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Abstract 

Description of motor control using inverse models 

Anton Sobinov 

Humans can perform complicated movements like writing or running without giving them 
much thought. The scientific understanding of principles guiding the generation of these 
movements is incomplete. How the nervous system ensures stability or compensates for injury 
and constraints – are among the unanswered questions today. Furthermore, only through 
movement can a human impose their will and interact with the world around them. Damage to a 
part of the motor control system can lower a person’s quality of life. Understanding how the 
central nervous system (CNS) forms control signals and executes them helps with the 
construction of devices and rehabilitation techniques. This allows the user, at least in part, to 
bypass the damaged area or replace its function, thereby improving their quality of life. 

CNS forms motor commands, for example a locomotor velocity or another movement task. 
These commands are thought to be processed through an internal model of the body to produce 
patterns of motor unit activity. An example of one such network in the spinal cord is a central 
pattern generator (CPG) that controls the rhythmic activation of synergistic muscle groups for 
overground locomotion. The descending drive from the brainstem and sensory feedback 
pathways initiate and modify the activity of the CPG. The interactions between its inputs and 
internal dynamics are still under debate in experimental and modelling studies. Even more 
complex neuromechanical mechanisms are responsible for some non-periodic voluntary 
movements. Most of the complexity stems from internalization of the body musculoskeletal (MS) 
system, which is comprised of hundreds of joints and muscles wrapping around each other in a 
sophisticated manner. Understanding their control signals requires a deep understanding of 
their dynamics and principles, both of which remain open problems. 

This dissertation is organized into three research chapters with a bottom-up investigation of 
motor control, plus an introduction and a discussion chapter. Each of the three research 
chapters are organized as stand-alone articles either published or in preparation for submission 
to peer-reviewed journals. Chapter two introduces a description of the MS kinematic variables of 
a human hand. In an effort to simulate human hand motor control, an algorithm was defined that 
approximated the moment arms and lengths of 33 musculotendon actuators spanning 18 
degrees of freedom. The resulting model could be evaluated within 10 microseconds and 
required less than 100 KB of memory. The structure of the approximating functions embedded 
anatomical and functional features of the modelled muscles, providing a meaningful description 
of the system. The third chapter used the developments in musculotendon modelling to obtain 
muscle activity profiles controlling hand movements and postures. The agonist-antagonist 
coactivation mechanism was responsible for producing joint stability for most degrees of 
freedom, similar to experimental observations. Computed muscle excitations were used in an 
offline control of a myoelectric prosthesis for a single subject. To investigate the higher-order 
generation of control signals, the fourth chapter describes an analytical model of CPG. Its 
parameter space was investigated to produce forward locomotion when controlled with a 
desired speed. The model parameters were varied to produce asymmetric locomotion, and 
several control strategies were identified. Throughout the dissertation the balance between 
analytical, simulation, and phenomenological modelling for the description of simple and 
complex behavior is a recurrent theme of discussion. 
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Chapter 1 Introduction 

Voluntary movement produced by skeletal muscles is essential for every human. Damage to 

any part of the motor system greatly impacts quality of life in various aspects: autonomy, social 

interactions, physical and psychological health (Laurent et al., 2011). A wide variety of 

rehabilitation techniques and prosthetic devices have been developed to overcome motor 

impairments. In rehabilitation approaches for stroke or spinal cord injury, one major focus is on 

enhancing the remaining potential of the central nervous system (CNS) related to motor control 

or bypass the damaged area to provide a patient with new means of motor control and 

interactions with their environment. Many stimulation-based treatments are emerging: 

transcranial magnetic stimulation (TMS: Rossi and Rossini, 2004), deep brain stimulation (DBS: 

Schiff et al., 2007; Little et al., 2013), intracortical and intraspinal microstimulation (ICMS: 

Flesher et al., 2016; ISMS: Formento et al., 2018), and functional electric stimulation (FES: Alon 

et al., 2007). These methods are utilized to access the spared neural pathways to form 

neuroprostheses operated through human-machine interface (Nicolas-Alonso and Gomez-Gil, 

2012). The obstacle for robust neuroprosthetic solutions is the complexity associated with 

human limb dynamics and its natural control (Quental et al., 2015; Tucker et al., 2015). The 

human body contains more than 200 bones and over 600 muscles many of which have multiple 

heads or insertions with different functions and separate control. All these actuators are 

constantly being controlled by the CNS to produce complex multi-joint movements like running, 

writing or playing a musical instrument. The development of novel rehabilitation techniques and 

prosthetics depends on unraveling the complexity of musculoskeletal systems and their control 

by the CNS. 

Motor control is executed by a redundant system with many steps of transformation from the 

desired movement to its execution. Every movement can be performed with an infinite number 

of joint configurations; many joint configurations can be produced by a variety of muscle 

activation patterns; and a muscle force can be generated by activating different subsets of 

motor units. This ‘redundancy problem’ has been first noted by Bernstein when studying 

variation in repetitive movements in 1960s (Bernstein, 1967). The redundancy of such a system 

raises the question of how the CNS chooses a specific way of executing the task. That question 

could be reformulated as finding the correct control signal given the observed behavior, i.e., 

solving the inverse problem to the forward description of motor control. All possible control 
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signals producing an observed behavior form the task-related subspace of the control signal 

space. This subspace of solutions for the inverse model is in practice constrained by the cost 

functions or constraints that describe the principles of movement generation, for example, 

metabolic cost (Alexander, 1997) or joint impedance (Stroeve, 1999; Todorov, 2004). The 

remaining solutions form an uncontrolled manifold, from which the CNS selects a specific 

control command (Scholz and Schöner, 1999; Todorov and Jordan, 2002; Valero-Cuevas et al., 

2009). Repetitions of the movements lead to sampling of that manifold and observed variability. 

By understanding the principles which guide the selection of control commands at different 

levels and constrain the uncontrolled manifold, one can infer the control strategy used by the 

CNS. 

Analysis of the control strategies in the described approach is limited by the quality of the 

forward and inverse models employed. They can vary from a detailed analytical representation 

of the internal state and mechanisms of the modelled system to phenomenological description 

of input and output. Phenomenological models commonly employ regression or machine 

learning techniques and characterize the system’s behavior with minimum assumptions about 

its structure (Mauk, 2000). The phenomenological approach, especially when applied to 

complex phenomena, often produces models that are hard to analyze and dissect, and 

therefore have limited use for theoretical understanding of the subject. These models also have 

a possibility to include unwarranted hypothetical features, which hinders their capabilities to 

expand to additional cases or to combine and integrate with other models. Their theoretical use 

is to guide the development of the analytical or mechanistic models with features of their 

architecture. The mechanistic models are defined by the description of the interactions between 

their parts and therefore are transparent for analysis and inversion. The inverse formulation of 

the analytical model can help estimate the boundaries of the phenomena described by the 

model and verify the validity of each component. The quality of mechanistic models is limited by 

the available theoretical understanding and experimental data available for each component. 

Simulation models also commonly suffer from high computational complexity, hindering their 

use in applied devices and large-scale meta-analyses. It is common to employ approaches 

based on the problem at hand, considering the benefits and drawbacks of each. 

One of the leading theories suggests that CNS also employs models of the body and 

environment for control (Wolpert et al., 1995). The use of internalized representations of limbs is 

often featured in studies of the relationship between neural activity and limb end-point 
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movement. For example, the cortical activity can be related to acceleration (Hore and Flament, 

1988), trajectory (Hocherman and Wise, 1991), target position (Alexander and Crutcher, 1990), 

joint configuration (Scott and Kalaska, 1995). Transformation between these modalities into 

muscle activity is one type of internal model; specifically, it is an inverse model. Using it, the 

CNS can predictively generate appropriate commands from desired trajectory to motor 

commands and the resulting executed trajectories that are optimal for a specific task. The 

internal models for common behaviors, like locomotion, can be phylogenetically conserved 

between species. The rhythmic activity for locomotion is produced by central pattern generators 

(CPGs, Marder and Calabrese, 1996), which are spinal processing networks organized in 

relation to the limb musculoskeletal morphology (Prochazka and Yakovenko, 2007). Both neural 

and musculoskeletal systems have been undergoing concurrent functional fine-tuning that 

resulted in the embedding of solutions to limb dynamics problem within the neural code (Geyer 

and Herr, 2010). Similarities in the control of locomotion and reaching at the primary motor 

cortex (Yakovenko and Drew, 2015) sugests that all levels of control employ internalized models 

of body segments. 

The description of periodic and non-periodic movement control remains incomplete in large 

part because the high mechanical dimensionality of human body has hindered the development 

of analytical tools. Thus, the critical need is first to develop realistic MS models for investigating 

the relation between neural control mechanisms and MS functions across representative 

behaviors. Second, to use these models to estimate the neural control patterns. Third, to 

analyze the generation of these patterns for a specific task. The rest of the Introduction will 

provide background for motor control models analyzed in this dissertation from the lowest level 

of biomechanics to spinal motor unit excitations to control of central pattern generators. 

Musculoskeletal dynamics 

The reliability of the identification of the control principles from inverse models is limited by 

the quality of the models employed. These are, in turn, limited by the quality and performance of 

the forward models. Invalid or too simplistic models lead to incorrect results of simulations 

(Quental et al., 2015). High computational load of the complex models limits their use in 

research or rehabilitative devices (Delp et al., 2007; Sartori et al., 2012).  

A structural model of a musculoskeletal (MS) system consists of the geometrical description 

of segments and joints with paths that muscles travelling between points of attachment. MS 
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systems of mammalian bodies contain hundreds of muscles and dozens of joints, with multiple 

axes of rotation, or degrees of freedom (DOFs). Muscles have multiple heads with multiple 

points of attachment, cross multiple DOFs, and wrap around each other in a posture-dependent 

way. Simulation of that behavior is a very complex task (Delp et al., 2007) and is usually not 

feasible online except in very simple models. To negate that limitation, many researchers 

employ approximations to the simulated kinematic variables (Menegaldo et al., 2004; Sartori et 

al., 2012). Although accurate, these approximations usually do not expand beyond several 

DOFs because of computational limitations (Sartori et al., 2012) or the manual nature of their 

structure (Menegaldo et al., 2004). Model validation and limited availability of data additionally 

reinforces limitations to small and restricted body segments and ranges of postures. However, 

recent research started to tackle the problem of merging datasets and developing extensive 

verification procedures for the whole physiological range of motion (Goislard De Monsabert et 

al., 2018; Boots et al., 2019). Complex models with many body segments and correctly 

modelled musculotendon actuators are starting to be available for analysis and application. 

These models allow the study of the embedded latent dynamical properties within the MS 

anatomy that has been previously hypothesized to have evolved to enable and stabilize various 

movements. For example, the moment arms of distal extensors produce abduction moments 

stabilizing the medio-lateral travel of the center of mass during the stance phase of locomotion; 

and the moment arms of distal flexors produce adduction moments ensuring medial foot 

placement at the end of swing (Lawrence et al., 1993). The medial placement has been shown 

to be more energy-efficient than the lateral placement, associated with the wide stance 

(Donelan et al., 2001). The passive dynamics of the MS system provide compensation for 

unexpected terrain during human hopping (van der Krogt et al., 2009). There may be additional 

details hidden in the complexity of musculoskeletal dynamics (MSD) that stabilize both upper 

and lower limbs. A large-scale analysis of the structure of MS variables or their representative 

functions has a potential to reveal these motifs and behaviors.  

Chapter 2 describes a novel autogenerating approximation algorithm for MS kinematic 

variables that utilizes a differential relationship between the muscle lengths and moment arms. 

The ability of this algorithm to scale for large models and compare its performance against other 

approximation methods is evaluated. The structure of the optimal approximating polynomials is 

investigated for presence of structural and functional information about the muscles. 
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Inverse of neuromechanical control 

The problem of inverting the computation through MS system and obtaining the motor 

commands in the form of muscle contraction, together with the activity of motoneurons and 

other spinal and cortical networks, has been an open question for more than fifty years. It finds 

its source in the redundancy of MS systems in relation to the task, which was first described by 

Bernstein (Bernstein, 1967). The same reaching task can be solved by an infinite number of 

joint configurations; and a joint trajectory can be traced using different subsets of motor signals. 

Understanding the principles behind the control signals profoundly influences our 

understanding of the CNS (Churchland et al., 2012; Lillicrap and Scott, 2013; Ambike et al., 

2016). These developments have a potential to lead to novel stimulation-based treatments, 

neuroprosthetics and other assistive devices. Stimulation of the spinal cord activity with 

accordance to the natural dynamics of the spinal circuits allowed a paralyzed patient to walk 

(Formento et al., 2018). Cortical implants already allowed a paralyzed human to control a 

prosthetic hand (Downey et al., 2017) and perceive touch (Flesher et al., 2016). Most of these 

control algorithms use machine learning to provide the desired behaviors, but they have a 

potential to be improved with better grasp of the underlying dynamics of the respective circuits. 

Improved understanding can come in a form of simulated analytical models of the motor control. 

The majority of myoelectric prosthetics also commonly employ phenomenological models. 

The models range from a simple regression (Scott and Parker, 1988; Ison and Artemiadis, 

2014) to complex pattern recognition and learning algorithms (Graupe et al., 1977; Englehart 

and Hudgins, 2003; Nieveen et al., 2017; Resnik et al., 2018). While the phenomenological 

approach provides control, there are several drawbacks common to such architecture. One of 

them is the need for a long training period, unique for each subject/patient and covering several 

months of often frustrating repetitive tasks. Another common problem is the generalizability of 

control between postures. Muscle activity profiles for the same movement change when the arm 

is oriented vertically or horizontally, which is a complex invariant that needs to be extracted by 

the control algorithm. A biomimetic approach has potential to handle these problems. There are 

many views on biomimetic and biomorphic approaches in control. In prosthetics it is commonly 

defined by a simulation of the intact MS system to calculate the desired movements. The benefit 

of this approach is the scalability and transparency of the control mechanism that requires 

minimal or no training period (Crouch and Huang, 2016). However, this control approach has 
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critical dependencies on the correct identification of recorded commands (via electromyography, 

electroneurography or other methods) and estimation of unobserved commands – the activity of 

other muscles. The former is especially hard with amputees and is usually addressed by a 

physician and visual analysis of the recorded signals (Cappellari et al., 2018). The latter is 

sometimes addressed by employment of synergies within the controller, which supply the 

activity to the simulated muscles that are not recorded based on known correlations in the 

activity of the muscles in different tasks (Berger and d’Avella, 2014). The employed synergies 

are usually generic and ignore subject-specific variability. Biomimetic decoding of the 

descending command from the movement has a potential to simplify the control of prosthetic 

limbs by closing the gap between the recorded signals and the desired movement.  

Chapter 3 describes a detailed forward and inverse neuromechanical model of the human 

hand. The inverse solutions for this model are obtained for a set of movements and postures 

that include dynamic control and stability of wrist, thumb and fingers joints. Mechanical stability 

of the system is modulated by an additive cost function in the inverse model. The mechanism 

responsible for the generation of stiffness in joints is then investigated to identify voluntary 

control strategies. A method of using the computed muscle excitations as a part of a biomimetic 

controller is assessed. 

Central pattern generators 

Central pattern generators (CPGs) for locomotion are specialized neural elements in the 

spinal cord that control the generation of rhythmic patterns for locomotor behaviors (Grillner and 

Zangger, 1975; Marder and Calabrese, 1996). In mammals, they can be initiated and controlled 

by sensory signals (Yakovenko, 2011; Prochazka and Ellaway, 2012) and descending drive 

from brainstem (Shik et al., 1966; Grillner et al., 2008). The increase in stimulation of a 

brainstem locomotor region in cats produces sequential switching of gaits, from walking to 

trotting or galloping in over-the-ground locomotion. Thus, increasing stimulation magnitude or 

frequency causes an increase in locomotor velocity. CPG networks have been suspected in 

humans (Dietz, 2003; Ivanenko et al., 2009) and spinal cord has been used as a target for 

patterned periodic stimulation in paraplegic patients for walking (Wagner et al., 2018). Behavior 

of CPG network is conserved between species and presents a ubiquitous phenomenon for 

analysis. 
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Many models of CPGs have been developed describing different aspects of circuitry (Verzár, 

1923; Taga et al., 1991; Bashor, 1998; Yakovenko et al., 2005; Rybak et al., 2006; Markin et al., 

2010; Barnett and Cymbalyuk, 2014). Models commonly employ a specific neural or 

populational architecture and estimate the values for parameters by observing the changes in 

behavior in response to changes in external inputs or internal structure. This approach is a 

blend of analytical and simulation description of neural architecture with phenomenological 

estimation of parameters. With the benefits of both, it requires careful attention to the parameter 

space and the emergent topology. 

Chapter 4 describes an analytical solution to a model of Brown-type CPG. The generation of 

a motor rhythm that precedes the muscle excitation patterns in response to a command signal is 

investigated. The computational complexity of such model is analyzed, and the benefits of an 

analytical solution are demonstrated. The parameter space of the model is explored to find 

solutions for a physiological forward-walking behavior. The solution space is used to guide a 

discussion of the necessary model complexity for simulation of locomotion control. Different 

internal configurations of the CPG that produce asymmetric (turning) behavior are analyzed and 

presented. 

  



8 

 

Chapter 2 Musculoskeletal transformation described with 
autogenerating multidimensional polynomials 

(this chapter is in preparation to be submitted to eLife as “Sobinov A, Matthew B, Gritsenko 

V, Gaunt R, et al., Yakovenko S (2019) Musculoskeletal transformation described with 

autogenerating multidimensional polynomials”) 

Abstract 

Computational models of the musculoskeletal (MS) system can be used to resolve the 

complexity of controlling high-dimensional articulated prosthetic limbs. Similar to the use of 

internal models of the body by the nervous system in solving control problems, MS 

representations can be useful tools for controlling realistic prostheses operated by biological 

control signals. Precise estimation of kinematic variables is needed to estimate muscle forces 

and produced rotational moments. However, the implementation of accurate and fast MS 

computations which can be used to control a prosthetic limb in real time is a challenging 

problem because skeletal muscles span multiple degrees of freedom (DOF) and wrap over 

complex geometrical constraints. Here, we exploited the relationship between muscle length 

and moment arms and capitalized on the observations of their relatively simple functional 

dependency on posture to improve both the accuracy and economy of computations. MS 

kinematics were then captured by the autogenerating polynomials which used information 

theory to select their optimal terms. The polynomial terms were iteratively selected for 33 

musculotendon actuators, each spanning up to 6 DOFs in an 18 DOF model of the human arm 

and hand, defined within the full physiological range of motion. Using these polynomials, muscle 

lengths and moment arms were accurately computed with better than real-time latencies 

(<10µs). The approximation structure was shown to scale linearly with model’s complexity. 

Moreover, we demonstrate that both muscle structure and function correlate with specific 

invariant polynomial terms. The clustering of muscles with specific terms represents synergistic 

relationships. We propose that the novel method of describing MS mechanisms might further 

improve the applications of detailed and scalable models for interpreting neural computations. 
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Introduction 

The control of a hand is a 27 degree of freedom (DOF) problem solved continuously by our 

neuromuscular system without perceived cognitive effort. Yet, for prosthetic applications, the 

current approaches, such as pattern recognition and mode switching require significant training 

time (Hiremath et al., 2015); moreover, the skill and cognitive load required for continuous 

prosthetic control increases with the number of available prosthetic DOF (Deeny et al., 2014). 

This phenomenon is captured by the dimensionality curse problem in movement planning, 

which occurs due to the increasing volume of possible solutions with the increasing number of 

dimensions. Recently, machine learning statistical methods have been gaining popularity in 

computer vision and robotic control problems of comparable complexity. In particular, deep 

learning algorithms are promising and outperforming the shallow varieties via the hierarchy of 

processing, which is a biomimetic property common to biological cortical networks (Poggio et 

al., 2017). This property reduces the escalation in computations with the increase in complexity 

of learning machines. However, the process of their fine-tuning requires large amounts of data 

and usually results in a black box transformation, without many transparent internal 

mechanisms and generates few insights into the underlying control scheme (reviewed in 

Lapuschkin et al., 2019). In addition, machine learning solutions often require episodic model 

retraining (Hermann et al., 2015), and rely on a considerable memory space for the storage of 

necessary parameters (Weston et al., 2014). These constraints pose significant challenges for 

real-time control systems for both phenomenological and mechanistic models of human hand 

biomechanics. Overall, this approach limits our understanding of model boundaries, the reliable 

domain of operation, and, importantly, the principles of the modelled system that can be tested 

and improved further. The use of mechanistic alternatives based on known biology may 

overcome these limitations.  

The use of biomimetic design within the controlled devices may solve the problem of 

integration between the technology and biological control system. Using a biomimetic model, 

the challenge can be redefined to focus on specifying and implementing valid motor control 

theories. One such dominant theory focuses on internal models expressed within nervous 

system (Wolpert et al., 1998; Kawato, 1999; Körding and Wolpert, 2004) and embodies an 

engineering concept termed the Smith predictor (Smith, 1957). This approach uses accurate 

estimates of the controlled plant to overcome both nonlinear dynamics and temporal delays. 

Another concept is neuromechanical tuning (Prochazka and Yakovenko, 2007; Ting, 2007; 
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Sreenivasa et al., 2019), which is the process taking place within the closed-loop system of 

neural and mechanical dynamics. To use any of these control theories, body dynamics and 

musculoskeletal (MS) biomechanics are essential components that require valid models (Ting et 

al., 2015; Blum et al., 2017) or good-enough biomimetic approximations within the design of a 

robotic prosthesis (Xu and Todorov, 2016). The recent use of MS models for human-machine 

interfaces (HMI, Crouch and Huang, 2016) shows promising results for this type of approach. 

MS modelling is an important scientific tool in theoretical motor control (Berniker et al., 2009; 

Winter, 2009; Lillicrap and Scott, 2013) and its applications in HMI (Thorsen et al., 2001; 

Chadwick et al., 2009; Crouch and Huang, 2016). Models employed in research and 

applications constantly increase in complexity, raising their computational cost. Various task-

specific approximation methods have had limited success counteracting the rising 

computational demand (Menegaldo et al., 2004; Sartori et al., 2012). There is a need for an 

efficient way to compute MS models to allow for their continuous use in real-time environments. 

MS models are usually comprised of a geometrical descriptions of each joint’s degrees of 

freedom (DOFs) and muscles’ paths around these DOFs. A muscle’s action depends on the 

distance to the DOF axis of rotation, called moment arm, and muscle length, which alters the 

force produced by the muscle (Brand et al., 1975; An et al., 1984; Zajac, 1989). Calculating 

these MS kinematic variables in a specific posture requires computation of the shortest path 

between the points of attachment in the presence of objects around which a muscle wraps, like 

bones and other muscles (Delp et al., 2007). Software packages like OpenSim (SimTK) provide 

tools for computation of kinematic variables based on a 3D model of a limb or whole body. 

These calculations are very computationally costly and can only be performed in real time for 

simple models.  

The complexity of the MS variables’ computation has led to the development of multiple 

approximation methods that improve computational efficiency. Menegaldo and colleagues 

(Menegaldo et al., 2004) proposed a series of multidimensional polynomials describing the MS 

variables of human leg muscles. Later these polynomials were used to simulate the 

musculotendon dynamics of upper (Rankin and Neptune, 2012) and lower limbs (Chadwick et 

al., 2009). This approach supports very high computational performance: low requirements on 

the available memory and the number of mathematical operations. On the other hand, it is 

limited by the user-defined structure of the polynomials. The task of predicting the 

approximating polynomial terms gets drastically harder in more complex models, for example 
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the ones that include thumb muscles (up to 7 DOFs and 7-dimensional polynomials). 

Additionally, relying on a subjective selection of polynomial terms can lead to losing important 

relationships within the MS data. Another approach developed by Sartori and colleagues 

(Sartori et al., 2012) emphasizes the quality of approximation and utilizes cubic splines for 

approximations. Albeit being computationally expensive, the ability of this approach to operate 

at real time has been shown in a 3-DOF per muscle model (Durandau et al., 2018). The 

drawback of this approach is the limited scalability: the number of spline coefficients increases 

exponentially with the number of DOFs that the muscle crosses and reaches 4.8 million on a 6-

DOF muscle. Both described methods exhibit problems with accommodating the increasing 

complexity of the models and severely limit the possibility of MS structure analysis. 

In this study we present an information theory-based algorithm of polynomial approximation 

of MS kinematic variables that scales linearly with the complexity of the model. We assess the 

quality of the produced approximations in terms of approximation error and time of evaluation on 

a MS model with 33 musculotendon actuators that cross up to 6 DOFs. The structure of the 

produced optimal polynomials is analyzed in terms of muscle anatomy and function. 

Methods 

The approximation of muscle path kinematic variables consisted of three steps: i) the 

creation of a dataset describing muscle length and moment arm values for all physiological 

postures; ii) the search for a set of optimal polynomials approximating kinematic variables 

implemented with a physical constraint between muscle moment arms and muscle length; and 

iii) the validation of the produced model. 

Dataset 

We used a previously developed model of arm and hand to capture the relationship between 

muscle lengths and moment arms in all physiological postures (Gritsenko et al., 2016; Boots et 

al., 2019). The model contains 22 muscles described with 33 musculotendon actuators 

spanning 18 physiological degrees of freedom (see Table 2-3 and Table 2-4) and was 

implemented in OpenSim software (Delp et al., 2007) (see Figure 2-1). Similar to the previous 

study of Sartori et al. (Sartori et al., 2012) the values for the kinematic variables were obtained 

on a uniform grid with 9 points per DOF, resulting in the domain size of 9d data points per 

muscle, where d is the number of DOFs that a muscle crosses. For example, since the extensor 
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carpi ulnaris muscle spans two DOFs (wrist flexion-extension and pronation-supination) in our 

dataset (radial-ulnar deviation was not simulated) its moment arms and muscle lengths were 

sampled in 92=81 positions. 

To compare quality for the approximations with different methods (described below), we used 

a dataset (total 1,023,073 points) that combined data used for the creation of the models 

(674,937; 9 points per DOF per muscle), and datapoints located between the points used for 

creation (348,136; 8 points per DOF per muscle). 

