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Abstract

Epilepsy is a neurological disorder causing serious brain seizures that severely affect the patients’

quality of life. Sudden unexpected death in epilepsy (SUDEP), for which no evident decease reason

is found after post-mortem examination, is a common cause of mortality. The mechanisms leading

to SUDEP are uncertain, but, centrally mediated apneic respiratory dysfunction, inducing dangerous

hypoxemia, plays a key role. Continuous physiological monitoring appears as the only reliable solution

for SUDEP prevention. However, current seizure-detection systems do not show enough sensitivity

and present a high number of intolerable false alarms. A wearable system capable of measuring several

physiological signals from the same body location, could efficiently overcome these limitations. In this

framework, a neck wearable apnea detection device (WADD), sensing airflow through tracheal sounds,

was designed. Despite the promising performance, it is still necessary to integrate an oximeter sensor

into the system, to measure oxygen saturation in blood (SpO2) from neck photoplethysmography

(PPG) signals, and hence, support the apnea detection decision.

The neck is a novel PPG measurement site that has not yet been thoroughly explored, due to

numerous challenges. This research work aims to characterize neck PPG signals, in order to fully

exploit this alternative pulse oximetry location, for precise cardiorespiratory biomarkers monitoring.

In this thesis, neck PPG signals were recorded, for the first time in literature, in a series of experi-

ments under different artifacts and respiratory conditions. Morphological and spectral characteristics

were analyzed in order to identify potential singularities of the signals. The most common neck PPG

artifacts critically corrupting the signal quality, and other breathing states of interest, were thoroughly

characterized in terms of the most discriminative features. An algorithm was further developed to

differentiate artifacts from clean PPG signals. Both, the proposed characterization and classification

model can be useful tools for researchers to denoise neck PPG signals and exploit them in a variety of

clinical contexts. In addition to that, it was demonstrated that the neck also offered the possibility,

unlike other body parts, to extract the Jugular Venous Pulse (JVP) non-invasively.

Overall, the thesis showed how the neck could be an optimum location for multi-modal monitoring

in the context of diseases affecting respiration, since it not only allows the sensing of airflow related

signals, but also, the breathing frequency component of the PPG appeared more prominent than in

the standard finger location. In this context, this property enabled the extraction of relevant features

to develop a promising algorithm for apnea detection in near-real time.

These findings could be of great importance for SUDEP prevention, facilitating the investigation

of the mechanisms and risk factors associated to it, and ultimately reduce epilepsy mortality.
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Chapter 1

Introduction

1.1 Epilepsy mortality

Epilepsy is a neurological condition that causes sudden bursts of electrical activity in the brain, called

seizures. It affects more than 70 million people worldwide [1, 2], and the UK alone is home to 500,000

cases [3]. The symptoms vary depending on the type of seizure and the part of the brain that is

affected, but they generally include uncontrollable convulsions, going blank, becoming stiff and even

collapsing. Epilepsy can be a lifelong condition, with the highest incidence in infants and elderly age

groups [4]. With the appropriate treatment, 70% of the patients could be seizure-free [5]. However,

80% of people with epilepsy live in low-income countries and do not have proper access to antiseizure

treatments, nor to a complete diagnosis [6]. This greatly increases the premature mortality rate among

epileptic patients.

Epilepsy-related deaths can be caused by status epilepticus, accidents and suicide [7]. In the UK,

there are over 1000 deaths per year, which corresponds to the shocking number of 21 per week [8, 9,

10, 11]. However, in the majority of the cases, no obvious cause of death can be found post-mortem.

This is described as sudden unexpected death in epilepsy (SUDEP), which often happens during sleep

when less assistance is available. SUDEP is responsible for up to 9 deaths per 1000 patients each year

[12], with the highest incidence in young adults (20-45 years old) [13]. It is very difficult to characterize

such a phenomenon, but a widely adopted definition for SUDEP is: “a sudden, unexpected, witnessed

or not witnessed, non-traumatic and non-drowning death in patients with epilepsy, with or without

evidence of a seizure and excluding documented status epilepticus, in which postmortem examination

does not reveal a toxicological or anatomical cause of death” [14].
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1.2 SUDEP mechanisms and pathophysiology

The exact mechanisms leading to SUDEP are still unknown and unpredictable since very few cases

have been possible to monitor. Indeed, the Mortality in Epilepsy Monitoring Units Study (MORTE-

MUS) [15], was the first retrospective work evaluating the incidence and mechanisms of cardiorespira-

tory arrests encountered in 11 epileptic patients in the last moments preceding SUDEP. Generalized

tonic-clonic seizures (GTCS), causing convulsions and severe alteration of the cardiorespiratory func-

tion, were found to trigger the physiological storm leading to death in all patients. A recurrent

pattern indicated that many patients suffered from short tachycardia and tachypnea immediately af-

ter the seizure offset, which developed in a profound apnea and bradycardia. In some cases, patients

died instantaneously from a terminal apnea and asystole, while in others, death occurred after a few

intermittent respiratory efforts lasting up to 18min.

Despite this consistent postictal pattern, there is strong evidence suggesting that SUDEP patho-

physiology results from an interplay between cardiovascular, respiratory and brainstem dysfunction, as

well as autonomic dysregulation and arousal failure [16, 17]. The exact succession of events is poorly

understood, but postmortem studies have provided insights into the potential causes, contributors or

consequences of seizures, leading to death.

Cardiac dysfunction during seizures is a well-known phenomenon that results in arrythmia of

different types, such as tachycardia, bradycardia, asystole or atrioventricular conduction blocks [18].

Cardiac structural changes are commonly found in SUDEP cases, including myocyte hypertrophy

and myocardial fibrosis abnormalities [19, 20]. Transient left ventricular dysfunction, in the form of

Takotsubo cardiomyopathy [21] or neurogenic stunned myocardium [22], were also observed in living

epilepsy patients. This was shown to be induced by GTCS or focal seizures, as a consequence of

excessive sympathetic stimulation.

Respiratory dysfunction is also well-studied in the SUDEP literature, identifying seizure-related

apneas as essential biomarkers [23]. The propagation of the seizure into the limbic areas of the brain

controlling respiration results in the loss of respiratory drive. Prolonged periods of apneas can then

dangerously disturb the oxygen supply to vital organs and lead to profound hypoxemia. Several studies

have demonstrated that postictal apneic oxygen desaturations play a crucial role in SUDEP [24, 25, 26].

Even though hypoxemia is generally of central origin, upper airways obstruction and ictal laryngospasm

can be other precipitating factors leading to asphyxiation in SUDEP, specially when patients are found

in a prone position in bed [27, 28]. Post-mortem studies have similarly revealed pulmonary structural

changes, following GTCS, that could be additional important contributors to postictal hypoxia [19].

Pulmonary edema, i.e. an accumulation of fluid in the lungs, is commonly found in autopsies [29, 20].

Several hypotheses point that a massive sympathetic discharge induced by the seizure, causes vascular
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vasoconstriction and increases hydrostatic pressure [30]. This ultimately shifts an increased volume

of blood from the systemic to the pulmonary circulation, generating pulmonary congestion. Others,

support the idea that pulmonary edema is secondary to central respiratory inhibition leading to

hypoxia [31]. Pulmonary edema was also postulated to be an epiphenomenon of prolonged seizures [32].

Postictal generalized electroencephalographic suppression (PGES), also appeared as an important

SUDEP biomarker [33, 34, 35]. This global depression of the cortical electrical activity was widely

present in all SUDEP patients evaluated in the MORTEMUS study [15]. PGES is significantly as-

sociated with GTCS and severe hypoxemic respiratory dysfunction [34, 36]. In fact, the longer the

duration, the more profound the brainstem impairment, and hence the greater the risk of terminal

apnea leading to SUDEP [33]. Other consequences of PGES are the loss of consciousness, postictal

immobility, and the impairment of the arousal response. The lack of these recovery reflexes could

be critical when patients with airway obstruction are in the prone position, not permitting their

self-repositioning [37, 38].

Seizures, and in particular GTCS ones, often lead to irreversible brainstem dysfunction, causing

autonomic system dysregulation. Besides cardio-respiratory impairment, this can be noticeable by a

reduced heart rate variability (HRV) and changes in transpiration [39]. Indeed, research demonstrated

that low HRV ratios during the awake state, and extremely high or extremely low HRV during the sleep

to awake phases, were linked with SUDEP [40]. Some studies observed an increase in electrodermal

activity (EDA), as a result of postictal sympathetic activation, which was directly correlated with

a prolonged duration of PGES [41, 42, 43]. Although HRV and EDA abnormalities are far from

being lethal, they can be used as potential biomarkers for autonomic dysfunction, which in turn is a

surrogate of SUDEP.

To summarize, SUDEP can be considered as a multi-factorial phenomenon, in which several mech-

anisms come into play. There is not a unique hypothesis explaining it, but all the dysfunctions covered,

could, individually or collectively, be responsible for the lethal outcome.

1.3 Risk factors for SUDEP

Based on SUDEP pathophysiology and epidemiology, various factors have been associated with an

increased risk of SUDEP.

Static risk factors include young male gender [13], high frequency of tonic-clonic (convulsive)

seizures (≥ 3 GTCS/year) [44], early onset of epilepsy before 16 years old and disease duration for at

least 15 years [45, 46]. Mental health problems and intellectual disability were also shown to increase

mortality [47, 48].

Genetic factors can also play a big role in SUDEP. These include mutations of genes that regu-
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late sodium and potassium ion channels, which are widely present in the heart and the brain [40].

Channelopathies are typically correlated with cardiac comorbidities, which increase the likelihood of

cardiac arrest in the postictal phase [40]. A well-studied example is the Dravet syndrome, an epileptic

encephalopathy that predisposes patients to cardiac arrhythmias in addition to seizures [49]. Mutation

of the SCN1A gene results in parasympathetic hyperactivity, which is reflected by decreased HRV and

P wave dispersion [50].

Modifiable risk factors include the management of seizures and treatments, as well as the patients’

lifestyle and environment. Having more than 13 seizures in the last year, not being seizure-free in the

last 1-5 years and suffering 11-20 convulsive seizures in the last 3 months, are prospect determinants

of SUDEP [51, 52]. Nocturnal seizures significantly augment the risk by threefold, partially due to the

lack of surveillance [53]. Adherence to anti-epileptic drugs (AED) is essential to reduce the number of

GTCS and hence prevent SUDEP. However, the prescription of an excessive number of AEDs, denoting

poor seizure control, was also identified as a risk factor [45]. Sleep deprivation, alcohol, smoking or

anxiolytics misuse are other lifestyle aspects that enhance seizure occurrence [47]. Sleeping in a prone

position in combination with postictal immobility, make epileptic patients more susceptible to die of

asphyxiation.

Even though static and genetic factors are hardly preventable, modifiable risks could be avoided

by designing appropriate seizure reduction and intervention strategies.

1.4 Risk reduction and SUDEP prevention

The fatal consequences of GTCS demonstrate the necessity of taking preventive actions to reduce

epileptic patients’ mortality. SUDEP could be significantly prevented by different means [54].

First and simply, doctors and caregivers should properly inform epileptic patients of the risk

factors leading to SUDEP, no matter how sensitive or distressful the conversations might be [55].

By improving the lifestyle and adherence to AED therapy, the management of the disease could be

positively impacted. Besides these awareness conversations, there are some questionnaires, like the

SUDEP and Seizure Safety Checklist [56] or the self-monitoring EpSMon app [57], that facilitate the

risk assessment and the control of seizures over time. Adoption of these tools could help clinicians take

informative decisions on the prescription of the most suitable treatment for each patient. However, at

present there is little evidence of their use.

Anti-epileptic drugs are the first option for seizure freedom and reduction of SUDEP incidence [58].

These are, however, only effective in two-thirds of the population [5]. Drug-resistant patients at high

risk are typically referred for resective epileptic surgery, which can greatly decrease the SUDEP rates if

successful [59, 60]. Other palliative solutions, such as vagal nerve stimulation (VNS) [61] or responsive
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neurostimulation [16] have also been proposed recently for patients that are not good candidates

for surgery. Even though only a few studies have been published, these alternatives have provided

satisfactory evidence to reduce the risk of SUDEP. Despite the efforts for seizure control and reduction,

there are still many patients with frequent GTCS, that are not suitable for AED treatment or do not

have access to invasive interventions.

At present, there are no effective solutions to SUDEP apart from preventive sleep supervision and

constant physiological monitoring [62, 63, 64]. Indeed, many studies have demonstrated that nocturnal

supervision by an individual or listening device greatly reduce the risk of SUDEP [62, 65]. Early

assistance by nurses, caregivers, or relatives could be a lifesaver for epileptic patients found breathless

or in a prone position, following a seizure. Peri-ictal interventions, including direct repositioning in bed,

somatosensory stimulation or cardio-respiratory resuscitation could alleviate respiratory dysfunction,

reduce PGES duration, and hence prevent SUDEP [66, 67]. Supplemental oxygen administration can

also help in the recovery from early hypoxemia, by promoting arousal and stimulating respiration.

However, it is controversial whether it is effective, especially in cases of central apnea and pulmonary

edema [68].

Outside of epilepsy monitoring units, sleep supervision by room companions or frequent checks by

relatives, could be tedious and overall unpractical on a night-to-night basis. Moreover, residential care

settings or caregiver options when the patient lives alone, become very costly. To counteract these

drawbacks and offer some autonomy to patients, anti suffocation lattice pillows have been proposed

in the home environment to prevent asphyxiation [69]. However, very limited evidence supports their

success in reducing SUDEP [68].

Continuous physiological monitoring, appears as a more reliable alternative, by scanning for

biomarkers indicative of disease and automatically releasing alarms that warn of life-threateningly

situations. An extended overview of the current state of the art of seizure monitoring devices for

SUDEP prevention is presented as follows.

1.5 Seizure monitoring devices for SUDEP prevention

Video electroencephalography (v-EEG) is the gold standard for diagnosis of epilepsy and seizure-type

characterization, due to its ability to detect most ictal events unequivocally [70]. This sensing modality

measures, synchronously to video imaging, the brain electrical activity, by means of electrodes attached

to the scalp or implanted invasively. Head-mounted EEG devices, do typically include a large number

of bulky wired sensors, that cause discomfort to the user and can critically impair the quality of

sleep. These cannot be easily placed in the home environment without trained personnel, making

EEG unsuitable and unpractical for continuous monitoring on a night-to-night basis. Invasive EEG
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electrodes are unobtrusive, but the risk of implantation is very high.

In this framework, non-EEG seizure detection devices, that are non-invasive, adapted for ambula-

tory monitoring and capable to trigger an alarm, are preferred. A wide variety of systems, exploiting

different physiological parameters involved in SUDEP pathophysiology, exists [71, 72, 73]. These

mainly focus on cardiovascular and respiratory changes, as well as on noise, electrodermal and motor

activity.

1.5.1 Motor activity sensors

Motion-based seizure detection has been of primary interest in the literature, due to the simplicity

of identifying convulsive movements that frequently arise in lethal GTCS. Different modalities have

been explored to measure this characteristic signature.

Automated video approaches allow real-time image processing for quantitative movement analysis

during seizures [74, 75]. The sleep activity monitor SAMi-3 (by the company SAMi Alert) exploits a

wireless video camera coupled with infrared illuminators to automatically detect unusual movements

during sleep and alert relatives [76]. A constant CCTV based epilepsy monitoring service is also

offered by the company EpiView. An important issue of this is, however, the patient’s privacy. Even

though video detection is a practical contactless option that in some cases could even measure heart

rate (HR) and respiration [77], it constraints the patient within the scope of the camera. Moreover,

video-based systems are not safe as they tend to erroneously detect normal movements, or conversely,

miss convulsions occluded by bedding.

Similarly, pressure sensors placed under the mattress, measuring the absence of motion or abnormal

movements, did not show sufficient performance for SUDEP prevention [72]. Some commercial prod-

ucts, implementing under-mattress pressure mats in combination with other sensing modalities, are

Aremco (by Aremco), Ep-iT (by Alert-iT), Emfit (by Emfit Ltd) and MP5 (by Medpage). The Emfit

pressure mattress, for instance, was tested in several studies, showing variable accuracy in seizures

detection from 30% [78] to 89% [79]. Despite the widespread adoption among epileptic patients due

to its simplicity, this option is not very reliable.

Electromyography (EMG) devices measuring muscle electrical activity are promising approaches

to detect the tonic phase of GTCS [80]. Some wearable FDA-cleared devices include the Sensing

Portable sEMG Analysis Characterization system (SPEAC, by Brain Sentinel) and the Epileptic

seizure Detector Developed by IctalCare (EDDI, by IctalCare). The Eddi patch, attached to the

biceps, demonstrated good performance in detecting GTCS with a sensitivity of 93.8% and false

alarm rate (FAR) of 0.67 per day [81]. Similarly, the SPEAC portable system was able to detect all

GTCS and reported a FAR of 1.44 per 24h in a prospective multi-centre phase III trial [82]. However,
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a disadvantage of EMG electrodes is the potential skin irritation, which in the SPEAC study led to

adverse events in 28% of the subjects.

Accelerometry-based seizure detection is probably the most widely used in SUDEP prevention

devices. Accelerometers (ACM), gyroscopes and magnetometers, measuring acceleration, orientation,

and position; are low-cost sensors that can be easily integrated into miniaturized systems for am-

bulatory monitoring. These are capable of identifying when the patient is in the prone position or

can detect movement during seizures. ACM are typically exploited, on their own or in combination

with other sensing modalities, in smartwatches and bracelets. Some ACM-based bracelet systems

include the EpiLert (by BioLert) and the Epi-Care Free (by Danish Care). These demonstrated good

sensitivities of 91% [83] and 89.7% [84] respectively, with FAR of 0.11/day [83] and 0.2/day [84].

Some seizure monitoring apps, intended to be installed in existing fitness tracker devices like the

Apple Watch, have also been proposed. Some examples include the SmartWatch Inspire (by Smart

Monitor), SeizAlarm (by SeizAlarm), EpiWatch (by Johns Hopkins University), or My Medic Watch

(by My Medic Watch Pty Ltd). These mainly make use of ACM and cardiac sensing sensors present in

smartwatches to detect repetitive shaking motion, falls and abnormal heart rates. These apps require

the coupling with a smartphone, to notify the designated caregivers or relatives of a dangerous seizure

event. The patient’s location is then shared for prompt intervention. An additional feature of the

EpiWatch is the display of a cognitive test on the screen, to evaluate the patient’s responsiveness.

Despite the attractiveness of these user-friendly apps, a study testing the SmartWatch Inspired in a

pediatric cohort for various seizure types reported that only 16% of the total seizures and 31% of the

GTCS were detected [85]. This is indeed the overall disadvantage of motion-based seizure detection

systems. They mainly target GTCS involving convulsions and are unable to accurately identify other

types of seizures.

1.5.2 Audio detection

Some audio systems have also been proposed to measure noises like seizure vocalizations and screams,

lip biting or bed noises. Some under-mattress commercial products incorporating audio recording

include the MP5 (by Medpage) [86, 87], Aremco (by Aremco), Ep-It (by Alert-It) and the video-based

SAMi-3 (by SAMI Alert) sleep activity monitor. Audio-based systems offer the advantage of being

low-cost and ensure the patients’ comfort, but are generally characterized by poor performance and a

high number of false positives. To illustrate, the MP5 device placed between the bed and the mattress,

showed a sensitivity of 63% and a precision (PPV) of 3% in the detection of 8 tonic-clonic seizures [86].

Seizure detection approaches based on physiological measurements tend to be more accurate and

reliable.
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1.5.3 Cardiac-based detection

Heart rate monitoring sensors are widely used in seizure detection, as they can provide useful informa-

tion regarding cardiac dysfunction in SUDEP. These mainly include electrocardiography (ECG) and

photoplethysmography (PPG) modalities, nevertheless the Emfit system (by Emfit Ltd) also claims

to exploit ballistocardiography.

A miniaturized ECG wireless system, attached to the arm and measuring cardiac electrical activity

with electrodes placed on the chest, was developed by Massé et al. [88]. The integration of ACM to

this prototype resulted in an acceptable sensitivity (SE) in the range of 71-87%, and a high FAR of

2.3–5.7 per night, when tested against different types of seizures [89]. This system evolved into the

commercial upper arm bracelet NightWatch (by LivAssured), which implemented a PPG sensor, this

time instead, to monitor heart rate changes [90]. The seizure detection performance of this device

exploiting HR and movements features, resulted in a reduced FAR of 0.03 per night, but a PPV value

of 49%, in a long term prospective study [91]. Another commercial product similar to the preliminary

prototype is the ProGuardian system (by Cyberonics) consisting of a chest-worn ECG sytem with

ACM. Seizure detection performance resulted in a SE larger than 80% but a high number of 2 false

alarms per night [92]. Cardiac-worn sensors are also found coupled to EEG in the smart-clothing

Neuronaute product (by Bioserenity) under current development [93].

However, the most common way of measuring heart rate changes is through portable wristbands

incorporating PPG sensors. Some commercially available products are the PulseGuard (by PulseGuard

International Ltd) [94], Pulse Companion (by Alert-iT), Brio System (by Possum) and the E4 (by

Empatica) bracelets. The latter is only intended for research and does not include any embedded

seizure detection algorithm. However, PPG algorithms trained on data collected by the E4 have

reported very low sensitivity of 32% in the detection of frontotemporal lobe seizures [95].

1.5.4 Respiratory changes detection

Respiratory monitoring is probably the most important SUDEP prevention strategy, since central

respiratory arrests, hypoxemia and terminal apneas are usually the primary triggers of the physiolog-

ical cascade of lethal events. Measurement of chest and abdominal movements denoting respiratory

efforts, can provide useful information about ventilation. Respiratory inductance plethysmography

(RIP) straps around the torso, EMG sensors on the intercostal muscles or ACM on the chest or placed

in the bed, are some sensing options to record breathing. However, RIP bands, for example, cause

discomfort to patients and tend to move considerably during sleep. Several under-mattress multi-

modal commercial monitors already mentioned (Aremco, Ep-iT and Emfit), also measure respiratory

movements by means of bed-mounted sensors. However, their performance is questionable [78].
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Tracking oxygen saturation in blood (SpO2) could be a more reliable alternative, however, no pulse

oximeter-based systems have been marketed to date for epileptic seizure detection. This is probably

due to the delayed response of SpO2 desaturations, which could increase the latency of apnea detection

and hence prevent prompt intervention. However, some research studies measuring SpO2 changes with

an oximetry finger cuff coupled to a wrist-worn control unit [96, 97], showed an accuracy of 86% and

a specificity of 73%. This seizure detection algorithm combined SpO2, HR and EDA features [97].

A miniaturized wearable breathing sensing system, placed externally over the trachea, was de-

veloped in our laboratory to acoustically sense airflow and instantaneously detect apnea events [98].

A later version of this prototype, the Wearable Apnea Detection Device (WADD), was tested in a

pilot study in comparison to a standard polysomnography system [99]. A sensitivity of 88.6% and a

specificity of 99.6% in detecting apnea events showed promising applicability for SUDEP prevention.

1.5.5 Electrodermal activity sensors

Changes in the autonomic nervous system preceding SUDEP, are evident through increased transpi-

ration. Seizure-detection devices exploiting this aspect, mainly focus on measuring changes in skin

conductance, i.e. electrodermal activity (EDA). The stand-alone alert system Embrace (by Empat-

ica) implements EDA and ACM sensors in a wrist-band for GTCS detection. The identification of

biomarkers by the embedded machine learning algorithm, triggers an alarm in the mobile app, which

in turn alerts caregivers for assistance. The Empatica company has iteratively improved the Embrace

system by testing it in wider cohorts and outpatient settings [100]. This has led to very high sen-

sitivities in the range 92-100% and reduced FAR from 2 down to 0.2-1/day. Despite the promising

results, EDA changes appear slower than cardio-respiratory changes during seizures [97], which could

be a disadvantage for prompt detection.

In summary, despite the general efforts to explore different non-EEG sensing modalities for seizure

detection, several review papers argue that the effectiveness of current devices in reducing SUDEP

mortality is still limited and needs further improvement [54, 72, 101]. In fact, many devices have

only been tested in a very small number of seizures, arising in a reduced cohort of participants, which

were monitored in highly controlled inpatient settings [72, 101]. Other commercial systems, are under

ongoing development and have not even published any performance results yet. Moreover, current

systems mainly focus on identifying movements characterizing GTCS, but lack the ability to detect

non-convulsive focal seizures [101, 102]. Even though the sensitivity is very promising for certain

devices, it is still very variable across different modalities (2-100%) [71]. Another critical issue is the

excessive FAR that is extremely disruptive for patients and intolerable for caretakers. Even in the best-
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case scenarios, for which near excellent performance is obtained, the absolute number of false alarms

still translates into several per week, which is unacceptable if medical intervention is required [101].

Alarm fatigue would then severely impact the user’s adherence. Multimodal signal acquisition systems

might be the future research direction for false alarm suppression [73, 100].

1.6 Motivation

To overcome present limitations, there is the necessity for a user-friendly wearable technology for

automatic long-term sleep monitoring. This non-invasive wearable sensor should be comfortable and

durable. Ideally, it would sense as many physiological parameters as possible from just one location in

the body. It must provide at the same time reliable signals, in order to extract accurate biomarkers for

the correct identification of potentially dangerous situations. Specifically, since cardiovascular effects

are not the major cause triggering SUDEP, but death is most often due to pulmonary dysfunction,

it would be ideal to focus on recording respiratory signals. In addition, the number of false positives

should be minimized as much as possible, otherwise an excessive number of false alarms would quickly

result in patients’ non-compliance.

Given these specifications, the Wearable Apnea Detection Device (WADD), sensing acoustic breath-

ing signals at the neck, was developed in our laboratory, as already mentioned. Despite the successful

trade-off of this wearable solution between comfort and accuracy, the sensitivity of 88.6% could still

be critical for epileptic patients. Even though airflow is the key physiological signal to track apneic

respiratory arrests, it is very risky to uniquely rely on a single sensor for apnea detection in SUDEP.

Therefore, in order to avoid neglecting life-threatening apnea events, it would be suitable to integrate

an oximeter sensor into the system to support the decision. This would offer the possibility to simul-

taneously track oxygen saturation (SpO2%) levels and HR, besides just sensing acoustic sounds from

the respiratory system [98].

However, the neck has never been thoroughly evaluated as a measurement site for pulse oximetry

since it could appear sub-optimal for sensor attachment and patient’s aesthetics. Indeed, the gold

standard measurement site is the finger as it provides a stable clip-type attachment and is well perfused

by a large bed of capillaries. Other body locations such as the wrist, earlobe and forehead have

alternatively been explored in the literature, but none of these typical options offer access to airflow

measurements. This anatomical rationale demonstrates why studying neck PPG can have a great

impact in the detection of critical terminal apneas in the context of SUDEP. But also for a wide

number of respiratory monitoring applications such as sleep apnea, neck PPG could be particularly

beneficial to minimize the number of sensors and improve patients comfort.
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Preliminary proof-of-concept neck systems have only focused on obtaining the neck PPG signal and

SpO2% [103], as well as determining the most stable position for signal acquisition [104]. But, in order

to properly assess its feasibility and utility, a complete characterization of this novel PPG measurement

site is necessary. Even though it is a very attractive location for multipurpose monitoring, the neck

presents numerous challenges. Being an unexplored sensing position, a completely new variety of

artifacts corrupting the PPG signal might arise. Degradation in the quality of the signal could lead to

an erroneous estimation of HR and SpO2% levels. This could, in turn, hinder the detection of apnea

events, or increase the number of false alarms. To ensure, good PPG signals quality, accurate readings,

false alarms suppression, and hence patients safety; an in-depth study of the unknown sources of noise

artifacts in neck PPG must be performed first, to further develop an algorithm to detect and remove

them.

As a consequence, artifacts-free PPG signals could enable reliable estimation of SpO2%, which in

fusion with the existing WADD technology, could enhance the detection of apneas. This added feature

to the wearable system could ultimately have a significant impact in reducing SUDEP mortality, by

automatically alerting of dangerous cardiorespiratory dysfunction. Similarly, this wearable system

could enable reliable constant physiological monitoring in the home environment, and hence help

investigate the mechanisms and risk factors of SUDEP. This would in turn greatly improve the disease

management, treatment and prevention strategies.

This PhD thesis is framed in the scope of this challenge. The general research goal is to characterize

the novel neck PPG signals, for subsequent processing and ultimate exploitation in cardiorespiratory

monitoring applications. This fundamental aim can be further subdivided into a list of research

sub-ojectives:

• What are the singularities, advantages and limitations of neck PPG signals compared to the

gold standard finger PPG?

• Is neck PPG a suitable pulse oximetry location for apnea detection and other potential cardio-

respiratory applications?

• What are the sources of interference specific to the novel neck pulse oximetry region and how

can they be characterized?

• How can neck PPG artifact signals be detected for future removal?

• Is it feasible to reliably detect apnea events in near real-time with neck PPG signals for SUDEP

prevention? If so, how?
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1.7 Thesis Structure

This thesis is organised into six major chapters. Chapter 2 is a theoretical chapter that covers the

background and literature review to put readers into context. Chapter 3 and Chapter 4 are two

technical chapters studying the singularities and potential cardiorespiratory applications of novel neck

PPG signals. Chapter 5 and Chapter 6 are two other technical chapters focusing on the processing of

neck PPG signals for artifacts classification and apnea detection.

The main contributions of each chapter are summarized below.

Chapter 2 - A Review on PPG principles, Artifacts Cancellation and Apnea Detection

presents the fundamentals on photoplethysmography, as well as a literature review on PPG noise

cancellation, artifact classification and apnea detection.

First, the general background on pulse oximetry is reviewed. The optical foundations of PPG

measurement are introduced, covering the two sensing modes: transmission and reflection. The main

morphological traits of single PPG pulses are described and correlated to the corresponding cardiac

physiological events. The physiological factors modifying the standard shape of the signal are subse-

quently analyzed. A review of existing PPG measurement sites in the literature is also presented, as

well as the formulation of the two vital signs parameters commonly extracted in PPG: HR and SpO2%.

A brief overview of artifacts cancellation techniques in the literature follows. An in depth review of

artifacts classification methods exploiting machine learning techniques is extended. At last, a review

of automatic apnea detection algorithms, uniquely using PPG sensors, is covered in this chapter.

Chapter 3 - Novel Neck PPG vs. Standard Finger PPG The finger is the gold standard

measurement site in pulse oximetry. This chapter presents a comparison between finger and neck pho-

toplethysmography (PPG) in order to assess the potential and limitations of this, non-conventionally

used body site, for application in pulse oximetry.

PPG signals were recorded at both sites in a series of experiments, in which healthy participants

were asked to breathe at different respiratory rhythms, such like normal, fast, slow and breath-holding

(apnea). The differences in average PPG waveforms, frequency content, as well as in oxygen satura-

tion (SpO2%) and heart rate (HR) estimation, were inspected. In terms of pulse waveform statistical

analysis, the results showed significant differences in the average PPG pulse shape for different contour

features, such as a higher diastolic or dicrotic notch amplitudes. In terms of cardiac frequency extrac-

tion, the HR could be successfully estimated from neck signals with high correlation to reference ECG.

The feasibility of extracting SpO2% from novel neck PPG signals was also proven. A linear regression

model was fitted in order to calibrate the novel measurement site against the ground truth. Leave-

One-Subject-Out validation results showed that SpO2% could be reliably extracted. Spectrograms
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under different breathing conditions revealed that the respiratory frequency was more prominent in

neck PPG than in finger, which has a great potential for respiratory rate (RR) extraction. The results

of this chapter, are very promising for the suitability of the neck as, not only, an alternative pulse

oximetry location, but also, as a multi-modal site for cardio-respiratory diseases monitoring. How-

ever, some of the main limitations found for neck PPG, included the sensitivity to artifacts, and the

uncovering of the optimal signal acquisition location. In fact, when moving the sensor away from the

suprasternal notch, the venous signal could be identified, as further studied in Chapter 4.

Chapter 4 - Extracting the Jugular Venous Pulse from Anterior Neck Contact Photo-

plethysmography. In this chapter, a novel approach to measure the jugular venous pressure using

neck contact PPG is presented. Several claims supporting the feasibility of measuring this hardly

accessed physiological signal, are formulated.

The jugular venous pulse (JVP) is the reference physiological signal used to detect right atrial and

central venous pressure (CVP) abnormalities in cardio-vascular diseases (CVDs) diagnosis. Invasive

central venous line catheterization is the gold standard method to extract it reliably. However, due

to all the risks it entails, novel non-invasive approaches are needed. In this study, we demonstrate,

for the first time, that reflectance photoplethysmography (PPG) can be used for extracting the JVP

from the anterior jugular veins, in a contact manner. Neck JVP-PPG signals were recorded from 20

healthy participants, together with reference ECG and arterial finger PPG signals for validation. B-

mode ultrasound imaging of the internal jugular vein also proved the validity of the proposed method.

The results show that it is possible to identify the characteristic a, c, v pressure waves in the novel

signals, and confirm their cardiac-cycle timings in consistency with established cardiac physiology.

This work is of great significance for the future of CVDs diagnosis, as it has the potential to reduce

the risks associated with conventional catheterization and enable continuous non-invasive point-of-care

monitoring of CVP.

Chapter 5 - Characterization of Artifact Signals in Neck Photoplethysmography focuses

on the characterization of neck PPG artifacts through an exhaustive study of the distinctive features

discriminating noise sources from clean PPG.

Neck PPG signals are very susceptible to artifacts which greatly compromise their quality. But the

extent of this, is going to depend on the nature of the artifacts and the strength of the sensed signal,

both of which are location dependent. This chapter presents for the first time the characterization of

artifacts affecting neck PPG signals. The study of two other respiratory states of interest, breathing

slow and apnea, is also covered. Neck PPG data was recorded from 19 participants, who simulated

these two respiratory rhythms and performed ten different activities to deliberately introduce com-

mon artifacts. 41 PPG features were extracted and statistically analyzed to investigate which ones
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showed the greatest ability to differentiate normal PPG from each artifact. A customized minimum

Redundancy Maximum Relevance (mRMR) feature selection approach was implemented, to select the

top 10 features with the highest potential. Artifacts caused by Swallowing, Yawning and Coughing

exhibited larger Spectral Entropy, Average Power and smaller Spectral Kurtosis, than normal PPG.

Head movement artifacts, also demonstrated highly disordered and noisy frequency spectra, and were

characterized by having larger and irregular time domain features. In addition, the analysis showed

that the studied respiratory states, such as apneas, were also distinguishable from sources of interfer-

ence. These findings are important for the development of PPG denoising algorithms and subsequent

obtention of biomarkers; or alternatively for applications where the events of interest are the artifacts

themselves.

Chapter 6 - Artifacts Classification and Apnea Events Detection in Neck Photo-

plethysmography Signals In order to fully exploit novel neck PPG for reliable biomarkers extrac-

tion and apneas monitoring, this chapter aims at developing, an artifacts classification and an apnea

detection algorithms. Neck PPG signals were recorded in simulated noise and breathing conditions.

51 features from the time, correlogram and frequency domains were extracted, together with some

envelope-derived characteristics. Two support vector machine (SVM) classifiers with a radial basis

function (RBF) kernel were trained for different window lengths (W= 4, 5, 6, 7, 8, 10s) and thresholds

of corruption (Thd= 20%, 30%, 40%, 50%). Chi-square tests coupled with sequential feature selec-

tion, were applied to fit the model using Leave-one-subject-out cross-validation. The classification

process was repeated 30 times with different randomizations of the data. A two-way ANOVA and

Tukey’s post-hoc comparisons, were used to statistically test how the different windows and thresholds

affected the performance. For artifacts classification, the maximum performance was obtained for the

parameters combination of [W=6s-Thd=20%], and for apnea detection, the model [W=10s-Thd=50%]

maximized all the performance metrics significantly. The findings of this proof of concept, are of great

importance to design the future filtering strategy of neck PPG signals, and to facilitate a prompt

detection of apneic events. This could have a significant impact in real-time applications, in which

extremely high accuracy is necessary but cannot be obtained from just one sensing modality; such as

in the prevention of sudden unexpected death in epilepsy (SUDEP).

Chapter 7 - Conclusions summarizes the major contributions of this thesis and describes the

future directions to extend this PhD work.
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1.8 Experiments outline

In order to study and explore different aspects of the novel neck PPG site, a total of 4 independent data

recording experiments were performed during this PhD. This experimental work was approved by the

Local Ethics Committee of Imperial College London (ICREC ref.: 18IC4358), and written informed

consent was obtained from all subjects. All data was anonymized and stored in password-secured

computers. Relevant ethics documents can be found in Appendix A.

Between 10 to 20 healthy subjects, with an heterogeneous variety of skin tones, were recruited

at university for each experiment. Due to the specific pool of participants, the age group was 20-30

years old, with a normal BMI of around 23kg, an overall males/females ratio of 3:1 and a majority of

white skin tones. Although a wider range of participants would have been ideal to ensure a broader

generalization of the results, this cohort was deemed suitable for a first proof-of-concept study of neck

PPG. Moreover, since being a male is one of the factors increasing the risk of SUDEP, the gender

imbalance did not cause any inconvenient.

The experimental procedures are presented within each corresponding chapter. However, for the

sake of clarity, a brief overview of the purpose of each study and the outcomes of the recorded data,

are outlined as follows:

Experiment 1. is presented in Chapter 3, Section 3.2. It consists in recording neck PPG signals

at the neck for the first time in supine position and compare them with finger PPG signals

acquired simultaneously. Neck PPG signals were obtained under different respiratory states

(spontaneous breathing, fast breathing, slow controlled breathing and breath-holds) to explore

the pulse morphology (Section 3.3) and spectral (Section 3.4) characteristics of novel neck PPG

signals. This dataset was also used in Section 3.5 to demonstrate that it is possible to reliably

extract the heart rate from neck PPG signals.

Experiment 2. (in Chapter 3, Section 3.6.1.1) The aim of this experiment was to record raw neck

PPG signals during SpO2 desaturations. This was necessary for the calibration of a wearable

neck prototype sensor, and to demonstrate the feasibility of reliably estimating SpO2% levels

from the novel PPG site.

Experiment 3. in Chapter 4, consisted in exploring the vein vasculature of the neck and to demon-

strate, for the first time in literature, that it is possible to record the Jugular Venous Pulse

(JVP) from the anterior veins using neck contact PPG.

Experiment 4. in Chapter 5, aims at recording neck PPG signals under different artifacts conditions

and breathing states of interest. This data is exploited to characterize the different artifacts in

terms of time and frequency features. The same dataset is subsequently used in Chapter 6 to

train and test an artifacts and apnea classification models.
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Chapter 2

A Review on PPG Principles, Artifacts

Cancellation and Apnea Detection

This chapter introduces all the background necessary to understand the research work behind this

thesis. It starts with an introduction to the fundamentals of PPG technology and its applications.

Then, the basic characteristics of the signal and the physiology behind are covered. Finally, the state

of the art of artifacts removal techniques and algorithms for apnea detection is reviewed.

2.1 Photoplethysmography

2.1.1 Photoplethysmography principles

Photoplethysmography (PPG) is an non-invasive, low-cost, optical technique measuring changes in

blood volume at the skin surface [1]. Pulse oximeter sensors are used to extract the PPG signal

relying on the difference in light absorption properties of the microvascular bed of tissues. In fact, as

it can be observed in Figure 2.1, oxyhemoglobin absorbs more infra-red (940 nm) and less red light

(660nm) in comparison to deoxyhemoglobin, which allows fluctuations of oxygenated arterial blood to

be measured [2]. According to this principle, a PPG sensing device consists of a red and an infrared

light-emitting diode (LED) that illuminate the tissue, and a photodetector that senses light intensity

variations after tissue penetration. The resulting PPG waveform shows two principal constituents

(Figure 2.2): An AC pulsatile component with frequency of approximately 1 Hz, or 60 beats-per-min

(BPM), reflects the arterial pulsations at each heartbeat; and a DC component, accounts for the light

absorption of non-pulsatile arterial, venous blood and other non-vascular tissues [3].

Two main types of photoplethysmography exist: contact and non-contact. The contact modality

includes transmission and reflective PPG (Figure 2.3). In transmission PPG, generally used in fingertip

commercial pulse oximetry due to the easy attachment and rich capillarity, the light emitted by the
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Figure 2.1: Absorption spectra of oxy-
hemoglobin (HbO2) and deoxyhemoglobin
(Hb).

Figure 2.2: Light absorption by differ-
ent tissues reflects the AC and DC com-
ponents of the PPG signal.

LEDs is transmitted through the finger before it reaches the photodetector. Reflective PPG can be

used in a wider range of measurements sites, for which the photodetector cannot be typically placed

directly opposite to the light source, but alongside to it; to detect the light reflected from superficial

vessels. However, despite this advantage, reflective PPG is more prone to the uncoupling of the sensor

with the skin, making this modality more susceptible to detachment and ambient light interference.

The second modality is imaging-PPG (IPPG). This non-contact peripheral blood perfusion mea-

surement type uses a remote light source and a camera to detect blood pulsations in multiple areas of

the skin simultaneously [4].

Figure 2.3: Contact transmission and reflectance optical modalities to measure the PPG signal
at the finger.
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2.1. Photoplethysmography

2.1.2 Applications: SpO2 and heart rate estimation

Pulse oximeter devices can be used to monitor an individual’s general health status. They are essential

in outpatient clinics, inpatient wards, intensive care units and operating theaters [5]. The applications

of PPG are numerous. Vital cardio-respiratory parameters such as peripheral oxygen saturation

(SpO2), heart rate (HR), respiratory rate (RR), blood pressure or cardiac output, can be extracted

from the PPG signal. The vascular and autonomic function can be similarly assessed [6]. In this

thesis, I focus on the two most important biomarkers usually measured by pulse oximeters: SpO2%

and HR.

