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Annotation of Dissertation Thesis: 

 

GLOGER, Michal. Affordable Active Lower Limbs Exoskeleton for People with Paraplegia, 

Department of Robotics, Faculty of Mechanical Engineering, VŠB-TU Ostrava, 

114 pages, 108 figures, 31 tables. Supervisor: prof. Dr. Ing. Petr Novák 

 

After a broad introduction to the medical and biomechanical background and detailed review of 

orthotic devices, two newly developed lower limbs exoskeletons for paraplegics are presented in this 

study.  

There was found out the main challenges of designing devices for paraplegic walking can be 

summarized into three groups, stability and comfort, high efficiency or low energy consumption, 

dimensions and weight.  These all attributes have to be moreover considered and maintained during 

manufacturing of affordable device while setting a reasonable price of the final product. 

A new economical device for people with paraplegia which tackles all problems of the three groups 

is introduced in this work. The main idea of this device is based on HALO mechanism. HALO is a 

compact passive medial hip joint orthosis with contralateral hip and ankle linkage, which keeps the 

feet always parallel to the ground and assists swinging the leg. The medial hip joint is equipped with 

one actuator in the new design and the new active exoskeleton is called @halo.  

Due to this update, we can achieve more stable and smoother walking patterns with decreased 

energy consumption of the users, yet maintain its compact and lightweight features. It was proven by 

the results from preliminary experiments with able-bodied subjects during which the same device with 

and without actuator was evaluated. Waddling and excessive vertical elevation of the centre of gravity 

were decreased by 40% with significantly smaller standard deviations in case of the powered 

exoskeleton. There was 52% less energy spent by the user wearing @halo which was calculated from 

the vertical excursion difference. There was measured 38.5% bigger impulse in crutches while using 

passive orthosis, which produced bigger loads in upper extremities musculature. The inverse dynamics 

approach was chosen to calculate and investigate the loads applied to the upper extremities. The result 

of this calculation has proven that all main muscle groups are engaged more aggressively and indicate 

more energy consumption during passive walking. The new @halo device is the first powered 

exoskeleton for lower limbs with just one actuated degree of freedom for users with paraplegia. 
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Anotace disertační práce: 

 

GLOGER, Michal. Ekonomicky dostupný aktivní exoskeleton pro dolní končetiny pro paraplegiky, 

Katedra Robotiky, Fakulta strojní, VŠB-TU Ostrava, 114 stran, 108 obrázků, 31 

tabulek. Školitel: prof. Dr. Ing. Petr Novák 

 

 

První část práce je věnována obsáhlému úvodu do zdravotnické a biomechanické terminologie a 

detailnímu souhrnnému představení ortopedických pomůcek. Následně jsou představeny dva nově 

vyvinuté exoskelety aplikovatelné na dolní končetiny paraplegiků.  

Bylo zjištěno, že hlavní úskalí konstrukčního návrhu asistenčních zařízení pro paraplegiky lze 

shrnout do tří hlavních skupin, jako první je stabilita a komfort, druhá je vysoká účinnost a nízká 

energetická náročnost uživatele a do třetí lze zahrnout rozměry a hmotnost zařízení. Toto všechno je 

navíc podmíněno přijatelnou výslednou cenou produktu.    

Nový ekonomicky dostupný exoskelet pro paraplegiky, který řeší problematiku všech tří zmíněných 

skupin je představen v této práci. Hlavní myšlenka tohoto zařízení je postavena na mechanismu HALO 

ortézy. HALO je kompaktní pasivní ortéza s mediálním kyčelním kloubem umístěným uprostřed mezi 

dolními končetinami. Speciální mediální kyčelní kloub je kontralaterálně propojen s kotníkem 

soustavou ocelových lanek což zajištuje paralelní polohu chodidla se zemí v každém okamžiku chůze a 

navíc asistuje zhoupnutí končetiny. Tento mediální kyčelní kloub je redesignován a v novém provedení 

je vybaven jedním aktuátorem, nové řešení aktivního exoskeletu dostalo název @halo. 

Díky tomuto vylepšení lze dosáhnout stabilnější a plynulejší chůze s výrazně redukovanou 

energetickou náročností uživatele přičemž dochází k zachování nízké hmotnosti a kompaktnosti 

zařízení. Toto bylo dokázáno během předběžných experimentů se zdravými subjekty, během kterých 

byla testována aktivní chůze se zařízením vybaveným odnímatelnou pohonnou jednotkou a pasivní 

chůze se stejným zařízením bez této aktivní jednotky. Nadměrné naklánění se během chůze ze strany 

na stranu a nadměrná výchylka pohybu těžiště těla ve vertikálním směru byly sníženy o necelých 40% 

s velmi významně menšími standardními odchylkami v případě chůze s pohonem. Z rozdílu výchylky 

pohybu těžiště těla ve vertikální poloze bylo vypočítáno snížení energetické náročnosti uživatele o 52% 

při chůzi s aktivní konfiguraci @halo. Při pohybu s pasivní ortézou byl naměřen o 38,5% větší reakční 

silový impuls v berlích, což znamená nárůst zátěže pro svalový aparát horních končetin. Pro podrobné 

vyšetření zátěže ramenních kloubů byl aplikován model inverzní dynamiky. Výsledek tohoto výpočtu 

jednoznačně indikuje agresivnější a hlubší zapojení všech svalových skupin ramenního kloubu a tím 

vyšší spotřebu energie uživatelem během pasivní chůze. Nové asistenční zařízení @halo je prvním 

exoskeletem svého druhu pro paraplegiky s jediným poháněným stupněm volnosti.                                
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2 List of labels and abbreviations 
 DESCRIPTION UNIT 

𝑥𝑖⃑⃑  ⃑ position vector of CoG of ith segment m 

𝑚𝑡𝑜𝑡𝑎𝑙 total mass of the subject together with device kg 

𝑚𝑖 mass of ith segment kg 

𝑟𝑆𝐺𝑅 
position vector from the glenohumeral joint to the marker on the tip 
of the crutch 

m 

𝑟𝑖 position vector from shoulder joint to the ith segment centre of gravity m 

𝑀⃗⃑⃑𝐼𝑖 inertial moment due to ith segment Nm 

𝑃𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑙 power of the proximal segment of the joint W 

𝑃𝑑𝑖𝑠𝑡𝑎𝑙 power of the distal segment of the joint W 

𝑣⃗𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑙 linear velocity of the proximal segment of the joint 𝑚 ∙ 𝑠−1 

𝑣⃗𝑑𝑖𝑠𝑡𝑎𝑙 linear velocity of the distal segment of the joint 𝑚 ∙ 𝑠−1 

𝜔⃗⃑⃑𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑙 angular velocity of the proximal segment of the joint 𝑟𝑎𝑑 ∙ 𝑠−1 

𝜔⃗⃑⃑𝑑𝑖𝑠𝑡𝑎𝑙 angular velocity of the distal segment of the joint 𝑟𝑎𝑑 ∙ 𝑠−1 

𝜔⃗⃑⃑𝑠 angular velocity in glenohumeral joint 𝑟𝑎𝑑 ∙ 𝑠−1 

𝜏𝑆 = 𝑀⃗⃑⃑𝑠   moment in a shoulder joint Nm 

𝑃⃗⃑𝑆 power flow in glenohumeral joint (shoulder joint) W 

𝜃𝑠 relative angle vector between upper arm segment and trunk segment rad 

𝑎𝑖  inertial acceleration of ith segment 𝑚 ∙ 𝑠−2 

𝑔 gravitational acceleration   𝑚 ∙ 𝑠−2 

𝐹⃗𝑠 force vector acting in glenohumeral joint (shoulder joint) N 

𝐹⃗𝐺𝑅 ground reaction force vector N 

𝑀𝑏𝑔 moment of output shaft from the bevel gearbox  Nm 

GRF ground reaction force  

CoG centre of gravity  

DoF degree of freedom   
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3 Introduction 
3.1 Structure of this work  

 Section 1 – Introduction Chapter    

Introduction chapter contains medical background and explanation of a terminology used 

in this work as well as the description of the focus group of the future potential customers. But 

the main contents of this section is an explanation of the motivation for this work together 

with the aim and the main objectives and the structure of whole thesis is presented as first. 

 Section 2 - Orthoses and Exoskeletons for lower limbs chapter  

Main terminology in the field of orthotic devices is discussed here as well as denotation and 

use of terms “Active Orthosis” and “Exoskeleton”. A Broad review of orthoses for lower limbs 

is in details presented here in order to be able to choose appropriate components and 

materials for designing new active exoskeletons which will meet the main objectives. As the 

final part of this chapter all important requirements which the new design of a powered 

exoskeleton have to meet are summarised and listed in the requirement list.           

 Section 3 – Design of new Exoskeleton Ortholeg 2.0 

Two new powered Exoskeletons which were designed for the purpose of this study are 

presented as next. First new exoskeleton Ortholeg 2.0 is presented in this chapter. Exoskeleton 

Ortholeg 2.0  was designed in the Universidade Federal do Rio Grande do Norte (UFRN), Brazil 

and some of components were manufactured to test their actual functionality. Manufacturing 

processes and benefits of this new system are discussed in this chapter.   

 Section 4 - New active exoskeleton @halo and passive orthosis Halo 

Second new active exoskeleton @halo and its passive version Halo are presented in details 

in this section of the work. Exoskeleton @halo was developed in the Department of Robotics 

Science & Engineering of Chubu University, Japan. Mechanical design and control system of 

novel exoskeleton are explained and described in details in this chapter.    

 Section 5 - Experiments procedure and experimental set up 

Exoskeleton which meets requirements from the requirement list and which fits better the 

aims of this work is selected in this section. Exoskeleton @halo was chosen as better solution. 

Walking with active @halo device and passive Halo orthosis was tested during preliminary 

experiments. All necessary details about experiments such as experimental set up, 

experimental trials, data acquisition techniques and description of equipment used during 

experiments are presented in this chapter.    

 Section 6 - Gait Analysis and evaluation of walking with Halo and @halo 

Scientific methods of processing and evaluating data from preliminary experiments are 

discussed in this section. Walking patterns of active @halo and passive Halo device are 

compared. Parameters for comparison are step length, velocity, centre of gravity 

displacement, force impulse in crutches and loads in shoulder joints. Utility of @halo device is 

validated based on this comparison.    

 Section 7 – Conclusions 
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Overall contribution of this work for scientific discipline and practise are discussed in this 

chapter as well as recommendation for further research.   

3.2 Motivation  

As many as 500 000 people suffer a spinal cord injury every year according World Health 

Organization (WHO) statistics. People after SCI are two to five times more likely to die prematurely 

and their economic participation is much lower. Life of people with some form of paraplegia or 

tetraplegia changes rapidly, school enrolment and employment rate drops significantly with global 

unemployment rate of more than 60% and substantial individual and societal costs emerge. After such 

consequences 20-30% of people with spinal cord injury show clinically significant signs of depression, 

after rapid physiological deterioration psychical state of patient comes as next. This brings negative 

prognoses for future overall health improvement. Very important aspect at this stage is access to 

professionals and equipment in the field of rehabilitation and assistance and support services. Talking 

about rehabilitation technology unfortunately only as low as 5-15% of people in low- and middle-

income countries have access to the assistive devices they need. This alarming facts were reflected into 

WHO`s Global Disability Action Plan where its second objective is:  

 To strengthen and extend rehabilitation, habilitation, assistive technology, assistance and 

support services, and community-based rehabilitation. 

From this point is obvious, that despite of fact that development in this field is growing, there is still 

not enough done to cover global needs. This work focuses on people with paraplegia, who end up on 

wheelchair. In order to carry on in healthy life it is important to undergo regular rehabilitation 

procedures and try to activate body as much as before trauma, the best way how to achieve that is to 

put a wheelchair aside. Walking and being able to move from one place to another without wheelchair 

can be beneficial not only because of increased upright mobility, so to reach hardly accessible objects 

became possible, but there are many other benefits which can allow disabled people to live healthier 

life. Advantages discussed in many surveys and studies can be:  

 Reduction of spasticity and potential muscle atrophy by stretching back and legs muscles which 

are continuously contracted and thigh over time    

 Improvement of lower extremities contractures leading to deformity and rigidity of joints by 

augmenting range of motion which keeps joints more flexible  

 Prevention of  Decubitus ulcers caused by prolonged sitting 

 Overall poise improvement   

 Possible improvement of functionality of some internal organs e.g.  

o augmentation of natural bowel movements and improvement of digestion and 

stomach functionality      

o Improvement of bladder function and decreasing urinary tract infections  

o respiratory system and better breathing capability;  

o Cardiovascular system by improving circulation of blood in all body 

 decreasing bone osteoporosis by natural loading of bones  

 And psychological  effect like increased self-confidence and self-esteem and good way how to 

cope with depression  
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Many studies outcomes may speculate unequivocal proofs of such and other benefits. Vast majority 

of these results are however based on plain surveys not on scientifically proven facts. The most 

important aspects which are fundamental for promising overall health improvement of paraplegics are 

frequency and the length of use of orthotic devices which was generally consistent conclusion (M.T. 

Karimi et al. 2011). The life-long usage of assistive equipment can be the key for happier life with 

overall physiological and psychological improvement. Long term rehabilitation procedures at hospitals 

are time consuming and expensive and many patients discontinue attending this sessions in early 

stages. Unfortunately vast majority of users gave up using assistive technologies like exoskeletons or 

other orthotic devices outside therapeutic rooms as well. The main problems with orthoses and 

exoskeletons use are:   

 High energy expenditures, metabolic costs 

 Mobility speed on wheelchair is incomparably higher than with orthoses  

 Long and uncomfortable donning and doffing of orthoses, sometimes even not possible without 

assistance of second person   

 Big forces applied on upper limb musculature while using crutches   

 Price of such equipment in case of some actuated configurations             

 In order to cope with this situation, there is vital and important to focus on development and 

manufacturing of such device, which can tackle these problems.   

3.3 Aim 

Today’s products and research in the field of active assistive robotic devices for lower extremities 

are mostly focusing on adapting normal walking patterns, which means increased number of degrees 

of freedom. This way we can achieve high stability and low metabolic costs, but price is much higher 

and design can became bulky (Dollar a Herr 2008). Brief survey, conducted during international 

championship Czech Open 2015 - Para Table Tennis where were questioned nearly 50 players in 

category TM1-5 (sitting classes), showed surprisingly very sceptic view of responders on current 

technology, nearly 80% answers were clearly pointing out imbalance between usefulness (efficiency), 

price and complexity of devices. This results clearly indicate need of simplification and significant 

reduction of price in order to increase future demand and interest of users. The aim is rather focus on 

simple lightweight, compact and economically accessible solutions similar to reciprocal gait orthosis 

(RGO) or hip guidance orthosis (HGO) (Harvey et al. 1998), (Winchester et al. 1993). RGOs stabilize 

ankles, knees, hips, and trunk to provide upright posture and due to a reciprocal link between hip 

joints, more stable walking with reduced metabolic energy consumption can be achieved (Moore a 

Stallard 1991), (Rose 1979). It was found out coupling contralateral joints is a good way how to increase 

efficiency of paraplegic walking. A successful walking with these orthoses is however derived from 

upper body strength. Most of the users failed to continue using these devices outside therapeutic 

rooms due to inability to control horizontal pelvic rotation and hip flexion, which results in no 

symmetrical gait with large deviations in stride lengths and velocities. Balance and stability is 

maintained by use of crutches, this can produce big forces acting on upper limbs. Such excessive load 

can in case of long term use lead to shoulder pain or the incidence of some diseases. Fear from falling 

due to low stability was reported as another factor of giving up regular independent walking (M.T. 

Karimi et al. 2011).  
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The main aim is to develop affordable actuated exoskeleton for users with complete or incomplete 

paraplegia which will provide them with smoother walking patterns, increased stability, reduced 

amount of the force applied on the upper limbs and decreased overall energy consumption. Thus the 

users can feel safe and comfortable, walk with quick adaptation and less effort and therefor decide to 

use such exoskeleton regularly in daily life. New device will became every day assistance for 

maintaining better overall health of paraplegic users by introducing upright mobility in their lives.  

3.4 Objectives 

The process of determining the main objectives of design of device, was taken entirely from user’s 

perspective. According user’s needs we can divide these objectives into four groups:       

1. Walking with device must not be toil  

1.1. Efficiency - Energy consumption of users must be reduced to level close to normal walking. 

1.2. Modularity - User can decide whether to use passive or active setting of assistive device. 

 

2. Walking with device should be enjoyable and pleasant. Presence of fear is unacceptable: 

2.1. Stability - Fear from falling significantly reduces desire for everyday regular use. 

2.2. Safety - Safe means mainly increased stability and construction and control without failure.  

2.3. Comfort - Perfect fit and effective force transfers from device to user.   

 

3. Users must be independent, because the independence is as well the purpose of this device: 

3.1. Lightweight, easy to carry, compact device which is quick and easy to  

3.2. Don/Doff directly from a wheelchair are the key elements.   

      

4. Sorry, I am not a millionaire... yet. 

4.1. Economical, affordable solution for everyday use at home  

4.2. Maintenance free and robust design is enclosing the list of important features. 

 

Figure 3.1 The main objectives – Flyer 
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3.5 Medical Background 

Some of the medical terminology used frequently in this work is explained here.  This study focuses 

on biomechanical evaluation of gait patterns, thus it is fundamental to explicitly explain particular 

terms from medicine related fields. 

Anatomy of spine and spinal cord is explained in this chapter as well as common diseases which 

could lead to paralysis of lower limbs with consequent need for rehabilitation. 

3.5.1 Spine and spinal cord 

The spine consists of 33 bones build up one on top of the other, see Figure 3.2. Flexible tendons 

and ligaments are attached to spinal column and connects to strong muscles in order to carry out its 

main function to support body and protect the spinal cord from its injury.  The spinal cord is about 45 

cm long and is about thickness of thumb. It runs in the spinal canal from the brainstem to the 1st 

lumbar vertebra. At the end of the spinal cord, the cord fibres split and continue down through the 

spinal canal to tailbone before branching off to legs and feet. The spinal cord serves as an information 

super-highway, relaying messages between the brain and the body. The brain sends motor messages 

to the limbs and body through the spinal cord allowing for movement. The limbs and body send 

sensory messages to the brain through the spinal cord about what we feel and touch. Sometimes the 

spinal cord can react without sending information to the brain. These special pathways, called spinal 

reflexes, are designed to immediately protect our body from harm. The nerve cells that make up spinal 

cord itself are called upper motor neurons. The nerves that branch off spinal cord down to a back and 

neck are called lower motor neurons. These nerves exit between each of vertebrae and go to all parts 

of body.  

3.5.2 Common diseases and reasons for lower limb rehabilitation 

There are several reasons for rehabilitation of lower limbs, one of the most common reason is 

recovering of function after orthopaedic surgeries like arthroplasty e.g. after hip joint replacement 

patients often start physical therapy straightaway. Besides of diseases of bones, joints and structures 

connected to them, there are several diseases which may commonly result in functional loss in lower 

extremities, most common are, (Cuccurullo 2015) : 

 Stroke 

Sudden local or sometimes global neurologic deficit secondary to occlusion or rupture of blood 

vessels supplying the brain. AFO greatly improve gait mechanisms and efficiency by preventing 

the passive or active plantar flexion in swing and stance phases. With use of AFO there is also 

less need for hip and knee flexion and pelvic elevation to gain foot clearance. An orthosis which 

can assist in knee extension improves stance stability during the period of decreased muscle 

tone. 

 Cerebral Palsy  (appears in early childhood) 

Lower limb orthoses can effectively improve the gait of some children with this disease, ankle 

foot orthoses are often used in this case.    

 Post-polio syndrome   
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Postpolio syndrome (PPS) is a neurologic disorder characterized by progressive muscular 

weakness, pain, and fatigue many years after the acute paralytic infectious disease caused by 

the poliovirus. Orthoses and assistive devices can help to stabilize the patients’ unstable and 

painful joints and can improve energy consumption of patients during ambulation. With knee-

ankle-foot-orthosis (KAFO) and crutches, energy expenditure can be reduced by 25% during 

ambulation. 

