simSetJointPosition(jointHandle,angle)
 jointPos=angle

 laserOrigin=simGetObjectPosition(jointHandle,-1)
 laserOrient=simGetObjectOrientation(jointHandle,-1)
 modelInverseMatrix=simGetInvertedMatrix(simGetObjectMatrix(modelRef,-1))

countVec1 = 0

 --

 for ind=0,12,1 do
 r,dist,pt=simHandleProximitySensor(laserHandle) -- pt is relative to the laser ray!
(rotating!)
 m=simGetObjectMatrix(laserHandle,-1)
 cos = math.cos(ind*stepSize)
 cosFac = (1-cos)/cos
 distX = boundLayX + 0.29
 fieldX = distX + (distX * cosFac)
 if r>0 and dist < fieldX then

101

 dists[ind]=dist
 ForceVec[ind] = mcm*(fieldX - dist)
 -- We put the RELATIVE coordinate of that point into the table that we will
return:
 ptAbsolute=simMultiplyVector(m,pt)
 ptRelative=simMultiplyVector(modelInverseMatrix,ptAbsolute)
 points[3*ind+1]=ptRelative[1]
 points[3*ind+2]=ptRelative[2]
 points[3*ind+3]=ptRelative[3]
 segments[7*ind+7]=1 -- indicates a valid point
 else
 dists[ind]=0
 ForceVec[ind] = 0
 countVec1 = countVec1 + 1
 -- If we didn't detect anything, we specify (0,0,0) for the coordinates:
 ptAbsolute=simMultiplyVector(m,{0,0,fieldX})
 points[3*ind+1]=0
 points[3*ind+2]=0
 points[3*ind+3]=0
 segments[7*ind+7]=0 -- indicates an invalid point
 end
 segments[7*ind+1]=laserOrigin[1]
 segments[7*ind+2]=laserOrigin[2]
 segments[7*ind+3]=laserOrigin[3]
 segments[7*ind+4]=ptAbsolute[1]
 segments[7*ind+5]=ptAbsolute[2]
 segments[7*ind+6]=ptAbsolute[3]
 anglesT[ind]= angle
 ind=ind+1
 angle=angle+stepSize
 jointPos=jointPos+stepSize
 simSetJointPosition(jointHandle,jointPos)
 end

--
 for ind=13,31,1 do
 r,dist,pt=simHandleProximitySensor(laserHandle) -- pt is relative to the laser ray!
(rotating!)
 m=simGetObjectMatrix(laserHandle,-1)
 cos = math.cos((90*math.pi/180)-ind*stepSize)
 cosFac = (1-cos)/cos
 distY = boundLayY + 0.19
 fieldY = distY + (distY * cosFac)

 if r>0 and dist < fieldY then
 dists[ind]=dist
 ForceVec[ind] = mcm*(fieldY - dist)

102

 -- We put the RELATIVE coordinate of that point into the table that we will
return:
 ptAbsolute=simMultiplyVector(m,pt)
 ptRelative=simMultiplyVector(modelInverseMatrix,ptAbsolute)
 points[3*ind+1]=ptRelative[1]
 points[3*ind+2]=ptRelative[2]
 points[3*ind+3]=ptRelative[3]
 segments[7*ind+7]=1 -- indicates a valid point
 else
 dists[ind]=0
 ForceVec[ind] = 0
 countVec1 = countVec1 + 1
 -- If we didn't detect anything, we specify (0,0,0) for the coordinates:
 ptAbsolute=simMultiplyVector(m,{0,0,fieldY})
 points[3*ind+1]=0
 points[3*ind+2]=0
 points[3*ind+3]=0
 segments[7*ind+7]=0 -- indicates an invalid point
 end
 segments[7*ind+1]=laserOrigin[1]
 segments[7*ind+2]=laserOrigin[2]
 segments[7*ind+3]=laserOrigin[3]
 segments[7*ind+4]=ptAbsolute[1]
 segments[7*ind+5]=ptAbsolute[2]
 segments[7*ind+6]=ptAbsolute[3]
 anglesT[ind]= angle
 ind=ind+1
 angle=angle+stepSize
 jointPos=jointPos+stepSize
 simSetJointPosition(jointHandle,jointPos)
 end

 for ind=32,51,1 do
 r,dist,pt=simHandleProximitySensor(laserHandle) -- pt is relative to the laser ray!
(rotating!)
 m=simGetObjectMatrix(laserHandle,-1)
 cos = math.cos((-90*math.pi/180)+ind*stepSize)
 cosFac = (1-cos)/cos
 distY = boundLayY + 0.19
 fieldY = distY + (distY * cosFac)

 if r>0 and dist < fieldY then
 dists[ind]=dist
 ForceVec[ind] = mcm*(fieldY - dist)