Heart rate: Since the PPG signal carries arterial blood pulsations information, the instantaneous

heart rate can be calculated as follows:

HR (BPM) =
60

Tp−p
(2.1)

where Tp−p is the average peak-to-peak time interval between two PPG pulses in seconds. A factor of

60 outputs the result in the standard units of beats-per-minute (BPM). Normal heart rate in healthy

humans ranges from 60 to 100 BPM at rest. Artifacts can disrupt the periodicity between pulses and

alter the measure of Tp−p, resulting in an inaccurate heart rate estimation.

Peripheral oxygen saturation: Hemoglobin, is a gas transport protein present in red blood

cells, that binds to oxygen and delivers it to the organs. Different forms of hemoglobin exist, that

can be grouped in two major categories depending on their ability to bind to oxygen: functional

and non-functional. Functional hemoglobins, such as oxyhemoglobin (HbO2) and deoxyhemoglobin

(Hb), are the only ones capable of carrying oxygen. Non-functional ones, including carboxyhemoglobin

(HbCO) or methemoglobin (MetHb), cannot participate in respiratory function. Arterial blood oxygen

saturation (SaO2) is defined as the relative amount of oxygenated blood over total blood (oxygenated

and de-oxygenated), such that:

SaO2 =
HbO2

HbO2 +Hb+HbCO +MetHb+Hbother
(2.2)

where, HbO2 and Hb represent the concentrations of functional hemoglobins; and HbCO,MetHb and

Hbother the concentrations of other non-functional hemoglobins, incapable of binding to oxygen.

Pulse oximetry measures the peripheral oxygen saturation SpO2, as a surrogate measure of SaO2,

assuming no non-functional hemoglobins, such that:

SpO2 =
HbO2

HbO2 +Hb
(2.3)
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The derivation of SpO2 from optical pulse oximetry measurements, is based on the principles

of spectrophotometry [7]. The Beer–Lambert law states that the attenuation of light, i.e. the ab-

sorbance (A), through a non-scattering media is directly proportional to the concentration of the

absorbing substances and the optical path length (L), such that:

A(λ) = L
∑
i

εi(λ)ci (2.4)

where, εi(λ) represents the extinction coefficient for each molecular absorber i at a specific wavelength

λ, and ci the corresponding concentrations.

The absorbance is likewise defined as the negative logarithm of light transmission T , which is cal-

culated with the ratio of incident (Iin) and output (Iout) light intensities. This can be mathematically

described as:

A = − log(T ) = − log(Iout/Iin) (2.5)

Pulse oximetry exclusively focuses on arterial changes in blood volume. Constant absorbance

terms of non-pulsatile tissues (skin, bone, veins etc.), which do not change over time, will not have

an effect in the calculation of SpO2. The two primary light absorbers hence are HbO2 and Hb. This

implies that the blood absorbance equation can be rewritten as:

A(λ) = (εHbO2(λ)cHbO2 + εHb(λ)cHb) · L (2.6)

Using equation 2.3, the hemoglobin concentrations can be expressed as a function of SpO2 as:

cHbO2 = SpO2(cHbO2 + cHb) and cHb = cHbO2(1 − SpO2)/SpO2. By rearranging equation 2.6, this

gives:

A(λ) = (SpO2 · εHbO2(λ) + (1− SpO2) · εHb(λ)) · (cHbO2 + cHb) · L (2.7)

The change in absorbance of blood pulsations at a particular wavelength λ, becomes:

∆A(λ) = −d log(Iout(t)/Iin)

dt
= (SpO2 · εHbO2(λ) + (1− SpO2) · εHb(λ)) ·∆Hba · L ≈

AC

DC

∣∣∣∣
λ

(2.8)

where Hba denotes the time varying hemoglobin concentration in arterial blood. Equation 2.8

results from calculating the time derivative of the light intensity sensed by the photodiode, that can

be approximated to the AC/DC ratio of the PPG signal at wavelength λ.

Using a monochromatic light would not be sufficient to differentiate the contributions of HbO2

and Hb in the overall absorbance. This is why two wavelengths λ1 = 660nm (red) and λ2 = 940nm

(infra-red) are required to compute the ratio of ratios (R) of pulsatile and non-pulsatile absorbance,
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such that:

R ≈ (AC/DC)λ1
(AC/DC)λ2

=
(SpO2 · εHbO2(λ1) + (1− SpO2) · εHb(λ1)) ·∆Hba · L
(SpO2 · εHbO2(λ2) + (1− SpO2) · εHb(λ2)) ·∆Hba · L

(2.9)

By taking the assumption that the pulsatile changes in blood concentration ∆Hba are equal for both

wavelengths, this can be solved for SpO2:

SpO2 =
εHb(λ1)− εHb(λ2) ·R

εHb(λ1)− εHbO2(λ1) + (εHbO2(λ2)− εHb(λ2)) ·R
(2.10)

This theoretical derivation of the peripheral oxygen saturation, SpO2, is not always precise, as not

all the Beer-Lambert’s law assumptions can be met. Therefore, in commercial pulse oximetry SpO2

is generally determined by empirical calibration of the sensor. A generally adopted model, linearly

approximates SpO2 to the absorption ratio (R) at the red (λ1) and infrared (λ2) wavelengths with two

empirical constants a and b, as shown in Equation 2.11 [8]. The accuracy of SpO2 measurements for

every specific device, is directly dependent on the calibration of these constants against some reference

SpO2 values.

SpO2 ≈ a− bR = a− bIAC(λ1)/IDC(λ1)

IAC(λ2)/IDC(λ2)
(2.11)

where, IAC and IDC correspond to the light intensities amplitudes of the AC and DC components of

the PPG signal. Human healthy blood oxygen levels range from 95 to 100 %. In cases where artifacts

of high amplitude perturb the coupling between sensor and skin, unusual AC and DC changes in

light intensity sensed by the photodetector will directly alter the final SpO2 value. This undesirable

outcome would result in inaccurate SpO2 measurements. In the worst scenario, unreliable readings

could cause false alarms, alerting of non-existent hypoxia events, when saturation levels drop below

95%.

2.1.3 PPG sensors and measurement sites

The gold standard measurement location in pulse oximetry is the finger. The majority of commercial

pulse oximeters in the market focus on this positioning, as it provides large capillarity, good perfusion,

and is an accessible body part. However, in the past years, a broad variety of body locations have

also been examined. Novel body sites encompass toes [1], ring finger [9], brachia [10], wrist [11],

forehead [12], in-ear [13], oesophagus and bowel [14]. Successful wearable devices have demonstrated

the feasibility of using alternative monitoring sites for pulse oximetry. Some examples include a

magnetic earring placed at the earlobe [15], a wrist-watch PPG sensor array [16], earphones integrated

PPG sensors [17] or forehead wireless-based reflectance sensors [18].

To my knowledge, only two studies exploring the neck as an innovative measurement site for
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photoplethysmography exist. The first one, tested the anterior neck region to define the most stable

PPG positioning as the mid-throat, and the best respiration rate extraction location as the lower

throat, with an error of less than 5% [19]. Despite the novelty, the proposed prototype system was

very cumbersome. It was composed of a slave PPG sensor board placed on the throat, that was

connected via a wire to a master board placed on the chest. Such a system, is very uncomfortable for

long term monitoring and unsuitable for portability.

The second attempt of neck PPG signal measurement was developed in our group [20]. The ad-

vanced wireless wearable prototype showed the feasibility of neck reflectance PPG to measure oxygen

saturation (SpO2) with an accuracy of 98.6%. Although some efforts of this proof of concept were

invested towards the identification of sources of noise affecting neck PPG, an exhaustive characteriza-

tion of the artifacts is still required, to accurately define the most effective signal processing strategy

to deal with these sources of noise.

2.1.4 PPG waveform

The AC component of the PPG signal reflects the arterial blood volume changes resulting from cardiac

synchronous pulsations. Each PPG pulse of the AC component, corresponds to a single heart beat.

As it can be observed in Figure 2.4, the waveform is characterized by the systolic and diastolic phases.

The systolic phase starts in the first valley or pulse onset, and ends at the point where the pulse

wave reaches its maximum, i.e. the systolic peak. This time interval is denoted as rise time. The

height of the pulse from its onset until the systolic peak is referred as the pulse wave amplitude. The

diastolic phase starts right after the systolic peak and ends at the offset of the pulse. The pulse width

or the total pulse wave duration are defined as the time interval between the onset and the offset.

Another distinctive characteristic of the PPG waveform is the second maximum called the diastolic

peak. The valley formed between the systolic and diastolic peaks is named the dicrotic notch. Finally,

the interval between the two peaks is denoted as the Pulse Propagation Time (PPT).

The physiology behind this particular morphology can be simply explained. When ventricular

contraction of the heart occurs during systole, a big amplitude pressure wave propagates towards the

periphery. This corresponds to the systolic peak. However, due to the complexity of the systemic

circulation in the central arterial tree, different arteries bifurcate and the decrease in their diameter

generates new reflected pressure waves that are transmitted in a delayed manner to the peripheral

vasculature [21]. This occurs during early systole and gives origin to the diastolic peak. The PPT

corresponds to the reflection time, i.e., the time delay between the systolic wave and the second

reflected wave.
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Figure 2.4: Diagram of the standard PPG waveform annotated with its main pulse character-
istics.

2.1.5 Changes in pulse shape

Different factors can modify the morphology of the standard PPG pulse shape.

Physiological factors: There are some subject specific factors which confer some unique mor-

phological characteristics to the PPG signal. These are also the principal reason explaining the huge

variability in PPG shapes among and intra-subjects.

• Medical conditions: Age and cardiovascular diseases (e.g. hypertension, atherosclerosis etc.),

result in changes in the vascular properties of the arterial tree, and hence, directly alter the

pulse shape of the PPG waveform [1, 22]. Indeed, arterial stiffening entails an increase in the

pulse wave velocity, leading to the occurrence of the reflected wave during late systole [21]. This

means that the diastolic reflected wave travels faster than normal and overlaps with the systolic

wave, preventing the distinction between them in the PPG pulse [23]. The PPT is therefore

reduced, and the diastolic peak can apparently disappear [24]. Pulse rise time was also observed

to increase with age [24].

• Autonomic system regulation: The PPG waveform is modulated by the sympathetic nervous

system and thermoregulation activity [25]. High temperatures and other vasodilator agents, can

increase the PPG amplitude and decrease the height of the dicrotic notch, as a result of an

apparent loss of the reflected wave [21]. In this case, the PPG pulse waveform seems to undergo

a triangulation. In addition, the DC baseline of the PPG signal is modulated by the respiration

frequency [1, 26, 27].
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• Measurement site: Different body parts have different capillarity and tissue characteristics, show-

ing variations in the reflected light optical path. As a consequence, not only the DC baseline

but also the AC component can be impacted. In fact, peripheral areas have a larger vascular

bed, resulting in turn in a higher PPG amplitude. The variation in perfusion volume is also

greater. Moreover, depending on the anatomical site, different reflection waves can be transmit-

ted through the complex arterial tree with different amplitude and transit times (PTT) [28]. As

a result, the PPG pulse contour can be affected, with changes in the diastolic peak height and

occurrence time [24, 29].

These physiological factors are observed in the photoplethysmography waveform. They do not

usually disturb the quality of the signal, but they have to be taken into account when interpreting the

PPG pulse contour, specially when studying a novel measurement site.

Artifacts: Artifacts are noise components that do not naturally belong to the PPG signal

itself. They corrupt the PPG signal by distorting the time and frequency characteristics with varying

severity. As a consequence, they result in inaccurate measurements and false alarms during clinical

monitoring [30]. Some artifacts can be efficiently filtered when they do not alter the fundamental

frequency of the PPG signal. But in general, artifacts can severely disturb the frequency bands of

interest, making it challenging to restore the clean PPG signal. Furthermore, artifacts can be very

variable depending on the measurement site, the pulse oximetry sensor mode, or the subject wearing

the sensor. For instance, the neck will be susceptible to artifacts typical of the trachea, such as

swallowing, coughing or talking, while these will not have an impact in other body parts. Likewise,

the sensor attachment can be less stable for the reflective PPG mode. The differences in anatomical

characteristics among indivuals can also influence the amplitude and duration of the artifacts produced.

Despite the uniqueness, it is still possible to characterize artifacts with general features when some

of the sources of variability, such as the measurement site, can be fixed to narrow the problem. In

the case of finger pulse oximetry, PPG artifacts are well known and recurrent. This facilitates the

application of common filtering techniques as analyzed in the following sections.

2.2 Overview of PPG artifacts cancellation methods

The most common sources of noise PPG artifacts have been identified as motion, powerline interference

of ambient light, displacement disturbances of the sensor, and heterogeneous optical properties of

tissue [31]. In the literature, an ample range of signal processing techniques have been proposed for

artifact cancellation in PPG signals. Special attention has been paid to in-band low frequency motion

artifacts, which are usually considered the most problematic ones.
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One of the simplest filtering techniques explored is the Moving Average Filter (MAF). By

sequentially averaging point by point of the PPG waveform with values of the neighbouring data

points, baseline drift can be successfully removed [32]. Despite the simplicity, this method is not very

effective because it cannot deal with sudden or big amplitude noise, and the PPG signal is usually

degraded. To solve this issue, a Periodic Moving Average Filter (PMAF) was proposed [33], where the

novelty of segmenting the signal into periods and carrying out the averaging of points across periods

as well, eliminated artifacts without deteriorating the signal.

Some other studies have focused on Fourier series analysis. A cycle-by-cycle Fourier serial

analysis (CFSA) demonstrated that clean PPG signals can be reconstructed from the Fourier series

coefficients, extracted from noisy PPG at each cycle [34].

Another noise cancellation technique that not only captures the frequency information of the PPG

signal but also the temporal resolution is Wavelet denoising. Noise reduction consisted on, first,

decomposing the PPG corrupted signals using the stationary wavelet transform (SWT); and then re-

constructing clean PPG with the inverse SWT and wavelet transform modulus maxima (WTMM) [35].

Other studies [32, 36] reported promising performance as well, by implementing the discrete wavelet

transform (DWT) with the Daubechies (db4) wavelet. Nevertheless, the major drawbacks are that

PPG signals are not completely restored, and a phase shift is susceptible to be introduced during

reconstruction [37].

One of the most popular trends in motion artifact reduction is Adaptive filtering. The superiority

of this method relies on the filter coefficients that are iteratively adjusted, to estimate the noise at

each iteration, and ultimately subtract it from the corrupted PPG. To this end, a reference noise

signal is required and it is generated either by direct measurement of motion with accelerometers

sensors [15, 38, 39], or by a synthetic noise generator [40]. A least mean square (LMS) algorithm

is then typically implemented to recursively minimize the error cost function between the true and

estimated noise components, for a precise update of the filter coefficients. Although optimal filters

are very powerful, some studies argue that, as wavelets, they could introduce phase shifts in the PPG

signal [37]. Also, some works discuss that a correlation might not always exist between accelerometers

signals and motion artifacts [40].

Other studies have exploited the Independent Component Analysis (ICA) method to separate

artifacts sources from clean PPG. To illustrate, the combination of ICA and a preprocessor, consisting

of a block interleaving with a low pass filter, demonstrated to reduce the noise significantly [41].

Moreover, clean PPG extraction from contaminated PPG signals was also successful when combining

ICA and an adaptive filter [42]. Although ICA assumes that all the sources constituting noisy PPG

are independent, there might exist a correlation between the arterial flow and the movements of the
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patient, turning this method invalid.

Finally, as an alternative to previous techniques that assume the existence of an inherent noise

underlying the whole PPG signal, other studies have opted to follow a Motion Artifact Detection-

Reduction strategy, where only contaminated PPG detected segments are filtered [43, 44, 45, 46].

Since this technique will be adopted in this research work, an extended literature review is presented

in next section.

2.3 PPG artifacts detection and classification

The next subsections compare the most relevant PPG artifacts detection studies in the recent years.

A summary of each approach is presented in Table 2.1. To discriminate between clean PPG and noise

artifacts, various algorithms usually followed the same steps, with slight changes in the methodology.

First an experimental protocol is designed or a database is selected to obtain the set of PPG recordings

to be analyzed. Second, a segmentation of the signals and corresponding labelling into corrupted or

clean categories is performed. Subsequently, unique features of the PPG waveform are extracted to

be inputted in a classification model for pulse quality assessment. When the features subset is too

large, some studies also include a feature selection step before the classification process. Finally,

once contaminated PPG segments have been identified, they can be directly rejected, filtered or

reconstructed implementing the methods discussed in section 2.2.

2.3.1 Experimental protocol and datasets

In the literature, some research groups used specific datasets to test the performance of their noise

detection algorithms. Others, opted to record their own data in a series of experiments where specific

artifacts can be simulated. But overall, the general characteristics of the employed datasets, can be

summarized as:

• Measurement site: The most common PPG modality was transmission finger pulse oximetry.

Some of the reviewed studies also used reflectance PPG in other body locations such as finger

[63], wrist [57, 60, 61], and forehead [43, 55]. It is worth highlighting the sensing modality used

in [58, 59], which used the camera and flashlight of a smartphone to extract finger PPG signals.

• Datasets size: In controlled experiments, where healthy participants were recruited for data

acquisition, cohorts usually range from 10 to 20 subjects [51, 57, 63]. Subjects are typically

asked to simulate defined artifacts at specific times. Larger cohorts are found in studies where

the dataset is constructed from one or several annotated databases [54, 56]. This is important to

validate the algorithms generalizability in a wider population and in different clinical contexts.
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Table 2.1: Artifacts classification algorithms discriminating between good and bad
quality PPG signals.

Author Sensor
Site

Subjects Window Type of
corrup-

tion

Features Classifier ACC
(%)

SE
(%)

SP
(%)

F1
(%)

[45] Krishnan Finger
reflectance

10 healthy Short
frames of

equal
length

Finger,
wrist &
elbow

movements
in

controlled
experi-
ments

High order
statistical
features

from: time,
freq,

bi-spectral
domains

Neyman-
Pearson
rules for

each
feature+

global
decision
fusion

91 - - -

[47] Selvaraj Finger, ear
& forehead

24 healthy 1min (10s
sliding

window)

Involuntary
movements
in clinical
setting +
voluntary

movements
in experi-

ments

Kurtosis &
Shannon
Entropy

Decision
rules for

each
feature +
decision
fusion

88.8 86.9 98.3 -

[48] Sukor Reflection
finger

13 healthy Pulse-by-
pulse

8 types of
finger and

wrist
movements

Time mor-
phology

character-
istics

Decision
lists

83 ±
11

89 ±
10

77 ±
19

-

[49] Li Finger MIMIC II
database [50]

(105
patients)

6 s ICU data
during

arrhythmia
alerts

4 pulse
template
matching

signal
quality
indexes

MLP 95.2 99 80.6 -

[43] Chong Reflectance
finger &
forehead

20 healthy
subjects

3, 5, 7*, 9,
11 s

Daily
activities &

lab
controlled
movements

&
simulated

motion

4 standard
deviation

time
features

Linear
SVM +
major
voting

93.9 94.3 92.4 -

[51] Couceiro Finger 8 healthy
& 7 CVD
patients

Beat-to-
beat

11 hand
and body

movements
in

controlled
experi-
ments

26 time
and period

domain

SVM 87.5
± 0.6

78.4
± 1.2

94.4
± 0.6

-

* Best classification window, for which the performance is reported.
ACC: Accuracy, SE: Sensitivity, SP: Specificity, F1: F1-score, ICU: Intensive Care Unit, CVD: Cardiovascular disease,
MLP: Multilayer perceptron, SVM: Support Vector Machine.
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Author Sensor
Site

Subjects Window Type of
corrup-

tion

Features Classifier ACC
(%)

SE
(%)

SP
(%)

F1
(%)

[52] Orphanidou Finger 19 hospital
patients

10 s Ambulatory
monitoring
in hospital

HR, peak-
to-peak

intervals,
template
matching

correlation
coefficient

Decision
list

- 91 95 -

[53] Cherif Finger Same
dataset as

in [48]

Pulse-by-
pulse

Finger
movements
induced for

20s

Derivative
of the

correlation
coefficient
between

each beat
& a pulse
template

Non-
parametric

random
distortion

testing
(adaptive
threshold-

ing)

83
± 8

84 ±
16

83 ±
12

-

[54] Elgendi Finger 40
emergency
responders

Window
length

tested from
1s to 30s.

Ô 2-5s
optimal

window for
skewness
feature

Rest
periods

before and
after

exercise
(x3).

Random
stitching of

PPG
segments

8 SQIs
from time,
statistical
and freq
domains

LDA,
SVM, QDA

& Maha-
lanobis
distance

- - - 79.1*

[55] Dao Finger &
forehead

Several
datasets

from
laboratory

experi-
ments +

emergency
patients

8s with
50%

overlap

Controlled
motion

artifacts +
Treadmill

exercises +
Involuntary
movements

in
emergency

unit

Time-
frequency
spectrum
features

TifMA:
Ô SVM +
traceback
strategy
Ô HR

tracking
usability
metric

92
± 2

93
± 2

90
± 3

-

[56] Fischer Finger 69 subjects
from three
databases

Beat-to-
beat

ICU, sleep
&

ergometry
laboratory

data

Time
domain

analysis of
pulse

waveform

3 decision
lists

(threshold
based)

98.3 99.6 90.5 99

[57] Pradhan Empatica
E4

wristband

15 healthy 10s 24h daily
activities

Time, freq
& correlo-

gram

Näıve
Bayes

- 98.3 98.3 -

* Average performance for all classifiers for the best Skewness feature.
ACC: Accuracy, SE: Sensitivity, SP: Specificity, F1: F1-score, SQI: Signal Quality Index, LDA: Linear Discriminant
Analysis, SVM: Support Vector Machine, QDA: Quadratic Discrimant Analysis, ICU: Intensive Care Unit, HR: Heart
Rate.
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Author Sensor
Site

Subjects Window Type of
corruption

Features Classifier ACC
(%)

SE
(%)

SP
(%)

F1
(%)

[58] Poh Finger
smartphone

Several
databases:
oupatient
clinic &

ICU
patients

17s Data with
motion

artifacts,
AF and
ectopic
beats

Self-learned DCNN - 97 100 -

[59] Tabei Finger
smartphone

35 healthy
& 5 AF
patients

7s Hand &
fingertip

movement
artifacts +

AF
patients, no
movements.

Time,
statistical

and
time-freq

Ô PNN
personalized

98 ±
2.0

92.6
±
6.5

99.7
±
0.9

-

Ô PNN
generalized

89.9
± 9

84.2
± 14

93.6
± 7

-

[60] Vandecas-
teele

Empatica
E4

wristband

17 epilepsy
patients

7 s 24h
recordings.
Automatic

MNA
labelling

using ECG.

Time & freq
domains

LS-SVM 90.2
± 3

85.5
± 7

92.3
± 4

-

[61] Pereira Finger &
wrist

13 stroke
patients &
3764 ICU
patients

30s Continuous
hospital

recordings,
including
motion
artifacts
and AF
events

42 features
from time

and spectral
domains

SVM 90.5
±
0.5

91.3
±
1.0

88.8
±
0.6

92.9
±
0.4

[62] Goh Finger 4 datasets:
healthy &

ICU
patients

5s Controlled
laboratory
movements

+
Continuous
monitoring

ICU
patients

Self-learned CNN - 96.6 91.2 -

ACC: Accuracy, SE: Sensitivity, SP: Specificity, F1: F1-score, AF: Atrial Fibrillation, CNN: Convolutional Neural
Network, DCNN: Deep CNN, PNN: Probabilistic Neural Network, SVM: Support Vector Machine, LS-SVM: Least
Squares SVM.
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Combination of several publicly available datasets is specially necessary for the development of

deep learning models [58, 62].

• Artifacts types: The bad quality pulses to analyze were of different origins. Some resulted from

involuntary movements of daily activities, and others were simulated in controlled laboratory

experiments. They include for example, finger, hand or arm movements, and displacement of the

sensor probe [48]. More realistic data incorporates cases of patients with cardiovascular diseases

(CVD) [51, 59, 61], epilepsy [60], being admitted to the emergency department [55], in intensive

care units (ICU) suffering from arrhythmias [49, 56, 58, 61], or healthy emergency responders

after heat-stress conditions [54]. The aim of these studies was to include beats of unusual signal

quality, that were not of induced artifacts origin.

• Time recordings: The recordings duration of the controlled experiments was commonly of 60

seconds, with the induced artifacts occurring in the middle interval (20-40s) [43, 48, 51]. This

type of recordings were usually preceded by 5min of rest. In a particular study [54], in order

to increase variability, 60s recordings were synthetically generated through random stitching of

three 20s segments, from distinct subjects and various signal qualities.

2.3.2 Pulses segmentation and classification windows

In a first step, recordings need to be segmented for feature extraction. Some studies focused on a

beat-to-beat segmentation to extract information from single PPG pulses. For that, characteristic

points of the pulse contour, such as the pulse onset, offset and systolic peak, needed to be determined.

Different segmentation techniques were applied in the literature to find these. First in a pre-processing

step, the PPG signal was typically filtered with a 4th order band-pass Butterworth filter (0.5-12Hz),

to remove the DC and low frequency components. Then, some algorithms used the lower envelope,

with a minimum filter, to detect the troughs of the PPG pulses [48]. Similarly, the minima, marking

the start of the segmented pulses, could be identified after applying a a moving-average-filter to the

original signal [53]. Systolic peaks were subsequently identified as the maximum between the two

troughs of the pulse. Other techniques rely on the PPG signal derivatives, and more specifically

use the maximum of the 3rd derivative previous to the maximum of the 1rst derivative, to determine

the onset of the pulse [51]. Finally, another simple but effective method to find peaks and valleys,

was adaptive thresholding with an amplitude correction factor, that amended undesirable diastolic

peaks [56].

Other studies, did not concentrate in such a small beat-to-beat scale, but rather, in time windows.

These did not require complex segmentation techniques, since calculated features were simply averaged

over subsequent time frames [43, 49, 52, 54, 57, 59]. For instance, Dao et al. implemented a sliding
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window of 8s with 50% overlap [55]. Elgendi et.al [54], optimized the window size from 1s to 30s

in steps of 1s, and found that windows of 2-5s were optimal for quasi-real time assessment of pulses

quality using the skewness statistical feature. Other time and frequency features required longer

windows, and were extracted using the whole duration (60s) of the recordings. Chong et al. [43], also

tested different classification windows (3, 5, 7, 9 & 11s), and identified the 7s one as the most optimal

for discriminating artifacts from clean PPG fragments.

2.3.3 Features extraction

The discriminatory capability of artifacts detection algorithms mainly relies on the features extracted

from the PPG signal, being able to subtly differentiate between corrupted and clean PPG segments.

This is why, feature extraction is one of the most important steps in the classification process. Different

feature sets have been proposed in different works. However, the two main categories are: time and

frequency domain features. Some exceptions to these are period domain characteristics, such as height,

length, width and area of the predominant peaks in the spectrum, obtained by applying the Period

Short Fourier Transform (PD-STFT) [51]; or the quadratic phase coupling (QPC) extracted from

bi-spectral analysis [45, 63].

In the time domain subgroup, absolute and relative pulse morphological characteristics prevail. To

illustrate, the simplest PPG traits extracted are: pulse amplitude [48, 51, 56, 59], pulse length [48,

51, 56], peak distance [51], peak height and trough depth difference [48, 51], and rise time [56]. Other

contour metrics such as pulse skewness and kurtosis have also been demonstrated to have great noise

discriminative capability [45, 51, 54, 63]. Alternatively, other studies focused on choosing features

reflecting the variability of corrupted PPG segments in the form of the standard deviation of peak-to-

peak interval and amplitude [43, 59], systolic and diastolic ratio, and the mean standard deviation of

the pulse shape [43].

Some characteristics cannot be directly extracted from PPG signals, but need a pulse template to

be built from the average of consecutive pulses, in a time window. Signal quality indices can then be

calculated based on the pulse-by-pulse comparison with that template. Some examples include the

template matching and the dynamic time warping correlation coefficients [49, 52], or the derivative of

the correlation coefficient [53].

In contrast, some features require larger time windows compared to beat-to-beat characteristics.

To illustrate, some signal quality indices are relative power, zero-crossing rate, and signal to noise

ratio (SNR) [54]. Hjorth parameters, which are commonly used in electroencephalography (EEG),

have also been implemented in a PPG artifacts detector [64].

In the frequency domain, it is worth highlighting the use of power spectrum values at specific
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frequencies (5,7,9,13 Hz), the number of median-crossings of the instantaneous frequency [57]; the

relative power [54], and the frequency kurtosis features [45, 63]. Other spectral characteristics include

spectral entropy, total power, and non-linear features derived from the Pointcare plot [61].

Dao et al. [55] proposed to derive the time-frequency spectrum (TFS) of the PPG using the variable

frequency complex demodulation (VFCDM) technique, and extract features from it. These included

the residual noise power, the projected frequency modulation difference and the HR difference, between

the frequency modulation and the time domain calculation.

In order to avoid pulses segmentation and manual feature engineering, recent efforts have focused

on training deep learning models that self-learn the features by error backpropagation [62, 65].

2.3.4 Feature selection

The success of artifacts detection algorithms relies on the selection of the most relevant features to

maximize the performance of the classification process. Training on a large set of features is prone to

introduce high variability in the classifier and increase the computational effort. Therefore, it is crucial

to detect any possible linear or non-linear interactions among extracted features to not only diminish

redundancy in the feature set, but also to enhance the discrimination and generalization capability of

the classifier.

Some studies implement feature selection techniques to reduce the number of extracted features.

The minimum redundancy maximum relevance (mRMR) filter method was applied in [66]. It consistis

on ranking the most relevant features using mutual information metrics. A later version of mRMR, is

the Normalized Mutual Information Feature Selection (NMIFS) algorithm. The normalized Mutual

Information is used here as the measure of redundancy. This method implemented in [51], has the

advantage to not require any manual parameters tweaking. In another study [57], the Bhattacharya

distance, a measure of the separation between two distributions of data, was used to reduce the

features subset. Vandecasteele et al., implemented backwards wrapper feature selection using a leave-

one-patient-out cross-validation approach to find the most optimal set that maximized the F1-score.

The majority of studies in the literature do not include any feature selection step in their algo-

rithms, since the number of features is already small enough. Such an optimal subset of features was

probably obtained by trial and error of previous experience, or domain knowledge.

2.3.5 Classification methods

Once features of the PPG waveform are extracted and properly selected, they can be input in a

classifier for pulse quality assessment. Here, a comparison of the main classification approaches found

in the PPG literature is presented.
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The most elementary type of classification model found was decision lists. Sukor et al. [48],

proposed a threshold-based classifier, with pulse resolution, based on waveform morphology analysis

to classify whether a pulse was of acceptable quality or not. This algorithm achieved an average

sensitivity (SE), specificity (SP) and accuracy (ACC), of 89%, 77% and 83%, respectively. Cherif at

al. [53], argued that this method cannot be implemented in a stand alone system since the template

and thresholds are predefined. In contrast, they proposed Random Distortion Testing (RDT), a

robust non-parametric hypothesis testing, relying on a single adaptive thresholding decision, instead

of 6 manually fixed thresholds. Despite the efforts, the classification of a pulse as an artifact or not,

yielded similar outcomes as previously obtained by Sukor et al., with mean 84% (SE), 83% (SP)

and 83% (ACC). Another decision lists algorithm, proposed by Orphanidou et al. [52], based on

the correlation coefficient of each PPG pulse with an adaptive template, achieved higher sensitivity

(91%) and specificity (95%) in discriminating good and bad quality PPG segments. Fischer et al.

outperformed these results with 99.6% (SE), 90.5% (SP), 98.3% (ACC) and precision of 98.5%, using

3 decision lists based on contour analysis [56]. This novel embedded algorithm, differentiating artifacts

and reliable pulses, achieved segmentation and beat-to-beat artifact detection in real-time, and it could

run in devices with limited memory and computational power. However, even though this model was

validated with three different clinical databases, it can be criticized that it uses too many manually

defined thresholds and normative ranges (13), and therefore, lacks generality.

In the same line, Krishnan et al. [45, 63] applied a Neyman-Pearson detection rule to individual

high order statistics features and then fused the individual measures through the Varshney-Chair

rule to further enhance the artifact detection capability. This combination resulted in a sensitivity

of 91% and a specificity of 94%. However, the reduced number of repetitions of each artifact in the

dataset, added to the small number of subjects, questioned the validity of this method. In addition, a

simple probabilistic naive Bayes classifier, suggested a better performance in discriminating clean from

corrupted PPG with 98.3% (SE) and 98.3% (SP) [57]. For complete validation of this approach, it

would be interesting to analyse the reliability of the selected features in patients suffering arrhythmias

for example. This medical condition, characterized by an increased heart rate variability, would

probably negatively impact the class separability potential of autocorrelation features.

More advanced classifiers with the ability to model non-linear decision boundaries and showing

robustness against overfitting, included Support Vector Machines (SVM). To illustrate, time and

period domain characteristics input in a SVM classifier demonstrated good performance with 84.3%

(SE), 91.5% (SP), 88.5% (ACC) [51]. Nevertheless, in this work, the discriminative capability of the

selected features is suspected to be dependent on the particular context of differentiating between

a CVD group of subjects and healthy controls. Vandescasteele et al. [60], trained a Least-Squares
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SVM (LS-SVM) with data from 17 epileptic patients recorded with an E4 Empatica (Empatica Inc.)

wristband, for a duration of 24h. The motion artifacts detection algorithm implemented time and

frequency PPG features, as well as accelerometer characteristics, and achieved an ACC of 90.23%, SE

of 85.5% and SP of 92.3%. Chong et al. [43], proposed to incorporate a major voting of neighbouring

PPG segments approach, to a SVM classifier, to enhance the classification decision. This algorithm

outperformed previous results with average 94.3% (SE), 92.4% (SP), 93.9% (ACC) [43]. Dao et al. [55]

also combined an SVM classifier with a traceback strategy in the first stage of their TifMA algorithm,

to differentiate motion artifacts segments from clean PPG data and locate their onset and offset times

with 1s precision. For that, time-frequency characteristics from the TFS obtained through VFCDM,

were exploited. In a second stage, the algorithm assessed whether the identified corrupted PPG

segments, were usable for HR extraction or not with average 92% (ACC), 93%(SE) and 90% (SP).

Some works, trained several classifiers and evaluated their performance for model selection. El-

gendi [54] tested four classification models: Mahalanobis distance, Linear Discriminant Analysis

(LDA), Quadratic Discriminant Analysis (QDA) and Support Vector Machine (SVM). The aim was

to find a single optimal signal quality index for PPG signals able to discriminate between excel-

lent, acceptable and unfit pulses with high accuracy. Skewness showed the best overall performance

in differentiating excellent pulses from acceptable (F1=86%), unfit (F1=79.1%) and both together

(F1=87.2%), with respective optimal window sizes of 3s, 5s and 2s. Pereira et al. [61], also tested

three different classifiers: an SVM, a K-nearest neighbors, and a decision tree, to investigate which one

resulted in the best performance. The SVM model, trained with time and frequency features, was the

most successful one in differentiating between good and bad quality signal fragments (ACC=90.5%,

SE=91.3%, SP=88.8%).

Artificial neural networks (ANN) were also proposed in the literature. These consist of a set of

connected nodes organized in different layers, that use non-linear activation functions to discriminate

between corrupted and clean PPG signals. A type of feed-forward ANN, a Multilayer Perceptron

(MLP), with 10 nodes and 6 input features, achieved a performance of 99.0% (SE), 80.6% (SP)

and 95.2% (ACC) in the classification of PPG pulses with different signal qualities [49]. Cherif et

al. [53], argued that this approach lacked generality since the weights were specific to the dataset. A

probabilistic neural network (PNN), was proposed by Tabei et al. [59], to detect motion artifacts using

two different training approaches. On one hand, a generalized PNN, was trained on the clean and

corrupted PPG segments from all subjects, except the test subject. On the other hand, a personalized

PNN was trained on the clean data of the test subject and the artifacts data of the rest of the subjects.

Both methods, were tested in one test subject at a time, including clean and corrupted PPG segments.

The results showed that the personalized PNN improved the performance compared to the generalized
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approach, with average 98±2 % (ACC), 92.6±6.5% (SE) and 99.7±0.9% (SP). Despite the promising

findings, a limitation of this personalized method is that the PNN must be retrained, prior to being

implemented on every new user.

Finally, deep learning convolutional neural networks (CNN) were also explored in the recent years.

Goh et al. [62] proposed a one-dimensional CNN architecture for motion artifact detection in PPG,

trained on different datasets including laboratory controlled experiments and ICU data. This 13-layers

deep learning model demonstrated the ability to successfully distinguish artifacts from clean PPG

segments with an overall 94.5% (ACC), 96.6% (SE) and 91.2% (SP). Similar performance was obtained,

with a deep CNN (DCNN), with six densely connected blocks and a total of 201 layers proposed by

Poh et al. [58]. This DCNN model was trained to distinguish among 4 different classes including:

artifacts, synus rythm clean PPG, ectopic beats, and atrial fibrillation segments. The sensitivity and

specificity of noise-corrupted PPG segments detection was 97% and 100%, respectively. Despite the

high discriminatory power of deep learning, CNNs are very sensitive to weights initialization and rely

on large-scale manually annotated PPG datasets. These are indeed, difficult, time-consuming and

costly to obtain.

2.3.6 Discussion

Some of the most relevant papers in PPG artifacts classification have been reviewed in this section. In

these studies, many efforts have being put into designing an ideal real-time algorithm with pulse-by-

pulse resolution, showing high generality to PPG signals of different qualities, and at the same time

achieving a high discriminative performance. However, current approaches still do not completely

fulfill all these requirements at the same time.

First, increasing the algorithms generality could adversely affect the detection performance. In-

deed, it would critically limit the features specificity to the classification task, since their discrimination

capability is reliant on each particular artifacts context. Likewise, in many works, the architecture of

the algorithm appeared strongly dependent on the dataset. For instance, many decision lists relied on

manually defined thresholds, and the personalized PNN needed to be trained on every specific subject

to be successful.

Despite some efforts to validate the proposed algorithms in various publicly availability datasets,

including motion artifacts, realistic ambulatory conditions, or ICU patients suffering from atrial fibril-

lations; developing a general model that can be used in many different clinical contexts indistinctively,

seems a difficult task to be accomplished in the near future. A standardized large-scale database, with

annotated PPG signals from all types of medical conditions and environments, would be required.

Another important aspect that is currently limited in the field is the real-time implementation.
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Only one algorithm [56] of the reviewed studies, was successfully executed in real time in a micro-

controller. Nevertheless, this approach was solely based on short time beat-to-beat window features,

which restricted the inclusion of features with high reliability in detecting changes over longer periods

of time. This is for example the case of Hjorth parameters [64], that require a larger window size than

a single beat.

Another issue is the number of features and complexity of the algorithm that directly impacts the

computational power. Some papers have proposed large features subsets and more complex classifi-

cation models. Despite the higher classification performance, these might have the drawback of being

computationally expensive in contrast to smaller features subsets and simpler decision lists.

The artifact detection work developed as part of this thesis tries to tackle these issues, in order to

find a trade off between generality, features specificity, computational efficiency and high performance

for successful real-time implementation.

2.4 Automatic apnea detection using PPG sensors

2.4.1 Apnea types and definitions

An apnea is a temporary interruption of breathing typically occurring during sleep, that can lead

to the desaturation of oxygen in blood circulation. Three types of apnea events exists, as shown

in Figure 2.5, depending on the cause of respiratory cessation [67]. Obstructive apnea manifests

when the upper airways are blocked preventing the passage of air. However, thoracic and abdominal

respiratory efforts still occur. When the obstruction is only partial, allowing some shallow breathing,

it is called hypopnea. Central apnea is another type, that is characterized by both the absence of

airflow and the cessation of respiratory movements. It typically originates when the brain, is unable

to send the appropriate neurological messages to the muscles that control respiration. Mixed apnea is

a combination of both and occurs when the airways obstruction follows a central respiratory pause.

2.4.2 Studies relevant to the current research

Unfortunately at present, due to the difficulty of witnessing and monitoring SUDEP, there are no

available oximetry-based approaches for real-time seizure-related apnea detection in epilepsy [68].

The only research work using oximetry for seizure detection, searches for simple decreases in SpO2 in

combination with HR and EDA changes [69]. However, sleep apnea-hypopnea syndrome (SAHS) has

been widely studied and there are many publicly available polysomnography (PSG) databases. This

has promoted the development of many automatic apnea detection algorithms in the past years [70,

71, 72]. These exploit a wide variety of sensors including: oximetry, ECG, sounds and respiratory
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Figure 2.5: Obstructive, Central and Mixed apnea recordings. Four different channels are shown:
flow thermistor, respiratory inductance plethysmography (RIP) at the thorax, SpO2 and PPG signals. During
the three apnea cases, the flow is clearly interrupted. During obstructive apneas, the RIP thorax trace still
shows some small oscillations, indicating the presence of respiratory efforts. During central apneas, no RIP
activity can be observed. In the mixed apnea case, the RIP channel oscillations only appear at the end.

signals, as well as multiple combinations of these [66, 64]. However, only oximetry approaches using

PPG sensors, are relevant to the present research work. That is why in the following subsections, only

PPG and SpO2-derived techniques are considered.
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In the context of SUDEP prevention, where continuous physiological monitoring is critical, works

that have focused on subject-based classification for sleep apnea diagnosis are irrelevant. Here the

focus is on the papers in the literature that propose either epoch-based apnea detection or direct SpO2

desaturations detection. These algorithms classified each individual epoch or desaturation event as

apneic or normal.

In the next subsections, the methodology followed by the most relevant papers performing apnea

detection with single PPG sensors is presented. We only reviewed algorithms that were potentially

suitable for online processing. Summaries of the main aspects of the proposed SpO2 and PPG ap-

proaches are presented in Table 2.2 and Table 2.3, respectively. The papers are listed, in ascending

order, by year.

2.4.3 Datasets and cohorts

There are many PSG databases publicly available that have been extensively used by the different

research works in the literature to train and test algorithms for PPG-based apnea events detection.