---------------- 

 

Figure 2-1. Upper-limb representation in OpenSim.  

The geometry of muscle paths is shown in red for the displayed posture. 



13 

 

---------------- 

Model Structure 

Moment arms and muscle lengths were approximated with a polynomial described by 

Equation 2-1. 

Equation 2-1 

𝑓𝑓(𝑥𝑥) = 𝑎𝑎 + � � 𝐾𝐾𝑖𝑖1,𝑖𝑖2,..,𝑖𝑖𝑝𝑝

𝑑𝑑

𝑖𝑖1≤𝑖𝑖2≤..≤𝑖𝑖𝑝𝑝

�𝑥𝑥𝑖𝑖𝑗𝑗

𝑝𝑝

𝑗𝑗

𝜌𝜌

𝑝𝑝

 

where a is an intercept, ρ is the user-selected maximum of polynomial power, d is the 

number of DOFs,  𝑥𝑥 = (𝑥𝑥1, . . , 𝑥𝑥𝑑𝑑)𝑇𝑇 is the state vector for each DOF, K is the multidimensional 

matrix of polynomial term coefficients, sum and product coefficients (p, i, and j) iterate from 1. 

The polynomial structure is then defined by the non-zero values of K and a parameters. For 

example, extensor carpi ulnaris with 𝜌𝜌 = 4, 𝑑𝑑 = 2 moment arms were described by the 

polynomial structures (𝑎𝑎,𝐾𝐾1,𝐾𝐾2,𝐾𝐾11,𝐾𝐾12,𝐾𝐾22,𝐾𝐾111,𝐾𝐾112,𝐾𝐾122,𝐾𝐾222,𝐾𝐾1111,𝐾𝐾1112,𝐾𝐾1122,𝐾𝐾1222)  

around elbow extension-flexion (e-f) and 

(𝑎𝑎,𝐾𝐾1,𝐾𝐾2,𝐾𝐾11,𝐾𝐾12,𝐾𝐾22,𝐾𝐾111,𝐾𝐾112,𝐾𝐾122,𝐾𝐾222,𝐾𝐾1111,𝐾𝐾1112,𝐾𝐾1122,𝐾𝐾1222,𝐾𝐾2222) around wrist 

supination-pronation (s-p) (Figure 2-2B), where indices 1 and 2 correspond to pronation-

supination and flexion-extension, respectively. The difference in the structures correspond to 

different characteristics of muscle paths wrapping around different DOFs. 

---------------- 
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Figure 2-2. The example of kinematic approximation for extensor carpi ulnaris muscle.  

A. The muscle path length is shown as a function of wrist e-f and s-p DOFs, with points from 

OpenSim model fitted with the continuous functions plotted as a wireframe. B. The two 

corresponding moment arm relationships are shown for the same domain of postures.  

---------------- 

The accuracy of polynomial fit generally increases with the number of terms in the polynomial 

structure. The selection of potential candidates for expansion, Ψ�𝑃𝑃(𝑥𝑥)�, contains polynomials 

with all terms of 𝑃𝑃(𝑥𝑥) and one additional term from the possible additional terms in a polynomial 

of the same power. For example, let 𝑃𝑃(𝑥𝑥) be a two-dimensional polynomial with structure 

(𝑎𝑎,𝐾𝐾1,𝐾𝐾11), full 2-dimensional polynomial of power 2 has a structure (𝑎𝑎,𝐾𝐾1,𝐾𝐾2,𝐾𝐾11,𝐾𝐾12,𝐾𝐾22). 

Then the list of potential candidates is: 𝛹𝛹(𝑃𝑃(𝑥𝑥)) =

[(𝑎𝑎,𝐾𝐾1,𝐾𝐾2,𝐾𝐾11); (𝑎𝑎,𝐾𝐾1,𝐾𝐾11,𝐾𝐾12); (𝑎𝑎,𝐾𝐾1,𝐾𝐾11,𝐾𝐾22)]. The size of Ψ(𝑃𝑃(𝑥𝑥)) increases when higher 

power terms are required.  
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Model Physical Constraints 

Moment arms can be estimated as a partial differential of the muscle length in local 

coordinates (Brand et al., 1975; An et al., 1984): 

Equation 2-2 

𝑀𝑀𝑖𝑖(𝑥𝑥) =
𝛿𝛿𝛿𝛿(𝑥𝑥)
𝛿𝛿𝑥𝑥𝑖𝑖

 

where i is the index of a DOF actuated by the muscle, 𝑥𝑥𝑖𝑖 is the coordinate of ith DOF, 𝑀𝑀𝑖𝑖(𝑥𝑥) 

is the posture-dependent function of the moment arm around ith DOF, 𝐿𝐿(𝑥𝑥) is the muscle length 

function. The kinematics of a given muscle is then captured by a single function 𝐿𝐿(𝑥𝑥) and a set 

of functions {𝑀𝑀𝑖𝑖(𝑥𝑥)} for muscles spanning multiple DOFs.  

The following algorithm finds a new function 𝐿𝐿(𝑥𝑥) and updates its set of moment arm 

functions {𝑀𝑀𝑖𝑖} in agreement with the relationship in Equation 2-2:    

1. Calculate a set of intermediate muscle length polynomials {𝐿𝐿�𝑖𝑖(𝑥𝑥) ≔ ∫𝑀𝑀𝑖𝑖𝑑𝑑𝑥𝑥𝑖𝑖}. 

2. Combine the terms of 𝐿𝐿(𝑥𝑥) and  {𝐿𝐿�𝑖𝑖(𝑥𝑥)} : 𝐿𝐿(𝑥𝑥) ≔ 𝐿𝐿(𝑥𝑥)⋃(⋃ {𝐿𝐿�𝑖𝑖(𝑥𝑥)}𝑖𝑖 ). 

3. Differentiate analytically the polynomial 𝐿𝐿(𝑥𝑥) (Equation 2-2) to update the 

complimentary set of moment arm functions, {𝑀𝑀𝑖𝑖(𝑥𝑥)}. 

4. Calculate a and K coefficients in 𝐿𝐿(𝑥𝑥) and {𝑀𝑀𝑖𝑖(𝑥𝑥)} using the original dataset. 

For example, let 𝑥𝑥 = (𝑥𝑥1,𝑥𝑥2), functions describing muscle length is 𝐿𝐿 = 2𝑥𝑥1𝑥𝑥22, with moment 

arms 𝑀𝑀1 = 3𝑥𝑥13 + 2 and 𝑀𝑀2 = 5𝑥𝑥1𝑥𝑥2 were obtained from the data or an optimization routine. For 

muscle length, the structure describing the term 𝑥𝑥1𝑥𝑥2𝑥𝑥2 is 𝐾𝐾122, which is equal to 2. Similarly, 

𝑀𝑀1 = 3𝑥𝑥13 + 2 is described by the structure (𝐾𝐾111,𝑎𝑎) and 𝑀𝑀2 = 5𝑥𝑥1𝑥𝑥2 is (𝐾𝐾12). The integrals of 

𝑀𝑀1,𝑀𝑀2 in step 1 are: 𝐿𝐿1 = 𝑥𝑥14 + 2𝑥𝑥1 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 or structure (𝑎𝑎,𝐾𝐾1,𝐾𝐾1111); 𝐿𝐿2 = 2.5𝑥𝑥1𝑥𝑥22 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 or 

structure (𝑎𝑎,𝐾𝐾122). In step 2, the ensemble function 𝐿𝐿(𝑥𝑥) adhering to Equation 2-2 will be 𝐿𝐿 =

𝐶𝐶0 + 𝐶𝐶1𝑥𝑥1𝑥𝑥22 + 𝐶𝐶2𝑥𝑥14 + 𝐶𝐶3𝑥𝑥1, where 𝐶𝐶𝑖𝑖 are scalar coefficients in the structure (𝑎𝑎,𝐾𝐾1,𝐾𝐾122,𝐾𝐾1111). In 

step 3, the moment arms are 𝑀𝑀1 = 𝐶𝐶4𝑥𝑥22 + 𝐶𝐶5𝑥𝑥13 + 𝐶𝐶6 or structure (𝑎𝑎,𝐾𝐾22,𝐾𝐾111) and 𝑀𝑀2 = 𝐶𝐶7𝑥𝑥1𝑥𝑥2 

or structure (𝐾𝐾12). We used a linear pseudoinverse on the original dataset to calculate the 

coefficients 𝐶𝐶0−7. The difference between parameters 𝐾𝐾 and 𝐶𝐶 was in the notation only; 𝐶𝐶 values 

were calculated numerically and used in the analysis of function and structure embedded in the 

polynomials (see below, Kinematic Muscle Invariants), and 𝐾𝐾 notation was used in the 
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generation of polynomial structure (see next section). This algorithm embeds the constraint 

described in Equation 2-2 by expanding the selection of terms in the system of polynomials 

generated by the algorithm detailed next. 

Model generation and validation 

Muscle paths vary greatly in their complexity and, consequently, their model representations. 

The simplest muscles can be approximated with a constant if their path is posture independent, 

and complex muscles may involve many polynomial terms. The search for the optimal model 

requires the evaluation of each additional term from the domain of terms that grows 

exponentially with the number of actuated DOFs. Thus, muscles crossing 6 DOFs in our model 

were the most challenging. To solve this, we created an optimization algorithm based on the 

forward stepwise regression (see (Izenman, 2008), p. 142). This method was adapted to include 

the constraint in Equation 2-2 in the process of expanding the polynomial structure with 

additional terms until the information tradeoff indicated overfitting. For this purpose, we used the 

corrected Akaike Information Criterion (AICc) for a finite sample size (Akaike, 1974; Burnham 

and Anderson, 2004): 

Equation 2-3 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑓𝑓) = 𝐴𝐴𝐴𝐴𝐴𝐴(𝑓𝑓) +
2𝑘𝑘(𝑘𝑘 + 1)
𝑁𝑁 − 𝑘𝑘 − 1

= 2𝑘𝑘 − 2 𝑙𝑙𝑙𝑙(𝐿𝐿) +
2𝑘𝑘(𝑘𝑘 + 1)
𝑁𝑁 − 𝑘𝑘 − 1

 

where f is an approximation function, 𝐴𝐴𝐴𝐴𝐴𝐴 is the Akaike Information Criterion, k is the number 

of parameters in the model, N is the number of data points, and L is a maximum likelihood 

estimation (MLE) of the polynomial representing this dataset. The peak value of MLE for the 

normally distributed estimated residuals is 𝑙𝑙𝑙𝑙(𝐿𝐿) =  −0.5𝑁𝑁(𝑙𝑙𝑙𝑙(2𝜋𝜋𝜎𝜎2) + 1)  =  −𝑁𝑁 𝑙𝑙𝑙𝑙(𝜎𝜎) + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, 

where 𝜎𝜎 is the root mean square error. The model-independent constants are ignored in the 

substitution of 𝑙𝑙𝑙𝑙(𝐿𝐿) in Equation 2-3 because we use AICc values to compare multiple models 

(see further details on pp. 62-67 in Burnham and Anderson, 2004):  

Equation 2-4 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑓𝑓) = 2𝑘𝑘 + 2𝑁𝑁 𝑙𝑙𝑙𝑙(𝜎𝜎) +
2𝑘𝑘(𝑘𝑘 + 1)
𝑁𝑁 − 𝑘𝑘 − 1
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To remove potential differences between DOFs, we normalized the muscle length values to 

the range of motion and the moment arm values to their maximum across all physiological 

postures.  

The analysis selected the terms of the polynomial structure for a muscle as follows (Figure 

2-3A): 

1. Initialize polynomials (without terms) for the functions approximating muscle length 

𝐿𝐿(𝑥𝑥) and its set of moment arm functions,  {𝑀𝑀𝑖𝑖(𝑥𝑥)}. 

2. Make a list of potential candidates for the expansion of each polynomial using all 

possible combinations from the fifth-degree polynomial: 𝛹𝛹(𝐿𝐿); {𝛹𝛹(𝑀𝑀𝑖𝑖)}𝑖𝑖. 

3. Select optimal functions indicated by the smallest AICc values from the lists 𝛹𝛹(•) and 

append them to the current approximation: 𝐿𝐿(𝑥𝑥) = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑓𝑓)𝑓𝑓∈[Ψ(𝐿𝐿);𝐿𝐿]
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 , 𝑀𝑀𝑖𝑖(𝑥𝑥) =

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑓𝑓)𝑓𝑓∈[Ψ(𝑀𝑀𝑖𝑖);𝑀𝑀𝑖𝑖]
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 . 

4. Use the algorithm, described above (Model Physical Constraints), to impose the 

relationship in Equation 2-2. 

5. Return to step 2: i) if further expansion is possible (𝛹𝛹(𝐿𝐿) or 𝛹𝛹(𝑀𝑀𝑖𝑖) are not empty), and 

ii) the change in AICc values is negative between iterations. 

The progression of model assembly with this algorithm can be seen in Figure 2-3B showing 

the optimization of kinematic variables for flexor pollicis longus with the iterative expansion. The 

first evaluation of errors was performed relative to zero model (𝐿𝐿(𝑥𝑥) = 0; {𝑀𝑀𝑖𝑖(𝑥𝑥)} = 0). The 

errors for the selected terms were evaluated in the following iteration step. In the first iteration, 

the muscle length was approximated by (𝑎𝑎,𝐾𝐾1,𝐾𝐾2,𝐾𝐾4,𝐾𝐾5,𝐾𝐾33), where some terms came from the 

selection of terms in step 3 and the rest from the integration in step 4. In the second iteration, 

the approximation expanded using elements 𝐾𝐾11,𝐾𝐾44,𝐾𝐾55,𝐾𝐾333,𝐾𝐾2222, and the precision of 

muscle length fit decreases below 1%. In the fifth iteration, only thumb CMC & MCP moment 

arms required further optimization when other DOFs reached the minimum of AICc. In the tenth 

iteration, the evaluation of optimal parameter selection was finished with the high precision of 

10-3 for the fit of muscle length across all physiological postures. Here, the worst moment arm fit 

of wrist extension-flexion (dashed blue line) was 1.05% in units normalized to the range of 

motion and the maximum magnitude of moment arm or 0.2 mm in absolute units. 

---------------- 
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Figure 2-3. Optimal model generation algorithm.  

A. The optimization flow schematic showing the flow of calculations using the amalgamated 

algorithm of model generation with physical constraint. RMS values of model performance are 

computed at the onset of each new iteration and followed by the expansion of polynomial 

candidates. The process continues while there are improvements in AICc metric. B. Example of 

generating the system of polynomial functions describing flexor pollicis longus. The decrease in 

RMS errors for all DOFs actuated by this muscle were plotted for each iteration of the algorithm. 

The progression of terms added to minimize AICc in 6 polynomials is shown below the plot. 
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---------------- 

Similarity index 

The polynomial approximations generated with and without adherence to Equation 2-2 were 

different. To measure that difference, we created a similarity index (SI) that counted common 

polynomial terms in two structures. Consider polynomials 𝐿𝐿𝐴𝐴 and 𝐿𝐿𝐵𝐵 characterizing muscles A 

and B. Each polynomial can be described by a collection of shared or common terms (𝑃𝑃𝐶𝐶) and a 

collection of non-common terms (𝑃𝑃𝑁𝑁𝑁𝑁), so that 𝐿𝐿𝐴𝐴 = 𝑃𝑃𝐶𝐶 ⋃𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴 and 𝐿𝐿𝐵𝐵 = 𝑃𝑃𝐶𝐶 ⋃𝑃𝑃𝐵𝐵𝐵𝐵𝐶𝐶, where 𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴 

are the terms present in 𝐿𝐿𝐴𝐴 and not in 𝐿𝐿𝐵𝐵 and 𝑃𝑃𝐵𝐵𝐵𝐵𝐵𝐵 are the terms present in 𝐿𝐿𝐵𝐵 and not in 𝐿𝐿𝐴𝐴. 

Then, the similarity index is calculated as: 

Equation 2-5 

𝑆𝑆𝑆𝑆(𝐴𝐴,𝐵𝐵) =
𝑁𝑁𝐶𝐶

𝑁𝑁𝐴𝐴𝐴𝐴𝐴𝐴 + 𝑁𝑁𝐵𝐵𝐵𝐵𝐵𝐵 + 𝑁𝑁𝐶𝐶
⋅ 100% 

where 𝑁𝑁𝐶𝐶, 𝑁𝑁𝐴𝐴𝐴𝐴𝐴𝐴, 𝑁𝑁𝐵𝐵𝐵𝐵𝐵𝐵 are the number of terms in 𝑃𝑃𝐶𝐶, 𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴, 𝑃𝑃𝐵𝐵𝐵𝐵𝐵𝐵, respectively. SI equals to 

100% when two polynomials have completely identical structures, while the exact values of the 

coefficient at each polynomial term can be different; and to 0% when the structures completely 

different. 

Kinematic Muscle Invariant  

The composition of polynomials was captured using their representation in the Euclidean 

space formed by the basis of unique polynomial power terms. The expression of functional 

information embedded in the pattern of polynomials could then be tested by the examination of 

similarities between muscles in this space. For the full polynomial of power 𝜌𝜌 = 5 and maximum 

muscle dimensionality 𝑑𝑑 = 6 these unique combinations are the following: [(1, 1, 1, 1, 1), (1, 1, 

1, 1), (1, 1, 1, 2), (1, 1, 1), (1, 1, 2), (1, 1, 3), (1, 1), (1, 2, 2), (1, 2), (1, 3), (1, 4), (1), (2, 2), (2, 3), 

(2), (3), (4), (5)], where (1, 1, 1, 1, 1) is, e.g., 𝑥𝑥1𝑥𝑥2𝑥𝑥3𝑥𝑥4𝑥𝑥5 and (5) is 𝑥𝑥𝑖𝑖5. The indices 

corresponding to which specific DOF is used in the equation are ignored (Table 2-1). The 

coefficients for these ordered 18 combinations defined the coordinates of a vector representing 

a given muscle length polynomial. We converted all polynomials into unit vectors with the 

normalized sums of coefficients of the same terms from different DOFs, 𝑣𝑣� = (𝑣𝑣1, … , 𝑣𝑣𝑛𝑛)𝑇𝑇/

‖(𝑣𝑣1, … , 𝑣𝑣𝑛𝑛)𝑇𝑇‖.  
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Table 2-1. Examples of polynomial term notation and kinematic muscle invariants.  

(𝑥𝑥1,𝑥𝑥2, 𝑥𝑥3,𝑥𝑥4) are coordinates. 

Kinematic Muscle Invariant Example polynomial term Its structure 

(1) 
𝑥𝑥1, K1, 

𝑥𝑥2 K2 

(2) 𝑥𝑥12 K11 

(3) 𝑥𝑥13 K111 

(4) 𝑥𝑥14 K1111 

(5) 𝑥𝑥15 K11111 

(1,1) 
𝑥𝑥1𝑥𝑥2, K12, 

𝑥𝑥2𝑥𝑥3 K23 

(1,2) 
𝑥𝑥12𝑥𝑥2, K112, 

𝑥𝑥2𝑥𝑥32 K233 

(1,3) 𝑥𝑥1𝑥𝑥23 K1222 

(1,4) 𝑥𝑥1𝑥𝑥24 K12222 

(2,2) 𝑥𝑥12𝑥𝑥22 K1122 

(2,3) 𝑥𝑥12𝑥𝑥23 K11222 

(1,1,1) 𝑥𝑥1𝑥𝑥2𝑥𝑥3 K123 

(1,1,2) 𝑥𝑥1𝑥𝑥2𝑥𝑥32 K1233 

(1,1,3) 𝑥𝑥1𝑥𝑥2𝑥𝑥33 K12333 

(1,2,2) 𝑥𝑥1𝑥𝑥22𝑥𝑥32 K12233 

(1,1,1,1) 𝑥𝑥1𝑥𝑥2𝑥𝑥3𝑥𝑥4 K1234 

(1,1,1,2) 𝑥𝑥1𝑥𝑥2𝑥𝑥3𝑥𝑥42 K12344 

(1,1,1,1,1) 𝑥𝑥1𝑥𝑥2𝑥𝑥3𝑥𝑥4𝑥𝑥5 K12345 
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For example, for 𝐿𝐿 = 𝐶𝐶1𝑥𝑥1𝑥𝑥22 + 𝐶𝐶2𝑥𝑥12𝑥𝑥2 + 𝐶𝐶3𝑥𝑥13 + 𝐶𝐶4𝑥𝑥1 + 𝐶𝐶5𝑥𝑥2 + 𝐶𝐶6, the vector has nonzero 

elements [𝑣𝑣9 = |𝐶𝐶1| + |𝐶𝐶2|; 𝑣𝑣12 = |𝐶𝐶4| + |𝐶𝐶5|; 𝑣𝑣16 = |𝐶𝐶3|]. Structural difference of two polynomials 

can then be obtained as a distance between their vectors that we call muscle invariants. The 

structural difference is minimal when power composition of all terms and their absolute 

coefficients are similar in both polynomials even if they cross different DOFs, and large when 

their power compositions do not have the same terms. 

Memory and Time 

Memory required for spline approximation was calculated as a size of MATLAB's ‘.mat’ files 

that contained single-precision spline parameters saved using '-v7.3' flag which enables 

compression. Memory required for polynomials was calculated as the size of executable 

‘.mexw64’ files compiled with Visual Studio 2017 C++ with ‘/O2’ optimization. Time of evaluation 

was obtained using MATLAB’s Profiler. Individual samples for mean and standard deviation of 

evaluation time were obtained per muscle’s dataset during estimation of quality of fit. All 

computations were done on DELL Precision Workstation T5810 XL (Intel Xeon processor E5-

2620 v3 2.4 GHz, 64 GB DDR4 RAM, SK Hynix SH920 512 GB SSD) running Windows 10. 

Statistics 

The validity of polynomials was analyzed with standard statistical tools. The root mean 

square error (RMSE) values were used to evaluate errors in the approximated values relative to 

the dataset used for fitting and the independent testing dataset (see above, Dataset). We 

detected outliers using a method similar to (Sartori et al., 2012), which resulted in the removal of 

less than 0.09% of values from the 9-point dataset. We estimated maximum expected error 

(MEE) using Chebyshev’s theorem with 1% significance level. Linear regression was used to 

test the relationship between the complexity of functions represented by the number of DOFs a 

muscle spans and the complexity of the approximating polynomials.  

The similarity of muscle length invariants (𝑣𝑣�) across multiple muscle groups was tested with 

dimensionality reduction analyses—principle component analysis (PCA) and hierarchical 

clustering. The Euclidean distance between vectors was first analyzed with the average linkage 

hierarchical clustering implemented in SciPy. Then, the dominant relationships in this 

distribution of muscle invariant vectors were analyzed with PCA (Scikit-learn module 

(Pedregosa et al., 2011)).  
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The representation of structural and functional information within the muscle length invariants 

was further tested by comparing the distributions of the distances between muscle pairs with 

similar structure or similar function to muscles with different structure or different function. These 

distributions were shown to be non-normal using D’Agostino’s K-squared test (D’Agostino and 

Pearson, 1973) that measures deviation from the normal skewness and kurtosis. We used one-

tailed Mann-Whitney U test ((Mann and Whitney, 1947), from SciPy module) to assess the two 

hypotheses that functional and structural similarities are represented in the colocalization of the 

invariant vectors. In general, this test was used to assess the likelihood of observing a smaller 

distance between the randomly selected pairs of muscle invariants with matching function or 

structure than the distance between the randomly selected pairs with shuffled function or 

structure. The smaller distances between the pairs in matched populations than the larger 

distances between the pairs from the shuffled populations were also tested with one-sided sign 

test (Conover, 1999). The symmetrical distribution of samples around the mean is not assumed 

in the sign test; thus, it is a better choice for this problem then Wilcoxon signed-rank test. All 

tests were performed with the conservative value of significance set at 0.01. 

Results 

We developed a precise and efficient method to describe the musculoskeletal kinematics of a 

human distal arm and hand, extending previous work with approximation functions (Menegaldo 

et al., 2004; Sartori et al., 2012). Here, we formalized the dynamic selection of terms in a best-fit 

polynomial function using a quantitative tracking of overfitting; moreover, the structurally linked 

parameters of muscle length and moment arms were embedded in the derivation algorithm to 

generate consistent analytical models with the same linked properties. We tested if the 

composition of polynomials embedded information about muscle structure and/or function.  

---------------- 
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Figure 2-4. The goodness-of-fit test.  

The distribution of normalized error in the estimation of muscle lengths (A) and moment arms 

(B) is shown for three models (splines, polynomial functions with and without the constraint of 

Equation 2-2). The histogram frequency was normalized to the total count of samples.  

---------------- 

Approximation of muscle lengths and moment arms 

We subdivided values in the dataset (see above) into two groups for creating models and 

their testing. All best-fit models, splines and both types of polynomials, approximated moment 

arms with <5% of error and muscle length with <0.4% error, shown in Figure 2-4 and Table 2-1.  

Although the approximation error with splines was the lowest, the implementation of splines 

required the highest number of parameters – eight orders of magnitude difference (compare 

cubic splines (CS) and constrained polynomials (CP) in Table 2-2). The large number of 

parameters in the CS model exceeded the number of values in the dataset, which corresponded 

to impractical AICc values. We used AIC values instead to compare the relative quality of 

models: CP values were -6.7*106 and -5.7*105, as compared to CS values were 2.2*109 and 

3.2*1010. This difference indicates the preference of AIC metric to CP model. The addition of 

model physical constraints (Equation 2-2) to the polynomial generation algorithm did not 

significantly change the precision of the polynomial model (p>0.9) with similar errors and AIC 

values in Table 2-2. The histograms of error distributions were superimposed in Figure 2-4. The 
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length approximation errors in Figure 2-4A were smaller than those of moment arm errors in 

Figure 2-4B, as expected from Equation 2-2. In general, the differentiation process increases 

the magnitudes of errors.  