103

 -- We put the RELATIVE coordinate of that point into the table that we will
return:
 ptAbsolute=simMultiplyVector(m,pt)
 ptRelative=simMultiplyVector(modelInverseMatrix,ptAbsolute)
 points[3*ind+1]=ptRelative[1]
 points[3*ind+2]=ptRelative[2]
 points[3*ind+3]=ptRelative[3]
 segments[7*ind+7]=1 -- indicates a valid point
 else
 dists[ind]=0
 ForceVec[ind] = 0
 countVec1 = countVec1 + 1
 -- If we didn't detect anything, we specify (0,0,0) for the coordinates:
 ptAbsolute=simMultiplyVector(m,{0,0,fieldY})
 points[3*ind+1]=0
 points[3*ind+2]=0
 points[3*ind+3]=0
 segments[7*ind+7]=0 -- indicates an invalid point
 end
 segments[7*ind+1]=laserOrigin[1]
 segments[7*ind+2]=laserOrigin[2]
 segments[7*ind+3]=laserOrigin[3]
 segments[7*ind+4]=ptAbsolute[1]
 segments[7*ind+5]=ptAbsolute[2]
 segments[7*ind+6]=ptAbsolute[3]
 anglesT[ind]= angle
 ind=ind+1
 angle=angle+stepSize
 jointPos=jointPos+stepSize
 simSetJointPosition(jointHandle,jointPos)
 end

for ind=52,64,1 do
 r,dist,pt=simHandleProximitySensor(laserHandle) -- pt is relative to the laser ray!
(rotating!)
 m=simGetObjectMatrix(laserHandle,-1)
 cos = math.cos((180*math.pi/180)-ind*stepSize)
 cosFac = (1-cos)/cos
 distX = boundLayX + 0.29
 fieldX = distX + (distX * cosFac)
 if r>0 and dist < fieldX then
 dists[ind]=dist
 ForceVec[ind] = mcm*(fieldX - dist)
 -- We put the RELATIVE coordinate of that point into the table that we will
return:
 ptAbsolute=simMultiplyVector(m,pt)
 ptRelative=simMultiplyVector(modelInverseMatrix,ptAbsolute)

104

 points[3*ind+1]=ptRelative[1]
 points[3*ind+2]=ptRelative[2]
 points[3*ind+3]=ptRelative[3]
 segments[7*ind+7]=1 -- indicates a valid point
 else
 dists[ind]=0
 ForceVec[ind] = 0
 countVec1 = countVec1 + 1
 -- If we didn't detect anything, we specify (0,0,0) for the coordinates:
 ptAbsolute=simMultiplyVector(m,{0,0,fieldX})
 points[3*ind+1]=0
 points[3*ind+2]=0
 points[3*ind+3]=0
 segments[7*ind+7]=0 -- indicates an invalid point
 end
 segments[7*ind+1]=laserOrigin[1]
 segments[7*ind+2]=laserOrigin[2]
 segments[7*ind+3]=laserOrigin[3]
 segments[7*ind+4]=ptAbsolute[1]
 segments[7*ind+5]=ptAbsolute[2]
 segments[7*ind+6]=ptAbsolute[3]
 anglesT[ind]= angle
 ind=ind+1
 angle=angle+stepSize
 jointPos=jointPos+stepSize
 simSetJointPosition(jointHandle,jointPos)
 end