The majority of these included subjects suspected to have sleep apnea. These had different degrees of

SAHS severity, diagnosed based on the apnea-hypopnea index (AHI). This index, measuring the total

number of respiratory events occurring per hour of sleep, divided SAHS patients into one of the four

categories: normal (AHI<5), mild (5≤AHI<15), moderate (15≤AHI<30) or severe (AHI≥30).

The most commonly used databses in SpO2-based approaches, were:

• The Apnea-ECG Physionet database. This consists of 8 full PSG night recordings including the

SpO2 channel, with half of the cohort diagnosed with severe SAHS and the rest as controls.

This dataset was used by several studies [74, 75, 77, 81, 82]. Annotations were made minute-by-

minute.

• The University College Dublin (UCD) Sleep Apnea database. It also collected by Physionet and

included 25 subjects with average AHI of 24.1 ± 20.3s. Annotations consisted of onset times

and duration of obstructive, central, mixed and hypopneas respiratory events..

• The dataset from the Gran Canaria University Hospital (HuGCDN2008). It included 70 patients

suspected to have sleep apnea and was annotated every 30s, but many works re-labeled the

recordings every minute to facilitate the comparison with other databases [81, 82, 80].

• The Sleep Heart Health Study (SHHS) dataset. This contains recordings from 5793 participants

undergoing full night PSG from different sleep laboratories. An uniform distribution of subjects

into the four AHI categories was ensured [77]. Desaturations are labeled as being linked to an

apnea or not.
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Table 2.2: Apnea detection algorithms: SpO2 approaches.

Author Epoch length Features Classifier Datasets ACC SE SP PPV

[73] Burgos 1 min ODI & TSA Bagging
ADTree

Apnea-ECG 93.03 92.35 93.52 -

[74] Almazaydeh Desaturation ODI3, ∆ index,
CTM50

NN Apnea-ECG 93.3 87.5 100 -

[75] Mostafa 1 min Time, freq and
wavelet

ANN + GA Apnea-ECG 97.7 96.5 98.5 -

[76] Pathinarupothi 1 min Self-learned LSTM-RNN Apnea-ECG 95.5 92.9 - 99.2

[77] Deviaene Desaturation Time,
desaturation
severity and

quasi-
periodicity

Random Forest UZ Leuven,
Apnea-ECG,

SHHS

82.8 64.3 88.6 -

[78] Deviaene 1 min SpO2 as in [77]
+ PPG time

and freq

LS-SVM UZ Leuven 83.4 73.7 86.6 64.8

[79] Jung 1 min 3 characteristic
points in the
desaturation

Decision lists Seoul National
University
Hospital

91 83 89 -

[80] Mendonça 5 min (1 min
overlap)

Time & freq Logistic
regression

HuGCDN2008 88 80 91 -

[81] Mostafa 1, 3, 5 min (1
min overlap)

Self-learned CNN + GA Apnea-ECG
(1min)*

94.24 92.04 95.78 -

UCD (3min)* 85.79 60.38 93.9 -

HuGCDN2008
(5min)*

89.32 74.75 94.44 -

[82] Mostafa 1, 3, 5 min (1
min overlap)

Self-learned CNN + GBO HuGCDN2008
(5min)*

88.49 73.64 93.8 -

Apnea-ECG
(3min)*

95.14 92.36 97.08 -

*Best epoch length performance
ODI: oxygen desaturation index, TSA: time spent in apnea, CMT50: the central tendency measure with radius 0.5, NN:
Neural Network, LS-SVM: Least-Squares Support Vector Machine,LSTM-RNN: Long Short-Term Memory Recurrent
Neural Network, CNN: Convolutional NN, GA: Genetic Algorithm, GBO: Greedy Based Optimization.
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Table 2.3: Apnea detection algorithms using the PPG signal.

Author Subjects Epoch length Features Classifier ACC SE SP PPV

[83] Knorr-Chung 20 sedated (17
intubated / 3
spontaneous
breathing)

5 s Time & freq
domains

NN
(obstructive

apnea/normal)

75.4 91.6 84.7 85.9

[84] Pradhapan 40 healthy
subjects

(breath-holding
experiments)

15s selected
segments

PPG time (RI
& SI) + Power
ratio between

the LF
(0.04-0.4Hz)

and HF
(0.15-0.4Hz)

SVM 97.22 94.62 100 -

[85] Gaurav 16 healthy
subjects

(breath-holding
experiments)

Continuous Area under
power spectrum
(0.05-0.5Hz) of
PPG-derived
respiratory

signal

Wavelet
decomposition
+ Threshold

Under 10 s detection*

[86] Lázaro PSG recordings
from 21

children (10
with OSA)

Continuous
detection /

Performance
over 1h

fragments

PRV freq
features from 4

windows
[before, during,
post-apnea (5s)
& global (20s)]

LDA
(obstructive

apnea/normal)

70.37 81.82 68.57 -

[87] Uçar 5 PSG subjects
(3 sleep apnea

patients)

10 - 30 s
(variable)

Time domain
pulse

characteristics

MLFFNN 97.07 98 96 -

[88] Bozkur 10 OSA
patients

>10 s (variable) Time and freq
from PPG &

PRV

Ensemble
classifier

(apnea/normal)

95 93 96 -

[89] Papini SOMNIA (469
PSG patients)
& HealthBed
datasets (33

healthy)

30 s PPG-derived:
PRV +

respiratory
features

Deep learning
model with

stacked
convolutional

blocks

86 39 94 51

*No performance metrics were reported for this study. Only the time taken to detect an apneic event was specified per
subject.
OSA: Obstructive Sleep Apnea, PSG: polysomnography, PRV: pulse rate variability, LF: low frequency, HF: high fre-
quency, RI: reflection index, SI: stiffness index, : decreases in amplitude of PPG signal, NN: Neural Network, MLFFNN:
Multilayer feedforward NN, LDA: Linear Discriminant Anlysis, SVM: Support Vector Machine.
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• The UZ Leuven dataset included the PSG of 100 patients with moderate and severe SAHS

(AHI≥15). Desaturations were also annotated based on whether they were linked to an apnea

or not.

Some works, used several of these public databases to test their models generalizability. Others

instead, used their own recorded datasets. For instance, Jung et al. [79] collected 230 PSG recordings

at the Seoul National University Hospital, of which 46 did not suffer from SAHS and the rest were

characterized by different AHI indexes.

As it can be observed in Table 2.3, studies exploiting PPG signals typically used their own datasets,

including healthy and SAHS subjects. The cohorts sizes are smaller than in SpO2 databases, ranging

from 5 to 40 subjects. Data collection varied from anesthesized patients [83] to controlled breath-

holding experiments [84, 85], but also included PSG recordings from suspected obstructive sleep apnea

(OSA) patients [86, 87]. Overall, the classification decision focused on differentiating apnea PPG events

from non-apneic PPG fragments, without making further distinctions between central, obstructive,

mixed or hypoapneas events. However, the SOMNIA dataset used in [89], included all of these, which

enabled to assess the algorithm sensitivity for each particular respiratory event.

2.4.4 Epoch length

Full night PSG recordings were labeled by experts with various durations in different studies. The

most common epoch length found in the SpO2 literature was 1 min. Many studies that utilized publicly

available databases, such as the Apnea-ECG database, were indeed limited by this annotation window

of the manual scoring. Mostafa et al. also explored larger epochs of 1min, 3min and 5 min duration,

with 1min window overlap [81, 82].

PPG studies instead, used more instantaneous windows of 5s [83], 15s [84], and variably between

10 to 30s [87, 88]. However, none of these works implemented it in an epoch-by-epoch running window

manner, but instead manually segmented the most representative PPG fragments in the recordings,

showing either normal breathing or apneic patterns for classification. This non-fully automated process

is non-realistic and does not prove the method’s validity for online processing.

Lázaro et al. continuously detected events, but reported the detection performance over 1 hour

fragments [86]. The algorithm proposed by Papini et al. [89], was the only one performing epoch-by-

epoch classification with a window of 30s, relying on the PPG signal.

2.4.5 Signals and features exploited

Pulse oximeter sensors enable the detection of apneas in a twofold manner. Either by using the raw

PPG signal, or the SpO2-derived time-series. In some rare cases, a combination of both is implemented.
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2.4.5.1 SpO2-based approaches

The most established strategy for apnea detection using pulse oximetry sensors is to directly exploit

features from the SpO2 signal. More specifically, works in the literature focus on the characteristics

of SpO2 desaturations. For that, drops in oxygen saturation need to be first detected. Deviaene et

al. [77] proposed to detect SpO2 desaturations over the whole recording by smoothing the SpO2 time

series with a moving average (MA) and then identifying characteristic points using the first derivative.

Jung et al. [79] also used 3 specific points to determine the desaturation: the first one (A) was located

when the oxygen droped by 1% at the beginning of the desaturation; the second (B) was placed at

the deepest point of the desaturation with a further decrease of 3%; the last point (C) was based 1%

below A or 3% above B on the resaturation. The duration between A and C had to be ≥ 10s and

≤ 90s for the desaturations to be considered as an apnea.

Several approaches, quantifying patterns in pulse oximetry, have been presented in the litera-

ture [90]. Typical desaturations characteristics include the desaturation’s duration and depth, the

oxygen desaturation index quantifying the depth of the drop in oxygen levels by 2%, 3%, 4% (ODI2,

ODI3, ODI4), and the desaturation area under these thresholds [77, 75]. Some of these character-

istics are illustrated in Figure 2.6. Time series analysis characteristics such as the mean, variance,

maximum, minimum, skewness, kurtosis, and deviations from these were also found in [77, 75]. The

cumulative time spent in apnea below a certain SpO2 threshold value such as ≤90% (TSA90) was also

an important trait considered in [73]. Other statistical features explored were the delta index (∆) and

the central tendency measure with radius 0.5 (CTM50) [74, 75].

Figure 2.6: Annotated diagram of a SpO2 desaturation with some common characteristics.
Features such as desaturation depth, desaturation duration, area and time under the -2% threshold are de-
picted.
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Deviaene et al. [77] extracted some features from the quasi-periodicity domain using the Phase

Rectified Signal Averaging (PRSA) and auto-correlation methods. For instance, the upwards and

downwards slopes of the PRSA, and the first auto-correlation peak together with its relative amplitude,

were some aspects studied.

Some studies [80, 75], proposed some frequency domain features as the output of a 20 equally

spaced filter bank, covering the whole frequency band of a 5 min epoch. The bandwith of each filter

was of 1.25 Hz.

Mostafa et al. [75] also explored some wavelet features from the time-frequency domain. By

applying the db3 mother wavelet for wavelet decomposition, approximation and detail coefficients

were extracted. The Shannon entropy and standard deviation of these for the 6 decomposition levels

were also derived.

2.4.5.2 PPG signal features

Less attention has been paid in the literature to features directly extracted from the PPG signal.

However, since not all the apneic events entail significant oxygen desaturations in adults [77], and this

is even more frequent in children, researchers needed to take advantage of some unique apneic PPG

traits in order to avoid missing critical respiratory events.

Time domain features were commonly computed from the PPG signal. For instance, PPG ampli-

tude characteristics, rise time and beat-to-beat intervals were explored in [83, 87, 88], as well as the

variability of some of these (pulse rate, amplitude and width variability) [78]. Some studies, proposed

morphological pulse traits such as the pulse width, the ratio of the systolic (A1) and diastolic (A2) ar-

eas [87], the reflection index or the stiffness index [84]. Several statistical features including the mean,

standard deviation, skewness, kurtosis, central moments, average curve length, Hjorth parameters;

were also found in the literature [87, 88].

Frequency domain features mainly focused on the low (0.04-0.15 Hz), medium (0.09-0.15 Hz) and

high (0.15-0.6 Hz) frequency bands of the PPG power spectrum [83, 88]. They included the frequency

peaks and power values in these bands.

Some studies derived some additional physiological signals from the raw PPG, such as the pulse

rate variability (PRV) or the respiratory signal. Additional features were computed from these sur-

rogates for apnea detection. Lázaro et al. [86] focused on detecting decreases in amplitude of the

PPG signal (DAP) that were previously shown to be correlated with apnea [64]. This vasoconstric-

tion response triggered by the sympathetic system is hypothetically caused to generate an arousal

after respiratory cessation. However, since not all DAPs in the PPG signal are always related to

apneic events, PRV features were additionally extracted based on the inverse of the instantaneous
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PPG pulses interval. PRV characteristics included the mean and the variance, as well as the power

in the very low (0.003-0.04Hz), low (0.04-0.15 Hz), and high (0.15-0.5 Hz) frequency bands. In an-

other study [85], the respiratory signal was extracted from the PPG by wavelet decomposition using

the db9 mother wavelet. The area under the power spectrum of this surrogate signal, in the band

between 0.05-0.5Hz was continuously calculated and compared to an adaptive average for apnea de-

tection. Papini et al. included both PRV and respiratory activity derived features from the PPG

signal. Some PRV characteristics included time domain statistics, the arousal probability, multi-scale

entropy, Hilbert transform or frequency domain features among others. For the respiratory ones: time,

frequency peaks, amplitude and visibility graphs analysis were likewise analyzed.

2.4.6 Classification methods

Various apnea classification techniques were explored in the literature, from simple threshold-based

decisions lists to complex deep learning algorithms. The most distinctive algorithms are presented as

follows.

Jung et al. [79] automatically detected apneic desaturations using the SpO2 signal. To classify

whether these resulted from apneic events or not, they passed the coordinates of three characteristic

points of the desaturation into simple decision lists. The minute-by-minute classification of apneic

events resulted in an average ACC of 91%, SE of 83% and SP of 89%. This research claimed that their

algorithm was near real-time, however they first detected the slow response of the SpO2 and then they

located the original apneic event by subtracting 25s from the onset of the desaturation. This delay of

25s could potentially be acceptable in diagnostic applications. However, it is questionable to consider

this algorithm suitable, for real-time SUDEP monitoring.

A simple Linear regression (LR) classifier analyzing a total of 22 statistical and frequency-based

SpO2 features was implemented by Mendonça et al. [80] in a wireless device for minute-by-minute

apnea detection. A sequential forward feature selection process computed the most optimal feature

set. This achieved an acceptable performance of ACC of 88%, SE of 80% and SP of 91%.

Another algorithm proposed by Burgos et al. [73] also claimed to perform real-time apnea detection

on a PDA. Yet again, a minute-by-minute epoch-based detection, as annotated in the Apnea-ECG

database, can be argued to not be real-time. In this study, the ODI2, 3, 4 and TSA95, 90, 85,

80, 70 indexes, were input into a Bagging of decision trees (ADTree). The performance obtained

(ACC=93.03%, SE=92.35%, SP=93.52%), was very promising for an apnea monitoring system capable

of transmitting physiological data online via Bluetooth into a mobile device for processing.

Lázaro et al. [86] exploited PRV derived features from DAPs hypothetically correlated with apnea

events. A total of 34 statistical and frequency characteristics from four different windows preceding,
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following and spanning the detected DAP events, were fed into a LDA classifier. The DAP event

classification as related to an apneic event or not, showed a performance of ACC=70.37%, SE=81.82%

and SP=68.57%.

Deviaene et al. [77] extracted time domain, statistical, desaturation severity and quasi-periodicity

features from detected SpO2 desaturations, and tested different ML classifiers. A random forest

classifier showed the best average performance (ACC=82.8%, SE=64.3%, SP=88.6%, PPV=64.2%)

in identifying whether the desaturations were caused by an apneic event or not. However the sensitivity

of this algorithm, was very poor due to the fact that some apneic events were not always followed by

oxygen desaturations. In order to avoid missing apneas, the same authors exploited the PPG signal

to compliment the SpO2 detection, in a follow up study [78]. The inclusion of additional time and

frequency PPG features in a least squares SVM classifier (LS-SVM) resulted in a an improvement of

the sensitivity (SE=73.7%). However the precision still remained very low (PPV=64.8%). Another

study [84], feeding a small subset of time and frequency PPG features into a linear SVM classifier

obtained very good results (ACC=97.22%, SE=94.62%, SP=100%). However, these might not be very

realistic, since the experiments were carried out in healthy participants performing breath-holding

exercises to simulate apneas.

Some studies exploited ANN for SpO2-based apnea classification [74, 75]. In order to select an

optimal subset of SpO2 features from the time, frequency and wavelet domains; a Genetic Algorithm

(GA) was additionally applied in [75]. Almazaydeh et al. [74], on the contrary only employed a

total of three desaturation features (ODI3, ∆ index and CTM50). Both studies used the Physionet

Apnea-ECG dataset for validation, resulting in very high performance values (ACC=97.7% [75] and

ACC=93.3% [74]).

Other NN approaches exploiting features from the PPG signal were also proposed. Knorr-Chung et

al. [83], extracted some time and frequency domain features from normal and obstructive apneas PPG

segments observed during general anesthesia with intubation pocedure. The trained ANN demon-

strated very high sensitivity (SE=91.8%), yet debatable, since the most representative obstructive

PPG segments were chosen per subject. Another study including only 5 participants, derived 34 mor-

phological and statistical pulse characteristics, as well as Hjorth parameters [87]. These were input in

a multilayer feedforward NN (MLFFNN). The results obtained were good (ACC=97.07%, SE=98%,

SP=96%), but questionable, due to the inconsistent epoch length used in the range [10-30s], and the

reduced number of participants (a total of 5, with only 3 sleep apnea patients). A similar issue was

observed in another work by the same authors [88], in which a combination of time and frequency

features from the PPG and PRV-derived signals were employed. An ensemble classifier consisting of

a kNN, MLFFNN, probabilistic NN and SVM, attained doubtful successful performance. However
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again, the cohort was only composed of 10 subjects with different epoch lengths.

In the past years, deep learning models have gained more attention in the field of apnea detec-

tion [72]. Their main objective is to replace the feature engineering stage in traditional ML techniques,

by an automatic learning of features from raw data. For that, Mostafa et al. proposed to input the

SpO2 time series directly into a convolutional network (CNN) in 1D [81, 82]. In order to find the best

CNN structure and select all the complex hyperparameters, they implemtented a non-dominated Ge-

netical Algorithm (GA) [81], and a weighted-topology transfer, greedy based optimization (GBO) [82].

In both studies, they tested three epoch lengths of 1, 3 and 5min duration, and various available

datasets. However, despite the large computational times invested in these optimizations of 25-38

days [81] and 8-30 hours [82] respectively; the results did not show such a significant improvement

compared to other simpler ML models [75, 73]. Unless the slight increase in performance is strictly

crucial for specific applications, these complex and time-consuming deep learning methods are at the

moment not worth the effort. Among the unsupervised feature deep learning models, Pathinarupothi

et al. [76] also proposed a long short-term memory recurrent neural network (LSTM-RNN) with 60

neurons in the input layer (one per each second of the SpO2 epoch) and 32 memory blocks in the

hidden layer. The good performance achieved in the Apnea-ECG database is comparable to other ML

and CNN works (ACC=95.5%, SE=92.9%, PPV=99.2%).

Papini et al. [89] developed a deep learning model with staked convolutional blocks that performed

30s epoch-based classification, of apneic respiratory events from different origins (obstructive, central,

mixed and hypopnea). Instead of adopting a self-learned features strategy as other deep learning works,

they employed HRV and respiratory PPG-derived features. The performance resulted in very poor

sensitivity and precision (ACC=86%, SE=39%, PPV=51%, PR AUC=0.47). This can be explained

by the differences in sensitivities among different types of apnea, being hypopnea the lowest SE=37%.

The high number of false positives was probably due to the high percentage of epochs corrupted with

movement artifacts.

2.4.7 Discussion

The current-state-of-the-art of automatic apnea detection algorithms making use of pulse oximeter

sensors has been reviewed, in terms of datasets, classification windows, extracted features and classi-

fiers. Overall, even though there are common efforts to maximize detection performance by extensively

engineering new features from the PPG and SpO2 signals, and devising complex classifiers; there are

still some inherent limitations that prevent from directly applying these solutions for apnea detection

in SUDEP prevention.
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Datasets and annotations Validation on several publicly available databases is essential to ensure

that classification results are reproducible. Despite some attempts, it is still challenging to assess and

compare the performance of the proposed classification models. This is due to the huge variability

in the number and type of participants undergoing the PSG studies in different datasets. The same

algorithms tested in several databases showed indeed very distinct performance. Subjects with

higher AHI are likely to suffer more frequent and severe apneic desaturations than subjects with

mild SAHS. This can greatly bias the classifier when all the subjects are included equally, instead

of balancing the training set with the same number of apneic and non-apneic desaturations per

subject.

In addition, the Physionet Apnea-ECG consistently stands out with the greatest performance no

matter the algorithm. This can be explained by the 1-min-epoch annotations, that facilitates correct

classification. In fact, even if a 1-minute segment contains more than one apnea, and the algorithm

only identifies one, the minute would still be counted as a true positive. This demonstrates that

larger epoch lengths might not be very reliable, specially for non-diagnostic online applications.

Classification Window Epoch length selection is critical to ensure good performance and reliability

of the classification method. It has been observed that among different studies the epoch length

varies significantly. It is therefore very difficult to agree on a suitable duration equally valid for

all clinical applications. Diagnostic automatic algorithms have the flexibility of exploring larger

windows, whereas real-time applications are limited by more instantaneous ones. So a trade-off in

epoch length should be found between real-time implementation and accurate detection.

Inconvenients of single SpO2 approaches SpO2-based approaches have been widely studied in

the literature and have shown good performance in classifying apneic versus normal epochs/events.

However, the start of the SpO2 desaturation is delayed by 20-40s with respect to the start of

the apneic event [67], seriously limiting the implementation in real-time. Even though algorithms

detecting SpO2 desaturations or DAPs claim that they can seek the apneic event in the previous

25s [79], that might be too late to set an alarm in life-threatening SUDEP situations.

In addition, some apneic events are not always followed by oxygen desaturations. In these cases

single SpO2-based approaches will not be able to successfully detect these respiratory events [77].

This shows the importance of using the available PPG signal simultaneously, in order to maximize

the pool of biomarkers available to make a decision on critical apneas.

Combination with respiratory signals Even if current state-of-the-art PPG sensors have a great

potential to classify apneic and normal events, they still lack the capability to properly distinguish

hypoapneas. The combination of oximetry with additional sensors could improve the performance.
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Specially, respiratory signals obtained through nasal airflow, tracheal sounds, or thoracic and abdom-

inal efforts, could successfully complement oximetry approaches in providing meaningful information

to support the classification decision [91].

Classifier type Supervised machine learning classifiers have been proven to be very successful in

detecting apneas. Yet, some disadvantages are the tedious feature engineering stage, that relies on

a good understanding of the physiology behind, which in turn requires a certain level of expertise

in the field. However, in the case of apnea, the well established PPG pattern makes it easy to

model it. It could be argued though, that features extraction could result in infinite combinations

in order to maximize performance. But still, one of the greatest advantages of ML methods is the

interpretability of the model, such as depicting the most discriminative features. This could be of

great importance in the understanding of SUDEP mechanisms.

The main gap in the literature of apnea detection is deep learning algorithms. These have become

more popular in the recent years, but still need to be further explored and developed, as there is

big room for improvement. Specially in the direction of optimizing the degree of complexity while

maintaining the outstanding performance. Indeed, the high number of hyperparameters entails very

long training times, which restrict the cross-validation of the models and limit them to be retrained

if additional data becomes available. Yet, these deep learning approaches are very promising, we

always have to keep in mind the end-application. Efficient hardware implementations should be of

primary focus in situations where computational power is a constraint.

Conclusion The major challenge in apnea detection hence is: to develop a robust system that incor-

porates an efficient automatic algorithm capable of detecting apneic events accurately in real-time.

Shorter epochs are necessary to reduce the delays in detection, and ensure a more instantaneous

and reliable online processing. The performance of the proposed models (∼ 90%) is promising, but

still not sufficient to avoid an excessive number of false alarms. Current algorithms only have the

ability to classify apneas, but cannot distinguish between other types of respiratory events. That

is why, measurement of airflow with additional sensing modalities could be helpful to differentiate,

for example, central and obstructive apneas. As well, the combination of SpO2 and PPG features

could enhance the overall performance.
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[11] A.-M. Tăuţan, A. Young, E. Wentink, and F. Wieringa, “Characterization and reduction of
motion artifacts in photoplethysmographic signals from a wrist-worn device,” in Engineering in
Medicine and Biology Society (EMBC), 2015 37th Annual International Conference of the IEEE.
IEEE, 2015, pp. 6146–6149.

[12] S. Sugino, N. Kanaya, M. Mizuuchi, M. Nakayama, and A. Namiki, “Forehead is as sensitive as
finger pulse oximetry during general anesthesia,” Canadian Journal of Anesthesia, vol. 51, no. 5,
pp. 432–436, 2004.

[13] H. J. Davies, I. Williams, N. S. Peters, and D. P. Mandic, “In-ear spo2: A tool for wearable,
unobtrusive monitoring of hypoxaemia in covid-19,” medRxiv, 2020.

[14] J. P. Phillips, P. A. Kyriacou, D. P. Jones, K. H. Shelley, and R. M. Langford, “Pulse oximetry
and photoplethysmographic waveform analysis of the esophagus and bowel,” Current opinion in
anesthesiology, vol. 21, no. 6, pp. 779–783, 2008.

[15] M.-Z. Poh, N. C. Swenson, and R. W. Picard, “Motion-tolerant magnetic earring sensor and wire-
less earpiece for wearable photoplethysmography,” IEEE Transactions on Information Technology
in Biomedicine, vol. 14, no. 3, pp. 786–794, 2010.

[16] Y. Lee, H. Shin, J. Jo, and Y.-K. Lee, “Development of a wristwatch-type ppg array sensor
module,” in Consumer Electronics-Berlin (ICCE-Berlin), 2011 IEEE International Conference
on. IEEE, 2011, pp. 168–171.

79



References

[17] M.-Z. Poh, K. Kim, A. Goessling, N. Swenson, and R. Picard, “Cardiovascular monitoring using
earphones and a mobile device,” IEEE Pervasive Computing, vol. 11, no. 4, pp. 18–26, 2012.

[18] W. Johnston and Y. Mendelson, “Extracting breathing rate information from a wearable
reflectance pulse oximeter sensor,” in Engineering in Medicine and Biology Society, 2004.
IEMBS’04. 26th Annual International Conference of the IEEE, vol. 2. IEEE, 2004, pp. 5388–
5391.

[19] Y. Zhong, Y. Pan, L. Zhang, and K.-T. Cheng, “A wearable signal acquisition system for phys-
iological signs including throat ppg,” in Engineering in Medicine and Biology Society (EMBC),
2016 38th Annual International Conference of the IEEE. IEEE, 2016, pp. 603–606.

[20] M. Peng, S. A. Imtiaz, and E. Rodriguez-Villegas, “Pulse oximetry in the neck - a proof of
concept,” in Engineering in Medicine and Biology Society (EMBC), 39th Annual International
Conference of the IEEE. IEEE, 2017.

[21] S. C. Millasseau, J. M. Ritter, K. Takazawa, and P. J. Chowienczyk, “Contour analysis of the
photoplethysmographic pulse measured at the finger,” Journal of hypertension, vol. 24, no. 8, pp.
1449–1456, 2006.

[22] J. Allen and A. Murray, “Age-related changes in the characteristics of the photoplethysmographic
pulse shape at various body sites,” Physiological measurement, vol. 24, no. 2, p. 297, 2003.

[23] T. R. Dawber, H. E. THomas Jr, and P. M. McNamara, “Characteristics of the dicrotic notch of
the arterial pulse wave in coronary heart disease,” Angiology, vol. 24, no. 4, pp. 244–255, 1973.

[24] J. Allen and A. Murray, “Age-related changes in peripheral pulse timing characteristics at the
ears, fingers and toes,” Journal of human hypertension, vol. 16, no. 10, pp. 711–717, 2002.

[25] J. Allen, J. R. Frame, and A. Murray, “Microvascular blood flow and skin temperature changes
in the fingers following a deep inspiratory gasp,” Physiological measurement, vol. 23, no. 2, p.
365, 2002.

[26] H. Liu, J. Allen, D. Zheng, and F. Chen, “Recent development of respiratory rate measurement
technologies,” Physiological measurement, vol. 40, no. 7, p. 07TR01, 2019.

[27] P. H. Charlton, T. Bonnici, L. Tarassenko, D. A. Clifton, R. Beale, and P. J. Watkinson, “An
assessment of algorithms to estimate respiratory rate from the electrocardiogram and photo-
plethysmogram,” Physiological measurement, vol. 37, no. 4, p. 610, 2016.

[28] J. Allen and A. Murray, “Variability of photoplethysmography peripheral pulse measurements
at the ears, thumbs and toes,” IEE Proceedings-Science, Measurement and Technology, vol. 147,
no. 6, pp. 403–407, 2000.

[29] V. Hartmann, H. Liu, F. Chen, Q. Qiu, S. Hughes, and D. Zheng, “Quantitative comparison
of photoplethysmographic waveform characteristics: effect of measurement site,” Frontiers in
physiology, vol. 10, p. 198, 2019.

[30] M. T. Petterson, V. L. Begnoche, and J. M. Graybeal, “The effect of motion on pulse oximetry
and its clinical significance,” Anesthesia & Analgesia, vol. 105, no. 6, pp. S78–S84, 2007.

[31] T. Tamura, Y. Maeda, M. Sekine, and M. Yoshida, “Wearable photoplethysmographic sen-
sors—past and present,” Electronics, vol. 3, no. 2, pp. 282–302, 2014.

[32] A. K. Bhoi, S. Sarkar, P. Mishra, and G. Savita, “Pre-processing of ppg signal with performance
based methods,” International Journal of Computer Application, vol. 4, no. 2, pp. 251–256, 2012.

80



References

[33] H.-W. Lee, J.-W. Lee, W.-G. Jung, and G.-K. Lee, “The periodic moving average filter for
removing motion artifacts from ppg signals,” International journal of control automation and
systems, vol. 5, no. 6, p. 701, 2007.

[34] K. A. Reddy, B. George, and V. J. Kumar, “Use of fourier series analysis for motion artifact
reduction and data compression of photoplethysmographic signals,” IEEE Transactions on In-
strumentation and Measurement, vol. 58, no. 5, pp. 1706–1711, 2009.

[35] C. Lee and Y. Zhang, “Reduction of motion artifacts from photoplethysmographic recordings
using a wavelet denoising approach,” in Biomedical Engineering, 2003. IEEE EMBS Asian-Pacific
Conference on. IEEE, 2003, pp. 194–195.

[36] G. Joseph, A. Joseph, G. Titus, R. M. Thomas, and D. Jose, “Photoplethysmogram (ppg) signal
analysis and wavelet de-noising,” in Emerging Research Areas: Magnetics, Machines and Drives
(AICERA/iCMMD), 2014 Annual International Conference on. IEEE, 2014, pp. 1–5.

[37] J. Y. A. Foo, “Comparison of wavelet transformation and adaptive filtering in restoring artefact-
induced time-related measurement,” Biomedical signal processing and control, vol. 1, no. 1, pp.
93–98, 2006.

[38] H. H. Asada, H.-H. Jiang, and P. Gibbs, “Active noise cancellation using mems accelerometers
for motion-tolerant wearable bio-sensors,” in Engineering in Medicine and Biology Society, 2004.
IEMBS’04. 26th Annual International Conference of the IEEE, vol. 1. IEEE, 2004, pp. 2157–
2160.

[39] H. Han, M.-J. Kim, and J. Kim, “Development of real-time motion artifact reduction algorithm
for a wearable photoplethysmography,” in Engineering in Medicine and Biology Society, 2007.
EMBS 2007. 29th Annual International Conference of the IEEE. IEEE, 2007, pp. 1538–1541.

[40] R. Yousefi, M. Nourani, and I. Panahi, “Adaptive cancellation of motion artifact in wearable
biosensors,” in Engineering in Medicine and Biology Society (EMBC), 2012 Annual International
Conference of the IEEE. IEEE, 2012, pp. 2004–2008.

[41] B. S. Kim and S. K. Yoo, “Motion artifact reduction in photoplethysmography using independent
component analysis,” IEEE transactions on biomedical engineering, vol. 53, no. 3, pp. 566–568,
2006.

[42] F. Peng, Z. Zhang, X. Gou, H. Liu, and W. Wang, “Motion artifact removal from photoplethys-
mographic signals by combining temporally constrained independent component analysis and
adaptive filter,” Biomedical engineering online, vol. 13, no. 1, p. 50, 2014.

[43] J. W. Chong, D. K. Dao, S. Salehizadeh, D. D. McManus, C. E. Darling, K. H. Chon, and
Y. Mendelson, “Photoplethysmograph signal reconstruction based on a novel hybrid motion
artifact detection–reduction approach. part i: motion and noise artifact detection,” Annals of
biomedical engineering, vol. 42, no. 11, pp. 2238–2250, 2014.

[44] S. Salehizadeh, D. K. Dao, J. W. Chong, D. McManus, C. Darling, Y. Mendelson, and K. H. Chon,
“Photoplethysmograph signal reconstruction based on a novel motion artifact detection-reduction
approach. part ii: Motion and noise artifact removal,” Annals of biomedical engineering, vol. 42,
no. 11, pp. 2251–2263, 2014.

[45] R. Krishnan, B. Natarajan, and S. Warren, “Two-stage approach for detection and reduction of
motion artifacts in photoplethysmographic data,” IEEE transactions on biomedical engineering,
vol. 57, no. 8, pp. 1867–1876, 2010.

81



References

[46] B. Tarvirdizadeh, A. Golgouneh, F. Tajdari, and E. Khodabakhshi, “A novel online method
for identifying motion artifact and photoplethysmography signal reconstruction using artificial
neural networks and adaptive neuro-fuzzy inference system,” Neural Computing and Applications,
vol. 32, no. 8, pp. 3549–3566, 2020.

[47] N. Selvaraj, Y. Mendelson, K. H. Shelley, D. G. Silverman, and K. H. Chon, “Statistical approach
for the detection of motion/noise artifacts in photoplethysmogram,” in 2011 Annual International
Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2011, pp. 4972–
4975.

[48] J. A. Sukor, S. Redmond, and N. Lovell, “Signal quality measures for pulse oximetry through
waveform morphology analysis,” Physiological measurement, vol. 32, no. 3, p. 369, 2011.

[49] Q. Li and G. Clifford, “Dynamic time warping and machine learning for signal quality assessment
of pulsatile signals,” Physiological measurement, vol. 33, no. 9, p. 1491, 2012.

[50] M. Saeed, M. Villarroel, A. T. Reisner, G. Clifford, L.-W. Lehman, G. Moody, T. Heldt, T. H.
Kyaw, B. Moody, and R. G. Mark, “Multiparameter intelligent monitoring in intensive care ii
(mimic-ii): a public-access intensive care unit database,” Critical care medicine, vol. 39, no. 5, p.
952, 2011.

[51] R. Couceiro, P. Carvalho, R. P. Paiva, J. Henriques, and J. Muehlsteff, “Detection of motion
artifact patterns in photoplethysmographic signals based on time and period domain analysis,”
Physiological measurement, vol. 35, no. 12, p. 2369, 2014.

[52] C. Orphanidou, T. Bonnici, P. Charlton, D. Clifton, D. Vallance, and L. Tarassenko, “Signal-
quality indices for the electrocardiogram and photoplethysmogram: Derivation and applications
to wireless monitoring,” IEEE journal of biomedical and health informatics, vol. 19, no. 3, pp.
832–838, 2014.

[53] S. Cherif, D. Pastor, Q.-T. Nguyen, and E. L’Her, “Detection of artifacts on photoplethysmog-
raphy signals using random distortion testing,” in Engineering in Medicine and Biology Society
(EMBC), 2016 IEEE 38th Annual International Conference of the. IEEE, 2016, pp. 6214–6217.

[54] M. Elgendi, “Optimal signal quality index for photoplethysmogram signals,” Bioengineering,
vol. 3, no. 4, p. 21, 2016.

[55] D. Dao, S. M. Salehizadeh, Y. Noh, J. W. Chong, C. H. Cho, D. McManus, C. E. Darling,
Y. Mendelson, and K. H. Chon, “A robust motion artifact detection algorithm for accurate de-
tection of heart rates from photoplethysmographic signals using time–frequency spectral features,”
IEEE journal of biomedical and health informatics, vol. 21, no. 5, pp. 1242–1253, 2016.

[56] C. Fischer, B. Dömer, T. Wibmer, and T. Penzel, “An algorithm for real-time pulse waveform
segmentation and artifact detection in photoplethysmograms,” IEEE journal of biomedical and
health informatics, vol. 21, no. 2, pp. 372–381, 2017.

[57] N. Pradhan, S. Rajan, A. Adler, and C. Redpath, “Classification of the quality of wristband-
based photoplethysmography signals,” in Medical Measurements and Applications (MeMeA),
2017 IEEE International Symposium on. IEEE, 2017, pp. 269–274.

[58] M.-Z. Poh, Y. C. Poh, P.-H. Chan, C.-K. Wong, L. Pun, W. W.-C. Leung, Y.-F. Wong, M. M.-
Y. Wong, D. W.-S. Chu, and C.-W. Siu, “Diagnostic assessment of a deep learning system for
detecting atrial fibrillation in pulse waveforms,” Heart, vol. 104, no. 23, pp. 1921–1928, 2018.

[59] F. Tabei, R. Kumar, T. N. Phan, D. D. McManus, and J. W. Chong, “A novel personalized
motion and noise artifact (mna) detection method for smartphone photoplethysmograph (ppg)
signals,” IEEE Access, vol. 6, pp. 60 498–60 512, 2018.

82



References

[60] K. Vandecasteele, J. Lázaro, E. Cleeren, K. Claes, W. Van Paesschen, S. Van Huffel, and B. Hun-
yadi, “Artifact detection of wrist photoplethysmograph signals.” in BIOSIGNALS, 2018, pp.
182–189.

[61] T. Pereira, K. Gadhoumi, M. Ma, X. Liu, R. Xiao, R. A. Colorado, K. J. Keenan, K. Meisel,
and X. Hu, “A supervised approach to robust photoplethysmography quality assessment,” IEEE
Journal of Biomedical and Health Informatics, vol. 24, no. 3, pp. 649–657, 2019.

[62] C.-H. Goh, L. K. Tan, N. H. Lovell, S.-C. Ng, M. P. Tan, and E. Lim, “Robust ppg motion
artifact detection using a 1-d convolution neural network,” Computer Methods and Programs in
Biomedicine, p. 105596, 2020.

[63] R. Krishnan, B. Natarajan, and S. Warren, “Analysis and detection of motion artifact in photo-
plethysmographic data using higher order statistics,” in 2008 IEEE International Conference on
Acoustics, Speech and Signal Processing. IEEE, 2008, pp. 613–616.

[64] E. Gil, J. M. Vergara, and P. Laguna, “Detection of decreases in the amplitude fluctuation of
pulse photoplethysmography signal as indication of obstructive sleep apnea syndrome in children,”
Biomedical Signal Processing and Control, vol. 3, no. 3, pp. 267–277, 2008.

[65] J. Torres-Soto and E. A. Ashley, “Multi-task deep learning for cardiac rhythm detection in wear-
able devices,” NPJ digital medicine, vol. 3, no. 1, pp. 1–8, 2020.

[66] V. Monasterio, F. Burgess, and G. D. Clifford, “Robust classification of neonatal apnoea-related
desaturations,” Physiological measurement, vol. 33, no. 9, p. 1503, 2012.
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Chapter 3

Novel Neck PPG vs. Standard Finger

PPG

3.1 Introduction

In clinical settings, the finger is considered the gold standard measurement site for pulse oximetry due

to the easy sensor attachment and its rich capillarity. It is important, however, to investigate other

sites for recording the PPG on the body as it can free the hands from measurement devices. With

the recent explosion of wearable tracker systems, wrist PPG sensors have become the most popular

alternative for consumer grade heart rate (HR) monitoring during daily and physical activities [1].

Despite their promising application in ambulatory environments ([2, 3, 4, 5]), in stationary conditions

such as the ones this research focuses on, frequent arm motion could still corrupt the PPG signal more

regularly than more steady PPG sensors placed in the head.

In this context, head measurement sites are preferred. The earlobe and forehead are already, some

prevalent locations for sensors positioning when the patient’s hands are unavailable (e.g. wounds,

burns, amputation, surgery) [6]. However, the neck could provide great benefits over these conventional

PPG sites in the context of some diseases for which additional physiological biomarkers are desired

to be recorded simultaneously with the same wearable system. Unlike other body parts, the neck

region offers the possibility to measure tracheal sounds that can be exploited for respiratory diseases

diagnosis [7, 8, 9, 10]. Specifically, for apnea detection, the neck is a unique location for cardio-

respiratory multi-modal signal acquisition [7].

Even though the neck could be a favourable new alternative for clinical PPG, this novel site has not

yet been thoroughly studied. The only works attempting to use it, focused on showing the feasibility

of extracting the PPG signal from this site [11], and on determining the most stable position for

signal acquisition [12]. None of these studies examined the actual characteristics of the signal. This is

87



Chapter 3. Novel Neck PPG vs. Standard Finger PPG

necessary, however, not only to correctly interpret and potentially extract new disease indicators, but

also to develop targeted signal processing techniques to eliminate artifacts that could possibly disrupt

the PPG signal.

This chapter aims to compare finger and neck PPG signals in order to characterize the novel

measurement site. The comparison starts from the most basic PPG unit, the pulse waveform, then

moves into the spectral analysis of the novel signals, and builds up into the extraction of higher-level

physiological signals that can be extracted during long-term PPG monitoring. These include the

respiration, the cardiac pulsatile function and the blood oxygen saturation (SpO2). As a summary, a

discussion on the potentials and limitations of the novel neck PPG site is presented, for its application

in pulse oximetry.

3.2 Experiment 1 procedures

Data recorded in this experiment was used for analysis in Sections 3.3, 3.4 and 3.5.

