2,312 research outputs found

    A novel approach to user controlled ambulation of lower extremity exoskeletons using admittance control paradigm

    Get PDF
    The robotic lower extremity exoskeletons address the ambulatory problems confronting individuals with paraplegia. Paraplegia due to spinal cord injury (SCI) can cause motor deficit to the lower extremities leading to inability to walk. Though wheelchairs provide mobility to the user, they do not provide support to all activities of everyday living to individuals with paraplegia. Current research is addressing the issue of ambulation through the use of wearable exoskeletons that are pre-programmed. There are currently four exoskeletons in the U.S. market: Ekso, Rewalk, REX and Indego. All of the currently available exoskeletons have 2 active Degrees of Freedom (DOF) except for REX which has 5 active DOF. All of them have pre-programmed gait giving the user the ability to initiate a gait but not the ability to control the stride amplitude (height), stride frequency or stride length, and hence restricting users’ ability to navigate across different surfaces and obstacles that are commonly encountered in the community. Most current exoskeletons do not have motors for abduction or adduction to provide users with the option for movement in coronal plane, hence restricting user’s ability to effectively use the exoskeletons. These limitations of currently available pre-programmed exoskeleton models are sought to be overcome by an intuitive, real time user-controlled control mechanism employing admittance control by using hand-trajectory as a surrogate for foot trajectory. Preliminary study included subjects controlling the trajectory of the foot in a virtual environment using their contralateral hand. The study proved that hands could produce trajectories similar to human foot trajectories when provided with haptic and visual feedback. A 10 DOF 1/2 scale biped robot was built to test the control paradigm. The robot has 5 DOF on each leg with 2 DOF at the hip to provide flexion/extension and abduction/adduction, 1 DOF at the knee to provide flexion and 2 DOF at the ankle to provide flexion/extension and inversion/eversion. The control mechanism translates the trajectory of each hand into the trajectory of the ipsilateral foot in real time, thus providing the user with the ability to control each leg in both sagittal and coronal planes using the admittance control paradigm. The efficiency of the control mechanism was evaluated in a study using healthy subjects controlling the robot on a treadmill. A trekking pole was attached to each foot of the biped. The subjects controlled the trajectory of the foot of the biped by applying small forces in the direction of the required movement to the trekking pole through a force sensor. The algorithm converted the forces to Cartesian position of the foot in real time using admittance control; the Cartesian position was converted to joint angles of the hip and knee using inverse kinematics. The kinematics, synchrony and smoothness of the trajectory produced by the biped robot was evaluated at different speeds, with and without obstacles, and compared with typical walking by human subjects on the treadmill. Further, the cognitive load required to control the biped on the treadmill was evaluated and the effect of speed and obstacles with cognitive load on the kinematics, synchrony and smoothness was analyzed

    Comfort-Centered Design of a Lightweight and Backdrivable Knee Exoskeleton

    Full text link
    This paper presents design principles for comfort-centered wearable robots and their application in a lightweight and backdrivable knee exoskeleton. The mitigation of discomfort is treated as mechanical design and control issues and three solutions are proposed in this paper: 1) a new wearable structure optimizes the strap attachment configuration and suit layout to ameliorate excessive shear forces of conventional wearable structure design; 2) rolling knee joint and double-hinge mechanisms reduce the misalignment in the sagittal and frontal plane, without increasing the mechanical complexity and inertia, respectively; 3) a low impedance mechanical transmission reduces the reflected inertia and damping of the actuator to human, thus the exoskeleton is highly-backdrivable. Kinematic simulations demonstrate that misalignment between the robot joint and knee joint can be reduced by 74% at maximum knee flexion. In experiments, the exoskeleton in the unpowered mode exhibits 1.03 Nm root mean square (RMS) low resistive torque. The torque control experiments demonstrate 0.31 Nm RMS torque tracking error in three human subjects.Comment: 8 pages, 16figures, Journa

    Benchmarking Cerebellar Control

    Get PDF
    Cerebellar models have long been advocated as viable models for robot dynamics control. Building on an increasing insight in and knowledge of the biological cerebellum, many models have been greatly refined, of which some computational models have emerged with useful properties with respect to robot dynamics control. Looking at the application side, however, there is a totally different picture. Not only is there not one robot on the market which uses anything remotely connected with cerebellar control, but even in research labs most testbeds for cerebellar models are restricted to toy problems. Such applications hardly ever exceed the complexity of a 2 DoF simulated robot arm; a task which is hardly representative for the field of robotics, or relates to realistic applications. In order to bring the amalgamation of the two fields forwards, we advocate the use of a set of robotics benchmarks, on which existing and new computational cerebellar models can be comparatively tested. It is clear that the traditional approach to solve robotics dynamics loses ground with the advancing complexity of robotic structures; there is a desire for adaptive methods which can compete as traditional control methods do for traditional robots. In this paper we try to lay down the successes and problems in the fields of cerebellar modelling as well as robot dynamics control. By analyzing the common ground, a set of benchmarks is suggested which may serve as typical robot applications for cerebellar models