Figure 2-4 and Figure 2-5A show the comparison of polynomial structures with and without 

the physical constraint imposed by Equation 2-2 in step 4 of the algorithm described in Methods: 

Model Generation and Validation. Because the constrained muscle length function has higher 

polynomial power than its moment arm functions, we used 𝜌𝜌 = 4 to generate Ψ(𝑀𝑀𝑖𝑖), and 𝜌𝜌 = 5 

to generate Ψ(𝐿𝐿). 

A small portion of values in the datasets were marked as outliers and removed from further 

analyses: unconstrained polynomials had 0.08% muscle length outliers and 0.03% moment arm 

outliers; constrained polynomials had 0.08% and 0.03%, respectively. No spline errors were 

considered as outliers. 

Table 2-2. The comparison of model performance. 

Cubic spline (CS) and two polynomial approximations with and without the constraint linking 

muscle lengths and moment arms (constrained and unconstrained polynomials, CP and UP), as 

described by algorithm in Model Physical Constraints in Methods. RMSE values are given ± 

standard deviation. 

Method RMSE, % Total number of 

parameters 

AIC, au 

L MA L MA L MA 

CS 1.34*10-5 ± 1.56*10-5 1.84*10-6 ± 2.47*10-6 1.1*109 1.64*1010 2.2*109 3.2*1010 

UP 0.0383 ± 0.0918 0.757 ± 1.477 610 705 -6.7*106 -5.7*105 

CP 0.0382 ± 0.0910 0.757 ± 1.477 661 783 -6.7*106 -5.7*105 

The evaluation time of models was obtained by measuring the period of approximating full 

musculotendon dataset (N=33). Both polynomial models were over 7000 times faster than CS 

(Table 2-3) and required 2.8*105 times less memory. The search time for CP was 3.3 times 
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faster than that for UP with the increase in performance gained when the selection of polynomial 

terms originated in the relationship between muscle length and moment arms.  

Table 2-3. Time and memory requirements of approximations methods for kinematic 
variables. 

Method Evaluation, µs Generation, min Memory, KB 

CS 7.8*104± 0.7*104 32  20.6*106 

UP 9.7±2.9 243  69  

CP 9.9 ±2.0 74  73  

Structure of Approximating Polynomials 

Both CP and UP models were similar in composition as determined by the similarity index. It 

examined the difference in polynomial structure, i.e. the presence or absence of terms in 

functions for muscle lengths. Figure 2-5A shows that both models had the maximum difference 

of 40% in the similarity index (BIC_SH: 40.0, FCU: 36.8, ADPT: 30.4), and the average 

difference was only 12.91%. This indicates that composition of CP and UP models were similar, 

which in turn supported the validity of generated polynomials.  

We expected to see an exponential relationship between muscle model complexity (i.e., the 

number of parameters) and the number of DOFs crossed. The relationship shown in Figure 

2-5B is instead linear (𝑟𝑟 = 0.74). Moreover, the model fractional complexity, measured as the 

ratio of terms selected to all possible terms available, decreased with the increase of the 

number of DOFs controlled by a muscle (Figure 2-8, 𝑟𝑟 = −0.83). The most complex muscles in 

our model were thumb muscles (ADPT, FPB, APB, EPB, APL, FPL, EPL), and they appeared 

above the regression line, while finger muscles (FDS2-5, FDP2-5, ED2-5, EDM, EIND) stayed 

below, suggesting a lower relative complexity.  

---------------- 
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Figure 2-5. Complexity of muscle structures.  

A. Similarity index between functions approximating muscle lengths generated with and 

without adherence to Equation 2-1. B. The distribution of polynomial complexity expressed as 

the number of terms. C. The relationship between the number of terms in the muscle length 

polynomial (circles) and the number of DOFs the muscle spans (line, 𝑦𝑦 = 6.73𝑥𝑥 − 0.16, 𝑟𝑟 = 0.74, 

𝑝𝑝 < 2 ⋅ 10−6). 

---------------- 
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Structure and Function 

We hypothesized that the generated models capture structural and functional features of 

muscles and developed a measure of embedded muscle attributes, coined muscle invariant. It 

represents each muscle in the space of polynomial term powers. To avoid trivial relationships, 

we remove DOF identity information and preserve only the power signature of each term (see 

details in Methods).  

The difference between muscles was captured as Euclidean distances between their vectors. 

To visualize the 18-dimensional space of all power terms, the distance heatmap was calculated 

between all muscle pairs (Figure 2-6A), and the corresponding vectors were plotted in the axes 

of two main principle components computed with PCA (Figure 2-6B). The clustering algorithm 

generated the average-link dendrogram based on these distances. A selection of distal thumb 

muscles (ADPT, APB, OP, APL) was visibly separated from about 6 other subgroups, with the 

closest subgroup formed by another subset of thumb muscles (EPL and EPB). The thumb 

muscles are followed by the following subgroups: extensor carpi radialis and wrist flexors 

(ECR_LO, ECR_BR, FCR, PL), flexor pollicis brevis and extensor carpi ulnaris (FPB and ECU), 

finger and wrist flexors and extensors, wrist rotators located in the forearm (FDP2-4, FDS3-5, 

ED2, ED4, ED5, EIND, PL, FCR, PQ, PT, SUP), the rest of digit muscles with flexor carpi 

ulnaris (ED3, EDM, FDS2, FDP5, FCU, FPL), and biceps brachii (BIC_SH, BIC_LO).  

The variance of muscle invariants was largely captured by the first two principal components 

(86%). Their largest coefficients were associated with linear (𝑣𝑣�{𝑥𝑥} = −0.68) and square (𝑣𝑣�{𝑥𝑥2} =

0.84) powers of polynomial terms. The linear relationship between joint angle and muscle length 

corresponds to a semi-circle muscle path around a joint. This simplistic behavior is 

characteristic for 1-DOF finger joints, muscles in the bottom-left corner and the insert of Figure 

2-6B. Muscles in the bottom-right corner, e.g., thumb muscles, used less linear terms than other 

muscles. Overall, the space of muscle invariants has a nonrandom pattern.  

---------------- 
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Figure 2-6. Kinematic muscle invariants.  

A. Average-linkage dendrogram computed from the heatmap of pairwise distances between 

muscle invariants. Horizontal dashed lines indicate subgroups described in text. B. The 

representation of muscle invariants in the space of their main two principle components. Insert: 

expanded view of a portion of the plot. 

-------------- 

We tested if muscle invariants contain information about their anatomical location by 

comparing Euclidian distances between the invariants with shared DOFs. Since there is a 

limited set of muscles that do not span the same joints, we tested the idea that those pairs of 

muscles that share a given DOF would be closer to each other than those that do not share that 

DOF. We assigned phalangeal DOFs (MCP, PIP, DIP) to be different to each other, but the 

same across fingers 2-5 because of their similarity and the lack of intrinsic hand muscles (e.g., 

lumbricals) in the model. This selection ensured the local structural similarity in the group with a 

shared DOF (Figure 2-7A, blue) and local difference in the group without a shared DOF (Figure 

2-7A, red), but it did not prevent the selection of muscle pairs in each group based on their 

structure relative to other DOFs. Figure 2-7A shows the probability of observing a given 

distance between a pair of muscles with a shared DOF and without a shared DOF based on 

1306 and 1862 pairs, respectively. The selection of muscles into these groups was executed 

sequentially by examining all muscles for each DOF in the model. The difference distribution 

(Figure 2-7C) was computed by examining the difference between each pair with a shared DOF 
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and comparing it with each pair that had one of the two muscles in the group without a shared 

DOF, resulting in 20,746 comparisons.  

---------------- 

 

Figure 2-7. The structural and functional information embedded in muscle invariants.  

A. The probability distributions of observing the distance between the pairs of muscle 

invariants with (blue) and without (red) a shared DOF. B. The test of difference between the two 

groups. C. The probability distributions of the distance between the pairs with the shared 

structural information and with (blue) and without (red) shared functions. D. The test of 

difference between the two groups. Box plots indicate a median and 25th-75th quantile region. 

The significant differences between the overlap of distributions tested with Mann-Whitney U test 

is marked with (*). The sign test significance is marked with (†). 



30 

 

---------------- 

The median of difference was less than zero (-0.10, sign test 𝑝𝑝 < 10−8). Both groups were 

not normally distributed (D’Agostino’s K-squared test of normality, 𝑝𝑝 < 10−8) and similar 

anatomical pairs were closer to each other which was evident from the non-equal distribution of 

the two groups (Mann-Whitney U test: 𝑈𝑈 = 7 ⋅ 105, 𝑝𝑝 < 10−8). We found that the muscle 

invariants capture the structural information related to the identity of their actuated DOFs.  

We tested if the muscle invariants contain functional information beyond that explained by 

the anatomical similarities. For this purpose, we defined seven functional groups based on their 

primary mechanical function: wrist supinators (BIC_LO, BIC_SH, SUP), pronators (PT, PQ), 

extensors (ECR_LO, ECR_BR, ECU), flexors (FCR, FCU, PL), finger flexors (FDS2-5, FDP2-5), 

extensors (ED2-5, EDM, EIND), and thumb muscles (APL, OP, APB, EPL, EPB, FPB, FPL, 

ADPT). We tested the idea that two muscles from the same group are closer together than 

those from different groups even when all these muscles actuate the same DOF. Similar to 

above, we selected all pairs of muscles with (490 pairs) and without (816 pairs) a shared 

function and computed the distance between these pairs, shown in in Figure 2-7C. The distance 

between the two groups based on the combinations of all these pairs (3496 samples) is shown 

in Figure 2-7D. These three distributions were also not normal (𝑝𝑝 < 10−8). While the 

distributions of two groups were overlapping (𝑝𝑝 = 0.61), the median of difference between them 

was significantly less than zero (-0.02, sign test 𝑝𝑝 < 10−8). This supports the hypothesis that 

DOF-independent functional differences are captured by the muscle invariants. 

Discussion 

We approximated musculoskeletal kinematics of the human hand with a new type of 

autogenerating model that embeds biomechanical constraints between muscle parameters. The 

model reached optimal performance with polynomial simulations showing high precision and 

computational efficiency. While the model was developed as a descriptive tool, the fine details 

captured within the muscle-posture relationships include the differential connection between 

moment arms and muscle lengths and reflect the high-level mechanistic properties of arm and 

hand muscle function. The composition of terms in these models was objectively determined by 

the embedded information and demonstrated the patterns associated with anatomy and 

function. The mechanical specification of muscles for the control of different hand DOFs and 

different functions has not been previously demonstrated, and the implications are discussed.  
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All models are simplifications or approximations of reality, but some approximations are 

useful. The complex geometric interactions—sliding and wrapping—between muscles and other 

mechanical body structures pose a considerable computational challenge for real-time 

applications (Blana et al., 2017). The engineering trade-off between complexity, performance, 

and accuracy pushed the development of simplified biomechanical limb models that assumed 

constant moment arm and posture relationships (Crouch and Huang, 2016) or reduced the span 

of musculotendon anatomy to ease the computational demand (Durandau et al., 2018). The 

approximating models can be mechanistic or phenomenological. The goal of phenomenological 

model is to capture the input-output relationship without the effort of describing the mechanistic 

explanation present within this transformation. We replaced the customary subjective choice of 

structure in approximations with our objective method of generating the approximations that 

may reveal mechanistic aspects of MS organization in the phenomenological model.  

Autogenerating models 

Interest in MS approximations has been steadily increasing with the development of 

computational tools for human motion analysis, e.g., OpenSim (Delp et al., 2007). Accuracy of 

these approximations  has been demonstrated with B-spline models (Sartori et al., 2012; 

Durandau et al., 2018), and computational efficiency has been achieved with polynomial models 

(Menegaldo et al., 2004; Chadwick et al., 2009). The optimal polynomials proposed in this 

manuscript have the benefits of both accuracy and computational efficiency.  

The manual subjective selection of polynomial terms for each muscle is usually based on the 

number of DOFs the muscle crosses, the quality of simulation, and the numerical cost of 

evaluating functions. In contrast, our optimization algorithm chooses the polynomial terms 

objectively based on the information criterion to reflect objective dependencies within the data. 

The information criterion is a type of cost function that allows comparison between different 

polynomial models and prevents overfitting with an excessive number of terms. The latter is 

possible when using the subjective desired precision of fit, as in (Chadwick et al., 2009). Similar 

to (Menegaldo et al., 2004), the number of terms in the optimized polynomial grows with the 

number of muscle’s DOFs, but the term composition varies to reflect the diverse anatomy and 

function.  

We found multiple levels of structure embedded in the power composition of polynomial 

terms.  A linear relationship between muscle length and joint angle is characteristic for 1-DOF 
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finger joints. The near-linear relationship between moment arm profile and joint angle we 

showed in thumb muscles has been commonly observed in other studies (Loren et al., 1996; 

Menegaldo et al., 2004). The physiological function of this relationship can be associated with 

compensation for the muscle force-length relationship at the edges of range of motion. The 

diverse function and behavior of thumb muscles found during movement (Kaufman et al., 1999) 

is mirrored in our results by their separation from other muscles and high variability between 

each other.  

Previously we have examined the grouping of muscles based on their length-posture 

relationships where the similarity between muscles was determined by common muscle length 

shortening and lengthening in response to postural changes (see Fig. 7 in Gritsenko et al., 

2016). The current analysis of muscle organization does not separate antagonistic muscles, 

with the focus only on the polynomial sets that shape muscle paths. Similar to the previous 

analysis, thumb muscles are clearly separated from other finger muscles. We have also 

included muscles with antagonistic functions in separate groups in the analysis of muscle 

properties captured by the model (Figure 2-7CD). This test indicated a functional difference 

between the muscle invariants even when the differences accounted by muscle location were 

removed; albeit, the difference was small. The analysis without removing the muscle location 

(using Similarity Index) yielded expected, but uninteresting results (Figure 2-9). This result 

supports the idea that the commonly observed muscle synergies during movement can be at 

least in part explained by the structure and function embedded in their musculotendon paths.  

Real-time high-dimensional musculoskeletal computations  

The optimal polynomials efficiently compute highly complex MS kinematics for real-time 

applications. The polynomials describing 33 musculotendon actuators each crossing up to 6 

DOFs can be evaluated within 10 µs, requiring less than 75 KB of RAM. To contrast, the 

previous state-of-the-art performance for a lower-limb model with 13 musculotendon actuators, 

each crossing up to 3 DOF was shown to be less than 2.5 ms (Durandau et al., 2018). Our more 

than hundred-fold time efficiency improvement on the method was also accompanied by a 

similar improvement in required memory (about 10MB worth of coefficients in Durandau et al., 

2018, based on Sartori et al., 2012). The improvements are largely due to the exponential rise in 

the required computational resources with the dimensionality increase of the spline model, as 

previously shown (Sartori et al., 2012) and by our implementation. This ‘dimensionality curse’ 

may prevent the application of splines in complex models recently developed for offline 
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analyses (Holzbaur et al., 2005; Paclet and Quaine, 2012; Rajagopal et al., 2016). Our optimal 

polynomial approach shows linear scaling of the model (Figure 2-5C) allowing these models to 

be used in real-time applications.  

The described optimization algorithm is structurally similar to stepwise regression (Izenman, 

2008), but has several important differences. First, it automatically constructs and explores all 

possible polynomial combinations of the input variables within reasonable power limitations.  

Second, our algorithm uses AIC (Akaike, 1974; Burnham and Anderson, 2004) instead of F-

statistic as the objective measure of improvements. The AIC takes into account the trade-off 

between the quality of fit and the increased model complexity. This is a novel use of information 

measures (Akaike, Bayesian and other) that have been previously used mostly as a stopping 

criterion (Bendel and Afifi, 1977). An information criterion allows flexibility when choosing the 

tradeoff between quality of fit and the measure of model complexity. For example, using the 

number of processor commands instead of the number of variables for each term is useful for 

development of extremely high-performing routines or for computationally-costly devices, like 

portable chips or GPUs. Third, our approximation algorithm embeds the differential relationship 

between muscle length and its moment arms in the search for the best model parameters. This 

novel approach of using the formulation of structural constraints within the algorithm decreased 

model assembly time. These approximations are ready to be used on a portable device that 

requires a real-time simulation of MS variables, e.g., a biomimetic prosthesis or a medical 

assessment device. 

Limitations 

We chose to implement the fitting algorithm with the use of polynomial sequences as the 

most accurate representation of the MS relationships. The alternative implementations could 

use sequences of trigonometric or exponential terms. For example, any data with periodic 

relationships would be efficiently represented by trigonometric functions, and any data with 

sigmoidal transitions or limits of range could be represented by exponential functions. However, 

the relationships between moment arms and posture are smooth because of soft tissue 

properties. In this case, we can rely on the theoretical conclusion from Taylor’s Theorem stating 

that any smooth function can be described with a polynomial approximation. Then the only 

potential failures would be the observations of discontinuities in the muscle properties. We have 

indeed observed sharp transitions always associated with the geometric model failures where 

muscle path slipped off the wrapping surface. These behaviors were detected and corrected 
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prior to the approximation (Boots et al., 2019). Thus, our model is appropriate for the physical 

system it attempts to represent. 

The autogenerating polynomial models were iteratively created with the selection of a single 

term per equation at a time. This allowed fast optimization for the full system of equations 

describing moment arms and muscle lengths. It is possible that multiple terms can be more 

optimal than a single term. This would be indicated by the premature termination of the 

optimization routine even when a more optimal solution is available for multiple terms selected 

in the same iteration. We tested this eventuality by repeating the model generation with an 

algorithm capable of adding one or two terms per iteration per equation. This method produced 

the same solutions for our dataset, but the evaluation time increased by an order magnitude as 

compared to the standard method.  

The sampling rate of the relationship between posture and muscle parameters was another 

methodological implementation decision. The validity of our selection was tested by comparing 

the quality of approximation with three different rates, i.e., the training datasets were sampled at 

3, 5, and 9 values per DOF. The corresponding three testing datasets with data points residing 

between the training data points were used for validation. The overall fitting errors were not 

significantly different between 5- and 9-point datasets. However, infrequent failures in the 5-

point model were effectively resolved with the 9-point model. Our observations suggested that 

further increases in the sampling rate is not likely to increase the model performance and may 

lead to the overfitting by exceeding the quality of the MS representation in OpenSim. Since the 

5-point model had a very similar performance to the 9-point model, it can be effectively used as 

an intermediate fast approximation for iterative adjustments needed to validate muscle 

geometry against experimental data, as in (Boots et al., 2019).  Overall, the 9-point model was 

deemed to be optimal.  

The current model is limited to the description of hand muscles in a generic representation of 

the human hand. Future analysis of validated models that span the shoulder will improve our 

understanding of muscle specialization. We expect to see new functional groups with the 

structure different from that of any of the hand functional groups because of the unique 

biomechanics of the shoulder joint (Donald, 1973; Voisin, 2006). These functional groups can 

be then further refined by their evaluation on models with subject-specific segment scaling and 

morphometric differences (Akita and Nimura, 2016a). It will be also intriguing to compare the 

muscle organization of the upper limb to that of the lower limb, considering their proposed 
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coevolution (Rolian et al., 2010), covariability in developmental modules (Hallgrímsson et al., 

2002) and high observed topological similarity (Diogo et al., 2013) in humans. However, 

accurate and valid lower-limb models are still under development. Our future directions of 

research include the expansion of the model to the other joints and subject-specific modelling. 

Conclusions 

We approximated the kinematic variables for human hand and forearm muscles with high 

precision (<5% error across 18 DOFs) and efficiency (<75 KB, <10 μs). The approximation 

algorithm utilized the relationship between moment arms and muscle lengths to generate 

approximation faster and with internal consistency. The approach overcomes the curse of 

dimensionality with increased complexity for large MS models. The structural content of optimal 

polynomials reflects muscle anatomy and function. This novel description can be further applied 

in neuromechanics and its applications.  

Supplementary information 

---------------- 

 

Figure 2-8. Complexity of muscle structures.  
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A. The distribution of relative polynomial complexity expressed as the portion of parameter 

space used. B. The relationship between the relative complexity of the muscle length 

polynomial (circles) and the number of DOFs the muscle spans (line, 𝑦𝑦 = −19.4𝑥𝑥 + 101.9, 𝑟𝑟 =

−0.83, 𝑝𝑝 < 3 ⋅ 10−9). Relative complexity of a polynomial was estimated as a fraction of the 

parameter space that the polynomial occupies. For example, if the number of terms in the 2-

dimensional polynomial is 3, and the size of the parameter space of 2-dimensional polynomial of 

power 2 is 6, and the relative complexity is 3
6

= 0.5 = 50%. 

---------------- 

---------------- 

 

Figure 2-9. Similarity of muscle structures using Similarity Index.  

Average-linkage dendrogram computed from the heatmap of pairwise Similarity Index. The 

distance between clusters was calculated as an average distance between elements of two 

clusters.  

---------------- 

Table 2-4. The list of simulated DOFs.  

Name of the DOF is the unique name used in simulations and figures. It has the following 

structure: <LIMB>_<JOINT>_<MIN>_<MAX>. LIMB corresponds to the limb where the joint is 
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located, with ‘ra’ meaning ‘right arm’. JOINT is the joint at which the DOF is located, for example 

‘wr’ for ‘wrist’. Digit joints have a number at the end identifying the identifying number of the 

finger: 1: thumb; 2: index; 3: middle; 4: ring; 5: pinky. The last two suffixes MIN and MAX 

indicate the anatomical position of the DOF at the minimum and maximum of the range, e.g., 

“ra_wr_s_p” indicates that the minimum of the wrist pronation-supination DOF at -1.5708 is the 

supinated posture, and the maximum, 1.5708 – pronated. 

id Name Range, rad Description 

1 ra_wr_s_p -1.5708 1.5708 wrist pronation/supination motion 

2 ra_wr_e_f -1.2217 1.2217 wrist flexion/extension motion 

3 ra_cmc1_f_e 0 0.8727 thumb proximal flexion/extension motion 

4 ra_cmc1_ad_ab 0 0.8727 thumb proximal abduction/adduction motion 

5 ra_mcp1_f_e -0.7854 0 thumb central flexion/extension motion 

6 ra_ip1_f_e -1.5708 0 thumb distal flexion/extension motion 

7 ra_mcp2_e_f 0 1.5708 index proximal flexion/extension motion 

8 ra_pip2_e_f 0 2.0944 index central flexion/extension motion 

9 ra_dip2_e_f 0 1.5708 index distal flexion/extension motion 

10 ra_mcp3_e_f 0 1.5708 middle proximal flexion/extension motion 

11 ra_pip3_e_f 0 2.0944 middle central flexion/extension motion 

12 ra_dip3_e_f 0 1.5708 middle distal flexion/extension motion 

13 ra_mcp4_e_f 0 1.5708 ring proximal flexion/extension motion 

14 ra_pip4_e_f 0 2.0944 ring central flexion/extension motion 

15 ra_dip4_e_f 0 1.5708 ring distal flexion/extension motion 

16 ra_mcp5_e_f 0 1.5708 pinky proximal flexion/extension motion 

17 ra_pip5_e_f 0 2.0944 pinky central flexion/extension motion 

18 ra_dip5_e_f 0 1.5708 pinky distal flexion/extension motion 



38 

 

 

Table 2-5. The list of simulated muscles.  

Name column describes the short name used in simulations and figures. Full name describes 

the anatomical name of the muscle and specifies the head of the actuator. DOFs lists all DOFs 

that each muscle spans by referencing ids from the Table 2-4. 

id Name Full name DOFs 

1  BIC_LO  Biceps brachii long head  1 

2  BIC_SH  Biceps brachii short head  1 

3  SUP  Supinator  1  

4  PT  Pronator teres  1  

5  PQ  Pronator quadratus  1  

6  ECR_LO  Extensor carpi radialis longus  1 2 

7  ECR_BR  Extensor carpi radialis brevis  1 2 

8  ECU  Extensor carpi ulnaris  1 2 

9  FCR  Flexor carpi radialis  1 2 

10  FCU  Flexor carpi ulnaris  1 2 

11  PL  Palmaris longus  1 2 

12  FDS5  Flexor digitorum superficialis (pinky finger)  2 16 17  

13  FDS4  Flexor digitorum superficialis (ring finger)  2 13 14  

14  FDS3  Flexor digitorum superficialis (middle finger)  2 10 11  

15  FDS2  Flexor digitorum superficialis (index finger)  2 7 8  

16  FDP5  Flexor digitorum profundus (pinky finger)  2 16 17 18 

17  FDP4  Flexor digitorum profundus (ring finger)  2 13 14 15 

18  FDP3  Flexor digitorum profundus (middle finger)  2 10 11 12 

19  FDP2  Flexor digitorum profundus (index finger)  2 7 8 9 

20  EDM  Extensor digiti minimi  2 16 17 18 

21  ED5  Extensor digitorum (pinky finger)  2 16 17 18  

22  ED4  Extensor digitorum (ring finger)  2 13 14 15 
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23  ED3  Extensor digitorum (middle finger)  2 10 11 12 

24  ED2  Extensor digitorum (index finger)  2 7 8 9 

25  EIND  Extensor indicis  2 7 8 9 

26  EPL  Extensor pollicis longus  1 2 4 3 5 6 

27  EPB  Extensor pollicis brevis  2 4 3 5 

28  FPB  Flexor pollicis brevis  4 3 5  

29  FPL  Flexor pollicis longus  2 4 3 5 6  

30  APL  Abductor pollicis longus  1 2 4 3  

31  OP  Opponens pollicis  4 3  

32  APB  Abductor pollicis brevis  4 3 5  

33  ADPT  Adductor pollicis transversus  4 3 5  
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Chapter 3 Muscle excitation profiles in complex 
musculoskeletal model of human hand with muscle-based 

active joint stiffness 

(this chapter is in preparation to be submitted as “Sobinov A, Matthew B, Gritsenko V, Gaunt 

R, et al., Yakovenko S (2019) Muscle excitation profiles in complex musculoskeletal model of 

human hand with muscle-based active joint stiffness”) 

Abstract 

Solving the motor control signals for a desired movement is a complex problem that has 

remained a focus of research interest for more than 50 years. Developing an accurate 

representation of these underlying command patterns would greatly increase our understanding 

of motor control principles. From a practical point of view, an understanding of these 

representations would help us build assistive devices and develop rehabilitation techniques 

responsive to the desires and specifics of the user. One approach to investigating the principles 

of motor control is to find an inverse solution to forward models of the musculoskeletal system. 