3.2.1 Data acquisition set up

PPG, ECG and respiratory signals were acquired from a total of 9 healthy participants in a relaxed

supine position on a bed to simulate sleep conditions, such that both heart and respiration rate slowed

down. The cohort was composed of 5 males and 4 females, with average age of 24 ± 3 years old, and

BMI of 22.6 ± 3.7 kg/m2. The study was approved by the Local Ethics Committee of Imperial College

London (ICREC ref.: 18IC4358), and written informed consent was obtained from all subjects.

Three different measurement systems were used for data acquisition. Neck PPG signals were

acquired by a reflectance pulse oximeter sensor (8000R, Nonin) attached externally at the suprasternal

space with an adhesive, and connected to a processing module (Xpod, Nonin). Standard finger PPG

signals were obtained from a synchronized transmission pulse oximeter (Onyx II 9560, Nonin) with

Bluetooth connectivity, placed on the left hand. These two pulse oximeter sensors can be observed in

Figure 3.1. Signals were sampled at a rate of 75Hz, and visualized in the computer in real-time.

Reference cardiac and respiratory signals were also obtained with a portable polysomnography

(PSG) system (SOMNOscreen Plus, SOMNOmedics), shown in Figure 3.2. This consisted of: 2-leads

ECG, flow thermistor sensor, nasal pressure cannula, chest and abdomen impedance plethysmography

(IP) bands, and a finger transmission PPG sensor placed on the right hand. The PSG system also

allowed the possibility of adding markers, which were used for posterior synchronization with the Nonin

PPG sensors. In order to verify that all signals were correctly aligned in time for further processing,

the correlation between finger PPG signals, from the Nonin and SOMNO systems, was obtained. If the

initial synchronization did not maximize this correlation, a re-alignment was performed accordingly.
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Figure 3.1: Pulse oximetry sensors used for data acquisition. (a) Finger transmission (Onyx II 9560,
Nonin). (b) Neck reflectance (8000R, Nonin).

Figure 3.2: Polysomnography SOMNOscreen Plus monitoring system. (a) 2-leads ECG, flow
thermistor sensor, nasal pressure cannula, chest and abdomen impedance plethysmography (IP) bands, and
finger transmission PPG sensors. (b) SOMNOscreen data acquisition unit.

3.2.2 Experimental protocol

Four data recordings of 140s were acquired for each participant at rest, while breathing at four different

respiratory frequencies. Figure 3.3 shows the different recordings for the neck and finger PPG, ECG,

and respiratory channels. In the first recording (a), the participants were asked to relax and breath

at their normal spontaneous pace. The following three epochs were similarly recorded at rest on

a bed, but different respiration frequency modulations of around 20s-30s duration were introduced.

These included fast breathing (b), slow breathing (c) and breath-holding simulated apnea events (d).

For that, at specific moments during each recording session, I instructed the participants to either

increment their breathing pace (b), reduce it with controlled breaths (c), or stop breathing (d). These

changes in respiration frequency were marked online, and subsequently verified with the respiratory

bands signals as depicted by the yellow horizontal arrows in Fig 3.3. It is worth noting how these

alterations immediately affect the neck PPG signals. All signals were normalized in the range of [-1,1].
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Figure 3.3: (a) Normal, (b) Breathing Fast, (c) Breathing Slow, (d) Breathing Apnea, record-
ings for one subject showing the finger PPG, neck PPG, ECG and respiratory channels. Yellow
horizontal arrows indicate the time interval of respiratory frequency modulation.
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3.3 Comparison of morphological pulse characteristics

The contents of the following sections are an edited version of the research published in:

I. Garćıa-López, S. A. Imtiaz, and E. Rodriguez-Villegas, “Characterization study of neck photo-

plethysmography,” in 40th Annual International Conference of the IEEE (EMBC). IEEE, 2018, pp.

4355–4358 © IEEE

3.3.1 Average waveforms characteristics extraction and analysis

For this analysis, only the first Breathing Normal recording (Figure 3.3 (a)) was used. The neck and

finger PPG channels were automatically segmented to extract each individual PPG pulse and obtain

an average pulse shape. The neck PPG waveform was statistically compared to the gold standard

finger PPG one by means of time domain morphological features, as detailed in the next subsections.

Automated pulse segmentation and waveform averaging: The PPG signal was first filtered

to remove the DC and low frequency components, with a fourth order high pass Butterworth filter

with 0.7Hz cut off frequency. In order to detect the onsets of each pulse, the lower peak envelope of the

PPG signal was determined using spline interpolation over local maxima separated by a time window

of 0.667s. The maximum between successive troughs was selected as the systolic peak. Wrongly

segmented pulses with a duration greater than the mean pulse duration by three standard deviations

were discarded. Subsequently, a normalization in time and amplitude was performed for each of the

remaining pulses. Pulses were aligned by calculating a delay shift for each pulse that maximized the

overall correlation among all pulses. The first approximation of the mean pulse waveform was then

obtained by averaging point by point. The 60 beats with the shortest Euclidean distance to the mean

waveform were then selected. Taking into consideration this final set of good quality pulses, the final

finger and neck average PPG pulse waveforms were extracted for each subject, as shown in Fig. 3.4.

Figure 3.4: Average finger and neck PPG pulse waveforms obtained for one participant.
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To an untrained eye, these two average pulse shapes might seem similar, however, the diastolic

peak appears more prominent for the neck waveform, as well as the systolic peak is wider. However

other more subtle features not observable to the naked eye might also differ between both sites. This

is why the extraction of more complex features for further statistical analysis is necessary.

Feature extraction: As shown in Fig. 3.5, in order to obtain the morphological characteristics of

the average normal pulse waveforms, the systolic peak was detected with the maximum of the mean

pulse, the dicrotic notch with the second maximum of the second derivative, and the diastolic peak

with the minima right after this maximum. The different features extracted for finger and neck PPG

waveforms comparison, are described in Table 3.1.

Figure 3.5: Average pulse waveform and its second derivative, for diastolic and dicrotic notch
detection.

Statistical tests: The non-parametric Wilcoxon signed-rank test was used for the pairwise com-

parisons of the features, because the number of samples was too small and the population was not

normally distributed. This tested the null hypothesis that the pulse features from finger and neck PPG

signals come from continuous distributions with equal medians, against the alternative. Median values

of each feature, as well as the interquartile range (IQR) variability, were also reported in Table 3.1.

3.3.2 Results: Differences in average PPG waveforms morphological features

Based on the results from the Wilcoxon signed-rank test, the neck PPG average pulse was significantly

different from the finger standard pulse waveform for different features. This can be seen in bold in the

comparison of median values in Table 3.1. Based on these, the neck waveform shows a significantly

lower systolic peak prominence, pulse skewness and augmentation Index (AI) than the finger one.

The neck pulse also exhibits a significantly greater systolic peak width, diastolic peak amplitude,

pulse area, IPA, systolic area (A1), diastolic area (A2) and dicrotic notch amplitude than the finger

92



3.3. Comparison of morphological pulse characteristics

Table 3.1: Wilcoxon Signed-Rank Test Pairwise Comparisons between Finger and
Neck for the Different Features (*p<0.05)

Features Finger Neck Definition

Median IQR Median IQR

Systolic Peak Prominence* 0.985 0.008 0.937 0.074 measured by how much the systolic peak
stood out due to its intrinsic height and its
location relative to the diastolic peak [14].

Systolic Peak Time 0.267 0.107 0.327 0.140 time at which the systolic peak occurred in
the normalized time of 1 second.

Systolic Peak Width* 0.242 0.087 0.324 0.120 computed as the distance between the points
to the left and right of the systolic peak mea-
sured at half prominence height [14].

Diastolic Peak Amplitude* 0.293 0.125 0.500 0.149 corresponded to the normalized height of the
second peak in the PPG pulse waveform.

Diastolic Peak Prominence 0.035 0.072 0.026 0.101 measured by how much the diastolic peak
stood out due to its intrinsic height and its
location relative to the systolic peak [14].

Diastolic Peak Time 0.620 0.080 0.647 0.093 time at which the diastolic peak occurred in
the normalized time of 1 second.

Diastolic Peak Width 0.076 0.086 0.036 0.101 computed as the distance between the points
to the left and right of the diastolic peak
measured at half prominence height [14].

Pulse Propagation Time (PPT) 0.333 0.047 0.307 0.047 time difference between the occurrence of the
systolic and diastolic peaks.

Pulse Kurtosis 2.694 1.234 2.092 0.660 referred to the degree of peakedness of the
pulse [15].

Pulse Skewness* 0.898 0.600 0.482 0.476 referred to the degree of symmetry of the
pulse [15].

Augmentation Index (AI)* 0.706 0.123 0.496 0.149 ratio between the difference in heights of
the systolic (s) and diastolic (d) peaks in
relation to the systolic peak height [16]:
AI = (s− d)/s.

Stiffness Index (SI) 5.250 0.648 5.674 0.879 indicates arterial distensibility, can be de-
fined as the ratio between height (h) and
PPT [17]: SI = h/PPT .

Total Pulse Area* 0.321 0.081 0.419 0.072 the area under the pulse curve from onset to
offset.

Systolic Area (A1)* 0.246 0.061 0.304 0.051 area under the pulse curve from the onset
until the dicrotic notch.

Diastolic Area (A2)* 0.066 0.028 0.109 0.039 area under the pulse curve from the dicrotic
notch until the offset.

Inflection Point Area (IPA)* 0.262 0.092 0.365 0.246 ratio between the diastolic and systolic ar-
eas: IPA = A2/A1. It is an indicator of
pulse wave reflection [16].

Dicrotic Notch Amplitude* 0.285 0.200 0.496 0.128 normalized height of the inflection point be-
tween the systolic and diastolic peaks.

Dicrotic Notch Time 0.533 0.087 0.547 0.127 time at which the dicrotic notch occured in
the normalized time of 1 second.
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PPG. Overall, the neck PPG pulse is less skewed than the finger PPG pulse. This is corroborated by

the fact that the systolic peak prominence is lower since the dicrotic notch and diastolic peak heights

are greater. As a consequence, A1 and A2 have increased, increasing the total area of the pulse.

A possible interpretation for these changes in the PPG pulse contour is that, depending on the

anatomical site, the reflection wave giving rise to the diastolic peak will be transmitted via different

possible paths through the complex arterial tree. Thus, due to the proximity of the neck to the body

trunk, the reflection wave arrives with greater amplitude since it has travelled across less bifurcations

than when it travels to the periphery (finger).

3.4 Spectral comparison under different breathing conditions

3.4.1 Finger and Neck PPG spectrograms differences

Finger and neck PPG spectrograms for normal, fast, slow and apnea breathing conditions were com-

puted using the squared magnitude of the Short-Time Fourier Transform (STFT). These can be

observed in Fig. 3.6. A window of 15 s and an overlap of 90% were chosen to ensure respiratory rates

as low as 0.067Hz could be captured with good resolution. The spectrograms were compared in the

range from 0 to 1.5Hz, since the major distinctions appeared in the low-frequency respiratory bands.

Normalized spectrograms of each sensor were subtracted to inspect the differences in power between

them, as shown in Fig. 3.7.

In the case of finger PPG, no matter under which breathing condition, the spectrograms in Fig. 3.6

showed approximately the same spectral components. A high concentration of power at the PPG

fundamental frequency of 1Hz revealed the AC arterial pulsations. A reduced power density at low

frequencies (< 0.28Hz) denoted the PPG DC component modulated by respiration [18].

In contrast for neck PPG, spectral differences could be clearly noticed among various breathing

situations. For normal breathing in Fig. 3.6, the principal power band at 1Hz found in the neck PPG

spectrogram coincided with the fundamental frequency already observed in finger PPG. However, two

other low frequency bands, 0.28Hz and 0.56Hz, stood out equally with high power (>70 dB/Hz).

These corresponded to the fundamental frequency and the first harmonic of the respiration, which

presented larger spectral amplitude in the neck than in finger signals, as highlighted by Fig. 3.7. A

possible explanation to this is the proximity of the neck to the thoracic cage that makes it more

sensitive to respiratory movements. This finding is of great importance, as the prominence of the neck

PPG respiratory spectral component could facilitate the extraction of the respiratory rate. During fast

breathing in Fig. 3.6, the neck PPG spectrograms displayed two high power bands at 0.55Hz & 1.1Hz,

which correspond to the fundamental (Fo) and first harmonic (F1) of the fast respiratory rhythm.
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Figure 3.6: Spectrograms of finger and neck PPG signals under different breathing conditions:
normal breathing, fast breathing, slow breathing and apnea (breath-holding). The top panels show
the PPG signals for both measurement sites. Finger PPG signals are in blue. Neck PPG signals appear in black
when breathing at normal pace and in red, when breathing was altered with various respiratory modulations.
On the bottom panels, the corresponding spectrograms are diplayed. Cardiac: indicates the pulsatile PPG
frequency band, Fo & F1: fundamental and first harmonic respiratory frequency bands (for normal, fast and
slow breathing )
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Figure 3.7: Subtraction of the finger and neck PPG spectrograms for the different breathing
conditions. The colormap represents the difference between the neck and finger normalized powers in the
range of [-1,1]. Positive power values, in hot colours, indicate that the neck PPG power is larger than the
finger PPG (Neck>Finger), and the contrary applies for the negative values in cold colours (Neck<Finger).

In Fig. 3.7, the main differences between the finger and neck spectrograms were the respiratory

band at 0.55 Hz, which was larger for the neck; and the 1 Hz one for which finger PPG dominated.

This could be explained by the predominance of the fast breathing fundamental frequency and its

harmonics that overlapped with the PPG pulsatile component (1 Hz) of normal PPG. This could be

a limitation for the novel measurement site of the neck, as new filtering techniques would be needed.

In the case of slow breathing, the respiratory frequency of neck PPG signals slightly decreased to

∼0.2 Hz as seen in Fig. 3.6. The power was significantly reduced compared to the normal rhythm,

probably because the breathing was stably controlled. When apnea events were simulated, the two

respiratory power bands completely disappeared from the neck spectrogram, as a result of the ex-

tremely low or inexistent respiratory amplitude. Meanwhile in the finger PPG spectrogram, a poorly

localized respiratory band still remained present. This unique property of the neck PPG measurement

site could help identify the interruption of respiration, and hence facilitate apnea monitoring. The

potential of neck PPG for apnea detection is therefore twofold, as, not only the decrease in SpO2 levels

could indicate hypoxia, but also, the absence of respiration could be detected by examining the power

spectral content.
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3.5 Heart rate extraction from novel neck photoplethysmography

signals

The contents of this section are an edited version of the research published in:

I. Garćıa-López, P. Sharma, and E. Rodriguez-Villegas, “Heart rate extraction from novel neck

photoplethysmography signals,” in 2019 41st Annual International Conference of the IEEE Engineering

in Medicine and Biology Society (EMBC). IEEE, 2019, pp. 6541–6544 © IEEE

PPG signals are commonly used in clinical and ambulatory monitoring for tracking heart rate (HR),

mostly in consumer products, since PPG provides an easy to attach, low cost, and cable free alternative

to traditional electrocardiography (ECG) [20].

In this section, we compare the accuracy of extracting HR from neck PPG against reference ECG.

HR estimation from finger PPG is similarly evaluated, in order to assess the potential of neck PPG

with respect to the preferred location in pulse oximetry.

3.5.1 Methods

3.5.1.1 Experimental protocol

The same recordings as in section 3.2.2 were used here for HR extraction. The variations in respiratory

rate were of interest as, according to the cardio-respiratory coupling, HR varies accordingly. This

allowed to test the response of neck PPG in a wider range, and therefore simulate more realistic

situations.

3.5.1.2 Heart beat detection and HR estimation

HR was calculated for neck PPG, finger PPG and ECG channels in windows of 8s with 6s overlap,

to simulate real-time readings updates every 2s. Since the total recording duration was of 140s, 67

windows were used. PPG signals were pre-processed with a 4th order high pass Butterworth filter

with 0.7Hz cut off frequency, in order to remove the DC and low frequency components. Systolic

peaks of PPG pulses and R peaks of ECG signals were first detected in MATLAB 2018b using the

findpeaks command. The minimum peak distance parameter was set to 0.6s, to ensure sufficient time

resolution for large HRs (up to 100 BPM). A minimum peak amplitude threshold of -0.15 (a.u.)

was also established. The cardiac frequency HRw estimate for each 8s window w = 1, 2, ..., 67, was

calculated in beats-per-minute (BPM), as:

HRw =
60

RRw
(3.1)
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where, RRw represents the average time interval between successive peaks in window w, and was

computed as:

RRw =
1

N

N∑
i=1

∆tpeaks(i) =
1

N

N∑
i=1

tpeak(i+ 1)− tpeak(i) (3.2)

with N representing the total number of inter-beat time differences ∆tpeaks, in window w.

A correction step was included before final HRw storage, in order to amend spurious peaks that

could negatively affect the precision of RRw. For that, an adaptive average (µ∆tpeaks) and standard

deviation (σ∆tpeaks) of precedent inter-beat distances, were calculated and updated after each pro-

cessed window. Each peak-to-peak time difference in the evaluated window, was compared against an

adaptive threshold such that:

|∆tpeaks(i)− µ∆tpeaks| > 2.5σ∆tpeaks (3.3)

If the condition was true, the abnormal peak-to-peak difference ∆tpeaks(i) was discarded, and not

taken into account for the updated calculation of RRw, and ultimate HRw estimation. Figure 3.8

shows the neck PPG ∆tpeaks traces before (in gray) and after (in red) the correction for a normal

breathing recording over time. The true ECG ∆tpeaks distances were also plotted for reference. It is

noticeable how the correction reduced the distance between the neck PPG ∆tpeaks and the reference

beat-to-beat ECG intervals.

Figure 3.8: Inter-beat distances over time of a breathing normal recording, before and after
spurious peaks correction.
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3.5. Heart rate extraction from novel neck photoplethysmography signals

3.5.1.3 Performance metrics

In order to evaluate the performance of HR extraction from PPG signals, several indices were used.

Mean absolute error (MAE), standard deviation absolute error (SDAE) and root-mean-square error

(RMSE) were calculated for each subject recording, and subsequently averaged out for the whole

cohort. Additionally, HRneck or HRfinger values were scattered against reference, HRECG, to find the

best fitting using linear regression. Pearson’s correlation coefficient (R) was also computed. Strongly

positive (or negative) linear relationships would result in values close to 1 (or -1), whereas absence of

correlation would output values in the proximity to 0.

These metrics could only assess the distance and linear relationship between the two sets of PPG

estimated and true ECG HRw observations. But, in order to adequately evaluate the degree of

agreement between two quantitative methods measuring the same variable, a Bland-Altman analysis

is commonly used [21]. For that, mean-differences of the two measurement methods were plotted

against reference values to evaluate the bias. Limits of agreement (LoA) were also constructed to

define the interval containing 95% (±1.96SD) of the paired differences. In our case, HRw paired

differences, (HRneck−HRecg) and (HRfinger−HRecg), were graphically visualized against true ECG

HRECG values in Bland-Altman plots.

3.5.2 Results

Cardiac frequency estimation from the novel PPG measurement site of the neck was tested and

compared against the gold standard ECG method. For the sake of having a reference range of typical

errors in conventional pulse oximetry, finger PPG signals were also used to extract HR and were

compared to ECG values. A total of 31 recordings of 140s were evaluated, and 2077 HR estimates

were extracted from each of the sensing modes.

3.5.2.1 HR estimation errors

Table 3.2 shows the HR performance between each PPG sensor modality and the ECG reference

signals, in terms of errors and correlation coefficient. As it can be observed, HR estimation for the

neck had in average a 1.22 BPM MAE, 1.54 BPM SDAE and 1.98 BPM RMSE. Pearson’s correlation

coefficient was very high (R=0.94) showing strong correlation between the estimated HRneck and true

HRECG values. For conventional finger PPG, MAE, SDAE and RMSE errors were even smaller with

values of 0.38 BPM, 0.48 BPM and 0.62 BPM respectively. The correlation coefficient was also very

close to 1 (R=0.99).
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Table 3.2: Comparison of HR estimation performance between neck and finger PPG

PPG sensor MAE SDAE RMSE R (correlation)
(BPM) (BPM) (BPM)

Neck 1.22 1.54 1.98 0.94 (p<0.01)
Finger 0.38 0.48 0.62 0.99 (p<0.01)

Figure 3.9: (a-c). Linear regression of estimated HRneck and HRfinger against HRECG. (b-d).
Bland-Altman plots for all HR estimates.

3.5.2.2 Linear regression fit

HR estimates from finger and neck PPG sensors, were linearly fitted against true HR values of the

reference ECG channel. The resulting linear models can be graphically observed in Figures 3.9 (a-c),

with their corresponding slope-intercept equations. In both cases, the predictor variables (HRneck

and HRfinger) suggested a strong positive linear relationship with the ground truth HRECG, as all

data points seem to lie on the diagonal straight line with slope coefficient of 1.

This was pretty much the same for the finger model, where the slope coefficient equalled exactly

1 and the intercept had a very small value of 0.23 BPM. For the neck, the linear fit was very close to

ideal, but with a slightly higher intercept of 4.52 BPM, probably due to a larger spread of the data.

The coefficients of determination for neck and finger, r2=0.88 and r2=0.99 respectively, also suggested

that the proportion of variance that each variable had in common with the ECG ground truth was

very high.
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3.5.2.3 Bland-Altman analysis

Bland-Altman graphical analysis for the paired differences ofHRneck−HRECG andHRfinger−HRECG

are presented in Figures 3.9 (b-d). Novel neck PPG and reference ECG heart rates showed a good

agreement with a bias of -0.16 BPM and 95% LoA of (-4.7, 4.4). The percentage of values found to lie

beyond ±1.96SD from the mean difference was 7%. The conventional finger PPG and reference ECG

cardiac frequencies demonstrated a bias of -0.04 BPM and 95% LoA (-1.5, 1.4), with 2.3% of paired

differences scores beyond ±1.96SD.

3.5.3 Discussion

In this study, HR was extracted for the first time from novel neck PPG signals, at four different

respiratory paces, in supine position. The developed algorithm precisely detected cardiac pulses relying

on a mean inter-beat distances adaptive threshold for spurious peaks correction. HR was obtained

in windows of 8s with 6s overlapping, by the inverse of peak-to-peak time differences multiplied by

a factor of 60. The accuracy of HRneck extraction was evaluated with simultaneous ground truth

ECG values. Average errors for all subjects and respiratory conditions, revealed very small differences

between both techniques in the order of magnitude of ∼1 BPM. This precision is very promising for

accurate HR estimation. In addition, a linear regression model and Pearson’s correlation coefficient

demonstrated the strong linear relationship between neck PPG and ECG HR estimates. Ultimately,

a Bland-Altman analysis showed a good agreement between both techniques, with very small bias

between mean paired differences of HR observations, and 95% LoA of (-4.7, 4.4). These findings show

the potential of neck PPG to reliably extract cardiac frequency with good accuracy.

When juxtaposing these results to the ones obtained for conventional finger PPG, HRfinger pre-

sented a reduced error and even higher similitude to ECG overall. Although this analysis was only

included for comparative purposes within the same PPG modality, it is worth pointing out that, fin-

ger PPG is the widely established gold standard location in pulse oximetry to extract physiological

parameters, whereas this work is still at the stage of a proof of concept. Further work is required to

test the proposed HRneck algorithm in different sleep positions since this study was limited to supine

controlled conditions as a first approach.

This work confirmed the suitability of the neck as an alternative body site for HR estimation based

on PPG measurements. Future work should focus on estimating HRneck in the presence of artifacts

to ensure its applicability in real life long term monitoring. These advances could have a significant

impact in the development of a unique neck wearable sensor incorporating multiple sensing modalities

for multi-purpose cardio-respiratory applications.
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3.6 SpO2 extraction with neck PPG

The findings presented in this section were obtained in collaboration with other members from my

research group. My contributions did not include the development of the wearable sensor, the recording

experiments or the synchronization of the data. But, I jointly worked on the design of the experimental

protocol, as well as on the processing and analysis of the data.

The goal of this section is to demonstrate the feasibility of extracting SpO2% from neck PPG, as

an alternative to finger pulse oximetry.

3.6.1 Experiment 2

3.6.1.1 Data acquisition sensors

Due to the fact that no pulse oximeter consumer product currently exists for the neck region, a general

reflectance Nonin PPG sensor (8000R, Nonin), typically implemented in forehead applications, was

used in previous experiments presented in this chapter. However, different body parts have dissimilar

capillarity and tissue characteristics that result in variations of the reflected light optical path. This

means that pulse oximeter sensors cannot be used interchangeably for various body locations, but

need to be particularly calibrated for each measurement site instead. For this reason, raw PPG

signals obtained from the neck had to be further processed for a precise SpO2 estimation. However,

since the Nonin sensor did not provide both the infra-red (IR) and red PPG channels required for SpO2

calculation, a neck PPG wearable sensor prototype was used here.

The custom wearable system can be observed in Figure 3.10. It consisted of a reflective optical

sensor (MAX30102, MAXIM integrated) for PPG extraction, and an accelerometer to provide body

position and help with motion detection. Acquired data was transmitted at 75 Hz via Bluetooth to

a mobile device for storage. The wearable PPG sensor was placed at the suprasternal notch of the

neck. Additionally, a finger PPG sensor from the portable polysomnography system (SOMNOscreen,

SOMNOmedics) was used as reference for SpO2 calibration. Two respiration impedance bands, were

also employed to track DC respiration baseline variations.

An Ultrabreathe® respiratory trainer device, mimicking high altitude oxygen conditions, was

safely used to slightly reduce the amount of oxygen intake required for SpO2 calibration.

3.6.1.2 Experimental protocol

A total of 9 participants (6 males and 3 females) with average age of 28 ± 3 years old, BMI of 23.73

± 2.9 kg/m2, took part in the experiments. The study was approved by the Local Ethics Committee

of Imperial College London (ICREC ref.: 18IC4358), and written informed consent was obtained from
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3.6. SpO2 extraction with neck PPG

Figure 3.10: Wearable neck PPG system used for SpO2 calibration experiments.

all subjects.

Participants were asked to lie down in supine position on a bed and rest for 1min while breathing

spontaneously at their normal rhythm. After this, they had to put the Ultrabreath in their mouth

and breath through it for another minute. This progressively reduced their oxygen intake to enable

the measurement of SpO2 desaturations. When finished, they were allowed to breath normally again

without the device, for as long as their HR returned to baseline. This process was repeated three

times per subject.

Following the experiments, the data from the different sensors was synchronized with the help of

markers and the reference respiratory bands.

3.6.2 Neck PPG signals processing for R ratio calculation

As already explained in section 2.1.2, the most optimal linear regression fit between the reference

SpO2 values and the calculated ratio of ratios (R) must be sought for SpO2 calibration at the neck.

In order to obtain the R values, the red and infra-red PPG channels were first processed for a reliable

extraction of the AC and DC components. The different steps followed to calculate the AC/DC ratio

at each wavelength and the final R value are explained in the next subsections.

3.6.2.1 Artifacts removal

Initially, the accelerometer sensor was used to discard motion artifacts. For that, the magnitude of

the x, y and z output values was calculated and a threshold was set to cutoff all the signal fragments

above it. These sections were labeled as artifacts and discarded for further processing.
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3.6.2.2 Signals conditioning

A template denoising function was implemented to remove high frequency noise. The procedure

consisted on quantifying the bandwidth of interest using the ground truth finger PPG signal, and

then, filtering the inputted red and IR neck signals.

3.6.2.3 Ratio of ratios (R) extraction

In order to calculate the ratio R as detailed in equation 2.11, the AC and DC components of both

the red and IR channels had to be inferred. Since the SpO2 readings were continuously output by the

reference pulse oximeter as a 4-beats average, our calculated R ratio had to match the same window.

For that, individual heartbeats were identified using the built-in MATLAB function findpeaks. This

enabled the location of each pulse index for subsequent averaging in later stages of the algorithm.

DC: A moving average was implemented to smooth the DC of the PPG signal, and hence obtain

a respiration-free DC baseline signal. The DC value was averaged every 4-beats.

AC: The AC was computed as the amplitude difference between the upper and lower envelopes of

the signal over a 4 pulses moving window.

AC/DC ratio: Once the AC and DC values were obtained, their ratio was computed.

R ratio: By combining the AC/DC ratios at each wavelength, the ratio of ratios was estimated

as:

R =
ACred/DCred
ACIR/DCIR

(3.4)

3.6.2.4 R values processing

In order to ensure an homogeneous distribution of values and avoid bias from potential outliers in the

regression analysis, the extracted R ratios were processed as follows:

Plateaus selection: Since the SpO2 measurements were susceptible to quick fluctations dur-

ing experimental oxygen desaturations, the sensor’s manufacturer (MAXIM integrated) suggested to

localize stable data plateaus, and only use the corresponding R values from these segments for regres-

sion [22]. These guidelines were implemented in an algorithm that detected when the first derivative

of the SpO2 time-series became zero (plateaus), and discarded the rest of the data fragments.

Outliers removal: In order to remove outliers and hence ensure a robust regression fitting, a loop

through each SpO2 percentage (%) level selected the R observations within one standard deviation

of the mean (Robs ∈ µ ± σ). Due to the variability among R values for different subjects, this step

ensured the most representative observations were used for calibration.
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3.6. SpO2 extraction with neck PPG

K-nearest neighbours selection: After the signals conditioning and processing stages, and given

that each subject was able to desaturate up to a distinct depth, not all SpO2 (%) levels had the same

number of samples. Indeed the higher saturation levels spanning 95-100% concentrated the higher

number of points, leaving the lower levels underrepresented. This unbalanced distribution accross

the SpO2 range could severely impact the accurate estimation of the regression model. In addition,

this issue was aggravated by the discretization of SpO2 values. In order to give the same weight

to all SpO2 (%) levels for fitting, a k-nearest neighbours (knn) search algorithm was implemented.

By uniquely choosing the k closest points to the mean at each SpO2 (%) percentage, the number of

observations was balanced. The common number of neighbours used for all percentages (%) was the

number of points in the lowest level (92%), which was the minimum number of samples over all.

3.6.3 SpO2 estimation results

3.6.3.1 Linear regression

Figure 3.11 shows the scatter of the reference SpO2 values against the corresponding processed R ratios

for all subjects. The observations within one standard deviation (Robs ∈ µ±σ) can be observed in blue

and the k-nearest neighbours surrounding the mean in yellow. A transparency factor of α = 0.01 and

0.2 respectively, were used to highlight the unbalanced concentration of observations. A linear model

was fitted to the data by least squares approximation, i.e. by minimizing the squared distances between

each observation and the regression line. The resulting linear function SpO2 = 103.63−7.14R, provided

the neck calibration coefficients a = 103.63 and b = 7.14 as indicated in equation 2.11. The coefficient

of determination (R2), demonstrated that the proposed model significantly (p<0.001) explained 63%

of the SpO2 variance.

3.6.3.2 Leave-One-Subject-Out evaluation

Once the calibration of the neck PPG measurement site was obtained, the ability of this novel pulse

oximetry location to estimate SpO2 values was evaluated. A Leave-One-Subject-Out cross-validation

(LOSO-CV) strategy was applied to assess the performance of the proposed linear model. For that,

one test subject was removed from the whole set iteratively, to repeat the linear regression fitting with

the rest of the subjects data. The calculated R values of the test subject were then inputted in the

new calibrated model to derive the corresponding SpO2 level. The root-mean-square error (RMSE)

was calculated to quantify the absolute prediction error for each test subject j, such as:

RMSEj =

√
ΣN
i=1(yi − ŷi)2

N
(3.5)
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Figure 3.11: SpO2 (%) regression with calculated R values.

where, (yi − ŷi)
2 represents the residuals, i.e. how close the test observations are to the model’s

predicted values; and N refers to the total number of points evaluated.

The overall RMSE (ORMSE) was calculated by averaging the individual RMSEj for all test

subjects. A low value of ORMSE = 1.79% indicated that the proposed model accurately predicted

the SpO2 response. These results successfully show that the neck could be a promising pulse oximetry

location, capable of estimating SpO2 (%) reliably.

3.6.4 Discussion

In this section, we demonstrated the feasibility of extracting SpO2% from novel neck PPG signals.

A fitted linear regression model, proposed an adequate set of coefficients for the SpO2 calibration at

this novel PPG site. A LOSO-CV approach, validated the prediction of test SpO2 values, with a

very low absolute error of ORMSE = 1.79%. According to the U.S. Food and Drug Administration

(FDA), the ORMSE for reflective PPG sensors must be below 3.5% for commercialization [23, 24].

This demonstrates the promising value of neck PPG for its future adoption as an alternative pulse

oximetry location.

Despite the great significance of these findings, this proof-of-concept must be validated in a larger

cohort of participants with various ages, gender, and skin tones, for the linear model to be able to gen-

eralize over a wider population. In the same line, the linear regression fit could be similarly improved

by further increasing the range of SpO2 (%) values. Indeed by replacing the Ultrabreath respira-
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tor with an oxygen delivery system, the participants could breath an air mix with specific oxygen

concentrations through a gas mask. Starting with a rich oxygen saturation to ensure SpO2=100%

measurements, the air could be gradually diluted to decrease the oxygen levels in steps of 5% desatu-

rations, down to 70%, as recommended [23, 24]. This protocol, could also solve the problem of having

an unbalanced number of (SpO2-R) measures per (%) level in the scatter plot, as all subjects would

desaturate for the same amount of time and to the same depth. However, this set up requires medical

equipment and trained experts to comply with clinical safety measures.

In terms of the processing pipeline, the extraction of the AC and DC components was limited by

the presence of noise, even though the participants were lying down at rest. Accelerometer thresholds,

simple denoising filters and outliers removal techniques helped with the processing. However, more

elaborate automatic signal processing algorithms need to be developed in future work to ensure reliable

SpO2 prediction. Specifically, it is very likely that, in real world monitoring situations, the quality of

neck PPG signals worsens as a consequence of motion artifacts corruption.

3.7 Discussion: Advantages and limitations of neck PPG

In this chapter, the novel neck PPG measurement site was compared against standard finger pulse

oximetry, in terms of morphological characteristics of the PPG pulse, and spectral frequency com-

ponents at various respiratory rhythms. The comparison was expanded into the extraction of two

physiological parameters typically measured by pulse oximeters, the HR and SpO2. The feasibility of

extracting HR and SpO2 from neck PPG was proven, demonstrating its potential as an alternative

pulse oximetry location.

Based on these findings, the advantages and limitations of this novel PPG site are discussed here.

The neck is a unique multi-purpose signal acquisition site particularly attractive for respiratory

diseases monitoring [10, 7]. The positioning of the PPG sensor on the suprasternal notch allows the

recording of tracheal sounds, that could provide respiratory flow information as well as the measure-

ment of tidal volumes [9, 7]. This is specially promising for the detection of apneas since respiratory

pauses are characterized by airflow reduction and SpO2 desaturations. No other pulse oximetry site

has the potential to simultaneously record these key physiological signals, using the same wearable

device and from a single location. For sleep monitoring applications, this would ultimately reduce the

excessive number of sensors currently required in polysomnography.

In addition to being an optimal region to measure respiration through other sensor modalities, it

was demonstrated in this chapter that, the neck PPG signal itself presents a more prominent respi-

ration component with respect to conventional finger PPG. The easy identification of the respiratory

fundamental frequency and harmonics, could facilitate the extraction of the respiratory rate in dif-
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ferent breathing conditions. In the specific case of apneas, respiratory cessation could be detected

instantaneously, without having to wait the typical delay of 20-40s to observe an SpO2 desaturation.

This opens up a huge number of possibilities to engineer novel ways of detecting apneic events directly

from the PPG signal, without the surrogate SpO2 signal. In fact, the value of neck PPG is two-fold, as

respiratory pauses could be detected by the absence of the respiratory spectral band; or by analyzing

conventional SpO2 desaturations.

The study of the morphological contour characteristics of the average PPG waveform presented at

the beginning of this chapter, set the foundations of how a standard neck PPG pulse looks like. This

is of great importance to avoid confusing significant neck PPG traits, that might differ from standard

finger PPG; with abnormal cardiovascular diseases (CVD) biomarkers.

Neck PPG could also provide interesting new insights into the head vasculature function and

hence potentially be used, for example, to reduce the risks of stroke. The morphology of the neck

PPG waveform could contribute to the creation of new rapid biophysical markers of the aging process

or diseases. For example it has the potential to identify carotid artery blocks and bulges, typical in

carotid occlusive disease and extracranial carotid aneurysms respectively. Neck PPG could similarly be

a useful tool in clinical diagnosis, to monitor the stiffening of vessels in the head vasculature caused by

artherosclerosis. Other cardiovascular applications for which neck PPG has shown to be promising are

the extraction of Left Ventricular Ejection Time (LVET) [25] and the location of Takayasu’s arteritis

(TA) vessels inflammatory disease in the arterial tree [26].

At present, the novel neck PPG site has several limitations. Despite the promising results in

extracting HR and SpO2 comparably to the gold standard finger PPG, the proposed algorithms need

to be tested in the presence of motion artifacts and in a larger cohort of participants. In particular,

the SpO2 calibration has to be expanded to a wider range of SpO2 (%) values, in controlled hospital

conditions, to be suitable for apnea disorders diagnosis.

One of the main disadvantages of the neck region is that it is susceptible to new and unknown

artifacts of various sources, that are not typically found in other pulse oximetry sites. Some examples

include vibrations or autonomic reflexes originating in the trachea, as well as head movements. More-

over, the high prominence of the respiratory signal could be a great shortcoming during fast breathing,

as the first harmonic completely hinders the AC pulsatile component of interest. These demonstrate

the necessity of extensively studying the sources of interference in novel neck PPG, to design adequate

filtering strategies to clean up the signal.

In addition, neck PPG can only be implemented in the reflective PPG mode that is more complex

than the transmission one. In the latter, light travels on a straight line and interacts with all the

tissues found in that direction. However, in reflective PPG, light is reflected at different depths under
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the skin, before being sensed by the photo-diode. The huge variability in fat content and underlying

system of vessels and veins at the neck, makes it very tricky to collect the neck PPG signal under the

same conditions for all participants. Indeed, anatomical characteristics of the neck vasculature are

much more variable than simple finger or earlobe capillarity. This could make it challenging to find a

standard optimal signal acquisition region valid for the whole population.

The suprasternal notch was generally suitable for arterial PPG measurement. However, during

various experiments performed in this chapter, a completely different signal appeared sometimes if

the sensor was positioned slightly outside of this region. Indeed, when the PPG sensor was located on

top of a visible vein, the venous pulse could be measured instead. This could be of interest for other

jugular venous pulse (JVP) applications as further explored in next Chapter.
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Chapter 4

Extracting the Jugular Venous Pulse

from Anterior Neck Contact

Photoplethysmography

The research presented within this chapter is an edited version of the previously published study:

I. Garćıa-López and E. Rodriguez-Villegas, “Extracting the jugular venous pulse from anterior neck

contact photoplethysmography,” Scientific Reports, vol. 10, no. 1, pp. 1–12, 2020

4.1 Introduction

Cardiovascular diseases (CVDs) are listed as the principal cause of mortality worldwide by the World

Health Organization (WHO). Accounting for 17.9 million deaths annually, they represent 31% of global

deceases [2]. In Europe, CVDs claim 3.9 million deaths per year with an estimated total cost of 210

billion euros to the European Union [3]. In the United States, 92.1 million people are currently living

with some variety of CVD [4]. CVDs result in an impaired blood supply to the different organs of the

body. They include vascular disorders, involving blocked or damaged blood vessels (e.g., coronary,

peripheral or cerebrovascular arterial disease); and cardiac disorders, resulting from heart contractility

dysfunction (e.g. cardiomyopathy, heart failure, cardiac dysrhythmias).

Non-invasive diagnostic and monitoring methods for CVDs include the assessment of cardiac elec-

trical activity with electrocardiography (ECG), examination of blood arterial pulsations with photo-

plethysmography (PPG) or ballistocardiograhy, and scrutiny of the vasculature’s function by measur-

ing arterial blood pressure (BP). Most of these physiological signals provide information about cardiac

pump efficiency and blood delivery function. However, a significant number of CVDs affecting the
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right side of the heart cannot be diagnosed with these, since they result in central venous pressure

(CVP) abnormal values that cannot be inferred from the arterial pulse. In these cases, the jugular ve-

nous pulse (JVP), is the standard physiological signal commonly measured for diagnosis [5]. Examples

of CVDs that can be diagnosed by identifying JVP abnormalities are: hypovolaemia, tricuspid steno-

sis and regurgitation, constrictive pericarditis, atrio-ventricular block, atrial fibrillation, or cardiac

tamponade [6].

The JVP is considered as a manometer for right atrial pressure and CVP, because the superior

vena cava extends all the way from the entrance of the right atrium up to the internal jugular vein at

the neck [7]. Due to the quasi-absence of bifurcations between the first and the latter, the pressure at

the right atrium is transmitted following a straight route to the internal jugular vein. Moreover, during

diastole, while the tricuspid valve is open, the right ventricle is directly connected in series with the

right atrium, superior vena cava and ultimately with the jugular vein. This results in differentiating

characteristics of the JVP signal when there is an abnormal behaviour of the right ventricle too. The

typical JVP tracing is presented in Figure 4.1, together with the typical ECG and PPG signals for

cardiac time reference purposes.

Figure 4.1: ECG, JVP and PPG signals traces. Dashed vertical lines separate the two phases of the
cardiac cycle: systole and diastole. Each physiological signal is annotated with the corresponding significant
waves. For ECG: P corresponds to atrial depolarization, QRS complex to ventricular depolarization and T to
ventricular repolarization. For JVP: the a,c,v ascents are annotated in blue and the x, x’ and y descents in
gray. For PPG: s indicates the systolic peak and d the diastolic peak.
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The JVP waveform is formed by three ascents (a, c and v waves) and three descents (x, x’ and y),

which respectively represent the different events of the cardiac cycle in terms of pressure variations.