--

for ind=65,76,1 do
 r,dist,pt=simHandleProximitySensor(laserHandle) -- pt is relative to the laser ray!
(rotating!)
 m=simGetObjectMatrix(laserHandle,-1)
 cos = math.cos((180*math.pi/180)+ind*stepSize)
 cosFac = (1-cos)/cos
 distX = boundLayX + 0.29
 fieldX = distX + (distX * cosFac)
 if r>0 and dist < fieldX then
 dists[ind]=dist
 ForceVec[ind] = mcm*(fieldX - dist)
 -- We put the RELATIVE coordinate of that point into the table that we will
return:
 ptAbsolute=simMultiplyVector(m,pt)
 ptRelative=simMultiplyVector(modelInverseMatrix,ptAbsolute)
 points[3*ind+1]=ptRelative[1]
 points[3*ind+2]=ptRelative[2]

105

 points[3*ind+3]=ptRelative[3]
 segments[7*ind+7]=1 -- indicates a valid point
 else
 dists[ind]=0
 ForceVec[ind] = 0
 countVec1 = countVec1 + 1
 -- If we didn't detect anything, we specify (0,0,0) for the coordinates:
 ptAbsolute=simMultiplyVector(m,{0,0,fieldX})
 points[3*ind+1]=0
 points[3*ind+2]=0
 points[3*ind+3]=0
 segments[7*ind+7]=0 -- indicates an invalid point
 end
 segments[7*ind+1]=laserOrigin[1]
 segments[7*ind+2]=laserOrigin[2]
 segments[7*ind+3]=laserOrigin[3]
 segments[7*ind+4]=ptAbsolute[1]
 segments[7*ind+5]=ptAbsolute[2]
 segments[7*ind+6]=ptAbsolute[3]
 anglesT[ind]= angle
 ind=ind+1
 angle=angle+stepSize
 jointPos=jointPos+stepSize
 simSetJointPosition(jointHandle,jointPos)
 end

--

for ind=77,95,1 do
 r,dist,pt=simHandleProximitySensor(laserHandle) -- pt is relative to the laser ray!
(rotating!)
 m=simGetObjectMatrix(laserHandle,-1)
 cos = math.cos((270*math.pi/180)- ind*stepSize)
 cosFac = (1-cos)/cos
 distY = boundLayY + 0.19
 fieldY = distY + (distY * cosFac)

 if r>0 and dist < fieldY then
 dists[ind]=dist
 ForceVec[ind] = mcm*(fieldY - dist)
 -- We put the RELATIVE coordinate of that point into the table that we will
return:
 ptAbsolute=simMultiplyVector(m,pt)
 ptRelative=simMultiplyVector(modelInverseMatrix,ptAbsolute)
 points[3*ind+1]=ptRelative[1]
 points[3*ind+2]=ptRelative[2]
 points[3*ind+3]=ptRelative[3]

106

 segments[7*ind+7]=1 -- indicates a valid point
 else
 dists[ind]=0
 ForceVec[ind] = 0
 countVec1 = countVec1 + 1
 -- If we didn't detect anything, we specify (0,0,0) for the coordinates:
 ptAbsolute=simMultiplyVector(m,{0,0,fieldY})
 points[3*ind+1]=0
 points[3*ind+2]=0
 points[3*ind+3]=0
 segments[7*ind+7]=0 -- indicates an invalid point
 end
 segments[7*ind+1]=laserOrigin[1]
 segments[7*ind+2]=laserOrigin[2]
 segments[7*ind+3]=laserOrigin[3]
 segments[7*ind+4]=ptAbsolute[1]
 segments[7*ind+5]=ptAbsolute[2]
 segments[7*ind+6]=ptAbsolute[3]
 anglesT[ind]= angle
 ind=ind+1
 angle=angle+stepSize
 jointPos=jointPos+stepSize
 simSetJointPosition(jointHandle,jointPos)
 end

for ind=96,115,1 do
 r,dist,pt=simHandleProximitySensor(laserHandle) -- pt is relative to the laser ray!
(rotating!)
 m=simGetObjectMatrix(laserHandle,-1)
 cos = math.cos((-270*math.pi/180)+ ind*stepSize)
 cosFac = (1-cos)/cos
 distY = boundLayY + 0.19
 fieldY = distY + (distY * cosFac)

 if r>0 and dist < fieldY then
 dists[ind]=dist
 ForceVec[ind] = mcm*(fieldY - dist)
 -- We put the RELATIVE coordinate of that point into the table that we will
return:
 ptAbsolute=simMultiplyVector(m,pt)
 ptRelative=simMultiplyVector(modelInverseMatrix,ptAbsolute)
 points[3*ind+1]=ptRelative[1]
 points[3*ind+2]=ptRelative[2]
 points[3*ind+3]=ptRelative[3]
 segments[7*ind+7]=1 -- indicates a valid point

