45 research outputs found

    Noninvasive autonomic nervous system assessment in respiratory disorders and sport sciences applications

    Get PDF
    La presente tesis está centrada en el análisis no invasivo de señales cardíacas y respiratorias, con el objetivo de evaluar la actividad del sistema nervioso autónomo (ANS) en diferentes escenarios, tanto clínicos como no clínicos. El documento está estructurado en tres partes principales. La primera parte consiste en una introducción a los aspectos fisiológicos y metodológicos que serán cubiertos en el resto de la tesis. En la segunda parte, se analiza la variabilidad del ritmo cardiaco (HRV) en el contexto de enfermedades respiratorias, concretamente asma (tanto en niños como en adultos) y apnea del sueño. En la tercera parte, se estudian algunas aplicaciones novedosas del análisis de señales cardiorespiratorias en el campo de las ciencias del deporte. La primera parte está compuesta por los capítulos 1 y 2. El capítulo 1 consiste en una extensa introducción al funcionamiento del sistema nervioso autónomo y las características de las bioseñales analizadas a lo largo de la tesis. Por otro lado, se aborda la patofisiología del asma y la apnea del sueño, su relación con el funcionamiento del ANS y las estrategias de diagnóstico y tratamiento de lasmismas. El capítulo concluye con una introducción a la fisiología del ejercicio, así como al interés en la estimación del volumen tidal y del umbral anaeróbico en el campo de las ciencias del deporte.En cuanto al capítulo 2, se presenta un marco de trabajo para el análisis contextualizado de la HRV. Después de una descripción de las técnicas de evaluación y acondicionamiento de la señal de HRV, el capítulo se centra en el efecto de los latidos ectópicos, la arritmia sinusal respiratoria y la frecuencia respiratoria en el análisis de la HRV.Además, se discute el uso de un índice para la evaluación de la distribución de la potencia en los espectros de HRV, así como diferentes medidas de acoplo cardiorespiratorio.La segunda parte está compuesta por los capítulos 3, 4 y 5, todos ellos relacionados con el análisis de la HRV en enfermedades respiratorias. Mientras que los capítulos 3 y 4 están centrados en asma infantil y en adultos respectivamente, el capítulo 5 aborda la apnea del sueño. El asma es una enfermedad respiratoria crónica que aparece habitualmente acompañada por una inflamación de las vías respiratorias. Aunque afecta a personas detodas las edades, normalmente se inicia en edades tempranas, y ha llegado a constituir una de las enfermedades crónicasmás comunes durante la infancia. Sin embargo, todavía no existe un método adecuado para el diagnóstico de asma en niños pequeños. Por otro lado, el rol fundamental que desempeña el sistema nervioso parasimpático en el control del tono bronco-motor y la bronco-dilatación sugiere que la rama parasimpática del ANS podría estar implicada en la patogénesis del asma. De estemodo, en el capítulo 3 se evalúa el ANS mediante el análisis de la HRV en dos bases de datos diferentes, compuestas por niños en edad pre-escolar clasificados en función de su riesgo de desarrollar asma, o de su condición asmática actual. Los resultados del análisis revelaron un balance simpáticovagal reducido y una componente espectral de alta frecuencia más picuda en aquellos niños con un mayor riesgo de desarrollar asma. Además, la actividad parasimpática y el acoplo cardiorespiratorio se redujeron en un grupo de niños con bajo riesgo de asma al finalizar un tratamiento para bronquitis obstructiva, mientras que estos permanecieron inalterados en aquellos niños con una peor prógnosis.A diferencia de los niños pequeños, en el caso de adultos el diagnóstico de asma se realiza a través de una rutina clínica bien definida. Sin embargo, la estratificación de los pacientes en función de su grado de control de los síntomas se basa generalmente en el uso de cuestionarios auto-aplicados, que pueden tener un carácter subjetivo. Por otro lado, la