 Guillain-Barrie syndrome 

GB syndrome is disorder in which the immune system of the body attacks some of the 

peripheral nervous system. Symptoms of this disease include sudden weakness or loss of 

reflexes and tingling sensations in legs, arms and other parts of your body. AFO orthoses can 

be used in this case in order to support weakened lower limbs. 

 Transverse myelitis  

Transverse myelitis is a rare neurological syndrome. It is an inflammatory disorder of the spinal 

cord. KAFO or AFO can be prescribed in case of paraplegia or foot drop which resulted after 

acute form of disease. 

 Amyotrophic lateral sclerosis (motor neurone disease group) 

This is a specific disease that causes the death of neurons which control voluntary muscles. 

KAFO may be used to improve locomotor functions.  

 Foot drop  

AFO are usually prescribed to improve gait pattern and support flexion of ankles.  

 Spinal cord injury (SCI)       

SCI is damage to the spinal cord. This disease is one of the most common reasons for lower 

extremities paralysis, thus will be discussed in detail in following chapter.  

3.5.3 Spinal cord injury and the levels of the lesion 

The term ‘spinal cord injury’ refers to damage to the spinal cord resulting from trauma (e.g. a car 

crash) or from disease or degeneration (e.g. cancer). There is no reliable estimate of global prevalence, 

but estimated annual global incidence is 40 to 80 cases per million population. Up to 90% of these 

cases are due to traumatic causes, though the proportion of non-traumatic spinal cord injury appears 

to be growing according WHO Fact sheet N°384 November 2013.  

Symptoms of spinal cord injury depend on the severity of injury and its location on the spinal cord. 

Symptoms may include partial or complete loss of sensory function or motor control of arms, legs 

and/or body. The most severe spinal cord injury affects the systems that regulate bowel or bladder 

control, breathing, heart rate and blood pressure. Most people with spinal cord injury experience 

chronic pain.  

Tetraplegia (or quadriplegia) is impairment or loss of motor and/or sensory function in the cervical 

segments of spinal cord due to damage of neural elements in spine. Tetraplegia results in impairment 

of function in arms, trunk, legs, and pelvic organs. Paraplegia is impairment or loss of motor and/or 

sensory function in thoracic, lumbar, or sacral segments of spinal cord. Trunk, legs, pelvic organs may 

be involved while having paraplegia, but arm functionality is not affected.  
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C5 injury 

Tetraplegia 

or 

Quadriplegia 

 

 
C4 injury 

Tetraplegia 

or 

Quadriplegia 

High-Cervical Nerves (C1 – C4)  

 damage is the most severe of the SCI 

 Paralysis in arms, hands, trunk and legs 

 Patient may not be able to breathe, cough, or 

control bladder or bowel movements. 

 Ability to speak is sometimes impaired or 

reduced.  

 Requires complete assistance with activities 

of daily living, such as eating, dressing, 

bathing, and getting in or out of bed  

 May be able to use powered wheelchairs with 

special controls to move around on their own 

 

Low-Cervical Nerves (C5 – C8) 

Corresponding nerves control arms and hands. 

C5 injury 

 Person can raise his or her arms and bend 

elbows. Likely to have some or total paralysis 

of wrists, hands, trunk and legs  

 once in a power wheelchair, can move from 

one place to another independently 

C6 injury 

 Paralysis in hands, trunk and legs, typically  

speak and use diaphragm,  

 Can move in and out of wheelchair and bed 

with assistive equipment  

C7 injury 

 Nerves control elbow extension and some 

finger extension, straightening of arm and 

movement of shoulders is possible.  

 Mostly independent with assistive 

technology 

 C8 injury 

 Nerves control some hand movement should 

be able to grasp and release objects 

 Mostly independent with assistive 

technology 

Figure 3.2 Spine 
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T6 injury 

Paraplegia 

Thoracic Nerves (T1 – T5) 

Corresponding nerves affect muscles, upper chest, 

mid-back and abdominal muscles.  

 Arm and hand function is usually normal. 

 Injuries affect the trunk and legs 

 Can use a manual wheelchair 

 May drive a modified car  

 Can stand in a special standing frame 

 May be rarely able to walk with braces  

Thoracic Nerves (T6 – T12) 

Nerves affect muscles of the trunk (abdominal and 

back muscles) 

 Normal upper-body functionality n  

 Fair to good ability to control and balance 

trunk while in the seated position  

 Should be able to cough productively (if 

abdominal muscles are intact)  

 Can use a manual wheelchair  

 Can learn to drive a modified car  

 Can stand in a special standing frame 

 May be able to walk with braces 

 

L1 injury 

Paraplegia 

Lumbar Nerves (L1 – L5)  

Injuries generally result in some loss of function in 

the hips and legs. May need a wheelchair but may 

also be able to walk with braces. 

 Injuries result in some loss of function in the 

hips and legs.  

 may need a wheelchair 

 Can walk with braces 

Sacral Nerves (S1 – S5) 

 Some loss of function in the hips and legs. 

 Most likely can to walk 

 

 

Figure 3.2 Spine 
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3.6 Focus Group  

The main focus group are the users with SCI T6 – T12 – symmetrical complete and incomplete 

paraplegia, hemiplegic group of the users however can be considered as well.   

As discussed in the previous subchapter there are many more diseases and reasons for lower limb 

paralysis. This means the end-user group does not need to be such specific and can be widen to any 

person with lower limb paralysis. The level of paralysis needs to be consulted with doctors and 

physiotherapists, who can give the best recommendation of proper solution for upright mobility.       

3.7 Biomechanical Background 

This work focuses on quantitative analysis of the motion based on data collected during walking 

experiments performed with novel active exoskeleton. This approach requires basic understanding of 

biomechanical terminology which is presented in this chapter. Definition of space in which 

experiments were performed, such as planes and coordinate systems are presented here as well as 

anatomical terms, description of movement of body segments, stride cycle or determinants of gait.  

3.7.1 Space definition  

 Movement during experiments was performed in space defined by planes, global coordinate 

system and local coordinate systems attached to each body segment.  

According general rules we term sagittal plane as travelling plane which direction is defined by 

anteroposterior axis. If we relate to global coordinate system (GCS), this axis would be in parallel with 

X axis. Frontal or coronal plane is in which vertical movement is evaluated and direction is defined by 

vertical (longitudinal) axis witch is in parallel with Z axis of GCS. Transverse or horizontal plane is plane 

where lateral movement appears which direction is defined by mediolateral or horizontal axis, this axis 

is in parallel with Y axis of GCS, all planes and GCS is shown on Figure 3.3. 

3.7.2 Denotation of Segments  

The main segment naming as it will be used throughout all this work is shown on Figure 3.4. Upper 

limbs consist of upper arms, forearms and hands segments. Upper arms are connected to trunk 

through glenohumeral joint (shoulder joint), upper arm then performs relative movement with respect 

to trunk segment. A forearm is connected to the upper arm via an elbow join and a hand to the forearm 

via a wrist joint. Lower limbs consist of thighs, legs (shins) and feet segments. The thighs are connected 

to the trunk via a hip joint and perform relative movement with respect to the trunk segment. The Legs 

are connected to the thighs via a knee joints and the feet via an ankle joint.          
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Figure 3.3 Definition of space, denotation of planes and axes 

 

 

Figure 3.4 Denotation of segments 
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3.8 Anatomical terms 

In this subchapter the most important terms regarding definition of position of segments or 

anatomical landmarks with respect to reference point of the body are described, (Hamill a Knutzen 

2009). Investigation of movement and position of the centre of gravity (COG) of the body is one of the 

key elements of the analysis chapter of this work, this is why it is fundamental to set the proper naming 

and terms, which can vary in different literatures, for the graphical representation of these terms see 

Figure 3.5.      

 Absolute and relative Angles  

First of all in order to discuss joints kinematics, we must define the joint angle. Absolute angle is 

angle between related axes of GCS and coordinate system of segment (LCS). Angle between two 

segments LCSs is called relative angle. In the evaluation chapter of this work for instance, there relative 

angle between trunk and upper arm segments is needed in order to calculate power flow through 

glenohumeral joint.  

 Movement or position of COG – mediolateral  

In order to describe directions of movement of the COG of body following terminology needs to be 

defined.  The term medial refers to a movement towards mid-axis (vertical axes) or position relatively 

close to the middle of the body.  The opposite of medial movement is lateral. Lateral movement 

describes motion away from mid-axis or on sides of the body. Lateral position is far from the middle of 

body. The term mediolateral movement of COG describes movement of COG towards and away from 

the middle of the body or towards sides. This movement occurs in horizontal direction in direction of 

horizontal (mediolateral) axis. Mediolateral movement is referring to so called waddling in following 

chapters of this work.    

 Movement or position of COG – anteroposterior 

Forward or backward bend result in anterior or posterior movement of COG of the body. This 

movement occurs in sagittal plane and in direction of anteroposterior axis. In following chapters this 

movement of COG is called anteroposterior or sagittal movement. Forward progression is another 

term which occurs in this study and refers to movement of the COG of body in travelling direction.  

 Movement or position of COG – Vertical elevation  

Superior and inferior are used to describe segment or COG of segment position with respect to 

body, former is referring to point closer to the top of the body or above the reference and latter is 

below the reference. Movement of COG of body related to superior and inferior direction is described 

in following chapters as movement in vertical direction or vertical elevation    

 Proximal and distal relative position  

Proximal and distal are used to describe the relative position with respect to a designated reference 

point. Proximal point is the point closer to reference and distal is further form the reference. If we 

take the glenohumeral joint as the reference point, then the wrist joint is distal point and the hand is 

distal segment, but the elbow joint is proximal point and the arm is proximal segment. 

 Ipsilateral and contralateral location  

The term ipsilateral describes activity or location of a segment positioned on the same side as a 

particular reference point. Actions, positions, and locations on the opposite side can be entitled as 

contralateral.   
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Figure 3.5 Terms defining position of segments or anatomical landmarks 

3.8.1 Movement of segments description 

I order to be able to investigate movements of the segments and describe their relative positions 

with adjacent segments, we need appropriate terminology (Hamill a Knutzen 2009), for the graphical 

representation of these terms see Figure 3.6.         

 Flexion and Extension  

Flexion is movement of two connected segments during which relative angle between these 

segments decreases. The Upper limbs fundamental position is with arms in relaxed posture at the sides 

with the palms facing in toward the trunk. The Relative angle between trunk segment and the upper 

arm is in this moment 180°, while rising arm forward flexion occurs in glenohumeral joint until we 

reach horizontal position (arm parallel with the ground) when relative angle decreases to 90°. Same 

with elbow joint, starting angle between upper arm and forearm is 180°. Flexing or banding in elbow 

joint decreases angle between these two segments. Extension is movement opposite to flexion, angle 

between two adjacent segments is increasing.         

 Abduction and adduction  

Abduction is a movement of the segment to sides out of the mid-axis of the body. Adduction is 

opposite to abduction, it is a movement towards the mid-axis of the body. Raising an arm to the side 

is an example of abduction. 

 Medial and lateral rotation 

A rotation can be either medial (also known as internal) or lateral (also known as external). Example 

of lateral rotation of arm from upper limbs fundamental position is rotating palms from facing in 

toward the trunk to facing forward.    
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Figure 3.6 Movement of segments description  

 

3.8.2 Gait analysis terminology 

The gait cycle consists of one stride. The stride generally begins by one leg initial contact (the heel 

strike of the stance leg – the first manikin on Figure 3.7 in this case the right leg) following by the 

loading response through the foot flat until the toe off where midstance begins. Terminal stance 

follows after midstance and ends by heal strike of swing leg - black left leg. Last part of stance phase is 

preswing which ends by toe off of stance leg. Swing phase consists of initial swing, mid swing and 

terminal swing. Initial swing starts just after the toe off of the stance leg. The gait cycle ends same as 

begins by the heal strike of the same foot. The stance phase is approximately 60% of the gait cycle, 

leaves swing phase just 40%. This applies to normal slow walking patterns. All attributes of the gait 

cycle pattern including proper naming of each event during stride is on Figure 3.7.            

 
Figure 3.7 Gait cycle phases description and terms 
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 Determinants of GAIT 

These factors are applied in normal human gait to minimize the excursion of the body’s COG and 

help produce forward progression with the least energy expenditure.  

The six determinants of gait are (Cuccurullo 2015):  

i. Pelvic rotation  

ii. Pelvic tilt  

iii. Knee flexion in stance phase  

iv. Foot mechanisms  

v. Knee mechanisms  

vi. Lateral displacement of the pelvis 

i. Pelvic rotation  

The pelvis rotates as we lengthen leg just before load response. Medial rotation of pelvis occurs 

on the side of the swing leg and reaches its maximum just before heal strike where its value is 

approximately 4° anteriorly on the swing side and 4° posteriorly on the stance side. In double 

support phase lower limbs are maximally lengthened and pelvic rotation helps to avoid sudden 

COG drop.     

ii. Pelvic tilt  

The Pelvis drops on the swing leg side by approximately 4°–5° during the midstance. This pelvis 

movement lowers COG and thus contributes in decreasing COG excursion in vertical direction and 

helps to avoid sudden COG jump up.   

iii. Knee flexion in stance  

Small bending in the knee joint of the stance leg helps to reduce vertical elevation of the COG 

of body during midstance. The knee flexion in stance is thus decreasing the energy consumption 

and more over acts as spring-like shock absorber during the heel strike impact.    

iv. Foot mechanisms (ankle plantar/dorsiflexion mechanisms) 

Ankle plantar flexion during initial contact prevents sudden COG drop. Controlled dorsiflexion 

during loading response contributes in smoother progression of COG in vertical direction.      

v. Knee mechanisms  

Knee which was slightly bended after loading response and midstance phase extends now in 

the beginning of terminal stance. This knee extension is followed by ankle plantar flexion, stance 

leg is straightened which reduces the pelvis drop during swing leg heel strike.     

vi. Lateral displacement of the pelvis  

Last important aspect to be mentioned is pelvis lateral displacement. In order to maintain 

stability during midswing, pelvis moves laterally towards stance leg and moves COG of the body 

above the base of support.      

Determinants 1–5 reduce displacement on the vertical plane. Determinant 6 reduces 

displacement on the horizontal plane. 
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 C posture stable static posture of Paraplegics   

Last to be mentioned in this chapter is special posture, which enables complete paraplegics to stand 

even without hip support. If the ankles and hips are locked while wearing for instance Scott-Craig 

orthosis than stable static position can be achieved by leaning the trunk backwards, creating so called 

C posture, moving the pelvis anteriorly and shifting the COG of the trunk posteriorly.    

 Paraplegic passive walking   

Patients with complete loss of motor control of lower limbs can still walk using special passive 

orthotic devices if there is a will to do so.  The patients can walk with Scott-Craig orthoses or Reciprocal 

Gait Orthosis (RGO) and crutches or walker using a swing-to or swing-through patterns and thus 

ambulate with a four-point gait.    

Orthoses types, their description and manufacturing processes are explained in details in the 

following chapter.  
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4 Orthoses and Exoskeletons for lower limbs 
Orthotic devices or braces are those applied externally on injured body parts. This means, orthotic 

device is not substitution of missing body part, in this case we talk about prosthesis.   

The word orthosis is derived from the Greek word “ortho” – to make straight, (Cuccurullo 2015). 

The word orthosis is singular and orthoses is plural. One of the main tasks of orthotic devices is to 

straighten bones, but there is much wider variety of reasons why we use such devices. Orthoses for 

lower limbs can enhance walking performance and assist during daily activities, prevent deformities, 

relieve pain, protect limbs and spine, control spastic and augment weak muscles or relieve stress in 

damaged or diseased joints,    

Regarding design constraints general rule is applied in all orthotic devices. In order to support and 

control joints properly three points of pressure principle is needed. This means, orthosis is in contact 

with wearer`s body in three areas, one principal force is acting in one direction and two counterforces 

are acting opposite. In case of deformities in wrist (Fw), spine (Fs) or knee (Fk) we can design orthosis 

using three points of pressure principle according Figure 4.1.   

 

Figure 4.1 Three points of pressure principle – examples for wrist, spine and knee 

• Orthosis vs. Exoskeleton 

Besides of the word – orthosis – there is another term – exoskeleton – which is used in nowadays. 

Word Exoskeleton comes from the hard outer shell found on insects and certain animals, this was an 

inspiration in a process of naming devices which are closely attached to users body and augment users 

abilities, but would be incorrectly identified as orthoses.  

Logical difference between exoskeleton and orthosis for lower limbs can be understood as follows, 
(Dollar a Herr 2008): 

Exoskeleton for lower limbs is defined as a mechanical or electromechanical device that is 

essentially anthropomorphic in nature, is “worn” by an operator and fits closely to his or her body, and 

works in accordance with the user’s movements. In general, the term “exoskeleton” is used to describe 

a device that augments the performance of an able-bodied wearer.  

The term orthosis for lower limbs is typically used to describe a device that is used to increase the 

ambulatory ability of a person suffering from a leg pathology. 
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• Active and passive orthosis and exoskeleton 

Active or powered devices is device which receives an energy from some external source. In case 

of electromechanical design, this source is battery. In case of pneumatic mechanism, compressed air 

is needed etc. 

The passive devices use an energy accumulated by a user. It can be the energy stored in springs or 

some mechanisms which use simply gravity or the energy harvested from different parts (joints) of the 

body.      

To conclude, the difference between the terms orthosis and exoskeleton seems to be quite clear. 

The word exoskeleton however became such popular, that we can’t generally follow this division. 

Many researchers are using name exoskeleton for lower extremities for devices specifically designed 

for rehabilitation or as assistive walking aids for paraplegics.  

Some can say that exoskeleton can be just such device which comply with definition of robotic 

device, this can be partially true, but unfortunately there are many devices called exoskeletons which 

does not follow this either.     

Because there is no consistent rule, for the purpose of this thesis terminology which comply with 

following rules will be followed: 

 Powered Exoskeleton  

Powered exoskeleton for lower extremities is anthropomorphic robotic device, which is tend to be 

universal to fit vast variety of the users, and can be intended to augment the performance of an able-

bodied users or daily performance of disabled users, who have to live with disability without much 

hope for improvement. This device has to be mobile, not fixed or stationary, as for instance 

rehabilitation robotic devices in rehabilitation centres. Powered exoskeleton for lower limbs can be 

mobility solution but does not need to be medical device.   

 Active Orthosis  

Active orthosis for lower extremities is powered anthropomorphic device, which is generally 

designed for specific user. Such orthosis does not need to be robotic device. Active orthoses generally 

is used for rehabilitation purpose and for users with lower limb paralysis, where an improvement of 

functionality is expected. Such device is generally categorized as medical device and can be mobility 

solution.  

 Denotation of device to be developed within this work 

From above description, and from aims of this work, there will be now on used term Powered 

EXOSKELETON for newly invented device.       

4.1 Usability of Orthoses  

Orthoses are widely used devices not only after trauma like spinal cord injuries or stroke. Orthoses 

help improve and protect painful or lax joints and correct overall posture by supporting flail joints.  

Orthoses become everyday companion for improvement of quality of life. Orthotic devices are 

prescribed to vast variety of users from small babies, active youngsters to elderly people. All groups 

have different needs and constraints to design of such devices. Development in this field indicates 

significant progress in nowadays especially in the field of material engineering and attractive designs. 
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There is necessary to implement new lightweight materials, in order to relieve loaded muscles and 

increase flexibility in non-affected parts of body or such materials which can reduce skin infections or 

pressure soars in portions of body which are in direct contact with device.        

Another aspect is appearance. Modern orthoses tend to have futuristic designs using progressive 

3D printing or prepreg materials with fibres reinforcement layup technologies. There is increasing 

demand for such fashion accessory products. It is very important that users feel safe and stable but 

psychological aspect of wearing orthoses is as well essential in process of accepting this companion in 

everyday life.      

4.2 Materials in orthotics 

All different kind of materials are used in manufacturing of orthotic devices. Orthoses generally 

consists of parts form metal, plastic, see (Showers et al. 1985), rubber, different kind of textiles, 

composite materials with different kinds of fibres reinforcements and in older orthoses leather was 

commonly used. Some examples of materials, which can be used are in Table 4.1, as wide range of 

material modifications exists average values are mostly stated in this table. 

Table 4.1 Materials in Orthotics 

Material 
Type 

Description 

Density 
[kg/m³] 

Tensile 
strength 

yield [MPa] 

Flexural/ 
Modulus 
Elasticity 

[GPa] 

METALS 

Aluminium 2024-T3 * 
Basic strips 

2780 >= 290 73 
Mod. of E. 

