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Abstract. A constitutive model is presented for simultaneous hot/cold forming processes
of steels. The phenomenological material theory is based on an enhanced rheological model
and accounts temperature dependently for nonlinear hardening, thermally activated re-
covery effects, an improved description of energy storage and dissipation during plastic
deformations, and damage evolution as well. A thermomechanically consistent treatment
of dissipative heating due to inelastic deformations, recovery processes and damage mech-
anisms is applied. The constitutive model is implemented into a commercial FE-code.
The material parameters of the effective model response are identified for a low alloyed
steel and validated by means of a simultaneous hot/cold forging process.

1 Introduction

Figure 1: Simultaneous hot/cold
forging process [21].

Innovative metal forming technologies make use of inho-
mogeneous temperature distribution, e.g. in the case of
the simultaneous hot/cold forging—see figure 1, where
hot and cold forming are applied locally to the work-
piece in one single process step [21]. Hence, the temper-
ature dependency of steel may be advantageously used
to archive high degrees of deformation at lower form-
ing forces in heated parts of the workpiece, respectively,
strain hardening and less thermally induced distortion in
the cold formed areas, which allows for the reduction of
process steps and production costs. From the viewpoint
of computational modeling of such processes, a huge challenge lies in a sufficiently accurate
description of the temperature dependent material behavior, i.e. nonlinear strain harden-
ing, strain rate sensitivity, thermal softening and recovery processes as well as potentially
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the detection and evolution of damage processes must be considered within the total rele-
vant temperature range. However, the current state of art models—e.g. [9, 2, 11, 19]—fail
to meet this demand.
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Figure 2: Rheological models of thermoviscoplasticity with nonlinear
isotropic and kinematic hardening, temperature dependent material
parameters and static recovery. Gray coloring of elements indicates
dissipation of related stress power.

The phenomenological ma-
terial model, proposed for si-
multaneous hot/cold forging
processes of steels, is based
on an enhanced rheological
model—see [5, 8], which con-
tains new basics elements be-
sides spring, dashpot and
friction element to account
for nonlinear hardening, and
thermally activated recovery
effects as well as an improved
description of energy storage
and dissipation during plastic
deformations—see figure 2.

The thermoelastic contribution of the network1 in figure 2 comprises a series connection
of a thermal strain element with the thermal expansion coefficient α̂(θ) on the left hand
side and a linear spring with the stiffness Ê(θ) in the middle of the network. The tempera-
ture dependent viscoplastic part on the right hand side of the rheological model, however,
consists of four chains arranged in parallel, each one representing a specific phenomenon
of the entire elastoviscoplastic material response. The nonlinear dashpot (parameters cηi)
on top of the viscoplastic contribution is necessary to include nonlinear rate dependency.
Below, the friction body is placed in connection with a novel dissipative strain element
(with parameter β) in order to account for the initial yield limit κ̂0(θ) and to enhance
the modeling capacity of energy storage and dissipation processes during plastic deforma-
tion. Next, a new hardening body with the stiffness Êκ(θ) is put in series connection to
another dissipative strain element (parameters cκi) in order to model nonlinear isotropic
hardening. Finally, the arrangement of a linear spring with the stiffness Êξ(θ) and a third
dissipative strain body (parameters cξi) at the bottom of the viscoplastic network con-
tribution represent nonlinear kinematic hardening. The stress power, which is spent at
the friction and the hardening body as well as at spring of kinematic hardening, is stored
in the network as free energy. Moreover, also static recovery is accounted for in these
basic components (associated recovery parameters are cκ0si ,cκsi ,cξsi), which means that
hardening diminishes and the related stored energy is released and dissipated as heat.

The rheological network directly provides the kinematics of the material model and

1Note, a spatial rheological model may be also represented graphically, which additionally accounts
for an additive decomposition of the stress and the strain tensor into the spherical and the deviatoric
contribution—see [5, 8] for more details.
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the equilibrium of internal stresses for the viscoplastic network contribution. Moreover,
these relations lead to the yield function f = |σ − ξ| − (κ̂0(θ) + κ) ≥ 0 and the flow rule
ε̇vp = λ σ−ξ

|σ−ξ|
by means of rearrangements in the framework of the balance equations of

thermomechanics, where the plastic multiplier λ is calculated from the stress ση in the
nonlinear dashpot. However, in lack of space, only the final material model is presented
afterward in this paper. Hence, the interested reader is referred to [5, 8, 7] concerning the
detailed procedure for deducing the constitutive equations from the rheological model.
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Figure 3: Sketch for motivation of the concept of
effective stresses and its application for rheologi-
cal models: σ denotes the effective stress and σ

a

represents the actual nominal stress with damage.

