21,473 research outputs found

    Research at the Institute of electrotechnology in the field of induction heating

    Full text link
    The paper informs generally about the activities at the Institute of Electrotechnology in Hannover, Germany in the fields of education and research in Electrotechnology. Several actual research projects are described in detail in the field of induction heating. A second paper written by Baake and Spitans gives an overview about the activities at the institute in induction melting

    Flow stress and hot deformation activation energy of 6082 aluminium alloy influenced by initial structural state

    Get PDF
    Stress-strain curves of the EN AW 6082 aluminium alloy with 1.2 Si-0.51 Mg-0.75 Mn (wt.%) were determined by the uniaxial compression tests at temperatures of 450-550 degrees C with a strain rate of 0.5-10 s(-1). The initial structure state corresponded to three processing types: as-cast structure non-homogenized or homogenized at 500 degrees C, and the structure after homogenization and hot extrusion. Significantly higher flow stress appeared as a result of low temperature forming of the non-homogenized material. Hot deformation activation energy Q-values varied between 99 and 122 kJ.mol(-1) for both homogenized materials and from 200 to 216 kJ.mol(-1) for the as-cast state, while the Q-values calculated from the measured steady-state stress were always higher than those calculated from the peak stress values. For the extruded state of the 6082 alloy, the physically-based model was developed to reliably predict the flow stress influenced by dynamic softening, temperature, strain rate, and true strain up to 0.6.Web of Science912art. no. 124

    A thermoviscoplastic model with damage for simultaneous hot/cold forging analysis

    Get PDF
    A constitutive model is presented for simultaneous hot/cold forming processes of steels. The phenomenological material theory is based on an enhanced rheological model and accounts temperature dependently for nonlinear hardening, thermally activated recovery effects, an improved description of energy storage and dissipation during plastic deformations, and damage evolution as well. A thermomechanically consistent treatment of dissipative heating due to inelastic deformations, recovery processes and damage mechanisms is applied. The constitutive model is implemented into a commercial FE-code. The material parameters of the effective model response are identified for a low alloyed steel and validated by means of a simultaneous hot/cold forging process

    Development of the Metal Rheology Model of High-temperature Deformation for Modeling by Finite Element Method

    Get PDF
    It is shown that when modeling the processes of forging and stamping, it is necessary to take into account not only the hardening of the material, but also softening, which occurs during hot processing. Otherwise, the power parameters of the deformation processes are precisely determined, which leads to the choice of more powerful equipment. Softening accounting (processes of stress relaxation) will allow to accurately determine the stress and strain state (SSS) of the workpiece, as well as the power parameters of the processes of deformation. This will expand the technological capabilities of these processes. Existing commercial software systems for modeling hot plastic deformations based on the finite element method (FEM) do not allow this. This is due to the absence in these software products of the communication model of the component deformation rates and stresses, which would take into account stress relaxation. As a result, on the basis of the Maxwell visco-elastic model, a relationship is established between deformation rates and stresses. The developed model allows to take into account the metal softening during a pause after hot deformation. The resulting mathematical model is tested by experiment on different steels at different temperatures of deformation. The process of steels softening is determined using plastometers. It is established experimentally that the model developed by 89 ... 93 % describes the rheology of the metal during hot deformation. The relationship between the components of the deformation rates and stresses is established, which allows to obtain a direct numerical solution of plastic deformation problems without FED iterative procedures, taking into account the real properties of the metal during deformation. As a result, the number of iterations and calculations has significantly decreased

    A Life Study of Ausforged, Standard Forged and Standard Machined AISI M-50 Spur Gears

    Get PDF
    Tests were conducted at 350 K (170 F) with three groups of 8.9 cm (3.5 in.) pitch diameter spur gears made of vacuum induction melted (VIM) consumable-electrode vacuum-arc melted (VAR), AISI M-50 steel and one group of vacuum-arc remelted (VAR) AISI 9310 steel. The pitting fatigue life of the standard forged and ausforged gears was approximately five times that of the VAR AISI 9310 gears and ten times that of the bending fatigue life of the standard machined VIM-VAR AISI M-50 gears run under identical conditions. There was a slight decrease in the 10-percent life of the ausforged gears from that for the standard forged gears, but the difference is not statistically significant. The standard machined gears failed primarily by gear tooth fracture while the forged and ausforged VIM-VAR AISI M-50 and the VAR AISI 9310 gears failed primarily by surface pitting fatigue. The ausforged gears had a slightly greater tendency to fail by tooth fracture than the standard forged gears

    The materials processing research base of the Materials Processing Center

    Get PDF
    The goals and activities of the center are discussed. The center activities encompass all engineering materials including metals, ceramics, polymers, electronic materials, composites, superconductors, and thin films. Processes include crystallization, solidification, nucleation, and polymer synthesis

    Nonterrestrial utilization of materials: Automated space manufacturing facility

    Get PDF
    Four areas related to the nonterrestrial use of materials are included: (1) material resources needed for feedstock in an orbital manufacturing facility, (2) required initial components of a nonterrestrial manufacturing facility, (3) growth and productive capability of such a facility, and (4) automation and robotics requirements of the facility

    An overview of laser surface modification of die steels

    Get PDF
    In recent years, surface modification using advanced heat source like laser has been replacing the conventional methods to produce amorphous microstructure via rapid solidification. Due to the benefits of laser to enhance the tribological and mechanical properties of materials’ surface, several laser surface processing were developed including laser surface modification, namely laser alloying, transformation hardening, surface amorphization, shock hardening and glazing. In high temperature applications, the laser surface modification technique is beneficial to prolong the die life cycle, and also to improve the surface roughness of thermal barrier coatings (TBC). To produce the amorphous layer at a particular depth, laser parameter such as irradiance, frequency, and exposure time are controlled. Variations of parameter may result in modified microhardness properties of heat affected zone and transition zone. Nevertheless, works on laser glazing of bearings, railroad rails and TBC had proven the surface properties were enhanced through laser glazing to cope with excessive load, wear, fatigue, bending and friction demand

    Computer-aided analysis and design of the shape rolling process for producing turbine engine airfoils

    Get PDF
    Mild steel (AISI 1018) was selected as model cold rolling material and Ti-6A1-4V and Inconel 718 were selected as typical hot rolling and cold rolling alloys, respectively. The flow stress and workability of these alloys were characterized and friction factor at the roll/workpiece interface was determined at their respective working conditions by conducting ring tests. Computer-aided mathematical models for predicting metal flow and stresses, and for simulating the shape rolling process were developed. These models utilized the upper bound and the slab methods of analysis, and were capable of predicting the lateral spread, roll separating force, roll torque, and local stresses, strains and strain rates. This computer-aided design system was also capable of simulating the actual rolling process, and thereby designing the roll pass schedule in rolling of an airfoil or a similar shape

    2D linear friction weld modelling of a Ti-6Al-4V T-joint

    Get PDF
    Most examples of linear friction weld process models have focused on joining two identically shaped workpieces. This article reports on the development of a 2D model, using the DEFORM finite element package, to investigate the joining of a rectangular Ti-6Al-4V workpiece to a plate of the same material. The work focuses on how this geometry affects the material flow, thermal fields and interface contaminant removal. The results showed that the material flow and thermal fields were not even across the two workpieces. This resulted in more material expulsion being required to remove the interface contaminants from the weld line when compared to joining two identically shaped workpieces. The model also showed that the flash curves away from the weld due to the rectangular upstand "burrowing" into the base plate.Understanding these critical relationships between the geometry and process outputs is crucial for further industrial implementation of the LFW process.EPSRC, The Welding Institut
    corecore