 6061-T6 * 
Strong alloy for bigger payloads 

2700 276 69 
Mod. of E. 

 7075-T6 * 
Premium quality big payloads 

2810 462 71 
Mod. of E. 

Stainless Steel 17-4 - - - 

 303*, 316, 440 8000 240-1280 193 – 200 

Titanium Ti-6Al-4V 
Strength comparable to steel, but only 60% 
of the density. More resistant to corrosion. 

4430 950 114 

Magnesium 
alloys 

Very light weight, not very strong 1780 130 45 

PLASTICS 

Poly -  propylene Rigid, impact resistant, Various types 940 32 1,31 

Copolymer Rigid yet flexible 960 30 1,30 

LDPE More flexible and softer 920 10,7 0,217 

HDPE High durability and strength 960 26 1,1 

Kydex Superior formability, even more rigid 1350 39,6 2,48 

ABS High strength and stiffness economical 1006 41 1,86 

Iglidur J from 
IGUS 

Low wear and very low coef. of friction 1500 73 2,42 
Mod. of E. 

COMPOSITE fibres (Used prepreg materials with fibres reinforcements) 

Pre-preg Carbon 
fibres in epoxy 

resin* 

Bidirectional epoxy M9.6 - 3K 2x2 Twill 

Bidirectional epoxy M9.6 - 6K 2x2 Twill 

Unidirectional epoxy M9.6 G300 

*Values depends on number of layers and manufacturing procedure 
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4.3 Orthoses for lower limbs 

As mentioned in the beginning of this chapter, orthoses for lower limbs are generally manufactured 

and fitted to specific user, with particular disorder. This way mechanical orthotic joints match users 

anatomic joints and are aligned according them. Load transfer, efficiency and correct performance is 

increasing with level of manufacturing precision. Designers are usually using 3-point pressure system 

for proper positioning of limbs in orthosis and it is important to consider this system in prescription 

procedure. Orthotic devices can be attached to user’s body laterally, medially or bilaterally. Lateral and 

bilateral attachments are widely used and further described in this chapter. Medial attachment may 

be used only in case of special paired orthoses.     

Orthoses can be divided into groups according to which joints or parts of the body they are meant 

to be determined. We divide orthoses for lower limbs as follows: 

 Orthopaedic shoe  

 Foot orthoses - FO  

 Ankle foot orthoses - AFO 

 Knee ankle foot orthoses - KAFO 

 Hip knee ankle foot orthoses - HKAFO 

4.3.1 Orthopaedic shoe 

The orthopaedic shoe is special footwear solely adjusted to the customer or patient, manually 

manufactured based on a medical prescription. The task of an orthopaedic shoe is to compensate, 

suitably for the impediment, or treat in the best possible way individually defined disease and 

dysfunction of the customer so that he can participate in social life with as little restrictions as possible. 

Shoe itself is foundation of healthy walking patterns and it is first important element for restoration of 

correct posture and gait (T. Borchers 2010).   

• Construction of Orthopaedic shoe: 

i. Last construction 

 Classical lasts are made of wood or plastic. Lasts are manufactured with the help of individual 

measures and according to the desired shoe form. They make visible individual dysfunction of the 

customer that have treated. 

ii. Production of upper  

 An upper is the upper part of the shoe. It consists of several glued together or sewn together parts. 

It give the shoe its look and its designated use. Here special attention has to be paid to a fashionable 

esthetic design, so that the customer feels good in his shoe.  

iii. The midsole 

 The midsole effects the durability/solidness, the cushioning ability as well as the security (steel 

sole) of the shoe. It is mostly made of sole leather, rubber, plastic or metal and is inserted between 

welt and outsole. The outsole, which has direct contact to the environment, is fixed to the welt and 

mid sole. 
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iv. The outsole  

 The outsole is the top layer of the shoe regarding the manufacturing process and it is the tread 

area later. It is made of different materials such as for example leather, rubber, or different plastics. 

(T. Borchers 2010). 

 

Figure 4.2 Manufacturing procedure of shoe, example from Matsumoto Gishi co. Japan 

• Rocker bar and rocker bottom shoes 

Rocker bar: located proximal to metatarsal heads; improves weight shift onto metatarsals.  

Rocker bottom: builds up the sole over the metatarsal heads and improves push off in weak or 

inflexible feet. May also be used with insensitive feet.  

4.3.2 Foot orthosis   

Foot orthosis is inserted inside the shoe, and usually support foot from heel to metatarsal heads 

but can be extended as part of insole up to toes. It may be sometimes called orthopaedic insole. Foot 

orthosis plays an essential role in stabilizing the foot during walking, such stabilization leads to proper 

joints alignment and correct weight acceptance by lower extremities especially during initial contact 

and loading response phases of the gait cycle. The manufacturing procedure of such custom orthosis 

is step-by-step presented in Figure 4.3.  

 

 

Figure 4.3 Manufacturing procedure of foot orthoses - orthopaedic insole 
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4.3.3 AFO 

The ankle foot orthoses are used to reduce weight bearing and this way prevent deformities or 

stabilize during walking and thus correct abnormalities. AFOs are widely used orthoses inside 

therapeutic rooms but as well in daily life due to its undeniably positive impact on corrections in gait 

patterns and reduction of energy cost during ambulation. AFOs can be static, dynamic or 

active/powered configurations are recently available as well, (Cuccurullo 2015).  

• Dynamic AFO 

The dynamic AFO is equipped with springs or designed to have a spring-like performance for a 

dynamic dorsiflexion or plantar flexion assistance and passive contra flexion resistance. Orthosis with 

dynamic dorsiflexion assistance keeps a foot dorsiflexed during swing phase to increase toe clearance 

in order to avoid stumbling and increase safety. Orthosis with neutral dynamic plantarflexion helps 

users with dorsiflexion weakness to walk more naturally and can as well assist knee extension during 

loading phase in case of slight knee impairment.   

• Active AFO 

Path of least resistance is the way which the body automatically goes during rehabilitation, this is 

the biggest obstacle in the process of recovering healthy walking. Active AFO comes together with 

actuator which requires external source of energy (electric or pneumatic). Such active orthoses can be 

used to support portion of lower body with decreased functionality in order to act against its 

resistance. For instance active plantarflexion impulse during preswing phase elevates pelvis and helps 

to decrease or avoid circumduction gait by supporting hip weakness of patients with hemiplegia.  

As usual function of orthotic devices AFOs moreover supports ligament instabilities and together 

with anteroposterior functionality provides mediolateral support as well. As it was already mentioned 

in previous chapters of this study, AFO is useful for a variety of conditions such as spastic hemiplegia 

or diplegia caused by cerebral infarction or cerebral palsy. 

• Traditional conventional orthosis 

The Traditional conventional AFO orthosis is generally of bilateral configuration (I.b), II.b and V.a 

type. This orthoses consists of lather calf bend attached to steel holder. This holder is attached using 

rivets to metal uprights and these are connected to double-Klenzak ankle joint which allows regulation 

of range of motion of plantarflexion and dorsiflexion. Stirrups are rotating in this joint and are usually 

integrated with shoe, see Figure 4.4. There can be springs implemented directly into Klenzak ankle 

joint or another type of joint can be used here as shown on Figure 4.5.  

 

Figure 4.4  Traditional conventional orthosis  
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Figure 4.5  Traditional conventional dynamic orthosis with Gait Solution spring joint (left) and new 
modern look (right) 

• Moulded 

The Moulded AFOs are commonly fabricated from preheated thermoplastic materials stretched on 

patients cast of leg. Preparation of cast, application of heated up thermoplastic material and the final 

product is illustrated on Figure 4.6. Modern nowadays widely used AFOs are fabricated from a prepreg 

advanced carbon composites, this AFO orthoses are lightweight as plastic once but have much better 

rigidity and strength, its only disadvantage price. Such orthosis usually keeps the foot up during swing 

phase but may reduce heel strike impact forces and increase stability in stance and toe-off, for different 

types of modern moulded carbon AFOs see Figure 4.7.     

  

Figure 4.6 Process of fabrication of plastic moulded AFO 

 

Figure 4.7 Modern moulded type of AFO - from composite carbon fiber reinforced material 
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• Broad division of AFOs       

Based on studies of ankle foot orthosis (AFO), (Shorter et al. 2013), (Faustini et al. 2008), (Sawicki 

and Ferris 2009), (Rouhani et al. 2014), (Bregman et al. 2011), (Kim et al. 2013) prosthesis and all 

different types of exoskeletons for lower limbs we can summarize types of ankle design as follows 

according: 

 

 

Figure 4.8 Broad division of AFOs 

I. Symmetry 

• Bilateral solution provides with better fixation and stability, but is heavier and bulky.  

• Unilateral solution is compact, lighter, more esthetical, but less stable and rigid. 

II. Wearing  

• External is popular with universal powered exoskeletons for its fast donning/doffing. 

• Integrated solution is popular in traditional designs, ugly irreplaceable shoe is 

disadvantage. 

• Inserted is well accepted by users due to esthetical benefits.  

III. Actuation  

• Active AFO is described above, is good for acceleration of rehabilitation process. 

• Dynamic AFO is described above, this type is the most used AFO in the world. 

• Special actuation may harvest energy from different portions of the body or using 

gravity.  

I. Symmetry   

a) Bilateral  

b) Unilateral 

II. Wearing  

a) External 

b) Integrated  

c) Inserted 

III. Actuation 

a) Active 

b) Dynamic 

c) Special  

 

 

IV. Actuator position  

a) Direct actuation 

b) Non-direct actuation 

V. Range of motion 

a) Limited motion 

b) Free 

c) Solid or Static  

 

 

VI. Feedback 

a) With sensors  

b) W/O sensors 

VII. Material composition 

a) Homogenous  

b) Multi-Material 
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IV. Actuator position 

• Direct actuation is when an actuator is directly in the axis of actuated joint. 

• Non-direct placement of actuator means distribution of energy to the joint through 

some mechanism. 

V. Range of motion (ROM) 

• Free motion provides mediolateral stability that allows free motion in 

dorsi/plantarflexion. 

• Solid ankle allows no movement indicated with severe pain or instability. 

• Limited motion allows motion to be limited in one or both directions. 

VI. Feedback 

• Sensor can provide with information which helps evaluate process of rehabilitation 

or ambulation and protects users against overload or injury, it is normally part of 

active AFOs. 

VII. Material composition 

• Homogenous orthoses are usually moulded types from plastic or composite fibre 

reinforced materials 

• Non-homogenous are major group consists of many parts made of different 

materials.     

 Design elements of AFO 

a. Foot support elements  

A foundation of AFO orthosis is the foot support element. This element can be the 

integrated shoe or sandal or just a footplate inserted into users shoe. Integrated shoes are 

firmly connected to steel stirrups. Footplates are in case of multi-material AFO combined with 

steel stirrup or in case of homogenous AFO directly part of stirrup, more about manufacturing 

procedures of footplates in chapter 3.      

b. Stirrups and uprights 

Stirrup is a metal attachment riveted to the sole of the shoe; split stirrups allow for shoe 

interchange solid stirrups are fixed permanently to the shoe and provide maximum stability. 

Metal upright is rod, which is connected to ankle joint and formed by orthopaedic technician 

according customers cast shape.  

c. Ankle Joints  

There are many types of ankle joints in orthotics, but all are basically following principle of 

Double-Klenzak joint. For understanding how such joint works, see Figure 4.9. Thanks to set 

screws and pins we can set limits for dorsi/plantarflexion. Springs help to diminish impact 

forces and prevent drop foot.     

 

Figure 4.9 Most common AFO ankle joint (double-Klenzak type with springs) 
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4.3.4 KAFO 

Knee Ankle Foot Orthoses (KAFO), see Figure 4.10  is proximal extension of the AFO to control knee 

motion and alignment. KAFOs with locked knees are used in knee-flexion contractures or during 

rehabilitation of patients after stroke. KAFOs with locked knees can be used by paraplegics to walk 

using swing-through gait, such device is known as Scott-Craig orthosis. Different kinds of orthotic knee 

joints are on the Figure 4.11. KAFO can have same as AFO bilateral or unilateral design.    

 

Figure 4.10 KAFO 

 

Figure 4.11 KAFO knee joints 

 Offset axis free motion joint 

 More closely fits to axis of rotation of anatomical joint. 

 polycentric free motion joint  

Virtual centre of rotation more closely fits to axis of rotation of anatomical joint. 

 Drop lock 

Metal ring drops over top of the joint such way preventing flexion. 

May be secured by spring and ball. 

 Bale lock 

Lock is disengaged by pulling bale up. Lock engage automatically when orthoses is extended.  

 Other locks 

Orthotic knee joints may offer the patient security even though not full extension can be 

reached, such joints may have several locking positions allowing for instance just limited 

flexion and extension.  
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4.3.5 HKAFO 

Hip-Knee-Ankle-Foot Orthosis (HKAFO) is KAFO with extended later upright to which hip joint with 

pelvic band are attached. Hip joint can be same as knee joint. This type of orthoses is used for patients 

with hip instability and weakness.  

4.4 Cuffs, Bands and cushions  

Cuffs are moulded from plastic materials. If bigger rigidity is needed than stronger and thinner 

composite materials can be used, e.g. carbon fibres in epoxy resin.   

Proper interface between plastic and metal parts and user’s body is fundamental to avoid ulcers, 

pressure soars or excoriation. Different types of cushion materials are firmly glued to orthoses or 

removable and washable. Vast variety of new types of fabrics and plastic foams are available on 

market. Silicon inserts, polyurethane foam or polyamide fabrics are commonly used.    

Historically consistent solution for tightening orthoses and ‘closing’ limbs inside remains Velcro 

tapes. This universal tape can safely secure the limbs inside orthoses and provides with simple 

adjustment option. More recent is application of BOA tightening system. The Boa System is custom 

built for each unique product and use case, they all contain three integral parts: a micro-adjustable 

dial, super-strong lightweight laces, and low friction lace guides. Each configuration is engineered to 

optimize fit and provide precision, adaptability, and control. 

4.5 Lower limb Passive Orthoses for individuals with paraplegia 

Two KAFOs and the swing-through walking gait can be the way for paraplegics to walk. Besides of 

two-legs-aligned walking gear, there are alternating walking (first one leg than another) orthoses 

available. The relationship between the residual function level and the type of orthosis vary depending 

on whether symptoms of paraplegia are incomplete or complete, the cases of symmetrical paralysis is 

discussed in this subchapter. 

Simple trunk orthosis connected to two HKAFOs (THKAFO) can be prescribed in case of lost flexion 

in the hip joint (level of paralysis higher than L1). Alternating walking with such device can be rather 

difficult because of very high variability in step length and large energy consumption, walking with such 

device is toil. Reciprocal gait orthosis is better to be prescribed for such users.        

We can divide alternating walking orthosis as follows: 

I. Two lateral hip joints 

 RGO (Reciprocal Gait Orthosis)  

o Double cable RGO 

o Isocentric bar RGO  

o ARGO  (Advanced RGO)  

II. Medial single hip joint 

o Walkabout  

o Primewalk    

o HALO (Hip and Ankle Linked Orthosis) 
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Characteristics and performance parameters to be investigated – summary: 

o Stability in anteroposterior and mediolateral direction 

o Energy consumption 

o Temporal parameters of gait – velocity, cadence, stride length 

o Spatial parameters  (COG) – waddling, vertical elevation,  anteroposterior excursion 

o Determinants of gait – pelvis rotation 

o DON and DOFF of device directly from a wheelchair 

o Dimensions and weight – proportions of device  

o Economically accessible – affordability  

o Appearance and aesthetics of device 

4.5.1 RGO 

RGO (Reciprocating Gait Orthosis) has two lateral hip joints, bilaterally attached HKAFO (bi-axial 

system). RGO has contralateral linkage between hip joints – flexion on one side is forcing extension on 

opposite side. RGOs stabilize ankles, knees, hips, and trunk to provide upright posture and due to a 

reciprocal link between hip joints, more stable walking with reduced metabolic energy consumption 

can be achieved (Moore and Stallard 1991), (Rose 1979). It was found out that coupling contralateral 

joints is a good way how to increase an efficiency of paraplegic walking. Upper body strength however 

determines a success of walking with these orthoses. There are several types of RGO, double cable 

RGO, classical isocentric bar RGO and advanced RGO (ARGO), (Baardman et al. 1997). ARGO has single 

push pull cable system and knee joint with pneumatic cylinder, ARGO is on Figure 4.12.  

Advantages and disadvantages of RGO: 

 Temporal parameters 

 Spatial parameters  

 Pelvic  rotation 15-20° 

 Trunk support 

 Hip axis alignment 

 Anteroposterior stability 

 

Figure 4.12 ARGO and isocentric bar 

x Poor lateral stability 

x Hard to don/doff 

x Bulky and heavy 

x Aesthetically unattractive 
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4.5.2 Walkabout 

Walkabout is the first from the group of single medial hip joint orthosis. This group is characterized 

by no trunk support. All orthoses consists of two KAFOs connected with different types of medial hip 

joint. Walkabout is the simplest one with basic hinge type joint with stoppers. Centre of rotation in the 

hip is shifted below the hip axis and this makes the pelvis rotate more to compensate this shift, (Onogi 

et al. 2010).  

Advantages and disadvantages of Walkabout: 

 Mediolateral stability 

 Easy to Don/Doff 

 Light and compact 

 Affordable solution 

 

Figure 4.13 Walkabout orthosis - two KAFOs connected by hinge joint 

4.5.3 Primewalk  

Another single medial hip joint is slider type joint with stoppers - Japanese PRIMEWALK, (Onogi et 

al. 2010), . Thanks to special curved guide and sliding mechanism virtual centre of rotation is shifted 

closer to the hip joint. The pelvic rotation is decreased due to this invention, but still not comparable 

with values of normal walking. Spatial-temporal parameters and energy consumption are better in 

comparison with Walkabout, but still not satisfactory in comparison with normal walking.  

  

Figure 4.14 Primewalk orthosis, explanation of pelvic rotation and principle of centre of rotation  

x Anteroposterior stability 

x Energy consumption    

x Spatial parameters 

x Temporal parameters 

x Pelvic rotation 
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There are two factors why pelvic rotation still remain, (Genda et al. 2004): 

I. Lack of assisting mechanism for hip flexion 

II. Fixed ankle joint causes instability when the step length become longer, this is 

explained on Figure 4.15 

 

Figure 4.15 Why does pelvic rotation still remain with Primewalk? 

Advantages, disadvantages and neutral parameters of Primewalk: 

 Mediolateral stability 

 Easy to Don/Doff 

 Light and compact 

   

4.5.4 HALO Orthosis 

HALO (Hip Ankle Linkage Orthosis) is compact medial hip joint orthosis with contralateral hip and 

ankle linkage. These two joints are coupled by steel wire rope inserted in pulleys and Bowden. Each 

hip joint is equipped with one pulley. The dorsiflexion at one foot causes flexion of the opposite hip 

joint through the wire connected to the pulley. The joints linkage keeps feet always in parallel with the 

floor to avoid stumbling and assists swinging of the leg. This setting reduces pelvic rotation to a normal 

level and enables longer and more stable strides (Genda et al. 2004). However, the users have to 

usually undergo long training periods to master technique of walking, before using HALO orthosis 

independently.  

During development of the HALO orthosis several updates were made, one of them is putting Velcro 

fastening tapes on back side of thighs and calves to shift support bands on anterior side to make it easy 

Don/Doff from the wheelchair.   

x Anteroposterior stability 

x Pelvic rotation 

- Temporal parameters 

- Spatial parameters 

- Energy consumption 

- Price 
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Figure 4.16 HALO orthosis  

 

Figure 4.17 HALO orthosis description and principle of HALO joint 

 

 HALO principle  

Principle of walking with HALO orthosis is shown on Figure 4.18.  

When the dorsiflexion of the left ankle occurs, then:  

1. The wire connected to the left heel is pulled,  

2. the force in wire cause the left pulley at the hip joint rotate,  

3. this makes the right leg swing forward with the left pulley.  

4. The left leg extends relatively to the right leg and the left pulley rotates,  

5. the wire that connects with the right heel is pulled and causes right ankle plantarflexion, 

thanks to this the right foot is parallel to the ground.  