107

 else
 dists[ind]=0
 ForceVec[ind] = 0
 countVec1 = countVec1 + 1
 -- If we didn't detect anything, we specify (0,0,0) for the coordinates:
 ptAbsolute=simMultiplyVector(m,{0,0,fieldY})
 points[3*ind+1]=0
 points[3*ind+2]=0
 points[3*ind+3]=0
 segments[7*ind+7]=0 -- indicates an invalid point
 end
 segments[7*ind+1]=laserOrigin[1]
 segments[7*ind+2]=laserOrigin[2]
 segments[7*ind+3]=laserOrigin[3]
 segments[7*ind+4]=ptAbsolute[1]
 segments[7*ind+5]=ptAbsolute[2]
 segments[7*ind+6]=ptAbsolute[3]
 anglesT[ind]= angle
 ind=ind+1
 angle=angle+stepSize
 jointPos=jointPos+stepSize
 simSetJointPosition(jointHandle,jointPos)
 end

for ind=116,127,1 do
 r,dist,pt=simHandleProximitySensor(laserHandle) -- pt is relative to the laser ray!
(rotating!)
 m=simGetObjectMatrix(laserHandle,-1)
 cos = math.cos(-ind*stepSize)
 cosFac = (1-cos)/cos
 distX = boundLayX + 0.29
 fieldX = distX + (distX * cosFac)
 if r>0 and dist < fieldX then
 dists[ind]=dist
 ForceVec[ind] = mcm*(fieldX - dist)
 -- We put the RELATIVE coordinate of that point into the table that we will
return:
 ptAbsolute=simMultiplyVector(m,pt)
 ptRelative=simMultiplyVector(modelInverseMatrix,ptAbsolute)
 points[3*ind+1]=ptRelative[1]
 points[3*ind+2]=ptRelative[2]
 points[3*ind+3]=ptRelative[3]
 segments[7*ind+7]=1 -- indicates a valid point
 else

108

 dists[ind]=0
 ForceVec[ind] = 0
 countVec1 = countVec1 + 1
 -- If we didn't detect anything, we specify (0,0,0) for the coordinates:
 ptAbsolute=simMultiplyVector(m,{0,0,fieldX})
 points[3*ind+1]=0
 points[3*ind+2]=0
 points[3*ind+3]=0
 segments[7*ind+7]=0 -- indicates an invalid point
 end
 segments[7*ind+1]=laserOrigin[1]
 segments[7*ind+2]=laserOrigin[2]
 segments[7*ind+3]=laserOrigin[3]
 segments[7*ind+4]=ptAbsolute[1]
 segments[7*ind+5]=ptAbsolute[2]
 segments[7*ind+6]=ptAbsolute[3]
 anglesT[ind]= angle
 ind=ind+1
 angle=angle+stepSize
 jointPos=jointPos+stepSize
 simSetJointPosition(jointHandle,jointPos)
 end

 simAddDrawingObjectItem(lines100,nil)
 simAddDrawingObjectItem(lines1001,nil)
 simAddDrawingObjectItem(points100,nil)

 if (showLaserPoints or showLaserSegments) then
 t={0,0,0,0,0,0}
 for i=0,pts-1,1 do
 t[1]=segments[7*i+4]
 t[2]=segments[7*i+5]
 t[3]=segments[7*i+6]
 t[4]=segments[7*i+1]
 t[5]=segments[7*i+2]
 t[6]=segments[7*i+3]
 if showLaserSegments then
 simAddDrawingObjectItem(lines100,t)

 end
 if (showLaserPoints and segments[7*i+7]~=0)then
 simAddDrawingObjectItem(points100,t)
 end
 end