The (a) wave, occurring right after the P peak of the ECG, represents atrial contraction and is

followed by the (x ) descent that indicates relaxation of the atrium and closure of the tricuspid valve.

Subsequently, after the QRS complex of the ECG, the (c) wave shows right ventricular contraction as

a result of the bulging of the tricuspid valve during ejection, and it is followed by the drop in pressure

(x’ ). Finally, after ventricular repolarization (T peak of ECG), the (v) wave reflects the maximum

pressure attained from blood filling of the right atrium before the tricuspid valve opens again. This

last event results in the fall of pressure during rapid ventricular filling, represented by the (y) wave;

and the whole cycle starts again [8]. The typical arterial PPG waveform onset happens approximately

at the start of the diastolic phase, but it can occur earlier or later in time, specific to the person, as

it depends on the pulse transit time to the periphery.

The most broadly used technique to measure the jugular venous pulse (JVP) is central venous line

cathetherization. This consists in surgically introducing a catheter into the right internal jugular vein,

all the way to the right atrium and sometimes even advancing it down the pulmonary artery [9]. This

invasive method is not routinely performed in primary care due to all the risks it entails, but instead,

it is only used in acute CVD patients at the ICU [10]. Some undesirable complications that justify

this decision include: pneumothorax, carotid artery puncture, pulmonary infarction, arryhthmias or

catheter infection [11].

The alternative non-invasive methods that eliminate the risks of such invasive technique, look for

JVP waveform abnormalities by indirectly observing the internal pressure of the heart at the more

accessible site of the external neck. This can be done, for example, by simple visual examination of

the jugular vein blood column height in the triangle formed by the sternocletomastoid muscles and the

clavicle [12]. However, this option requires trained personnel and is usually very subjective, making its

accuracy questionable. Alternatively, a study also showed the feasibility of extracting the JVP using

ultrasound (US) B-mode of the jugular vein cross-sectional area [13]. Although this method showed

potential, a stable probe-skin contact is crucial and US equipment remains very expensive.

Non-invasive remote optical techniques that try to counteract the disadvantages of the current

state-of-the-art have been explored recently. Some initial efforts visualising the neck area with a

camera system equipped with a near-IR light, were able to identify neck pulsations in the triangle of the

sternocleidomastoid muscles underlying the right jugular vein [14]. However, this proof of concept was

unable to distinguish whether the pulsations were of carotid or jugular origin, to prove their hypothesis.

A different approach, based on a video imaging photoplethysmographic system, demonstrated that,

with the subject still in supine position it was feasible to extract the JVP waveform from the neck [15].
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Another recent study [16], showed that camera-based skin micro-motion vibrocardiography (cVCGI)

with subjects in recumbent-to-supine position could sense skin-displacement caused by jugular vein

pulsations. Similarly, Lam Po Tang et al. [17] non-contact alternative was based on using a comodity

camera and a subpixel image registration algorithm to identify the same jugular skin displacements.

However, despite the promising proposed methods in the literature, all these video remote diagnos-

tic systems constraint the patient to a specific body position facing the camera in front of them. This

severely restricts the patients from moving or changing position during monitoring, making it unsuit-

able for longer term signal acquisition. In addition, in the clinical setting, they all require training of

hospital personnel to ensure correct set up and equipment calibration.

This chapter shows, for the first time, that it is possible to extract the JVP from the anterior

jugular veins by using contact photoplethysmography (PPG). The advantage of this is that PPG

is an easy and cheap physiological sensing modality, and thus, a system developed using this could

potentially overcome the shortcomings of all other existing techniques. The fundamentals insights

provided by this study are intended to set the foundations for the future design of a small, light

and user-friendly wearable sensor, which would be able to record continuously for long periods of

time, without constraining the position of the patient in bed. This technique thus, has the potential

to be a breakthrough for physiological monitoring of CVDs, mostly in outpatient clinics, domestic

environments, and low resourced settings.

4.2 Methods

4.2.1 Experiment 3 - sensors and protocol

Signals were recorded from 20 subjects (15 males and 5 females), with average age 27 ± 4 years old,

height of 1.75 ± 0.09 m and weight of 74.2 ± 13.1 kg. The study was approved by the Local Ethics

Committee of Imperial College London (ICREC ref.: 18IC4358), and written informed consent was

obtained from all subjects. Informed consent was likely provided from participants whose images were

displayed in this work, for both study participation and publication of identifying information/images

in an online open-access publication. All experiments in this work were performed in accordance with

the Declaration of Helsinki. The subjects were asked to lie down on a bed, since it was hypothesized

(and confirmed) that JVP pulsations could not be properly sensed if participants were seated [16].

This is due to the fact that when the body is lying down, the venous return does not have to counteract

the effect of gravity to pump blood back to the heart from the lower extremities, and blood is pumped

more easily to the head. In fact, neck venous pressure is elevated, enhancing the pulsatility of the

JVP pulse at the neck.
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One reflectance pulse oximeter sensor (8000R, Nonin) coupled to an OEM processing module

(Xpod, Nonin), was located on the anterior area of the neck. A transmission finger pulse oximeter

(Onyx II 9560, Nonin) with Bluetooth connectivity, was located on the index finger of the left hand,

and used as the ground truth. In order to validate and identify more precisely the JVP characteris-

tic (a,c,v) waves and their corresponding timings, 2-lead electrocardiography (ECG) sensors from a

polysomnography system (SOMNOscreenplus, SOMNOmedics), were also used as reference. A PPG

sensor connected to the polysomnography system and placed on the index finger of the right hand,

was used to synchronize with the two Nonin PPG sensors.

In order to further confirm the relative position of the reflectance neck PPG sensor, with respect

to the neck veins, an IR vein camera (Infrared Vein Finder, Z-imaging) connected via USB to a

computer, was placed 30cm above the participant’s head. The mounted imaging system, that was

used to visualize the underlying venous system of the anterior neck, consisted of a 1080P IR sensitive

lens surrounded by IR LEDs (800-1000nm) to illuminate the tissue.

Figure 4.2 shows the experimental setup, with one of the subjects lying down in supine position on

a bed with all the attached sensors and imaging system. The IR vein camera online image and Nonin

PPG sensors recordings could be visualized in real-time on the screen to verify the venous anatomy of

the neck area. Signals were acquired for 60 seconds duration for each subject. After data acquisition,

ECG recordings were imported into the computer for processing. Recordings were synchronized in

time by finding the maximum correlation between both fingers PPG sensors’ signals.

Figure 4.2: Experimental setup. A participant lying down with two transmission pulse oximeters on
each hand and one reflectance PPG sensor on the neck. ECG signals were simultaneously recorded using a
portable polysomnography system (SOMNOmedics). The vein imaging camera was placed 30cm on top of
the participant’s neck to visualize the neck vasculature. Online vein imaging, neck JVP-PPG signals and
ground truth finger PPG, were observable in real-time on the screen of the computer. ECG and PPG signals
acquired in parallel with the polysomnography SOMNO system were loaded in the computer, synchronized
and processed after the data acquisition session was finished.

115



Chapter 4. Extracting the Jugular Venous Pulse from Anterior Neck Contact
Photoplethysmography

A diagnostic ultrasound (US) system (Sonix RP, Ultrasonix) coupled with a linear transducer probe

(14-5 MHz) was also used to obtain transverse B-mode images and videos of the internal jugular vein

in order to validate our PPG-based jugular measurements. Neck JVP-PPG recordings were acquired

in parallel with the US probe placed on the right side of the neck for 6.5 s. Using the 3.2 cm

cross-section measurement tool of the US system, the jugular vein wall distension across the imaged

internal jugular vein was measured in the transverse plane over time. The output 2D topographic

graph (of 6.5s duration) was further processed to segment the jugular vein cavity area and calculate

the cross-sectional diameter at each instant of time. For that, all the pixels inside the segmented

jugular walls were summed and scaled in terms of distance (cm). The resulting variations in diameter

of the jugular cross-section represent the reference ultrasound JVP waveform for comparison with our

neck JVP-PPG signals.

4.2.2 Sensing location

In order to extract the JVP from the anterior neck, the contact reflectance PPG sensor was placed at

the middle inferior region. As it can be observed in Figure 4.3(a), this area is highly perfused by the

anterior jugular veins (AJVs) that combine into the jugular venous arch (JVA) [18, 19]. Figure 4.3(b)

shows how the JVA drains into the subclavian vein (or occasionally into the external jugular vein

(EJV)), which directly joins the superior vena cava further down, which in turn is ultimately connected

to the right atrium of the heart. This venous configuration linking the neck jugular veins in almost a

straight path with the right side of the heart, allows RA pressure changes to be easily transmitted to

the AJVs and JVA, in the form of the JVP.

Figure 4.3: Neck venous system anatomy. (a) Superficial veins schematic of the inferior anterior region
of the neck (adapted from [18]). (b) Schematic of the venous tree connecting the external (EJV), internal
(IJV) and anterior (AJVs) jugular veins to the right atrium of the heart.
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But the JVP is only noticeable in this area of interest, when the participant’s body is in recumbent

or supine positions [16]. For this reason, experiments were carried out with participants lying down.

Blood then concentrates more in the central venous compartment as a result of being less influenced

by the gravitational pull, and hence, the JVP can be better observed in the neck venous system.

Another key feature that makes the frontal neck suitable for reflectance contact PPG sensing is

the absence of thick tissues preventing the penetration of light. Neither the sternocleidomastoid nor

the platysma superficial muscle cover the central lower area along the midline. On the contrary, the

AJVs appear exposed in front of the infrahyoid muscles, and accessible superficially as they pierce

the investing fascia [18]. Moreover, the skin thickness of the anterior neck is narrower than for the

anterior-lateral regions [20]. In addition, the inferior part, is the thinnest compared to the middle and

superior neck regions. These anatomical properties facilitate the light to easily reach the subcutaneous

plexus.

4.2.3 Neck JVP and finger PPG signals correlation analysis

In order to measure the correlation in the time-frequency plane between the neck JVP and finger

ground-truth PPG signals the magnitude-squared wavelet coherence was used. It was computed using

the MATLAB wcoherence(), based on the analytic Morlet wavelet over logarithmic scales. For two

signals x and y, it is defined as:

WCoherencexy(f) =
|Cxy(f)|2

Cxx(f)Cyy(f)
=

|s(C∗
x(a, b)Cy(a, b))|2

s(|(Cy(a, b)|2)s(|(Cy(a, b)|2)
(4.1)

where, Cxy(f) denotes the wavelet cross-spectrum between x and y, and Cxx(f) and Cyy(f) the wavelet

auto-spectra of x and y respectively. Cx(a, b) and Cy(a, b) refer to the continuous wavelet transforms

of x and y at scales a and positions b. s represents the smoothing operator in time and scale, and ∗

the complex conjugate. The magnitude-squared wavelet coherence values range from 0 to 1, i.e. from

low to high correlation. The phase of the wavelet cross-spectrum values were also extracted to inspect

the relative lag between the neck JVP and finger PPG signals.

4.2.4 Neck JVP waveforms annotations and averaging

For each subject, signals segments of 5 seconds duration were selected. JVP signals were manually

annotated by marking the characteristic (a, c, v) waves, as well as the onset of each JVP pulse

corresponding to the trough before each v wave. The main peaks of the ECG (R) and arterial finger

PPG (S ) were also identified for reference.

Average time differences between ECG, PPG peaks and JVP waves were calculated for 5-cycles.

Each JVP cycle (i.e. v-v interval) was defined as the duration between two subsequent onsets (O),
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and was used to normalize the distances between waves. This was done similarly to Lam Po Tang et

al. [17], for the sake of comparison.

Using the whole duration of the recording (60 s), average JVP pulse shapes were obtained for

each subject. For that, the automatic algorithm previously presented in [21], was applied to perform

segmentation, alignment and averaging with a quality correction stage, of JVP pulses. The average

waveforms were annotated, after being normalized in amplitude and in time (by the average pulse

duration), for inter-subjects comparison.

4.3 Results

4.3.1 Anterior neck veins imaging

Figure 4.4 shows the anterior view of the venous system at the lower neck, visible to the naked eye (a)

and by means of the IR camera system (b-c). As it can be observed in the leftmost panel 4.4(a),

veins are very evident already in the selected participant with very pale thin skin. It is not always

that obvious for participants with darker skin tones, which is why the IR imaging system was used

to confirm the underlying venous anatomy. With the IR camera it was possible to visualize with a

low resolution (and hence in some subjects better than in others) the pair of anterior jugular veins

(AJVs) descending parallel to the midline of the neck and connecting at the jugular venous arch at

the inferior part, as shown in Figure 4.4(b). The rightmost panel 4.4(c), demonstrates a possible

longitudinal positioning of the reflectance PPG sensor on top of the left AJV, that enables extraction

of the desired neck JVP-PPG signal.

Vein vasculature imaging, at the anterior neck, varies significantly among subjects as it can be

observed in Fig. 4.5. Differences in anatomy and fat content in the neck, affect the identification of

veins that are located more or less superficially. For some subjects (4, 5, 7, 9, 12, 13, 19); broad venous

ramifications are clearly noticeable as intertwined black curvilinear lines. AJVs connecting into the

Figure 4.4: Anterior view of neck veins (subject 12). (a) Image of the anterior lower neck. Veins are
already visible to the naked eye. (b) Vein camera image of anterior jugular veins and jugular venous arch. (c)
Reflectance PPG sensor placed on top of the left anterior jugular vein for recordings.
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Figure 4.5: Anterior neck veins vasculature imaging for all participants (n=20).

jugular venous arch can be identified in most of the images. For other subjects (2, 8, 10, 16, 18), the

expected venous tree is hardly observable, but instead, less sharp grey lines highlight some thinner

isolated veins.

4.3.2 Ultrasound internal jugular vein measurements validation

Figure 4.6 shows the comparison between the ultrasound (US) derived jugular venous pulse and our

proposed neck JVP-PPG signals, for three different subjects. The top panel shows the US B-mode

image of the carotid artery (CA) and jugular vein (JV). In red, the segment of 3.2 cm in length,

indicates along which line the cross-section of the jugular vein was measured at each time instant for

a duration of 6.5 seconds. Underneath, the resulting 2D topography graph shows the jugular venous

walls and surrounding tissues displacement in the transverse plane over the recording period. The

middle panel shows the extracted US jugular venous pulse (US-JVP) after segmenting uniquely the

JV cavity area profile. This US-JVP corresponds to the variation in cross-sectional jugular diameter

(in cm) over time. When comparing this US reference waveform morphology to our neck JVP-PPG

signals, shown in the bottom panel, it can be seen that they match perfectly in terms of shape and

timings. In both signals, US-JVP and neck JVP-PPG, the typical (a,c,v) JVP waves can be identified.

This validates our proposed neck contact PPG technique for extracting the JVP from the anterior neck.
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Figure 4.6: Validation of the proposed neck JVP-PPG signals with reference ultrasound (US-
JVP) for three different subjects. Top panels show the B-mode image of the carotid artery (CA) and
jugular vein (JV) in the transverse plane together with the 2D cross-section profile along the red (3.2 cm)
segment over time. The middle panel displays the US-derived JVP signal, i.e. the JV cross-sectional diameter
variations over time, after image post-processing of the US 2D topography for the specified time interval. The
bottom panel presents the corresponding neck JVP-PPG signal recorded in parallel over the 6.5s period of
time, that perfectly follows the reference US-JVP morphology.

4.3.3 Wavelet coherence between neck JVP and finger PPG signals

The raw neck and finger PPG signals measured for all subjects are shown in Figure 4.7. As it can be

observed, the two PPG signals are not in phase, but instead the neck JVP pulses seem to lead the

arterial finger PPG pulses. This is already consistent with cardiac cycle physiology, since the JVP

a and c waves mark the right atrial and ventricular contractions, that give rise to the arterial PPG

pulse observed a posteriori at the peripheral parts of the body.

Indeed, an interesting property of the JVP identified by Amelard et al. [15] was that it is strongly

negatively correlated with the arterial PPG pulse. In order to verify whether our recorded signals

were also inverted, the magnitude-squared wavelet coherence was computed, as a measure of the

correlation in the time-frequency plane between neck inverted JVP and reference finger PPG signals.

The coherence plot of these, is shown for one of the subjects in Figure 4.8. The phase values of the

wavelet cross-spectrum are represented by arrows, the orientation of which indicates the relative lag

between the neck JVP and finger PPG pulses. Phase arrows are only displayed for coherence values

larger than a manually set threshold of 0.8, therefore showing strong correlation. At the cardiac

frequency of 1Hz there is a concentration of large wavelet coherence values almost equal to 1, between

the neck inverted JVP and the reference finger PPG signals. In addition, along this band, for the whole

duration of the recording, it can also be observed that the phase arrows are pointing in the antiphase

direction (±180◦). This confirms the inversion of the proposed neck contact JVP with respect to the

arterial pulse, and hence the strong negative correlation.
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Figure 4.7: Recordings showing neck JVP and finger arterial PPG signals for all subjects
(n=20). Signals were normalized in amplitude in the range [0,1] for visualization purposes.

Figure 4.8: Wavelet coherence plot for neck inverted JVP and arterial finger PPG signals.
Arrows represent the phase of the wavelet cross-spectrum at magnitude-squared coherence values greater than
0.8.

4.3.4 Neck JVP signals annotation and characteristic waves location

Figure 4.9 shows the neck JVP signals manually annotated (blue dots), together with the ECG (yellow

diamonds), and PPG (red dots) reference signals, for 10 subjects. The three characteristic JVP a,

c and v waves were identified in all subjects, except for subject 20 for which the a wave was not

recognized. The green dots point the onsets of the JVP pulses used to calculate the v-v interval
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distances. These were needed to normalize the locations of the different waves and peaks at each

cycle, and to calculate the differences between them. Note that for subjects 12 and 17, the neck JVP

signals appear as a mix of the expected venous JVP and the arterial PPG pulse. Indeed the latter

part is so prominent that it seems to overlap with the finger PPG ground-truth signal. Due to this,

it was not possible to accurately define the location of the v wave and, therefore, the v wave was

not annotated. The onsets of the JVP pulses could not be defined and, as a consequence, no time

differences calculations were considered in these two cases (12&17).

For the rest of the subjects, all the characteristic JVP waves were succesfully annotated. To verify

the consistency of this annotation accross subjects, Fig. 4.10 (a) shows the normalized location of

each a, c, v, R and S waves within the O-O interval averaged over 5 JVP cycles for each subject.

Standard deviation error bars were also specified. As it can be observed, overall for all subjects, the

order of waves in the normalized v-v interval is: v, a, R, c, S. This corresponds to the same cardiac

cycle timings recognized in the literature, as presented in Fig. 4.1. This confirms the validity of the

signals, but also shows that the JVP waveform is susceptible to change its morphology over time, as

the standard deviations appear quite variable depending on the subject. Also for some subjects (1,16

and 18) it can be noticed that the systolic peak of finger PPG exceeds the normalized O-O interval

boundary, as the R peak occurs later in time for these subjects.

Figure 4.10(b) presents a summary of the order and time location distributions of each peak for

all subjects, in the form of boxplots. These give an idea of the range in which each significant peak

is expected to occur within the v-v interval, between the lower and upper adjacent values. Based on

these results, the v wave occurrence is in the range of [0.101-0.228] of the normalized v-v interval of a

JVP pulse; the a wave in [0.370-0.600], the R peak in [0.418-0.699], the c wave in [0.534-0.810], and

the S peak in [0.815-1.074]. As it can be observed, all distributions show similar dispersion, apart

from the v wave which is slightly smaller. Also, they all appear symmetric, except for the a wave

which is slightly skewed.

4.3.5 Timings between JVP a, c, v waves and ECG and PPG peaks

The relative timings between the main (a,c,v) waves and the R and S peaks, were calculated to

compare with the durations extracted by Lam Po Tang et al. [17] in the work quantifying the JVP

from skin displacements. Even if that study only considered the v-R and R-c time differences, which

correspond to the R-O and c-R respectively in this work, the following were also investigated: S-R,

S-c, c-v, c-a, a-v, R-v, R-a. Average and standard deviations values of the normalized time differences

are presented for each subject in Table 4.1. Figure 4.11 summarizes the information for all subjects

by means of boxplots.
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Figure 4.9: Manual a, c, v waves annotation of neck JVP signals with respect to ECG and
PPG reference signals for 10 subjects. S: finger arterial PPG systolic peak. R: QRS complex peak of
the ECG. a,c,v: characteristic JVP waves.

Figure 4.10: Location of the annotated a, c, v, R and S peaks within a JVP cycle. (a) Average
normalized locations of the most characteristic JVP, ECG, PPG waves over a v-v cycle for each subject (n=20).
(b) Boxplots summarizing the normalized time locations for each v, a, c, R and S waves for all participants
(n=20).

As it can be observed in Figure 4.11, the largest time differences, normalized by the v-v interval

duration, correspond to the R-O (JVP onset to EGC peak) and c-v waves pairs, with median values

of 0.52 and 0.50, accordingly. The smallest time difference found is for the R-a pair, with a median
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Table 4.1: Average time differences between characteristic peaks and waves from
neck JVP, finger PPG, and ECG signals.

Mean differences (in ms) normalized by the v-v interval (1s) are presented for each subject (n=20) together with the

standard deviation (µ± σ). S represents the arterial finger PPG systolic peak, R is the QRS complex peak of the ECG

and a,c,v correspond to the JVP waves. O indicates the onset of the JVP pulse.

Subj. 1 2 3 4 5 6 7 8 9

S-R 427.6 ± 18.9 380.1 ± 10.5 382.7 ± 54.7 457.3 ± 10.9 355.1 ± 10.8 370.2 ± 15.1 356.1 ± 21.4 387.3 ± 14.4 357.4 ± 8.6
S-c 270.8 ± 18.2 205.6 ± 22 248.4 ± 39.6 349.3 ± 13 249.2 ± 16 243.6 ± 18.9 221.1 ± 26 285.2 ± 34.5 285.1 ± 15.6
c-R 156.9 ± 5.5 174.5 ± 19.7 134.3 ± 17.4 108 ± 5.2 105.9 ± 5.7 126.6 ± 6.8 135 ± 11.6 102.1 ± 34 72.3 ± 13.4
c-v 650.4 ± 49.5 440.8 ± 31 456.2 ± 66.8 435.1 ± 16.7 552.4 ± 25.7 508.7 ± 11.2 518.1 ± 30.5 446.3 ± 40.2 526.1 ± 30.3
c-a 215.8 ± 13 222.8 ± 9 231 ± 38.1 121.5 ± 14.3 294.8 ± 36.2 150 ± 14.1 280 ± 34.2 124.2 ± 13.4 127 ± 15.4
a-v 434.6 ± 52.7 218 ± 29.6 225.1 ± 42.5 313.6 ± 9.9 257.6 ± 19.1 358.8 ± 12.2 238.1 ± 10.4 322.1 ± 28.9 399.2 ± 16.6
R-v 493.5 ± 48.5 266.3 ± 37.2 321.9 ± 81.5 327 ± 17.6 446.4 ± 21.1 382.1 ± 12.5 383.1 ± 36.4 344.2 ± 19.1 453.8 ± 29.8
R-O 636.3 ± 22.1 439.3 ± 15.6 483.8 ± 66.3 510.3 ± 7.9 625 ± 18.2 531.8 ± 5.3 515.2 ± 25.6 462.7 ± 9.2 589 ± 15.2
R-a 58.9 ± 13.6 48.3 ± 28.1 96.7 ± 48.1 13.5 ± 16.8 188.9 ± 31.8 23.3 ± 12.1 145 ± 39.4 22.1 ± 24.7 54.7 ± 16.1

Subj. 10 11 13 14 15 16 18 19 20

S-R 396 ± 32.6 362.6 ± 10.9 368.9 ± 7.9 417.5 ± 27.1 353.7 ± 14.9 374.7 ± 37.3 370.7 ± 43.4 409.5 ± 44.5 396.6 ± 17.3
S-c 267.8 ± 8.9 252.6 ± 6.8 191.2 ± 9.9 280.7 ± 18.3 240.2 ± 19.1 263.3 ± 28.1 197.6 ± 9.1 331.3 ± 42 259.3 ± 21.1
c-R 128.2 ± 27.7 110 ± 7.8 177.7 ± 15.4 136.8 ± 18.1 113.5 ± 4.7 111.4 ± 12.2 173.2 ± 42.5 78.2 ± 14 137.4 ± 24.3
c-V 504.9 ± 34.3 447.4 ± 13.5 500.3 ± 23.6 478.7 ± 15 555.2 ± 38.8 619.3 ± 42.9 590.8 ± 43.2 380.9 ± 58.4 454.3 ± 30.6
c-a 251.2 ± 23.3 210 ± 12.2 207 ± 42 222.2 ± 27.1 192.1 ± 37.3 210.2 ± 36.6 231.4 ± 44.1 149.6 ± 19.8 -
a-v 253.7 ± 55.3 237.4 ± 11 293.3 ± 28.3 256.5 ± 16.2 363 ± 5 409.1 ± 74.8 359.4 ± 49.1 231.3 ± 63 -
R-v 376.7 ± 24.2 337.4 ± 14.9 322.6 ± 11.4 341.9 ± 21 441.7 ± 41.5 507.9 ± 51 417.6 ± 51.4 302.7 ± 59.9 316.9 ± 23.5
R-O 562.7 ± 31.3 507.4 ± 10.5 516.3 ± 6.4 570.4 ± 28.7 578.4 ± 21 699 ± 40.7 634 ± 40.8 456.3 ± 67.7 418 ± 5.9
R-a 123 ± 46.3 100 ± 13 29.3 ± 36.2 85.4 ± 30.9 78.6 ± 39.9 98.8 ± 26 58.2 ± 8.3 71.4 ± 8.6 -

value of 0.071, as ventricular depolarisation (R) directly follows atrial contraction (a) in the cardiac

cycle time sequence. Similarly, c-R time variations also show a small median value of 0.13.

Focusing on the JVP waves differences, it can be noticed that in increasing order, c-a has the short-

est distance (med=0.21), followed by a-v (med= 0.29), and c-v has the largest duration (med=0.50).

This is consistent with the literature, which validates the manual annotation of these novel neck

JVP-PPG signals and shows the potential they have to be clinically used for biomarkers extraction.

The distance between the PPG systolic peak and the ECG peak (S-R), i.e. the pulse transit time

(PTT), showed a median normalized value of 0.38. This was larger than the distance between the

same PPG peak and the JVP c wave (S-c) (med=0.25), which is in accordance with the cardiac cycle

too, as c wave always occurs after the QRS complex of the ECG.

R-v and R-O refer to the same distance, but the R-v measure proposed in this work is calculated

from the v peak to R peak, whereas R-O is the equivalent to v-R measured by Lam Po Tang et

al. [17]. It was observed that they shared more or less similar ranges in the v-v normalized interval. In

this work, the normalized c-R interval ranged from 72.3±13.4 (subject 9) to 177.7±15.4 (subject 13);

whereas in their work it ranged from 139.6±6.1 to 248.3±10.5. For the normalized R-O, values ranged

between 418±5.9 and 699±40.7; whilst their v-R interval spanned from 360.7±8.0 and 547.2±20.4.

Overall, the normalized time differences showed symmetric distributions except for the c-a waves

which appeared slightly skewed. The dispersion of the data varied for the various pairs. For S-R, S-c

and c-R, the dispersion was very small, with interquartile range (IQR) values of 0.034, 0.40 and 0.29
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Figure 4.11: Boxplots showing the distributions of average time differences between character-
istic peaks and waves from neck JVP, finger PPG and ECG (n=20). S: arterial finger PPG systolic
peak. R: QRS complex peak of the ECG. a,c,v: characteristic JVP waves. O: onset of the JVP pulse.

respectively; for R-a (IQR=0.055) and c-a (IQR=0.081) was medium; and for the rest larger, with

IQR around 0.1. The variance for each subject time difference also varied depending on the pair of

waves. The average standard deviation for each c-R and S-c point was around 0.010; for S-R, R-a,

c-a, c-v, was around 0.013 and for a-v, r-v and R-O of 0.02.

4.3.6 Average JVP waveforms for all subjects

Figure 4.12 shows the mean neck JVP waveforms extracted for the 20 participants. The pulse shapes

in blue, resulted from the averaging of all the individual JVP pulses present in the whole length

of the recording (60s), plotted in grey. Despite the fact that the JVP morphology is subject to

change from one cardiac cycle to another (as in subjects 1, 10 or 13), in the majority of the cases

the individual pulses appeared very similar to each other, facilitating the computation of an accurate

average estimate. As a result, the characteristic a, c, v waves were marked, based on the manual

annotation performed on each subject’s recording with respect to reference ECG and PPG signals.

Different types of average JVP pulse shapes were visualized among different subjects. In all the

cases, the v, a and c waves could be clearly identified visually, except for subject 20, for whom the

a wave did not show enough prominence to be annotated. Indeed, in the majority of the signals

(e.g. subjects 1, 6, 7, 8, 9, 10, 13, 15, 18), the v wave appears significantly isolated in time, with a

prominent y descent, compared to the a and c greater amplitude waves. For half of the participants

in the study (subjects 4, 5, 6, 7, 8, 11, 13, 14, 15, 20), a total of 4 distinctive waves were noticed. The
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Figure 4.12: Average JVP waveforms manually annotated for all participants (n=20). a,c,v:
characteristic JVP waves as described in the literature. u: unknown extra peak specific to the proposed
method. S: arterial systolic peak overlapping with JVP waveform.

first three were marked as the JVP characteristic peaks and the last one was denoted as “u”, standing

for unknown. For subjects 12 and 17, the average pulse shape reflects the superposition of the venous

JVP a and c waves, and the arterial PPG pulse with the distinctive S peak.

Moreover, some average JVP waveforms show a more triangular shape (e.g. subjects 2, 3, 4, 11,

14, 16), with the v wave closer in time to the a and c waves, collapsing the y descent slope which

appears very flat or non-existent. This happened independently of the presence of the 4th additional

“u” wave.

4.4 Discussion

In this chapter, the feasibility of extracting the JVP waveform from the anterior neck, using a re-

flectance PPG sensor, was demonstrated. Neck JVP-PPG signals were recorded from a total of 20

participants in supine position. Since it is the first time that the JVP is sensed with a contact PPG

sensor from the anterior neck, a series of validation metrics were presented to further support the

hypothesis and conclusions of this work, as well as to assess the similarities and differences with other

methods.

Although it was possible to obtain the JVP signal in the majority of the subjects, JVP-PPG signals

were not equally accessible for all participants at once. For some, an exhaustive exploration of the

anterior neck area with the PPG sensor was necessary to find the most suitable sensing location, while
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in others it was straightforward. A possible reason is the differences in anatomy. Indeed, depending

on the subject, veins are likely to be located less superficially in the tissue or occluded by more fat,

which would avoid the IR light to penetrate very deep subcutaneously. This was confirmed with the

IR camera system that showed how the vein vasculature of the anterior neck appeared visibly different

from one subject to another. However, it is worth pointing out that a basic IR imaging low cost system

was chosen for the proof of concept in this study as first approach, and might not have revealed the

complete venous vasculature precisely.

In other cases, despite relocating the sensor and confirming with the camera that there was a vein

underneath, it was still not obvious how to obtain the JVP signals. A clear example was subject 12,

for whom vein imaging was one of the most clear ones among all subjects, but all the sensor locations

explored resulted in recordings with a mix of the venous JVP and arterial PPG pulses. Indeed the

PPG arterial mixed part of the neck JVP-PPG signal was almost perfectly matching in time with the

reference PPG pulses by a small difference of 0.05s. A possible hypothesis is that the subject was

very athletic, meaning that its stroke volume and cardiac output would be higher. The increase in

the force of ventricular contraction allows an increased amount of blood to be ejected, resulting in an

arterial pulse of higher amplitude at the neck, being sensed straight away following the a and c waves

of the JVP pulse. Another possibility, however, might have been, that the light is passing through

superposed veins and arterioles or at different skin depths, this causing the two signals to be sensed

simultaneously, as a mix, in a delayed manner.

On another extreme, in some cases, such as for subject 19, it was not possible to identify the

neck arterial PPG pulse anywhere in the neck. It was only possible to extract the JVP (even when

exploring the suprasternal notch area that is typically optimal for neck arterial PPG recording, as

previously demonstrated [21]). This could be due to the fact that the venous JVP pulse is stronger

than the arterial one, even in regions that are supposed to be more irrigated by arterioles. Probably,

a reduced cardiac output in this subject was the cause of an increase in CVP.

In this study it was demonstrated, for the first time, that novel neck JVP-PPG signals can be ex-

tracted from the anterior neck veins using a contact PPG reflective sensor. Ultrasound reference mea-

surements of the jugular vein in the cross-sectional transverse plane, validated our proposed method.

The computation of the wavelet coherence corroborated the inversion property of the JVP wave-

form with respect to arterial PPG in concordance with negative correlation observed by Amelard

et al. [15]. Indeed, this verifies that the proposed neck JVP signal really represents the atrial and

ventricular contractions of the right heart (a-c waves) that typically occur before the arterial pulse

(PPG) is transmitted towards the periphery (finger).

The three characteristic JVP waves a, c, v were identified in the majority of the signals, except
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for subject 20 for whom the a wave was not recognized. The order of the peaks in the normalized

v-v interval appeared to be v, a, R, c, S, consistent with cardiac physiology. This demonstrates

that, the novel contact neck JVP-PPG signals recorded in this study, morphologically present all

the conventional features of the well-known JVP and, have the potential to be exploited for CVDs

clinical diagnosis. However, the location of each JVP wave was observed to be slightly variable. This

suggests that the JVP waveform is predisposed to change its timing morphology from one cardiac

cycle to another, as already suggested by Lam Po Tang et al. [17]. However, we additionally defined

the normality ranges of the different waves within the JVP cycle for the proposed technique, to be

able to reliably detect abnormalities in JVP a, c, v timings that appear outside of the established

bounds.

When analysing the time differences between the JVP a, c, v waves and the ECG and PPG peaks,

it was noticed how the dispersion of the boxplots varied from one pair of waves to another. The

reduced dispersion in S-R, S-c, c-R distributions could be explained by the fact that ECG and PPG

peaks, are well known and accurately detected, and they represent, together with the c wave, the

same physiological process of systolic contraction. So, it could be expected that the time variations

within the cardiac cycle between these dependent processes would not vary much among subjects in

a healthy population sample. On the opposite, larger variability of time differences between other

JVP waves pairs (c-v, a-v, R-v and R-O), could be explained by the dissimilarities in anterior veins

vasculature and cardiac system anatomy, unique to each individual.

The comparison with previous work by Lam Po Tang et al. [17], of the c-R and R-O time intervals,

showed comparable range of values but not exactly the same. The small inexactitude could be due

to the smaller cohort of subjects (6 in total) that they used to calculate these differences, compared

to the 18 participants we employed. But the close similarity, validates our neck contact JVP-PPG

signals as a commensurable method for non-invasive JVP monitoring.

For the first time, average JVP waveforms were computed for each subject. A wider variety of

JVP pulse morphologies were observed than in previous works measuring the JVP remotely at the

external or internal jugular vein [15, 16, 17]. The different pulse shape classes could be a specific

trait of the sensing location of the anterior neck, or simply different morphologies were not revealed

in previous studies because averaging of the obtained JVP waveforms was not investigated.

The most distinctive feature of our contact neck JVP-PPG signals, is the presence of an extra 4th

wave, of unknown origin, denoted as “u” and located after the c wave. The recurrent occurrence of

this, in half of the cohort, led us to discard the idea that its origin was the result of some random

artifact. After measuring some neck arterial PPG signals from the suprasternal notch and verifying

the close superposition with the reference finger PPG, we abandoned the idea that it was the result
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of the mixing of the venous JVP and arterial PPG pulses (as in subjects 12 & 17). We therefore

hypothesize that the origin of this “u” wave is the delayed arrival of a pressure wave reflected through

the intricate venous tree. Indeed, as discussed in the Methods (section 4.2.2), the anterior jugular

veins can either connect directly to the subclavian vein or indirectly via the external jugular vein. The

latter will introduce an extra bifurcation in the direct path between the RA and the measurement site

at the anterior neck. Additionally, if we consider other bifurcations in the different veins (thyroid,

anterior or internal jugular) that connect and intertwingle at the anterior neck, this will increase the

likelihood of reflections sites. Therefore, singularities in different people’s anatomy and the confluence

of different venous blood columns might explain the appearance of new waves in the neck contact JVP

contour and the diversity in morphology.

These findings set for the first time the key attributes of the novel neck contact JVP-PPG signals

and add extra value to the state of the art of JVP recording techniques. Our proposed method is an

easy to use, low-cost solution for measuring JVP non-invasively from the anterior neck. It benefits

from not requiring expensive equipment or infrastructure, as others solutions do. Unlike previous

studies, that extract the JVP from the external and internal jugular veins, this work explores for the

first time the original sensing location of the anterior jugular veins. Another advantage is that no

expert personnel is required for JVP exploration due to the simplicity of moving the sensor around

the anterior neck for signal acquisition. These findings will have a great impact in reducing the risks

associated to central venous line catheterization, and therefore, are very promising for the future of

CVDs clinical diagnosis. In spite of this, this technique suffers from some minor limitations. It is

not always easy to locate the JVP in all subjects equally, due to the variability in veins anatomy,

fat content, and pressure in the venous system. Therefore, future research should focus on tackling

some of the open questions that remain unanswered. Is there an optimal sensor location and specific

conditions to measure this neck contact JVP-PPG waveform in a more standardized manner? What

is the origin of the additional unknown “u” wave? Is it relevant for JVP monitoring and diagnosis?

In future studies, a deeper exploration of the unique intricate venous anatomy should help understand

the differences in JVP waveforms morphologies. Ultimately, a clinical validation study, to assess the

neck contact PPG modality against invasive catheterization should be carried out to evaluate the

viability of implementing our alternative in continuous CVDs monitoring.

4.5 Conclusions

This work proposes, for the first time in literature, the use of reflectance contact PPG on the anterior

neck, as a non-invasive, low-cost alternative to sense JVP and obtain physiological parameters of

relevance for CVDs. Data acquisition from a total of 20 participants provided a snapshot of the pressure
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variations occurring at the right atrium of the heart. This was validated by reference ultrasound

measurements of the internal jugular vein. To demonstrate the hypothesis (i.e. that the JVP could be

observed through PPG), as well as the feasibility of the new proposed method, the characteristic a, c, v

waves of the neck JVP-PPG signals were manually annotated with the help of some reference ECG and

finger arterial PPG signals. Calculation of time differences between significant features confirmed the

validity of the novel JVP signals, their annotation, and the consistency with previous methods in the

literature. Wavelet coherence values proved that neck JVP-PPG signals were also inversely correlated

with respect to reference arterial finger PPG. In addition, the extracted average neck JVP waveforms

highlighted some singularities of the presented technique. Despite the fact that all distinctive a, c,

v waves could be identified, some pulse shapes showed a more triangular contour than typical, as a

result of the reduced prominence of the y descent following the v wave. An additional “u” wave, of

unknown origin, appeared unexpectedly right after the c wave in half of the JVPs in the cohort.

These findings are of great significance for the future design of low-cost, wearable PPG-based

sensors to continuously monitor changes in central venous pressure. Patients could easily wear the

sensor, with the only condition being having to comfortably lie down during measurements; as opposed

to having to resort to either invasive and/or non-invasive but more restrictive and costly methods.

Thus, this will aid in both, the efficiency in diagnosis of CVDs, as well as their management; whilst

also eliminating some of the risks of invasive alternatives.
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Chapter 5

Characterization of Artifact Signals in

Neck Photoplethysmography

The research presented within this chapter is an edited version of research previously published in:

I. Garcia-Lopez and E. Rodriguez-Villegas, “Characterization of artifact signals in neck photo-

plethysmography,” IEEE Transactions on Biomedical Engineering, 2020

5.1 Introduction

Arterial photoplethysmography (PPG) signals are commonly measured in clinical settings, using pulse

oximetry sensors, for the purpose of determining cardio-respiratory parameters. Peripheral saturation

of oxygen (SpO2%) and heart rate (HR) can be extracted in a reliable manner as soon as clean noise-

free PPG signals are obtained. Despite the clinical value of pulse oximetry, the recording of arterial

PPG signals is limited by the presence of noise artifacts components, that severally distort the quality.

Artifacts are understood as any source that corrupts a signal of interest. They modify the time

and frequency characteristics of the signal with varying severity, and are prone to numerous sources

of variability. They are the major cause of inaccurate vital signs measurements and undesirable false

alarms in different clinical monitoring contexts [2]. Some artifacts are easy to filter out when they

do not directly affect the PPG frequency bandwidth. Others, make it very difficult to recover the

clean signal when their broad spectrum overlaps with the fundamental frequency of interest. Artifacts

are measurement site specific, since different body locations are subjected to various types/severity of

interference, and have dissimilar tissue optical properties and capillarity. The variations in vascular

volume across the body imply that the AC and DC components are diversely distorted under the same

artifact. Unique artifacts can affect particular body parts as, PPG sensors positioned along the arm
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(including finger, wrist and upper arm) demonstrated to be mainly susceptible to arm movements

whereas forehead sensors were not affected by these but by head movements instead ([3, 4]). Artifacts

are also oximetry mode dependent. Reflectance PPG mode will favor more the uncoupling of the

sensor with the skin than transmission PPG due to the weaker attachment, making the former more

susceptible to ambient light interference [5]. LED wavelength also impacts the severity of artifacts.

For example, green sources of light are less sensitive to noise compared to IR [3], since the optical

path in reflectance PPG is shorter for green light. Consequently, fewer artifacts associated with DC

components are likely to be sensed at this wavelength.

In standard finger pulse oximetry, PPG artifacts are well studied and controlled. The most critical

ones are usually due to motion, and many signal processing techniques have already been proposed in

the literature to filter them, as covered in section 2.2. However, the specificity of artifacts to the site

of measurement and the type of sensor, do not make these solutions straightforwardly transferable to

other body parts.