The rotation ratio between hip and ankle joint is set at 2:1 so that the feet are always parallel 

to the floor.  
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Figure 4.18 HALO orthosis walking principle 

Advantages, disadvantages and neutral parameters of HALO: 

 Mediolateral stability 

 Anteroposterior stability 

 Temporal parameters 

 Pelvic rotation in normal level 

 Light and compact 

 Easy to Don/Doff 

 Smooth gradual activation of ankle moments 

 

4.5.5 Evaluation of passive orthoses 

From characteristics and performance parameters, advantages and disadvantages of discussed 

passive orthoses is obvious dominance of Primewalk and HALO orthoses. Study focusing on 

comparison of Primewalk and HALO was conducted. Energy consumption, temporal parameters and 

pelvic rotation were investigated. According this study, the performance of users with HALO orthosis 

was in all aspects better, see Figure 4.19, (Genda et al. 2010).  

  

Summarized results of comparison:  

• Temporal parameters 

• 10 m walking experiment at full speed 

• T9  - HALO - 35.0 m/min  - 2.5 x faster  

• T9  - PW     - 14.0 m/min 

• T7 – HALO - 24.8 m/min – 1.7 x faster 

• T7 – PW     - 14.3 m/min  

• Longer strides and cadence  

• Energy cost 

• 60% - T9 (PW: 29.0 J/kg/m, HALO: 17.8 J/kg/m) 

• 75% - T7 (PW: 21.4 J/kg/m, HALO: 16.0 J/kg/m) 

• Pelvic rotation in the horizontal plane  

• ± 30 for Primewalk 

• ± 10 degrees for HALO - within the range of normal gait 

x Complex adjustment system 

 

- Anteroposterior stability 

- Spatial parameters 

- Energy consumption 

- Esthetics (redesign) 
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Figure 4.19 Speed and energy consumption of HALO, Primewalk and normal walking  

4.6 Active Exoskeletons for paraplegics 

 REX  

The REX for Clinical Use and Personal Use is the premiere commercial exoskeleton for individuals 

with complete lower body paralysis.  The REX is designed to be: 

o Self-supporting and secure. 

o Alleviate complications due to prolonged wheelchair use. 

o Developed for Robot-Assisted Physiotherapy (RAP). 

o Elevates users from a sitting position into a robot-supported standing position. 

o Reduces burden on therapists performing standing therapy. 

o One of the most robust and expensive solutions  

For a while exoskeletons that take full control of the gait cycle where receiving a lot of flak for not 

being as capable as their variable assist counterparts.  New research findings in the middle of 2016 

have demonstrated, however, that devices such as the REX have a place in the medical industry.  It has 

been discovered that even though the REX moves the rehabilitation participant by itself, it can still 

provide medical benefits.  Exoskeletons that take full control of the user’s legs are now starting to be 

used as a stepping stone towards rehabilitation with variable assist robotics. 

 Indego®  

The Indego® can be used for therapy as a gait training tool.  The Indego Personal can also be 

employed as a supplementary mobility aid to a wheelchair.  In addition to being able to see people 

eye-to-eye, research using this and other assistive medical exoskeletons has shown a strong correlation 

between standing up and a multitude of secondary benefits.  These positive effects include but are not 

limited to improved bowel control, increased bone density and reduction in pressure sores. Indego 

design specifications: 

o Hip-knee powered exoskeleton 

o Li-ion batteries 

o Total assembled device weight of 12kg (26lb) 

o Modular 
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o Ability to export data using an iOS app 

o Bluetooth connectivity 

o Color LED and vibration user feedback (note: Recent independent research has shown 

haptic feedback to be instrumental in some gait rehabilitation cases) 

o Built in functional electrical stimulation (FES) interface (select models) 

  ReWalk  

Key attributes: 

o Approved by the FDA for clinical and home use for individuals with spinal cord injury 

(SPI). 

o Battery powered hip-knee exoskeleton. 

o Proven to work in clinical, home and city environments. 

o Regularly being improved and iterated (the 2016 ReWalk is now 6th revision) 

o Controlled by subtle changes in the user’s center of gravity. 

o Graphical user interphase for the physiotherapist’s control. 

o Structured training program for the rehabilitation teams purchasing the device. 

The ReWalk Rehabilitation System is optimized for use in a clinical setting.  It is used as a tool to 

augment the capabilities of regular physiotherapy by providing a high number of consistent and 

reproducible steps.  ReWalk Rehabilitation is also used as a stepping stone towards individuals 

preparing to acquire ReWalk for personal use. 

 ExoGT 

The Ekso GT is a powered hip-knee medical rehabilitation exoskeleton developed by Ekso 

Bionics.  This is the first exoskeleton to be approved by the FDA for those recovering from a stroke.  It 

is also approved for use with individuals with spinal cord injury. The Ekso GT™ is a robotic exoskeleton 

for comprehensive gait therapy which provides a superior rehabilitation experience for patients and 

therapists alike.  The Ekso GT™ is a tool to supplement professional physiotherapists, not replace 

them.  The use of this exoskeleton allows for a greater number of consistent steps with the appropriate 

weight shift to be conducted in every rehabilitation session. 

The Ekso GT is approved by the FDA for use with: 

o hemiplegia due to stroke 

o SCI at levels of T4 to L5 and levels of T3 to C7 

Design features of the Ekso GT: 

o Acuated powered hip-knee exoskeleton 

o Variable Assist controls, the Esko GT can apply power from 0 to 100% as needed on a 

step by step basis. 

o Adjustable on the fly assistance level and operation mode 

o Encourages correct body posture 
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Figure 4.20 EXO GT, INDEGO, REwalk, REX (from left to right) exoskeletons 

•  HAL  

HAL (Hybrid Assistive Limb) from Japanese University of Tsukuba is not device built for people with 

paraplegia, but due to its progressive PR and success in the field of exoskeletons generally it should 

not be omitted. HAL is robosuit which function is closest to exoskeleton definition, it was built to 

extend and amplify human body functions but as well to support rehabilitation and physical training in 

medical welfare field.  Research is being carried out assuming application to heavy work support at 

factories or rescue activities during disasters, but in hospitals as well. The most characteristic feature 

of the HAL control method is that the wearer's intention is estimated and assisted by the surface 

myoelectric potential. In general, there is a time shift called EMD (Electro Mechanical Delay) from the 

measurement of the surface myoelectric potential until the tension actually occurs in the muscle. 

Therefore, by measuring the surface myoelectric potential, it becomes possible to predict the intention 

of the wearer prior to the start of operation and generate the assist torque, thereby realizing a system 

that moves as desired by the wearer, (Wall et al. 2015) 

• WPAL 

Another device is WPAL, this is tend to be mobility solution (walking assist) for people with 

paraplegia and has already demonstrated successful clinical trials. WPAL has a total of six actuators 

symmetrically two in hips, knees and ankles attached medially on two KAFOs connected by medial hip 

joint. Position feedback control algorithm is tracking joint angles pattern of normal walking as a basic 

template recorded from healthy subjects. Walking rate, stride and joint angle is set as offset from this 

basic walking pattern and represents target to be controlled. There were conducted step training, 

walking training, treadmill walking training, walker assisted walking training with five subjects with 

paraplegia. As a result, walking distance increased by 5 to 20 times compared with the case without 

device. Improvement was also seen in PCI (physiological cost index) which is an index of energy 

consumption during walking, (Hirano et al. 2012), (Tanabe et al. 2013). 
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Figure 4.21 WPAL exoskeleton 

 ORTHOLEG 1.0  

Ortholeg is active exoskeleton for lower limbs designed for users of weight between 50 - 60 kg and 

height 1.55 - 1.65 meters, see Figure 3.1, (Araújo et al. 2015). The prototype is basically a mechanism 

consists of a set of rigid links joined by rotational joints. Each joint has one degree of freedom and 

corresponds to human leg structure. Ortholeg first prototype has electromechanical actuators in knees 

and hips, ankle joint is fixed and does not provide with any degree of freedom. Ankle joints are 

connected to rigid external soles.  Each rotational joint is equipped by Maxon 24volts/150W DC 

servomotor with encoder and planetary gear box connected by coupling to recirculating ball screw. 

Torque of motor shaft is transferred to ball screw where transformation of rotational to linear 

movement is made through nut riding along ball screw axes. Exoskeleton requires usage of crutches.      

 

 

Figure 4.22 Ortholeg – first prototype 
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4.7 Other Walking assist equipment  

In this short subchapter, assistive walking aids are briefly presented (Cuccurullo 2015). Nearly all 

currently available active orthoses or powered exoskeletons requires some kind of additional walking 

assist equipment. Generally crutches are the most used and desirable, but some applications which 

requires wider base of support need walkers to be applied.      

4.7.1 Crutches 

 Axillary Crutches  

Components  

– Padded axillary piece (on top)  

– Two upright shafts  

– Handpiece (in middle)  

– Extension piece  

– Rubber tip  

Advantages: inexpensive, adjustable, easier to use  

Disadvantages: need good strength and ROM in upper limbs, ties up hands. Increased cardiac/ 

metabolic demand 

 Forearm Crutches/Lofstrand crutches  

Components:  

– Forearm cuff with narrow anterior opening  

– Forearm piece bent posteriorly and adjustable  

– Moulded handpiece  

– Single aluminium tubular shaft  

– Rubber tip  

Advantages: lightweight, easily adjustable, freedom for hand activities  

Disadvantages: needs more strength, requires more skill, and better trunk balance 

 

 Platform Crutches 

Advantages: Do not need weight bearing through wrist and hand (i.e., fractures, arthritis of wrist 

or hand. or weakness triceps or grasp)  

Disadvantages: awkward, heavy 

4.7.2 Walkers  

Walkers are recommended for bilateral weakness and/or incoordination of the lower limbs or 

whole body, or whenever a firm, free standing aid is appropriate (i.e., multiple sclerosis or 

Parkinsonism) to increase balance and to relieve weight bearing either fully or partially on a lower 
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extremity (allow the upper extremities to transfer body weight to the floor). Walkers are suitable as 

well for unilateral weakness or amputation of the lower limb where general weakness makes the 

greater support offered by the frame necessary (i.e., osteoarthritis or fractured femur) and as general 

support to aid mobility and confidence (i.e., after prolonged bedrest and sickness in the elderly). 

Advantages: Provide a wider more stable base of support. To provide a sense of security for patients 

fearful of ambulation 

Disadvantages: More conspicuous in appearance Interfere with development of a smooth 

reciprocal gait pattern (e.g., decrease of step length with step-to-gait pattern) Interfere with stair 

difficult to manoeuvre through doorways or bathrooms. 

Types  

– Lightweight walking frame  

– Folding walking frame 

– Rolling walking frame 

– Forearm resting walking frame  

– Hemi-walking frame 

4.8 Requirement list 

The summary of the driving requirements of design of new exoskeleton based on review of orthotic 

devices from this chapter and the main objectives of this work is listed in Table 4.2. The price limit was 

determined from manufacturing costs of orthotic devices for lower limbs and from the fact the final 

product must be affordable. One of the main objectives is an independent usage of the device including 

donning and doffing directly from the wheelchair. The user needs to be able to safely manipulate with 

the device in order to fulfil this objective. Weight limits of the device need to be set firstly to follow 

ergonomic standards of maximum loads of manual handling for disabled people on a wheelchair (focus 

group) and secondly to maintain the efficiency of the device (high power-weight ratio). From this two 

reasons, there is great emphasis placed on lightweight of the exoskeleton. The weight of user limit was 

derived from the average weight of European man (according to Wikipedia).              

Table 4.2 Requirement list 

Requirement  Value or description  

Mediolateral stability Walking independently without assistance 

Anteroposterior stability Walking independently without assistance  

Price max € 8000 

Weight of device max 10 Kg 

Weight of user up to 70 Kg 

Low energy consumption of user  Evaluated from vertical elevation of CoG 

Don/Doff independently from a wheelchair YES 

Modularity   Possibility of switching to passive option 
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5 Design of new Exoskeleton Ortholeg 2.0 
First new exoskeleton Ortholeg 2.0, which was designed for the purpose of this study is presented 

in this chapter. The project of designing of the exoskeleton Ortholeg 2.0, see  was performed in the 

Universidade Federal do Rio Grande do Norte (UFRN), Brazil and some of the components were 

manufactured to test their actual functionality. Manufacturing processes and benefits of this new 

system are discussed in this chapter.   

 

Figure 5.1 Ortholeg 2.0 – CAD model 

5.1 Used materials 

The main objective of this study is not detailed research in the field of material engineering, but it 

was significant to study different materials available on market, before actual designing process. Brief 

summary and description of selected materials with the most appropriate properties was done in 

previous chapter. Key properties are tensile yield strength, flexural modulus or density. There are more 

types of materials, suitable for our application, which are currently available on worldwide market. 

 

Figure 5.2 Materials used for manufacturing of Ortholeg 2.0  
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There were selected and purchased materials from Table 4.1 for new design of Ortholeg 2.0, 

illustrated on Figure 5.2. Main frame of device and joints are mainly from the aluminium 6061 and 

7075. Some parts of fixtures and cuffs (connection parts to users) are made from High Density PE and 

Copolymer. Support and connection in lumbar region is made from more rigid Kydex. Joints and moving 

parts of mechanism are equipped by components from plastics Iglidur J with very low coefficient of 

friction. Components from Prepreg carbon were implemented for better energy transfer between 

user’s body and device.     

New Ortholeg is lighter, using modern materials of premium quality. Design using tubes and clamps 

makes it more compact, modular and secures best-fit for users of variable body proportions. Ankle and 

knee joint design is described in following sections of this paper.         

5.2 Ankle and Shoe insert 

Experiments on current design of Ortholeg have conclusively proven urgent need of flexible soles 

and ankles. Fixed ankle and rigid sole have negative impact on users gait cycle, on wearing comfort 

and consequently on power consumption of device itself.  

Thus study in field of construction of ankle which provides users with some degrees of freedom was 

triggered and in addition different sole materials, shapes and wearing options were probed. 

Ortholeg was designed for paraplegic users, which continues to be main requirement. As already 

mentioned, rigid passive design is not in consideration (concept V.c. on Figure 4.8 can be excluded).  

Solution should be furthermore very economical and universal so all users from different social 

backgrounds can afford it. Expensive customised homogenous ‘one piece’ AFOs does not comply with 

this criteria (concept VII.a. on Figure 4.8  can be excluded). Sensory subsystem is not considered in this 

stage of the project but design should include possibility of future implementation of such components 

(concept VI.a. on Figure 4.8 can be excluded). We are trying to develop as light device as possible, 

motors in ankle are excluded, (concept III.a. on Figure 4.8 can be excluded).   

Furthermore only these types of the ankle joints from Figure 4.8 which comply with the mentioned 

requirements were considered and following three different concepts of ankle joint were designed and 

moreover analysed. 

A. Achilles Spring (bilateral, non-direct, semi-active) 

B. Adjustable symmetric joints (bilateral, direct,semi-active)  

C. Adjustable one-side joint (unilateral, direct, semi-active) 

 

Figure 5.3 Variants of ankle joint design 
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Analysis of the best design for our device was conducted concerning following criteria, 

manufacturing and overall price, user-friendly design, variability and adjustability, reliability, weight 

and size, wearing comfort and safety issues. Upon of results from value analysis and discussions with 

experts from field of orthopaedics and prosthetics was chosen adjustable unilateral joint, which final 

design arise from merging B. and C. concepts from Figure 5.3 as the best solution for Ortholeg 2.0, see 

Figure 5.4. Adjustable ankle joint contains compression springs. These springs job is to lift foot during 

swing phase. Parameters of springs were calculated using segment method, if we consider weight of 

one foot 1.38 kg, compression springs with force around 35N in full compression can be used.     

 

Figure 5.4 Final solution of ankle Joint 

5.3 Manufacturing 

Shoe insert was manufactured from prepreg carbon in combination with stainless steel stirrup.  A 

prepreg consists of a combination of a matrix (or resin) and fibre reinforcement, in our case primarily 

carbon fibres.  This material was chosen because it’s ready to use in the component manufacturing 

process without any other special expensive machinery. Prepreg has very good ratio resin to 

reinforcement thanks to automatic manufacturing processes of plies, which makes this material the 

best option for our lightweight device. Prepreg is available in UD (unidirectional) form and in 

bidirectional fabric form.   Unidirectional prepreg has very good mechanical properties in one direction 

but weakens unequally in perpendicular direction. Fabrics consist of at least two threads which are 

woven together and have equal properties in both directions. Shoe insert which was manufactured 

from fibre-reinforced composites was necessary design so that the fibre orientation produces 

optimum mechanical properties, this can be approach only by appropriate layup of different types of 

prepreg materials.   

According mechanical and physical properties stated by manufacturer of purchased material and 

maximum ground reaction force (GRF), (Marasovič et al. 2009), we made similar virtual model using 

structural analysis simulation tools integrated in CAD software and simulated real component in order 

to determine necessary thickness for our application, see Figure 5.5. Software can only simulate 

isotropic materials, since structure manufactured from prepreg is never isotropic, rather anisotropic, 

the results are never same. This approach was carried out I order to roughly estimate number of layers, 

and spot weakest points which needs to be strengthened by using for instance unidirectional prepreg 

or thicker and stronger fabrics. This procedure is planned to be improved and upgraded in future 

deigning works 

We chose combination of Bidirectional 3K and 6K 2x2 Twill and UD G300 preprag carbon in epoxy 

resin with excellent mechanical properties, moderate tack, good toughness, 30 days out-life at 20°C, 3 

months storage at 4°C and stability for up to one year at -15°C.  Chosen resin can be cured at 

temperatures from 120°C to 150°C in just vacuum bag. 



49 

Mechanical Properties of Epoxy resin: 

 Tensile strength, psi 8300 +/- 400 

 Tensile modulus, Msi 0.46 +/- 0.02  

 Flexural strength, psi 14600 +/- 400  

 Flexural modulus, Msi 0.50 +/- 0.02    

 

Figure 5.5 Structural analysis of shoe insert 

 

Figure 5.6 Bidirectional 2x2 Twill prepreg carbon 

Manufacturing in close cooperation with external company was triggered after selection of 

appropriate materials. There were tested different layups In order to achieve the best energy transfer 

between user and device and after experiments with manufactured shoe inserts there was chosen the 

best layup for our application, final layup is described in tab.2 After layup is done, all mould with 

prepreg carbon and stirrup is inserted into oven and cured on 120°C for 4-8 hours. 

 

Figure 5.7 Process of manufacturing and complete cured ankle-foot component  
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Table 5.1 Manufacturing procedure of shoe inserts 

Plies  Material description 

1 
 

Bi-direct 
6K 2x2 
Twill 

full sole ply directly on foot mould 

2 
 

UD G300 short ply in place where stirrup will be positioned   

3 
 

Bi-direct  
6K 2x2 
Twill 

short ply in place where stirrup will be positioned   

4 
extra 
resin 

epoxy 
resin 

stronger conjunction with stirrup, epoxy is soaked is steel 
surface   

5 Stirrup 
Stainless 

steel 
Steel surface is roughened by grinding and drilling for better 
connection with prepreg resin 

6 
 

Bi-direct  
3K 2x2 
Twill 

full sole ply lay over steel stirrup 

7 
 

UD G300 
short ply in place of biggest stress concentration from CAD 
simulation 

8 
 

Bi-direct  
6K 2x2 
Twill 

full sole ply as final layer 

 

5.4 Modular knee 

Knees were designed such way to provide user with the possibility of easy configuration between 

actuated, semi-actuated and passive joint. In standard assembly, knees and hips are equipped with 

servomotors connected to steep threaded spindle or trapezoidal lead screw spindle same structure as 

in old design. On these rotating spindles are riding plastic threaded nuts from Iglidur J. In order to use 

electrically non-actuated version just four screws need to be unscrewed. There will be spring applied 

in knee joint witch accumulated energy will always return leg in upright position. These configurations 

allow us to test the differences between actuated and non-actuated gait cycles. 