109

 for i=52,76,1 do
 t[1]=segments[7*i+4]
 t[2]=segments[7*i+5]
 t[3]=segments[7*i+6]
 t[4]=segments[7*i+1]
 t[5]=segments[7*i+2]
 t[6]=segments[7*i+3]
 if showLaserSegments then
 simAddDrawingObjectItem(lines1001,t)
 end
 end
 end

Fx = 0
Fy = 0
Tq = 0
Bx = 0
By = 0
Bq = 0
TFx = 0
TFy = 0
TFq = 0

 xVelocity = round(simGetFloatSignal("VeloX"),2)
 yVelocity = round(simGetFloatSignal("VeloY"),2)
 qVelocity = round(simGetFloatSignal("VeloQ"),2)
 TimeStamp = round(simGetFloatSignal("Time"),2)
 collFlag = simGetIntegerSignal("collFlag")
 compC = simGetFloatSignal("compC")

 hukoyuOrient = math.deg(laserOrient[3])

 if(forceFeedback) then
 for i=0,pts-1,1 do

 ForceVecX[i] = (ForceVec[i]*math.cos(-(scanRange/2)+((i-1)*stepSize)))
 ForceVecY[i] = (ForceVec[i]*math.sin(-(scanRange/2)+((i-1)*stepSize)))
 momentVecY[i] = (dists[i]*math.cos(-(scanRange/2)+((i-1)*stepSize))) - compC

110

 Fx = Fx + ForceVecX[i]
 Fy = Fy + ForceVecY[i]
 Tq = Tq + ForceVecY[i] * momentVecY[i]

 end

 if(countVec1<pts) then
 Fx= Fx/(pts-(countVec1))
 Fy= Fy/(pts-(countVec1))
 Tq =Tq/(pts-(countVec1))
 end

 Fx = -gainX * round(Fx,2)
 Fy = -gainY * round(Fy,2)
 Tq = gainQ * round(Tq,2)

 Bx = dgainX * xVelocity
 By = dgainY * yVelocity
 Bq = dgainQ * qVelocity

 TFx = Fx - Bx
 TFy = Fy - By

 if(ThetaFeedback) then

 TFq = Tq - Bq

 else
 TFq = 0
 Tq = 0
 Bq = 0
 end

if (Fx ==0) then
 TFx = 0
end

if (Fy == 0) then
 TFy = 0
end

if (Tq == 0) then
 TFq = 0

111

end

 end

 feedbackString.data = tostring(TFx).. "," .. tostring(TFy)..",".. tostring(TFq)

 if ((TimeStamp - lastT) > 0.5) then
 simExtRosInterface_publish(pubDataTimed,valsTransmit)

 lastT = TimeStamp
 end

simAddDrawingObjectItem(linesFx,nil)
simAddDrawingObjectItem(linesFy,nil)
simAddDrawingObjectItem(linesTq1,nil)
simAddDrawingObjectItem(linesTq2,nil)
simAddDrawingObjectItem(linesFr,nil)

function saturation(val)

 if (val > 255) then
 return 255
 end

 if (val < -255) then
 return -255
 end

 if (val >= -255 and val <= 255) then
 return val
 end
end

 ptForceX = {saturation(TFx)/100,0,0}

 m1=simGetObjectMatrix(modelRef,-1)
 ptRelFx=simMultiplyVector(m1,ptForceX)
 forceXcord =
{laserOrigin[1],laserOrigin[2],laserOrigin[3],ptRelFx[1],ptRelFx[2],ptRelFx[3]}

 simAddDrawingObjectItem(linesFx,forceXcord)

112

 ptForceY = {0,saturation(TFy)/100,0}
 ptRelFy=simMultiplyVector(m1,ptForceY)
 forceYcord =
{laserOrigin[1],laserOrigin[2],laserOrigin[3],ptRelFy[1],ptRelFy[2],ptRelFy[3]}

 simAddDrawingObjectItem(linesFy,forceYcord)

 ptForceR = {saturation(TFx)/100,saturation(TFy)/100,0}
 ptRelFr=simMultiplyVector(m1,ptForceR)
 forceRcord =
{laserOrigin[1],laserOrigin[2],laserOrigin[3],ptRelFr[1],ptRelFr[2],ptRelFr[3]}

 simAddDrawingObjectItem(linesFr,forceRcord)