    Smart Robotic Exoskeleton: a 3-DOF for Wrist-forearm Rehabilitation

    Get PDF
    In order to regain the activities of daily living (ADL) for patients suffering from different conditions such as stroke and spinal cord injury, they must be treated with rehabilitation process through programmed exercises. The human motor system can learn through motor learning. This study concerned with the rehabilitation of wrist and forearm joints to restore the ADL through designing and constructing a robotic exoskeleton. The exoskeleton was designed to rehabilitate the patients by providing a 3 degree of freedom (DOF) include flexion/ extension, adduction/abduction, and pronation/ supination movements. It is specified as being portable, comfortable, lightweight, and compatible with the human anatomical structure, in addition to providing a speed and range of motion (ROM) as that of a normal subject. It was designed with SolidWorks software program and constructed with a 3D printer technique using polylactic acid (PLA) plastic material. The overall exoskeleton was controlled with electromyography and angle information extracted using EMG myoware and gyroscope sensors respectively. it was applied for evaluation with 5 normal subjects and 12 subjects of stroke and spinal cord injury (SCI). The results were found that the exoskeleton has a strong effect on regaining muscle activity and increasing the ROMs of wrist and forearm joints. These results give proof of this exoskeleton to be used for performing physiotherapy exercises

    Neuroplastic Changes Following Brain Ischemia and their Contribution to Stroke Recovery: Novel Approaches in Neurorehabilitation

    Get PDF
    Ischemic damage to the brain triggers substantial reorganization of spared areas and pathways, which is associated with limited, spontaneous restoration of function. A better understanding of this plastic remodeling is crucial to develop more effective strategies for stroke rehabilitation. In this review article, we discuss advances in the comprehension of post-stroke network reorganization in patients and animal models. We first focus on rodent studies that have shed light on the mechanisms underlying neuronal remodeling in the perilesional area and contralesional hemisphere after motor cortex infarcts. Analysis of electrophysiological data has demonstrated brain-wide alterations in functional connectivity in both hemispheres, well beyond the infarcted area. We then illustrate the potential use of non-invasive brain stimulation (NIBS) techniques to boost recovery. We finally discuss rehabilitative protocols based on robotic devices as a tool to promote endogenous plasticity and functional restoration

    The cerebellum could solve the motor error problem through error increase prediction

    Get PDF
    We present a cerebellar architecture with two main characteristics. The first one is that complex spikes respond to increases in sensory errors. The second one is that cerebellar modules associate particular contexts where errors have increased in the past with corrective commands that stop the increase in error. We analyze our architecture formally and computationally for the case of reaching in a 3D environment. In the case of motor control, we show that there are synergies of this architecture with the Equilibrium-Point hypothesis, leading to novel ways to solve the motor error problem. In particular, the presence of desired equilibrium lengths for muscles provides a way to know when the error is increasing, and which corrections to apply. In the context of Threshold Control Theory and Perceptual Control Theory we show how to extend our model so it implements anticipative corrections in cascade control systems that span from muscle contractions to cognitive operations.Comment: 34 pages (without bibliography), 13 figure