 

Figure 5.8 Modular knee joint 
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5.5 Electronics 

Ortholeg 2.0 has same electronics as old version. Brushless DC motors (Maxon RE40, 150W) are 

connected to each hip and knee joints. The number of rotations performed by the motor is controlled 

by the motor controller (AX3500 Board). Controller keeps sending electrical current to rotate motor’s 

shaft until its encoder (connected to the AX3500 board) indicates value close to the desired one. This 

values are generated by a central computer (raspberrypi) according to a specific angle joint reference, 

also connected to the motor controller. When some force pull back the moving link against its on-going 

direction, the board generates more current to bypass that force and keep the movement going. 

Because this electrical power source comes from a portable battery, as more the desired movement is 

slowed by an external force, as faster the battery will run out of power. Control elements and batteries 

will be located in backpack of spinal brace, which is one of the main, so called best-fit, elements 

securing exoskeleton on user’s body, located on waist of user, see Figure 5.9. 

5.6 Best-fit enhancements  

Wider range of users can use Ortholeg 2.0 thanks to new adjustable elements, which were 

implemented in order to get as universal, modular, comfortable and user friendly device as possible, 

see Figure 5.9. 

 Fixtures 

There are four fixtures made from prepreg carbon for shins and thighs. Manufacturing process of 

fixtures is same as for shoe inserts. There is small aluminium piece integrated for thread to be drilled 

in order to attach clamps.  

Fixtures can be easily positioned by simple unbuckle clamp connectors, thus user can wear this 

fixtures comfortably.        

 Adjustable height 

For different height of users there is possibility to adjust length of shin part.  

 Adjustable width 

It is important Ortholeg 2.0 fits as close to users’ body as possible especially around waist. There is 

sliding adjustable back part in lumbar area. Slider is equipped with treaded rod connected to wheel for 

comfortable regulation which is easily done by user.        

 Brace 

Sinal orthosis with 0° of lumbar support curvature is just excellent component for easy wearing with 

maximum comfort. Lumbar universal orthosis is connected to Ortholeg construction through back part 

support which is made from Kydex polymer, see Figure 5.2.    
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Figure 5.9 Best-fit enhancements   
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6 New active exoskeleton @halo  
Second new active exoskeleton @halo and its passive version Halo are presented in this section. 

This part of work was performed in the Department of Robotics Science & Engineering of Chubu 

University, Japan. Mechanical design and control system of novel exoskeleton are explained and 

described in details in this chapter.    

6.1 Halo - device update 

HALO is a passive medial-hip-joint orthosis which consists of two KAFOs (Knee Ankle Foot Orthosis) 

connected by the special medial hip joint. The main idea of HALO is to harvest energy from ankle torque 

in order to assist swinging of contralateral leg and in addition avoid stumbling during walking. This is 

achieved by connecting the left and right ankle with hip joint using a pair of pulleys and steel wires in 

Bowden. The pulleys rotate on one shaft connecting left and right KAFO. The pulley which is paired 

with left ankle is connected to the right KAFO and vice versa,(Genda et al. 2004),for complete 

explanation of functionality see chapter 4.  

The benefits in comparison with other passive orthoses were presented in the Chapter 4. Passive 

orthoses HALO was chosen for further development, thanks to these advantages.  In order to improve 

some of the parameters such as energy consumption of users and stability, redesign of HALO was done 

and HALO joint was updated, see Figure 6.1.  New Halo is passive orthosis with small bevel gearbox 

implemented on a shaft in between pulleys. This update provides with an available input shaft, for an 

additional possibility to actuate hip axis, see Figure 6.2.  

As it was already explained in the chapter 4 ankle joint and hip joint are interconnected by steel 

wire rope. The ratio of the radius of rotation of the hip joint and the ankle joint is 1:2, which means 

any torque applied in the hip joint is two times of this value in the ankle joint in case an efficiency of 

the steel wire rope in Bowden is considered to be 100%. Due to friction of the wire rope in the Bowden 

losses are expected. The efficiency of such mechanism is normally between 70-90%, due to nearly 

straight line between hip and ankle (no loops or bends), we estimate the efficiency to be around 85%.    

          

Figure 6.1 HALO orthoses (on the right) and new Halo with bevel gearbox (on the left) 
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Figure 6.2 Hip joint update 

6.2 Moments in ankle and hip joint while walking with Halo 

Moments in lower limbs joints were calculated using inverse dynamics model from data from 

preliminary experiments. The results were compared with calculations done by (Genda 2010). 

Two graphs in Figure 6.3 explains moments in the hip and ankle joint. The left graph compares HALO 

with normal walking and the Primewalk orthosis. The moment in the dorsiflexion direction increases 

immediately at the beginning of the stance during normal walking. Using HALO orthosis, the 

dorsiflexion moment is received throughout the stance period, and its dorsiflexion moment is gradually 

increasing from the mid-stance period, this is smoother trend than in the case of Primewalk.      

The right graph shows moment in the hip joint and explains how ankle dorsiflexion moment assists 

swing of the contralateral leg. The moment received from the contralateral ankle at the initial stage of 

the stance acts in the flexion direction and is not assisting the hip joint extension movement. In the 

first half of the swing, the moment received from the opposite ankle acts in the flexing direction and 

assists the hip flexion movement (swinging of the free leg).  

 

 

 

Figure 6.3 Ankle and hip joint moments during walking with HALO according (Genda 2010) 
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6.3  Calculation of hip and ankle moments by inverse dynamics 

Moments in the ankle and the hip joint can be calculated using inverse dynamics after obtaining 

ground reaction forces data, position vectors and accelerations of each joint (ankle, knee and hip) and 

centre of gravity (COG) of each segment (foot, leg, and thigh) from experiments. Free body diagram of 

the foot with all necessary information for inverse dynamics analysis is in Figure 6.4.  

 

Figure 6.4  Free body diagram of the foot for inverse dynamics analysis 

The equation for calculation of moments in the ankle joint is on (6.1).  

 𝑀⃗⃑⃑𝑎 = 𝑟𝑎.𝑔𝑟  × 𝐹⃗𝑔𝑟 + (𝑟𝑎.𝑓 × 𝑚𝑓(𝑔⃗ − 𝑎⃗𝑓)) + 𝑀⃗⃑⃑𝑔𝑟 − 𝑀⃗⃑⃑𝐼𝑎 (6.1) 

Where the ground reaction force 𝐹⃗𝑔𝑟 was obtained from measurement, mf is foot mass, af and g are 

inertial and gravitational accelerations, 𝑟𝑎.𝑔𝑟 is position vector from the ankle joint to the centre of 

pressure (black spot) and 𝑟𝑎.𝑓 is position vector from the ankle joint to the foot segment centre of 

gravity, 𝑀⃗⃑⃑𝐼𝑎 is inertial moment due to foot segment and finally 𝑀⃗⃑⃑𝑔𝑟 is moment measured by footplate. 

The generalized equation for calculation of moment in the hip joint is on (6.2), this equation can be 

used for any last joint of three serially inked segments, in this case, it is foot, leg and thigh segment, 

more about inverse dynamics model is discussed in a Chapter 8.          

 
𝑀⃗⃑⃑𝐻 = 𝑟ℎ.𝑔𝑟  × 𝐹⃗𝑔𝑟 + ∑𝑟𝑖 × 𝑚𝑖(𝑔⃗ − 𝑎⃗𝑖) + 𝑀⃗⃑⃑𝑔𝑟

3

𝑖=1

− ∑𝑀⃗⃑⃑𝐼𝑖

3

𝑖=1

 

 

(6.2) 

Where mi is ith segment mass, ai and g are inertial and gravitational accelerations of ith segment, 

𝑟ℎ.𝑔𝑟𝑓 is position vector from the hip joint to the centre of pressure and 𝑟𝑖 is the position vector from 

the hip joint to the ith segment centre of gravity and finally  𝑀⃗⃑⃑𝐼𝑖 is inertial moment due to ith segment.  

A comparison of the results of maximal moments in the hip and ankle joints during preliminary 

walking experiments (both subjects) with new Halo orthosis how it was calculated and according 

(Genda 2010) is listed in Table 6.1. Moreover, an average of the angular velocities of the hip and ankle 

joint were obtained from the Cortex software.  
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Table 6.1 Comparison of the results of maximal moments and angular velocity in the hip and ankle 

 max. calc. moment 
subject 2 [Nm] 

max. calc. moment 
subject 2 [Nm] 

max. moment  
Genda et al. [Nm] 

calculated  
speed [rpm] 

Ankle 51.5 54.7 ≈48 12.5 

Hip 47.5 49.9 ≈63 21.2 

6.4 Mechanical design of powered exoskeleton @halo  

New Halo design together with an actuator unit is called @halo (active hip ankle linkage 

exoskeleton). The new mechanical design is modular. Users can decide and easily switch between 

active or passive setting by unplugging the actuator unit.  A detailed description of the prototype of 

@halo exoskeleton is in Figure 6.5 and two models of @halo joint are presented in Figure 6.6. Right 

model of the joint represents simplified structure for better understanding of its functionality. 3D 

Models consist of white and black parts firmly assembled in two units or blocks which are mutually 

rotating.  

Black block (dark parts) consists of gearbox 1 case (cut section view) connected to the motor with 

gearbox 2, KAFO connector 1 with Bowden holder 1 and pulley 1. Motor with planetary gearbox 2 is 

connected via shaft coupling to a shaft on which rotates spiral bevel pinion.  KAFO connector 1 is the 

interface plate of the right KAFO. Bowden holder with holes for the steel wire is attached to this plate. 

Pulley 1 on the left side of the joint is through the steel wires linked to the left ankle and in addition, 

serves as the gearbox 1 case cover, which are firmly screwed together. Bevel gearbox 1 case is 

stiffening construction and augmenting rigidity of the main shaft, its compact cylindrical shape fits 

perfectly into the hand, thus serves as a grip for easy manipulating with the exoskeleton.     

White block (light parts) consists of the main shaft which is connected to a bevel gear. The spiral 

bevel gear is then firmly screwed to a pulley 2. This pulley is then linked to the right ankle. The main 

shaft is firmly attached at the end with KAFO connector plate 2.  Bowden holder 2 is connected to this 

plate and serves as a slideway. Holder was manufactured from POM plastic material, but self-

lubricating iglide® polymer from company Igus was tested for better performance. @halo joint main 

parts were manufactured from Aluminium 7075-T6, this material has superior properties and can 

sustain high payloads thanks to its high tensile strength. 

The device weight is 6.8 kg (without electronics). New @halo hip joint weight is 1.9 kg. The height 

of the device is adjustable, according to users’ body proportions.  

6.4.1 Selection of servomotor 

As it is explained in the Chapter 5, motor assistance is activated between double support and heel 

off during preswing phase, this indicates just partial assistance of the actuator for push off from the 

ground. Users are partially supporting this movement by crutches. This means, an important and 

driving element for the selection of appropriate motor is the ankle moment value. Ankle moment 

should be according to the results from Table 6.1 between 51 to 55 Nm in order to be able to overcome 

initial resistance and fully assist in forward progression. The moment of output shaft from the bevel 

gearbox 𝑀𝑏𝑔 should be about 32 Nm obtained from the ratio between the ankle and the hip 2:1 and 

efficiency 85% according (6.3).         

 𝑀𝑏𝑔 =
55 𝑁𝑚

2 ∙ 0.85
≅ 32𝑁𝑚 (6.3) 
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Figure 6.5 New @halo exoskeleton and @halo joint 

   

 

Figure 6.6 @halo joint model in section view and simplified model 

A servomotor combining the DC motor EC-powermax30 from Maxon and the planetary gearhead 

GP42C was purchased for this application. The total weight of servomotor is about 0.75 [kg] and the 

total length of the combination (gearhead + DC motor + encoder) is about 152 [mm].  
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 Selection of the motor 

According to calculated torque, required for powering ankle joint DC motor EC-powermax30 from 

Maxon was chosen due to its satisfactory nominal speed and torque, see motor data in Table 6.2 and 

operating range of motor in Figure 6.7.  

Table 6.2 Motor maxon data (EC-powermax30) 

Power [W] 100 

Nominal voltage[V] 24 

No load speed [rpm] 17800 

Nominal speed [rpm] 16700 

Nominal Torque (max. continuous torque) [mNm] 63.3 

Nominal current (max. continuous current) [A] 5.45 

Stall torque [mNm] 1280 

Torque constant [mNm / A] 12.8 

Max permissible speed   25000 

Terminal inductance phase to phase [mH] 0.0295 

weight [g] 165 

 

 Selection of the Gearhead 

Planetary Gearhead GP 42 C Ø42 mm, 3 - 15 Nm, Ceramic Version from company maxon was chosen 

for its high reduction ratio and satisfactory intermittent torque at gear output.  

Table 6.3 Planetary gearhead GP 42 C 

Reduction  546:1 

Absolute reduction 546 

Mass inertia [gcm2] 15 

Max. motor shaft diameter [mm] 10 

Max. continuous torque [Nm] 15 

Max. intermittent torque at gear output [Nm] 22.5 

Max. efficiency [%]  64 

weight [g] 560 

 

 Selection of the encoder 

An incremental encoder (HEDL 5540) from the company Maxon is used for detecting the rotation 

angle of the actuator. Incremental encoders are inexpensive due to their simple structure, but 

calibration is needed when turning on the power to detect relative values. Specifications are shown in 

Table 6.4. 

Table 6.4 incremental encoder (HEDL 5540) 

Pulses per revolution - 𝐸𝑝𝑝𝑟 500 

Channels 3 

Maximum frequency [100Hz] 100 

Maximum angular acceleration [rad/s2] 25000 
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 Calculation of output torque and speed 

Calculation of the output torque and speed of the chosen actuator is summarized in Table 6.5. 

Table 6.5 output torque and speed summary 

 gear ratio 𝒊 efficiency  
𝜼 [%] 

torque 
output [Nm] 

speed  
output [rpm] 

Bowden-wire  2 85 54.7 12 

Bevel gear 1,5 98 32 24 

Gearhead 546 65 21.8 36 

Motor --------------- 90 0.063 19656 

 

 

Figure 6.7 Operating Range of motor (EC-powermax30 - from Maxon motor datasheet) 

6.4.2 Selection of bevel gears  

Bevel gears were calculated using software Mitcalc where input values are listed in Table 6.6. 

Table 6.6 input values for calculation of bevel gears   

basic input parameters Value 

Transferred power Pw [kW] 0.08 

Speed (Pinion / Gear) n [rpm] 36  

Torsional moment (Pinion / Gear) Mk [Nm] 21.8 

Transmission ratio / from table i 1.5 
  

  KSP Nissei ground spiral bevel gears were selected for right angle distribution of the moment to 

the hip joints. There was necessary to order secondary manufacturing operations for this gear set 

before assembly. All specifications are presented in Table 6.7, Table 6.8 and Figure 6.8 (from KHK 

STOCK GEARS website).       

 

Figure 6.8 KSP Nissei ground spiral bevel gears 
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Table 6.7 KSP Nissei ground spiral bevel gears characteristics 

Characteristics  value / description 

Precision Grade  JIS B 1704 grade 0 

Gear teeth Gleason 

Pressure angle 20 

Helix angle 35 

Material SCM415 

Heat treatment Carbonized 

Tooth hardness 60~63HRC 

Shaft angle 90 
 

Table 6.8 KSP Nissei ground spiral bevel gears specification 

 Direction 
of Spiral 

Module No. of 
teeth 

Pitch 
dia 

Face 
width 

Outside 
dia. A 

Holding 
surface 
dia. B 

Bore 
CH7 

KSP0481.5GU P L 2 16 32 9 34 17.6 12 
KSP0481.5GU G R 2 24 48 9 48 30.4 15 

 

6.4.3 Couplings 

Oldham coupling clamping type (MCOCWK38-12-12 - both sides keywayed) with additional set 

screws on top of the groove were selected to couple motor output shaft with the bevel pinion shaft. 

Important parameter of the coupling are listed in Table 6.9.   

Table 6.9 parameters of coupling 

parameters of coupling MCOCWK38-12-12 Value 

Allowable Torque Mk [Nm] 28 

Max. rotational speed n [rpm] 5800 

Allowable angular misalignment  [°] 3 

weight [Kg] 240 

 

6.4.4 Steel wire rope calculation 

Powered exoskeleton @halo is acting on the ankle joint by moment 54.7 [Nm] as it was calculated 

earlier in this chapter. This big moment is producing pulling force in the steel wire rope of ankle-hip 

link mechanism. The steel wire rope is acting on rotation radius 0.05 [m]. The maximum pulling force 

acting on the wire is 547 N.  Since the allowable tension of the steel wire rope (7 × 7 type thickness 2.0 

mm) is 3234 N, it can be said that the durability is sufficient. The most critical point is pressed wire 

ending, see Figure 6.9, this part was however tested by years of usage of passive HALO orthosis and 

the allowed pulling force limit was set to 784 N. This means, such way of securing the steel wire rope 

is sufficient. Nonetheless, other more durable techniques may be used in case of further development.        
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Figure 6.9 Steel wire rope and Bowden assembly  

6.4.5 Slider and Oil Free Slide Plates combination  

In order to prevent high bending forces on the main shaft, the Slider from POM material was used 

in combination with Oil-Free Slide Plates. The Plates have special multi-layer coating (Filler Added 

Polytetrafluoroethylene Layer, Sintered Bronze Layer, and Back Metal Layer) which does not require 

any kind of lubrication and works with a very low coefficient of friction.    

This system was tested on nearly 1000 cycles during high loads and the result was satisfactory, 

abrasion of POM material was negligible and Oil-Free Slide Plates had no signs of losing coating 

structure.     

 

Figure 6.10  POM Slider and Oil Free Slide Plate combination 

6.5  @halo control unit 

Motor control hardware, connection layout and software are presented in this subchapter. The 

connection layout of the motor control unit is in Figure 6.11. The three main components of the system 

are PC with communication cards from company Interface corp., 4-Q-EC Servoamplifier DES 70/10 

from company Maxon and Electronic Commutation (EC) Servomotor from company Maxon. The DES 

(Digital EC Servoamplifier) is the efficient digital servoamplifier with sinusoidal current commutation 

for the control of EC motors.  

The PC is equipped by ADDA (analogue/digital, digital/analogue) board PCI-360116, counter, timer 

and digital input/output (DIO) card LPC-632104. The PC executes a motor control program and sends 
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the command signal to the servoamplifier via ADDA board. ADDA board is connected to servoamplifier 

via differential input “Set value” which is set to range -10 … +10 V.  The analogue signal is amplified by 

the servoamplifier and from there sent to the motor. Such a way the motor can be driven or regulated.     

A motor choke is inserted between the motor and servoamplifier to prevent overcurrent. There is 

just one motor, thus one actuated DOF, and two movements (dorsiflexion and plantarflexion) to be 

controlled. This is done by altering clockwise and counter-clockwise direction of the rotation of the 

motor output shaft.   

In order to obtain information about speed, angle, and direction of rotation, the servomotor is 

equipped with the incremental encoder. To monitor this variables encoder is connected to 

servoamplifier by special port dedicated to encoder itself. For a closed loop position control (control 

method is discussed later in this chapter), the encoder is connected directly to the counter board as 

well. The pulse signal is received by the counter board and processed by a control program which 

converts this signal to angle value.     

The output torque estimation is done from the monitored output current of the motor. This current 

is multiplied by torque constant obtained from the motor datasheet and the estimated torque is a 

result which is presented in chapter 5. 

The servoamplifier was set for speed control during preliminary experiments, current control mode 

was however tested as well. If the “Digital 2” input is connected to a voltage higher than 2.4 VDC the 

servoamplifier is configured to speed controller mode. If the “Digital 2” input is connected to Gnd the 

servoamplifier is configured to current (torque) mode.  If the “Digital 1” input is connected to Gnd the 

actual motor speed is given to the “Monitor” output. If a voltage is given at “Digital 1”, the actual motor 

current is given to the “Monitor” output. The 3-Position Selector Switch is connected to “Digital 1”, 

“Digital 2” and to “Enable” input for switching between control modes and for ON/OFF motor 

command, see Figure 6.15. The “Digital 2” button was switched on (connected to auxiliary voltage 

5VDC) and speed control mode was activated during preliminary experiments. The “Digital 1” button 

was switched on (connected to auxiliary voltage 5VDC) and the actual motor current was monitored, 

received via ADDA board and processed by motor control program. Motor torque was estimated and 

evaluated from actual motor current value and the torque constant.   