evaluación de la severidad del asma requiere de una visita hospitalaria y de incómodas pruebas, que no pueden aplicarse de una forma continua en el tiempo. De este modo, en el capítulo 4 se estudia el valor de la evaluación del ANS para la estratificación de adultos asmáticos. Para ello, se emplearon diferentes características extraídas de la HRV y la respiración, junto con varios parámetros clínicos, para entrenar un conjunto de algoritmos de clasificación. La inclusión de características relacionadas con el ANS para clasificar los sujetos atendiendo a la severidad del asma derivó en resultados similares al caso de utilizar únicamente parámetros clínicos, superando el desempeño de estos últimos en algunos casos. Por lo tanto, la evaluación del ANS podría representar un potencial complemento para la mejora de la monitorización de sujetos asmáticos.En el capítulo 5, se analiza la HRV en sujetos que padecen el síndrome de apnea del sueño (SAS) y comorbididades cardíacas asociadas. El SAS se ha relacionado con un incremento de 5 veces en el riesgo de desarrollar enfermedades cardiovasculares (CVD), que podría aumentar hasta 11 veces si no se trata convenientemente. Por otro lado, una HRV alterada se ha relacionado independientemente con el SAS y con numerosos factores de riesgo para el desarrollo de CVD. De este modo, este capítulo se centra en evaluar si una actividad autónoma desbalanceada podría estar relacionada con el desarrollo de CVD en pacientes de SAS. Los resultados del análisis revelaron una dominancia simpática reducida en aquellos sujetos que padecían SAS y CVD, en comparación con aquellos sin CVD. Además, un análisis retrospectivo en una base de datos de sujetos con SAS que desarollarán CVD en el futuro también reveló una actividad simpática reducida, sugiriendo que un ANS desbalanceado podría constituir un factor de riesgo adicional para el desarrollo de CVD en pacientes de SAS.La tercera parte está formada por los capítulos 6 y 7, y está centrada en diferentes aplicaciones del análisis de señales cardiorespiratorias en el campo de las ciencias del deporte. El capítulo 6 aborda la estimación del volumen tidal (TV) a partir del electrocardiograma (ECG). A pesar de que una correcta monitorización de la actividad respiratoria es de gran interés en ciertas enfermedades respiratorias y en ciencias del deporte, la mayor parte de la actividad investigadora se ha centrado en la estimación de la frecuencia respiratoria, con sólo unos pocos estudios centrados en el TV, la mayoría de los cuales se basan en técnicas no relacionadas con el ECG. En este capítulo se propone un marco de trabajo para la estimación del TV en reposo y durante una prueba de esfuerzo en tapiz rodante utilizando únicamente parámetros derivados del ECG. Errores de estimación del 14% en la mayoría de los casos y del 6% en algunos sugieren que el TV puede estimarse a partir del ECG, incluso en condiciones no estacionarias.Por último, en el capítulo 7 se propone una metodología novedosa para la estimación del umbral anaeróbico (AT) a partir del análisis de las dinámicas de repolarización ventricular. El AT representa la frontera a partir de la cual el sistema cardiovascular limita la actividad física de resistencia, y aunque fue inicialmente concebido para la evaluación de la capacidad física de pacientes con CVD, también resulta de gran interés en el campo de las ciencias del deporte, permitiendo diseñar mejores rutinas de entrenamiento o para prevenir el sobre-entrenamiento. Sin embargo, la evaluación del AT requiere de técnicas invasivas o de dispositivos incómodos. En este capítulo, el AT fue estimado a partir del análisis de las variaciones de las dinámicas de repolarización ventricular durante una prueba de esfuerzo en cicloergómetro. Errores de estimación de 25 W, correspondientesa 1 minuto en este estudio, en un 63% de los sujetos (y menores que 50 W en un 74% de ellos) sugieren que el AT puede estimarse de manera no invasiva, utilizando únicamente registros de ECG.<br /