By investigating the cost functions and mechanisms that constrain the inverse solution space, 

we can infer the principles that the central nervous system uses to plan and execute the 

movement. Here we provide a solution to a detailed model of the human hand with 8 degrees of 

freedom and 32 musculotendon actuators. We created the forward and inverse models as 

systems linearly dependent on the input signals focused on the control of 8 degrees of freedom 

of wrist, thumb and finger joints. The inverse model was used to obtain computed muscle 

excitations (CMEs) for 17 movements and 390,625 postures, involving control of the wrist, 

thumb and fingers. To resist perturbations from noise, we introduced desired joint stiffness as a 

control parameter for the inverse. The mechanism behind the generation of stiffness was mostly 

explained by agonist-antagonist coactivation during movement (mean r=0.77) and to a lesser 

extent during posture maintenance (mean r=0.6). The forward simulations of CMEs produced 

the desired movements, but if no stiffness was imposed on the inverse, the joints tasked with 

maintaining a posture often deviated from their position. These CMEs were used for offline 

control of a modelled human hand by recorded EMGs from an able-bodied participant. The 

average mean angular deviation was 10% of the range of motion for DOFs maintained static 

throughout the movement and 19% for dynamic DOFs. To conclude, our approach allowed us to 
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correctly reconstruct postures and torques to control a complex model of a human hand, and it 

has the potential to be used as part of a myoelectric controller for transradial amputees. 

Introduction 

Inversion of biomechanical models of movement to estimate descending motor command 

has been a focus of research for more than fifty years. Many approaches have been developed 

to manage the redundancy of the musculoskeletal (MS) system in relation to specific tasks, 

which was first stated by Bernstein in 1967 (Bernstein, 1967). The same reaching task can be 

solved by an infinite number of joint configurations, and a joint trajectory can be traced using 

different sets of motor signals. The space of solutions for a task can be expressed as an 

uncontrolled manifold (Scholz and Schöner, 1999). Many principles have been found to guide 

the selection of controlled DOFs, focusing on constraining the manifold with additional cost 

functions, like metabolic expenditure (Donelan et al., 2001; Todorov and Jordan, 2002; Valero-

Cuevas et al., 2009), jerk minimization (Flash and Hogan, 1985), neural activity levels (Sussillo 

et al., 2015), muscle synergies (d’Avella et al., 2006), and active joint impedance (Stroeve, 

1999). Other solutions have relied on the observed output to infer the cost functions for 

movement optimization by sampling a range of them to find the best-fitting (Terekhov et al., 

2010; Terekhov and Zatsiorsky, 2011). While very promising, this method has been only applied 

to simulated, simplified systems. A MS-based approach has been previously used to decode 

muscle activity during walking with the OpenSim CMC tool (Thelen and Anderson, 2006) using 

an iterative optimization algorithm. This approach achieved reconstruction of activity profiles 

similar to the EMG recordings in an offline setting but was unstable for longer simulation times. 

A reliable method for calculation of muscle activity that is similar to real EMG signals for 

complex biomechanical models is yet to be developed. 

A practical application of the inverse solutions to the field of myoelectric prosthetic control 

would help to solve major problems with decoding EMG signals. Myoelectric prosthetics began 

as simple switches, that allowed changing the state of the prosthetic (for example, grip) when 

electrical activity of a muscle or a group of muscle crossed a predefined activity threshold (Scott 

and Parker, 1988). An evolution of that control scheme into continuous space yielded the direct 

control approach, which supplies the level of activity of a single muscle to a single motor in a 

prosthesis (Ison and Artemiadis, 2014). Its performance was hindered by the difficulty of 

independent activation of several muscles, and heavy cross-talk between the recorded signals. 

To negate these problems, machine learning algorithms were used to relate EMG activity 
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patterns to the desired control signal, like speed or position of a joint, or assume an array of 

static postures (Graupe et al., 1977; Englehart and Hudgins, 2003; Ciancio et al., 2016; Nieveen 

et al., 2017; Resnik et al., 2018). An alternative approach for myoelectric control relies on the 

biomimetic simulation of an intact MS structure to translate recorded muscle activity into 

commands for the prosthesis (Abboudi et al., 1999; Eilenberg et al., 2010; Crouch and Huang, 

2016). The benefit of such models is the transparency of the control scheme, generalizability to 

each specific patient by constraints on the MS simulation, and minimal training required. The 

complexity of the approach comes from several sources. First, there is a need to correctly 

identify which muscles are the sources of the recorded EMG signals, which can be especially 

challenging in an amputee. Second, muscles that are not being recorded need to have signals 

provided. Third, the low-amplitude posture-stabilizing signals can be potentially discarded during 

EMG processing. Estimation muscle excitation profiles from the desired movement has the 

potential to negate these problems by bridging the gap between the modelled hand and the 

subject’s control signals. 

In this study, we describe a novel method for obtaining the computed muscle excitations 

(CMEs) from kinematics using an anatomically accurate MS model of a generic human hand 

(Sobinov et al., 2019; Boots et al, 2019). In addition to a commonly used metabolic cost 

function, we specify desired joint stiffness and formulate the problem in a computationally-

efficient linear fashion. We evaluate the effect of the desired joint stiffness on the obtained 

profiles of CMEs and investigate the mechanisms that induce stability within the model. Using 

forward simulations of the obtained CMEs, we investigate the benefit of induced stiffness in the 

model. Then we used surface EMGs from a human subject to reconstruct the movements offline 

through a transformation between CMEs and the recorded signals. 

Methods 

The methods describe the dataset that was used for the study, the forward control model of a 

complex musculoskeletal system, and inverse solution to it. The model consisted of a sequence 

of transforming the spatiotemporal pattern of muscle activity into the muscle forces and joint 

torques that were then passed through a physics engine to calculate movement kinematics 

(Figure 3-1, top). Within this forward transformation, we simulated calcium dynamics with a 

standard excitation-contraction coupling algorithm (Winters, 1995). The muscle force was 

calculated using a Hill-type muscle model (Zajac, 1989). This step required accurate 

reconstruction of the posture-dependent muscle length and velocity, which was achieved with 
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polynomial approximations (Sobinov et al., 2019). Together, this sequence of forward 

calculations could generate movement from muscle activity within 2 ms which allowed real-time 

performance. The inverse solution to the forward model calculated the computed muscle 

excitations (CMEs) from the kinematics (Figure 3-1, bottom). Redundancy of the inverse model 

solution space was addressed with two additive cost functions that represented metabolic 

expenditure and joint stiffness. Finally, the methods are provided to use the CMEs in forward 

control of a hand prosthesis.  

---------------- 

 

Figure 3-1. Schematic of the steps in forward (black) and inverse (red) control of the 
musculoskeletal model. 

u is a vector of musculotendon unit excitation levels (Equation 3-1); a – musculotendon unit 

contraction levels (Equation 3-2); 𝜏𝜏 – torques at all DOFs applied to a physics model; 𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖 – 

inverse torque around 8 DOFs; 𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖 – inversely-obtained contraction levels for 32 muscles; 𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖 

– computed muscle excitations; ECC: excitation-contraction coupling; MSD: musculoskeletal 

dynamics. 

----------------  

Model 

We simulated control of a human hand containing 17 segments: forearm, palm, 12 phalanxes 

and three thumb segments, that were connected with 16 joints and 18 degrees of freedom 

(DOFs, Table 3-2). We simulated 32 musculotendon actuators each spanning up to 6 DOFs. 

Relationship between MS kinematic variables (moment arms and musculotendon lengths) and 

the hand posture was obtained from a previously published model (Sobinov et al., 2019; Boots 
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et al, 2019). Values for the muscle force properties were obtained from (Boots et al., 2019). 

Table 3-3 provides a description of all muscles with their parameters.  

Although in the forward model we simulated 18 degrees of freedom (DOFs), we focused on 

the performance of 8 DOFs: wrist flexion-extension and pronation-supination, thumb 

carpometacarpal flexion-extension and abduction-adduction, and fingers 2 through 5 

metacarpophalangeal flexion-extension. In the rest of the chapter we will refer to them as 

controlled DOFs (cDOFs). We chose these DOFs because they represented differential control 

of wrist and each individual digit enough to produce recognizable movements of the hand. 

Proximal interphalangeal (PIP) joints were omitted, because internal hand muscles that are 

important for their control (Li et al., 2000) were not modelled in this study. 

Static Kinematic Dataset 

We intended to explore the whole range of motion of the model with the static dataset and 

common hand movements with dynamic dataset. The static dataset consisted of all possible 

combinations of 5 postures of each of 8 cDOFs investigated in the analysis, totaling 58=390,625 

postures. 

Dynamic Kinematic Dataset 

Dynamic kinematic dataset contained 7 types of common hand movements, including 

grasping, flexion-extension and thumb control. Each movement type could start in several wrist 

rotation positions (total 17 movements) as described in Table 3-1. For example, pronated grasp 

movement started with the hand in a neutral pronated posture and a 250 ms pause, which was 

followed by a 500 ms movement, and another 250 ms pause. The times were selected to 

represent the movement time of a modern prosthetic hand through a range of motion (Belter 

and Dollar, 2011), and allow periods of posture maintenance to test stability. The kinematics for 

the movements were simulated to have smooth bell-shaped velocity profiles, cover 90% of 

range of motion of each DOF and sampled at 100 Hz rate (Beggs and Howarth, 1972; 

Georgopoulos et al., 1981).  

Table 3-1. Dynamic movements. 

This table lists all simulated movements with a description of corresponding artificial 

kinematics. Wrist pronation-supination position column describes wrist position during the 

movement whenever that DOF is constant or starting position whenever the movement requires 
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change in pronation-supination angle. Time column describes total time given for the 

movement. Each movement was prefaced and ended with a 250 ms pause included in the value 

of the Time column. The wrist f-e, wrist p-s and fist f-e movements (marked *) included a 500 

ms pause in the neutral position in the middle of the movement. 

Type of movement Wrist pronation-

supination position 

Time, s Description 

Grasp Neutral 

Pronated 

Supinated 

1 All fingers move from fully extended 

state to fully flexed and back. 

Simultaneously, the thumb moves 

from extended adducted position to 

flexed abducted and back. 

Grasp with wrist Neutral 1 Same as grasp, but the wrist flexion-

extension DOF moves from neutral 

to fully flexed and back. 

Thumb opposition Neutral 

Pronated 

Supinated 

1 Thumb moves from flexed-adducted 

position to flexed-abducted and 

back. 

Thumb pinch Neutral 

Pronated 

Supinated 

1 Thumb moves from extended 

adducted position to flexed 

abducted and back. 

Wrist f-e* Neutral 

Pronated 

Supinated 

2 Wrist moves from neutral to flexed, 

then back to neutral, maintains the 

posture for 500 ms, then to 

extended, then back to neutral. 

Wrist p-s* Neutral 2 Wrist moves to fully pronated, back 

to neutral, maintains the posture for 
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500 ms, then to fully supinated, 

back to neutral. 

Fist f-e* Neutral 

Pronated 

Supinated 

2 Same as wrist f-e but holding all 

fingers and thumb in a fist instead of 

neutral. 

The kinematics of both datasets were inverted to obtain the CMEs. To explain the inverse 

model, we will first review the model of forward control of MS system. 

Dynamic Control of Musculoskeletal Model 

We used standard excitation-contraction coupling (ECC) transformation to capture the 

dynamics of calcium-mediated contraction (𝑎𝑎) in response to neuromuscular excitation (𝑢𝑢). We 

modelled ECC as a first-order differential equation (Winters, 1995; Thelen, 2003): 

Equation 3-1 

𝑎̇𝑎 = �

𝑢𝑢−𝑎𝑎
𝑡𝑡𝑑𝑑

(0.5 + 1.5𝑎𝑎),𝑢𝑢 ≤ 𝑎𝑎
𝑢𝑢−𝑎𝑎
𝑡𝑡𝑎𝑎

⋅ 1
0.5+1.5𝑎𝑎

,𝑢𝑢 > 𝑎𝑎
, 

where 𝑢𝑢 is the excitation level of a muscle (input), 𝑎𝑎 is the contraction level of the muscle 

(output), activation and deactivation time constants ta and td were 10 ms and 20 ms, 

respectively, similar to constants for fast muscles in (Winters, 1995). Both excitation and 

contraction are normalized variables bounded between 0 and 1. Activation time constant 

describes how fast the contraction reaches the level of excitation, when excitation (control 

signal) is higher than contraction. Similarly, deactivation time constant describes how fast the 

contraction level goes down to the excitation level, if excitation is lower than contraction. 

The level of muscle activation and its force were related through a Hill-type muscle model 

(Zajac, 1989). The model describes how the maximum force that a muscle can produce 

depends on its length and speed (Zajac, 1989; Gillard et al., 2000; Yakovenko et al., 2004). 

Equation 3-2 describes these relationships in a vector form for U=32 muscles. 

Equation 3-2 

𝐹𝐹m(𝐿𝐿, 𝐿̇𝐿, 𝑡𝑡) = 𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 ⋅ 𝐹𝐹𝐿𝐿(𝐿𝐿) ⋅ 𝐹𝐹𝑉𝑉�𝐿̇𝐿� ⋅ 𝑎𝑎(𝑡𝑡) + 𝐹𝐹𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ⋅ 𝐹𝐹𝑃𝑃(𝐿𝐿), 
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where t is time; 𝐿𝐿 = (𝐿𝐿1(Θ), . . , 𝐿𝐿U(Θ))𝑇𝑇 are the musculotendon lengths of U muscles; 𝐿̇𝐿 =

�𝐿̇𝐿1(Θ, Θ̇), . . , 𝐿̇𝐿U(Θ, Θ̇)�𝑇𝑇 is the change of musculotendon length as a function of time; 𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 =

�𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚,1, . . ,𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚,U�
𝑇𝑇 and 𝐹𝐹𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = �𝐹𝐹𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,1, . . ,𝐹𝐹𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,U�

𝑇𝑇 are maximum active and passive forces of 

the muscles, respectively; 𝐹𝐹𝐿𝐿 is the relationship between musculotendon length and its 

maximum force produced (Equation 3-3); 𝐹𝐹𝑉𝑉 is the relationship between musculotendon force 

and the speed of change of its length (Equation 3-4); 𝐹𝐹𝑃𝑃 is the passive muscle force (Equation 

3-5); 𝑎𝑎 = (𝑎𝑎1(𝑡𝑡), . . ,𝑎𝑎U(𝑡𝑡))𝑇𝑇 – contraction level of the muscle. Here and later 𝐴𝐴 × 𝐵𝐵 is a cross 

product, 𝐴𝐴 ⋅ 𝐵𝐵 is elementwise multiplication. 

Equation 3-3 

𝐹𝐹𝐿𝐿(𝐿𝐿) = 2.5 ⋅ 𝐿𝐿𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝐿𝐿) − 1.25 ⋅ 𝐿𝐿norm2 (𝐿𝐿), 

where 𝐹𝐹𝐿𝐿 is the relationship between musculotendon length and its maximum force produced; 

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = max
Θ

𝐿𝐿(Θ) and 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = min
Θ

𝐿𝐿(Θ) are the maximum and minimum lengths of 

musculotendon units; 𝐿𝐿𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝐿𝐿) = 𝐿𝐿−𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚
𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚−𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚

∈ [0,1] is the musculotendon length of the muscles 

normalized to the range of each muscle. 

Equation 3-4 

𝐹𝐹𝑉𝑉(𝐿̇𝐿) = �
1 + �1−𝑒𝑒𝑒𝑒𝑒𝑒(−0.425⋅𝐿̇𝐿/𝐿𝐿𝑅𝑅)

1+𝑒𝑒𝑒𝑒𝑒𝑒(−0.425⋅𝐿̇𝐿/𝐿𝐿𝑅𝑅)� , 𝐿̇𝐿 ≤ 0

1 + 0.8 �1−𝑒𝑒𝑒𝑒𝑒𝑒(−0.425⋅𝐿̇𝐿/𝐿𝐿𝑅𝑅)
1+𝑒𝑒𝑒𝑒𝑒𝑒(−0.425⋅𝐿̇𝐿/𝐿𝐿𝑅𝑅)� , 𝐿̇𝐿 > 0

, 

where 𝐹𝐹𝑉𝑉 is the relationship between musculotendon force and the speed of change of its 

length; 𝐿̇𝐿 = 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= �𝐿̇𝐿1(Θ, Θ̇), . . , 𝐿̇𝐿U(Θ, Θ̇)�𝑇𝑇 is the change of musculotendon length as a function of 

time; 𝐿𝐿𝑅𝑅 = (𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 + 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚)/2 – mean length of the musculotendon units. 

Equation 3-5 

𝐹𝐹𝑃𝑃(𝐿𝐿) = �
𝑒𝑒𝑒𝑒𝑒𝑒�2⋅

𝐿𝐿−𝐿𝐿𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚−𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚

�−1

𝑒𝑒𝑒𝑒𝑒𝑒(1)−1
, 𝐿𝐿 > 𝐿𝐿𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

0, 𝐿𝐿 ≤ 𝐿𝐿𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
, 

where 𝐹𝐹𝑃𝑃 is the passive muscle force; at muscle length 𝐿𝐿𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = �𝐿𝐿𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,1, . . , 𝐿𝐿𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,U�
𝑇𝑇 and 

longer, the passive muscle force contributes to the force production of the musculotendon unit. 
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Muscle contraction produces a pulling force at the points of attachment of the musculotendon 

unit to the skeletal system. The force pulling on the bone segments produces rotational force 

(torque) at each DOF that a muscle crosses. The magnitude of this torque depends on the 

distance to the DOF’s axis of rotation (its moment arm):  

Equation 3-6 

𝑇𝑇(Θ, 𝐿𝐿, 𝐿̇𝐿, 𝑡𝑡) = 𝜇𝜇(Θ) × 𝐹𝐹m(𝐿𝐿, 𝐿̇𝐿, 𝑡𝑡), 

Where 𝑇𝑇 = (𝜏𝜏1, . . , 𝜏𝜏M)𝑇𝑇 is torque produced at M=18 DOFs; Θ = (Θ1, . . ,ΘM)𝑇𝑇  are generalized 

local coordinates of the model (angles of all DOFs). 

The torques calculated via Equation 3-6 were sent to the MuJoCo HAPTIX physics engine 

(Kumar and Todorov, 2015) simulating a physiological model of a human hand and forearm in 

real time to produce kinematics. The simulation software allowed extracting kinematics (joint 

angles) during simulations, which were then used to assess produced trajectories. The model is 

available upon request. 

Inverse Model 

The inverse model described each step of the forward transformation in reverse (Figure 3-1). 

In the first step, inverse torques were obtained from kinematics and the physical model of 

human hand segments using MuJoCo Pro inverse dynamics (Todorov et al., 2012). In the 

second step, the linear system describing the relationship between the inverse torque and 

muscle activity (Equation 3-6) was solved. The formula was obtained by substituting Equation 

3-2 into Equation 3-6 and moving all terms containing contraction a to the right side, everything 

else to the left side and leaving only the equations corresponding to Mc=8 controlled DOFs.  

Equation 3-7 

𝑇𝑇1 = 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 × 𝑎𝑎, 

where 𝑇𝑇1 ≜ 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖 − 𝜇𝜇 × �𝐹𝐹𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ⋅ 𝐹𝐹𝑃𝑃� is the torque we are trying to produce with 

muscle contraction levels; 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖 is the inverse torque; 𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 is the passive muscle torque; 𝑇𝑇𝑎𝑎𝑐𝑐𝑐𝑐 ≜

𝜇𝜇′ ⋅ (𝐸𝐸 × (𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 ⋅ 𝐹𝐹𝐿𝐿 ⋅ 𝐹𝐹𝑉𝑉)) is the active muscle torque; 𝐸𝐸 = (1, . . ,1)𝑇𝑇 with length Mc. In a static 

case, 𝐿̇𝐿 = 0 and 𝐹𝐹𝑉𝑉 = 1. 
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The third step in the inverse model was concerned with ECC. The contractions in non-static 

cases were transformed into muscle excitations via an analytical inverse of the Equation 3-1 

(Equation 3-8). In the static case, inverse to ECC was omitted and excitation levels were equal 

to contractions. 

Equation 3-8 

𝑢𝑢 = �
𝑎̇𝑎 ⋅ 𝑡𝑡𝑑𝑑

0.5+1.5𝑎𝑎
+ 𝑎𝑎, 𝑎̇𝑎 ⋅ 𝑡𝑡𝑑𝑑

0.5+1.5𝑎𝑎
≤ 0

𝑎̇𝑎 ⋅ 𝑡𝑡𝑎𝑎(0.5 + 1.5𝑎𝑎) + 𝑎𝑎, 𝑎̇𝑎 ⋅ 𝑡𝑡𝑑𝑑
0.5+1.5𝑎𝑎

> 0
, 

where 𝑎̇𝑎 = 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 – first time derivative of the contraction level, all other symbols as in Equation 

3-1. The values of excitations u after Equation 3-8 needed to be constrained between 0 and 1. 

The difference in the forward and inverse models lies in the second step, transformation 

between joint torques and muscle contractions. In the forward model, torques are analytically 

calculated from muscle contractions, while in the inverse model, muscle contractions are a 

result of numerical optimization in the form of linear pseudoinverse. 

Resolving Redundancy of Inverse Model 

For the model with 8 controlled DOFs and 32 muscles, Mc=8 and the length of u is U=32; 

therefore, there are more equations than variables in Equation 3-7 and there can be more than 

one solution of the pseudoinverse. We constrained the solution space by adding cost functions 

to the system. Equation 3-7 is linear on activation level which provides a benefit of using 

efficient bounded least-squares algorithms to obtain the solution (Byrd et al., 1999). To maintain 

this linearity when adding cost function, we decided to have all cost function adhere to the same 

linear structure: 𝐶𝐶1 = 𝐶𝐶2 × 𝑎𝑎. In the pseudoinverse algorithm, contraction levels were bounded 

between 0 and 1. To balance between finding the solution to Equation 3-7 and accommodating 

the cost functions, additive cost functions coefficients (A and B) were normalized together to be 

between 0 and 1. It was done by estimating the approximate maximum expected value for each 

equation in the system describing the cost function, and then dividing by that number. We used 

the following assumptions to precompute these values: 𝑎𝑎 = 1; 𝐹𝐹𝐿𝐿 = 1;𝐹𝐹𝑉𝑉 = 1;𝐹𝐹𝑃𝑃 = 1. 

Two cost functions were added to Equation 3-7. The first cost function was always included 

in the inverse and focused on reducing the metabolic cost of the movement: 0 = 𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 × 𝑎𝑎. This 

formulation of the metabolic cost favored using muscles with lower maximum forces, assuming 
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other parameters (e.g. their moment arms) were the same. A cost function that imposes a 

desired joint stiffness level was added to ensure stability of movements (see below).  

Active Muscle Stiffness 

We added a constraint on the inverse solutions to regulate the resistance to potential 

perturbations of the controlled system. Static resistance to perturbations is commonly called the 

stiffness of the system, by analogy with electrical circuits (Hogan, 1984). Assuming the 

perturbation is an instant displacement from the current trajectory, a stable control signal would 

produce compensating torques that push the joints back. As an example, consider a joint with 

one DOF and two antagonistic muscles, one flexor and one extensor (Figure 3-2), maintaining a 

static posture at joint angle 𝜃𝜃. While the posture is being maintained, the net torque at the joint 

is zero (𝜏𝜏𝑛𝑛𝑛𝑛𝑛𝑛(𝜃𝜃) = 0). If the joint is stable, a displacement in the positive direction (𝜃𝜃� = 𝜃𝜃 + 𝛿𝛿𝛿𝛿) 

would lead to negative net torque pushing the joint back (𝜏𝜏𝑛𝑛𝑛𝑛𝑛𝑛(𝜃𝜃�) < 0). Similarly, the negative 

displacement (𝜃𝜃� = 𝜃𝜃 − 𝛿𝛿𝛿𝛿) causes positive compensation (𝜏𝜏𝑛𝑛𝑛𝑛𝑛𝑛(𝜃𝜃�) > 0). Stated more generally, 

partial differential of the net torque is negative (𝛿𝛿𝜏𝜏𝑛𝑛𝑛𝑛𝑛𝑛/𝛿𝛿𝛿𝛿 < 0) in a stabilizing system. The exact 

value of the negative partial differential is the definition of stiffness and was used to measure the 

stiffness of the system: 

Equation 3-9 

Κi = −
𝛿𝛿𝑇𝑇𝑖𝑖
𝛿𝛿Θ𝑖𝑖

 

---------------- 
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Figure 3-2. Schematic of active muscle stiffness for one DOF and two muscles.  

Two antagonistic muscles are pulling on a segment producing flexion and extension torques 

at the DOF: 𝜏𝜏𝑓𝑓 and 𝜏𝜏𝑒𝑒. Together with gravitational torque (not shown) they produce a net torque 

at the DOF 𝜏𝜏𝑛𝑛𝑛𝑛𝑛𝑛. In this task of maintaining a posture 𝜏𝜏𝑓𝑓 and 𝜏𝜏𝑒𝑒 are such that 𝜏𝜏𝑛𝑛𝑛𝑛𝑛𝑛 = 0. If the DOF 

is displaced by 𝛿𝛿θ > 0, a stiff configuration of muscle activity would lead to the net torque 

becoming negative: 𝜏𝜏𝑛𝑛𝑛𝑛𝑛𝑛(θ+ δθ) < 0, which pushes the DOF back to the original state. 

Similarly, in case of a negative displacement, −𝛿𝛿θ, net torque in a stiff system would be positive 

and push the joint back.  

---------------- 

To construct an additive cost function to the inverse model, Equation 3-6 was substituted into 

Equation 3-9 to produce Equation 3-10, which is linear on muscle contraction a and was 

appended to Equation 3-7. This cost function was omitted when solving for any desired stiffness 

(Figure 3-3, Figure 3-4, Figure 3-5, Figure 3-8, and Figure 3-10). 