 An emergency button was installed and connected to “STOP” input of servoamplifier for the case 

of emergency. If a voltage is given at “STOP”, the motor speed will be stopped with maximum 

deceleration until motor shaft stands still.  

As an alternative, configuration and commanding of the servoamplifier also is possible over the PC 

using RS232 or CAN.  This functionality was used and servoamplifier was connected via RS232 to PC in 

order to set quickly reproducibly and numerically parameters such as maximal speed, offset, gain or 

maximal current.        

There is OS Windows XP installed in the PC and program Visual C ++ 2010 was used to create motor 

control program to process input and output data collectively in the timer loop of sampling frequency 

100 [Hz] and sampling interval 100000 [ms].  
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Figure 6.11 Connection layout of @halo control unit 

The ADDA conversion board connected to PC’s motherboard are shown in Figure 6.13, and the 

specifications of these conversion boards are presented in Table 6.11. The counter board by which the 

speed information was received is in Figure 6.13, and the specification of this board is shown in Table 

6.12. The counter board can be set as an interval timer. 

All system of the @halo prototype is stationary, connected to the mobile exoskeleton through a set 

of wires and terminal boards. This kind of setting is not practical for real application and absolutely 

inadequate for everyday use. One of the main directions of future development is a creation of a 

compact mobile control unit powered by a battery pack and embedded directly into the exoskeleton. 

As for testing purpose and proof of functionality of the idea however the prototype with the stationary 

system was satisfactory.   

6.5.1 Servoamplifier 

As already mentioned 4-Q-EC Servoamplifier DES 70 / 10 from Maxon company was used in the motor 

control system. The main advantage of this amplifier is the possibility of switching between speed and 

current control modes. Speed control mode was used during preliminary experiments and the current 

was monitored and stored.  More details about control are discussed later in this chapter and in 

chapter 5 as well. The specifications of the servo amplifier are summarized in Table 6.10. Exact 

connection layout is presented in Figure 6.12 – picture extracted from Maxon datasheet. 

Servoamplifier DES 70 / 10 was chosen due to economical reasons, for the future development, use of 

different controller should be considered, the reasonable solution is for instance Maxon controller 

EPOS series.     

Table 6.10  4-Q-EC Servoamplifier DES 70/10 specification 

Characteristics  value 

Operating voltage VCC 24 - 70 VDC 

Max. output voltage 0.9 x VCC 

Max. output current Imax 30 A 
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Continuous output current Icont 10 A 

Max. speed (1 pole pair) 25 000 rpm 

weight 400 g 

 

 

Figure 6.12 4-Q-EC Servoamplifier DES 70/10 and connection layout with EC motor – pictures from 
Maxon Datasheet 

6.5.2 Interface boards 

Two interface boards were used for signal processing. The LPC-632104 is counter board which 

provides four 32-bit multi-function counters. As each counter is isolated, it can be used for different 

functions. The PCI - 360116 is a high - speed 16 - bit ADDA board compatible with the PCI bus. The AD 

conversion time is about 1 μs.   

         

Figure 6.13  ADDA board and counter board 

 

Table 6.11 ADDA board (PCI-360116) specification 

Characteristics  value 

A/D (ch) 8 

D/A (ch) 2 

Resolution (bit) 16 

bipolar (V) ±10 



65 

 

Table 6.12 counter board (LPC - 632104) specification 

Characteristics  value 

max input frequency (MHz) 10 

Counter (ch) 4 

Resolution (bit) 32 

bipolar (V) ±10 

6.5.3 Choke 

A choke is an inductor connected in series with the EC motor in order to block higher-frequency 

alternating current (AC) in an electrical circuit, while passing lower-frequency or direct current (DC). 

EC motor used for powering @halo exoskeleton is low inductance motor which enables design to be 

very slim and compact. However low inductance means low electrical time constants and this leads to 

high amount of a motor's current ripples and higher peaks, this results in high running current value 

which heats the motor up. In order to protect the motor, it is necessary to add a choke coil as additional 

inductance for attenuating the current spikes. The behaviour of the motor does not change, because 

the generated motor torque is proportional to the average value of the current and additional 

inductance in the electric circuit improves the stability of the current controller.    

When the inductance of the motor is 0.4 mH or less, the choke needs to be added. The terminal 

inductance phase to phase value of the used EC motor is 0.0295 mH, see Table 6.2 Motor maxon data 

(EC-powermax30), this means there is necessary to include the choke, specific type which was used is 

on .  

  

 

Figure 6.14 Choke 

6.5.4  Buttons and switches 

The 3-Position Selector Switch was used for switching between control settings and for turning the 

actuator ON and OFF. The emergency button was placed in near proximity of operator of the control 

unit during preliminary experiments, buttons are in Figure 6.15.   
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Figure 6.15 The 3-Position Selector Switch and emergency STOP button 

6.6  Lofstrand crutch and integrated manual switch 

The user wearing the @halo exoskeleton controls this device manually by pressing the switch 

integrated inside a moulded handpiece of the Lofstrand crutch, see Figure 6.16. This Manual switch is 

connected by wires directly to DIO card inside PC.    

Force sensitive resistors (FSR) were integrated in shoe insoles of @halo exoskeleton as optional 

control method. This functionality was however not used during preliminary experiments. The manual 

switch button in crutch for its simplicity and easy-to-use benefits was selected as the safest and the 

most convenient.    

 

Figure 6.16 Forearm crutch with integrated manual switch (DS-663) 

 

6.7  Control system of actuator  

Control system is discussed in this section, a block diagram of a closed loop position control and PI 

controller are described as well as the motor control program and specific modes which user can use 

during walking with the @halo exoskeleton. 

 

6.7.1 Block diagram of control system 

The closed loop position control system with a PI controller for less steady state error and smooth 

response is used for the motor control, the block diagram of the control system is presented in Figure 
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6.17. The controller gains Kp, Ki, and Ks were tuned for a good tracking performance by Ziegler-Nichols 

Ultimate Gain method (Lee et al. 2015).The system controls hip angle by referring to the target angle.  

 

Figure 6.17  Block diagram of the @halo control system  

Procedure of calculating control signal output Vr from PI controller is described in equations (6.4-8).  

Equation 6.7 represents PI controller, there is sum of two terms: a proportional term that is 

proportional to the error, an integral term that is proportional to the integral of the error.  

 𝜃(𝑡) =
𝐶𝑝 ∙ 360

𝑁𝑝𝑝𝑟 ∙ 𝑖𝑔ℎ ∙ 𝑖𝑏𝑔 ∙ 𝑖𝑤𝑚
=> 𝜃̇(t) =

d𝜃(𝑡)

d𝑡
 (6.4) 

 𝜃𝑟(𝑡) =
𝜃𝑟_𝑑𝑎𝑡𝑎 ∙ 𝑖𝑔ℎ ∙ 𝑖𝑏𝑔 ∙ 𝑖𝑤𝑚

𝜂𝑚 ∙ 𝜂𝑔ℎ ∙ 𝜂𝑏𝑔 ∙ 𝜂𝑤𝑚
=> 𝜃̇𝑟(t) =

d𝜃𝑟(𝑡)

d𝑡
 (6.5) 

 𝑒𝜃̇(𝑡) =
𝜃̇(t) − 𝜃̇𝑟(t)

F𝑠𝑚𝑝𝑙
 (6.6) 

 𝜃̇𝑐(t) = 𝐾𝑝 ∙ 𝑒𝜃̇(𝑡) + 𝐾𝑖 ∫ 𝑒𝜃̇(𝑡)𝑑𝑡
𝑡

0

 (6.7) 

 𝑉𝑟(t) = (
𝜃̇𝑟(t)

𝜃̇𝑚𝑎𝑥

) ∙ 10 (6.8) 

Where 𝜃𝑟: reference angle [deg], 𝜃: actual angle [deg], 𝜃̇𝑟: reference angular velocity 

   𝜃̇𝑐: control angular velocity [rpm], 𝜃𝑟_𝑑𝑎𝑡𝑎: loaded angle reference data, 𝑒𝜃̇: control error,  

 𝐾𝑝: Proportional gain, 𝐾𝐼: integral gain, 𝐾𝑠: voltage conversion gain, 𝑁𝑝𝑝𝑟: pulse encoder signal   

  𝑉𝑟: Voltage value command [V], 𝑉𝑚: Motor drive voltage [V], F𝑠𝑚𝑝𝑙: Sampling frequency  

 𝜂𝑚, 𝜂𝑔ℎ , 𝜂𝑏𝑔, 𝜂𝑤𝑚: Efficiency of motor, planetary gearhead, bevel gear, wire mechanism 

 𝑖𝑔ℎ , 𝑖𝑏𝑔, 𝑖𝑤𝑚:  gear ratio of planetary gearhead, bevel gear, wire mechanism 
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6.7.2 Control parameters of PI controller  

In order to use the PI controller, it is necessary to set proportional gain Kp and integral gain KI. In 

this study, Ziegler-Nichols Ultimate Gain method was used to find these parameters.  

The first step of Ziegler-Nichols method is to find Ultimate gain Ku. We start with a closed-loop 

system with only proportional controller and gain Kc (critical gain), integral gain KI is set to zero. Kc is 

set to very low value and gradually is increased until a steady-state oscillation occurs, such a way the 

gain called Ultimate gain Ku is obtained. For our application there was measured Ku= 1.8 with the period 

of oscillation Tu = 0.321. Based on these values, the control parameters are defined from Table 6.13. 

 As the result the gains Kp=0.54 with TI = 0.27 and KI= 0.1 were used.   

 

Table 6.13 Ziegler-Nichols Ultimate Gain method 

Controller Kp TI TD 

P 0.5 Ku   

PI 0.45 Ku 0.83 Tu  

PID 0.6 Ku 0.5 Tu 0.125 Tu 

 

6.7.3 Control modes  

Device @halo comes together with Loftstrand crutches as described in previous chapters. The left 

crutch is equipped with a switch, see Figure 6.16. The device can be controlled by the user either in 

semi-automatic mode or manual mode. Users press and hold the switch during the whole walking 

period in the semi-automatic mode for continuous walking. This serves as a safety feature, in a case of 

lost balance or instability, the switch is released and the motor stops at the next reference point. In 

manual mode the button has to be pushed after each step, this second option was used during 

preliminary experiments. The first prototype control system does not provide with an option of 

changing a speed of walking. Turning left and right is possible while standing both feet on the ground. 

This function, however, requires special modification of soles and was not tested, only forward walking 

was examined during the preliminary experiments.     

6.7.4 Control program  

Control programme structure, features and control logic is briefly discussed in this section.  

Initialization of the ADDA and counter boards and calibration of the encoder are performed as the 

first step after turning on the control unit. In order to calibrate the Incremental encoder it is necessary 

to adjust the offset for angle detection. For the sake of accuracy, so all experiments begin in the same 

position, the users were instructed to stand on double support with legs in parallel so the toe tips are 

aligned and in this posture was set 0°. Left leg was then moved backward for 30° and this was the initial 

position for preliminary experiments. The serial communication via RS232 was established by 

connecting the servoamplifier and the PC, so described initialization process and data files creation 

and export can be done simply through programmed user interface, see Figure 6.18.    

The file with the target reference angle is externally created. The period of the angle reference 

consists of rapid increase by +60° following by decrease to -60° and this is equal to one gait cycle. First 



69 

half period in positive direction is then equal to one step and this is equal to 90° counterclockwise 

rotation of the shaft of actuator. Second half period in negative direction is then equal to second step 

and this is equal to 90° clockwise rotation of the shaft of actuator. All file is loaded at once and the 

data are synchronized with the sample data number controlled by counter. Sample data number is the 

time length of the half period. In practice, one press of the manual switch runs one step. If the button 

is not released and user holds the button, then the program does not stop and reads second half of 

period, thus second step of the gait cycle is continuously initiated. This cycle is then set in a loop, it 

means while holding the manual switch walking does not stop, for more about gait cycle of the 

preliminary experiments see chapter 5. 

Control program has following functions:   

 Track target angle file and open it 

 Target angle data input – load target angle reference data 

 determination of the assist switch ON · OFF 

o start cycle of the right switch ON  

o set condition of the right switch OFF  

 Calculate error from comparing target angle and actual angle data  

 Sending error to PI controller and setting new output angle data for motor 

 Differentiation of angle data and converting to voltage output for the servoamplifier    

 Hip joint range of motion restriction ± 45° – user safety feature  

 Set range of current restriction max ± 10 A – Servoamplifier safety feature 

 

 

Figure 6.18 User interface for initialization, data file creation and export with description of each 
steps 
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7 Experiment procedure and set up 
Exoskeleton which meets requirements from the requirement list and which fits better the aims of 

this work is selected. Exoskeleton @halo was chosen as better solution. Walking with active @halo 

device and passive Halo orthosis was tested during preliminary experiments. All necessary details 

about experiments such as experimental set up, experimental trials, data acquisition techniques and 

description of equipment used during experiments are presented in this chapter. 

7.1 Selection of Exoskeleton for further research 

The better solution for further experiments with able-bodied subjects was selected according 

significance of requirement and degree of fulfilling requirement of each solution. Device @halo has 

nearly twice higher score in comparison with Ortholeg 2.0, according Table 7.1.   

Table 7.1 Selection of solution   

i Requirement Value or description 
Significance 

of req. 
@halo 

Ortholeg 
2.0 

1 
Mediolateral 
stability 

Walking independently 
without assistance 

2 2 0 

2 
Anteroposterior 
stability 

Walking independently 
without assistance  

2 2 1 

3 Price max 10000 USD 2 2 0 

4 Weight of device max 8 Kg 2 2 1 

5 Weight of user up to 70 Kg 2 2 2 

6 
Energy consumption 
of user  

Evaluated from vertical 
elevation of CoG 

2 1 2 

7 
Don/Doff directly 
from a wheelchair 

YES 1 2 0 

8 Modularity   
Possibility of switching 
to passive option 

1 2 1 

9 Walking pattern 
Natural pattern similar 
to normal walking  

1 0 2 

Result = ∑ 𝐒𝐢𝐠𝐧𝐢𝐟𝐢𝐜𝐚𝐧𝐜𝐞 ∗  𝐃𝐞𝐠𝐫𝐞𝐞 𝐨𝐟 𝐟𝐮𝐥𝐟𝐢𝐥𝐥𝐢𝐧𝐠 𝐫𝐞𝐪𝐮𝐢𝐫𝐞𝐦𝐞𝐧𝐭 𝟗
𝒊=𝟏   26 15 

Table 7.2 Degree of fulfilling requirement 

Degree of fulfilling requirement Description 

0 Does not satisfy requirement 

1 Partially satisfy requirement  

2 Completely satisfy requirement 
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7.2 Walking with Halo and @halo 

Experimental trials were conducted in order to verify the assist effect of @halo. The main aim of 

data analysis and acquisition from trials was the comparison of the gait parameters between passive 

Halo setting and actuated @halo setting. The preliminary experiments were conducted with two able-

bodied subjects, their parameter are summarized in Table 7.3. 

Table 7.3 Subjects 

Parameters  Subject 1 Subject 2 

Height 1.724m 1.790m 

Weight 63 kg 65 kg 

Age 21 29 

 

Each subject conducted 30 trials with Halo and 30 trials with powered @halo. One trial consists of 

the full gait cycle, of one stride. The trial starts in posture one leg in front of another with approximately 

30 degrees between legs. The data obtained from experiments were processed and evaluated in 

chapter 8.    

Due to specific HALO gait, there were many (hundreds) of trials conducted before recording 

evaluated strides. The subjects were trained by professional staff to adopt the walking style with Halo 

in order to simulate the authentic movement of the lower and upper body, as it was performed by 

patients. The @halo exoskeleton was adjusted according to the height of subjects before the start of 

the experiments. There was no big difference between subjects’ heights, therefore the device was set 

for one configuration during all trials. 

7.3 Experimental setup 

The subjects accomplished experiments in an area which was monitored by six infrared motion 

tracking cameras Mac3D (Motion Analysis corp.) at the frequency of 60 Hz. Four Kistler force plates 

with six DOF were situated in the middle of the room in order to measure the ground reaction forces 

(GRF) of both legs and both crutches. Twenty-five reflective markers were placed on anatomical 

landmarks of the subjects in a modified Helen-Hayes marker arrangement. Software Cortex was used 

to track trajectories of markers and the GRFs during experiments.  

Listed main components used during experiments are described in following subchapters, as 

illustrated in Figure 7.1: 

I. Motion tracking cameras Mac3D (Motion Analysis corp.) 

II. Control stand 1 - PC with cortex software for preprocessing of data  

III. Kistler force plates with six DOF 

IV. Control stand 2 – PC with @halo control hardware and software  

V. Tested device with user and crutches 
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Figure 7.1 Experimental setup 

7.4 Motion capture system MAC3D  

When any kind of motion needs to be analysed a motion capture system can be used. This 

technique of motion analysis is widely used for instance to evaluate correct running pattern of athletes 

in order to increase a performance or correct batting of baseball or golf players. The most common 

use by researchers is for analysing of the walking patterns during a rehabilitation in order to quantify 

and identify mistakes done by patients, this leads to creation of efficient plan for improvement. A 

motion capture technology can be broadly divided according of tracking technique to optical, 

mechanical, and magnetic. An optical motion capture system is the most suitable one for complicated 

movement tracking and it is widely used in clinical practice.            
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7.5 Digital camera Hawk and tracking markers 

MAC3D System (Motion Analysis corp.) was used during experiments. MAC3D system is a digital 

real-time optical motion capture system for measuring the motion of the body in capture room. A 

capture room is monitored space which lays in capture range of cameras, see Figure 7.2, and in which 

the whole experiment is performed. Human motion is recorded and measured by tracking 3D position 

of a marker attached to the body in the capture room. The markers are spots attached on body 

landmarks. The markers are from reflective materials with narrow reflection angle (similar to safety 

reflective tapes). Infrared light from the multiple cameras is reflected by this spot markers to identify 

and record the position of the measurement point of the body in the capture space during all trial. 

Image of reflected light from the marker is identified, isolated, processed and other ambient noise is 

suppressed, so only the markers can be captured and position stored in time series datasets.  

Recorded 2D position data of markers form each camera are sent through an Ethernet hub to the 

PC with the MAC3D control software Cortex, see connection layout in Figure 7.3. The 2D data are 

instantaneously constructed in this software into 3D representation and so the three-dimensional 

motion of the body can be evaluated in real-time.   

Cortex is a control system that can perform necessary data processing such as camera control, 

camera calibration, collection of marker data, reconstruction of 3D data, collection of analogue data 

from force-plates, tracking of objects or calculation of virtual points etc., about Cortex see next 

subchapter.          

Six infrared digital cameras Hawk (see Figure 7.4) with FPGA that can convert marker data to 2D 

digital position data in real time were used during experiments. Hawk high-performance digital 

cameras can minimize background noise and track markers with high accuracy. The specifications of 

the camera are shown in Table 7.4. 

 

Figure 7.2 Disposition layout of Motion tracking cameras Mac3D during experiments 
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Figure 7.3 Connection layout of motion tracking cameras Mac3D and PC 

Table 7.4 Parameter of Hawk Digital Camera 

Motion Analysis Hawk Digital Camera 

Sensor CMOS 

Resolution 640 x 480 [pixel] 

Number of pixels 300,000 pixels 

Shooting cycle 1 to 200 [Hz] 

Maximum shooting speed at full resolution 200 [Hz] 

Maximum number of cameras connected 64 

Zoom lens None 

         

Figure 7.4 Hawk Digital Camera on stand and traditional reflective markers 
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7.5.1 Software Cortex  

Cortex is a complete package, capable of meeting demanding requirements of the motion capture 

industry. The output is generated in real-time making Cortex a suitable engine for a number of widely 

used 3D animation packages as well as custom applications created using the supplied Software 

Developers Kit (SDK). Being a real-time application, the results of a motion capture session can be 

viewed instantly while simultaneously saved in several file formats. In addition, you can graphically 

edit data with a complete suite of tools without resorting to other off-the-shelf software packages. 

Cortex handles image data from systems comprised of up to 250 cameras. System setup and 

calibration are fast with immediate feedback and a high degree of accuracy and precision. The motion 

capture sessions are managed using directory and file access tools. Post-processing data is 

accomplished graphically using controls integrated with mouse and keyboard functions for fast and 

easy editing. Model Edit features give the access to the properties of the current set of named markers, 

virtual markers, linkages, and skeletal segments. 