The enhanced rheological model also al-
lows for damage representation—see [6].
In the framework of continuum mechanics
and thermomechanically consistent material
modeling, the constitutive equations may
be extensively deduced from the rheologi-
cal network and fit into the concept of effec-
tive stresses of continuum damage mechanics
[17]—see also figure 3. The strain equiva-
lence holds for the the total and the internal
strain measures, i.e. the strain responses of
the effective and the damaged state of the
model are equivalent. Moreover, in the spe-
cial case of isothermal conditions, a linear re-
lationship turns out between the actual nom-
inal (damaged) and the effective (undam-
aged) model state, i.e. the following steps
provide the final model response—see [6]:

1. Solve the effective material response without damage,
2. Determine the current damage state D from the evolution equation of damage,
3. Calculate the damaged state of the model by multiplying the total and internal

effective stresses with the degradation/damage factor (1−D).
In general, however, there is a coupling between the effective and the nominal state of the
model due to the temperature dependency of the material parameters and the dissipation
of heat during the loading process.

In the next section, the constitutive model for simultaneous hot/cold forming is pre-
sented including some explanations concerning the implementation. Afterward, the model
behavior is studied briefly. In the last section, the material parameters, identified for the
effective part of the model, are verified by the test data and validated by means of the
simultaneous hot/cold forming process in [21].

2 Thermoviscoplastic constitutive model with damage evolution

The proposed material theory is based on the rheological network in figure 2 and is
formulated initially for small strains in the framework of thermomechanically consistent

3
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material modeling—see e.g. [13]. The related free energy is assumed as—see also [10, 15]:

ψa = ψth + (1−D)ψM , ψth = Q̂(θ) , (1)

in which ψth denotes the purely temperature dependent part of the thermal strain element
and ψM represent the mechanical contribution of the effective material model

ψM =
1

2ρ

(
2Ĝ(θ)ED

el · E
D

el + K̂(θ) tr(Eel)
2 + 2κ̂0(θ) εκ0

+ Êκ(θ) ε
2
κ + ÊX(θ)EX · EX

)
, (2)

which is multiplied by the degradation factor (1−D) with D as the scalar internal variable
of damage. In (2), the mass density ρ is constant, while the shear modulus Ĝ(θ), the bulk
modulus K̂(θ), the initial yield stress κ̂0(θ), and the stiffness parameter of isotropic Êκ(θ)
and kinematic hardening ÊX(θ) depend on the temperature. Moreover, Eel is the elastic
strain tensor, and ( )D as well as tr( ) are the deviator and trace operators. In addition,
εκ0

denotes an internal strain of the friction element to account for energy storage in this
rheological component, whereas εκ and EX are the internal strains of hardening belonging
to the (isotropic) hardening body and the linear spring of kinematic hardening.

The stress Ta in the damaged state of the material model is obtained according to2

Ta = ρ
∂ψa

∂Eel

= (1−D)T , T = ρ
∂ψM

∂Eel

= 2 Ĝ(θ)ED

el + K̂(θ) tr(Eel) 1 , (3)

while T is the stress tensor of the effective model response. The yield function results for
the nominal and the effective state of the model as

F a = (1−D)F , F =
√
3/2

∥∥TD −X
∥∥− (κ̂0(θ) + κ) (4)

with the stresses of kinematic hardening X (also denoted as back stress) and isotropic
hardening κ as well as the norm �A� =

√
A ·A. The flow rule reads

Ėvp = λ N
(
TD −X

)
, λ =

1

η̂(θ)

〈
F

D̂(κ, θ)

〉m̂(θ)

, (5)

where the operator N(A) = A

�A�
gives the ”direction” of a tensor. The stress of isotropic

hardening follows from the free energy (2) according to

κa = ρ
∂ψa

∂εκ
= (1−D) κ , κ = ρ

∂ψM

∂εκ
= Êκ(θ) εκ . (6)