    Non-linear actuators and simulation tools for rehabilitation devices

    Get PDF
    Mención Internacional en el título de doctorRehabilitation robotics is a field of research that investigates the applications of robotics in motor function therapy for recovering the motor control and motor capability. In general, this type of rehabilitation has been found effective in therapy for persons suffering motor disorders, especially due to stroke or spinal cord injuries. This type of devices generally are well tolerated by the patients also being a motivation in rehabilitation therapy. In the last years the rehabilitation robotics has become more popular, capturing the attention at various research centers. They focused on the development more effective devices in rehabilitation therapy, with a higher acceptance factor of patients tacking into account: the financial cost, weight and comfort of the device. Among the rehabilitation devices, an important category is represented by the rehabilitation exoskeletons, which in addition to the human skeletons help to protect and support the external human body. This became more popular between the rehabilitation devices due to the easily adapting with the dynamics of human body, possibility to use them such as wearable devices and low weight and dimensions which permit easy transportation. Nowadays, in the development of any robotic device the simulation tools play an important role due to their capacity to analyse the expected performance of the system designed prior to manufacture. In the development of the rehabilitation devices, the biomechanical software which is capable to simulate the behaviour interaction between the human body and the robotics devices, play an important role. This helps to choose suitable actuators for the rehabilitation device, to evaluate possible mechanical designs, and to analyse the necessary controls algorithms before being tested in real systems. This thesis presents a research proposing an alternative solution for the current systems of actuation on the exoskeletons for robotic rehabilitation. The proposed solution, has a direct impact, improving issues like device weight, noise, fabrication costs, size an patient comfort. In order to reach the desired results, a biomechanical software based on Biomechanics of Bodies (BoB) simulator where the behaviour of the human body and the rehabilitation device with his actuators can be analysed, was developed. In the context of the main objective of this research, a series of actuators have been analysed, including solutions between the non-linear actuation systems. Between these systems, two solutions have been analysed in detail: ultrasonic motors and Shape Memory Alloy material. Due to the force - weight characteristics of each device (in simulation with the human body), the Shape Memory Alloy material was chosen as principal actuator candidate for rehabilitation devices. The proposed control algorithm for the actuators based on Shape Memory Alloy, was tested over various configurations of actuators design and analysed in terms of energy eficiency, cooling deformation and movement. For the bioinspirated movements, such as the muscular group's biceps-triceps, a control algorithm capable to control two Shape Memory Alloy based actuators in antagonistic movement, has been developed. A segmented exoskeleton based on Shape Memory Alloy actuators for the upper limb evaluation and rehabilitation therapy was proposed to demosntrate the eligibility of the actuation system. This is divided in individual rehabilitation devices for the shoulder, elbow and wrist. The results of this research was tested and validated in the real elbow exoskeleton with two degrees of freedom developed during this thesis.Programa Oficial de Doctorado en Ingeniería Eléctrica, Electrónica y AutomáticaPresidente: Eduardo Rocón de Lima.- Secretario: Concepción Alicia Monje Micharet.- Vocal: Martin Stoele

    Ekonomicky dostupný aktivní exoskeleton pro dolní končetiny pro paraplegiky

    Get PDF
    After a broad introduction to the medical and biomechanical background and detailed review of orthotic devices, two newly developed lower limbs exoskeletons for paraplegics are presented in this study. There was found out the main challenges of designing devices for paraplegic walking can be summarized into three groups, stability and comfort, high efficiency or low energy consumption, dimensions and weight. These all attributes have to be moreover considered and maintained during manufacturing of affordable device while setting a reasonable price of the final product. A new economical device for people with paraplegia which tackles all problems of the three groups is introduced in this work. The main idea of this device is based on HALO mechanism. HALO is a compact passive medial hip joint orthosis with contralateral hip and ankle linkage, which keeps the feet always parallel to the ground and assists swinging the leg. The medial hip joint is equipped with one actuator in the new design and the new active exoskeleton is called @halo. Due to this update, we can achieve more stable and smoother walking patterns with decreased energy consumption of the users, yet maintain its compact and lightweight features. It was proven by the results from preliminary experiments with able-bodied subjects during which the same device with and without actuator was evaluated. Waddling and excessive vertical elevation of the centre of gravity were decreased by 40% with significantly smaller standard deviations in case of the powered exoskeleton. There was 52% less energy spent by the user wearing @halo which was calculated from the vertical excursion difference. There was measured 38.5% bigger impulse in crutches while using passive orthosis, which produced bigger loads in upper extremities musculature. The inverse dynamics approach was chosen to calculate and investigate the loads applied to the upper extremities. The result of this calculation has proven that all main muscle groups are engaged more aggressively and indicate more energy consumption during passive walking. The new @halo device is the first powered exoskeleton for lower limbs with just one actuated degree of freedom for users with paraplegia.První část práce je věnována obsáhlému úvodu do zdravotnické a biomechanické terminologie a detailnímu souhrnnému představení ortopedických pomůcek. Následně jsou představeny dva nově vyvinuté exoskelety aplikovatelné na dolní končetiny paraplegiků. Bylo zjištěno, že hlavní úskalí konstrukčního návrhu asistenčních zařízení pro paraplegiky lze shrnout do tří hlavních skupin, jako první je stabilita a komfort, druhá je vysoká účinnost a nízká energetická náročnost uživatele a do třetí lze zahrnout rozměry a hmotnost zařízení. Toto všechno je navíc podmíněno přijatelnou výslednou cenou produktu. Nový ekonomicky dostupný exoskelet pro paraplegiky, který řeší problematiku všech tří zmíněných skupin je představen v této práci. Hlavní myšlenka tohoto zařízení je postavena na mechanismu HALO ortézy. HALO je kompaktní pasivní ortéza s mediálním kyčelním kloubem umístěným uprostřed mezi dolními končetinami. Speciální mediální kyčelní kloub je kontralaterálně propojen s kotníkem soustavou ocelových lanek což zajištuje paralelní polohu chodidla se zemí v každém okamžiku chůze a navíc asistuje zhoupnutí končetiny. Tento mediální kyčelní kloub je redesignován a v novém provedení je vybaven jedním aktuátorem, nové řešení aktivního exoskeletu dostalo název @halo. Díky tomuto vylepšení lze dosáhnout stabilnější a plynulejší chůze s výrazně redukovanou energetickou náročností uživatele přičemž dochází k zachování nízké hmotnosti a kompaktnosti zařízení. Toto bylo dokázáno během předběžných experimentů se zdravými subjekty, během kterých byla testována aktivní chůze se zařízením vybaveným odnímatelnou pohonnou jednotkou a pasivní chůze se stejným zařízením bez této aktivní jednotky. Nadměrné naklánění se během chůze ze strany na stranu a nadměrná výchylka pohybu těžiště těla ve vertikálním směru byly sníženy o necelých 40% s velmi významně menšími standardními odchylkami v případě chůze s pohonem. Z rozdílu výchylky pohybu těžiště těla ve vertikální poloze bylo vypočítáno snížení energetické náročnosti uživatele o 52% při chůzi s aktivní konfiguraci @halo. Při pohybu s pasivní ortézou byl naměřen o 38,5% větší reakční silový impuls v berlích, což znamená nárůst zátěže pro svalový aparát horních končetin. Pro podrobné vyšetření zátěže ramenních kloubů byl aplikován model inverzní dynamiky. Výsledek tohoto výpočtu jednoznačně indikuje agresivnější a hlubší zapojení všech svalových skupin ramenního kloubu a tím vyšší spotřebu energie uživatelem během pasivní chůze. Nové asistenční zařízení @halo je prvním exoskeletem svého druhu pro paraplegiky s jediným poháněným stupněm volnosti.354 - Katedra robotikyvyhově