In order to fully exploit neck PPG for precise biomarkers monitoring, it is necessary to deal with

the new and unknown sources of artifacts specific to this reflective site. In this context, this chapter

aims to characterize for the first time the noise artifacts of arterial PPG signals sensed at the neck,

in order to investigate which features would be most relevant to discriminate them from noise-free

PPG signals. To our knowledge, an exhaustive study of arterial PPG artifacts has not been reported

in the literature so far, and certainly not focusing on the neck. We believe this step to be crucial

for the correct identification of the different sources of interference/noise that could corrupt this neck

signal and prevent accurate physiological measurements to be recorded. The outcomes of this work

will set the foundations necessary to develop filtering algorithms for the implementation of wearable

neck arterial PPG sensors and, therefore, enhance the clinical utility of the recorded neck signals.

5.2 Methods

In this chapter, we propose a general method to characterize the artifacts of the neck PPG measure-

ments, that have not been described before, with the aim of finding which are the most promising

features to distinguish each of them from clean PPG signals. The approach consists in: first, identi-

fying the specific artifacts of the new sensing location; second, extracting a set of features capable of

differentiating these sources of noise from clean PPG signals; and third, evaluating the discrimination

potential of these statistically, to find out the top 10 features that best describe each artifact. This

technique could be equally applied to other measurement locations, or even other physiological signals,

as long as the relevant artifacts and features are properly selected in each particular case scenario.
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5.2.1 Neck artifacts definition

The effects of artifacts in neck PPG signals can vary from critically hindering the most important

information to just mildly altering the shape of the signal. As already explained, in the case of PPG,

artifacts are measurement site dependent. Therefore, it is important from the outset to have some

understanding of which are the most likely ones to affect the PPG signal in the location of interest, i.e.

in this case the neck. Following this, artifacts can be grouped into three different categories, depending

on the type of source generating them [6]. These are further discussed in subsequent sections.

5.2.1.1 Intrinsic

Intrinsic artifacts are the ones originating from other physiological processes inside the body. In the

context of some applications, these signals might not be considered artifacts, because these physiolog-

ical processes superimposed to the PPG signals contain information which is useful to determine the

physiological parameters of interest. However, within the context of this study, which is application

agnostic, they will all be treated as artifacts. Examples of these include respiration, eye movements,

temperature changes, cardiac signals or muscles contraction. In the particular case of neck PPG,

the major intrinsic contributors to consider are: neck muscles tension, trachea sounds vibrations,

autonomic system reflexes, tissue heterogeneity, skin temperature changes and fast respiration. The

importance of the latter was demonstrated in section 3.4.1, in which it was explained how the fast

respiratory fundamental frequency and its harmonics critically interfered with the standard arterial

PPG power spectrum, overriding the PPG cardiac information of interest [7].

In terms of autonomic system reflexes, it was initially hypothesized that swallowing, coughing,

yawning and snoring would entail some neck and jaw muscles contractions, as well as some vibrations

or displacement of the sensor, and this could severely impact the signal quality. Similarly, trachea

reverberations as a result of talking might also have the same negative effect.

Other physiological factors that, were thought, might less critically impair the recordings at the

neck, were: low perfusion, skin temperature, skin colour and tissue heterogeneity. All these would

account for more anatomical localized changes that could erroneously shrink the amplitude of the

PPG waveform. For example, cold skin temperature would trigger vasoconstriction of the peripheral

capillaries, reducing the perfusion of blood and making it more difficult for actual hemoglobin concen-

trations to be sensed. Moreover, when an excess of adipose tissue is present in the neck, the properties

of light absorption would vary and would not appropriately reflect the real PPG signal amplitude.

Thus, in severe cases of obesity in which the fat content of the neck is excessive, the amplitude of the

PPG might be reduced. In the context of this work this had no effect on the extraction of the pulsatile

signal, but it is worth considering that the number of subjects and the corresponding BMI range was
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relatively small. In future larger studies it would be worth investigating this further.

5.2.1.2 Environmental

Optical measurement devices are not affected by electromagnetic, magnetic or capacitive coupling

interference, as bioelectric signals (assuming that the interfacing electronics is properly designed).

However, PPG recordings are sensitive to natural or artificial ambient light sources. External light

interference can be minimized by enclosing the photodetector sensor in a dark isolated enclosure, and

correctly placing it in close contact with the skin. If this precaution is taken when using these sensors,

the effect of this type of artifact is minimum.

5.2.1.3 External

External artifacts are the ones that originate from external factors associated with real world daily-life

activities. The most common ones are motion artifacts caused by subjects moving. These artifacts

are unpredictable and can critically corrupt the signal quality. The consequences include changes in

the coupling between the sensor and the skin. This results in a distortion of the path-length of the

light transmitted through the tissue. Motion artifacts can also lead to an erroneous increase in the

blood volume at the recording site. This is called the blood pooling effect. In the particular case

of the neck, head and body movements, were expected to be the most corrupting artifacts in this

category. In clinical applications, head movements can occur when flexing or rotating the neck and

body movements when arms or legs twitch or the user switches posture. In addition, the application

of excessive or insufficient contact pressure could also negatively impact blood perfusion and hence,

the condition of the signal too.

A summary of the type, incidence frequency and severity of the most relevant artifacts that affect

the neck are presented in Table 5.1. The colour gradient represents the importance of the artifact,

from high (red) to low (yellow), based on some preliminary laboratory tests and the PPG literature

[8]. The most frequent artifacts with the highest severity were estimated to have the highest priority

for the neck and were separated, in the upper left corner of the table, through a diagonal border. A

total of 10 artifacts, above this border in each category were selected for experimental data acquisition

together with the reference PPG, denoted as normal breathing PPG.

Additionally, two other experimental situations that are not considered as artifact generating,

since they do not lead to significant corruption of the signal, but are of important clinical interest for

respiratory rate monitoring, were also taken into consideration in this study. These are slow breathing

and breath-holding periods (simulating apnea events). Different breathing conditions modulate the

DC baseline of the PPG signal with various frequencies and amplitudes. It is therefore interesting
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Table 5.1: Classification of neck artifacts occurrence in sleep conditions: based on
severity and frequency of incidence.

Always present Very likely Sporadic Very rare

In
tr
in

si
c Severe —

Swallowing
Talking

Fast Breathing
Yawn
Coughing

Medium — Snoring Low perfusion

Low
Tissue heterogeneity
Skin colour

— Muscle contraction Skin temperature

E
n
v
ir
o
n
m

e
n
ta

l Severe — — —

Medium — — Ambient light

Low — — —

E
x
te

r
n
a
l

Severe — Body and Head movements Movement of sensor probe

Medium — —
Excessive/Insufficient sensor
contact pressure

—

Low — — —

to study their characteristics together with the rest of the artifacts, to make sure these can be easily

differentiated and not confused with any type of interference.

Snoring is also an artifact (or a signal of interest, depending of the application), worth considering

in future research involving non-controlled experiments, ideally with patients with obstructive apnea.

5.2.2 Experiment 4 - data acquisition

5.2.2.1 Experimental set up

A total of 19 healthy subjects (12 males and 7 females), with average age of 25 ± 3 years old, height

of 1.73 ± 0.09 m and weight of 69 ± 13.6 kg, participated in the experiments (average BMI of 23.02

± 2.89 kg/m2). The study was approved by the Local Ethics Committee of Imperial College London

(ICREC ref.: 18IC4358). Written consent was obtained from all of them. Signals from two PPG

sensors, as shown in Fig. 3.1, were collected simultaneously while participants were lying down on a

bed. In order to record neck PPG signals, a reflectance pulse oximeter sensor (8000R, Nonin) coupled

to a processing module (Xpod, Nonin), was located at the suprasternal space. Also, to have a reference

PPG signal, a transmission pulse oximeter (Onyx II 9560, Nonin), was placed at the index finger of

the left hand. PPG signals were acquired from both sensors synchronously at a sampling rate of 75Hz.

5.2.2.2 Experimental protocol

13 recording sessions of 140s duration each were carried out per subject. In the first recording,

participants were asked to be at rest, breathing at their normal pace. The 12 subsequent recordings

aimed to test different artifacts (10) and respiratory states (2), with various intensities and duration,
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as listed in Table 5.2. The selected artifacts belonged to either the intrinsic or external categories.

Each recording was composed of three periods of artifacts, preceded by 20 seconds of rest. Artifacts

could further be categorized depending on their duration as continuous, if they happened for long

periods of time, or transient, if they were more time localized. As it can be observed on the table,

continuous artifacts are represented with a straight red line, whereas transients are represented by a

vertical red arrow. Since certain external artifacts can happen in both forms, in order to re-create

more realistic conditions, the alternating artifacts in these cases were tested as follows: 1) the first

was continuous and movements were fast, 2) the second, continuous and slow, 3) the third included

only transient movements.

Table 5.2: Experimental protocol: List of artifacts and breathing states tested
with corresponding recording time sequences (in seconds)

Artifact category Recording Experiment time-sequence

IN
T

R
IN

S
IC Continuous

Breathing Normal
Breathing Apnea
Breathing Slow
Breathing Fast
Talking

Transient
Swallowing
Yawning
Coughing

E
X

T
E

R
N

A
L

Continuous
& Transient

Head Up/Down
Head Right/Left
Head Rotation
Body Movements
Sensor Rubbing

5.2.2.3 Recordings annotation

During the experiments, precise time-stamps, pointing the start and end of the artifacts, were marked

in real-time and their corresponding type was assigned. After data acquisition, reference finger PPG

signals were used to verify the manual segmentation and labelling of neck artifacts. This ensured that

features from clean and noise-corrupted data were accurately extracted in posterior steps. The finger

pulse oximeter was also essential to guarantee that all the neck artifacts recorded in this study were

specific to the novel measurement site of the neck and did not affect the finger PPG signals.

5.2.3 Features extraction

In order to characterize neck PPG artifacts, a statistical comparison between normal, respiratory and

artifact PPG segments was carried out. For this, recordings were normalized using the Z-score method,

and a total of 41 characteristics from time, correlogram and frequency domains, were extracted. The
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window for analysis was selected as the duration of the annotated (artifact, breathing or rest) interval.

Features were first calculated individually for successive pulses in the window (time domain), or bins

(frequency domain), and were subsequently averaged out over the whole window to output a single

value per segment to evaluate statistically. ANOVA test served to indicate which were the most

relevant features to significantly discriminate each artifact from normal noise-free PPG signals and

hence describe each artifact specific traits. Here we present the list of features explored in this study.

Please, refer to Table 5.3 for a detailed description of the calculations.

5.2.3.1 Time domain features extraction

Since time features mainly focus on beat-to-beat characteristics, individual PPG pulses ought to be

segmented first. Based on the same approach as used in [7], the lower envelope of the signal was used

to obtain the pulse onsets and then, the maximum between onsets identified the systolic peak. The

time domain pulse characteristics used were as follows:

Amplitude [F1], which corresponded to the height difference between the onset of a pulse and

the systolic peak.

Width [F2], which corresponded to the distance between the onset and offset of each pulse, i.e.

its duration in time units (seconds).

Peak Height Difference [F3], i.e. the absolute height difference between peaks of successive

pulses in the signal.

Peak Distance [F4], i.e. the time difference between peaks of successive pulses.

Trough Difference [F5], i.e. the absolute height difference between onsets of successive pulses.

Rise Time [F6], which corresponded to the time duration between the onset of the pulse and the

systolic peak.

Skewness [F7], i.e. the degree of symmetry of a pulse.

Kurtosis [F8], i.e. the degree of sharpness of a pulse.

Change of F1−8 features [F9−16], which represented the absolute difference between successive

values of a calculated feature for consecutive pulses.

Standard Deviation of F1−8 features [F17−24], which represented the standard deviation of

feature values for a rest or artifact interval. As demonstrated in [4], the standard deviation value of

time domain features captures the variability of successive poor-quality PPG pulses.

Zero-Crossing Rate [F25], as shown in [9], it was expected that the number of times that the

PPG signal crosses zero would increase when an artifact occurred, as the PPG signal would have a

more chaotic behaviour than clean PPG.
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Table 5.3: Features definitions and formulas

Amplitude [F1]: is the height difference between the onset (O1) and the systolic peak (S) of a pulse (i). F1(i) = Si−O1i

Width [F2]: is the distance between the onset (tO1) and offset (tO2) of each pulse (i), i.e. its duration in time units
(seconds). F2(i) = tO2 − tO1

Peak Height Difference [F3]: is the absolute height difference between peaks (S) of successive pulses (i) in the signal.
F3(i) = |Si+1 − Si|

Peak Distance [F4]: is the time difference between peaks (tS) of successive pulses (i). F4(i) = tSi+1 − tSi

Trough Difference [F5]: is the absolute height difference between onsets (O) of successive pulses (i). F5(i) = |Oi+1−Oi|

Rise Time [F6]: corresponds to the time duration between the onset (tO1i) of the pulse and the systolic peak (tSi).
F6(i) = tSi − tO1i

Skewness [F7]: It was calculated as:

skewness =
E(x− µ)3

σ3
(5.1)

where, E() is the expectation operator, µ is the mean and σ the standard deviation. The skewness of the normal
distribution is zero. The more the skewness deviates from zero the less symmetric the pulse shape is. A negative
skewness corresponds to a pulse with a longer left tail, whereas a positive skewness represents a longer right tail.

Kurtosis [F8]: It was calculated as:

kurtosis =
E(x− µ)4

σ4
(5.2)

The kurtosis of the normal distribution is 3. If the kurtosis is smaller than 3, the pulse will be flatter and less sharp. If
the kurtosis is greater than 3, the pulse will have a sharper pointed shape.

Change of F1−8 features [F9−16]: The instantaneous change in feature i was calculated as:

∆(Fi) = |Fi(j)− Fi(j − 1)| (5.3)

where, Fi corresponds to the ith feature [1-8] and j is the pulse index.

Standard Deviation of F1−8 features [F17−24]: In a vector A containing N observations of any of the features above,
for each of the pulses in an interval, the standard deviation corresponds to:

σ =

√√√√ 1

N − 1

N∑
j=1

|Aj − µ|2 (5.4)

Zero-Crossing Rate [F25]: is the number of times per second that the PPG signal crosses zero.

Correlogram Peaks [F26−27]: are the autocorrelation values of the first and second peaks of the correlogram.

Correlogram Lags [F28−29]: are the lags corresponding to the first and second correlogram peaks.

Shannon Spectral Entropy (0-1.5Hz) [F30]: It is given by:

H = −
N∑

s=1

P (s)log2P (s) (5.5)

Where P (s) is the probability distribution of the power spectrum, given by:

P (s) =
S(s)∑
i S(i)

(5.6)

With S(s) = |X(s)|2 being the power spectrum, where X(s) is the discrete Fourier transform of the signal x(t).

Spectral Kurtosis (0-1.5Hz) [F31]: It is defined as the normalized fourth-order moment of the real part of the
short-time Fourier transform, computed as:

K(f) =
〈|X(t, f)|4〉
〈|X(t, f)|2〉2 − 2 (5.7)

where, X(t, f) is the short-time Fourier transform (STFT) of the signal x(t), and 〈·〉 is the time average operator.

Relative Power [F32−36]: The relative power was calculated by summing the power contained within the frequency
bands (0-1Hz, 0.8-1.2Hz, 1-2Hz, 2-3Hz, 3-4Hz), and dividing it by the total power spanning all the frequencies.

Average Band Power [F37−41]: A total of 5 features were extracted for each of the bands: 0-1Hz, 0.8-1.2Hz, 1-2Hz,
2-3Hz, 3-4Hz. They were calculated by averaging the power contained in the specified frequency bands.
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5.2.3.2 Correlogram features

Since autocorrelation features extracted from the correlogram were the most highly ranked in dis-

criminating between noise free and noise corrupted PPG in [9]; these were also explored in this work.

Normal PPG signal correlograms were expected to exhibit high peaks equally separated, whereas ar-

tifacts correlograms were expected not to show such a periodic pattern, with the peaks having small

correlation values. The rationale behind this is the fact that when convoluting a segment with itself

at lags proportional to the fundamental frequency, signals are going to be almost superposed, hence

resulting in high correlation values. However, for artifacts that are random and chaotic, the convoluted

segment is less likely to be overlapped with itself at any lag, and this will result on little correlation.

It is important to note that this will only apply to stationary scenarios (e.g. clinical applications) and

not to ambulatory situations, in which repetitive motions could still result in high correlation even if

introducing interference. Based on this, the following features were extracted:

Correlogram Peaks [F26−27], these are the autocorrelation values of the first and second peaks

of the correlogram.

Correlogram Lags [F28−29], these are the lags corresponding to the first and second correlogram

peaks.

5.2.3.3 Frequency domain features extraction

All the frequency domain features selected relied on the one-sided modified periodogram estimate of

the power spectral density (PSD) of the PPG signal. To obtain it, the spectrogram of each recording

was computed, based on the squared magnitude of the Short-Time Fourier Transform (STFT), with a

window of 15s and 90% overlap. The output power, typically expressed in decibels logarithmic units

(dB/Hz), with time in the x-axis and frequency across the y-axis, was segmented in time to have the

separate PSDs corresponding to clean PPG and artifacts-corrupted intervals, as it is shown in Fig. 5.1.

The whole subset of the twelve frequency features extracted are described as follows:

Shannon Spectral Entropy (0-1.5Hz) [F30], or the degree of “disorder” of the spectral power

distribution. The rationale behind calculating the entropy is that a clean PPG spectrum is expected

to be highly ordered, as the frequency information is localized at specific frequencies, typically with

the fundamental frequency at ∼1Hz and its harmonics at 2, 3, 4Hz etc. This will result in low spectral

entropy values. On the contrary, chaotic artifacts will distort the frequency spectrum and will hence

show high entropy values, since they carry less meaningful information. This can be actually observed

in Fig. 5.1. The frequency band ranging from 0 to 1.5Hz was selected for the calculation, since it is

where most of the power of the neck PPG signal is concentrated.
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Figure 5.1: Extraction of some frequency domain features from the spectrogram of a yawn
recording. Top panel shows the PPG recording corrupted by yawn artifacts. Second panel displays the
computed spectrogram, from which the Spectral Kurtosis and Entropy features were calculated in the (0-
1.5Hz) band.

Spectral Kurtosis (0-1.5Hz) [F31], is a measure of time dispersion of the time-frequency energy

distribution, i.e. a measure of the peakedness of the PSD at each specific frequency f . Thus it can

indicate the presence and the location of non-stationary transients in the frequency domain [10]. The

reason to choose kurtosis as a feature was that in artifacts that are not stationary, the spectrum will

be very noisy, broad, and with no distinguishable peaks. Therefore, the spectral kurtosis was expected

to be smaller than for clean PPG or stationary breathing artifacts, as shown in Fig. 5.1.

Relative Power [F32−36]: A total of 5 features were extracted for each of the following bands:

0-1Hz, 0.8-1.2Hz, 1-2Hz, 2-3Hz, 3-4Hz. The relative power was calculated by summing the power

contained within the specified frequency bands, and dividing it by the total power spanning all the

frequencies. The 0-1Hz band was chosen to capture power of the respiration frequencies. The 1Hz-

centered band, ranging from 0.8Hz-1.2Hz, was selected because it corresponds to the location of the

fundamental frequency of the PPG signal. The rest of the bands (1-2Hz, 2-3Hz, 3-4Hz), were chosen to

inspect whether there was any abnormality in power density due to artifacts, in between the harmonics

of the fundamental PPG frequency (2Hz, 3Hz, 4Hz etc.).

Average Band Power [F37−41]: A total of 5 features were extracted for each of the bands:

0-1Hz, 0.8-1.2Hz, 1-2Hz, 2-3Hz, 3-4Hz. They were calculated by averaging the power contained in the

specified frequency bands.

Fig. 5.1 shows an example of a recording with the segmented spectrogram and the variation in

time for some of the frequency features presented. The features corresponding to normal PPG are

displayed in grey, whereas the artifact ones are displayed in red. The dotted straight lines in each
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segment show the average value of the corresponding feature for the coloured time period. These

correspond to single observations, either for rest or artifacts, that will be input into the statistical

tests for evaluation of significance, as explained in the next section. The standard deviation is also

annotated with two parallel lines above and below the mean.

5.2.4 Artifacts vs. Normal PPG statistical comparison

5.2.4.1 Statistical tests evaluation

In order to test the statistical significance between pairs of clean-artifacts features, the statistical

test selected was a one-way-ANOVA with repeated measures. Standard ANOVA could not be used

instead because all features were measured under 13 conditions (1 normal case, 2 respiratory and 10

artifacts), and hence the assumption of independence was not valid. The selected one-way-ANOVA

test is an extension of the paired-samples t-test but taking into account within subjects effects. The

assumptions made when applying this test are normality of the residuals and sphericity (i.e. variances

of the differences between each pair of conditions have to be the same). Probability plots and Lilliefors

normality tests were used to assess the normality of the distributions. However, in the context of this

work, the second assumption was not always met, so a Greenhouse-Geisser correction was applied to

the degrees of freedom. The interpretation of the test is: if the main ANOVA is significant, then there

is a difference between at least two conditions. Performing post-hoc multiple pairwise comparisons

tests with Tuckey-Kramer correction helped to find out exactly which of those normal-artifacts paired

differences were significant.

5.2.4.2 Characterization significance matrix construction

For each feature, p-values for every normal-artifact multiple comparison were obtained. To illustrate,

the matrix on the left in Fig. 5.2 shows the results for the amplitude feature [F1] for all normal

and other conditions combinations. Only statistically significant pairs are in color. This corresponds

to p-values smaller than the level of significance α = 0.05. The smaller the p-value the higher the

significance.

The first row of the significance matrix, corresponding to the normal vs. all conditions p-values for

the ith feature, was reorganized into the ith column of the characterization significance matrix. This

was repeated for all features, as shown on the right panel of Fig. 5.2. The matrix obtained had 41

columns, corresponding to the number of features tested, and 12 rows, accounting for the 10 artifacts

and the two additional respiratory states (breathing slow and apnea) against which normal PPG was

compared.
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Figure 5.2: Results of pairwise multiple comparisons performed after repeated measures one-
way-ANOVA statistical test. The left matrix shows the p-values for all pairs for the Amplitude feature [F1].
The right matrix displays the statistical pairwise comparisons between Normal vs. Artifacts for all features (α = 0.05).
F1 = Amplitude, F2 = Width, F3 = PeakHeightDiff, F4 = PeakDistance, F5 = TroughDiff, F6 = RiseTime, F7 = Skew-
ness, F8 = Kurtosis, F9 = ChangeAmplitude, F10 = ChangeWidth, F11 = ChangePeakHeightDiff, F12 = Change-
PeakDistance, F13 = ChangeTroughDiff, F14 = ChangeRiseTime, F15 = ChangeSkewness, F16 = ChangeKurtosis,
F17 = StdAmplitude, F18 = StdWidth, F19 = StdPeakHeightDiff, F20 = StdPeakDistance, F21 = StdTroughDiff,
F22 = StdRiseTime, F23 = StdSkewness, F24 = StdKurtosis, F25 = ZeroCrossingRate (ZCR), F26 = Correlogram-
Peak1, F27 = CorrelogramPeak2, F28 = CorrelogramLag1, F29 = CorrelogramLag2, F30 = SpectralEntropy (0-1.5Hz),
F31 = SpectralKurtosis (0-1.5Hz), F32 = RelativePower (0-1Hz), F33 = RelativePower (0.8-1.2Hz), F34 = Relative-
Power (1-2Hz), F35 = RelativePower (2-3Hz), F36 = RelativePower (3-4Hz), F37 = AvgPower (0-1Hz), F38 = Avg-
Power (0.8-1.2Hz), F39 = AvgPower (1-2Hz), F40 = AvgPower (2-3Hz), F41 = AvgPower (3-4Hz).

In the characterization significance matrix, it is possible to see differences in the discrimination

capability between features. In fact, the Change in Amplitude feature [F9] has the potential to dis-

criminate normal clean PPG from any condition, whereas the Relative Power (1-2Hz) feature [F34] is

not significant for any normal-artifact pair. Another interesting thing to notice is that each feature

will have a higher or lower p-value (i.e. different discrimination potential), depending on the source of

variability. For instance, the Standard Deviation Skewness [F23], is not significant for Breathing Fast,

Slow and Talking, and neither has a very large p-value (≈0.045) for the Swallowing artifact, meaning

little discriminatory ability. But, it shows very small p-values (≈0.01) for the rest of the artifacts,

meaning it would be a useful feature to differentiate these from normal PPG. This demonstrates the

need of ranking the features for each category independently, in order to determine what are the most

important traits that differentiate each artifact or breathing state from normal PPG.

5.2.4.3 Ranking of features for each artifact

The p-values of the characterization significance matrix were sorted in ascending order for each artifact

independently. Hence, the first ranked feature corresponded to the one with the lowest p-value, and

144



5.3. Results

thus, with the greatest discriminatory potential with respect to normal PPG. However, in order to keep

the most representative features describing each category, a feature selection technique was proposed

and explained in the next section.

5.2.4.4 mRMR feature selection

For each category, the best 10 features were selected, using the minimum Redundancy Maximum

Relevance (mRMR) approach. But instead of applying this procedure as usual based on the mutual

information [11], the ranked statistical tests p-values, were exploited for the maximum relevance

criterion, and the correlation values, for the minimum redundancy criterion. The idea was to find

a subset of features that maximized the discriminability between normal PPG and each artifact or

respiratory condition, and reduced the correlation among selected features at the same time. This

was accomplished through an iterative process in which one new feature was added at a time to the

final ranking. For that, the value of the operator Ωi(P,R) was calculated for each of the remaining

features, and the feature that maximized it was added, so that:

max[Ωi(P,R)], Ωi = Pij/Ri (5.8)

where, Pij corresponds to the p-value of the ith feature differentiating between normal PPG and

the jth artifact; and Ri refers to average correlation value between the ith feature and all the features

already selected in the final ranking.

5.3 Results

5.3.1 Features ranking based on statistical results

Before selecting the top 10 more relevant and less redundant characteristics for each artifact indepen-

dently, features were ranked from most to least significant based on the p-values obtained from the

characterization significance matrix. The results are shown in the heatmap in Fig. 5.3. Note in grey

the features that were not significant (p-value>0.05).

As it can be observed, there were a few features that concentrated the most important rankings (in

dark blue) for most of the artifacts. These were: Peak Height Difference [F3], Trough Difference [F5],

Change in Amplitude [F9], Standard deviation of Amplitude [F17], Spectral Entropy [F30], Spectral

Kurtosis [F31], and Average Power (1-2Hz) [F39]. This suggests that these characteristics are the ones

with higher capability to differentiate between normal neck PPG and artifacts. On the opposite, some

of the extracted features, did not show overall statistical significance for almost any artifact. As seen in
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Figure 5.3: Ranking of features for each independent artifact and breathing state to discrim-
inate against normal PPG, based on the p-values obtained from the characterization matrix.
The colour scale indicates the ranking numbers ordering. The darkest blue colours represent the most dis-
criminative features with the lowest ranking values (i.e. the lowest p-values) and the lightest colours display
the least significant features with the largest ranking numbers (i.e. higher p-values). In grey, NaN values
indicate the features that did not show significance (p>0.05). F1 = Amplitude, F2 = Width, F3 = PeakHeight-
Diff, F4 = PeakDistance, F5 = TroughDiff, F6 = RiseTime, F7 = Skewness, F8 = Kurtosis, F9 = ChangeAmpli-
tude, F10 = ChangeWidth, F11 = ChangePeakHeightDiff, F12 = ChangePeakDistance, F13 = ChangeTroughDiff,
F14 = ChangeRiseTime, F15 = ChangeSkewness, F16 = ChangeKurtosis, F17 = StdAmplitude, F18 = StdWidth,
F19 = StdPeakHeightDiff, F20 = StdPeakDistance, F21 = StdTroughDiff, F22 = StdRiseTime, F23 = StdSkew-
ness, F24 = StdKurtosis, F25 = ZeroCrossingRate (ZCR), F26 = CorrelogramPeak1, F27 = CorrelogramPeak2,
F28 = CorrelogramLag1, F29 = CorrelogramLag2, F30 = SpectralEntropy (0-1.5Hz), F31 = SpectralKurtosis (0-1.5Hz),
F32 = RelativePower (0-1Hz), F33 = RelativePower (0.8-1.2Hz), F34 = RelativePower (1-2Hz), F35 = RelativePower (2-
3Hz), F36 = RelativePower (3-4Hz), F37 = AvgPower (0-1Hz), F38 = AvgPower (0.8-1.2Hz), F39 = AvgPower (1-2Hz),
F40 = AvgPower (2-3Hz), F41 = AvgPower (3-4Hz).

the concentrated grey areas, some examples are RelativePower for all bands [F32−36], AvgPower (0.8-

1.2Hz) [F38], RiseTime [F6] or Correlogram Lags1&2 [F28−29]. It is also worth pointing out that there

were only four statistically significant features capable of differentiating Breathing Slow from normal

PPG. Therefore, these small differences imply that this respiratory state is not very dissimilar from

normal PPG, and therefore it will be similarly differentiable from the rest of the artifacts too.

5.3.2 Artifacts characterization

In order to provide a summary of the main features characterizing each artifact and respiratory state,

the 10 most highly ranked features selected with the mRMR approach are shown in Table 5.4. The

first column in the table indicates the duration type: continuous or transient. The second column

graphically shows a recording example of each artifact or breathing state. The third column lists

the top ranked features resulting from the mRMR selection. The last column corresponds to the

difference of each feature distribution mean, i.e. Sign = µartifact − µnormal. On the basis of this, it
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can be assessed whether the listed features for each artifact or respiratory category are greater (>) or

smaller (<) than normal PPG.

For Breathing Fast, the PPG signal is greatly distorted. The Amplitude and StdAmplitude are

considerably larger (>) than normal, as movements of the thoracic cage displace the sensor in a larger

range and with higher frequency. Observed fluctuations do no longer correspond to the cardiac pulse,

being actually more separated between them (> PeakDistance, StdPeakDistance), and show greater

Width and RiseTime. However, the fast respiration frequency is periodic and consistent, this resulting

on the CorrelogramPeaks1&2 features having high correlation values. In terms of frequency features,

the SpectralEntropy (0-1.5Hz) is smaller (<) than in the normal case. This is due to the fact that the

peak of the fast respiratory frequency at ∼0.5Hz concentrates around ∼60% of the total power, and

so the degree of disorder is smaller than for normal PPG, where the power is split in between the two

respiration peaks (∼0.3Hz and ∼0.6Hz) and the fundamental PPG one (∼1Hz). The AvgPower (1-

2Hz) is greater (>) than for normal PPG, since, in the power spectrum, the second harmonic of the

breathing fundamental respiratory frequency is located at ∼1.2Hz and its relative power is around

30%.

Swallowing, Yawn and Cough share many characteristics related to their short instantaneous

duration. The three of them exhibit a larger SpectralEntropy (0-1.5Hz), smaller SpectralKurtosis

(0-1.5Hz) and larger AvgPower (1-2Hz) than normal PPG. This suggests that these artifacts are non-

stationary and that their power spectrum is not centered at any frequency in particular, but broadly

overlaps with the whole PPG bandwidth of interest with high disorder. The corrupted frequency

spectrum will have abnormally high power content in between PPG principal frequency peaks. In ad-

dition, the Cough artifact is characterized by containing greater AvgPower than the reference PPG

spectrum for all the frequency bands tested: 0-1Hz, 0.8-1.2Hz, 1-2Hz, 2-3Hz, 3-4Hz, since it is of higher

frequency. Cough artifacts also give rise to sharper, non-symmetric beats of high amplitude varia-

tions as demonstrated by the features Kurtosis, Skewness and ChangeAmplitude. The most distinctive

trait of Swallowing transient artifacts is their sudden drop and slightly delayed increase in amplitude,

that is captured by greater StdAmplitude, StdPeakHeightDiff, ChangePeakDistance, ChangeAmplitude,

PeakHeightDiff and ChangePeakHeightDiff features. Yawn artifacts are characterized by having an

unsteady wider separation between peaks than normal PPG (>ChangePeakDistance, StdPeakDis-

tance).

Motion artifacts including Head Up/Down, Right/Left, Rotation and Body, also have a big

predominance of frequency characteristics; specially a larger SpectralEntropy (0-1.5Hz), smaller Spec-

tralKurtosis (0-1.5Hz) and larger AvgPower (1-2Hz). This demonstrates the high degree of disorder

of the power spectrum, the poor frequency peaks localization and the larger concentration in power
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Table 5.4: Characterization of Artifacts and Breathing States of Interest

BREATHING STATES Ranked Features Sign

C
o
n
ti
n
u
o
u
s

Breath-Holding (Apnea)

1. StdPeakHeightDiff <
2. StdKurtosis <
3. CorrelogramPeak2 >
4. ChangeAmplitude <
5. StdWidth <
6. StdAmplitude <
7. PeakHeightDiff <
8. StdRiseTime <
9. ChangePeakHeightDiff <
10. CorrelogramPeak1 >

C
o
n
ti
n
u
o
u
s

Breathing Slow

1. PeakHeightDiff <
2. ChangePeakHeightDiff <
3. ChangeAmplitude <
4. TroughDiff <

ARTIFACTS Ranked Features Sign

C
o
n
ti
n
u
o
u
s

Breathing Fast

1. Amplitude >
2. StdPeakDistance >
3. PeakDistance >
4. Width >
5. AvgPower (1-2Hz) >
6. CorrelogramPeak2 >
7. RiseTime >
8. CorrelogramPeak1 >
9. StdAmplitude >
10. SpectralEntropy (0-1.5Hz) <

C
o
n
ti
n
u
o
u
s

Talking

1. SpectralEntropy (0-1.5Hz) >
2. ZeroCrossingRate >
3. StdTroughDiff >
4. AvgPower (1-2Hz) >
5. ChangeAmplitude >
6. CorrelogramPeak1 <
7. StdAmplitude >
8. TroughDiff >
9. SpectralKurtosis (0-1.5Hz) <
10. Amplitude >

T
ra
n
si
en

t

Swallowing

1. StdAmplitude >
2. SpectralEntropy (0-1.5Hz) >
3. StdPeakHeightDiff >
4. ChangePeakDistance >
5. ChangeAmplitude >
6. PeakHeightDiff >
7. SpectralKurtosis (0-1.5Hz) <
8. ChangePeakHeightDiff >
9. AvgPower (1-2Hz) >
10. Skewness <

T
ra
n
si
en

t

Yawn

1. SpectralEntropy (0-1.5Hz) >
2. TroughDiff >
3. ChangePeakDistance >
4. StdPeakHeightDiff >
5. SpectralKurtosis (0-1.5Hz) <
6. StdTroughDiff >
7. CorrelogramPeak1 <
8. AvgPower (1-2Hz) >
9. StdPeakDistance >
10. ChangeAmplitude >
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ARTIFACTS Ranked Features Sign

T
ra
n
si
en

t

Cough

1. ChangeAmplitude >
2. AvgPower (2-3Hz) >
3. Skewness <
4. CorrelogramPeak1 <
5. AvgPower (0.8-1.2Hz) >
6. SpectralEntropy (0-1.5Hz) >
7. Kurtosis >
8. AvgPower (1-2Hz) >
9. AvgPower (3-4Hz) >
10. SpectralKurtosis (0-1.5Hz) <

C
o
n
t.

&
T
ra
n
s.

Head Up/Down

1. SpectralEntropy (0-1.5Hz) >
2. AvgPower (2-3Hz) >
3. TroughDiff >
4. StdAmplitude >
5. SpectralKurtosis (0-1.5Hz) <
6. AvgPower (1-2Hz) >
7. ChangeAmplitude >
8. StdTroughDiff >
9. ChangeTroughDiff >
10. Amplitude >

C
o
n
t.

&
T
ra
n
s.

Head Right/Left

1. SpectralEntropy (0-1.5Hz) >
2. AvgPower (1-2Hz) >
3. SpectralKurtosis (0-1.5Hz) <
4. StdAmplitude >
5. ChangePeakDistance >
6. ChangeAmplitude >
7. CorrelogramPeak1 <
8. TroughDiff >
9. StdPeakDistance >
10. ChangeSkewness >

C
o
n
t.

&
T
ra
n
s.

Head Rotation

1. SpectralEntropy (0-1.5Hz) >
2. ChangePeakDistance >
3. SpectralKurtosis (0-1.5Hz) <
4. StdAmplitude >
5. AvgPower (1-2Hz) >
6. CorrelogramPeak1 <
7. Skewness <
8. Width >
9. ChangeSkewness >
10. StdPeakHeightDiff >

C
o
n
t.

&
T
ra
n
s.

Sensor Rubbing

1. StdAmplitude >
2. ZeroCrossingRate >
3. StdSkewness >
4. Amplitude >
5. StdPeakDistance >
6. ChangeAmplitude >
7. CorrelogramLag2 <
8. TroughDiff >
9. ChangeSkewness >
10. ChangeTroughDiff >

C
o
n
t.

&
T
ra
n
s.

Body Movements

1. SpectralEntropy (0-1.5Hz) >
2. ChangeAmplitude >
3. SpectralKurtosis (0-1.5Hz) <
4. StdAmplitude >
5. Skewness <
6. StdTroughDiff >
7. StdPeakHeightDiff >
8. CorrelogramPeak1 <
9. StdPeakDistance >
10. ChangeTroughDiff >
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in between normal peaks of the PPG spectrum. Head Up/Down and Body movements mainly

introduce changes in “vertical” axis features such as higher TroughDiff, StdAmplitude, ChangeAm-

plitude, StdTroughDiff, ChangeTroughDiff and Amplitude. Head Right/Left and Rotation are

characterized by a mix of “vertical” and “horizontal” traits, demonstrating their irregular and ran-

dom behaviour in amplitude and time. They also show lower and almost null correlation values for

the CorrelogramPeak1, meaning that these corrupted signals are very variable and not replicable in

time. This is reinforced by the larger ChangeSkewness that suggests a higher alteration rate of suc-

cessive beats symmetry, as the signal loses its standard shape. Similarly, for Body Movements,

the Skewness appears to be smaller than for normal PPG meaning that these artifact’s beats are less

symmetric and, in particular, more left skewed.

Talking is a continuous artifact that mainly manifests with changes in “vertical” time domain

features. As it can be observed in the corresponding recording figure on Table 5.4, there are sudden

increases in Amplitude and TroughDiff characteristics. The frequency spectrum is therefore severely

corrupted (>SpectralEntropy (0-1.5Hz), AvgPower (1-2Hz)). The most distinctive characteristic is the

ZeroCrossingRate, that is greater than for normal PPG, as it is probably modulated by the frequency

of talking.

Last but not least, Sensor Rubbing is an artifact that can occur in a continuous or transient

manner, depending on how the sensor is rubbed and the sources of rubbing. This artifact can be

characterized by overall irregular larger amplitude (>StdAmplitude, Amplitude, ChangeAmplitude,

TroughDiff, ChangeTroughDiff ) and asymmetry of beats (ChangeSkewness, StdSkewness). It also

presents a higher ZeroCrossingRate than normal, but this could be biased by the intentionally fast

movement of the sensor during the experimental procedure.

5.3.3 Characterization of additional respiratory states of interest

Characteristics of the two extra respiratory stable states of interest, Breathing Slow and Breath-

Holding (Apnea), were also compared against normal PPG. Results were likely presented in Table 5.4.

For Breathing-Holding (Apnea), it can be observed that the PPG signal is more stable, with

no baseline wander modulating the overall envelope. This is reflected by the “vertical” characteris-

tics: StdPeakHeightDiff, StdKurtosis, ChangeAmplitude, StdAmplitude, PeakHeightDiff and Change-

PeakHeightDiff. These all have a lower (<) sign, showing that the instantaneous and overall variation

in amplitude among pulses is very small, and the peak height difference is reduced compared to

normal. Even the standard deviation of “peakedness” (i.e. StdKurtosis) of successive pulses varies

significantly less than normal. PPG pulses for this respiratory state seem all invariable and uniform,

with the standard deviations in Width and RiseTime also being lower than normal. The clear simi-
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larity between pulses is exposed by the CorrelogramPeak1 and CorrelogramPeak2 features, that show

higher correlation values than for normal PPG. Finally, there are no significant features from the

frequency domain in the ranked features, reinforcing the idea of a perfectly periodic PPG signal, that

does not corrupt the PPG cardiac frequency bandwidth of interest. Indeed, the relative power from 0

to 0.8Hz is less than 20% whereas for normal PPG is ∼40%, and from 0.8 to 1.2Hz is of ∼60% versus

∼40% for normal.

For Breathing Slow, the situation is analogous: pulses look very stable and uniform. Similar

“vertical” features, as for Breath-Holding (Apnea), are: PeakHeightDiff, ChangePeakHeightDiff,

ChangeAmplitude and TroughDiff. These are smaller (<) than for normal PPG, showing that the

signal is less variable. Even if the PPG signal baseline is modulated by the slow respiration frequency,

with around 30% of the total power in the 0-1Hz band, it fluctuates less than for normal breathing

PPG.

These findings suggest that these respiratory states, which are likely to occur during sleep, do

not severely disrupt the PPG signal, but on the contrary, they seem to be more stable and closely

related to normal PPG than to the rest of the artifacts. Indeed, it is worth pointing out that, for

the features ranked in these respiratory cases, the signs are in general opposite to the signs found

for the same corresponding features in the rest of the artifacts. In other words, they have more

stable characteristics than normal PPG, while artifacts have more variable and abnormally larger

ones. Therefore, the breathing states of interest, Breath-Holding (Apnea) and Breathing Slow,

have the potential to be clearly distinguishable from interference, by applying simple thresholds or

more complex classification models on the identified top features.

5.4 Discussion

In this chapter, artifacts specific to arterial PPG measured on a new measurement site, the neck,

were characterized using signals recorded from 19 participants. A total of 41 features from the time,

correlogram and frequency domains were extracted and input into statistical tests for evaluation.

Several features showed significance in differentiating normal PPG from the rest of the artifacts.