The evolution equation of the conjugated internal strain εκ is chosen as—see [6, 5, 8]:

ε̇κ =

(
1−

(
εκ

ε∞κ

)nκ
)

˙̄Evp − ˆ̇ε∗κs(θ)

(
εκ

ε∞κ

)nκs

, (7)

2Note that the upper index a is used to indicate values in the damaged state of the model in order to
distinguish them from their effective counterparts.
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in which the first summand is related to nonlinear strain hardening with ˙̄Evp =
√

2/3 �Ėvp�
and the second term represents thermally activated recovery processes. The parameter
ε∞κ denotes the saturation value of the internal strain εκ. Moreover, nκ and nκs are pos-
itive exponents and ˆ̇ε∗κs(θ) is a non-negative temperature dependent recovery parameter.
Hence, with the definition of the saturation value κ̂∞(θ) = Êκ(θ) ε

∞
κ of the effective stress

of isotropic hardening κ, its evolution equation turns out similar as in [2, 19]:

κ̇ = Êκ(θ)

[(

1−

(

κ

κ̂∞(θ)

)nκ
)

˙̄Evp − ˆ̇ε∗κs(θ)

(

κ

κ̂∞(θ)

)nκs
]

+
∂θÊκ(θ)

Êκ(θ)
κ θ̇ , (8)

with ∂θÊκ(θ) denoting the partial derivative of Êκ(θ) with respect to the temperature θ.
The stresses of kinematic hardening (back stresses) are obtained from (2) according to

Xa = ρ
∂ψa

∂EX

= (1−D)X , X = ρ
∂ψM

∂EX

= ÊX(θ)EX . (9)

The evolution of the associated back strains is defined with a similar structure as in (7):

ĖX = Ėvp −

(

�EX�

ε∞X

)nX

N(X) ˙̄Evp − ˆ̇ε∗Xs(θ)

(

�EX�

ε∞X

)nXs

N(EX) , (10)

in which the directions N(X) and N(EX) in the second and third summand ensure the
thermomechanical consistency of this approach. All the related material parameters have
the same meaning as before in the case of isotropic hardening. Hence, with the saturation
value X̂∞(θ) := ÊX(θ) ε

∞
X of the norm �X�, the evolution equation of kinematic hardening

in the effective state turns out as

Ẋ = ÊX(θ)

[

Ėvp −

(

�X�

X̂∞(θ)

)nX

N(X) ˙̄Evp − ˆ̇ε∗Xs(θ)

(

�X�

X̂∞(θ)

)nXs

N(X)

]

+
∂θÊX(θ)

ÊX(θ)
X θ̇ .

(11)

The experimental characterization of energy storage and dissipation during plastic flow
of metals reveal that at the beginning of loading, much plastic work is stored in the
material—see e.g. [3]. However, current state of art plasticity models usually underesti-
mate such energy storage phenomena. Hence, additional energy storage is related to the
friction element, besides the common storage mechanism of energy due to hardening—see
in particular [5, 8]. The associated internal strain variable is defined according to—see [8]

ε̇κ0
= β̂(θ)

(

1−

(

εκ

ε∞κ

)nκ
)

˙̄Evp − ˆ̇ε∗κs(θ)

(

εκ0

ε∞κ

)nκs

, (12)

which is the generalization of an approach from [5] for temperature dependency and static
recovery. The definitions of all temperature dependent parameters specified above may
be found in [8] and, for the uniaxial case without energy storage in the friction body, also
in [6].
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Damage evolution

The evolution of the scalar internal variable of damage is chosen similar to the approach
in [14] in the first step—see also [6]:

D =

〈
Ēvp − ε̂c0

ε̂f0 − ε̂c0

〉nD

⇒ Ḋ =
nD

εf0 − εc0

〈
Ēvp/ĝ(

˙̄E, T, θ)− εc0

εf0 − εc0

〉nD−1 ˙̄Evp

ĝ( ˙̄E, T, θ)
, (13)

in which Ēvp =
√
2/3

∫ t

0
�Ėvp� dτ denotes the arclength of the viscoplastic strain rate and,

furthermore, ε̂c0 = εc0 ĝ(
˙̄E, T, θ) and ε̂f0 = εf0 ĝ(

˙̄E, T, θ) represent the critical threshold
values for damage initiation and the failure strain with the parameters εc0 > 0 and
εf0 > 0 as well as the strain rate, temperature and stress dependent function ĝ according
to [14]:

ĝ( ˙̄E, T, θ) =
(
1 + d2 e

(−d3T )
)(

1 + d4 ln(
˙̄E/ε̇0)

)
(1 + d5θ) . (14)

The parameters di are semipositive and the variable T is denoted as triaxiality and serves
for characterizing the stress state during loading:

T =
− tr(Ta)

||TaD||
=

− tr(T)

||TD||
, (15)

since the hydrostatic pressure significantly influences damage evolution—see e.g. [14].

Equation of heat conduction and mechanical dissipation

The equation of heat conduction reads in a general formulation—cf. [13, 6]

ĉaed θ̇ = − θ
∂sa

∂Eel

· Ėel

︸ ︷︷ ︸
−pate

+
1

ρ
div �q + b

︸ ︷︷ ︸
pQ

+
1

ρ
Ta · Ėvp −

n∑
j=1

∂ψa

∂aj
ȧj

︸ ︷︷ ︸
δa
M

− θ

n∑
j=1

∂sa

∂aj
ȧj

︸ ︷︷ ︸
−pa

ti

, (16)

in which ĉaed is the natural heat capacity at constant elastic deformation and sa the entropy:

ĉaed := θ
∂ sa(Eel, θ, a1, ..., an)

∂θ
, sa = α ·

∂ψa

∂Eel

−
∂ψa

∂θ
=

1

ρ
Ta ·α−

∂ψa

∂θ
, (17)

with α as the tensor of the thermal expansion coefficient. Moreover, in (16), pate and pati
denote the thermoelastic and thermoinelastic coupling terms with aj = {εκ0

, εκ,EX , D}.
Furthermore, pQ is assumed to be unaffected by damage and comprises heat conduction (�q

6
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is the heat flux vector) and volumetric heat sources b. The summand δaM is the mechanical
dissipation power—see also [5]. The entropy is calculated from the free energy (2) as:

sa =
1

ρ
(1−D)

(

3K̂(θ) α̂(θ) tr(Eel)− ∂θ Ĝ(θ)ED

el · E
D

el −
1

2
∂θ K̂(θ) tr(Eel)

2

)

− ∂θ Q̂(θ)−
1

ρ
(1−D)

(

∂θκ̂0(θ) εκ0
+

1

2
∂θÊκ(θ) ε

2
κ +

1

2
∂θÊX(θ)EX · EX

)

. (18)

Hence, the heat capacity at constant elastic deformation results to

ĉaed = −θ ∂θθ Q̂(θ) +
1

ρ
(1−D) θ

(

3 ∂θ K̂(θ) α̂(θ) tr(Eel) + 3K̂(θ) ∂θ α̂(θ) tr(Eel)

− ∂θθ Ĝ(θ)ED

el · E
D

el −
1

2
∂θθ K̂(θ) tr(Eel)

2

)

−
1

ρ
(1−D) θ

(

∂θθ κ̂0(θ) εκ0
+

1

2
∂θθ Êκ(θ) ε

2
κ +

1

2
∂θθ ÊX(θ)EX · EX

)

(19)

and appears as a process dependent function of all the arguments of the free energy. The
thermoelastic pate and the thermoinelastic coupling term pati turn out as

pate = (1−D) pte , pati = patp + patD , patp = (1−D) ptp (20)

with their counterparts of the effective material model according to

pte =
1

ρ
θ
(

∂θK̂(θ) tr(Eel)1− 3K̂(θ) α̂(θ) 1+ 2 ∂θ Ĝ(θ)ED

el

)

· Ėel , (21)

ptp =
1

ρ
θ
(

∂θκ̂0(θ) ε̇κ0
+ ∂θÊκ(θ) εκ ε̇κ + ∂θÊX(θ)EX · ĖX

)

. (22)

Furthermore, the thermoinelastic coupling term pati comprises an additional contribution
patD due to damage evolution:

patD =
1

ρ
θ

(

3K̂(θ) α̂(θ) tr(Eel)− ∂θ Ĝ(θ)ED

el · E
D

el −
1

2
∂θ K̂(θ) tr(Eel)