 ptForceQ1 = {0,0,saturation(TFq)/200}
 ptRelTq1=simMultiplyVector(m1,ptForceQ1)

 if (TFq>0) then
 forceQ1cord =
{laserOrigin[1],laserOrigin[2],laserOrigin[3],ptRelTq1[1],ptRelTq1[2],ptRelTq1[3]}
 simAddDrawingObjectItem(linesTq1,forceQ1cord)
 end

 if (TFq<0) then
 forceQ1cord =
{laserOrigin[1],laserOrigin[2],laserOrigin[3],ptRelTq1[1],ptRelTq1[2],-ptRelTq1[3]}
 simAddDrawingObjectItem(linesTq2,forceQ1cord)
 end

 simExtRosInterface_publish(pub,feedbackString)
 simExtRosInterface_publish(pubData,valsTransmit)

end

REFERENCES

[1] ODV Industrial News. “Ground Support Worldwide Cover Story: Driving in Circles,”
April 2010.

[2] Airtrax, "Sidewinder: Omni-directional Lift Truck, " unpublished.

[3] Kuka, “KMP Omnimove: Masterful maneuvering in confined spaces,” unpublished.

[4] O. Diegel, A. Badve, G. Bright, J. Potgieter, and S. Tlale, "Improved mecanum wheel
design for omni-directional robots," Australasian Conf. Robot. Autom., Auckland, pp.
117-121, 2002.

[5] A. Gfrerrer, "Geometry and kinematics of the Mecanum wheel," Comput. Aided

Geometric Des., vol. 25, no. 9, pp. 784-791, 2008.

[6] S. A. Miller, "Network interfaces and fuzzy-logic control for a mecanum-wheeled
omni-directional robot," unpublished.

[7] I. Omnix Technology, "Omnix Technology: Directional components and integrated
syst.," unpublished.

[8] P. Viboonchaicheep, A. Shimada, and Y. Kosaka, "Position rectification control for
Mecanum wheeled omni-directional vehicles," Ind. Electron. Soc., vol. 1, pp. 854-859,
2003.

[9] A. Shimada, S. Yajima, P. Viboonchaicheep, and K. Samura, "Mecanum-wheel vehicle
systems based on position corrective control," Ind. Electron. Soc., vol. 6, pp. 2077-
2082, 2005.

[10] A. Jochheim and C. Rohrig, "The virtual lab for teleoperated control of real
experiments," in Proc. 38th IEEE Conf. Decision and Control, 1999, vol. 1, pp. 819-
824.

[11] A. T. Bradley, S. A. Miller, G. A. Creary, N. A. Miller, M. D. Begley, and N. J. Misch,
"Mobius, An Omnidirectional Robot Utilizing Mecanum Wheels and Fuzzy Logic
Control," Advances Astronautical Sci., vol. 121, pp. 251-266, 2005.

[12] G. Campion, G. Bastin, and B. Dandrea-Novel, "Structural properties and
classification of kinematic and dynamic models of wheeled mobile robots," IEEE

Trans. Robot. Autom., vol. 12, no. 1, pp. 47-62, 1996.

114

[13] M. West and H. Asada, "Design of a holonomic omnidirectional vehicle," in Robot.

Autom., 1992 Proc. IEEE Int. Conf., pp. 97-103.

[14] S. A. Mascaro, "Force guided docking control of an omnidirectional holonomic
vehicle and its application to wheelchairs," MIT, MA, 1997.

[15] S. Mascaro, J. Spano, and H. H. Asada, "A reconfigurable holonomic omnidirectional
mobile bed with unified seating (RHOMBUS) for bedridden patients," inRobotics and

Automation, 1997 Proc. IEEE Int. Conf., vol. 2, pp. 1277-1282.

[16] Quaid III, Arthur E. "System and method for using a haptic device as an input device,"
U.S. Patent 8 095 200, Jan. 10, 2012.

[17] Rosenberg, Louis B. "Haptic feedback device," U.S. Patent 8 487 873, July 16, 2013.

[18] D. A. Grant and A. Kapelus, "Gaming device having a haptic-enabled trigger," U.S.
Patent 814 258 644, Apr. 22, 2014.