    Description of motor control using inverse models

    Get PDF
    Humans can perform complicated movements like writing or running without giving them much thought. The scientific understanding of principles guiding the generation of these movements is incomplete. How the nervous system ensures stability or compensates for injury and constraints – are among the unanswered questions today. Furthermore, only through movement can a human impose their will and interact with the world around them. Damage to a part of the motor control system can lower a person’s quality of life. Understanding how the central nervous system (CNS) forms control signals and executes them helps with the construction of devices and rehabilitation techniques. This allows the user, at least in part, to bypass the damaged area or replace its function, thereby improving their quality of life. CNS forms motor commands, for example a locomotor velocity or another movement task. These commands are thought to be processed through an internal model of the body to produce patterns of motor unit activity. An example of one such network in the spinal cord is a central pattern generator (CPG) that controls the rhythmic activation of synergistic muscle groups for overground locomotion. The descending drive from the brainstem and sensory feedback pathways initiate and modify the activity of the CPG. The interactions between its inputs and internal dynamics are still under debate in experimental and modelling studies. Even more complex neuromechanical mechanisms are responsible for some non-periodic voluntary movements. Most of the complexity stems from internalization of the body musculoskeletal (MS) system, which is comprised of hundreds of joints and muscles wrapping around each other in a sophisticated manner. Understanding their control signals requires a deep understanding of their dynamics and principles, both of which remain open problems. This dissertation is organized into three research chapters with a bottom-up investigation of motor control, plus an introduction and a discussion chapter. Each of the three research chapters are organized as stand-alone articles either published or in preparation for submission to peer-reviewed journals. Chapter two introduces a description of the MS kinematic variables of a human hand. In an effort to simulate human hand motor control, an algorithm was defined that approximated the moment arms and lengths of 33 musculotendon actuators spanning 18 degrees of freedom. The resulting model could be evaluated within 10 microseconds and required less than 100 KB of memory. The structure of the approximating functions embedded anatomical and functional features of the modelled muscles, providing a meaningful description of the system. The third chapter used the developments in musculotendon modelling to obtain muscle activity profiles controlling hand movements and postures. The agonist-antagonist coactivation mechanism was responsible for producing joint stability for most degrees of freedom, similar to experimental observations. Computed muscle excitations were used in an offline control of a myoelectric prosthesis for a single subject. To investigate the higher-order generation of control signals, the fourth chapter describes an analytical model of CPG. Its parameter space was investigated to produce forward locomotion when controlled with a desired speed. The model parameters were varied to produce asymmetric locomotion, and several control strategies were identified. Throughout the dissertation the balance between analytical, simulation, and phenomenological modelling for the description of simple and complex behavior is a recurrent theme of discussion

    Hypermobile Robots

    Get PDF
    corecore