Equation 3-10 

𝛫𝛫𝑖𝑖∗ ⋅ 𝛥𝛥𝛩𝛩𝑖𝑖 − 𝐷𝐷𝑖𝑖(𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) −𝐷𝐷𝑖𝑖(𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖) = 𝐷𝐷𝑖𝑖(𝑇𝑇2) × 𝑎𝑎, 

𝐷𝐷𝑖𝑖(𝑇𝑇) = 𝑇𝑇𝑖𝑖 �Θ +
ΔΘi

2
� − 𝑇𝑇𝑖𝑖 �Θ −

ΔΘi
2
� 

where ΔΘ𝑖𝑖 = (𝑑𝑑Θ1, . ,𝑑𝑑Θ𝑗𝑗, . ,𝑑𝑑Θ𝑀𝑀) is the linear displacement along the DOF j: 𝑑𝑑Θ𝑗𝑗 = 0.01 ⋅

Range of Motion of DOF (𝑗𝑗) if 𝑗𝑗 = 𝑖𝑖, and 𝑑𝑑Θ𝑗𝑗 = 0 if 𝑗𝑗 ≠ 𝑖𝑖; 𝐷𝐷𝑖𝑖(𝑇𝑇)  is a linear operator that calculates 
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a finite difference of torque T across one DOF i. Differential of the inverse torque was assumed 

to be zero: 𝐷𝐷𝑖𝑖(𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖) = 0, for the purposes of decreasing the computational load of obtaining the 

inverse. This equation was calculated for each degree of freedom i (Mc=8 equations) and added 

to Equation 3-2.  

There is limited data available on the distribution of active stiffness values of hand joints in 

healthy individuals. We obtained a vector of normal stiffnesses 𝒦𝒦∗ by setting the value for the 

wrist flexion-extension DOF to 0.7 Nm/rad based on (Leger and Milner, 2000), and scaled 𝒦𝒦𝑖𝑖
∗ 

for other DOFs in proportion to the mass of the segments distal to the DOF (Table 3-2). When 

the stiffness of the model as a whole was analyzed (Figure 3-3, Figure 3-8, Figure 3-9, Figure 

3-10), the desired stiffness is reported in units of 𝒦𝒦∗. To test the responsiveness of the system 

to the imposed stiffness, in Figure 3-4, Figure 3-5, Figure 3-6 and Figure 3-7 the range of 

desired stiffness for all DOFs was set to be from 0 to 2 Nm/rad with 0.5 Nm/rad increments. 

Measuring Agonist-Antagonist Coactivation 

Two muscles are antagonistic if they have an opposing action on a DOF, as shown, for 

example, on Figure 3-2 with a flexor and extensor pulling in opposite directions. In a modelled 

system antagonists are described by opposite signs of their moment arms around a joint. 

Because of the multidimensional and realistic anatomy captured in this model, we have multiple 

agonists and multiple antagonists for each DOF. There are many possible ways to define 

coactivation between muscles. We decided to interpret the minimum of the drive supplied to 

agonists and antagonists as a common descending control signal. Mathematically, the agonist-

antagonist coactivation at a time point was defined as a minimum of the average excitation of 

agonists and average excitation of antagonists (Equation 3-7). When agonist-antagonist 

coactivation level is zero, there is no active muscle force pulling in either direction. When it 

reaches 100%, all agonists and antagonists are fully active, and their neural inputs are 

cancelling out. 

Equation 3-11 

Ω𝑖𝑖 = min (𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�𝑢𝑢𝑗𝑗,∀𝑗𝑗: 𝜇𝜇𝑖𝑖𝑖𝑖 < 0�, �𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�𝑢𝑢𝑗𝑗,∀𝑗𝑗:𝜇𝜇𝑖𝑖𝑖𝑖 > 0��) 

where Ω𝑖𝑖 is the level of coactivation of agonists and antagonists around DOF i. 
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Hardware Setup 

The described forward and inverse models were implemented in MATLAB 2018b 

(MathWorks, Inc.) and ran on Intel Core i5 2.3 GHz processor with 16 GB DDR4 RAM. The 

code for simulations is available from authors upon request. 

Experimental Setup and EMG Processing 

To test whether the CMEs can be used for prosthetic control, we performed a human 

experiment. The able-bodied subject was equipped with 16 surface Delsys Trigno EMG 

targeting 14 muscles and recording with 2000 Hz sampling frequency. The following muscles 

were targeted: biceps brachii (wrist supinator), flexor carpi ulnaris and flexor carpi radialis (wrist 

flexors), three heads of flexor digitorum superficialis (finger flexor), pronator teres (wrist 

pronator), extensor carpi radialis and extensor carpi ulnaris (wrist extensors), two heads of 

extensor digitorum (finger extensor), abductor pollicis longus (thumb abduction and extension), 

abductor pollicis brevis (thumb abduction and flexion), flexor pollicis longus (thumb abduction 

and flexion), extensor pollicis brevis (thumb adduction and extension), opponens pollicis (thumb 

abduction and flexion). The subject was asked to perform 10 repetitions of each movement from 

Table 3-1 that represent common hand usage and include dynamic and static control of wrist, 

fingers and thumb. The repetitions were performed in quick succession with sound identifying 

the start of every movement and a video instruction playing each repetition. The subject gave 

informed consent, and the protocol was approved by the local ethics committee (IRB Protocol 

#1311129283). The recorded EMG signals were processed offline as follows: demeaned, 

rectified, thresholded and low-pass filtered at cut-off frequency 10 Hz (2nd order Butterworth). 

Threshold for EMG activity was identified visually from the distribution of raw signal, by 

detecting a separation between noise and bursting EMG. EMG was resampled at 100 Hz to 

match the frequency of kinematic dataset. Principle components (PCs) describing 99% of 

variance were extracted from the processed EMGs, yielding NEMG=12 PCs. Their scores 

described presence of each PC at each time point. 

The EMG was then used to control the modelled hand in an offline setting through the CMEs 

obtained from inverse model. Similarly to EMGs, PCs describing 99% of variance were 

extracted from CMEs, yielding NCME=22 PCs. The scores of CMEs and EMGs were then used to 

obtain NCME by NEMG matrix R relating each CME principle component to each EMG principle 

component with multiple linear regression. 



54 

 

Equation 3-12 

𝑃𝑃𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝐶𝐶𝐶𝐶𝐶𝐶) = R × 𝑃𝑃𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝐸𝐸𝐸𝐸𝐸𝐸) 

where R is NCME by NEMG matrix relating principle components of CMEs and EMGs, the  

𝑃𝑃𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝐶𝐶𝐶𝐶𝐶𝐶) is NCME by NT matrix with CME principle component scores for each time point, 

and 𝑃𝑃𝐶𝐶𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝐸𝐸𝐸𝐸𝐸𝐸) is NEMG by NT matrix with EMG principle component scores of for each time 

point. Same as with previous linear pseudoinverse, interior-point algorithm was used to 

calculate each row of R(Byrd et al., 1999)(Byrd et al., 1999). After that, we simulated an EMG-

controlled hand by transforming EMG signals into CMEs with R. The quality of control was 

measured by estimating deviation from the desired trajectory for each DOF and normalizing to 

that DOF’s range of motion. 

Out of 17 movements in the dynamic dataset we removed 5 with substantially worse average 

performance: thumb pinch in pronated and supinate starting postures, and wrist movements 

with closed fist. For the remaining 12 movements, 2/10 repetitions with the worst average 

performance were omitted to account for the expected subject’s error in following the rhythm of 

movements. The principle component analysis and multiple regression were applied to that 

subset of data and used for Figure 3-9.  

Statistics and Comparisons 

For all regression analyses done in this chapter we used conventional method of fitting a 

linear model to the data and obtaining an F-statistic for significance. We used a very 

conservative threshold deeming p-value<0.001 as being significant. 

The deviation of the simulated hand from the desired trajectory was measured as an average 

angular deviation at each DOF. To compare all DOFs together, we normalized the angular 

deviation to the range of that DOF. 

Results 

We obtained CMEs with variable joint stiffness that maintain static postures and produce 

dynamic movements. CMEs reproduced the desired torque profiles at 8 degrees of freedom 

with less than 0.15% error (Figure 3-3). An increase in desired stiffness led to an increase in 

muscle activity (Figure 3-4, Figure 3-5) and measured stiffness (Figure 3-6). Furthermore, the 

measured stiffness correlated with the agonist-antagonist coactivation (Figure 3-7). Forward 



55 

 

dynamic simulations of movements controlled by CMEs yielded <5% average angular deviation 

from the desired trajectory (Figure 3-9). Experiment with controlling the simulated hand by 

surface EMGs showed that inverse model of musculoskeletal transformation can be used as a 

step in a hand myoelectric prosthetic control (Figure 3-10). 

---------------- 

 

Figure 3-3. Error in torque reconstruction by CMEs.  

A. Torque error for posture dataset. B. Torque error for movement dataset. A datum for box 

plots is a difference between the desired torques (𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖) and torques produced by the CMEs 

calculated through the inverse model from these torques. Torque error was normalized to the 

maximum static torque at the respective DOF. Boxes indicate quartiles with median (red), 

whiskers indicate the range of data. Very low errors led to medians being very close to zero and 

boxes being barely visible. 

---------------- 

We obtained CMEs producing 17 movements and 390,625 postures of the hand that 

involved individual finger, thumb and wrist control (See Dataset in Methods).  We focused on 

the control of 8 DOFs (cDOFs): wrist flexion-extension and pronation-supination, thumb 

proximal flexion-extension and abduction-adduction, fingers 2 through 5 metacarpophalangeal 

flexion-extension. These cDOFs were chosen because they allow individual digit control and 

produce recognizable hand movements. CMEs were obtained for 6 levels of desired stiffness: 

any (no K* specified in the inverse) and 𝐾𝐾∗ ∈ (0, 0.5𝒦𝒦∗,𝒦𝒦∗, 1.5𝒦𝒦∗, 2𝒦𝒦∗) from both posture and 
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movement datasets, where 𝒦𝒦∗ is a set of normally observed joint stiffnesses (see Methods). 

The CMEs were of expected levels (<50% of maximum) for unloaded hand movements and 

posture maintenance tasks (Figure 3-4). The increase in desired stiffness K* lead to rise of CME 

levels from being mostly zero at K*=0 to median excitation level near 20% at K*=2𝒦𝒦∗ in both 

datasets (p<0.001). Although most excitations stayed below 50%, we have observed the full 

range of activity from 0 to 100%. 

---------------- 

 

Figure 3-4. Change in CMEs levels with change in desired stiffness.  

A. CMEs maintaining static postures, regression line 𝑦𝑦 = 13.20𝑥𝑥 +  1.96, 𝑟𝑟 = 0.40, 𝑝𝑝 < 0.001. 

B. CMEs producing dynamic movements, regression line 𝑦𝑦 = 15.61𝑥𝑥 +  1.43, 𝑟𝑟 = 0.43, 𝑝𝑝 <

0.001. Each box describes quartiles and median (red) of CME levels a with varied stiffness. 

Boxes marked {0, 0.5, 1, 1.5, 2} mark CMEs calculated with a stiffness cost function with 

desired stiffness K* equal to the number of normal stiffness levels 𝒦𝒦∗. CMEs for boxes marked 

‘any’ were calculated without a stiffness cost function. 

---------------- 

CMEs showed rising levels of agonist-antagonist coactivation with the rise of the desired 

stiffness levels. As an example, consider excitation of major wrist pronators (pronator teres and 

pronator quadratis) and supinators (supinator, biceps brachii) at the different postures of the 

wrist (Figure 3-5). With desired stiffness at zero (K*=0), there was barely any coactivation 

present: blue and red lines do not have the region where they are both non-zero (Figure 3-5A). 
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As the desired stiffness rose, a region of coactivation of pronators and supinators grew. At high 

desired stiffness (K*=2𝒦𝒦∗) antagonistic muscles produced opposing torques that balanced each 

other out but had a steep negative slope that lead to perturbation resistance. It is important to 

note that the level of coactivation depended on the posture: when wrist was supinated (Figure 

3-5A left side on all subplots) only pronators were active, with the majority of opposing 

(pronating) torque for stiffness coming from other sources, e.g. gravitational and passive muscle 

forces. As a quantitative measurement of agonist-antagonist coactivation, we took the minimum 

of the average excitation of all agonists and all antagonists. This value can be interpreted as a 

common descending control signal for the muscles, related to regulation of the stiffness, 

because it produces muscle torques that cancel each other. Figure 3-5B shows the rise in 

coactivation with the rise in K* (p<0.001). Although the coactivation in this example rose, the 

median coactivation stayed at zero. 

---------------- 
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Figure 3-5. Example of CME profiles with different levels of desired stiffness.  

A. CMEs of major wrist pronators (red) and supinators (blue) calculated to maintain a range 

of wrist positions from supinated to pronated. B. Coactivation of the pronators and supinators 

calculated for each posture using Equation 3-7 for the task shown in subplot A. Each box 

indicates quartiles and median (red). Regression line 𝑦𝑦 = 0.0106𝑥𝑥 +  0.0003, 𝑟𝑟 = 0.26, 𝑝𝑝 <

0.001.  

---------------- 

We found a linear relationship between the desired stiffness K* imposed in the inverse and 

the measured stiffness K (Figure 3-6, p<0.001). DOFs split into two visually distinguishable 
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groups: (i) wrist and thumb joints; and (ii) finger joints. Wrist and thumb joints had a larger 

intercept, indicating their intrinsic biomechanical stability, steeper regression slope and higher 

regression coefficient (r-value). Much shallower regression slope for fingers reflects a weaker 

relationship between desired and actual stiffness for those joints. Relationship between desired 

and measured stiffness was stronger in movement dataset (average r=0.63) than in the static 

one (average r=0.35) for fingers. 

---------------- 

 

Figure 3-6. Desired (K*) and observed (K) levels of stiffness in the inverse solutions.  

A. Observed stiffness in static postures. B. Observed stiffness in dynamic movements. 

Observed stiffness K was measured using Equation 3-5 on the inverse solutions obtained for 

different levels of desired stiffness K*. “Any” marks CMEs computed without stiffness cost 

function. Error bars show standard error (SE). All linear regressions have p<0.001. 

---------------- 

We investigated the mechanism behind the generation of stiffness in the model. For each 

datum of both datasets, we measured the agonist-antagonist coactivation level and stiffness for 

8 degrees of freedom. We found a linear relationship between agonist-antagonist coactivation 

and the measured stiffness in all DOFs (Figure 3-7, p<0.001). The relationship was stronger in 

the movement dataset, than in the static, as indicated by difference in r-values. On average, 

37% of variance in postures (mean r=0.60; r2=0.37) and 61% in movements (mean r=0.77; 
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r2=61) was explained by the agonist-antagonist coactivation. The degree to which coactivation 

contributed to stiffness varied highly between DOFs with the weakest relationship in thumb 

flexion (r=0.39 and 0.57 in postures and movements, respectively), and strongest in wrist 

rotation (0.75 and 0.99). We observed negative stiffness corresponding to positive torque 

differential and therefore an unstable subset of positions for several DOFs (Figure 3-7A (a)). A 

clustering seen in Figure 3-6B (b) as well as other subplots is due to the sampling limitations of 

the datasets, specifically, 5 levels of desired stiffness. Other sampling limitations that lead to 

clustering of the data come from the structure of the kinematics: limited number of points 

sampled for the posture dataset (5 per DOF) and limited number of movements without 

accounting for their variability between repetitions. Observed behavior suggests that agonist-

antagonist coactivation plays a crucial role in the generation of joint stiffness. 

---------------- 
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Figure 3-7. Agonist-antagonist coactivation is partially responsible for the joint 
stiffness.  

A. Static posture dataset. B. Dynamic movements dataset. Each subplot contains a heatmap 

with two-dimensional probability density of coactivation and measured stiffness K for a specific 

degree of freedom. The probability density was estimated from a respective (movement or 
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posture) dataset and a range of desired stiffnesses: (0; 0.5𝒦𝒦∗; 𝒦𝒦∗; 1.5𝒦𝒦∗; 2𝒦𝒦∗). (a) marks 

several cases of negative stiffness, i.e. positive torque differential, which corresponds to 

unstable movements and postures. (b) marks clustering in probability density heatmaps as a 

result of limited sampling of levels of stiffness, postures and movements. All regression lines 

have p<0.001. 

---------------- 

We performed experiments with CMEs controlling a hand to verify that the CMEs produce 

the desired movement. The experiments consisted of calculating CMEs from the dataset of 

movement kinematics, and then using them to simulate the movement (Figure 3-8A). We 

obtained CMEs for 17 movements with 6 levels of desired stiffness, then simulated the forward 

dynamics and compared the resulting kinematics to the desired trajectories. Figure 3-8B shows 

an example of a grasping movement being produced by CMEs with 4 levels of desired stiffness. 

CMEs computed without a specified stiffness or computed with desirably unstable behavior 

(K*=0) deviated from the desired trajectory at DOFs that were intended to stay static and did not 

return (marked ‘unstable’). The inverse torques at those DOFs were very close to zero, because 

the neutral posture of the wrist is very close to equilibrium of pronation-supination. Small inverse 

torques lead to negligible activity of muscles acting on that DOF, and instability in control. When 

the stiffness was added to the solution, the model maintained the posture (Figure 3-8B K*=𝒦𝒦∗, 

K*=2𝒦𝒦∗). Increased desired stiffness in the inverse lead to rise of the CME levels (Figure 3-8C), 

as was expected from previous results. Several distinctive behaviors were observed that are 

characteristic of muscle activity in a movement (Wachholder, 1928; Angel, 1974; Wadman et al., 

1979). First, wrist pronators and supinators (Figure 3-8C green shade) displayed constant levels 

of activity through the movement, maintaining the wrist position. Second, wrist extensors (ECR, 

ECU), finger flexors (FDS, FDP), and some of the thumb muscles (FPB, FPL, OP, APB) had a 

single burst of activity during movement (Figure 3-8C pink shade). Third, FCU, finger extensors 

(EDM, ED, EIND) and the rest of the thumb muscles (EPL, EPB, APL, ADPT) had two bursts 

during the movement (Figure 3-8C blue shade). CMEs were able to simulate the desired 

trajectory, increase in desired stiffness ensured stability at static DOFs, and CMEs showed 

several physiological traits. 

---------------- 
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Figure 3-8. Dynamic forward simulation of a grasping movement controlled by CMEs.  

A. Schematic of the experiment. Kinematics for a desired movement (kinematics*) were 

transformed into CMEs through the inverse model with varied level of desired stiffness. The 
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CMEs were then used to control the forward model. Color legend for levels of stiffness is the 

same for all subplots. B. Kinematic traces for a grasping hand movement of 8 DOFs.  Wrist is 

maintained still, all digits fully close and then open. C. CMEs producing the grasping movement. 

Green shade marks wrist pronators and supinators which maintain a constant level of activity 

throughout the movement. Red shade marks muscles with a single burst; blue – with two bursts 

of activity. 

---------------- 

We quantified the ability of the CMEs to simulate all the movements from the movement 

dataset. To estimate the error in a simulation, we measured normalized angular deviation for 

each DOF during a movement (Figure 3-9). Most DOF trajectories in most movements were 

reconstructed with errors less than 5% of ROM. Unstable solutions (0 desired stiffness) showed 

not significantly worse performance than the solution with any stiffness (p=0.053, two-tailed t-

test) or with 50% (p=0.09). We can reliably control hand motions with low deviations from the 

movement trajectory with varied stiffness. 

---------------- 

 

Figure 3-9. Control of movements using CMEs.  

Normalized angular deviation from the desired trajectory during a movement. Angular 

deviation was normalized to the range of motion at the respective DOF. Box indicates quartiles 

and median, whiskers indicate the range of data. A datum for the boxplot corresponds to a 

timepoint in desired kinematics (see Dataset) and a specific DOF. 
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---------------- 

We used transformation from recorded to computed muscle activations to simulated hand 

movement. A participant performed 10 repetitions of 17 movements from the movement 

dataset, while surface EMG data was recorded from 12 electrodes. After processing, principle 

components were extracted from the EMG data and the CMEs for the corresponding 

movements. We used CMEs generated with desired stiffness K*=𝒦𝒦∗ based on the values 

reported in the literature (see Methods). A multiple linear regression between the PCs of EMGs 

and CMEs was calculated. Then the processed EMG was used to control the hand offline 

through the linear transformation into the CMEs. Figure 3-10A shows an example of produced 

kinematic traces for a grasping movement. The shape of the produced kinematics has several 

characteristics of the desired trajectories. Static wrist DOFs are maintained near their desired 

posture, deviating less than a quarter of the ROM. Dynamic thumb DOFs cover most of the 

ROM with a single burst of movement and return to their starting position. The errors of finger 

joint excursions were the highest, possibly because the movement spanned the whole ROM. 

The movement was also generated with two bursts instead of one and a noticeable delay. The 

types of movements that can be controlled by the model depends on the recorded signals from 

the subject. To estimate the best performance by the model and identify the movements that 

can be done in this setup with this subject, we selected 12 movements with smallest average 

deviation error. The five movements removed were: wrist flexion-extension with a closed fist, 

and two of the thumb movements in pronated and supinated postures, which had visibly worse 

average performance. From the remaining 12 movements we removed 2/10 repetitions based 

on the performance to account for subject not synchronizing with the kinematics. After redoing 

the PCA and regression on the described subset of data, CME profiles were reconstructed with 

13%±15% error. In the forward simulation, static DOFs showed smaller errors than the dynamic 

(p<0.001, one-tailed t-test) with median deviation of 9.77% ROM being almost two times less 

than median deviation of dynamic: 18.99%. For DOFs with smaller ROM, e.g. fingers, it 

corresponds to 9° and 18° resolution for postures and movements, respectively. In DOFs with 

larger DOFs, e.g. wrist, the values reach 18° and 36°. The simulations of the EMG control were 

performed in real time, with a loop time needed to estimate the kinematics from the EMGs being 

less than 2 ms, which allows a 500 Hz rate of controller loop. 

---------------- 
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Figure 3-10. Control of dynamic movements using recorded EMG.  

A. An example of a grasping movement produced by the MS model. Black – desired 

kinematic traces, red – controlled by the EMG recorded from a subject following the instructions. 

B and C: mean absolute deviation of static and dynamic DOFs from the desired postures, 

respectively, in 12 movements. A datum for the histogram corresponds to an average deviation 

of a DOF during a movement. The forward simulation model was controlled by EMGs 

transformed into CMEs via a regression between the principle components of EMGs of a 

subject performing 8/10 repetitions of 12/17 movements and the principle components of CMEs 

producing the same movements with constant desired stiffness K*=𝒦𝒦∗. 

-------------------- 
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Discussion 

We calculated muscle excitation profiles for a complex model of a human hand with varied 

levels of joint stiffness that maintained postures and produced movements. The stiffness was 

partially produced by agonist-antagonist coactivation, and partially by the internal biomechanics 

of joints and passive forces. We showed the potential of using this approach for control of a 

myoelectric biomimetic prosthesis. 

The levels of CMEs increased with the desired stiffness and varied depending on the muscle 

and the posture. Previous studies have demonstrated an increase in muscle activity with the 

desire of a subject to resist perturbations (Hogan, 1984; De Serres and Milner, 1991). Variability 

of muscle activity has also been reported to be between 1% and 60% of MVC when maintaining 

a posture (Antony and Keir, 2010). The observed levels of CMEs are thus physiologically 

reasonable. 

We expected some level of stiffness to be always present at all joints due to the 

characteristics of the muscle force production. Specifically, when the muscle operates on the 

‘ascending limb’ of the force-length profile the force produced by it increases when it elongates 

(Zajac, 1989). It has been shown that muscles in humans operate within the ascending limb 

when the measurements are done in the physiological range of motion (Gillard et al., 2000; 

Maganaris, 2001), which was reflected in the force-length relationship used in this study. 

Keeping that in mind, consider a simplistic model system with 1 DOF and two antagonistic 

muscles (Figure 3-2). Extension of the joint always leads to elongation of the flexor and a 

corresponding increase in force production. Similarly, the extensor would shorten and produce 

less force. Together they create a flexion joint torque, which pushes the joint back towards its 

original position. Similarly, an extension torque would be generated upon flexing the joint. 

Together these effects result in a negative differential of joint torque, and perturbation-resisting 

stiffness. When simulating a complex model of the human hand, we observed positions where 

some of the DOFs could not be stabilized (Figure 3-6). Specifically, when all DOFs were 

positioned at the extremes of their ROMs, finger joints were often unstable. That could be 

explained by several key differences between the described 1-DOF model and our model. First, 

the 1-DOF model ignores changes in the moment arm as a function of joint angle, which might 

compensate or even invert the changes in muscle length. Second, this simplified model does 

not include complex dynamics of changes in muscle lengths around a joint containing two DOFs 
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(e.g. wrist or thumb in our model) (Sobinov et al., 2019). Both reasons lead to an expectation 

that there will be postures that could not be stiffened, and that the range of observed stiffnesses 

would be dictated by MS variables. 

In our experiments, we observe the latter as different slopes of regression for wrist, thumb 

and finger stiffness. The observed and desired stiffness correlated stronger in the movement 

than in posture dataset for fingers, which suggests that the movements span the stable subset 

of hand postures. To summarize, we were successfully able to control stiffness of wrist and 

thumb, and to a lesser extent the fingers with the limits imposed by the MS kinematic variables. 

The mechanism behind stiffness production relied on agonist-antagonist coactivation (37% of 

variance in postures and 60% in movements) and on the passive biomechanics of the hand. To 

explain the mechanism behind a single muscle producing the stiffness at a DOF, let us again 

consider the 1-DOF system. Even if a flexor or extensor is lacking, the stiffness can be 

produced by activity of a single muscle, because elongation and shortening of each muscle 

produces a stabilizing torque. Changing the level of activity of the agonist in this case 

corresponds to the control of impedance (Hogan, 2002). The resistive antagonistic force to the 

active muscle can be provided by interaction and gravity torques. Both mechanisms: 

coactivation and impedance control, are employed by the central nervous system for 

stabilization of movement. 