But since, depending on the source of the interference, features demonstrated distinct degrees of

significance, a mRMR approach was applied to sort the most important characteristics for each artifact

independently. This consisted in ranking features based on increasing p-values and minimizing the

presence of highly redundant information relying on their correlation. A table, listing all the artifacts

with the top 10 ranked features, presented an exhaustive characterization of neck PPG artifacts.

In summary, even though it was shown that each artifact can be characterized by a particular
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subset of ranked features, there are some similarities appearing among them. First, there is a group

of key features that showed a higher capability to discriminate normal PPG from all the artifacts.

These include: Peak Height Difference, Trough Difference, Change in Amplitude, Standard deviation

of Amplitude, Spectral Entropy, Spectral Kurtosis and Average Power (1-2Hz). On the contrary, some

others, like RelativePower for all bands, AvgPower (0.8-1.2Hz), RiseTime or CorrelogramLags1&2 ;

did not show great statistical significance. This leads to the conclusion that the latter are not a

suitable choice for differentiating normal neck PPG from the rest of the artifacts. Second, overall, all

artifacts considered in this study were characterized by being very chaotic, unsteady and irregular.

They were distinguished by having larger and highly variable amplitude related characteristics, as

well as noisier and disordered frequency spectrum than normal PPG. Breathing Fast, was the

only one that showed fewer irregular features, even if still abnormally large. In fact, the cardiac

pulses information was notably distorted with great amplitude and separation between “beats”, but

maintaining the particular fast respiratory rate, as the predominance of high values of autocorrelation

features (CorrelogragramPeak1&2 ) reflected.

These findings set for the first time the characteristics of neck PPG artifacts, presenting the

features with the greatest potential to differentiate each of them. The recurrent identified patterns

can be used to develop techniques to detect and classify corrupted neck PPG segments. For this

purpose, thresholds could be established, or classification models could be trained, by exploiting the

most suitable features, as identified in this study, for each specific artifact category. Moreover, the

periodic respiratory modulation of neck PPG signals [7] could be similarly exploited as a discrimination

tool for breathing states. The distinctive fundamental frequencies of each breathing type observed in

the spectrum, contrast with the highly disordered and unlocalized frequency spectra of artifacts. These

results will be of great importance when trying to develop artifacts detection methods for novel neck

PPG signals denoising, since the sources of interference they are susceptible to, are now well known

and analyzed. In future research of neck PPG, engineers devising their signal processing pipelines

will directly have access to the best tuned features for their end-application. This will, on its turn,

facilitate a more accurate extraction of clinical biomarkers of interest.

In addition, it was also verified that eliminating artifacts would not eliminate extreme cases of

signals of interest such as Breathing Slow and Apneas. These, did not impair the PPG as artifacts

did, but instead showed to preserve the signal quality comparably or better than Breathing Normal.

A possible reason explaining this is that a slower, more controlled or absent respiration frequency,

makes the sensor more stable. Therefore, the signals under these circumstances are less affected by

the DC respiration baseline modulation. This suggests that even though they alter some “normal”

PPG traits, they are signals of interest that enhance the clinical utility of the neck.
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In finger pulse oximetry, artifacts altering the PPG signals are mainly due to motion, as hands

and arms are in constant movement. In comparison, neck PPG artifacts sources are more diverse.

Head movements are the source of strong artifacts, but the neck position makes them much more

stable in terms of frequency and amplitude. Other intrinsic artifacts resulting from autonomic reflexes

(Swallowing, Yawning, Coughing or Talking) are unique to the neck location, but, in relative

terms they are shorter and generally less frequent. In addition, respiratory movements noticeably

modulate the DC baseline of PPG signals, but this can be information of great interest, in some

clinical contexts, such as in apnea detection for SUDEP prevention. It is for this reason, that the

neck could potentially be a very interesting alternative to finger PPG within the context of continuous

respiratory monitoring and/or diagnosis, mostly in uncontrolled environments where artifacts caused

by hand movements are the strongest.

This characterization of neck artifacts might also be very valuable to extract additional information

for numerous applications for which the final objective is to identify the occurrence of particular

events. For example, based on the ranked features it would be possible to detect whether a person

is swallowing its medication, its respiration frequency has been altered, or the person is suffering

apnea events. Finally, this study has only focused on recording neck signals in supine position, but to

increase the generality, other positions could be similarly explored. It could be likewise interesting to

record and analyze combinations of artifacts and respiratory states happening simultaneously at the

same time.

5.5 Conclusion

This work experimentally extracts and analyzes, for the first time in literature, the 10 most important

neck PPG sources of artifacts and two other complementary respiratory states of interest. These

artifacts of intrinsic and external origin include respiratory, autonomic reflexes, sensors, and motion

types. An exhaustive signal processing characterization study of these is presented in this chapter. This

characterization, exploits time, correlogram and frequency domain characteristics. Statistical features

comparisons between normal PPG and artifacts, revealed the group of significant features with the

greatest capability of discrimination between the two groups. A mRMR ranking approach, selected

the 10 most characteristic features for each condition independently, among the total 41 extracted.

These findings are crucial for the complete characterization of sensed neck PPG, as they set the

foundations for mathematically understanding the sources of undesired signal interference in this novel

pulse oximetry measurement site. This is of great importance for the future development of artifact

elimination methods, with the objective to clean up the PPG signals and to increase the accuracy

of future algorithms aiming to extract physiological parameters for a variety of clinical contexts. In
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addition, this characterization could also support algorithms aiming to extract information in which

the specific artifact is a signal of interest itself, such as detection of swallowing or apnea events.
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Chapter 6

Artifacts Classification and Apnea

Events Detection in Neck

Photoplethysmography Signals

6.1 Introduction

Finger PPG pulse oximetry signals have been previously used in the literature for apnea detec-

tion in conjunction with other monitoring sensors (e.g ECG, EEG, respiration, sound) or on their

own ([1, 2, 3]). Among those exclusively using PPG sensors, most of the efforts have focused on first,

detecting oxygen desaturations from the surrogate SpO2% signal [4]; and then extracting relevant ap-

neic characteristics ([5, 6]). Some of the most typical features include: time series statistics of the SpO2

signal, the oxygen desaturation index quantifying the severity of the drop in oxygen levels by 2%, 3%,

4% (ODI2, ODI3, ODI4), and the desaturation area under these thresholds. Other studies, directly

employed the PPG signal to extract time and frequency domain features, such as the PPG amplitude,

beat-to-beat characteristics, or the low (0.04-0.15Hz) and high (0.15-0.5Hz) frequency powers ([7, 8]).

Papini et al. [9] included both pulse rate variability (PRV) and respiratory activity derived features

from the PPG signal. Lázaro et al. [10] focused on detecting decreases in amplitude of the PPG signal

(DAP) that were previously shown to be correlated with apnea ([11]). However, these still depend on

the detection of the delayed DAP segment of the signal occurring after the apnea. Present PPG apnea

detection methods could therefore be effective in clinical scenarios, where recordings are post-processed

offline. However, they show limited utility in more real-time applications. For example, in Sudden

Unexpected Death in Epilepsy (SUDEP), the prompt detection of apneic events could be a matter of

life or death. Neck PPG signals could offer a solution to the current limitations, as apneic respiratory

arrests can be instantaneously recognized by monitoring time and frequency features ([12, 13]).
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The acquisition of neck PPG signals is however limited by the presence of artifacts that superimpose

to the signal of interest. Hence, the occurrence of head movements, coughing or swallowing could

lead to unreliable and inaccurate SpO2 and HR readings; which in certain situations could put the

patient’s life at risk, and in others could lead to discontinuous adoption due to false alarms. In order

to improve the accuracy on the quantification of these physiological parameters, artifacts removal and

signal reconstruction methods have been extensively developed and reported in the literature. Some

include time and frequency filtering approaches like discrete wavelet transforms ([14, 15]), Fourier series

analysis [16] or source separation techniques (e.g. independent component analysis [17] or singular

value decomposition [18]). These approaches are, however, prone to the introduction delays and/or

distortion in the noise-free PPG segments. Adaptive filtering strategies have also been widely explored

([19, 20]), using additional sensors (accelerometers) to provide a noise reference estimate. Other

approaches have focused, instead, on detecting and removing artifact-corrupted PPG sections, prior

to the estimation of the physiological parameters of interest ([21, 22, 23]). Following this approach,

several machine learning algorithms have been proposed in the literature to discriminate artifacts from

clean PPG. Some examples of classification models include: decision lists ([24, 25, 26, 27]), decision

trees [28], näıve Bayes classifiers [29], support vector machines (SVM) ([21, 30, 31, 32]), multi-layered

perceptrons [33], personalized neural networks (NN) [34], and 1-D CNNs [35].

In the specific case of neck PPG, we have previously defined and characterized the most common

neck PPG artifacts [12]. However, there is no evidence of any previous research devising algorithms

for neck PPG artifacts classification. Since artifacts removal is crucial for neck PPG to work in real

life conditions, the first goal of this chapter was to design a high performance classifier capable of

discriminating artifacts from clean PPG signals. In addition, given that neck PPG signals have a big

potential to instantaneously detect apneic events, the second objective of this work was to develop,

for the first time in literature, an apnea classification model utilizing neck PPG.

6.2 Methods

6.2.1 Experimental protocol

In the previous chapter, a set of artifacts, including fast breathing, talking, head and body movements,

swallowing, coughing, yawning and sensor rubbing; as well as two additional respiratory states of

interest (slow breathing and breath-holding apnea); were recorded in Experiment 4 [12]. Two PPG

sensors were used for data acquisition in supine position: a reflectance pulse oximeter (8000R, Nonin)

placed at the suprasternal notch of the neck and a transmission one (Onyx II 9560, Nonin) placed on

the index finger for reference purposes.
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This dataset was used in this work for both artifacts classification and apnea detection. It consisted

of 13 recordings per subject, of 140s duration each. During the first control recording, participants were

instructed to breath at their normal respiratory pace. Then, to test other respiratory states, they were

asked to modulate their respiratory frequency at three different moments in the recording for 20-30s.

In one recording at a slower pace, and in another recording by holding their breaths to simulate apneic

events. Ultimately, the last 10 recordings introduced the different neck PPG artifacts in alternating

periods of 20s with spontaneous breathing in between. During data acquisition, the onsets and offsets

of artifacts were marked in real-time. After the experiments, the annotation was verified by comparing

with reference finger PPG signals. Each recording was independently normalized.

6.2.2 Features extraction

6.2.2.1 Windows segmentation and labelling

In order to obtain relevant features for further classification, recordings were segmented in small data

fragments. The extracted features were averaged within a defined time window that was repeatedly

shifted by 2s along the whole recording. Each average feature corresponded to an independent obser-

vation to be inputted into the classification model. In this manner, every new upcoming bit of data

was evaluated, simulating real-time processing conditions. Various window lengths (W = 4, 5, 6, 7, 8

and 10s) were explored to assess which one maximized the accuracy of classification.

The labelling of each window, as artifact / clean PPG for the artifacts classification model, or as

apnea / normal PPG for the apnea detection model was defined based on a percentage (%) threshold

Thd of window corruption. In other words, if let’s say Thd = X% or more of the evaluated PPG

segment’s total length contained an artifact (or apnea) signal, then the window was assigned to the

positive class. Otherwise, if the percentage of corruption was less than Thd = X%, the window

was labelled as the negative class: clean PPG (or normal PPG respectively). Several thresholds of

corruption (Thd = 20%, 30%, 40%, 50 %) were tested as well to explore how the different labelling

criteria affected the sensitivity and specificity of the algorithms.

6.2.2.2 Features

Most of the features proposed in Chapter 5, were also considered in this work, since they demon-

strated strong statistical significance in the differentiation between normal clean PPG from artifacts

or breathing states [12]. New additional features derived from the envelope of the PPG signal were

additionally included, to increase the classification performance. The 51 features considered in this

chapter for both classification models are presented below. Further details on these features can be

found in the previous chapter.
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• Time domain morphological features:

Amplitude [F1] vertical distance between the onset of a PPG pulse and the systolic peak.

Width [F2] time duration between the onset and offset of a PPG pulse in time units (seconds).

Peak Height Difference [F3] relative amplitude between successive pulses peaks.

Peak Distance [F4] horizontal distance between successive pulses peaks (in seconds).

Trough Difference [F5] relative amplitude difference between onsets of successive pulses.

Rise Time [F6] time period between the onset of a PPG pulse and its systolic peak.

Skewness [F7] degree of symmetry of a PPG pulse.

Kurtosis [F8] degree of sharpness of a PPG pulse.

Change of F1−8 features [F9−16] instantaneous difference of feature’s values for consecutive pulses.

Standard Deviation of F1−8 features [F17−24] feature’s standard deviation over the whole window

length.

Zero-Crossing Rate [F25] number of times per second that the PPG signal crosses zero.

• Correlogram features:

Correlogram Peaks [F26−27] autocorrelation values of the first and second peaks of the correlogram.

Correlogram Lags [F28−29] lags of the first and second correlogram peaks.

• Frequency domain features:

The one-sided modified periodogram estimate of the power spectral density (PSD) was used to cal-

culate the frequency features. For that, the spectrogram was derived using the squared magnitude of

the Short-Time Fourier Transform (STFT) with a window of 10s and 90% overlap. The output power

(dB/Hz) was then sliced in time to obtain each window PSD.

Shannon Spectral Entropy (0-1.5Hz & 1-4Hz) [F30,31] degree of “disorder” of the power spec-

trum’s probability distribution.

Spectral Kurtosis (0-1.5Hz & 1-4Hz) [F32,33] peakedness of the PSD at each specific frequency.

It is calculated as the normalized fourth-order moment of the real part of the short-time Fourier

transform.
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Relative Power [F34−36] calculated by adding the power contained within specific frequency bands

(0-0.8Hz, 0.8-1.3Hz, 1.3-1.8Hz) and dividing it by the total power spanning all frequencies.

Average Band Power [F37−41] power of the signal was averaged within the five frequency bands:

0-0.8Hz, 0.8-1.3Hz, 1.3-1.8Hz, 2.2-2.8Hz, 3.2-3.8Hz.

• Envelope features:

The upper envelope of the PPG signal was extracted using spline interpolation over local maxima

separated by at least 50 samples (>0.667s). A total of 10 features were extracted from this envelope

signal.

Envelope standard deviation [F42] variance in the envelope signal within the window.

Envelope maximum [F43] maximum value of the envelope signal within the specific window.

Envelope minimum [F44] minimum value of the envelope signal within the specific window.

Envelope range [F45] difference between the maximum and minimum values of the envelope signal

within the current window.

Envelope approximate Entropy [F46] regularity statistic that measures the unpredictability of

repetitive patterns. In other words, a PPG envelope signal including repetitive fluctuations, such

as spontaneous breathing, would show small approximate entropy values, whereas a less predictable

signal (e.g. artifact) would be characterized by larger ones. It was computed using the approxima-

teEntropy() function in MATLAB 2020 [36].

Envelope area [F47] area under the envelope absolute signal, computed by numerical integration via

the trapezoidal method.

Envelope Average Power [F48−51] power of the envelope signal was averaged within the following

frequency bands: 0-0.15Hz, 0.2-0.5Hz, 0-0.5Hz and 0.5-1Hz.

6.2.3 Classification pipeline

In this study, two classification algorithms were developed: an artifacts classifier and an apnea clas-

sifier. According to our previous findings [12], on one hand, neck PPG artifacts, with similar noisy

characteristics, could be clearly distinguished from normal PPG. On the other hand, normal, slow

breathing and apnea PPG signals shared common stable clean PPG features. As a consequence, for

the artifacts classifier, all the artifact types were grouped together under the artifacts positive class;

while the negative clean PPG class encompassed: the normal, apnea and slow breathing PPG signals.
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Figure 6.1: Classification pipeline. The predicted output classes for artifacts classification
are: Artifacts/clean PPG; for apnea classification: Apnea/Normal PPG. This process was repeated
30 times with different randomization in the data partition stage, for each window length and threshold of
corruption (%) combination.

In order to detect apneic events among the clean PPG signals category, an apnea classifier was also

engineered. The positive class consisted of the apnea PPG signals. And the normal PPG negative

class comprised the normal and slow breathing categories. The number of artifacts and breathing

states were evenly sampled at random in order to perform balanced binary classification.

Figure 6.1 shows an overview of the classification pipeline for both classifiers. This process was

repeated 30 times with different randomization in the data partition stage, for each combination of

window length and threshold of corruption (%). Each stage is further detailed in the subsections

below.

6.2.3.1 Data partition

Since there was window overlapping, a random partition of data could no longer be used, as the

condition of independence between training and test data would be violated.

As it can be observed in Figure 6.2, two types of data partitions were used for classification. For

artifacts classification, a Leave-30%-of-Subjects-Out approach was implemented. As Fig. 6.2(a) shows,

for every seed, 70% of the subjects were selected at random for training (with all the recordings), and

the other 30% were left for testing. This ensured that the classifier was tested against completely

unseen data, which is one of the most strict validation strategies. All subjects were assigned to the

the test set evenly, at least 7 times each. This avoided any subject-bias.

For apnea classification, due to a limited number of breath-holding recordings, an alternative Leave-

1/3-of-Recording-Out per subject partition was adopted instead. An illustration of three intercalated

breath-holding events that simulate apneic events can be observed in Fig. 6.2(b). Apnea recordings

were thus divided in three even segments for each subject. The same number of normal and apnea PPG

windows were included in each of them and no overlapping windows (in the border) were allocated to
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Figure 6.2: Data partitions for artifacts classification and apnea detection models. (a) Leave-
30%-of-Subjects-Out approach for artifacts classification. (b) Leave-1/3-of-Recording-Out per subject for
apnea detection.

either of the neighbouring segments. This prevented overfitting and guaranteed independence of the

training and test sets. For each random seed repetition, one of the three segments was selected for

the test set and the remaining two were used for training.

This data partition step was repeated 30 times for both classifiers, with different randomization

of the training and test sets, to verify that the proposed algorithms showed a good generalization

performance.

6.2.3.2 Training

A SVM classifier with a radial basis function (RBF) kernel was chosen for the artifacts and apnea

classification. The objective of the SVM classification problem was to find the weights vector ~w and

bias term b defining the optimal hyperplane, that maximizes the margin between classes and minimizes

the loss term such that:

min
w,b,ξ

1

2
~wT ~w + C

n∑
i=1

ξi (6.1)
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subjected to the condition:

yi(~w
Tφ(~xi) + b) ≥ 1− ξi, ξi ≥ 0 (6.2)

where, φ(~xi) are the training vectors in the input space, yi the classes labels [-1,1] and ξi the slack vari-

ables. C corresponds to the regularization parameter that controls the trade-off between maximizing

the margin (C → 0) and minimizing the penalty term (C → ∞). The function K(~xi, ~xj) maps the

training vectors into a higher dimensional space in order to gain linear separation. The RBF gaussian

kernel used was defined such that:

K(~xi, ~xj) = φ(~xi)
Tφ( ~xj) = exp(−γ ‖~xi − ~xj‖) (6.3)

where, γ = 1
2σ2 is the inverse of the radius of influence of the samples selected by the model as support

vectors.

During training, the best features and hyperparameters, that optimized the model’s performance,

were selected using the Leave-One-Subject-Out Cross-Validation (LOSO-CV) strategy. Similarly to

k-fold cross-validation, the training data was repeatedly split, by selecting one subject at a time for

testing, and the rest of the subjects for training. This approach avoids overfitting and prevents subject

bias during feature selection and hyperparameters optimization.

6.2.3.3 Features selection

The features selection step was included within the LOSO-CV and was performed only on the training

subjects. It consisted of two stages. First, the total 51 features were ranked using chi-square tests.

These evaluated whether the features were independent of the classes labels, and then ranked the

features based upon the output p-values. A small p-value revealed that the corresponding feature

was dependent on the response variable, and therefore, was an important feature to consider for

classification.

The top 30 features ranked with the Chi-square tests were fed into a forward sequential feature se-

lection algorithm. In a wrapper fashion, the subsequent ranked features were sequentially added to the

top 30 candidate set until the addition of further features did not decrease the average misclassification

error by more than a relative tolerance of 1e-6.

6.2.3.4 Hyperparameters optimization

In order to boost the SVM training performance, the soft-margin missclassification cost (C) and the

RBF kernel gamma (γ) hyperparameters were optimized by grid search. For the different classifiers,

all the combinations of C and γ, listed as follows, were evaluated using LOSO-CV.
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Artifacts classification: C = 0.5, 1, 4, 6, 8, 16, 32, 64, 80, 128
γ = 2−15, 2−13, 2−11, ..., 2−1, 21, 23

Apnea classification: C = 0.125, 0.75, 1, 2, 3, 4, 5, 6, 8, 32
γ = 2−15, 2−13, 2−11, ..., 2−1, 21, 23

The hyperparameters that maximized the cross-validation training accuracy were selected for the

artifacts classifier, and those showing the highest F1-score were chosen for the apnea classifier.

6.2.3.5 Performance metrics and model selection

Once the most optimal hyperparameters and features were selected through LOSO-CV, the final SVM

model was trained with the whole training data partition. Subsequently, it was evaluated on the

independent test set (in yellow in Fig. 6.1), to output the predicted classes.

In order to assess the classification performance of both classifiers, the following metrics (in %) were

calculated as the average over the 30 randomization repetitions: accuracy (ACC), sensitivity (SE),

specificity (SP), precision, and F1-score (F1).

The best artifacts classification model was chosen based on the combination of window length and

threshold of corruption (%) (W/Thd) that maximized the accuracy metric. In apnea classification, the

harmonic mean of precision and recall, i.e. the F1-score, was used instead to select the best W/Thd

model. Indeed, the F1 metric is more relevant in this case, as the Type I (false positives) and Type II

(false negatives) errors are crucial for safety in critical apnea detection applications.

6.2.4 Statistical evaluation of the classification results

In order to assess whether the different windows and corruption thresholds (%) had an effect on the

classification performance of both classifiers, a two-way ANOVA statistical test was carried out for each

performance metric. The normality and homoscedasticity assumptions were verified using Lilliefors

and Levene’s tests. This confirmed the homogeneity of variance among different sample groups and

the Gaussianity of the distributions. Post-hoc multiple comparisons, based on the Tukey’s honest

significant difference criterion, were subsequently performed in order to investigate which pairs of

means were significantly distinct, for the different windows and corruption thresholds (%) evaluated.

6.3 Results

6.3.1 Classification results

Figure 6.3 shows the average results for both artifacts and apnea classification algorithms, across all

windows and thresholds of corruption (%). The bar graphs represent the mean performance over the
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Figure 6.3: Average classification results for the proposed artifacts and apnea classification algorithms,
over the 30 randomization experiments. Bar graphs show the average performance metrics across the different
windows and corruption thresholds (%) tested. The error bars represent the extent of the standard deviation above and
below the mean. Different thresholds of corruption (Thd = 20%, 30%, 40%, 50 %) are specified as separate coloured
bars for each window length (W = 4, 5, 6, 7, 8, 10s). The statistical results of the multiple pairwise comparisons testing
for the window effect are displayed with a horizontal line and a black asterisk symbol indicating the alpha significance
level: * p < 0.05, ** p < 0.01, *** p < 0.001. The red asterisks on top of some window groups indicate that all the
multiple comparisons were statistically significant for that specific window.

30 repetitions and the error bars, the corresponding standard deviations. Overall, both classifiers

demonstrated good performance with average metrics’ values larger than 80% for the majority of the

W/Thd models. A more exhaustive analysis is presented in the following subsections.

6.3.1.1 Artifacts classification

The results presented in the upper panels of Figure 6.3, show a good performance of around 86% for

the various windows and thresholds. The ACC, SE and F1 mean values oscillate in a short range

of 2-3% for the different W/Thd combinations. However, the SP mean values expand across a larger

range of 6%, probably due to a threshold effect. On average, the standard deviations for ACC and F1

are very small (1.8%), whereas for SE and SP are slightly higher (4%). But still, these values remain

acceptable considering that a Leave-30%-of-Subjects-Out validation approach was used, which is one

of the most strict ones.

Table 6.1 presents the average performance results for the best (W/Thd) artifacts classification

model. The window and corruption threshold (%) combination that maximized the accuracy of ar-

tifacts classification was W = 6s − Thd = 20%, with a value of 85.84 ± 2.00%. The F1-score

(85.77 ± 2.12%), SP (86.26 ± 3.57%), and precision (86.29 ± 2.92%) values of this W/Thd model

were also the largest compared to all other parameters pairs.
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Table 6.1: Average performance results (µ ± σ, n=30) for the best artifacts and
apnea classification models

Artifacts*
classification

Apnea**
classification

Best W/Thd model W=6s - Thd=20% W=10s - Thd=50%

ACC 85.84 ± 2.00 88.25 ± 2.07
SE 85.43 ± 3.95 89.03 ± 2.69
SP 86.26 ± 3.57 87.42 ± 3.63

Precision 86.29 ± 2.92 88.42 ± 3.04
F1 85.77 ± 2.12 88.68 ± 2.01

* The artifacts classifier discriminates between noise-corrupted PPG segments and clean data (normal breathing, slow
breathing and apnea PPG fragments)

**The apnea classifier distinguishes apnea events from the rest of clean PPG data (normal breathing, slow breathing)

6.3.1.2 Apnea classification

In the lower panels of Figure 6.3 are exposed the average classification results for the apnea classifica-

tion algorithms. Although the various metrics demonstrated a good performance of around 83-84% in

average for all the W/Thd, there was a clear ascending trend that reasonably increased the range of

mean values. The difference between extreme values could span from an 8% in precision and up to a

10.5% in SE. This suggested that the windows and thresholds parameters might have had an effect.

The standard deviations, pictured as error bars, occur in general very small (< 3.2%) for all metrics.

The best apnea classification model (W/Thd) and the corresponding performance metrics are listed

in Table 6.1. The maximum F1 score of 88.68 ± 2.01% was obtained for the apnea classification model

with a window of W = 10s and a threshold of corruption of Thd = 50%. This W/Thd combination

also maximized the ACC (88.25 ± 2.07%), SE (89.03 ± 2.69%), SP (87.42 ± 3.63%) and precision

(88.42 ± 3.04%), compared to the other W/Thd pairs.

Figure 6.4 shows the predicted classes output of the best artifacts and apnea classification models.

Some of the most characteristic features that were inputted in the classifiers are also displayed such

as the Peak Height Difference, the Envelope’s maximum value and the Spectral Entropy (<1.5Hz).

6.3.2 Statistical tests results:

6.3.2.1 Two-way ANOVA

Overall, the resulting ANOVA tables for both classifiers, showed that the window length and the

threshold of corruption (%) affected the classification performance metrics significantly (p < 0.05).

Some exceptions to this were the window length effect for the sensitivity of artifacts classification

(p = 0.707) and the threshold effect (%) for the specificity of apnea classification (p = 0.065). No

statistical evidence of an interaction effect between the two factors was shown for any metric (p > 0.05).
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Figure 6.4: Classification decision results of the best models for one head movement artifact
and an apnea event. The variation of some of the features used are displayed in the lower panels: Peak
Height Difference, the maximum of the envelope and the Spectral Entropy (<1.5Hz). True artifacts and apnea
windows are labeled in red and blue respectively.

The results of the post-hoc multiple comparisons for the W and Thd effects are described in the

next subsections.

6.3.2.2 Window length effect

In Figure 6.3, the statistically significant pairwise differences among window lengths groups (W =

4, 5, 6, 7, 8, 10s) are shown in the form of horizontal lines with an asterisk symbol representing the p-

values ranges (* 0.01 < p < 0.05, ** 0.001 < p < 0.01 and *** p < 0.001). For the sake of visualization,

a unique red asterisk symbol was used when any group was statistically significant with all the others

simultaneously. The largest p-value was chosen for the asterisk representation.

As it can be observed, in artifacts classification, the window W = 10s shows the greatest signifi-

cance. Indeed, for the average ACC, SP and F1 metrics, W = 10s is the only group that is statistically

different from all the rest of the windows (except from W = 8s). For SP , besides W = 10s, the aver-

age specificity values of W = 8s are also statistically distinct from the W = 4 and 5s ones. This could

be explained by a slight decrease in performance, from W = 5 − 6s, with increasing window length

of ACC (-1.1%), SP (-2.7%) and F1 (-0.87%). No significant pairwise comparisons appear among

window groups for SE, since, according to the ANOVA findings, the window length did not have an

effect (p > 0.05). Actually, no dissimilarity in the average SE values is noticeable among window

groups, being all roughly equal to 86% in average. The fact that the standard deviations of ∼ 4% are

some of the largest compared to other performance metrics, might also explain the non-significance.

166



6.3. Results

Figure 6.5: Means plots of the classification performance metrics across different thresholds
of corruption (%). The means, with the corresponding 95% confidence intervals, are represented in red.
Standard deviations above and below the mean are shown in blue. The statistical results of the multiple
pairwise comparisons testing for the threshold effect are displayed with a horizontal line and a black asterisk
for different alpha significance levels: * p < 0.05, ** p < 0.01 *** p < 0.001. The red asterisks on top of
some threshold groups indicate that all the multiple comparisons were statistically significant for that specific
window.

In apnea classification, the lower panels of Fig. 6.3 show that the overall performance increases

with longer window lengths. A rise of ∼ 5% in the window means can be noticed throughout from

W = 4s to W = 10s. This is corroborated with the average results of W = 10s and W = 8s being

statistically distinct from the shorter windows’ lengths groups. In addition, the pairwise differences

between W = 6, 7s and W = 4, 5s are statistically significant for the ACC, precision and F1 values.

In the case of SE, the average values of the W = 8s window are also statistically distinct from the

W = 4, 5, 6s lengths (p < 0.01), as well as W = 7s is different from W = 4s (p < 0.001).

6.3.2.3 Threshold of corruption (%) effect

Figure 6.5 shows the means plots of the classification performance metrics across different thresholds

of corruption (%), for both artifacts and apnea classifiers. The statistical pairwise differences between

various thresholds values (Thd = 20%, 30%, 40%, 50 %) were displayed with asterisks as in Fig. 6.3.

In artifacts classification, it can be observed that the mean ACC, SP and F1 decrease with

increasing percentage of corruption threshold (%), whereas the opposite happens for SE. The drop in

average ACC and F1 performance from Thd = 20% to Thd = 50% is very subtle (1 − 2%), whereas

for SP it is a bit more meaningful with a 4% reduction. Indeed, the mean specificity values for all the

Thd groups are statistically distinct from one another, with a p-value of p < 0.01 for Thd = 20, 30%

and p < 0.05 for the Thd = 40, 50% groups. For the other performance metrics (ACC, SE and F1),

due to the small changes in mean differences among groups, only the most extreme thresholds appear
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to be statistically different. In fact, the pair Thd = 20%-Thd = 50% accumulates the largest number

of statistically significant differences overall, followed by Thd = 20%-Thd = 40%.

In apnea classification, the performance metrics’ average values increased significantly with

the threshold of corruption (%). The increment for ACC, SE and F1, was of around 5% from

Thd = 20% to Thd = 50%. The mean values of all the thresholds groups for these metrics were

statistically different from one another (p < 0.001). The mean precision value for Thd = 50% was

also statistically significant (p < 0.05) with respect to the rest of the threshold groups. However, the

gain in precision from Thd = 20% to Thd = 50% was only of 2%.

6.3.3 Features selection results

Figure 6.6 displays the features selection frequency of occurrence (%) over the 30 randomization

experiments, for the best artifacts and apnea classification models. The features were ranked in

decreasing order. The most relevant features for each classification task were likely to be selected

100% of the times, while the the most irrelevant ones were never chosen for the final model in any of

the 30 repetitions (0%).

For artifacts classification, in the upper panel of Fig. 6.6(a), a total of 26 features were selected

100% of the times, out of the 30 repetitions. Some examples are the Amplitude, PeakHeightDiff,

TroughtDiff and the corresponding Changes and Standard deviations of these. In the frequency

domain, the AvgPower and Spectral Entropy features for all the specified bands were also some of the

most important. In addition the Envelope characteristics were likewise predominantly selected. An

additional set of 7 features that were chosen more than 50% of the times, showed good discriminative

potential. But, the 18 lowest ranked features, appeared less than (30%) of the times in the final

classification model.

In the lower panel of Fig. 6.6(b), it can be observed that a set of 24 features were selected in all

randomization experiments (100%) for apnea classification. These mainly included time domain

vertical characteristics of the signal (e.g. PeakHeightDiff, ThroughDiff ), as well as the Changes and

StandardDeviations of these features. All the Envelope characteristics (except approxEntropy) and

the Correlogram peaks, were also part of the most highly selected features. In the frequency domain,

the AvgPower (0-0.8Hz), RelPower (0.8-1.3Hz), Spectral Entropy (< 1.5Hz) and Spectral Kurtosis

(< 1.5Hz) were also some of the most important features to consider for apnea detection. Besides the

top (100%) features, another extra 9 were also significantly chosen more than 50% of the times. Among

the rest of the 18 features selected in less than half of the 30 repetitions, the Pulse Width, PeakDistance,

SpectralEntropy (1-4Hz) and RelPower (1.3-1.8Hz) were never picked for apnea classification.
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Figure 6.6: Features selection ranked by frequency of occurrence over the 30 random-
ization experiments for the best artifacts and apnea classification models. F1 = Amplitude,
F2 = Width, F3 = PeakHeightDiff, F4 = PeakDistance, F5 = TroughDiff, F6 = RiseTime, F7 = Skewness,
F8 = Kurtosis, F9 = ChangeAmplitude, F10 = ChangeWidth, F11 = ChangePeakHeightDiff, F12 = Change-
PeakDistance, F13 = ChangeTroughDiff, F14 = ChangeRiseTime, F15 = ChangeSkewness, F16 = ChangeKurtosis,
F17 = StdAmplitude, F18 = StdWidth, F19 = StdPeakHeightDiff, F20 = StdPeakDistance, F21 = StdTroughDiff,
F22 = StdRiseTime, F23 = StdSkewness, F24 = StdKurtosis, F25 = ZeroCrossingRate (ZCR), F26 = Correlogram-
Peak1, F27 = CorrelogramPeak2, F28 = CorrelogramLag1, F29 = CorrelogramLag2, F30 = SpectralEntropy (0-1.5Hz),
F31 = SpectralEntropy (1-4Hz), F32 = SpectralKurtosis (0-1.5Hz), F33 = SpectralKurtosis (1-4Hz), F34 = Relative-
Power (0-0.8Hz), F35 = RelativePower (0.8-1.3Hz), F36 = RelativePower (1.3-1.8Hz), F37 = AvgPower (0-0.8Hz),
F38 = AvgPower (0.8-1.3Hz), F39 = AvgPower (1.3-1.8Hz), F40 = AvgPower (2.2-2.8Hz), F41 = AvgPower (3.2-
3.8Hz), F42 = EnvelopeStd, F43 = EnvelopeMax, F44 = EnvelopeMin, F45 = EnvelopeRange, F46 = EnvelopeAp-
proxEntropy, F47 = EnvelopeArea, F48 = EnvelopeAvgPower (0-0.15Hz), F49 = EnvelopeAvgPower (0.2-0.5Hz),
F50 = EnvelopeAvgPower (0-0.5Hz), F51 = EnvelopeAvgPower (0.5-1Hz),

6.4 Discussion

In this chapter, two automated algorithms were developed to classify noise artifacts and detect apneic

events from novel neck PPG signals. A total of 51 features from the time, correlogram and frequency

domains were extracted to fit both classifiers. These included morphological, statistical, and envelope

characteristics of the PPG signal, as well as PSD-derived features. A SVM classifier with a RBF

kernel was trained for different windows (W = 4, 5, 6, 7, 8 and 10s) and thresholds of corruption

(Thd = 20%, 30%, 40%, 50 %). A LOSO-CV strategy was implemented to protect against overfitting

and subject bias, during features selection and hyperparameters optimization. The classifiers were

tested in unseen data, to predict whether each PPG window belonged to the artifacts/clean PPG

classes; and whether within the clean PPG category, it was an apnea/normal PPG segment. This

process was repeated 30 times with different randomizations of the data in order to evaluate the

generalization capability of the models. Overall, the results demonstrated a good average performance

for both classifiers (∼ 86%). The standard deviations for the different (W/Thd) models were also small

enough (∼ 2%) to suggest that the algorithms were very stable and could generalize well accross data.
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This increases the confidence that the results obtained could be reliably replicated in the future, with

a similar range of values, no matter the data partition. Specially, for the artifacts’ algorithm that is

tested in a totally independent set of subjects (Leave-30%-of-Subjects-Out partition), the low variance

indicates that the method is robust. However, some substantial differences in the performance metrics

were observed among several (W/Thd) models.

The analysis of the features selected for the best (W/Thd) classification models indicated that

overall, there was a recurrent set of features for each classifier, with a high chance (∼ 100%) of being

chosen. This suggested that features like PeakHeightDiff and TroughtDiff, as well as the corresponding

Changes and Standard deviations of these, had a higher discriminative potential. The final set of

features, also included Envelope, AvgPower and Spectral Entropy characteristics for specific frequency

bands. However, around 18 features out of the total 51, were not selected many times (or even none),

implying that they were not very informative for classification. The presented ranking of features

offers, at hand, the most promising set of features for neck PPG artifacts classification and apnea

detection. This analysis would be relevant for future studies aiming at processing neck PPG signals

and improving the current classification results. It could likewise be a good starting point for additional

features engineering for other related neck PPG applications.

For the artifacts classification results, the best W/Thd model, with the largest average accu-

racy (85.84± 2%), was W = 6s− Thd = 20%. This model also maximized all the other performance

metrics, except for SE which did not show statistical significance. Even though there is a decrease in

performance from W = 6s with increasing window length, the W = 6s window group only appeared

to be statistically distinct from W = 10s in terms of ACC, SP and F1; and from W = 8s in terms

of SP . Therefore, it cannot be straightforwardly concluded that in general, W = 6s is the most

optimal window length for neck artifacts classification. But, since W = 4, 5, 6 and 7s are statistically

equally valid, and W = 6s slightly improves the overall performance, it would still be preferable to pick

W = 6s as the most suitable window for future algorithms. Indeed, other PPG studies have also found

appropriate window lengths in a similar range for their proposed artifacts classifiers ([21, 33, 34]).

In terms of threshold of corruption (%), the classification performance decreased with larger Thd

values. Specially, the average SP for the optimal Thd = 20% was statistically larger than the rest of

groups, hence increasing the ACC and F1 too. This suggests that, in future works, a smaller threshold

of corruption for window labelling, would considerably benefit the performance of the algorithm.

However, if in turn, SE is deemed more important, a model with larger Thd > 20% would be

recommended instead.

Comparing these results with other artifacts classification studies in the literature, leads to the

conclusion that our algorithm performed well. Indeed, as it can be observed in Table 6.2, our model
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Table 6.2: Comparison of artifacts classification results in the literature with our
best (W=6s-Thd=20%) model

ACC (%) SE (%) SP (%)

Our method 85.8 ±1.65 83.8 ±4.1 87.43 ±3.7
Couceiro [30] 87.5 ±0.6 78.4 ±1.2 94.4 ±0.6

Chong [21] 93.9 94.3 92.4
Sukor [28] 83 ±11 89 ±10 77 ±19
Tabei [34] 98.07 ±2.02 92.6 ±6.54 99.78 ±0.93

Cherif [37] 83 ±8 84 ±16 83 ±12
Fischer [24] 98.3 99.6 90.5

showed similar ACC, SE and SP than the SVM classifier proposed by Couceiro [30], the decision

tree by Sukor [28] or the adaptive thresholding approach by Cherif [37]. However, some algorithms

exploiting fine tuned decision lists (Fischer [24]), personalized neural networks (Tabei [34]), or a linear

SVM with major voting (Chong [21]), outperformed our results. But, these are just for reference and

are not straightforwardly comparable because each classification problem is distinct. The measurement

sites in other works are different and consequently are susceptible to different types of artifacts.

Different works also implement different validation strategies.

The findings of this artifacts classification model, are of great importance for denoising and con-

ditioning novel neck PPG signals, and hence, enabling the possibility of exploiting this novel PPG

measurement site for physiological monitoring. The removal of PPG-corrupted sections, would signif-

icantly improve the accuracy of HR and SpO2 readings of neck pulse oximeter sensors. Ameliorating

the quality of neck PPG signals, would similarly facilitate the accurate derivation of other biomakers

of interest.

In apnea classification, the average performance increased with the window length and the

threshold of corruption (%) by a considerable amount (> 5%), reaching its maximum at W = 10s −

Thd = 50%. In addition, both the W = 10s window and the Thd = 50% threshold effects were

shown to be statistically significant with respect to the other windows’ and thresholds’ groups for all

the performance metrics. Therefore, it can be inferred that the W = 10s − Thd = 50% parameter’s

combination is the most suitable for detecting apnea events with neck PPG, as it maximizes not

only the F1-score (88.68 ± 2.01%), but all the other performance metrics too (ACC = 88.25%,

SE = 89.03%, SP = 87.42%, precision = 88.42%).

Since W = 10s and Thd = 50% are the largest values in the ranges explored, in future studies

the grid search bounds of the window length and threshold (%) parameters could be even expanded

to investigate whether the performance could potentially improve. However, even though the choice

of longer windows could benefit the detection, the reason behind proposing neck PPG signals as an

alternative to common approaches, was to reduce the latency of apnea detection. So, increasing the
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Table 6.3: Comparison of apnea classification results in the literature with our
best (W=10s-Thd=50%) model

Signals
used

ACC (%) SE (%) SP (%) Precision
(%)

Our method neck PPG 88.25 ±2.07 89.03 ±2.69 87.42 ±3.63 88.42 ±3.04
Knorr-Chung [7] PPG 75.4 91.6 84.7 85.9

Lázaro [10] PPG 70.37 81.82 68.57 -
Papini [9] PPG 86 39 94 51

Jung [4] SpO2 91 83 89 -
Deviaene [6] SpO2 82.8 64.3 88.6 64.2
Deviaene [8] PPG+SpO2 83.4 73.7 86.6 64.8

window length to 30s or 1min segments, would limit the utility of the proposed method for real time

applications. To illustrate, in the context of SUDEP, a longer window processing duration could

increment the risk of mortality, as short apneic events might not be that promptly detected.