[19] P. Bachman and A. Milecki, "MR haptic joystick in control of virtual servo drive," in
J. Physics, Conf. Series, 2009, vol. 149, no. 1, p. 012034.

[20] R. J. Jacob, L. E. Sibert, D. C. McFarlane, and M. P. Mullen Jr, "Integrality and
separability of input devices," IEEE/ACM Trans. Computer-Human Interaction, vol. 1,
no. 1, pp. 3-26, 1994.

[21] A. Fattouh, M. Sahnoun, and G. Bourhis, "Force-feedback joystick control of a
powered wheelchair: Preliminary study," in Systems, Man and Cybernetics, 2004 IEEE

Int. Conf., vol. 3, pp. 2640-2645.

[22] B. Woods and N. Watson, "A short history of powered wheelchairs," Assistive

Technol., vol. 15, no. 2, pp. 164-180, 2003.

[23] C. S. Harrison, M. Grant, and B. A. Conway, "Haptic interfaces for wheelchair
navigation in the built environment," Presence: Teleoperators Virtual Environments,

vol. 13, no. 5, pp. 520-534, 2004.

[24] B. Grychtol, H. Lakany, and B. A. Conway, "A virtual reality wheelchair driving
simulator for use with a brain-computer interface," in Postgraduate Conference in

Biomedical Engineering & Medical Physics, 2009, p. 67.

[25] C. E. Wong and A. M. Okamura, "The snaptic paddle: a modular haptic device," in
Eurohaptics Conf. Symp. Haptic Interfaces Virtual Environment and Teleoperator

Syst., 2005, pp. 537-538.

[26] A. M. Okamura, "Methods for haptic feedback in teleoperated robot-assisted surgery,"
Ind. Robot, Int. J., vol. 31, no. 6, pp. 499-508, 2004.

[27] R. B. Gillespie, M. Hoffinan, and J. Freudenberg, "Haptic interface for hands-on
instruction in system dynamics and embedded control," in Haptic Interfaces for Virtual

115

Environment and Teleoperator Syst., 2003 Proc. 11th Symp., pp. 410-415.

[28] A. M. Okamura, C. Richard, and M. Cutkosky, "Feeling is believing: Using a force‐
feedback joystick to teach dynamic systems," J. Eng. Edu., vol. 91, no. 3, pp. 345-349,
2002.

[29] M. Badescu, C. Wampler, and C. Mavroidis, "Rotary haptic knob for vehicular
instrument controls," in Haptic Interfaces for Virtual Environment and Teleoperator

Syst., 2002 Proc. 10th Symp., pp. 342-343.

[30] D. Kim, K. W. Oh, D. Hong, J.-H. Park, and S.-H. Hong, "Remote control of excavator
with designed haptic device," in Control, Automation and Systems, 2008 Int. Conf., pp.
1830-1834.

[31] L. Marchal-Crespo, "Haptic guidance for enhancing human motor learning:
Application to a robot-assisted powered wheelchair trainer," Citeseer, 2009.

[32] B. E. Dicianno, R. A. Cooper, and J. Coltellaro, "Joystick control for powered
mobility: current state of technology and future directions," Physical Med. Rehabil.

Clinics North America, vol. 21, no. 1, pp. 79-86, 2010.

[33] S. P. Levine, D. A. Bell, L. A. Jaros, R. C. Simpson, Y. Koren, and J. Borenstein, "The
NavChair assistive wheelchair navigation system," IEEE Trans. Rehabil. Eng., vol. 7,
no. 4, pp. 443-451, 1999.

[34] B. Woods and N. Watson, "A short history of powered wheelchairs," Assistive

Technol., vol. 15, no. 2, pp. 164-180, 2003.

[35] R. C. Simpson, "Smart wheelchairs: A literature review," J. Rehabil. Res. Develop.,

vol. 42, no. 4, p. 423, 2005.

[36] H. Niniss and T. Inoue, "Electric wheelchair simulator for rehabilitation of persons
with motor disability," in Symp. Virtual Reality VIII, Belém (PA), 2006.

[37] P. R. Giacobbi Jr, C. E. Levy, F. D. Dietrich, S. H. Winkler, M. D. Tillman, and J. W.
Chow, "Wheelchair users' perceptions of and experiences with power assist wheels,"
Amer. J. Physical Med. Rahabil., vol. 89, no. 3, pp. 225-234, 2010.