Cortex combines three major functions: 

I. Calibration of capture space 

II. Tracking and identifying marker locations in your calibrated 3D space 

III. Post processing tools for tracking, editing, and preparing the data for Other processing  

This chapter is not a manual for Cortex software, but important notes from this three major 

functions which were used during analysis and should not be omitted are briefly discussed.    

Calibration of capture space procedure is discussed in the following subchapter. For the tracking and 

identifying marker location, the marker set template needs to be created.  

 Building a template from the range of motion trial in software Cortex 

A template is what is used to automatically identify markers in real time. In saving the template, 

the software stores the minimum and maximum distances that can exist between markers that have 

linkages. It is necessary to allow the software to identify each marker in each frame. The template 

information is saved in the capture (.cap) file. Before a template can be created, a marker set that will 

apply to the subject being captured must exist. Each subject has his own unique template, which is 

loaded and recognised before each trial. This procedure ensures all experimental trials has nearly 

identical measured points’ locations, and serves as a checking feature of correct marker placement. In 

the post processing interface measured data were checked, in case of some major gabs (momentary 

missing marker artefact) were data interpolated using cubic joint and smoothed.   
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Figure 7.5 Cortex post-processing interface and description 

 

Data were exported into three files for each trial: 

 Kinematic data of each marker in format – (.ts) File - position, velocity, acceleration 

 Hierarchical Translation and Rotation - (.htr) file – Translation and rotation of the segments  

 Force data file - (.forces) file - All components of the forces from four force plates, position of 

the centre of pressure and moment about Z axis  

  These data were after used for further processing using Python packages.  

 

 

Figure 7.6 Analysis of the first step of the experimental trial presented on skeleton model in Cortex 
software  
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7.6  Force plates and GRF measurement 

Besides of the motion analysis, the GRFs were recorded and analysed. There were four force plates 

used during experiments, see Figure 7.7. Two Kistler portable multicomponent force plates for 

recording right and left foot GRFs and two smaller 6 DOF force plates to record reaction forces from 

crutches. Four wooden platforms were installed to align with an upper surface of the force plates and 

thus make the ground safe and easy to walk on.   

 

Figure 7.7 Capture space with marked force plates 

7.6.1 Kistler portable multicomponent force plates 

Kistler portable multicomponent force plates, see Figure 7.8, with aluminium top plate for 

measuring ground reaction forces, moments and the centre of pressure in biomechanics has following 

advantages:   

 Excellent accuracy of centre of pressure (COP) 

 Very wide measuring range, Threshold Fz <250 mN 

 Easy mounting and flexible, mobile application 

The Kistler forceplates use a built-in or external charge amplifier. Table X shows the specifications 

of the Kistler forceplates. 

 

Figure 7.8 Kistler portable multicomponent force plate 
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Table 7.5 Kistler portable multicomponent force plate parameters 

Parameter  Units Value  

Model number   9286A 

Dimensions  mm 600 × 400 × 35 

Weight   Kg 17.5 

Measuring range                           
Fx, Fy kN -2.5 to 2.5 

Fz kN 0 to 10 

Linearity    %FSO <±0,5 

Hysteresis   %FSO <0,5 

Crosstalk 

Fx <–> Fy % <±1,5 

F x, Fy –> Fz % <±2,0 

F z –> Fx, Fy % <±0,5 
 

7.6.2 6 DOF force sensor 

The specifications and picture of 6 DOF force/torque sensor used to measure the GRF of both 

crutches are shown in Table 4 and Figure 7.9. 

 

Figure 7.9 6 DOF force/torque sensor 

 

Table 7.6 Specifications of a 6 DOF force/torque sensor 

Parameter  Units Value  

6-axis force sense sensor    NITTA Corporation 

Model   IFS-67M25A50-I40-ANA 

Measuring range                           
Fx, Fy ± N 200 

Fz ± N 400 

Torque Tx, Ty, Tz ± Nm 13 

Weight of main body approximately   kg 0.18 

 

7.7  Characteristics of measurement  

There was necessary to perform a calibration of the motion capture system and the force recording 

devices before all measurements and data processing. This calibration description together with a 

results are presented in this section.      
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7.7.1 Motion capture measurement accuracy 

The motion capture system setting needs to be calibrated before the experiments in order to obtain 

correct 3D position data of markers. First, an origin and axes directions of the global coordinate system 

are defined by using L shape frame with markers see Figure 7.11. This frame was placed on the first 

Kistler force palate with a corner marker matching a corner of this force plate, showing X direction as 

travelling (anteroposterior) direction and Y as mediolateral direction. Calibration of capture space was 

done by a wand, equipped with three markers, see Figure 7.10. Between two end markers of the wand 

is distance 0.5 m this distance represents wand length. The calibration is performed by waving by the 

wand in a horizontal and vertical direction through all capture space for 2 minutes. The volume of 

capture space is about 6 m3 3D residuals represents the measurement accuracy error and for this 

volume should be about 1.0 mm. Wand length deviation should be between 499 to 501 mm. The 

measurement accuracy obtained as a result of the calibration before experiments is shown in Table 

7.7, according to results the measurement accuracy in this experiment is considered to be sufficient. 

The calibration was done before every new set of experiments and was always within 0.01% of 

measurement accuracy, which was sufficient and obtained data were considered accurate.  

 

Figure 7.10 Calibration wand with markers 

Table 7.7 Measurement accuracy 

3D Residuals [mm]  Wand Length 

Avarage 0.23 Avarage 499.99 

Deviation 0.11 Deviation 0.41 

 

  

Figure 7.11 L shape frame and calibration setting in Cortex software with set axis directions    
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7.7.2  Markers position – modified Helen Hayes Marker Set 

The markers were attached according to the Helen Hayes Marker Set, see Figure 7.12, with 

modifications. I addition to Helen Hayes Marker Set, there were two markers attached to the back one 

in lumbar part and another to the level of 6th thoracic vertebrae. Other extra markers were added in 

order to monitor the movement of exoskeleton itself. There were extra markers added to both thigh 

bands and shank bands of Halo device. To be able to record the movement of crutches another four 

markers were added, two markers on the back side of the left and right crutch cuff and two markers 

on the tips of the crutches, for complete final markers placement see Figure 7.13.      

 

 

Figure 7.12 Helen Hayes Marker Set  
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Figure 7.13 Modified Helen Hayes Marker Set marker set distribution 

Table 7.8 Description of the markers 

 Marker name  Marker name 

a Top.Head r R.Thigh 

b Front.Head s L.Thigh 

c Rear.Head t R.Knee.Lateral 

d Back.T6 t’ R.Knee.Medial 

e R.Shoulder u L.Knee.Lateral 

f L.Shoulder u’ L.Knee.Medial 

g R.Elbow v R.Shank 

h L.Elbow v’ L.Shank 

i R.Wrist w R.Ankle.Lateral 

j L.Wrist w’ R.Ankle.Medial 

k Back.Lumbar x L.Ankle.Lateral 

l R.ASIS x’ L.Ankle.Medial 

m L.ASIS y R.Toe 

n R.Crutch.Up y’ R.Heel 

o L.Crutch.UP z L.Toe 

p R.Crutch.Down z’ L.Heel 

q L.Crutch.Down   
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7.7.3 Ground reaction force plate Kistler 

The ground reaction force plate Kistler has four strain gauges attached in the four corners of the 

aluminium plate. Components of the force (Fx, Fy, Fz) in three directions are calculated from these 

four force sensors. The force sensor outputs is electric charge which is converted to a voltage [V] 

proportional to this charge using a charge amplifier, see Table 7.9. Voltage range of the charge 

amplifier is -10 to +10 [V] for the external amplifier and -5 to 5 [V] for the built-in type, which 

corresponds to the binary output of 0 to 4096 from the ground reaction force plate. Equation 7.1 

represents the conversion formula for external amplifier. The value of sensitivity of each component 

of the force at the amplifier's range of 5000 pC is listed together with other specifications in Table 7.9. 

Equations 7.2, 7.3 and 7.4 represent calculation of components of ground reaction forces, taken from 

multicomponent force plate datasheet of Kistler Group.    

Table 7.9 Charge Amplifier Specifications 

Manufacturer Kistler 

Model number 9865E1Y28 

Output voltage (external) ± 10 [V] 

Accuracy (all channels) ± 1% 

Sensitivity Fsx , Fsy -7.8 [pC/N] 

Sensitivity Fsz -3.6 [pC/N] 

 

 𝑉(x,y,z) =
20

4095
∗  ( 𝐷(x,y,z) –  2048 ) +  10 (7.1) 

Where 𝑉(x,y,z) is output voltage from charge amplifier and D binary number output from forceplate. 

 GRFx  =  −𝑉x  ∗
5000/𝐹𝑠𝑥

10
 [N] (7.2) 

 GRFy  =  −𝑉y ∗
5000/𝐹𝑠𝑦

10
 [N]  (7.3) 

 GRFz  =  −𝑉z ∗
5000/𝐹𝑠𝑧

10
 [N] (7.4) 

Where GRFx , GRFy , GRFz  are components of the ground reaction forces which are used for 

further analysis and evaluation of loads acting on the body.   

 An accuracy test of the Kistler force plates 

An accuracy test of the Kistler force plates were conducted in past, but results and accuracy 

verification experiment needs to be done as follows.      

First, the position of the centre of pressure of the GRF was measured by MAC3D calculation based 

on Kistler force plate calculation formulas. After, Load on the force plate was applied with a stick which 

coordinate position was compared with the results calculated by MAC3D, see Table 7.10. An error of 

maximum about 5 mm was the result of this experiment and it was noticed the error increases and 

accuracy decreases towards the ends of the force plates.     
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Table 7.10 Ground reaction force pressure centre position accuracy in [mm] 

  X Y X Y X Y X Y X Y 

Measured 
Point of 
action 

506 200 506 100 506 0 506 -100 506 -200 

Average 504.67 201.98 504.57 96.69 504.55 4.09 509.51 -96.79 511.02 -201.5 

Standard 
Deviation 

1.89 2.9 1.52 1.82 1.02 1.95 1.66 2.87 3.52 2.51 

average 
difference 

1.33 -1.98 1.43 3.31 1.45 -4.09 -3.51 -3.21 -5.02 1.52 

7.7.4 6 DOF force sensor 

The 6 DOF force sensor is equipped with semiconductor strain gauges attached to beams. The 

beams are deformed while force or torque is applied, this deformation cases a resistance change in 

the strain gauge as it bands. The change of resistance is read as voltage value and it is converted into 

force and torque values by using the calibration matrix. The voltage obtained from the six strain gages 

is V1 to V6 and the forces and torques in the X, Y, Z directions are Fx , Fy, Fz, Tx, Ty, Tz, a 6-row, 6-

column calibration matrix is used, force and torque are calculated based on the formula 7.5. Specific 

numerical values of the calibration matrix are shown in Table 7.11 and Table 7.12. 
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(7.5) 

Table 7.11 Calibration matrix（NITTA sensor 3072） 

  i 

j 84.585 2.418 0.035 -6.256 0.975 1.085 

0.835 85.827 -2.235 3.387 -5.055 1.037 

-2.847 4.674 171.267 -3.501 -4.299 -20.142 

0.139 0.004 -0.062 5.611 0.607 0.147 

-0.098 0.231 -0.025 -0.462 5.721 -0.162 

0.003 -0.099 0.11 -0.031 0.083 5.724 

Table 7.12 Calibration matrix（NITTA sensor 3649） 

  i 

j 88.245 -1.009 -1.206 -3.403 -3.687 2.344 

0.464 -90.818 -1.24 -0.643 1.47 1.062 

0.432 2.519 171.272 0.064 -4.196 0.827 

0.011 0.091 0.024 5.652 0.701 -0.054 

-0.148 -0.063 -0.102 -0.498 5.712 -0.066 

-0.098 0.018 0.012 0.099 -0.034 5.938 
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7.8 Description of experiment trial 

A detailed description of one stride trial together with the actuator activation pattern is explained 

in Figure 7.14. Start of the trial was set from the heel/toe off of the left leg to the heel/toe off of the 

same leg. The angular velocity output in Figure 7.14 is matching the phases of the stride and represents 

counterclockwise and clockwise spinning of the shaft of the actuator.        

A switch button is pressed between double support and heel off during preswing phase, this 

indicates partial assistance of the actuator for push off from the ground and altering of the momentum 

of the body for the forward progression. Anterior shift of the total body COG is thanks to this assistance 

easier and smoother than in passive walking, this prevents backward bend and keeps upper body 

always forward. Users can feel safer and fear from falling is partially eliminated.          

  

 

 

Figure 7.14 Preliminary experimental trial phases with motor activation pattern 
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7.9 Actuator output data during actuated gait cycle 

The Servomotor of the @halo device was programmed to follow angular velocity reference 

trajectory. The duration time of gait cycle was set to 2.8 s, in this time the motor spun about 90° 

clockwise and another 90° counterclockwise with the average torque 15Nm estimated from the motor 

current. The bevel gearbox with gear ratio 1.5 distributes and magnify this torque to the left and right 

KAFO.  

The generated torque at hip joint was increased to 22Nm in average, and the leg swung about 60 

degrees during half gait cycle. Starting position of trials was set to approximately 30°, a controlled 

swing of the leg then reached midswing phase (MS) in 0° and continued to -30° until double support 

(DS) where the motor changed the direction of rotation and the opposite leg continued gait cycle in 

the same fashion. While legs were passing each other, KAFO connector plate was entering sildeway 

and thus axis of joint was subtly unloaded, this produced little drops of torque during MS as it is 

presented in Figure 7.15. Description and detailed analysis of the results from experiments conducted 

in the Department of Robotics Science & Engineering of Chubu University, Japan, are presented in next 

chapter.          

 

Figure 7.15 Torque and angle in hip joint during one cycle with @halo device 
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8  Halo and @halo gait analysis 
Evaluation of walking pattern and gait parameters and processing of data obtained from software 

Cortex are presented in this chapter.    

8.1 Motion analysis and data processing  

Thirty trials with Halo and @halo device were conducted by two subjects. Position, velocity and 

acceleration data for each marker were obtained and pre-processed using software Cortex. In order 

to combine and pool data across all trials and from both users an ensemble average was introduced, 

(Robertson et al. 2004). The full trial cycle was defined from left foot toe-off to same foot toe-off.  As 

first the movement time was normalized, by resampling, it was done separately for Halo and @halo 

device in different times. Data were after resampling interpolated. Interpolation was done by quintic 

splining. Data obtained after interpolation were smoothed using Butterworth filter. All ensemble 

average was done manually in Python using functions either newly created or standard, defined in 

different packages (pandas, scipy).   

Data processing procedure of ensemble average using Python: 

a) Loading of raw data from Cortex software   

b) Split of data into three lists according axes  X, Y, Z  

c) Standardization of movement time - resampling  

d) Interpolation – splining  (quintic splines) 

e) Filtering – low pass 2nd order Butterworth filter  

Python - SciPy library: scipy.signal.butter(N, Wn, btype='low', analogue=False, output='ba'),  

 Butterworth filter is widely used in motion analysis 

 Can be modeled as 2nd order differential equation 

 Cut-off frequency was set ω0 = 5Hz 

f) Mean of all sixty normalised trials (each subject 30 trials) in three directions X, Y, Z.  

g) Result is ensemble averaged (3 lists X, Y, Z) of all trials separately for Halo and @halo. 

 

Figure 8.1 Butterworth filter can be modeled as 2nd order differential equation        
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8.2 Step length 

The average step length for @halo was 23.82±1.42% of body height (%BH) and for Halo was 

22.31±3.87%BH. The step length of @halo was primarily controlled by the device. It is possible to adjust 

step duration by modifying the trajectory and period of actuation. This attribute gives active device 

advantage in significantly smaller deviations (p < 0.05). The comparison of lengths with S.D. is 

presented in Figure 8.2.   

 

Figure 8.2 Step length comparison (p<0.05) 

 

8.3 Velocities  

Walking with Halo was faster, the average velocity was 0.3±0.045 m/s. It took 2.7s for the stride. 

Actuated walking average speed was 0.27±0.022 m/s and the stride was done in 3s. The standard 

deviation with @halo was twice smaller (p < 0.05), and similar in comparison with data reported by 

(Oberg et al. 1993). Such findings can be interpreted such as stability of walking with @halo 

exoskeleton evaluated from velocity variations is comparable with slow walking of able-bodied 

individuals.        

 

Figure 8.3 Total average velocity of walking with @halo and Halo  
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8.4 Center of Gravity displacement 

As first a description of centre of gravity (CoG) calculation is presented in this subchapter, as next 

results of the CoG position during trials in all directions are discussed.   

8.4.1 CoG calculation procedure  

Quantitative biomechanical analysis of human movement, requires an estimate of body segment 

inertial properties (BSIPs) such as mass, position of the centre of gravity, principal radii of gyration, or 

moments of inertia. If the only known anthropomorphic parameters for our subjects are total mass 

and stature we can estimate mass properties and location of CoG of each segment from means 

obtained measuring cadavers of elderly males, for this work position of centres of gravity of each 

segment were calculated from bone lengths and average estimated locations as explained in (de Leva 

1996) and mass properties of each segment from total mass of subject and percentage of total mass 

as presented in Table 8.1, (de Leva 1996).  

Table 8.1 Adjusted parameters for females and males, Segment masses are relative to body mass 

  

Total body CoG location is consecutively calculated from the position of each segment’s CoG and 

masses according equation (8.1), this equation is for walking with @halo device.   

 𝐶𝑜𝐺𝑡𝑜𝑡𝑎𝑙 =
∑ 𝑚𝑖 ∙ 𝑥𝑖⃑⃑  ⃑

17
𝑖=1

𝑚𝑡𝑜𝑡𝑎𝑙
 

 

(8.1) 

Where mi is mass of a segment, 𝑥𝑖⃑⃑  ⃑ is position vector of CoG of the segment and 𝑚𝑡𝑜𝑡𝑎𝑙 is total mass 

of the subject together with device.    

There are 17 segments considered in case of @halo device and 16 segments for Halo setting. The 

extra segment for @halo represents actuator unit. In order to be as precise in calculations as possible 

there was the actuator unit position of CoG measured and added to calculation of total body CoG as 

separate segment. The masses of KAFO orthoses were added to thigh, leg and foot segments masses. 

 Same procedure was used for calculation of upper body (UB) CoG and lower body (LB) CoG, 

considering only segments included in these portions of the body.    
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8.4.2 Evaluation of CoG displacement 

The CoG of total body (TB), lower body (LB) – including the weight of orthosis and upper body (UB) 

were examined. CoG was calculated by the segmental method, from known position vectors of centers 

of each segment calculated in motion analysis software Cortex and from the segment inertia 

parameters (de Leva 1996). The initial position of subjects for stride trials was examined from the 

moment just after standing both legs on the floor with right leg in front and left leg backward. Thus 

the stride began just after first double support phase (DS). Second and final double support phases are 

indicated in Figure 8.4 by yellow vertical stripes. 

The change of CoG position in the anteroposterior (Sagittal) direction is shown in the first row of 

Figure 8.4. In the case of both actuated and passive settings, the CoG of LB is leveled off during double 

support period and the CoG of UB indicates steeper upward slope, this means trunk was tilted forward 

to balance out lower body onward movement, this is important prevention against falling backward. 

There is, however, a difference between the CoGs of LB of @halo and Halo during DS. The active torque 

in hip resulted in a smoother transition between single and double support phase by following the CoG 

of UB similar as it is in the case of normal walking where upper and lower body CoGs have almost 

identical trend. 

Wavier profile of @halo is due to short delay caused by manual servomotor activation. The 

standard deviation of the CoG of TB was more than twice smaller with the actuated configuration, 

(p<0.0001).           

The variation of CoG position of TB in horizontal direction or waddling was about 15.2±1.68% 

without actuator and 9.1±0.51% of body height (%BH) with the @halo device. It is not possible that 

the waddling decreases to the level of normal walking since the walking manner is associated with 

locked knees and is essential in order to secure safe foot clearance from the floor. The CoGs of UB and 

LB with Halo were oscillating with larger offset from the CoG of TB.  It means deeper tilting on the 

sides, which resulted in a need to apply bigger forces on the crutches. This is proven in the next chapter. 