Reviewing other apnea detection approaches in the literature, the proposed RBF SVM model

exploiting time and frequency characteristics directly derived from the PPG signal, outperformed

both the studies exclusively extracting PPG features and the ones relying on the surrogate SpO2 time

series. As observed in Table 6.3, the SE and precision values of the SpO2-based algorithms proposed

by Deviaene et al. are poor ([6, 8]). In these approaches, features extraction focused on the signal

segment corresponding to the oxygen desaturation, which is delayed from the actual respiratory apnea

onset by 20-40s. This lag could be critical for real-time applications. The same issue applied to the

work by Jung et al. [4]. Even though they claimed to accomplish real-time apnea detection by locating

the original apneic event in the preceding 25 seconds prior to the onset of the desaturation; they first

had to detect the lagged response of the SpO2. Other SpO2-based algorithms in the literature, which

performed epoch-based classification with windows length of 1min or larger ([38, 39]), were likewise

not suitable for real-time implementations.

Among the PPG works, the linear discriminant classifier proposed by Lázaro et al. [10], evaluating

pulse rate variability (PRV) features from 4 windows preceding, following and spanning the delayed

decreases in amplitude (DAP) events; also suffered from the same limitation. Papini et al. [9] achieved

the highest specificity (SP ) by inputing PPG-derived PRV and respiratory features into a deep learning

model, but the SE and precision were insufficient for robust online monitoring. The results obtained

by Knorr-Chung et al. [7], with an ANN trained on PPG time and frequency characteristics, were

good but the classification model was not implemented in an epoch-by-epoch online manner. Instead,

the most representative PPG fragments showing normal breathing and apneic patterns, were manually

segmented for classification.

This work, in contrast, is a significant advancement in the field, since it demonstrates, for the first
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time in literature, that it is possible to robustly detect apnea events from neck PPG signals in an

instantaneous manner. The proposed method has the advantage to be simple and has the potential

to be used for near real-time applications, hence lifting the long waiting times of offline processing.

As a consequence, in the future, the large number of cumbersome PSG sensors could be reduced to a

unique, wearable neck PPG system. This could potentially have a great impact in SUDEP monitoring,

by supporting airflow measurements in the decision of apnea classification.

Overall, the methods in this work present useful recommendations for future designers of neck

PPG processing algorithms, in terms of suggested features, window lengths, labelling thresholds and

classification models. This is important for future adoption of the neck as a PPG site. Indeed, the

proposed artifacts classification algorithm presents the first proof-of-concept classifier for neck PPG

artifacts removal. However, once the corrupted PPG fragments are identified, a decision on how to

process them should be taken. This study was devised with the idea that corrupted fragments could

just be discarded, to improve the accuracy of HR and SpO2 parameters estimation. It does not tackle,

however, the reconstruction of detected artifact signals. This should be explored in future work,

specially when artifacts are expected to be predominant. Another limitation of this study is that

the proposed classification models were trained using experimental artifacts or breath-holding events.

These need to be tested in real sleep scenarios to validate their performance. Also, a wider number of

participants, including patients suspected to have apneas, should be recruited. Indeed, the majority

of studies developing apnea detection algorithms in the literature, make use of polysomnography

databases, with real apneas of different kinds (obstructive, central, mixed). The accuracy of the

current apnea algorithm, would probably decrease when tested against this variety of respiratory

events.

Future work, should then focus on combining complementary respiratory signals measuring air-

flow [2], to support the classification decision and improve the performance. Tracheal sounds, for

example, can be easily sensed from the multipurpose site of the neck. Further improvements and

validation of this proof-of-concept would ideally lead to the implementation of these classifiers in the

WADD wearable apnea monitoring system for SUDEP prevention.

6.5 Conclusion

In order to fully exploit the novel PPG measurement site of the neck, specifically to support real-time

apnea detection applications, corrupted PPG segments need to be first recognized for removal. Two

automatic algorithms were designed in this work to achieve these. The first classifier demonstrated

good performance in distinguishing neck PPG-corrupted segments from clean PPG data; and the

second, showed a promising capability of promptly detecting apneic events, in a near real-time manner,
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both uniquely exploiting PPG time and frequency features. The preliminary results of this study,

provide useful tools to facilitate neck PPG signals processing, that could encourage the future usage

of the neck as a PPG measurement site.
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Chapter 7

Conclusions

In this thesis, neck photoplethysmography, has been thoroughly studied for the first time in lit-

erature. Neck PPG signals have been recorded under different respiratory and artifact conditions,

to provide a full characterization of this novel measurement site. Extensive processing of the key

features of the proposed signals, has enabled the design of two artifacts classification and apnea de-

tection algorithms. The neck has been proven to be a very promising pulse oximetry measurement

location, for future application in cardiorespiratory monitoring, and specially within the context of

sudden unexpected death (SUDEP) prevention.

7.1 Contributions

The original contributions of this thesis are summarized as follows.

Neck PPG, extensively studied, for the first time.

Although the finger is the gold standard measurement site in pulse oximetry, the neck, can be very

attractive for sensing several physiological signals, besides oximetry, with the same monitoring device.

Specifically for respiratory diseases, the body region of the neck is particularly suited for sensing

airflow from tracheal sounds. In combination with oxygen saturation, airflow measurement is of great

relevance for apnea detection. Nevertheless, neck PPG signals have not received much attention in the

literature so far, since, at first glance, the neck region could appear sub-optimal for sensor attachment

and patient’s comfort. The very limited works have only proven the feasibility of sensing it in a

reduced number of subjects, and very controlled conditions.

In this thesis, the neck PPG has been explored in depth for the first time in literature, in terms

of pulse characteristics, spectral content at different breathing rhythms and artifact conditions. It is
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also the first time that this novel measurement site has been thoroughly compared to standard finger

PPG, to assess its advantages and limitations.

In Chapter 3, the principal differences between neck and finger PPG were established in terms

of morphological pulse shape characteristics. For instance, the neck PPG waveform showed a higher

diastolic peak, probably explained by a reduced number of bifurcations in the arterial tree transmission

path, compared to when the pressure wave travels to the periphery (finger). This and other pulse

contour findings defined the normal traits of neck PPG pulses.

When inspecting the spectral differences between neck and finger PPG signals under different

breathing conditions, the respiratory frequency component was found more prominent in the novel

site. This singular property could facilitate the extraction of the respiratory rate in different breathing

situations. The suitability of neck PPG for apnea detection is hence two-fold: not only SpO2%

desaturations could indicate hypoxia, but also the absence of respiration could be simply detected by

examining the power spectral content of neck PPG.

Besides exploring the time and frequency characteristics, neck PPG was shown to be a promising

pulse oximetry measurement site, as precise HR and SpO2 (%) were estimated compared to ground

truth values. However, for this proof-of-concept study, the extraction of these two vital parameters was

not tested under artifact conditions. This demonstrated the necessity to further study the unknown

artifacts affecting the novel site of the neck, in order to further develop filtering algorithms and ensure

reliable readings.

Tools for neck PPG signal processing.

Another important contribution of this thesis was to provide tools to facilitate the use and the process-

ing of neck PPG signals, including the characterization of the most common artifacts, the identification

of the most discriminative features, and the development of validated classification models, with the

most optimal hyperparameters, to reliably detect artifacts and apnea events. Having all these at hand,

could boost the future adoption of this PPG measurement site in cardiorespiratory monitoring.

In Chapter 5, the 10 most common neck PPG artifacts, and two other breathing states of interest,

were defined and statistically compared to normal PPG. An exhaustive characterization study pre-

sented a detailed description of the most discriminative features differentiating each artifact from clean

PPG. Indeed, artifacts severely distorted the PPG signal with abnormally larger and highly variable

amplitude related characteristics, as well as higher spectral entropy frequency features, among others.

The breathing states of interest, Breathing Slow and Apnea, shared stable characteristics with clean

PPG, implying they could be easily differentiated from artifacts too. These results are of relevant

importance for denoising neck PPG signals, since the sources of artifacts susceptible to corrupt them,

are now well known and detectable. These findings, could provide valuable tools to future engineers
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devising their signal processing pipelines to detect neck artifacts, as they will have direct access to the

best tuned features for their specific application.

Chapter 6, expanded this features characterization analysis into the development of two SVM-RBF

classification models. By additionally exploring respiratory envelope-related characteristics, an arti-

facts classifier and an apnea classifier were trained. These learned to differentiate clean PPG signals

from artifacts, and normal PPG from apnea PPG events, respectively. Features were automatically

chosen during training using a sequential feature selection approach. The proposed artifacts classifica-

tion model achieved good performance in comparison to other algorithms in the literature. This could

now help remove the corrupted fragments of the PPG signal, and thus ensure reliable physiological

parameters extraction. The proposed apnea detection model also outperformed other works. These

findings show, for the first time, that neck PPG signals can be reliably exploited for apnea detection.

The determination of the best window length (W ) and threshold of corruption (Thd) parameters will

serve as guidance to future researchers developing neck PPG classification algorithms, in relation to

what detection window to choose in different scenarios. The recurrent optimal subset of features se-

lected by each classifier could similarly suggest a good starting point for feature engineering in future

research.

Last but not least, all the experiments carried out in this research suggested that the suprasternal

notch of the neck is a valid location to extract arterial PPG. However, suggestions on alternative

positioning of the sensor on top of the anterior veins, also opened a window into the venous system.

Beyond pulse oximetry...

Apart from being a suitable pulse oximetry alternative, neck PPG signals could also have a huge

potential for other cardiorespiratory applications.

In Chapter 4, I demonstrated, for the first time, the feasibility of extracting the jugular venous

pulse (JVP) in a novel way: exploiting contact neck PPG. The JVP is an important physiological

signal that provides unique clinical information about right atrial and central venous pressure (CVP)

abnormalities. It is a key biomarker in cardiovascular diseases (CVD) diagnosis, as several cardiac

dysfunctions affecting the right side of the heart (e.g. tricuspid stenosis), cannot be diagnosed with

common ECG, PPG, or blood pressure signals. However, the gold standard method to measure

JVP, invasive central venous cathetherization, entails an enormous amount of risks. This is why,

demonstrating that it is possible to extract the JVP from the anterior jugular veins with contact

photoplethysmography, can potentially overcome the shortcomings of the current state-of-the-art.

This was shown by identifying the conventional a,c,v waves of the JVP, in the recorded neck JVP-

PPG signals, as established by cardiac-cycle physiology and validated by B-mode ultrasound imaging.

The findings of this chapter thus confirmed that neck JVP-PPG is a very promising, safe and cost-
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effective tool, that could be an important breakthrough for the future of CVD diagnosis, since it

eliminates all the risks associated with invasive catheterization. This work is of great significance to

enable continuous non-invasive point-of-care monitoring of CVP.

This is only one example of a CVD application for which neck PPG signals have a great potential.

However, further study of the neck arterial PPG waveform in a wider population, could also reveal

new insights into the head vasculature function. The analysis of contour features of the PPG pulse

shape can provide a large amount of information, not only in relation to the pulsatile function of the

heart, but also regarding the arteries distensibility properties. For example, by measuring variations

in the diastolic peak height and occurrence time, arterial stiffening could be detected. Arterial neck

PPG could therefore be used as a new non-invasive diagnostic tool to identify carotid artery blocks,

atherosclerosis, or to monitor the aging process of the upper vascular system.

The neck has also been proven to be a propitious measurement site for respiratory diseases monitor-

ing, since the respiratory frequency component was shown to be more prominent than in finger. This

was exploited in Chapter 6, in the development of the apnea classification algorithm, by engineering

envelope-specific features. Indeed, the findings of this chapter show, for the fist time in literature that,

not only, apneic events can be detected using neck PPG signals, but also, that this can be achieved in

a near real-time manner. In contrast to other works that detect delayed SpO2 desaturations (20-40s),

or implement long windows of detection (>30s), our method, using a 10s window shifted every 2s, is a

significant advancement in the field. The proposed instantaneous apneic detection, can be essential in

critical care monitoring applications such as in SUDEP prevention, since latency of other approaches

could result in fatal consequences. These findings could then help investigate the mechanisms and risk

factors of SUDEP, and ultimately reduce epileptic patients’ mortality.

Overall, the findings of this thesis support the idea that, neck PPG is, in a wide number of

healthcare contexts, a feasible pulse oximetry alternative. However, it is important to stress, that

neck PPG would only be beneficial for stationary medical applications, such as sleep or in-patient

monitoring. For other PPG ambulatory activities like continuous tracking of heart rate during daily

activities, the aesthetics of the patient could prevent adoption. In these cases wrist-watch PPG devices

could be more appealing to users, compared to a wearable device sticked to the middle of their neck,

no matter how small this could be.
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7.2 Future work

7.2.1 Areas of improvement of this PhD

This exploratory work was a first proof-of-concept on how to record, analyze and exploit novel neck

PPG signals for different cardiorespiratory applications. Consequently, the experimental procedures

were quite restricted to a small number of subjects, commercial sensors available and very controlled

recording conditions. All these aspects should be improved in the future in order to have a better

understanding on how neck PPG signals could be implemented in real scenarios.

For that, I would suggested to future researchers:

• To use a custom neck wearable PPG system, accordingly calibrated to this measurement site. In

this research a forehead-based reflectance PPG sensor was used. However, this was not calibrated

for the specific measurement site of the neck, being hence useless for SpO2% estimation. Also,

even though the LED irradiance was valid for neck PPG sensing, potential differences in tissue

characteristics, such as a higher fat content, could make this solution no longer optimal for

signals obtention. In these situations where a higher concentration of light absorvers is present,

it would be desirable to increment the signal-to-noise-ration (SNR) by adding, for example, more

light sources to the sensor design.

• To recruit a larger number of participants, across different age groups, with an equal ratio of

males and females, a wider BMI range and more diverse skin tones. A thorough investigation

on how these factors might impact the recording of neck PPG signals, could further validate the

results of this thesis or open new research questions to ensure future adoption of the neck site.

• To further explore the neck region in order to try to identify the most optimal recording location

to either uniquely obtain the arterial PPG or the venous JVP-PPG. This might be one of the

biggest challenges, since the obtention of neck PPG has been shown to be highly dependent on

participants’ anatomy. However, a pre-screening of the anterior veins with an IR vein camera

could provide specific sensor placement recommendations for each independent user.

• To record more breath-holding apnea events per subject to have a larger and more representative

number of samples of this class, for future algorithms development. This could benefit the

robustness and sensitivity of classifiers, and avoid any possible bias coming from class imbalance

issues.

• To record neck PPG signals in real sleep conditions, to evaluate whether the features and clas-

sifiers engineered in this thesis, can be straightforwardly applied in a future detection system,

or need to be further fine-tuned.
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7.2.2 Towards a neck PPG wearable apnea detection device

The findings of this PhD work, have paved the way for the development of a wearable neck-based

PPG apnea monitoring system. In this section, the future directions to extend the results achieved in

this thesis are described.

7.2.2.1 Artifacts algorithm validation

Initially, the design of the complete filtering strategy, to obtain reliable neck PPG signals, should be

of primary focus. The idea is to only filter the PPG sections detected as corrupted to avoid distort-

ing the rest of the clean PPG signal. For that, once the proposed artifacts classification algorithm

automatically detects corrupted neck PPG fragments, a decision should be made on how to process

them. It should be decided whether the artifacts are worth to be reconstructed, or whether they can

be simply discarded.

The performance of this algorithm in accurately detecting and removing artifacts, should then be

validated in a wider cohort of participants and real sleep conditions. In this stage, the developed

algorithm should be implemented in real-time and tested in a series of sleep monitoring experiments.

As a result, artifacts-free PPG signals will enable a reliable estimation of blood oxygen saturation

levels (SpO2%), as well as other vital physiological parameters such like heart rate.

7.2.2.2 Apnea algorithm validation in patients

Once the artifacts removal algorithm is validated, it has to be combined into a single classification

pipeline with the apnea detection algorithm. However, the proof-of-concept apnea classifier presented

in this thesis, was trained on breath-holding events simulated by healthy participants. Testing the

apnea detection performance in patients prone to have apneas becomes necessary before integration

into a system.

The recording of neck PPG signals in real apneic conditions, could also provide new insights into

apnea desaturation characteristics at this measurement site, for the fine-tuning of the classification

model. For example, the SpO2 signal could be additionally exploited to design new features based on

the delayed desaturations. The combination of these, with PPG signal features, would increase the

pool of apnea biomarkers. This could ultimately reinforce the decision of the classifier.

7.2.2.3 Low power implementation and WADD sensor fusion

Once both models are tested in real sleep conditions, a low power version of the combined algorithm,

could be integrated with the wearable apnea detection device (WADD). Indeed, a fusion of the existing

apnea detector based on acoustic signals, with the novel PPG parameters, is desired to improve
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7.2. Future work

the performance of the WADD system. However, an updated wearable prototype would need to be

designed to accomodate both, the microphone for tracheal sounds monitoring, and the PPG technology

for oximetry sensing.

A combined decision of the PPG-based apnea features and airflow acoustic information, could

significantly enhance the detection of apneas. Additionally, the final wearable apnea monitoring

system could be coupled with an accelerometer and a vibrator/alarm, to enable positional therapy

for SUDEP prevention. As a consequence, the improved system could have a meaningful impact in

reducing mortality due to SUDEP.

7.2.2.4 Clinical trials

After the integration of the new WADD-PPG system, a pilot study with a polysomnography system

could be run to assess the improved detection.

Ultimately, clinical trials would be required for complete validation, prior to bringing a ready-to-use

wearable apnea monitoring device to the hands of epileptic patients.
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Ethics approval documents

The experiments performed in this research work were approved by the Local Ethics Committee of

Imperial College London (ICREC ref.: 18IC4358).

Relevant documents of the Ethics Application are attached as follows:

A.1 Joint Research Compliance Office approval letter

A.2 Experimental Protocol

A.3 Participant Information Sheet

A.4 Informed Consent Form
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Study Management Group  

Chief Investigator: Professor Esther Rodriguez Villegas 
 
Co-investigators: Irene Garcia  
 
Statistician: NA. The main aim of this study is to record physiological signals that have never 
been recorded before, for the purpose of carrying out new research on the identification of 
respiratory biomarkers. Since these signals are new it is not possible to make any 
assumption for statistical calculations.  
 
Study Management: NA 
 
 
 
 

Clinical Queries  
 
Clinical queries should be directed to Prof. Esther Rodriguez-Villegas who will direct the 
query to the appropriate person.  
 
 
 
 

Sponsor  
 
Imperial College London is the main research Sponsor for this study. For further information 
regarding the sponsorship conditions, please contact the Head of Regulatory Compliance at:  
 

Joint Research Compliance Office  
5L10C, 5th

 Floor Lab Block  
Charing Cross Hospital Fulham Palace Road  
London W6 8RF  
Tel: 0203 311 0204  
Fax: 0203 311 0203  

 
 
 
 
 

Funder  
 
This protocol describes the project ‘Non-invasive photoplethysmography signals 
collection at the neck of healthy volunteers’ study and provides information about 
procedures for entering participants. Every care was taken in its drafting, but corrections or 
amendments may be necessary. These will be circulated to investigators in the study. 
Problems relating to this study should be referred, in the first instance, to the Chief 
Investigator.  
This study will adhere to the principles outlined in the NHS Research Governance Framework 
for Health and Social Care (2nd edition). It will be conducted in compliance with the protocol, 
the Data Protection Act and other regulatory requirements as appropriate.  
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GLOSSARY OF ABBREVIATIONS 

PPG  Photoplethysmography 
SUDEP Sudden Unexpected Death in Epilepsy 
WADD Wearable Apnoea Detection Device 

 

KEYWORDS  
 
Photoplethysmography, Artefacts, Apnoea, Oxygen desaturation, Signal processing.  
 

STUDY SUMMARY 

TITLE  Non-invasive photoplethysmography signals collection at the neck of 
healthy volunteers 
 

DESIGN  
 

 Simultaneous collection of physiological signals, including PPG, 
with wearable sensors in conventionally used locations like the 
finger and wrist, and atypical ones like the neck. 

 Participants will be asked to carry out breathing exercises in 
conventional real-life body positions- like lying down in a supine 
position to simulate sleeping posture; including inducing different 
artefacts (also representative of real life scenarios, such as 
movements that could arise during sleep).  
 

AIMS  
 

To investigate the characteristics of physiological signals in locations of 
the body not-conventionally used, since those locations, although sub-
optimal for the specific signal, could facilitate multimodal recordings 
from just one wearable device (i.e. small, battery powered, non-invasive 
device that can be worn). For example, the neck would not be the 
location of choice for PPG but is optimum to detect breathing sounds. 

OUTCOME 
MEASURES  

 

1. Identify the differences between finger and neck PPG pulse 
waveforms. 

2. Identify what artefacts (also called noise and interference) affect the 
PPG signal in this part of the body and characterize them to be able 
to design a filtering technique to obtain a clean signal.  

3. Obtain PPG recordings at the novel site of the neck for analysis and 
further development of signal processing algorithms to obtain 
physiological biomarkers (potentially in combination with the 
information provided by other signals). 

 
POPULATION  

 
Around 60 healthy volunteers  

ELIGIBILITY  
 
 Age: in between 18 and 70 years old 

 Fluent in English or Spanish 

 No pacemakers 

DURATION  
 

 Approximately 3 years.  
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1. INTRODUCTION  
1.1 BACKGROUND  

 
Sudden unexpected death in epilepsy (SUDEP) is one of the most common causes of mortality 
among epileptic patients, with up to 9 deaths per 1000 patients each year [1]. The incidence 
in people with epilepsy is also more than 20 times that in the general population. It is difficult 
to describe such a phenomenon, but a widely adopted definition of SUDEP is: "a sudden, 
unexpected, witnessed or not witnessed, non-traumatic and non-drowning death in patients 
with epilepsy, with or without evidence of a seizure and excluding documented status 
epilepticus, in which post-mortem examination does not reveal a toxicological or anatomical 
cause of death" [2]. 
 
The exact mechanisms leading to SUDEP in epilepsy are still unclear but there is evidence 
that seizure-related oxygen desaturation apnoea events might play a crucial role [3, 4]. Indeed, 
sleep apnoeas disorders disturb the oxygen supply to vital organs such as the brain or the 
heart, by inducing obstruction of the upper airways or cessation of thoracic respiratory 
movements [5]. Hypoxemia occurs in 1/3 of generalized and non-convulsive seizures [6]. 
 
In this framework, a new Wearable Apnoea Detection Device (WADD) sensing acoustic 
signals of breath placed externally at the neck, was developed. This new device was tested in 
a pilot study in comparison to a standard polysomnography system [8]. A sensitivity of 88.6% 
and a specificity of 99.6% in detecting apnoeas even in the presence of artefacts, showed a 
promising applicability for SUDEP prevention. Nevertheless, the reduced sensitivity of the 
WADD to hypoapnoea detection could be critical for epileptic patients. This means that during 
hypoapnoea, when airways are partially obstructed, and a reduced amount of air intake entails 
a decrease of oxygen levels [9]; this lethal ventilatory dysfunction would not be so accurately 
detected by the WADD. 
 
Therefore, to avoid neglecting life-threatening hypoapnoea events, it would be necessary to 
also be able to automatically determine oxygen saturation values from photoplethysmography 
(PPG) signals obtained in the neck; since the alternative of sensing different signals from 
various locations in the body would not be realistic considering the usability requirements 
imposed by the medical devices standards both in the EU and in other countries. 
 
Epilepsy is just one example of a condition that would benefit from having more than one 
health-related signal sensed using just one wearable sensor from the same location in the 
body (this could be the neck or a different location) 
 

 

1.2 RATIONALE FOR CURRENT STUDY  
 
 
Photoplethysmography (PPG) is a non-invasive way of detecting changes in blood volume, using 
light, shining at the surface of the skin.  Together with computer algorithms this can be used to 
determine how efficiently some organs, such as the lungs and heart, work. For example, from 
the PPG signal it is possible to have an indication of the amount of oxygen in the blood. This is 
called pulse oximetry. PPG is a widely used technique in both, hospitals and in non-medical 
products.  As an illustration, an example of a product that uses PPG is the Apple watch.   
 
The best possible measurement location for PPG is the finger. However, the finger is not the 
most convenient location for all health-related applications. It is for example not suitable for 
prevention of Sudden Unexpected Death in Epilepsy (SUDEP).  Hence having alternative 
measuring sites, such as the neck, would be in some cases desirable. One of the reasons for 
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this is that the finger is not the best body location to measure additional signals, from which 
other health related parameters, which are important in the context of other diseases, could 
be detected. Places like the neck however would be far better to allow a larger number of 
health-related parameters to be measured simultaneously using just one wearable (i.e. a little, 
battery powered, non-intrusive, non-invasive device worn in the body). The neck however, has 
not been explored as a PPG measurement site, but it is a priori known that it is a tricky location 
from the engineering point of view since the signal we are looking for will be weaker than in 
the finger and will be also “spoilt” due to interference from other signals (which we call 
“artefacts”).  It is for these reasons, that collection of body signals in healthy volunteers from 
not the typically used locations (such as the neck, but also others) becomes necessary; so 
that we can carry out research on what the characteristics of these signals are and how we 
can clean them from the interference of other non-desired signals.  

 
Therefore, the goal of this study is to record new signals from wearable sensors and their inherent 
artefacts, which will allow us to carry out research leading to novel signal processing algorithms 
that will enable accurate multimodal recording (more than one signal measured) from just one 
wearable sensor.  
 

2. STUDY OBJECTIVES AND DESIGN 
 
The study will consist on simultaneously collecting physiological signals (ie. Signals generated 
by the body), including PPG (see explanation in Section 1.2), from the neck, and signals from 
other conventionally used non-invasive physiological monitoring locations (such as the finger) 
of healthy participants under different conditions. For example, a reflectance pulse oximeter 
sensor will be placed in contact with the anterior neck, and a transmission pulse oximeter 
sensor will be placed in the index finger as a gold standard.  

 

2.1 METHODOLOGY   
 

Volunteer participants will be welcomed by a research team member in the Department of 
Electrical and Electronic Engineering at Imperial College London. The experiments will be 
explained to them, and subsequently, they will be given the information sheet and offered 
some privacy to read it. When themselves express they are ready, all their questions will be 
answered. It will only be after that, if they express their desire to continue that the consent 
form will be given to them. As part of the admission process participants will be explicitly told 
that they can withdraw at any point in the experiment, and also that they can choose at any 
point to be themselves, instead of the investigators who put the wearable sensors on. 

After the wearable sensors are set up, the signal collection protocol will commence. 
Throughout, participants will be asked to be in different positions -including lying horizontally 
with the face and torso facing up to simulate sleeping posture- and to breath under different 
breathing conditions (such as slow and fast, deep or shallow). Some typical test scenarios 
would be: 

 

 Participant, at rest, for finger (or alternative) and neck PPG signals comparison in 
controlled conditions.  
 

 Physiological signals acquired in different breathing and posture conditions. 
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 Physiological signals obtained forcing typical real-life signal interferences 

(Interferences are other signals which are not desired but end up superimposed to 
the signal of interest. They are also called artefacts). For example, signals will be 
obtained when the subject is moving, in order to carry out research on interference 
elimination (i.e. signal cleaning) techniques.     
 

The experiments will be carried out in a laboratory-based environment at Imperial College 
London in the Department of Electrical and Electronic Engineering, where all the infrastructure 
and equipment necessary are available. The co-investigator will be in charge of preparing the 
experiment setting, ensuring all sensors are correctly calibrated and instruct the participants 
how to proceed.  
 
A total of around 60 healthy participants in between >18 and <70 years old, are intended to 
be recruited randomly to have a variety of genders and group ages. However, at the beginning 
of the study, we will focus in the age group of 20-30 years old, as the best quality signals are 
expected in young adults.  
 
Experiments will last about 1 hour in total, including introduction and setting up. It might be 
necessary to come back to perform experiments up to three times. This will depend on whether 
the signals acquired in the different sessions are good enough to carry out the research.   
 
Participants might also be asked to fill questionnaires to investigate the usability of existing 
sensors.  
 
All data will be saved pseudo-anonymized in password-secured computers at Imperial College 
and will  be fully anonymized after the study finishes.  
 
The entire length of the study is estimated to be 3 years as the refinement of the algorithm will 
be carried out progressively and iteratively as new signals are acquired.  
 
 

2.2 STUDY OUTCOME MEASURES  
 
The different endpoints of the study are: 
 

 Primary endpoints:  
1. Identify the differences between finger and neck PPG pulse waveforms through 

extracted features comparison. 
2. Identify what artefacts affect the PPG signal in this part of the body and 

characterize them to be able to design an appropriate filtering technique to 
obtain a clean signal.  

3. Obtain PPG recordings at the novel site of the neck for analysis and further 
development of signal processing algorithms. 

 
 Secondary endpoints: 

1. Potential study of factors affecting the PPG signal characteristics of the neck: 
such as patient gender, age, height, weight, lifestyle… 

2. Potential study of correlations of PPG signals characteristics with other 
physiological signals recorded with typical polysomnography sensors. 

3. Anonymized database of physiological events recorded with wearables both 
from the neck and other body locations (such as hand and chest) that can be 
used for future respiratory and cardiac research.  
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4. Estimation of best location in the body for multimodal (i.e more than one signal) 
recording of physiological signals.  

5. Investigate the usability of wearable sensors and user interfaces. 
 

3. PARTICIPANT ENTRY  
 

3.1 PRE-REGISTRATION EVALUATIONS  
 
There is any pre-screening procedure that participants have to undergo before entering the 
study. The only requirement is that they fill a questionnaire to provide some basic information 
regarding their health state.  
 

3.2 INCLUSION CRITERIA  
 
Healthy subjects of all between 18 and 70 years old could be recruited for this study. 
 

3.3 EXCLUSION CRITERIA  
 

 Subjects with pacemakers 
 

3.4 WITHDRAWAL CRITERIA  
 
If the recordings taken at the neck do not show the minimum quality expected to identify 
acceptable PPG pulses, the subject might be asked to not continue with the experiment. The 
participant’s data would remain confidential as for the other participants and might be used in 
the future for analysis purposes if deemed necessary, as the participant signed in the informed 
consent form (clauses 4. & 5.).  
 
 

4. ADVERSE EVENTS  
 

4.1 DEFINITIONS  
 
Adverse Event (AE): any untoward medical occurrence in a study subject.  
Serious Adverse Event (SAE): any untoward and unexpected medical occurrence or effect 
that:  

 Results in death  

 Is life-threatening – refers to an event in which the subject was at risk of death at the 
time of the event; it does not refer to an event which hypothetically might have caused 
death if it were more severe  

 Requires hospitalisation, or prolongation of existing inpatients’ hospitalisation  
 Results in persistent or significant disability or incapacity  
 Is a congenital anomaly or birth defect.  

 
Medical judgement should be exercised in deciding whether an AE is serious in other 
situations. Important AEs that are not immediately life-threatening or do not result in death or 
hospitalisation but may jeopardise the subject or may require intervention to prevent one of 
the other outcomes listed in the definition above, should also be considered serious.  
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4.2 REPORTING PROCEDURES  
 
All adverse events should be reported. Depending on the nature of the event the reporting 
procedures below should be followed. Any questions concerning adverse event reporting 
should be directed to the Chief Investigator in the first instance: e.rodriguez@imperial.ac.uk 
 

5. ASSESSMENT AND FOLLOW-UP  
 
There will not be routine assessments in this study as the recruited participants are healthy 
subjects and will not be undergoing any medical procedure. Moreover, data acquisition does 
not cause any harm that will require health assessments nor follow up.   
 
However, if during the analysis and processing of the PPG signals, the investigators find some 
recording that does not show sufficient quality, they might ask the participant to come for 
another recording session to repeat it.  

6. DATA ANALYSIS AND HANDLING 
 
Research data will be processed and analysed on secure Imperial College university 
computers. Any data on laptop computers will be anonymised and encrypted. Named 
investigators and research assistants who are under the direct supervision of the investigators, 
will be responsible of the analysis and signal processing, without personal information, for the 
development of algorithms.  
 
Data and all appropriate documentation will be stored for a minimum of 10 years after the 
completion of the study. All this will be explained in the information sheet that is provided to 
subjects prior to seeking their consent to participate. 
 

7. REGULATORY ISSUES  
 

7.1 ETHICS APPROVAL  
 

The Chief Investigator has obtained approval from the Head of Department and Joint 
Research and Compliance office. The study will be conducted in accordance with the 
recommendations for physicians involved in research on human subjects adopted by the 18th 
World Medical Assembly, Helsinki 1964 and later revisions.  
 

7.2 CONSENT  
 
Consent to enter the study must be sought from each participant only after a full explanation 
has been given, an information leaflet offered, and time allowed for consideration. Signed 
participant consent should be obtained. The right of the participant to refuse to participate 
without giving reasons must be respected. After the participant has entered the study the 
investigator remains free to record alternative signals to that specified in the protocol at any 
stage if he/she feels it is in the participant’s best interest, but the reasons for doing so should 
be recorded. In these cases, the participants remain within the study for the purposes of follow-
up and data analysis. All participants are free to withdraw at any time from the protocol 
treatment without giving reasons and without prejudicing further treatment.  
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7.3 CONFIDENTIALITY  
 

The Chief Investigator will preserve the confidentiality of participants taking part in the study 
and is registered under the Data Protection Act (1998).  
 
Research data will be processed and analysed on secure password locked Imperial College 
university computers. Any data on laptop computers will be anonymised. Investigators and 
research assistants, will be responsible of the analysis and signal processing, without 
personal information, for the development of algorithms. 
 
Any paperwork will be kept in a locked filing cabinet only accessible by the investigators.  

Data will be stored in accordance with Imperial College London’s data policy, all data 
will be stored for 10 years after the end of the study. 
 
 

7.4 INDEMNITY  
 
Imperial College London holds negligent harm and non-negligent harm insurance policies 
which apply to this study.  
 
 

7.5 SPONSOR  
 
Imperial College London will act as the main Sponsor for this study.  
 
 

7.6 FUNDING  
 
The European Research Council is funding this study.  
 
 

8. STUDY MANAGEMENT  
 
The day-to-day management of the study will be co-ordinated by the Co-investigator.  
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Participant Information Sheet V3 (19/02/2018) 

 

 

Title of Project Non-invasive photoplethysmography signals collection at the neck of 
healthy volunteers 

  
Name of PI Professor Esther Rodriguez Villegas 

 

 

You are being invited to take part in a research study. Before you decide it is 
important for you to understand why the research is being done and what it will involve. 
Please take time to read the following information carefully and discuss it with others 
if you wish.  

This participant information sheet tells you the purpose of this study and what 
will happen to you if you take part. It also gives you more detailed information about 
the conduct of the study.  

Ask us if there is anything that is not clear or if you would like more information. 
Take time to decide whether you wish to take part. Thank you for reading this. 
 
 
 

 What is the main purpose of the study? 
 
Photoplethysmography (PPG) is a non-invasive way of detecting changes in blood volume, 
using light, shining at  the surface of the skin.  Together with computer algorithms this can be 
used to determine how efficiently some organs, such as the lungs and heart, work. For 
example, from the PPG signal it is possible to have an indication of the amount of oxygen in 
the blood. This is called pulse oximetry. PPG is a widely used technique in both, hospitals and 
in non-medical products.  As an illustration, an example of a product that uses PPG this is the 
Apple watch.   

The best possible measurement location for PPG is the finger. However, the finger is not the 
most convenient location for all health-related applications. It is for example not suitable for 
prevention of Sudden Unexpected Death in Epilepsy (SUDEP).  Hence having alternative 
measuring sites, such as the neck, would be in some cases desirable. One of the reasons for 
this is that the finger is not the best body location to measure additional signals, from which 
other health related parameters, which are important in the context of other diseases, could 
be detected. Places like the neck however would be far better to allow a larger number of 
health-related parameters to be measured simultaneously using just one wearable (i.e. a little, 
battery powered, non-intrusive, non-invasive device worn in the body). The neck however, has 
not been explored as a PPG measurement site, but it is a priori known that it is a tricky location 
from the engineering point of view since the signal we are looking for will be weaker than in 
the finger and will be also “spoilt” due to interference from other signals (which we call 
“artefacts”).  It is for these reasons, that collection of body signals in healthy volunteers from 
not the typically used locations (such as the neck) becomes necessary; so that we can carry 
out research on what the characteristics of these signals are and how we can clean them from 
the interference of other non-desired signals.  
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Therefore, the goal of this study is to record new signals from wearable sensors and their inherent 
artefacts, which will allow us to carry out research leading to novel signal processing algorithms 
that will enable accurate multimodal recording (more than one signal measured) from just one 
wearable sensor.  
 

 Why have I been chosen? 
 
You were chosen to enter this study as we are looking for 60 healthy participants in between 
18 and 70 years old.   
 

 Do I have to take part? 
 

It is up to you to decide whether or not to take part. If you do decide to take part, you will be asked 
to sign a consent form after reading this information sheet. If you decide to take part, you are still 
free to withdraw at any time and without giving a reason.  
 
If you decide to take part in the study, you will be asked first to answer a questionnaire with 
some basic information regarding your health state. Then you will be scheduled for an initial 
recording session lasting from 30 minutes to 1 hour. Up to 2 other recording sessions of similar 
or slightly longer duration could be scheduled in the following months after your data has been 
processed. This will depend on whether we consider that the signals that were obtained in 
previous sessions were good enough to be used for our research. 
 
All recording sessions will take place at the Circuits and Systems Laboratory in Level 9 of the 
Department of Electrical and Electronic Engineering at Imperial College London, in a 
controlled environment under the supervision of the investigators.  
 

 How are the signal recordings taking place and what do I have to do? 
 
The study will consist on simultaneously collecting respiratory, cardiac and movement signals 
with non-invasive wearable sensors under different conditions (such as sitting down, standing, 
lying down or walking), and performing some simple breathing exercises (like breathing deep 
or shallow, slow or fast). Figure 1 shows an example of a typical set up. 
 
The experiments will be carried out in our laboratory, where all the infrastructure and 
equipment necessary are available. The co-investigator will be in charge of preparing the 
experiment setting, ensuring all sensors are correctly calibrated and give you the instructions 
necessary on how to proceed. You will be given the option of either placing the sensors 
yourself or letting one of the investigators do it for you. 
 
 

 
 
Figure 1: Typical study set up: a. Transmission pulse oximeter sensor placed in the index 
finger. b. Reflectance pulse oximeter sensor placed in contact with the anterior neck. 
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 What are the possible risks and benefits of taking part? 
 

The non-invasive recordings have no major risks. All the sensors used in the experiments 
comply with the safety requirements of the EU standards for medical devices.   

We cannot promise the study will help you directly but the information we get might help 
improve the performance of wearable systems for healthcare monitoring in general, and more 
specifically for prevention of Sudden Unexpected Death in Epilepsy (SUDEP).   

 What if something goes wrong? 
 
Imperial College holds Public Liability (“negligent harm”) and Clinical Trial (“non-negligent 
harm”) insurance policies which apply to this trial. If you can demonstrate that you experienced 
serious and enduring harm as a result of your participation in this trial, you may be eligible to 
claim compensation without having to prove that Imperial College is at fault. If the injury 
resulted from any procedure which is not part of the trial, Imperial College will not be required 
to compensate you in this way. Your legal rights to claim compensation for injury where you 
can prove negligence are not affected. Please contact the Principal Investigator Professor 
Esther Rodriguez Villegas if you would like further information about the insurance 
arrangements which apply to the trial. 
 

 Will my taking part in this study be kept confidential? 
 
To ensure your data’s protection and confidentiality a number of best-practice measures will 
be taken to ensure this is maintained. All data are saved in password-secured computers at 
Imperial College and will be anonymized for subsequent review, to comply with the Data 
Protection Act. Data will be held for 10 years post study end.   
 

 What will happen to the results of the research study? 
 

The results will be anonymized and can be published in scientific journals and presented at 
scientific conferences. 
 

 Who is organising and funding the research? 
 

Imperial College London. 
 

 Who has reviewed the study? 
 

This study was reviewed by the Head of the Department and the Joint Research Compliance 
Office.  
 
 
 
 
 
Next step 
 
Please, confirm if you would like to take part in these experiments, sign the inform 
consent and let us know your availability. If you still have any questions before 
deciding, please do not hesitate to contact us, and finally, we would like to remind you 
that you may withdraw from the study at any time and all your data will be kept 
confidential and anonymised. 
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Study Protocol Number:  
Participant Identification Number for this trial: 

 
 

 

INFORMED CONSENT FORM 
 
Full Title of Project:  Non-invasive photoplethysmography signals collection at the neck of healthy 
volunteers 

 
Name of Principal Investigator: Esther Rodriguez Villegas      


 Please initial box 

1. I confirm that I have read and understand the subject information sheet for the 
above study and have had the opportunity to ask questions which have been 
answered fully.   

 

 
2. I understand that my participation is voluntary, and I am free to withdraw at any 
time, without giving any reason, without my medical care or legal rights being 
affected.  
  

 
3. The compensation arrangements have been discussed with me. 

 
4. I agree to take part in the above study, my anonymised data to be used for 

further analysis and the results be shown in scientific papers and conferences.   
5. I agree for my signals to be used for future research projects after all my 

personal information (i.e. information which could identify me) has been removed. 
6. I give permission to the researcher to take audio recordings during the 

experiment and use them for signal processing analysis. 



________________________   ________________   ________________  
Name of Patient/Participant             Signature    Date  
 
 
 
 
_________________________   ________________  ________________  
Name of Person taking consent    Signature    Date    
(if different from Principal Investigator)  

 
 
 
 
_______________________   ________________   ________________  
Principal Investigator    Signature    Date  
 

1 copy for patient/participant; 1 copy for Principal Investigator; 1copy to be kept with hospital notes 
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