Currently available biomimetic controllers for prosthetics employ simple 1 to 3-DOF models 

(Eilenberg et al., 2010; Crouch and Huang, 2016) because the computational load of 

simulations exceeds the capabilities of the microchips that can be used in a prosthesis. Another 

common concern is the verification of all MS variables employed in the model (Crouch and 

Huang, 2016). Due to recent developments in validation techniques (Boots et al., 2019) and the 

approximation of MS kinematic variables (Sobinov et al., 2019), we were able to simulate 18 

DOFs of a human hand with 32 muscles in real time with intended control of 8 of them. Such 

drastic changes in the available complexity of the model should spark the development of the 

next generation of biomimetic controllers that do not need to constrain themselves to minimal 

description. 

Evaluation of the CMEs and the inverse model provided an important tool in the analysis and 

identification of potential problems in the forward biomimetic prosthetic controller. First, it 

allowed us to establish that the full range of motion is achievable, and showed which parts of 
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the MS model prevent a specific posture from being reached. Using such analysis, we identified 

passive forces that were too strong and were able to adjust them. Second, we found that non-

smooth profiles in the muscle model lead to instability of the model behavior near the transition 

points. Specifically, using linear piecewise force-length relationship induced oscillations in the 

forward and the inverse. Third, it allowed us to find DOFs that could not be independently 

controlled because of the limitations of the model. For example, the MS model in the current 

form cannot solve for the torques simultaneously at metacarpophalangeal and proximal 

interphalangeal joints, because they are crossed by the same sets of muscles, but with different 

moment arms, which creates a linear system without a solution. The separate control of these 

joints can be achieved when the model includes internal hand muscles that cross only 

metacarpophalangeal joint. These examples demonstrate the importance of the development of 

the inverse models to the control schemes for identification of problems. 

We were able to relate the CMEs to the recorded surface electrical activity of muscles and 

produce trajectories closely resembling the desired movements. The resolution of movement 

reconstruction allowed, on average, to distinguish 10 points of control per DOF for static DOFs 

and 5 points per dynamic DOFs. An inverse solution that relates the produced CMEs to the 

recorded EMGs has a capability to account for some of the subject-specific variability in the MS 

structure. In addition to using the CMEs as a proxy in control of a prosthesis, it can be added to 

the dynamic control signal to provide the posture-maintaining component that was removed 

from the EMGs during noise processing. Adding the signal at the control level of the muscle 

activity is more meaningful than introducing it at the plant level, because it employs stabilization 

methods innate to biomimetic controllers. Further development is needed to identify a better 

structure of relation between the CMEs and EMGs. 

In the current study we used a vector of desired stiffnesses with values proportional to the 

inertia of the segment. The choice for the selection was dictated by the limited information 

available on the stiffness of the hand joints in healthy subjects in posture and movement (Leger 

and Milner, 2000). The responses of each joint to the imposed stiffness varied, which indicates 

the need for a better selection of the stiffness values. We plan to address this problem in the 

future by extracting the stiffness values from the recorded EMG activity by relating it to sets of 

CMEs with varied levels stiffness. A dedicated set of experiments is needed to achieve that task 

and evaluate the capability of the inverse solutions to be used in a biomimetic controller. 
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To conclude, we used a novel method to compute muscle activity profiles that control a 

complex 8-DOF and 32-muscle model of a human hand with varied levels of active muscle-

based joint stiffness. The mechanism behind the generated stiffness was partially explained by 

agonist-antagonist coactivation, and partially by the interactions of single muscles with the joint 

biomechanics. The activations were used offline as a part of a biomimetic myoelectric controller 

which demonstrated their potential to be used for control of a prosthesis for a transradial 

amputee. 

Supplementary information 

Table 3-2. The list of simulated DOFs. 

Name of the DOF is the unique name used in simulations and figures. It has the following 

structure: <LIMB>_<JOINT>_<MIN>_<MAX>. LIMB corresponds to the limb where the joint is 

located, with ‘ra’ meaning ‘right arm’. JOINT is the joint at which the DOF is located, for example 

‘wr’ for ‘wrist’. Digit joints have a number at the end identifying the identifying number of the 

finger: 1: thumb; 2: index; 3: middle; 4: ring; 5: pinky. The last two suffixes MIN and MAX 

indicate the anatomical position of the DOF at the minimum and maximum of the range, e.g., 

“ra_wr_s_p” indicates that the minimum of the wrist pronation-supination DOF at -1.5708 is the 

supinated posture, and the maximum, 1.5708 – pronated. K* column lists the desired stiffness 

used in the inverse cost function. Values for wrist DOFs were taken from (Leger and Milner, 

2000). For other DOFs K* was chosen to be proportional to the mass of the distal segment. For 

example, for index finger proximal flexion-extension K* = <mass of proximal, middle and distal 

phalanx of index finger> / <mass of hand> * 0.7071. Masses of each segment are specified in 

the MuJoCo model. 

id Name Range, rad Description K*, Nm/rad 

1 ra_wr_s_p -1.5708 
1.5708 

wrist pronation/supination 0.7071 

2 ra_wr_e_f -1.2217 
1.2217 

wrist flexion/extension 0.7071 

3 ra_cmc1_f_e 0 0.8727 thumb proximal 
flexion/extension 

0.0746 

4 ra_cmc1_ad_ab 0 0.8727 thumb proximal 
abduction/adduction 

0.0746 

5 ra_mcp1_f_e -0.7854 0 thumb central flexion/extension 0.0675 
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6 ra_ip1_f_e -1.5708 0 thumb distal flexion/extension 0.0309 

7 ra_mcp2_e_f 0 1.5708 index proximal flexion/extension 0.0880 

8 ra_pip2_e_f 0 2.0944 index central flexion/extension 0.0569 

9 ra_dip2_e_f 0 1.5708 index distal flexion/extension 0.0250 

10 ra_mcp3_e_f 0 1.5708 middle proximal 
flexion/extension 

0.0933 

11 ra_pip3_e_f 0 2.0944 middle central flexion/extension 0.0546 

12 ra_dip3_e_f 0 1.5708 middle distal flexion/extension 0.0228 

13 ra_mcp4_e_f 0 1.5708 ring proximal flexion/extension 0.0658 

14 ra_pip4_e_f 0 2.0944 ring central flexion/extension 0.0385 

15 ra_dip4_e_f 0 1.5708 ring distal flexion/extension 0.0178 

16 ra_mcp5_e_f 0 1.5708 pinky proximal flexion/extension 0.0501 

17 ra_pip5_e_f 0 2.0944 pinky central flexion/extension 0.0269 

18 ra_dip5_e_f 0 1.5708 pinky distal flexion/extension 0.0129 

Table 3-3. The list of simulated musculotendon actuators.  

Name column describes the short name used in simulations and figures. Full name describes 

the anatomical name of the muscle and specifies the head of the actuator. DOFs lists all DOFs 

that each muscle spans by referencing ids from the Table 3-2. Lmin, Lpass, Lmax list the minimum 

length of musculotendon unit, length at which the passive force kicks in, and maximum length 

(see Equation 3-2). Minimum and maximum length of musculotendon unit were obtained from 

the raw data and random sampling of the approximating function (Sobinov et al., 2019). Fpass 

and Fmax list passive and maximum force of the musculotendon actuator (see Equation 3-2 and 

Boots et al., 2019). 

id Name Full name DOFs Lmin Lpass Lmax, m Fpass Fmax, N 

1  BIC_LO  Biceps brachii long 
head 

 1 0.328 0.433 0.445 10.92 154.3 

2  BIC_SH  Biceps brachii short 
head 

 1 0.248 0.354 0.366 10.92 154.3 

3  SUP  Supinator  1  0.068 0.086 0.088 25.55 361.0 

4  PT  Pronator teres  1  0.217 0.235 0.237 23.1 317.2 
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5  PQ  Pronator quadratus  1  0.022 0.033 0.041 12.25 168.2 

6  ECR_LO  Extensor carpi 
radialis longus 

 1 2 0.316 0.346 0.349 14 136.4 

7  ECR_BR  Extensor carpi 
radialis brevis 

 1 2 0.315 0.348 0.352 17.15 167.1 

8  ECU  Extensor carpi 
ulnaris 

 1 2 0.318 0.334 0.336 12.25 119.3 

9  FCR  Flexor carpi radialis  1 2 0.287 0.332 0.337 18.2 54.2 

10  FCU  Flexor carpi ulnaris  1 2 0.294 0.327 0.331 35 104.2 

11  FDS5  Flexor digitorum 
superficialis (pinky 
finger) 

 2 16 17  0.312 0.365 0.371 7.35 58.4 

12  FDS4  Flexor digitorum 
superficialis (ring 
finger) 

 2 13 14  0.326 0.381 0.387 8.4 57.7 

13  FDS3  Flexor digitorum 
superficialis (middle 
finger) 

 2 10 11  0.335 0.393 0.399 14.7 109.1 

14  FDS2  Flexor digitorum 
superficialis (index 
finger) 

 2 7 8  0.334 0.386 0.391 12.6 117.8 

15  FDP5  Flexor digitorum 
profundus (pinky 
finger) 

 2 16 17 
18 

0.329 0.386 0.392 8.75 69.6 

16  FDP4  Flexor digitorum 
profundus (ring 
finger) 

 2 13 14 
15 

0.344 0.402 0.409 12.95 89.1 

17  FDP3  Flexor digitorum 
profundus (middle 
finger) 

 2 10 11 
12 

0.356 0.416 0.422 14.35 106.5 

18  FDP2  Flexor digitorum 
profundus (index 
finger) 

 2 7 8 9 0.347 0.409 0.415 14.35 134.1 

19  EDM  Extensor digiti 
minimi 

 2 16 17 
18 

0.373 0.395 0.423 5.25 78.7 

20  ED5  Extensor digitorum 
(pinky finger) 

 2 16 17 
18  

0.372 0.398 0.424 1.75 26.2 
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21  ED4  Extensor digitorum 
(ring finger) 

 2 13 14 
15 

0.386 0.414 0.441 4.2 122.1 

22  ED3  Extensor digitorum 
(middle finger) 

 2 10 11 
12 

0.396 0.429 0.458 5.95 109.0 

23  ED2  Extensor digitorum 
(index finger) 

 2 7 8 9 0.397 0.431 0.458 3.85 52.9 

24  EIND  Extensor indicis  2 7 8 9 0.231 0.261 0.292 4.55 62.6 

25  EPL  Extensor pollicis 
longus 

 1 2 4 3 5 
6 

0.243 0.274 0.294 6.65 402.7 

26  EPB  Extensor pollicis 
brevis 

 2 4 3 5 0.168 0.179 0.199 4.55 42.9 

27  FPB  Flexor pollicis 
brevis 

 4 3 5  0.079 0.101 0.104 4.55 34.9 

28  FPL  Flexor pollicis 
longus 

 2 4 3 5 6  0.230 0.264 0.289 17.85 136.9 

29  APL  Abductor pollicis 
longus 

 1 2 4 3  0.166 0.181 0.198 13.65 128.9 

30  OP  Opponens pollicis  4 3  0.058 0.064 0.064 10.15 77.8 

31  APB  Abductor pollicis 
brevis 

 4 3 5  0.059 0.074 0.076 5.25 40.2 

32  ADPT  Adductor pollicis 
transversus 

 4 3 5  0.032 0.061 0.064 3.15 141.4 
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Chapter 4 Model of a bilateral Brown-type central pattern 
generator for symmetric and asymmetric locomotion 

(this chapter is taken directly from my publication “Sobinov A, Yakovenko S (2017) Model of 

a bilateral Brown-type central pattern generator for symmetric and asymmetric locomotion. J 

Neurophysiol:jn.00443.2017 Available at: http://dx.doi.org/10.1101/146993.”) 

Abstract 

The coordinated activity of muscles is produced in part by spinal rhythmogenic neural 

circuits, termed central pattern generators (CPGs). A classical CPG model is a system of 

coupled oscillators that transform locomotor drive into coordinated and gait-specific patterns of 

muscle recruitment. The network properties of this conceptual model can be simulated by a 

system of ordinary differential equations with a physiologically-inspired coupling locus of 

interactions capturing the timing relationship for bilateral coordination of limbs in locomotion. 

While most similar models are solved numerically, it is intriguing to have a full analytical 

description of this plausible CPG architecture to illuminate the functionality within this structure 

and to expand it to include steering control. Here, we provided a closed-form analytical solution 

contrasted against the previous numerical method. The evaluation time of the analytical solution 

was decreased by an order of magnitude when compared to the numerical approach (relative 

errors, <0.01%). The analytical solution tested and supported the previous finding that the input 

to the model can be expressed in units of the desired limb locomotor speed. Furthermore, we 

performed parametric sensitivity analysis in the context of controlling steering and documented 

two possible mechanisms associated with either an external drive or intrinsic CPG parameters. 

The results identify specific propriospinal pathways that may be associated with adaptations 

within the CPG structure. The model offered several network configurations that may generate 

the same behavioral outcomes.  

New & Noteworthy 

Using a simple process of leaky integration, we developed an analytical solution to a robust 

model of spinal pattern generation. We analyzed the ability of this neural element to exert 

locomotor control of the signal associated with limb speeds and tested the ability of this simple 

structure to embed steering control using the velocity signal in the model’s inputs or within the 

internal connectivity of its elements. 
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Introduction 

Specialized neural elements in the spinal cord, known as the central pattern generators 

(CPGs), contribute to the generation of periodic coordinated patterns of locomotor activity 

(Grillner and Zangger, 1975). Discovered in deafferented preparations, CPGs do not require 

sensory signals to produce locomotor behavior; however, their pattern is greatly influenced by 

sensory and descending inputs (Yakovenko, 2011; Prochazka and Ellaway, 2012). Specifically, 

the direct electrical stimulation of a brainstem structure called the mesencephalic locomotor 

region (MLR), even in decerebrated animals, produces oscillations in the CPGs and subsequent 

locomotor behavior (Grillner and Wallén, 1985). This locomotor behavior is characterized by the 

complex coordinated actions of multiple muscle groups. It is remarkable that a change in either 

the magnitude or frequency of MLR stimulation can generate all appropriate modifications of 

these patterns. This increase in stimulation expresses a full repertoire of gaits with continuous 

transitions, such as from walking to trotting or galloping in over-the-ground locomotion (Shik et 

al., 1966), or transitioning from slow walking to swimming in amphibians (Cabelguen et al., 

2003), which is faster than the walking mode of locomotion. Thus, increasing stimulation input 

current corresponds to an increase in locomotor velocity.  

Many CPG models were developed over the last century (Verzár, 1923; Taga et al., 1991; 

Bashor, 1998; Yakovenko et al., 2005; Rybak et al., 2006; Markin et al., 2010; Barnett and 

Cymbalyuk, 2014). Simulated model structure and its parameters are usually derived from 

observing the motor output patterns or their changes in response to external inputs or naturally 

occurring variations. These models give rise to the mechanistic descriptions that capture 

biological organization and the processes; however, they generally start as phenomenological 

or statistical representations of observed phase variations or timing in the recorded muscle 

activity. For example, both the limb-based Brown’s CPG (Brown, 1911) and the joint-based 

Grillner’s CPG (Grillner, 1981) are similarly founded on the observations of multiple 

representative electromyographic (EMG) profiles providing insight into the functional 

organization of this circuitry.  

The idea of a CPG as a distributed mechanism that integrates convergent inputs (Grillner 

and Wallén, 1985) has been supported by both computational and experimental studies. Using 

calcium imaging, the spatiotemporal activity of rhythmogenic circuitry was found to be 

functionally distributed with motoneurons in the rostral lumbar and sacral segments of the spinal 
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cord (Bonnot et al., 2002; O’Donovan et al., 2005). The spatiotemporal distribution of neural 

activity throughout the lumbar enlargement with descending control and sensory inputs intact 

was visualized by combining the anatomical location of the motoneurons with information about 

their activity during normal locomotion (Yakovenko et al., 2002). This was also supported by 

observations of independent and coupled recruitment of flexor and extensor rhythmogenic 

spinal circuits using selective optogenetic approaches (Hägglund et al., 2013). The 

rhythmogenesis in only flexors or only extensors observed with optogenetics supports the 

computational observation of a switch-like transition between flexors and extensors (or more 

precisely, limb protractors and retractors), which identifies them as distinct network elements 

(Yakovenko et al., 2002). This bilateral, switch-like activation of the motor pools spanning the 

full rostocaudal extent of the lumbosacral enlargement is likely associated with distributed 

rhythm-generating networks responsible for this activity.  

The integration of feedforward predictions and sensory feedback about ongoing execution is 

the optimal solution for generating robust control of complex body morphology (Kuo, 2002). 

Over the course of evolution, the process of optimization within control pathways has likely been 

concerned with the optimization of locomotion, as this is a central behavior that is essential for 

animal survival (Yakovenko, 2011). One engineering solution to the problem of computing 

predictive commands for complex systems is the use of inverse models (Smith, 1957; Wolpert 

and Ghahramani, 2000). The complex transformation from muscle excitations into movement 

kinematics could be internalized for inverse solutions that generate appropriate output for the 

desired kinematic input. It is then not surprising that dedicated rhythmogenic networks for 

locomotion may be embedding the dynamics of body-ground interactions to solve the problems 

of intra- and interlimb coordination (Taga et al., 1991; Full and Koditschek, 1999). The accuracy 

of these embedded neural calculations of MS transformation may be fine-tuned by experience 

(Wolpert et al., 1998; Bhushan and Shadmehr, 1999; Kawato, 1999; Ijspeert et al., 2013). It is 

important to acknowledge that sensory feedback pathways may also shape the final output of 

motor pathways and compensate for dynamics during locomotion. In addition, there is 

considerable evidence that CPGs integrate sensory inputs together with supraspinal commands 

to generate changes in the timing and magnitude of locomotor activity (Ijspeert, 2008; 

Yakovenko, 2011). The inputs from descending pathways may also be phasically modulated by 

supraspinal interactions to provide appropriate locomotor synergistic coupling, e.g., by the 

phasic modulation from cerebellum (Arshavsky and Orlovsky, 2016) receiving sensory feedback 

about ongoing phasic activity via ascending tracts. The theoretical details of interactions 
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between multiple descending pathways on the spinal pattern generating circuitry remains to be 

unknown. 

CPG models offer a unique research opportunity to understand the interplay between these 

neural directives and biomechanical constraints that govern a complex dynamic task. To this 

extent, we have previously used inverse solutions of a CPG model to infer the nature of 

descending inputs (Yakovenko, 2011). The surprising result of these simulations was that the 

input to the CPG was the speed of each limb. Described mathematically as a system of 

differential equations (Matsuoka, 1985; Schöner et al., 1990; Wallén et al., 1992; Cymbalyuk et 

al., 2002; Rybak et al., 2006; Yakovenko, 2011), CPG models are hard, even impossible, to 

solve analytically in the form of known functions and variables. Still, analytical expressions have 

several advantages over numerical models. Unlike numerical solutions that often suffer from the 

accumulating errors and inversely related computational load, the analytical solutions are 

precise within assumptions taken during their derivation. Even though they are also evaluated, 

their formulation is more efficient and faster than the approximate numerical solutions.  

In this study, we developed a method to obtain an analytical solution to one of the simplest 

implementations of a locomotor CPG using a rate network with continuous variables, not spikes. 

We used this analytical expression to further test the ability of this circuitry to embed the 

regulation of phases appropriate for different speeds and control steering with asymmetric gaits. 

While the identification of pattern generating elements is a considerable challenge in 

experimental techniques, the function of distributed elements of a CPG can be probed with 

computational methods that allow us to monitor and manipulate any part of the circuit. We 

tested two hypotheses in this study: 1) the exact analytical solution exists for a bilateral CPG 

model implemented with a leaky integration process; 2) the intrinsic circuit redundancy in a CPG 

can accommodate the expression of asymmetric gait. The function of embedding the 

asymmetric representations of gait may be relevant for understanding steering and short- and 

long-term adaptations within spinal systems.  

Methods 

Model description 

While a few CPG models of neural activity consider specific ion dynamics using the Hodgkin-

Huxley formulation (Cymbalyuk et al., 2002; Rybak et al., 2006), our model captures gross CPG 
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network dynamics, described by T.G. Brown, in a form of gated leaky integration. We expressed 

the input-output relationship using coupled leaky integrators formulated as a system of ordinary 

differential equations (ODEs). The system of ODEs can be expressed in matrix form (Equation 

4-1), with ipsilateral antagonism expressed as abrupt, non-overlapping state transitions. The 

state transitions of coupled reciprocal integrators may require complex handling. An event 

associated with any given state value (xi) crossing 1 (detected at machine precision) triggers the 

resetting of the state to 0 and the start of integration for the ipsilateral antagonist. Small 

perturbations at the transition points could lead to instability. We have solved this problem by 

allowing only the switching of reciprocal states initiated by the transition from 1 to 0. The 

reversal of integration to 0 or negative values does not initiate the integration in the reciprocal 

state in this model. In Figure 4-1, for example, if the left flexor (x1) reaches 1, it resets to 0 and 

turns off, while the left extensor (x2) switches on. 

Equation 4-1 

𝑥̇𝑥 = 𝑈𝑈0 + 𝐺𝐺𝑢𝑢𝑢𝑢 + 𝐺𝐺𝑙𝑙𝑥𝑥 + 𝐺𝐺𝐺𝐺 

where x = (x1, x2, x3, x4)T - state vector, U0 - constant input from intrinsic connections, Gu - 

extrinsic input gains, u - extrinsic inputs, Gl - leak gains, G - weights for connections between 

integrators (rff, rfe, ref, ree weights in Figure 4-1). 

---------------- 

 

Figure 4-1. Schematic of the bilateral locomotor CPG model. 

The oscillatory behavior in each half-center (marked 1-4) was generated through an intrinsic, 

leaky integrate-to-threshold resetting. This process was also under regulation from intrinsic 

inputs governed by parameters (rff, rfe, ref, ree). The flexor half-centers (blue) were reciprocally 

connected to extensor half-centers (red). See Equation 4-1 and Equation 4-2 for details. 

---------------- 
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To simplify model parameter space, the parameters were coupled assuming symmetrical 

organization across the midline, as seen in Equation 4-2. Additionally, the connection between 

flexors (rff) was removed for simulations of walking behavior, where swing phases do not 

overlap. 

Equation 4-2 

𝑈𝑈0 = �
𝑢𝑢0𝑓𝑓
𝑢𝑢0𝑒𝑒
𝑢𝑢0𝑓𝑓
𝑢𝑢𝑜𝑜𝑜𝑜

� ,𝐺𝐺𝑢𝑢 = �
𝑔𝑔𝑢𝑢𝑢𝑢
𝑔𝑔𝑢𝑢𝑢𝑢
𝑔𝑔𝑢𝑢𝑢𝑢
𝑔𝑔𝑢𝑢𝑢𝑢

� ,𝐺𝐺𝑙𝑙 = �
𝑔𝑔𝑙𝑙𝑙𝑙
𝑔𝑔𝑙𝑙𝑙𝑙
𝑔𝑔𝑙𝑙𝑙𝑙
𝑔𝑔𝑙𝑙𝑙𝑙

� ⋅ 𝐼𝐼,𝐺𝐺 = �

0 0
0 0

0 𝑟𝑟𝑒𝑒𝑒𝑒
𝑟𝑟𝑓𝑓𝑓𝑓 𝑟𝑟𝑒𝑒𝑒𝑒

0 𝑟𝑟𝑒𝑒𝑒𝑒
𝑟𝑟𝑓𝑓𝑓𝑓 𝑟𝑟𝑒𝑒𝑒𝑒

0 0
0 0

�. 

We used the fixed-step 4th order Runge-Kutta method with 10-3 s precision for forward 

numerical integration. 

The bilateral CPG model produces flexor (swing) and extensor (stance) phases for two limbs 

in relation to extrinsic input and intrinsic structure. To obtain these phases, Equation 4-1 needs 

to be integrated in time between the state changes. Numerical integration was previously used 

(Yakovenko, 2011) to generate swing and stance periods. The same transition points can be 

calculated analytically by transforming Equation 4-1 into a matrix Cauchy problem and solving a 

transcendental equation for time of phase change of individual integrators: 

Equation 4-3 

𝑧𝑧1 ⋅ cosh(𝑞𝑞𝑞𝑞) + 𝑧𝑧2 ⋅
sinh(𝑞𝑞𝑞𝑞)

𝑞𝑞
= 𝑧𝑧3 ⋅ 𝑒𝑒−𝑠𝑠𝑠𝑠 

where z1 and z2 are terms describing interactions between internal structure of the system 

and input (U0 and u), z3 represents the terms with inverse leaks and external inputs, s 

represents general system leakage, q corresponds to the internal structure of the model (for the 

detailed description of these terms, see Appendix below). 

Using this equation, the periods of activity of flexors and extensors during a step cycle were 

obtained with an iterative algorithm that was sequentially estimating state changes of each 

integrator until a full step was completed. Appendix (below) provides the details of derivation for 

Equation 4-3. 
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Cost function 

The CPG model can generate multiple locomotor behaviors as a function of extrinsic inputs 

and intrinsic interactions (Yakovenko, 2011). Given a desired behavior, e.g. stereotypical 

symmetrical walking (Halbertsma, 1983), the appropriate CPG parameters were found by 

optimizing the cost function (Equation 4-4) that expressed the goodness of fit between target 

(experimental) and simulated patterns. In the symmetrical model, we optimized for 6 different 

speeds, from 0.1 to 1.5 m/s (dashed lines in Figure 4-2), that were generated with 6 values of u 

(evenly distributed between 0.1 and 1.5 au). Figure 4-2 shows the quality of simulated solutions 

for symmetrical walking over a full range of walking speeds. 

Equation 4-4 

𝐽𝐽𝑐𝑐 = 𝑘𝑘1𝐻𝐻 + 𝑘𝑘2𝑀𝑀 + 𝑘𝑘3𝑂𝑂 + 𝑘𝑘4𝐶𝐶 

where H is the squared difference of simulated and experimental stance and swing periods. 