    Development of a sensorized inflatable mattress for unobtrusive breathing measurement during sleep

    Get PDF
    The study of biosignals have been a topic of interest for a lot of investigators. The amount of the information they can provide makes easier to detect in early stages complicated medical conditions and gives lots of information to the physicians. Nevertheless, the way of acquiring these signals sometimes can be obtrusive and annoying for the patient. This is the case of the respiration rate during polysomnography where an abdominal band is attached tightly around the chest. In this project we implemented a pressure sensor in an inflatable mattress to substitute the abdominal band in the acquisition of the respiratory rhythm. An agreement larger than 90% between the respiratory waveforms was reached in the best-case scenarios when compared with the abdominal band. However, when the patient moves or coughs the agreement drops to less than 20% making that system suitable under controlled conditions where the patient does not move such as during the REM phase.El estudio de las bioseñales ha sido un tema de interés para muchos investigadores. La cantidad de información que pueden proporcionar facilita la detección en etapas tempranas de enfermedades y aporta mucha información a los médicos. Sin embargo, la forma de adquirir estas señales a veces puede resultar intrusiva y molesta para el paciente. Este es el caso de la medida de la respiración durante la polisomnografía, donde se sujeta una banda abdominal apretada alrededor del tórax. En este proyecto implementamos un sensor de presión en un colchón inflable para sustituir la faja abdominal en la adquisición del ritmo respiratorio. Se alcanzó una concordancia superior al 90 % entre las formas de onda respiratorias en los mejores escenarios en comparación con la banda abdominal. Sin embargo, cuando el paciente se mueve o tose, la concordancia cae a menos del 20 %, lo que hace que el sistema sea adecuado en condiciones controladas en las que el paciente no se mueve, como durante la fase REM.L'estudi dels biosenyals ha estat un tema d'interès per a molts investigadors. La quantitat d'informació que poden proporcionar facilita la detecció en les primeres etapes de malalties complicades i, proporciona molta informació als metges. No obstant això, la manera d'adquirir aquests senyals de vegades pot resultar molest per al pacient. Aquest és el cas de la freqüència respiratòria durant la polisomnografia, on una banda abdominal s'uneix fortament al voltant del pit. En aquest projecte hem implementat un sensor de pressió en un matalàs inflable per substituir la banda abdominal en l'adquisició del ritme respiratori. Es va aconseguir una concordança superior al 90% entre les formes d'ona respiratòries en els millors escenaris en comparació amb la banda abdominal. Tanmateix, quan el pacient es mou o tus, la concordança baixa a menys del 20%, fent que aquest sistema sigui adequat en condicions controlades on el pacient no es mou, com per exemple durant la fase REM

    Methods for Doppler Radar Monitoring of Physiological Signals

    Get PDF
    Unobtrusive health monitoring includes advantages such as long-term monitoring of rarely occurring conditions or of slow changes in health, at reasonable costs. In addition, the preparation of electrodes or other sensors is not needed. Currently, the main limitation of remote patient monitoring is not in the existing communication infrastructure but the lack of reliable, easy-to-use, and well-studied sensors.The aim of this thesis was to develop methods for monitoring cardiac and respiratory activity with microwave continuous wave (CW) Doppler radar. When considering cardiac and respiration monitoring, the heart and respiration rates are often the first monitored parameters. The motivation of this thesis, however, is to measure not only rate-related parameters but also the cardiac and respiratory waveforms, including the chest wall displacement information.This dissertation thoroughly explores the signal processing methods for accurate chest wall displacement measurement with a radar sensor. The sensor prototype and measurement setup choices are reported. The contributions of this dissertation encompass an I/Q imbalance estimation method and a nonlinear demodulation method for a quadrature radar sensor. Unlike the previous imbalance estimation methods, the proposed method does not require the use of laboratory equipment. The proposed nonlinear demodulation method, on the other hand, is shown to be more accurate than other methods in low-noise cases. In addition, the separation of the cardiac and respiratory components with independent component analysis (ICA) is discussed. The developed methods were validated with simulations and with simplified measurement setups in an office environment. The performance of the nonlinear demodulation method was also studied with three patients for sleep-time respiration monitoring. This is the first time that whole-night measurements have been analyzed with the method in an uncontrolled environment. Data synchronization between the radar sensor and a commercial polysomnographic (PSG) device was assured with a developed infrared (IR) link, which is reported as a side result.The developed methods enable the extraction of more useful information from a radar sensor and extend its application. This brings Doppler radar sensors one step closer to large-scale commercial use for a wide range of applications, including home health monitoring, sleep-time respiration monitoring, and measuring gating signals for medical imaging

    Remote Assessment of the Cardiovascular Function Using Camera-Based Photoplethysmography