2

)

Ḋ

−
1

ρ
θ

(

∂θκ̂0(θ) εκ0
+

1

2
∂θÊκ(θ) ε

2
κ +

1

2
∂θÊX(θ)EX · EX

)

Ḋ . (23)

In order to prove the thermomechanical consistency of the model, the mechanical dissi-
pation δaM is evaluated and separated into both semipositive summands:

δaM = δavp + δaD , δavp = (1−D) δvp ≥ 0 , δaD = ψMḊ ≥ 0 . (24)

The second part δaD is due to damage evolution and represents the dissipation of the
mechanical free energy (2), which has been stored in the material during the loading

7
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process. The first summand, however, is the product of the degradation factor (1 − D)
and the viscoplastic dissipation power of the effective material model δvp, which one again
may be arranged into two expressions:

δvp =
1

ρ

[

F +
(

1− β̂(θ)
)

κ̂0(θ) +
(

β(θ) κ̂0(θ) + κ
)

(

κ

κ̂∞(θ)

)nκ

+ �X�

(

�X�

X̂∞(θ)

)nX
]

˙̄Evp

+
1

ρ

[

(

κ̂0(θ)

(

εκ0

ε∞κ

)nκs

+ κ

(

κ

κ̂∞(θ)

)nκs
)

ˆ̇ε∗κs(θ) + �X�

(

�X�

X̂∞(θ)

)nXs

ˆ̇ε∗Xs(θ)

]

≥ 0 .

(25)

Its first line represents the dissipation due to plastic loading and is associated to the
dashpot and the three dissipative strain elements in the rheological network of figure 2.
In contrast, the second line of (25) gives the dissipation of free energy due to static recovery
in the friction and hardening body as well as in the spring of kinematic hardening.

Hypoelastoviscoplastic large-deformation formulation and implementation

Thanks to the ease of implementation in the standard non-linear FE-codes like LS-DYNA,
the Jaumann stress rate T̊J and the rate of deformation D are applied as the statical
and dynamical variables for the rate constitutive model of finite deformation plasticity,
although it is well-known that they are not energy conjugate stress and strain measures
[18, 13]. However, due to the small elastic strain in the presence at finite deformations,
this procedure may be justified in the limit of engineering precision.

The small-strain, hyperelastic material theory presented above my be easily converted
into an objective finite-deformation rate-formulation on the current configuration under
the assumptions of small elastic Eel and small back strains EX and an isotropic thermal
expansion behavior—see e.g. [8] for more details. Thus, it holds for the strain rate tensor

D = Dth +Del +Dvp , Dth = α̂(θ) θ̇ 1 , Dvp = λ N
(

TD −X
)

(26)

with the kinematical analogy between the strain measures of small and large deformations:

Ėel =̂ Del , Ėvp =̂ Dvp , ˙̄Evp =̂ D̄vp . (27)

A hypoelastic relation is assumed for the Cauchy stress according to

T̊J = 2 Ĝ(θ)DD

el + K̂(θ) tr(Del) 1 +

(

∂θĜ(θ)

Ĝ(θ)
TD +

∂θK̂(θ)

K̂(θ)
tr(T) 1

)

θ̇ (28)

and the evolution equation (11) of the back stress is rewritten as

X̊J = ÊX(θ)

[

Dvp −

(

�X�

X̂∞(θ)

)nX

N(X) D̄vp − ˆ̇ε∗Xs(θ)

(

�X�

X̂∞(θ)

)nXs

N(X)

]

+
∂θÊX(θ)

ÊX(θ)
X θ̇ ,

(29)

8
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in which T̊J and X̊J denote the objective Jaumann rates of the Cauchy and the back
stress. Note that the latter one approximately operates on the current configuration, too.

The material model is implemented into the finite element program LS-DYNA as a user
subroutine. LS-DYNA uses a ”staggered” solution strategy for the coupled field problem
of the balance of momentum and the equation of heat conduction, i.e. the both field
equations are solved separately one after the other. Hence, the mechanical time steps
remain isothermal and, hence, in the user material model, the response of the effective
material model must only be multiplied with the damage factor (1 − D) to account for
damage evolution. For the thermal time step, however, the equation of heat conduction is
simplified as usually by means of the assumptions that both thermomechanical coupling
terms are negligible and that the heat capacity is a function of the temperature only, i.e.
pte := 0, ptp := 0 and ĉed = ĉed(θ) hold.