The experimental periods were calculated using a best-fit formula obtained empirically with 1% 

average error (see Figure 4-6 and Table 2 in Halbertsma, 1983). M is the squared difference of 

simulated and desired speed ranges that promotes the converging on nontrivial solutions. O is 

the cost associated with the erroneous coactivation of contralateral flexors. C is the degree of 

asymmetricity between the simulated speeds of the left and right limbs. All function components 

were normalized to the domain between 0 and 1 and relative weights (k1, k2, k3, k4)=(1, 0.7, 2, 

0.4). The weights were chosen to represent the relative importance of the captured behavior 

and be of different magnitudes, which is recommended in optimization. C and M components 

were removed in simulations intended to produce asymmetrical gait (see Figure 4-6 & Figure 

4-7 in Results). 

---------------- 
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Figure 4-2. Experimental and simulated locomotor phase duration characteristic. 

Top: The relationship between the locomotor phase and step cycle duration is shown with 

points representing the superimposed numerical and analytical solutions for flexor (blue) and 

extensor (red) phases (Halbertsma, 1983). Bottom: The corresponding simulated speed (black 

points) is plotted as a function of step duration computed with the exponential best-fit function 

(black line) (see Fig. 3, in Goslow et al., 1973). 

---------------- 

Optimization and parameter perturbation 

Globally optimal sets of parameters were found numerically using a combination of the basin-

hopping algorithm (Wales and Doye, 1997) in SciPy (Oliphant, 2007) and several constrained 

local minimizers: the non-linear optimization algorithm COBYLA (Powell, 1964), the truncated 

Newton algorithm (Nocedal and Wright, 2000), the L-BFGS-B algorithm (Byrd et al., 1995), and 

Powell's method (Powell, 1964). First, the global optimal parameter set (z*) was found. During 

optimization, the starting value for the basin-hopping algorithm was obtained from a brute force 

search over the complete parameter space. Other algorithms were then used to optimize 

parameters sequentially to arrive at the optimal solution (z* = argmin(Jc)). Second, we created a 
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normal multivariate distribution to evaluate the nature of close-to-optimal solutions. For this, the 

distribution was defined by the mean at z* and the covariance matrix with the diagonal elements 

set to 0.01z* or the equivalent of the standard deviation set at 1% of the value of the optimal 

solution. The dataset of 105 points was then drawn from this distribution and used in the 

comparison between the analytical and numerical solutions in Figure 4-3A. Third, the 

intermediate solutions of the first step corresponding to local minima were selected to determine 

the full functional range of parameters in the model, excluding sets with large cost values 

(Jc>10). The adjusted for symmetricity range for each parameter is shown as the span of the y-

axes in Figure 4-4. Fourth, we used a uniform distribution across the symmetrical full range of 

parameters to create another dataset of 105 values for the analysis of the expanded range 

comparison shown in Figure 4-3B and C. Fifth, we created the parameter dataset perturbed by 

10% from z*. Similar to step 2 above, we created the normal multivariate distribution with the 

mean at z* and the covariance diagonal elements set to 0.1z*. Sixth, we randomly drew 40 

starting seeds and tasked the basin-hopping algorithm (set to 200-iterations for each seed) to 

repeat the optimization using one of the four local optimization algorithms. This final step in the 

analysis generated 160 optimal sets for all local algorithms in our analysis. The comparison of 

parametric distributions is shown for a third of the best solutions in Figure 4-4. The cut of 

solutions was necessary to reject expected minimization failures with non-converging searches 

or those terminating with large cost function values.  

Phenomenological models of locomotion 

We used several phenomenological models created to describe the relationships between 

different parameters of stepping during locomotion in our analysis. The relationships between 

stance and swing phases relative to cycle duration were taken from the study by Halbertsma 

(Halbertsma, 1983). The relationship between step cycle duration (Tc) and limb speed (V) was 

taken from the study by Goslow et al. (1973), where V=(1.84⋅ Tc ) −1.68 (see Figure 4-2, bottom) 

(Goslow et al., 1973). Here, we define the limb speed as the scalar rate of progression during 

one step cycle. The locomotor velocity is then a vector describing the change in body’s position 

as a function of limb speeds. Both studies used best-fit functions to describe data from a small 

sample of cats; yet, these relationships have been recently confirmed with a large subject pool 

(Frigon et al., 2015).  
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In the analysis of asymmetrical locomotion, we introduced a simple geometrical relationship 

for walking on a curve. The turn radius (R) of an asymmetric bipedal walk (Equation 4-5) was 

expressed as a function of hip width (L) and an asymmetry parameter α=Vleft/Vright: 

Equation 4-5 

𝑅𝑅 =
𝐿𝐿

|𝛼𝛼 − 1|
 

The corresponding heading direction change during a single step can be stated as: 

Equation 4-6 

𝛾𝛾 = arctan (𝑉𝑉𝑟𝑟𝑖𝑖𝑖𝑖h𝑡𝑡−𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝐿𝐿

𝑇𝑇𝐶𝐶), 

where γ denotes the heading direction angle from forward direction; Tc - full step cycle 

period. 

Results 

Comparison of analytical and numerical solutions 

In this study, the continuous dynamics between phase transitions was demonstrated with a 

CPG model expressed as a system of interacting oscillators and solved either numerically or 

analytically using an iterative algorithm (Equation 4-3). Analytical solutions were validated in 

simulations producing experimentally observed periods of flexor and extensor activations in 

overground locomotion (for example, see Figure 4-2). This model was further extended to 

analyze asymmetric gait and test the ability of this circuit to embed asymmetric gait control.  

A high-precision numerical approach carries a processing cost that usually exceeds that of 

analytical methods. Figure 4-3 shows the comparison of the processing cost between the 

numerical and analytical solutions for this model (Equation 4-1). The error of evaluating phase 

transitions with the numerical method (blue line) and the analytical solutions using the root-

finding algorithm (red line) was the same at the precision for numerical integration set to 10-3 s 

(intersection marked with *, Figure 4-3A and B). The analytical solutions to Equation 4-3, found 

by expanding the hyperbolic terms, linear to the 9th power, are shown with shades of gray in 

Figure 4-3. Here, the difference between the analytical and numerical estimations of the time of 

phase transitions was evaluated with the root mean square metric of simulation quality. Shown 
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in Figure 4-3A, the quadratic approximation (gray line marked with a 2) provided similar quality 

to the analytical solutions (red line), with sets of close-to-optimal parameters (in 1% vicinity of 

the optimal set; see step two in section “Optimization and parameter perturbation” in Methods). 

When the model parameters were chosen randomly from the full range of feasible parameters 

(steps three and four in Methods), quadratic solutions did not provide desirable precision and 

performed worse than the numerical method, with other powers only approaching a reasonable 

threshold of over 10 ms error (Figure 4-3B), which is the order of a motor unit action potential.  

---------------- 

 

Figure 4-3. The comparison of analytical and numerical solutions. 

The measures of numerical (blue), analytical (red), and analytical approximations of different 

orders (shades of gray with order numbers) are plotted as functions of numerical precision, 

where the dashed line indicates the most relevant for real-time simulation precision of 1 ms. A. 
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Full cycle error in the estimation of phase transition times using the 1% neighborhood of the 

optimal solution. Because the higher orders of approximations provide the same high precision 

as the cubic approximations, powers τ4-τ9 are not displayed. B. Similar to A, the errors are 

shown for the random distribution of parameters. C. Average CPU time needed to calculate a 

full step period of 1.25 s (average from Halbertsma’s equations) in Python/NumPy 

implementation. The data presented in all subplots was averaged over 105 trials. 

---------------- 

Figure 4-3 shows the comparison of the processing cost between analytical and numerical 

solutions for this model (Equation 4-1). The analytical solution was the best choice for precise 

real-time applications of this model, outperforming the numerical method by close to an order of 

magnitude. However, if estimation errors of over 10 ms are insignificant in a specific application, 

e.g. using EMG-driven simulations with aggressive low-pass filtering, then high orders of 

analytical approximations could provide appropriate solutions with even lower computational 

load than the full analytical solution. The approximations of powers 3-9 use the eigenvalue 

approach to find roots of polynomials, which is relatively costly but still more precise than some 

of the comparable numerical integrators. The quadratic approximation (gray line marked 2) 

provided the lowest computational cost and similar quality to the analytical solution (red line), 

but only with the close-to-optimal parameter sets (the lowest 10% cost Jc as defined by 

Equation 4-4). 

Parametric sensitivity 

A perturbation analysis was used to investigate the parametric sensitivity of suboptimal 

solutions that satisfy Equation 4-4. This analysis compared optimal values found by several 

different local minimization methods after a 10% normal parametric perturbation (for details, see 

steps five and six in section “Optimization and perturbation” of Methods). From 160 solutions, 

the 33% with the lowest Jc were: 30 by COBYLA, 1 by L-BFGS-B, 22 by Powell's algorithm, and 

2 by Truncated Newton's. COBYLA and Powell's algorithms provided 95% of the best solutions 

in this problem. The distribution of parameters in Figure 4-4 with similar cost (Jc) across all 

methods indicates that similar outputs could be produced with disparate circuit parameters. The 

parameters in the model were differently conserved across similar solutions: the input weights 

(Gu) had lower variability relative to other parameters, i.e. the static leak (x0), static input (u0), 

and interlimb connection weights (green, rij).  
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---------------- 

 

Figure 4-4. Analysis of parameter sensitivity. 

The distributions of model parameters and cost function (Jc) are shown for the selection of 

best optimization sets. Each subplot shows a mean with standard deviation of the parameter 

values in blue (flexor), red (extensor), and green (mixed) for 4 types of minimization algorithms. 

The vertical axis range reflects the full feasible range of parameters as determined by the 

examination of intermediate solutions (see step six in section “Optimization and parameter 

perturbation” of Methods), with the exception for the Jc values. 

---------------- 

Behavioral implications of CPG morphology 

The velocity hypothesis states that descending signals to a CPG are the desired speeds of 

each leg. We wanted to test further if the analytical solution to the ODEs would produce the 

same or a different speed prediction for the modality of inputs. The direct relationship between 

the descending input and the temporal characteristics of stepping (step cycle, swing, and stance 

durations) was extracted from the second-order solution to Equation 4-3. Although it has a 

complex non-linear form (Equation 4-7), its combination with the solution from Goslow et al. 

(1973) for the relationship between step cycle period and forward speed produced a linear result 

shown in Figure 4-5 (r2=0.999, p<0.001 for left and right limbs). 
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Equation 4-7 

𝑉𝑉 = �
𝑘𝑘1 + 𝑘𝑘2𝑢𝑢

𝑘𝑘3 − �𝑘𝑘4 + 𝑘𝑘5𝑢𝑢
+ 𝑘𝑘6�

1.68

 

where ki are configuration-dependent constants, u is descending input, and V is the forward 

speed of locomotion. 

---------------- 

 

Figure 4-5. The relationship between the simulated CPG command signal to each limb 
and forward velocity.  

The analytical solution for the full step cycle was calculated over the set of 10 input values for 

each limb (u). Each value produced simulated step cycle duration values, which was then 

plotted as forward velocity calculated with the experimental relationship from Goslow et al. 

(1973) for each limb. The identity (y=x) is plotted in black. 

---------------- 

We further explored the role of this descending command for velocity regulation in the 

generation of asymmetric gait. Asymmetric patterns were simulated by uncoupling the gains for 

the left and right inputs of both flexors and extensors (guf1,gue1,guf2,gue2) in Equation 4-2 and 

varying them independently by 33% of the optimal parameter set (Table 1). The C and M 

components responsible for pattern symmetricity and simulated speed related errors were 

removed from the cost function (Equation 4-4) in this analysis. The simulated speed of walking 

for the left and right limbs was then calculated from the generated bilateral phases (Figure 4-6). 
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The parameter asymmetricity led to a steady gradient of the speed differences (α=Vleft/Vright, see 

Methods). 

---------------- 

 

Figure 4-6. External inputs generate asymmetric gait in the model.  

The coupled and uncoupled input gain parameters (gue, guf) were related to the velocity 

asymmetry (Left panels) with the corresponding cost function outputs (Right panels). A and B. 

The input gains of flexors and extensors were varied together for each limb. C and D. Only 

flexor input gains (left and right guf) were manipulated for each limb. E and F. Only extensor 

input gains (left and right gue) were manipulated for each limb. Inserts in C indicate the steering 
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direction for two selected parameter sets. G. 'Raw' data showing the integration rates with 

simulation parameters (a, b, c) selected in B. 

---------------- 

Table 1. Optimal model parameters. The parameter set (z*) for Equation 4-2 that satisfies 

Equation 4-4.  

x0f x0e guf gue glf gle u0f u0e rfe ref ree 

0.244 0.376 1.59 2.62 -0.689 0.828 2.26 -0.174 -0.025 2.38 0.418 

 

Figure 4-6A and B show that variation of both inputs (guf, gue) together can produce 

asymmetric walking, α=1.1, with the turn diameter as low as 10 m (calculated from Equation 

4-5, or heading direction γ=10° change per step, see Equation 4-6). Only the parameter 

combinations corresponding to the continuous gradient around the midline produced 

appropriately accurate simulations with low Jc (Figure 4-6B). Uncoupled inputs to flexors and 

extensors can similarly generate asymmetric gaits, with α up to 1.2 (γ=20°). The gradient of cost 

for extensors was orthogonal to that for flexors in Figure 4-6D and F; the increased possible 

range of asymmetric speeds was associated with increased cost, as indicated in Figure 4-6B, 

with the cost trough extending along the diagonal unity. 

Figure 4-7 shows that the intrinsic parameters in the model can also produce asymmetric 

gaits. Symmetric connections (e.g. in Equation 4-2, rfe=r14=r41) were uncoupled (r14≠r41) and 

varied independently. As in the analysis above, α and Jc were calculated for parameter 

variations of up to ±33% of the optimal value. The connections from flexor to contralateral 

extensor did not provide a suitable gradient of asymmetric walking speeds in the explored range 

of parameters (Figure 4-7A). Possible reasons are a low magnitude of the optimal value for this 

parameter (ref, in Table 1) and the near constant relationship between swing duration and 

locomotor speed (Figure 4-2). The variation of extensor-to-flexor and extensor-to-extensor 

parameters (ref, ree) produced asymmetric gaits (Figure 4-7C and E) with a turn diameter of 10 m 

(heading direction γ=10° per step). These were comparable to the above result obtained from 

the analysis of external inputs. The profile of Jc was different for the gaits generated by variation 

of ree and ref parameters (Figure 4-7D and F). The extensor-to-flexor parameter ref increased 
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steering angle with a smaller increase in cost (Figure 4-7F) than that of the extensor-to-extensor 

parameter, ree (Figure 4-7D). However, ree could regulate asymmetric gaits over a larger range 

of velocities than ref, as indicated by the diagonally extending trough in the cost function in 

Figure 4-7F. 

---------------- 

 

Figure 4-7. Intrinsic parameters generate asymmetric gait in the model.  

The uncoupled intrinsic parameters (rfe, ref, ree) were related to the velocity asymmetry (Left 

panels) with the corresponding cost function outputs (Right panels). A and B. The flexor-to-

extensor weights (rfe). C and D. The extensor-to-flexor weights (ref). E and F. The extensor-to-

extensor weights (ree). 
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---------------- 

Discussion 

In this study, we developed a novel analytical description of a simple CPG model for 

locomotor phase timing and further expanded our previous model (Yakovenko et al., 2005) to 

include not only externally-driven asymmetric rhythmogenesis but also the opportunity to 

internalize this asymmetric transformation within the structure of a CPG. Our three central 

results are: i) the model can be solved analytically; ii) the analytical solution converges on the 

same conclusion that the input to the CPG is in the modality of limb forward speed; and iii) the 

minimalistic model of a CPG built with coupled oscillating leaky integrators offers multiple 

opportunities for embedding asymmetric control. 

What is the goal of using analytical solutions of neurophysiological models?  

Numerical solutions are usually the preferred option of solving complex models. For 

example, a biophysical CPG model can capture the neurological basis of activity in detail, often 

using hundreds of approximated parameters and their reconfiguration during failures in the 

motor execution (Rybak et al., 2006).  

Complex models with multiple estimated transformations may produce ensemble behavior 

that reproduces the expected outcome; however, the role of elements and their network 

properties are hard to predict and analyze. The choice of a simple rate network with continuous 

variables in this model ignoring spike rate adaptation, dendritic processes, membrane 

dynamics, synaptic conductances, and plasticity has the advantage of focusing on the 

computation performed by the network connectivity (Abbott et al., 2016). Unlike models that are 

not analytically solvable, simple models are often insightful and capable of identifying specific 

targets that modify circuit behavior (Schaal and Sternad, 1998; Tabak et al., 2000; Izhikevich, 

2004; Barnett and Cymbalyuk, 2014). For example, in the study of Barnett and Cymbalyuk 

(2014) two saddle node bifurcations, one for equilibria and one for periodic orbits, allowed to 

independently manipulate silent and spiking phase of bursting activity (Barnett and Cymbalyuk, 

2014). The employed bifurcation control method relies on the manipulation of a controlling 

parameter near a transition between different regimes responsible for spiking and bursting 

properties. Spardy et al. (2011) showed how the dynamical system analysis could identify the 

silent and bursting periods of system's oscillation, the effect of sensory inputs on the range of 
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behavior, and the operation of the CPG model in response to simulated spinal cord injury 

(Spardy et al., 2011a). This description was based on the simplified model (Markin et al., 2010; 

Spardy et al., 2011b) that uses two types of neuron implementations consisting of one- or two-

dimensional differential equations for a single limb flexor-extensor CPG. Similar to other much 

more complex implementations (Morris and Lecar, 1981; Rybak et al., 2006; Caplan et al., 

2014), even this simplified formulation produces a challenging system of equations for 10 

neurons with 33 connections between them. The model did noticeably have problems resolving 

locomotor phases for fast cycle durations (less than 800 ms, see Fig. 3 in Spardy et al., 2011b)). 

In contrast, our simple CPG model had only 4 parameters within a reciprocally connected 

system of 2 leaky integrators and simulated the same behavior without the aberrations at the 

extremes of experimental data (Yakovenko et al., 2005). This basic model that we extended in 

this study was used to describe, for the first time, the novel flexibility of extensor- and flexor-

dominant phase regulation.  

As in other models, we were concerned that expanding the model’s parametric space to 

describe two limbs could introduce an uncontrollable increase in errors associated with the 

corresponding parametric expansion. The bilateral half-centers for two limbs required a system 

of 4 differential equations and the set of either 7 coupled (see Equation 4-2) or 16 uncoupled 

intrinsic and 4 extrinsic (input) parameters. The results for the expanded model in Figure 4-2 

showing phase modulation over the full range of walking velocities without limitations at the 

extremes was not a forgone conclusion. Overall, the increased parametric complexity in the 

model did not lead to an overfitting problem that could have appeared from estimating too many 

parameters from a low-dimensional set of behavioral data. Instead, the model consistently 

converged on similar solutions without the loss of validity indicated by the cost function. 

Overfitting and underfitting are two major concerns in the selection of appropriate levels of 

abstraction for models (Lever et al., 2016). In the words of John von Neumann, “With four 

parameters I can fit an elephant and with five I can make him wiggle his trunk.” Here, our 

relatively simple model generates low-dimensional output in the form of the phase characteristic 

in normal and asymmetric locomotion. Models based on Hodgkin-Huxley formalism could 

generate the same phase duration characteristic, albeit with the use of large model parameter 

sets that extend into hundreds and thousands. Remarkably, the solutions from these two 

different representations are similar, supporting the experimental and computational 

observations that the same network activity could be generated by the underlying disparate 
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mechanisms (Prinz et al., 2004; Goaillard et al., 2009; Grashow et al., 2009; Caplan et al., 

2014). Still, the convergence of our parameter search on the physiological network solution is 

validated only by the constraining behavioral data and extent of simulated validation using 

parameter sensitivity analysis. Even in this minimalistic model, the exploration of a 20-

dimensional parameter space was challenging and led us to implement the analysis of a 

coupled symmetrical model first, where the parameters representing spinal neural elements 

mirrored across the midline were set to the same values. The perturbations in each parameter 

achieved with different minimization algorithms produced robust solutions, where small changes 

did not lead to large changes in outcome (Figure 4-4). Thus, the model may not be overfitting for 

these particular phenomena under study.  

It is important to note that the model structure was not optimized in this study; instead, we 

have chosen the simplest mechanistic model of neural processing with structural elements 

identified by neurophysiology. Moreover, the quality of fit to the experimental data was very high 

(R2 of about 0.999). The high R2 values are often used to support model validity. The typical 

additional validation is the analysis of residuals. The low values of residuals have no particular 

meaning when experimental data reconstruction is this precise. Then, the only possible failure 

of this model is the assumption that it is overly complicated or overfitting the experimental data, 

which is contradicted by the minimalistic design. This model has been already refined to the 

simplest mechanistic form. 

Embedding of asymmetric gait control in extrinsic and intrinsic parameters 

Even in our relatively simple model, there is a complicated relationship between intrinsic 

connections and extrinsic inputs. An indication of this fact is the capacity for representing the 

same behavior within parameters corresponding to different anatomical structures. Thus, it was 

necessary to uncouple the parameters in Equation 4-2 to further extend the sensitivity analysis 

with the goal of exploring the functionality “hidden” in the complexity to generate falsifiable 

hypotheses or model predictions.  

We chose asymmetric gait as the test task because it results from the normal control of 

steering or heading direction (Yakovenko, 2011; Galbreath et al., 2014), and it may contain 

indicators of long-term adaptations to injury. First, we "forced" the model to internalize the 

control of asymmetric stepping by changing only extrinsic parameters. The mechanism using 

only input gains of flexor half-centers, and less so extensor half-centers, was a robust method of 
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changing the interlimb speed differential. This was also expressed as a change in the heading 

direction in this model. In Figure 4-6, the tuning of input gains to flexor half-centers led to 

asymmetric speed ratios of 0.9 to 1.1, which corresponds to an estimated heading direction 

change of ±10° over one step cycle (about a 10 m turn diameter). This suggests that a single 

external input representing a heading direction could generate a realistic range of asymmetric 

gaits in this model. Second, we can similarly constrain the solution to the locus of intrinsic 

parameters responsible for the influences among four half-centers in the model. It was intriguing 

to see the capability of this model to embed the asymmetric processing within these pathways. 

Moreover, the simulations suggested that not all parameters are equal targets in that respect. 

The extensor-to-flexor and extensor-to-extensor (ref, ree in Figure 4-7) parameters embedded the 

ability to generate asymmetric gaits with a reasonable turn diameter of 10 m, which is consistent 

with a “step turning” strategy, characterized by a wide base of support throughout the turn. It is 

likely that steeper turning would require the transition to a different “spin turning” strategy (Hase 

and Stein, 1999; Taylor et al., 2005). The alternative CPG configurations are illustrated in the 

schematic in Figure 4-8. In studies of spinal segmental connectivity, these parameters would 

correspond to the 'gains' of propriospinal pathways connecting rhythmogenic networks within 

the spinal enlargement (Kiehn, 2011). Given the more rostral distribution of flexors than 

extensors within the lumbosacral enlargement (Yakovenko et al., 2002; Ivanenko et al., 2008) ref 

and ree pathways would have the network representations shown in Figure 4-8B and C. Overall, 

relatively complex behavior, like steering, could be controlled with both extrinsic and intrinsic 

mechanisms available in this simple model.  

---------------- 

 

Figure 4-8. Schematic representation of multiple CPG configurations for steering.  
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A. The configuration based on the external inputs to CPG. B and C. Two possible 

configurations of intrinsic connections producing the same asymmetric patterns as in A. 

---------------- 

The analysis makes specific predictions about the propriospinal pathways that could be 

involved in long-term adaptations to asymmetricity. Human subjects could learn to compensate 

for the external perturbations applied to limbs while minimizing the overall limb impedance 

(Shadmehr and Mussa-Ivaldi, 1994; Dingwell et al., 2002). Even gross cortical inputs, like those 

generated by transcortical magnetic stimulation, can be compensated by the adaptation of 

transmission gains contributing to the regulation of locomotion (Schubert et al., 1999). Our 

results suggest that this adaptation can take place not only within pathways projecting to a 

CPG, but also within the limited locus of interactions between model’s half-centers. While this 

model has no realistic learning dynamics, the examination was limited to the naïve symmetrical 

and adapted asymmetrical states. This learning function could be implemented in future work 

with the use of simple learning mechanisms (Franklin et al., 2008; Wu et al., 2014) where 

intrinsic and whole system parameters (Ijspeert et al., 2013) could be updated under the 

reinforcement learning dynamics (Mahmoudi et al., 2013; Schultz, 2013).   

Overall, the model demonstrated that the general locomotor patterns for symmetric and 

asymmetric gaits may be achieved by the superposition of commands and intrinsic interactions 

within the minimalistic structure of a CPG. This novel flexibility of functional representation for 

asymmetric pattern generation has not been previously demonstrated in models, and it posits 

specific predictions for mal- or adaptations to asymmetry due to peripheral or central 

abnormalities. 