    Get PDF
    Camera-based photoplethysmography (cbPPG) is a novel measurement technique that allows the continuous monitoring of vital signs by using common video cameras. In the last decade, the technology has attracted a lot of attention as it is easy to set up, operates remotely, and offers new diagnostic opportunities. Despite the growing interest, cbPPG is not completely established yet and is still primarily the object of research. There are a variety of reasons for this lack of development including that reliable and autonomous hardware setups are missing, that robust processing algorithms are needed, that application fields are still limited, and that it is not completely understood which physiological factors impact the captured signal. In this thesis, these issues will be addressed. A new and innovative measuring system for cbPPG was developed. In the course of three large studies conducted in clinical and non-clinical environments, the system’s great flexibility, autonomy, user-friendliness, and integrability could be successfully proven. Furthermore, it was investigated what value optical polarization filtration adds to cbPPG. The results show that a perpendicular filter setting can significantly enhance the signal quality. In addition, the performed analyses were used to draw conclusions about the origin of cbPPG signals: Blood volume changes are most likely the defining element for the signal's modulation. Besides the hardware-related topics, the software topic was addressed. A new method for the selection of regions of interest (ROIs) in cbPPG videos was developed. Choosing valid ROIs is one of the most important steps in the processing chain of cbPPG software. The new method has the advantage of being fully automated, more independent, and universally applicable. Moreover, it suppresses ballistocardiographic artifacts by utilizing a level-set-based approach. The suitability of the ROI selection method was demonstrated on a large and challenging data set. In the last part of the work, a potentially new application field for cbPPG was explored. It was investigated how cbPPG can be used to assess autonomic reactions of the nervous system at the cutaneous vasculature. The results show that changes in the vasomotor tone, i.e. vasodilation and vasoconstriction, reflect in the pulsation strength of cbPPG signals. These characteristics also shed more light on the origin problem. Similar to the polarization analyses, they support the classic blood volume theory. In conclusion, this thesis tackles relevant issues regarding the application of cbPPG. The proposed solutions pave the way for cbPPG to become an established and widely accepted technology

    Characterization and processing of novel neck photoplethysmography signals for cardiorespiratory monitoring

    Get PDF
    Epilepsy is a neurological disorder causing serious brain seizures that severely affect the patients' quality of life. Sudden unexpected death in epilepsy (SUDEP), for which no evident decease reason is found after post-mortem examination, is a common cause of mortality. The mechanisms leading to SUDEP are uncertain, but, centrally mediated apneic respiratory dysfunction, inducing dangerous hypoxemia, plays a key role. Continuous physiological monitoring appears as the only reliable solution for SUDEP prevention. However, current seizure-detection systems do not show enough sensitivity and present a high number of intolerable false alarms. A wearable system capable of measuring several physiological signals from the same body location, could efficiently overcome these limitations. In this framework, a neck wearable apnea detection device (WADD), sensing airflow through tracheal sounds, was designed. Despite the promising performance, it is still necessary to integrate an oximeter sensor into the system, to measure oxygen saturation in blood (SpO2) from neck photoplethysmography (PPG) signals, and hence, support the apnea detection decision. The neck is a novel PPG measurement site that has not yet been thoroughly explored, due to numerous challenges. This research work aims to characterize neck PPG signals, in order to fully exploit this alternative pulse oximetry location, for precise cardiorespiratory biomarkers monitoring. In this thesis, neck PPG signals were recorded, for the first time in literature, in a series of experiments under different artifacts and respiratory conditions. Morphological and spectral characteristics were analyzed in order to identify potential singularities of the signals. The most common neck PPG artifacts critically corrupting the signal quality, and other breathing states of interest, were thoroughly characterized in terms of the most discriminative features. An algorithm was further developed to differentiate artifacts from clean PPG signals. Both, the proposed characterization and classification model can be useful tools for researchers to denoise neck PPG signals and exploit them in a variety of clinical contexts. In addition to that, it was demonstrated that the neck also offered the possibility, unlike other body parts, to extract the Jugular Venous Pulse (JVP) non-invasively. Overall, the thesis showed how the neck could be an optimum location for multi-modal monitoring in the context of diseases affecting respiration, since it not only allows the sensing of airflow related signals, but also, the breathing frequency component of the PPG appeared more prominent than in the standard finger location. In this context, this property enabled the extraction of relevant features to develop a promising algorithm for apnea detection in near-real time. These findings could be of great importance for SUDEP prevention, facilitating the investigation of the mechanisms and risk factors associated to it, and ultimately reduce epilepsy mortality.Open Acces

    Signal Processing Approaches for Cardio-Respiratory Biosignals with an Emphasis on Mobile Health Applications