3 Simulation of uniaxial tension tests
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Figure 4: Matlab simulation of tension tests. Left: stress response
(with effective stresses in gray). Right: evolution of temperature
(with results of comparative calculation without damage in gray).

The model capabilities are
studied by means of the sim-
ulation of uniaxial tension
tests with the program Mat-
lab. The material parame-
ters are chosen to represent
a typical steel behavior. Fig-
ure 4 (left side) shows the flow
curves with the nominal stress
response colored and the ef-
fective stresses in gray. The
related evolution of tempera-
ture is given in the right dia-
gram, where, for the purpose
of comparison, the tempera-
ture course is added in gray
for an additional simulation
without damage evolution.

After a certain process dependent, critical equivalent strain value, the colored stress
responses obviously diminish due to damage evolution in the material and finally drop to
zero—see figure 4 (left). Note that some of the corresponding graphs of effective stresses
(without damage) in gray also exhibit a slight decrease of the stress values at large strains,
however, due to adiabatic heating and the associated thermal softening of the material.

The graphs of the simulated temperature courses in figure 4 (right) reveal the influence
of damage evolution onto the adiabatic heating. In particular in the middle temperature
range, the dissipative heating is significantly stronger due to damage evolution than in
the gray graphs from the comparative calculation without any damage mechanisms.
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4 Verification and validation of effective material model
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Figure 5: Comparison of test data (points) and simulation results (lines). Left: Tension-compression test
with relaxation phases [1]. Right: Flow curves3.
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Figure 6: Comparison of experimental flow curve [12] (points) and simulation results (lines).
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The material parameters of the effective part of the
model are identified for the low alloyed steel 51CrV4
with the optimization program LS-OPT by means
of test data at various temperature levels—see [8]
for more details and the parameter listing. Figures
5–7 show the comparison between the experimental
data and the related prediction with the identified
material parameters. It may be summarized that
the constitutive theory captures well the thermal
dependency of the steel alloy 51CrV4 in the wide
range of strain, strain rate and temperature.

Finally, the effective (undamaged) state of the model is validated briefly by means of
the simultaneous hot/cold forging process in [21]—see figure 8. A detailed description

3The test data is kindly provided by Prof. Scholtes, Institute of Materials Engineering, University of
Kassel, Kassel/Germany—see also [8].
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about the modeling steps of this complex forming process with LS-DYNA may be found
in [20, 8]. The proposed material theory is applied in a finite element simulation (FEM)
as well as in a second analysis with element-free Galerkin-Method (EFG)—see also [8].
Additionally, figure 8 presents the simulation results of the numerical study in [20], for
which a standard plasticity model of LS-DYNA with a tabular based definition of the
temperature and rate dependent yield stress. The proposed model yields better results
than the standard plasticity model of LS-DYNA and enables are quite well prediction of
the final geometry and the forming force of the forging process at hand as figure 8 reveals.
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(mm) (mm)

Model Std-M New-Model

Analysis FE FE EFG

k1 12.0 13.9 13.3 12.7

k2 14.0 13.9 13.3 12.6

h 13.6 13.5 13.6 13.7

d 76.8 78.1 77.8 77.6

l 130.6 131.3 130.3 129.0
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Figure 8: Comparison of test data4 and simulation results of standard material model (”Std-M”) of
LS-DYNA [20] and proposed material theory.

5 Summary

A thermoviscoplasticity theory with damage is presented for simultaneous hot/cold
forming, which is based on an enhanced rheological model. The constitutive equations
are implemented into a commercial FE-code. The material theory captures the thermal
dependency in the wide range from room temperature nearly up to the melting point.
The material parameters of the effective model response are identified for a low alloyed
steel and validated by means of a simultaneous hot/cold forging process.
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[6] Bröcker, C., Matzenmiller, A.: Thermomechanically consistent material modeling with damage for
simultaneous hot/cold forming based on enhanced rheological models, In: J. Eberhardsteiner et. al.
(eds.): Proc. of European Congress on Computational Methods in Applied Sciences and Engineering
(ECCOMAS 2012), Vienna, 10-14.09.2012.
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