[38] C. Richard, A. M. Okamura, and M. R. Cutkosky, "Getting a feel for dynamics: Using
haptic interface kits for teaching dynamics and controls," in ASME 6th Annu. Symp.

Haptic Interfaces, Dallas, TX, Nov, 1997, pp. 15-21.

[39] K. Bowen and M. K. O'Malley, "Adaptation of haptic interfaces for a labview-based
system dynamics course," in Haptic Interfaces for Virtual Environment and

Teleoperator Syst., 2006, pp. 147-152.

[40] D. E. Whitney, "Quasi-static assembly of compliantly supported rigid parts," J.

Dynamic Syst. Meas. Control, vol. 104, no. 1, pp. 65-77, 1982.

116

[41] J. Urbano, K. Terashima, T. Miyoshi, and H. Kitagawa, "Impedance control for safety
and comfortable navigation of an omni-directional mobile wheelchair," in Intelligent

Robots and Systems, Proc. IEEE/RSJ Int. Conf., 2004, vol. 2, pp. 1902-1907.

[42] Y. Kondo, T. Miyoshi, K. Terashima, and H. Kitagawa, "Navigation guidance control
using haptic feedback for obstacle avoidance of omni-directional wheelchair," in
Haptic interfaces for virtual environment and teleoperator systems symp., 2008, pp.
437-444.

[43] Y. Ueno, H. Kitagawa, K. Kakihara, and K. Terashima, "Development of collision
avoidance supporting system for power assist system in omni-directional mobile
robot," in SICE Annu. Conf. Proc., 2011, pp. 1447-1452.

[44] A. Fattouh, M. Sahnoun, and G. Bourhis, "Force-feedback joystick control of a
powered wheelchair: Preliminary study," in Systems, Man and Cybernetics, IEEE Int.

Conf., 2004, vol. 3, pp. 2640-2645.

[45] L. Kitagawa, T. Kobayashi, T. Beppu, and K. Terashima, "Semi-autonomous obstacle
avoidance of omnidirectional wheelchair by joystick impedance control," in Intelligent

Robots and Systems, 2001 Proc. IEEE/RSJ Int. Conf., vol. 4, pp. 2148-2153.

[46] Q. M. Christensen, Three degree of freedom haptic feedback for assisted driving of

holonomic omnidirectional wheelchairs. The University of Utah, UT, 2011.

[47] Y. Kondo, T. Miyoshi, K. Terashima, and H. Kitagawa, "Navigation guidance control
using haptic feedback for obstacle avoidance of omni-directional wheelchair," in
Haptic interfaces for virtual environment and teleoperator systems, symp., 2008, pp.
437-444.

[48] S. Robotics, "RMP 400 Omni: Segway Robotic Mobility Platforms," unpublished.

[49] P. Fiorini and Z. Shiller, "Motion planning in dynamic environments using velocity
obstacles," Int. J. Robotics Res., vol. 17, pp. 760-772, 1998.

[50] D. Bareiss, J. Van Den Berg, and K. K. Leang, "Stochastic automatic collision
avoidance for tele-operated unmanned aerial vehicles," in Intelligent Robots and

Systems, 2015 IEEE/RSJ Int. Conf., pp. 4818-4825.

[51] S. Omari, P. Gohl, M. Burri, M. Achtelik, and R. Siegwart, "Visual industrial
inspection using aerial robots," in Applied Robotics for the Power Industry, 2014 3rd

Int. Conf., pp. 1-5.

[52] Administration on Aging, "Aging Statistics," D. o. H. H. Services, unpublished.

[53] W. L. Erickson, C., "2007 Disability Status Report: United States," Cornell University

Rehabilitation Research and Training Center on Disability Demographics and

Statistics, unpublished.

[54] K. Berg, M. Hines, and S. Allen, "Wheelchair users at home: few home modifications

117

and many injurious falls," Amer. J. Public Health, vol. 92, no. 1, pp. 48-48, 2002.

[55] M. W. Brault, "Americans with Disabilities: 2005," US Census Bureau, unpublished.