    Get PDF
    We humans are constantly preoccupied with our health and physiological status. From precise measurements such as the 12-lead electrocardiograms recorded in hospitals, we have moved on to mobile acquisition devices, now as versatile as smart-watches and smart-phones. Established signal processing techniques do not cater to the particularities of mobile biomedical health monitoring applications. Moreover, although our capabilities to acquire data are growing, many underlying physiological phenomena remain poorly understood. This thesis focuses on two aspects of biomedical signal processing. First, we investigate the physiological basis of the relationship between cardiac and breathing biosignals. Second, we propose a methodology to understand and use this relationship in health monitoring applications. Part I of this dissertation examines the physiological background of the cardio-respiratory relationship and indexes based on this relationship. We propose a methodology to extract the respiratory sinus arrhythmia (RSA), which is an important aspect of this relationship. Furthermore, we propose novel indexes incorporating dynamics of the cardio-respiratory relationship, using the RSA and the phase lag between RSA and breathing. We then evaluate, systematically, existing and novel indexes under known autonomic stimuli. We demonstrate our indexes to be viable additions to the existing ones, thanks to their performance and physiological merits. Part II focuses on real-time and instantaneous methods for the estimation of the breathing parameters from cardiac activity, which is an important application of the cardio-respiratory relationship. The breathing rate is estimated from electrocardiogram and imaging photoplethysmogram recordings, using two dedicated filtering schemes, one of which is novel. Our algorithm measures this important vital rhythm in a truly real-time manner, with significantly shorter delays than existing methods. Furthermore, we identify situations, in which an important assumption regarding the estimation of breathing parameters from cardiac activity does not hold, and draw a road-map to overcome this problem. In Part III, we use indexes and methodology developed in Parts I and II in two applications for mobile health monitoring, namely, emotion recognition and sleep apnea detection from cardiac and breathing biosignals. Results on challenging datasets show that the cardio-respiratory indexes introduced in the present thesis, especially those related to the phase lag between RSA and breathing, are successful for emotion recognition and sleep apnea detection. The novel indexes reveal to be complementary to previous ones, and bring additional insight into the physiological basis of emotions and apnea episodes. To summarize, the techniques proposed in this thesis help to bypass shortcomings of previous approaches in the understanding and the estimation of cardio-respiratory coupling in real-life mobile health monitoring

    The 2023 wearable photoplethysmography roadmap

    Get PDF
    Photoplethysmography is a key sensing technology which is used in wearable devices such as smartwatches and fitness trackers. Currently, photoplethysmography sensors are used to monitor physiological parameters including heart rate and heart rhythm, and to track activities like sleep and exercise. Yet, wearable photoplethysmography has potential to provide much more information on health and wellbeing, which could inform clinical decision making. This Roadmap outlines directions for research and development to realise the full potential of wearable photoplethysmography. Experts discuss key topics within the areas of sensor design, signal processing, clinical applications, and research directions. Their perspectives provide valuable guidance to researchers developing wearable photoplethysmography technology

    Sleep Stage Classification: A Deep Learning Approach

    Get PDF
    Sleep occupies significant part of human life. The diagnoses of sleep related disorders are of great importance. To record specific physical and electrical activities of the brain and body, a multi-parameter test, called polysomnography (PSG), is normally used. The visual process of sleep stage classification is time consuming, subjective and costly. To improve the accuracy and efficiency of the sleep stage classification, automatic classification algorithms were developed. In this research work, we focused on pre-processing (filtering boundaries and de-noising algorithms) and classification steps of automatic sleep stage classification. The main motivation for this work was to develop a pre-processing and classification framework to clean the input EEG signal without manipulating the original data thus enhancing the learning stage of deep learning classifiers. For pre-processing EEG signals, a lossless adaptive artefact removal method was proposed. Rather than other works that used artificial noise, we used real EEG data contaminated with EOG and EMG for evaluating the proposed method. The proposed adaptive algorithm led to a significant enhancement in the overall classification accuracy. In the classification area, we evaluated the performance of the most common sleep stage classifiers using a comprehensive set of features extracted from PSG signals. Considering the challenges and limitations of conventional methods, we proposed two deep learning-based methods for classification of sleep stages based on Stacked Sparse AutoEncoder (SSAE) and Convolutional Neural Network (CNN). The proposed methods performed more efficiently by eliminating the need for conventional feature selection and feature extraction steps respectively. Moreover, although our systems were trained with lower number of samples compared to the similar studies, they were able to achieve state of art accuracy and higher overall sensitivity
    corecore