The simple model of locomotor rhythm generation 

This model is not likely producing the overfitting of behavior as indicated by the sensitivity 

analysis. However, the excessive number of parameters relative to the number of observed 

values may hinder CPG models that do not address this methodological issue. Still, there is the 

alternative possibility that this model is instead underfitting the locomotor patterns associated 

with asymmetric gait. To discuss the appropriate level of abstraction that limits the possibility of 

underfitting for this task, we need to examine the concept of neuromechanical tuning 

(Prochazka and Yakovenko, 2007; Ting et al., 2015). Specifically, locomotor control is a 
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phenomenon produced by multiple elements that combine predictive and reactive functions. In 

analogy with the Smith’s predictor (Smith, 1957), the specific role of the CPG is to predict the 

mechanical interactions between the limb and ground. To this extent, our model can reproduce 

the transformation from input speeds to appropriate inter- and intra-limb coordination of multiple 

muscle groups without the need for molecular level dynamics (Yakovenko, 2011). The CPG 

function could then be specified as a dynamical transformation of simple, i.e., related to limb 

speed, high-level signals into complex granular functional subdivisions of temporal activations 

appropriate for locomotion. Both analytical and numerical solutions of our minimalistic CPG 

model support the hypothesis that the main function of a CPG is the transformation of high-level 

locomotor signals associated with whole limb function, i.e. the speed of locomotion, into low-

level phasic activity patterns of limb muscles. This computational inference agrees with previous 

studies demonstrating that the one-dimensional input to the MLR in the form of stimulation 

magnitude or frequency can be transformed by a CPG into specific velocity-dependent phasic 

activity in vertebrates (Shik et al., 1966; Smetana et al., 2010). The underfitting for CPG models 

describing the phase duration characteristic would be classified by the inability to use high-level 

signals related to the forward velocity as the control signal for asymmetric gait. We 

demonstrated that this model can readily transform limb velocity-related inputs into asymmetric 

phase characteristics. Moreover, the model can embed these high-level representations within 

its internal structure. As shown previously (Yakovenko et al., 2005), it can also generate both 

flexor-dominated and extensor-dominated phase regulation at different speeds.  

The model supports the idea that the CPG inputs are limb speeds. The positive relationship 

between the excitatory input and the frequency of network output oscillations has been 

previously modeled in CPG models using Hodgkin-Huxley formalism (Shevtsova et al., 2015; 

Danner et al., 2016). In contrast, our model does not assume the shape and relationship of CPG 

input with limb speed; this linear relationship was demonstrated by solving inversely the 

calculation performed by the structure proposed by T.G. Brown with the assumption of leaky 

integration (Yakovenko, 2011). This model was first introduced to describe the atypical flexor 

dominated pattern in fictive locomotion induced by the stimulation of midbrain locomotor region 

(MLR) and exhibiting the increased slope of phase vs. cycle duration for flexors rather than 

extensors (Yakovenko et al., 2005). The network state could be explained by the possible shift 

in the balance of descending drives that lack the extensor-biased limb load feedback and may 

have increased flexor biased inputs from MLR, e.g., see Fig. 5 in Frigon et al. (Frigon and 

Gossard, 2009), where MLR stimulation increases the duration of flexor bursts.  
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The regulation of velocity-related control signals within supraspinal pathways remains to be 

poorly understood. The presence of spinocerebellar loops contributing to the modulation of 

vestibulospinal neurons (Arshavsky et al., 1978; Arshavsky and Orlovsky, 2016) warrants a 

theoretical re-examination of these contributions in the context of limb speed control. 

Cerebellum output to the motor cortex updates limb and body state to modulate the state-

dependent activity of its output, pyramidal tract neurons, and also receives inputs from networks 

in posterior parietal cortex responsible for planning and converting visual information (Drew and 

Marigold, 2015). The modulated discharge of neurons shows tuning to many velocity-related 

parameters during locomotion and reaching movements (Yakovenko and Drew, 2015). 

Theoretically, the velocity command can be extracted by the integration of dynamical neural 

discharge, or it may be represented in the activity of subpopulations of neurons with static 

discharge profiles. This leads to a complete closed-loop view of the steering control achieved by 

multiple supraspinal networks contributing to the transformation from optical flow to the control 

of heading direction (Warren et al., 2001) with the use of limb speed inputs to CPG, described in 

this study. 

To conclude, in this paper we report for the first time a model of bilateral CPG with analytical 

and numerical solutions capable of generating symmetrical and asymmetrical gaits appropriate 

for whole body steering. The steering behavior can be generated by either extrinsic limb velocity 

related inputs to left and right half-center oscillators or embedded asymmetry within intrinsic 

propriospinal gains from extensor half-centers to the contralateral flexor or extensor half-

centers. Moreover, these asymmetric changes may correspond to either a natural control of limb 

velocity adjustments regulating the heading direction or pathological changes to the inputs or 

structure of the locomotor CPG. The existence of multiple network states capable of generating 

the same empirical observations is a novel identified challenge for CPG models.  

Appendix 

Analytical solution 

The bilateral CPG model produces flexor (swing) and extensor (stance) phases for two limbs 

in relation to extrinsic input and intrinsic structure. To obtain these phases, Equation 4-1 needs 

to be integrated in time between the state changes. Numerical integration was previously used 

(Yakovenko, 2011) to generate swing and stance periods. The same transition points can be 

calculated analytically by transforming Equation 4-1 into a matrix Cauchy problem: 
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Equation 4-8 

� 𝑥̇𝑥 − 𝐴𝐴𝐴𝐴 = 𝐵𝐵
𝑥𝑥(𝑡𝑡 = 0) = 𝑥𝑥0

 

where A=Gl+G represents the intrinsic structure of the CPG, B=U0+Guu represents the state-

independent inputs, and x0 is the initial condition. In the case of a non-singular matrix A, this 

system has a vector form solution: 

Equation 4-9 

𝑥𝑥 = 𝐴𝐴−1(𝑒𝑒𝐴𝐴𝐴𝐴 − 𝐼𝐼)𝐵𝐵 + 𝑒𝑒𝐴𝐴𝐴𝐴𝑥𝑥0 

where I is the identity matrix. This analytical expression of states x (with dimensionality [4×1] 

for a model of bilateral CPG) describes the progression of all locomotor phases in time between 

the state changes. The remaining task is then to calculate the transition times and 

corresponding phase durations for a full step cycle. Equation 4-9 was evaluated for all three 

possible bilateral combinations of concurrent flexor-extensor activity during a full step cycle, 

namely: i) left flexion and right extension (states x1 and x4), ii) left extension and right extension 

(states x2 and x4), and iii) left extension and right flexion (states x2 and x3). States may have 

repeated more than once within the step cycle, when CPG activity was highly asymmetric. The 

dimensionality of the problem can be reduced from 4 to 2 because only two integrators are 

active at any given time with the following parameters: 

Equation 4-10 

𝐴𝐴 = �
𝑎𝑎𝑖𝑖𝑖𝑖 𝑎𝑎𝑖𝑖𝑖𝑖
𝑎𝑎𝑗𝑗𝑗𝑗 𝑎𝑎𝑗𝑗𝑗𝑗�, 𝐴𝐴

−1 = �
𝑎𝑎�𝑖𝑖𝑖𝑖 𝑎𝑎�𝑖𝑖𝑖𝑖
𝑎𝑎�𝑗𝑗𝑗𝑗 𝑎𝑎�𝑗𝑗𝑗𝑗

�,  𝐵𝐵 = �𝑏𝑏𝑖𝑖𝑏𝑏𝑗𝑗�, 𝑥𝑥0 = �𝑥𝑥0𝑖𝑖𝑥𝑥0𝑗𝑗
� 

where i ϵ {1,2} and j ϵ {3,4} are the indices of the two active integrators. We can then find the 

time of phase transitions τ for a given integrator k by inserting the reduced parameter set 

(Equation 4-10) into Equation 4-9 and assuming xi or xj is equal to 1. Solving for τ yields the 

following transcendental equation: 

Equation 4-11 

𝑧𝑧1 ⋅ cosh(𝑞𝑞𝑞𝑞) + 𝑧𝑧2 ⋅
sinh(𝑞𝑞𝑞𝑞)

𝑞𝑞
= 𝑧𝑧3 ⋅ 𝑒𝑒−𝑠𝑠𝑠𝑠 

where z1, z2, z3, s, q are parameters describing the model configuration, as follows: 
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𝑠𝑠 =
𝑎𝑎𝑖𝑖𝑖𝑖 + 𝑎𝑎𝑗𝑗𝑗𝑗

2
 

𝑞𝑞 = ��𝑠𝑠 − 𝑎𝑎𝑗𝑗𝑗𝑗�
2 + 𝑎𝑎𝑖𝑖𝑖𝑖 ⋅ 𝑎𝑎𝑗𝑗𝑗𝑗 

𝑧𝑧1 = 𝑑𝑑1 + 𝑑𝑑4 

𝑧𝑧2 = �𝑠𝑠 − 𝑎𝑎𝑗𝑗𝑗𝑗� ⋅ 𝑑𝑑1 + 𝑎𝑎𝑖𝑖𝑖𝑖 ⋅ 𝑑𝑑2 + 𝑎𝑎𝑗𝑗𝑗𝑗 ⋅ 𝑑𝑑3 − �𝑠𝑠 − 𝑎𝑎𝑗𝑗𝑗𝑗� ⋅ 𝑑𝑑4 

Four-element vector D = [𝑑𝑑1,𝑑𝑑2,𝑑𝑑3,𝑑𝑑4] and z3 depend on whether the model is solved for i 

(left) limb: 𝐷𝐷 = (𝑎𝑎�𝑖𝑖𝑖𝑖 ⋅ 𝑏𝑏𝑖𝑖 + 𝑥𝑥0𝑖𝑖;  𝑎𝑎�𝑖𝑖𝑖𝑖 ⋅ 𝑏𝑏𝑗𝑗 + 𝑥𝑥0𝑗𝑗;𝑎𝑎�𝑖𝑖𝑖𝑖 ⋅ 𝑏𝑏𝑖𝑖;  𝑎𝑎�𝑖𝑖𝑖𝑖 ⋅ 𝑏𝑏𝑗𝑗), 𝑧𝑧3 = 1 + 𝑎𝑎�𝑖𝑖𝑖𝑖 ⋅ 𝑏𝑏𝑖𝑖 + 𝑎𝑎�𝑖𝑖𝑖𝑖 ⋅ 𝑏𝑏𝑗𝑗, or j (right) 

limb: 𝐷𝐷 = (𝑎𝑎�𝑗𝑗𝑗𝑗 ⋅ 𝑏𝑏𝑖𝑖;  𝑎𝑎�𝑗𝑗𝑗𝑗 ⋅ 𝑏𝑏𝑗𝑗;𝑎𝑎�𝑗𝑗𝑗𝑗 ⋅ 𝑏𝑏𝑖𝑖 + 𝑥𝑥0𝑖𝑖;  𝑎𝑎�𝑗𝑗𝑗𝑗 ⋅ 𝑏𝑏𝑗𝑗 + 𝑥𝑥0𝑗𝑗), 𝑧𝑧3 = 1 + 𝑎𝑎�𝑗𝑗𝑗𝑗 ⋅ 𝑏𝑏𝑖𝑖 + 𝑎𝑎�𝑗𝑗𝑗𝑗 ⋅ 𝑏𝑏𝑗𝑗. 

τ was then found numerically using Brent’s method and analytically by expanding the 

hyperbolic functions using a Maclaurin series. We used the NumPy ‘roots’ function (Horn and 

Johnson, 2012) to solve the polynomials of power over 2. Next, the periods of activity of flexors 

and extensors during a step cycle were obtained with the following iterative algorithm: 

i. Calculate the time τi when state xi reaches 1. 

ii. Calculate the time τj when state xj reaches 1. 

iii. Calculate the state of all integrators at time point τ=min(τi, τj).  

iv. Reset the state from 1 to 0, deactivate it, and activate the reciprocal ipsilateral state. 

For example, switch from an active left flexor to an active left extensor. 

v. If a full step cycle is completed (all 4 states reached value 1 at least once), stop; 

otherwise, go to step (i). 

The code implementing the algorithm and parameters in Python is available on 

https://bitbucket.org/nishbo/cpg. 

Simulations with non-optimal parameters  

The model can generate a rich variety of patterns using parameters shaped by the cost 

function. The illustration of these insightful 'outtakes' is shown in Figure 4-9. The omission of the 

cost function components responsible for the cycle duration range (Figure 4-9A) results in the 

trivial best-fit solution that fits the desired phase relationship, but it may not reflect the range of 

phases with the increased magnitude of inputs (Gu=0). Similarly, removing the cost of 
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unphysiological bilateral flexor coactivation may result in the simulations that resemble hopping 

behavior (Figure 4-9B). The rapid switching in the heading direction can be simulated by forcing 

the system to cross the heading direction transition shown in Figure 4-9C&D between points c 

and d in the panel G from Figure 4-6. In this region, the asymmetrical change in Gu for flexors 

and extensors flips the speed of left and right limbs as indicated by the difference of stance 

phase (dashed lines). The drop in the cost function of parameters in d was associated largely 

with the H component of Equation 4-4 (Hc=0.05, Hd= 0.2). Selecting the parameters at the 

extremes (see e and f in Figure 4-9G) shows the examples of reduced coupling within the 

network. The patterns could drift relative to each other as in Figure 4-9F. The double-stepping, a 

physiological behavior (see Fig. 5 in Yakovenko, 2011), could also be generated by the large 

difference in the input to flexors and extensors. 

---------------- 
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Figure 4-9. Solutions with the varied manipulations of the optimization algorithm. 

A. Examples of patterns optimized without the range cost (M, k2=0 in Equation 4-4). B. 

Simulation without the cost of bilateral flexor activation (O, k3=0 in Equation 4-4). C and D. 

Simulations with uncoupled asymmetrical Gu parameters selected on the different sides of the 

heading direction transition (points c and d in G). E and F. Simulations with uncoupled 

asymmetrical Gu in points e and f of panel G. The panel of Figure 4-6A with the indication of 

selected regions. 

---------------- 
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Chapter 5 Discussion and Future Directions 

The dissertation explored motor control mechanisms at the levels of musculoskeletal 

actuators, their command signals and controlling networks utilizing an inverse model approach. 

The second chapter described a novel autogenerating model of kinematic MS variable 

approximations. The optimal polynomials showed very low computational demand and allowed 

detailed modelling of the human hand in real time. Structures of the polynomial models 

embedded functional and anatomical properties of the muscles. The third chapter utilizes the 

models developed in chapter two to provide inverse solutions to the neuromechanical control of 

the hand. Muscle excitation profiles from the datasets of desired postural and movement 

kinematics were obtained with regulated joint stiffness. Computed muscle excitations (CMEs) 

reproduced the desired movements and posture-maintaining torques with low errors. The 

agonist-antagonist coactivation mechanism partially explained the produced joint stiffness. A 

method of using the inverse solutions in prosthesis control was demonstrated and applied offline 

for a subject. Going further upstream in motor control, the fourth chapter focused on the phasic 

group motoneuron activity generated by spinal central pattern generators (CPGs) for 

locomotion. We showed how this model of the CPG is driven by the control signal in the form of 

desired forward velocity. The parameter space of the CPG model allowing symmetric and 

asymmetric walking was explored. We found several strategies for smooth turning potentially 

employed by the spinal cord and supraspinal control networks. Chapters two and three were 

prepared as a stand-alone peer-reviewed articles, to be submitted for review in a journal, and 

chapter four was published in a peer-reviewed journal. 

In summary, three main chapters explored the mechanisms behind the generation of 

movement from pattern generation network activity to motor unit activation to biomechanics. 

Each of the chapters two, three and four presented a discussion specific to their respective 

topic. Several themes that span two or more of the chapters of this dissertation are addressed 

below, including: (i) mechanistic and phenomenological approaches in modelling; (ii) specifics of 

the mathematical spaces of that contain the described data; (iii) subject-specific variability 

encompassed by the models; and (iv) methodological and algorithmical specifics. The segments 

discuss current state, limitations, and future directions. 
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Mechanistic and Phenomenological Models 

Models employed in this dissertation utilized both mechanistic and phenomenological 

approaches. Approximations of the MS kinematic variables were fully phenomenological 

reflecting the goal of compact descriptions of simulated muscle path (Delp et al., 2007). We 

found that known functional and anatomical grouping was embedded within their structure. This 

embedded information in the form of polynomial components has the potential to be used as a 

descriptive language for MS structures.  

Inverse solutions to the forward model of motor control simulated the behavior of the system. 

The presented forward and inverse models were a simulated analytical description of the motor 

control, describing all transformations directly or with reasonable approximations. As a part of 

the solution, a linear pseudoinverse had to be obtained, which is commonly considered to be a 

phenomenological approach (Mauk, 2000). Compared to common machine learning 

approaches (Ciancio et al., 2016; Nieveen et al., 2017; Resnik et al., 2018), the analytical 

representations enabled by this model allowed the investigation of the separate components of 

the control scheme contributing to the behavior of a complex model, i.e. the analyzed joint 

stiffness.  

The CPG model also approximated very complex dynamics of control present in the spinal 

cord. Both simulation and analytical versions of the model were able to predict and produce a 

range of behaviors: symmetrical and asymmetrical locomotion, and compensation strategies 

(Sobinov and Yakovenko, 2017; Yakovenko et al., 2018). Its analysis revealed that the relatively 

simple CPG model (compared to neuron simulating approaches as in Rybak et al., 2006) has 

complex internal dynamics and can have multiple solutions producing the same patterns of 

control. Complex models describing the same phenomena need to be very carefully constructed 

and verified to make sure that they are representing the phenomena and internal dynamics 

correctly, otherwise they might be susceptible to unexpected, unstable behaviors, and wrong 

predictions. Using both analytical and phenomenological approaches in our model development 

helped ensure the correctness of their behavior and made them transparent. 

Mathematical Spaces 

The models implied the continuousness and sometimes smoothness of the spaces they were 

applied to. It is a commonly taken assumption for the description of MS variables, because the 
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opposite would mean teleportation of the muscle between two paths absent in muscle 

mechanics (Menegaldo et al., 2004; Delp et al., 2007; Sartori et al., 2012). If such a behavior 

were to be observed in our data, it meant that there was an error in the OpenSim simulation, 

leading to a muscle falling off of a wrapping surface. Applying the approximation algorithm to 

other datasets with known discontinuities (e.g. transitions between phases) may require adding 

discontinuous functions or their approximations to the list of basis functions (See below in 

Methods and Algorithms). Another common implicit assumption for MS system is that there is 

only one anatomical path that a muscle travels through when a subject assumes a specific 

posture. Mathematically, it means that there is only one set of kinematic variables 

corresponding to each posture. If there is more than one set of variables in a posture, the 

muscle can be in multiple locations while the body is in a given posture. There is a theoretical 

possibility of that happening, for example, when the muscle path depends on how the body got 

to that posture, but I have failed to find any literature describing such behavior. In another 

theoretical example a muscle displaces other muscles that wrap around it or its tendons when it 

is flexed. Modelling of that behavior would require a very detailed representation of soft tissue 

biomechanics and has not yet been developed.  

Control signals within the motor system are commonly assumed to be continuous in the form 

of single-neuron spike rate or population average activity (see for example Hochberg et al., 

2006; Churchland et al., 2012). From a different point of view, precise single spikes encode 

more information (Strong et al., 1998; Reinagel and Reid, 2000) and have been found as a 

primary mechanism in specific motor tasks, like songbird breathing (Srivastava et al., 2017). 

The precise timing of neuron synchronization similar to the observed discontinuous single-spike 

encoding can also be simulated in a continuous neuron behavior (Izhikevich, 2001). The debate 

is still ongoing, and our observed smoothness of the computed muscle excitation profiles is a 

product of the continuousness of the kinematics and internal model components. It is important 

to note the contribution of the smoothness of the model components to the smoothness of 

observed behavior, because when non-smooth relationships between MS variables and force 

were used in the model, I observed oscillations in forward control and discontinuous profiles in 

the inverse. Both of these effects were detrimental for the stable control. From that I suggest 

ensuring the smoothness of the relationships for stable MS model behavior, especially for 

prosthetic controllers.  
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On the higher level of control, spinal CPGs produce state transitions from walking to trot, to 

running when the stimulation of brainstem MLR region increases (Shik et al., 1966). Such 

discontinuous output with state transitions was outside of the scope of the analysis of my 

dissertation, which focused on walking, albeit the model has capability to support other gaits 

(Yakovenko, 2011). Many CPG models support state transition as an emergent property of the 

continuous neuronal dynamics (Danner et al., 2017). Analyzing the model configurations 

corresponding to different gaits is an intriguing direction for the future research that can answer 

some of the questions about the size of the parameter space posed in my research. Other than 

rare examples, discontinuities in motor control are not commonly observed and can be modelled 

by smooth and continuous models. 

Subject-Specific Variability 

While intersubject variability is a common problem for prosthetic controllers, it was mostly 

outside of the focus of my dissertation. Many of the developed models represented the first step 

in the development of a model at their scale and attempted to describe the average behavior of 

the system. In the field of MS modelling, validity of the mean description is currently debated 

(Akita and Nimura, 2016a, 2016b; Goislard De Monsabert et al., 2018; Boots et al., 2019). 

During our analysis, we found that modelling the average MS system by combining different 

sources of measurements was viable, and sometimes the only available way, considering the 

barrenness of the available data. The modelled MS system that we obtained is a useful first 

approximation in which segments can be scaled to better represent morphometrics of a specific 

subject.  

Variability of subject-specific control signals is one of the biggest problems for prosthetic 

controllers (Hiremath et al., 2015). In machine learning approaches it leads to long 

individualized training periods (Cipriani et al., 2011; Nieveen et al., 2017). In a biomimetic 

control scheme it leads to manual or automated tweaking of model parameters (Crouch and 

Huang, 2016). An inverse solution of the neuromechanical system accommodates subject-

specific variation in control of biomimetic prosthetics by scaling and redistribution of subject’s 

EMG signals into the control signals via a regression between EMGs and CMEs, which 

theoretically are in the same domain. A big limitation of the current approach that potentially 

hindered the ability of the inverse to identically replicate the desired traces when controlled by a 

subject’s EMG, was the static and generic values for joint stiffness. In the current application, 

influence of stiffness was limited to an engineering improvement on the stability of the controlled 
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system. Even if the relation between the MS model and the MS system of the subject through 

CMEs would not be perfectly established, a subject should be able to learn how to operate a 

slightly different modelled body, as happens in motor adaptation (Krakauer and Mazzoni, 2011).  

CPGs, especially describing the rhythmogenic control, as the model described in Chapter 4, 

are a conservative neural structure in mammalian CNS (Kandel et al., 2000). The synergies 

activated by the rhythm vary in different species, often corresponding to specifics of MS 

structure (Oliveira et al., 2014). In all described cases, an average representative behavior is 

needed to build more complex models than a single subject data would allow. 

Some of the limitations of the models in their representation of subject specificity can be 

addressed by future developments. The MS model can incorporate scaling of segments to 

produce kinematic variables specific for a subject (Goislard de Monsabert et al., 2017; Pan et 

al., 2018). A potential problem with that approach is the computational errors of muscle path 

estimation similar to slipping off of a wrapping surface that need to be investigated. A way to 

bypass this problem is a transformation routine in the space of optimal approximating 

polynomials that would allow obtaining differently-scaled models without the need to verify the 

MS simulation or re-optimize the polynomials. The optimal polynomials from different subjects 

can be used to refine our understanding of functional and anatomical clusters similar to the 

analysis performed in Chapter 2. If applied to different species, it can be used in evolutionary 

biology to quantitatively track the anatomical and neuromuscular changes happening in species 

and their functional implications. To be feasible, such an extensive analysis would first require 

an automated method for building an MS model from some imaging data (Blemker et al., 2007), 

and its application to an extensive dataset. As mentioned previously, the purpose of the inverse 

solution to the model of hand motor control was to negate the subject-specific and recording-

specific variability. Further progress can be made by extracting the stiffness values from a 

movement. The additional part of the cost function on the regression for the whole or part of the 

dataset will encourage low residuals in the regression between CMEs and EMGs. This would 

allow a more precise estimation of the user’s intent and account for the unknown stiffness 

present in human movements. Fitting of the CPG model parameters to the user-specific 

behavior can be used in a medical setting to assess motor disabilities or dangerous behaviors of 

a subject. For example, by finding asymmetricities and identifying their source, a strategy can 

be developed to change gait to reduce fall risk and improve safety. Investigating the estimation 
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of stiffness in the motor commands from the recorded data and its use in prosthetic control will 

be an area for future research. 

Methods and Algorithms 

The methods and algorithms described in this dissertation can be further improved to 

account for other datasets and phenomena. Algorithms used to approximate the dataset of MS 

kinematic variables can be expanded to include other basis functions, e.g. trigonometric, 

exponential, discontinuous or generalized, to accommodate the specifics of the desired dataset. 

Such expansion is supported by the algorithm structure and has been used during development, 

although in the case of discontinuous basis functions, another regression algorithm may be 

needed for parameter estimation. A covariation matrix can be used to guide the selection of this 

increased pool of basis functions. There is a theoretical possibility of the algorithm stopping the 

approximation prematurely, when it would need to add two terms at a time to improve the 

information criterion. To investigate if it was influencing the approximation of the MS dataset, I 

have implemented a version of the algorithm, which, when finished with approximation, 

attempted to find an addition of two or more polynomial terms that improved the information 

criterion. If they were added, the optimization was resumed. The optimal polynomials did not 

change when obtained using said algorithm, but the time required to obtain the functions 

increased to several days for 6-DOF muscles.  

An important future direction of the present research would be to evaluate the different 

relationships between EMGs and CMEs in the modelled hand control using inverse solutions. 

As an example, we considered: (i) using generalized linear regression; (ii) relating the changes 

in EMGs (first time derivative) to CMEs, (iii) relating independent components of EMGs to 

CMEs, or (iv) using an artificial neural network. Comparison of these approaches will require a 

formalized test and a dedicated set of experiments with multiple subjects under similar 

conditions.  

An improvement of the CPG parameter estimation algorithm can include an explicit 

constraint on the full step periodicity of the analytical CPG model. These are commonly omitted 

as a constraint in experimental studies (Thelen and Anderson, 2006), but might provide an 

insight into different parameters balancing each other. I think it would be fruitful to pursue these 

directions of research in the future, expanding the approximation algorithm and implementing 

other relationships between CMEs and EMGs on an organized dataset.  
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Overall, my dissertation described formation of movements within motor control systems. At 

the spinal level, rhythmogenesis in the spinal cord CPGs was analyzed from the intent encoded 

in the supraspinal regions. An internal model was proposed for estimation of motor unit 

excitation from the desired movements. These motor commands were executed through a 

complex biomechanical model of the hand. All these parts fit together to produce a description 

of motor control by the central nervous system. Future developments based on the fundamental 

models and their principles describe herein will hopefully lead to the development of prosthetic 

devices that will help restore motor function of people and improve their quality of life. 
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