The standard deviation significantly decreased with @halo (p<0.0001). This means promising 

stabilization in the longer distance walking with @halo. Unfortunately, small time delay caused by the 

activation of servomotor was disturbing and prolonging trajectory just immediately after double 

support (DS) phase, see the second row of graphs of Figure 8.4. The vertical displacement of the CoG 

of TB during stride with Halo was 2.29±0.4%BH and it was decreased to 1.36±0.15%BH during actuator-

assisted walking, (p<0.0001) and this is close to a normal slow walking according to results from the 

study by (Orendurff et al. 2004). 

In the case of walking with Halo, the CoG displacement of LB was nearly constant during first DS 

period, but UB fell rapidly down to forward bend to prepare for the next step. The following 

acceleration of upper body and thus increase of its momentum was then utilized by force impulse from 

the crutch and this was the result of the high increase of power in upper limbs. This enabled fast return 

of upper body in upright posture together with lower limb which continued to midswing and then to 

another DS period. Such big impulse from the crutches was not required while walking with @halo. It 

was due to active torque in hip and linkage mechanism which slightly augmented plantar and 

dorsiflexion of ankles in the later stage of DS period. It resulted in smaller forward and backward tilting 

of UB and smoother forward movement of TB as it is evident from the last row of Figure 8.4. 
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Figure 8.4 Sagittal, horizontal and vertical CoG displacement 
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8.5 Linear force impulse from crutches and GRF 

Four force plates recorded ground reaction forces during the gait cycle. Two force plates were set 

for the right foot (RF) and the left foot (LF) and another two for the right crutch (RC) and the left crutch 

(LC). Results were analysed to compare the distribution of reaction forces acting on the lower limbs 

and extra forces which user has to apply on the crutches in order to stabilize the body. In this 

subchapter the ground reaction forces and their impulses are calculated and evaluated.   

8.5.1 Calculation of linear force impulse from crutches and GRF 

The linear impulse of force is defined as the integral of force over its period of application, this 

impulse changes the momentum of the body. The linear impulse is the area under a force history, it 

means it depends not only on amplitude, but as well on duration, (Robertson et al. 2004).    

 𝑙𝑖𝑛𝑒𝑎𝑟 𝑖𝑚𝑝𝑢𝑙𝑠𝑒 = ∫𝐹 𝑑𝑡 (8.2) 

8.5.2 Linear force impulse from crutches and GRF evaluation 

The GRF of the right foot was positive before the middle of the cycle, see Figure 8.5. Right foot 

acted as an accelerator of the walk with @halo due to active torque from the actuator. It helped easily 

overcome negative breaking GRF of LF caused by heel strike an instant before the middle of the cycle. 

No big assistance of the crutches was needed during this process in anteroposterior (AP) direction. In 

the case of Halo, the accelerating force was much smaller and the right foot together with the left foot 

were breaking during the middle of the stride. It was done due to forward leaning of the upper body. 

Peaks of the GRF in the crutches during actuator-assisted walking were almost twice smaller, but 

breaking and accelerating GRF impulses of limbs were larger due to active torque in the hip joint.  

The shift of body from left to the right tilt caused increase of the GRF of RF at the beginning of stride 

with Halo which can be seen in Figure 8.6. Left crutch then boosted this movement so the GRF vector 

of RF turned to positive direction and LF could leave the ground. During midswing, the right crutch 

impulse acted in opposite direction in order to return the body back to the center position. During 

heal-strike of LF, load on RF was continuously declining due to intensification of force in RC. These 

results were caused by excessive waddling, which was compensated by the crutches.  

It can be noticed that very different trend is found in the GRF of RC in the case of @halo. There was 

smaller impulse needed to balance the body in mediolateral (ML) direction. In the single leg support 

period, the GRF trend of the feet was more stabilized and less oscillating with @halo. It means the 

stability in the stance phase was better with @halo.  

Vertical GRF with @halo had smooth transition between right and left foot in the middle of stride, 

see Figure 8.7. There was the uniform decrease of the reaction force from the left crutch and gradual 

increase in the right crutch, while no significant increase was recorded during period from LF heal strike 

to RF toe-off. It represents absence of need using the crutch impulse to alter the momentum of the 

body for its forward progression. This is done by energy coming from the actuator. The drawback is, 

however, bigger heel strike forces which is corresponding to results in anteroposterior direction. 

Walking with Halo is clearly more demanding, due to insufficient load transfer from the right to left 

foot. In order to shift body ahead big increase of the GRF of the right crutch just before the middle of 

the stride was required as can be seen in Figure 8.7.  
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Figure 8.5 Anteroposterior GRF 

 

Figure 8.6 Mediolateral GRF 

 

Figure 8.7 Vertical GRF 
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Inertia Coriolis Gravity 
Measured 
forces 

There is a significant difference between GRF S.D. from crutches of trials with Halo and @halo, 

(p<0.05). These values together with total impulses  per stride are presented in the three directions in 

Table 8.2. 

Table 8.2 Forces and total impulses in crutches 

Device 
configuration 

Mean F 
[%BW] 

S.D.  
[%BW] 

max F 
[%BW] 

Impulse 
[%BWs] 

total 
impulse 
per 
stride 

 

 @halo 
left -2 0.3 -2.91 3.32 

5.97 

A
P

 d
ir

ec
ti

o
n

 

right -1.81 0.31 -3.89 2.65 

Halo 
left -2.34 0.96 -4.98 3.3 

6.54 
right -2.39 0.93 -6.98 3.24 

 @halo 
left 3.7 0.5 5.05 6.2 

11.38 

M
L 

d
ir

ec
ti

o
n

 

right 3.9 0.58 6.5 -5.18 

Halo 
left 4.01 0.67 8.84 5.83 

12.5 
right 5.01 1.2 9.33 -6.67 

 @halo 
left 17.6 2.1 26.3 29.24 

49.56 

V
er

ti
ca

l d
ir

ec
t.

 

right 15.21 1.96 24.7 20.32 

Halo 
left 32.99 4.95 52.4 44.33 

80.58 
right 29 7.25 43.2 36.25 

 

8.6 Moments and forces in glenohumeral joint  

HALO walking pattern, and walking patterns of any passive and active orthoses or exoskeletons 

which require crutch assistance is causing excessive loads in upper extremities, and especially in the 

glenohumeral joint. Patients are often complaining about overloading shoulders during rehabilitation. 

It is essential, to investigate this conditions in order to be able to reduce the forces and moments 

applied to the upper extremities musculature and thus decrease the incidence of some diseases as 

well as shoulder pain.    

8.6.1 Inverse dynamics model of the human upper extremity 

The right-hand side of the equation of motion in a form normally used for robotics (8.3) represents 

known variables. Moments of inertia of all segments as well its Coriolis and gravitational forces are 

known and GRF are measured using force plates as described in the previous subchapter.       

  𝐽𝑜𝑖𝑛𝑡  𝑡𝑜𝑟𝑞𝑢𝑒𝑠      [

𝜏1

…
𝜏𝑥

] = 𝑀(𝑞)𝑞̈ + 𝐶(𝑞, 𝑞̇)𝑞̇ + 𝐺(𝑞) + 𝐵(𝑞) [
𝐺𝑅𝐹1

…
𝐺𝑅𝐹𝑥

] (8.3) 
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 An inverse dynamic model of the upper extremity with crutch was formulated after measuring 

GRFs from the crutches, (Requejo et al. 2005) and (Slavens et al. 2010). Using this model we can 

determine load in glenohumeral joint of upper extremities during crutch-assisted gait with active 

setting @halo and passive setting Halo. After calculation of the moments and forces, comparison and 

evaluation of actuated and passive walking impact on shoulders can be done. The result will indicate 

the suitability of long-term usage of devices.      

 

Figure 8.8 Upper extremity with crutch - inverse dynamic model 

Loads in glenohumeral joint Fs and Ms can be calculated using following equations: 

  𝐹⃗𝑠 = 𝐹⃗𝐺𝑅 + ∑𝑚𝑖(𝑔⃗ − 𝑎⃗𝑖)

4

𝑖=1

 (8.4) 

 
𝑀⃗⃑⃑𝑠 = 𝑟𝑆𝐺𝑅  × 𝐹⃗𝐺𝑅 + ∑𝑟𝑖 × 𝑚𝑖(𝑔⃗ − 𝑎⃗𝑖)

4

𝑖=1

− ∑𝑀⃗⃑⃑𝐼𝑖

4

𝑖=1

 

 

(8.5) 

Where the ground reaction force was obtained from measurement, mi is ith segment mass, ai and g 

are inertial and gravitational accelerations, 𝒓⃗⃑𝑺𝑮𝑹 is position vector from the glenohumeral joint to the 

marker on the tip of the crutch (black spot) and 𝒓⃗⃑𝒊 is position vector from the glenohumeral joint to 

the ith segment center of gravity and finally  𝑴⃗⃑⃑⃑𝑰𝒊 is inertial moment due to ith segment, see Figure 8.8.    

This equations were defined as functions in Python and loads in the left and right shoulder were 

calculated. During calculations, there was found out, movement of the shoulder with the crutch during 

loading phase is such slow, that can be considered as quasi-static. Resultant moments and forces 

calculated with inertial moments were almost same as those where these moments were omitted.   

Force results are in % of body weight (%BW) and moments are in % of the body weight times body 

height (%BW*BH).    
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8.6.2 Results and Evaluation of forces in Glenohumeral joint  

As it can be seen on Figure 8.9, forces in the glenohumeral joint are not very different from GRFs 

presented earlier in this chapter.   

 

 

Figure 8.9 Joint reaction forces in anteroposterior, mediolateral and vertical direction in left 
shoulder (LS) joint and right shoulder (RS) joint during walking with Halo and @halo device 

Anteroposterior forces in the 

glenohumeral joint are larger 

with the steeper increase and 

sharper peaks during walking 

with Halo. Left shoulder 

undergoes nearly twice 

smaller forces in this direction 

while wearing @halo powered 

exoskeleton. About 1/3 larger 

excessive forces acting on 

right shoulder while walking 

with Halo. 

A similar situation is in 

mediolateral direction. Force 

peaks are more than 1/3 

larger and sharper, with 

uncomfortable steep, fast 

increase.     

As it was presented 

previously, the reaction forces 

in the vertical direction will 

the most significantly 

influence long-term use 

comfort and safety. As can be 

noticed Left shoulder is 

overloaded by nearly twice 

larger force peak while 

walking with Halo, this may 

have negative effect on 

trapezius muscles.         
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8.6.3 Results and Evaluation of moments in Glenohumeral joint  

In this subchapter will be briefly presented how the moments in the glenohumeral joints affected 

upper limbs musculature differently with the actuated and with the passive device, see Figure 8.10.  

 

 

 

Figure 8.10 Joint reaction moments about anteroposterior, horizontal a vertical axis in left  
shoulder (LS) joint and right shoulder (RS) joint during walking with Halo and @halo device 

Abduction moment in the left 

shoulder joint is larger with 

the steeper increase and 

sharper peak, this negatively 

influences the functionality 

of deltoid muscles and may 

cause their continuous tiring 

during every-day use.      

The smoother trend can be 

seen while wearing @halo. 

Extension moment acts in 

shoulder joint while 

supporting the body in a 

forward progression. Nearly 

twice larger extension 

moments were calculated 

while walking without the 

actuator. This fact may cause 

pain or overloading of 

latissimus dorsi muscles 

during everyday use.   

The excessive lateral rotation 

was calculated in right 

glenohumeral joint during 

terminal swing. Rotation 

occurs due to excessive 

waddling which is larger in 

case of walking with the Halo 

orthosis. As well here is 

obvious smoother trend and 

smaller peak while using 

active @halo exoskeleton. 
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8.7 Glenohumeral joint power 

Glenohumeral joint power represents the rate of work at which shoulder muscles remove or add 

energy to the system. If resultant power is positive, then muscles are adding energy to the system, 

muscles are contracting, and negative power means removing energy, (Robertson et al. 2004). By 

calculating power in the shoulder, we can compare the energy consumption of the upper extremities 

while walking with powered or with the passive orthosis.     

8.7.1 Calculation of Glenohumeral Joint Power  

Shoulder joint power is given by equation:    

 𝑃⃗⃑𝑆 = 𝑃𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑙 + 𝑃𝑑𝑖𝑠𝑡𝑎𝑙 (8.6) 

Where 𝑃𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑙 is the power of the proximal segment of the joint at the shoulder joint, which is 

trunk segment and 𝑃𝑑𝑖𝑠𝑡𝑎𝑙  is the power of the distal segment of the joint at the shoulder joint, which 

is upper arm segment. Now, after application of Newton’s third law of equal and opposite forces and 

moments on both sides, we got following equation: 

 𝑃⃗⃑𝑆 = (𝐹⃗𝑆 ∙ 𝑣⃗𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑙) + (𝜏𝑆 ∙ 𝜔⃗⃑⃑𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑙) + (−𝐹⃗𝑆 ∙ 𝑣⃗𝑑𝑖𝑠𝑡𝑎𝑙 − 𝜏𝑆 ∙ 𝜔⃗⃑⃑𝑑𝑖𝑠𝑡𝑎𝑙) (8.7) 

If we simplify this equation by assumption there is no shoulder dislocation and thus  𝑣⃗𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑙 = 

𝑣⃗𝑑𝑖𝑠𝑡𝑎𝑙  (for our purpose of comparison between two similar walking patterns this assumption is 

considered to be sufficient), then we can further simplify to 

 𝑃⃗⃑𝑆 = (𝜏𝑆 ∙ 𝜔⃗⃑⃑𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑙) + (−𝜏𝑆 ∙ 𝜔⃗⃑⃑𝑑𝑖𝑠𝑡𝑎𝑙)    =>   𝑃⃗⃑𝑆 = 𝜏𝑆 ∙ (𝜔⃗⃑⃑𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑙 − 𝜔⃗⃑⃑𝑑𝑖𝑠𝑡𝑎𝑙) (8.8) 

This equation can be further simplified to final simple equation:  

 𝑃⃗⃑𝑆 = 𝜏𝑆 ∙ 𝜔⃗⃑⃑𝑠 (8.9) 

Where 𝜔⃗⃑⃑𝑠 is angular velocity in glenohumeral joint and 𝜏𝑆 = 𝑀⃗⃑⃑𝑠 (moment in shoulder calculated in 

previous subchapter). 

Data of angle values in each time frame were obtained from all trials from software Cortex, angular 

velocity was calculated in python using simple discrete difference:       

 𝜔⃗⃑⃑𝑠 =
∆𝜃𝑠

∆𝑡
 (8.10) 

 

Python – SciPy library  

numpy.diff (a, n=1, axis=-1) 
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8.7.2 Results and Evaluation of Glenohumeral joint Power 

Work done by muscles and power needed to give an impulse, alter momentum and push the body 

forward to another step was calculated. Muscles activation and distribution of power in glenohumeral 

joint is presented and discussed in Figure 8.11.    

 

 

 

Figure 8.11 Joint Power in  anteroposterior, horizontal a vertical  axis in left  shoulder (LS) joint and 
right shoulder (RS) joint during walking with Halo and @halo device  

There were small fluctuations 

measured in the 

anteroposterior direction and 

overall no big difference in 

power consumption generated 

in shoulders while wearing both 

Halo and @halo.    

  

Higher joint power values in 

mediolateral direction are 

associated with work of deltoid 

muscles. Excessive waddling is 

larger for Halo walking, thus 

bigger power is needed to 

stabilize body.  

Minor energy consumption was 

demonstrated while walking 

with the powered @halo 

device.  

Energy consumption and power 

calculated in vertical direction is 

mainly associated with the work 

of trapezius muscles due to 

sudden elevation and following 

retraction of shoulders while 

leaning on the crutches during 

the swing phase. Engaging of 

these muscles is more 

aggressive while walking 

passively without actuator and 

costs user more energy.        
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9 Conclusions 
Two new lower limbs exoskeletons for paraplegics were presented in this study, the main aim was 

to find the solution which is affordable, lightweight, stable, with low energy consumption and easy to 

don/doff directly from a wheelchair. These attributes were entirely matching with the @halo. This was 

the reason, why @halo device was further tested with able-bodied subjects and its performance was 

evaluated in the details. Brief conclusion about ORTHOLEG 2.0 and more detailed conclusion about 

@halo device is discussed in this chapter.    

9.1 Exoskeleton ORTHOLEG 2.0  

The main objective of redesign of ORTHOLEG was the development of lighter lower limbs 

exoskeleton which construction will decrease battery consumption and increase users comfort during 

walking. The weight of the whole device was decreased by 1/3 from original prototype to 11,5 kg while 

the weight of user allowed to wear Ortholeg 2.0 was increased by 10 kg to 70 kg. Gait cycle is now 

smoother and more natural thanks to new shoe inserts made from strong but flexible prepreg carbon. 

Energy transfer from exoskeleton to users legs and body was improved thanks to better fixtures made 

from prepreg carbon and Kydex polymer. Wires from actuators and sensory subsystem (for future 

implementation) connected to control electronics in the backpack can be easily hidden thanks to the 

construction of main frame made from pipes. The modular knee concept was implemented in order to 

test differences in power consumption and user’s comfort during walking with passive or actuated 

knee. After manufacturing of all components, experiments on both settings and power consumption 

are planned as well as testing of gait cycle algorithms in order to determine the impact of design on 

walking patterns. 

9.2 Exoskeleton @halo  

The novel powered exoskeleton @halo was invented based on the passive HALO orthosis walking 

pattern principle. The New @halo exoskeleton has just one powered DOF and its structure is modular. 

The user can simply remove actuator unit and walk passively without motor assistance, the passive 

setting without actuator was for better differentiating called Halo. In order to examine the 

performance of active @halo, there were preliminary experiments with able-bodied subject conducted 

and walking patterns of Halo and @halo were compared and evaluated.     

Walking with Halo was faster than with @halo but step length was slightly longer with active 

configuration. Standard deviations, however, were remarkably higher while walking without the 

actuator. This is due to partially predetermined walking patterns of @halo, influenced by constant 

actuated periods. These results can be summarized as walking with the actuator is expected to be 

more stable for longer distances and probability of fall is expected to be lower, (SHINODA et al. 2008).      

Ranges of vertical excursion of CoG during stride are compared and summarized in Table 9.1 with 

overall significance (p<0.0001). There is 40% decrease of excessive up-down movement in case of 

@halo. If we simplify energy consumption assessment we can calculate decrease of the power 

consumption per moving distance due to smaller up-down movement from the vertical excursion, 

Equation (9.1), (Lee et al. 2015). 
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 𝑃 =
𝑚 ∙ 𝑔 ∙ 𝑧

𝑇
 [𝑁𝑚/𝑠] (9.1) 

Where 𝑧 is the vertical excursion,  𝑚 ∙ 𝑔 is weight and T is the time period of the cycle.  Average 

weight was constant, thus can be excluded from equation and calculation can be for comparison 

reasons further simplified to the vertical excursion in %BH per second.  The results show that walking 

with actuator required 51.65% less energy spent by the user, see Table 9.1. The range of waddling 

during walking with @halo was decreased by 40% in comparison with Halo configuration. Waddling is 

still about twice larger than during normal slow walking (Orendurff et al. 2004), this is however not 

possible to diminish due to the construction of medial-hip-joint orthosis with locked knees. 

Table 9.1 Ranges of COG displacement and energy consumption   

Device Waddling 
(%BH) 

vertical 
excursion 
(%BH) 

%BH/s 

halo 15.32 2.29 0.848 

@halo 9.16 1.36 0.438 

comparison -40.21% -40.61% -51.65% 

 

There was measured 38.5% bigger impulse in crutches in the vertical direction while walking 

without the motor. This difference was greatly compensated by upper limbs excessive energy 

expenditure. This was proven by calculating and evaluating moments and joint power in the 

glenohumeral joint. Abduction moment in the left shoulder joint may negatively influences 

functionality of deltoid muscles and may cause their continuous tiring during every-day use, the prove 

is calculated higher joint power values in mediolateral direction, this can be significantly eliminated by 

switching to powered @halo.  Nearly twice larger extension moments were calculated while walking 

without the actuator. This fact may cause pain or overloading of latissimus dorsi muscles during 

everyday use. After calculating power in vertical direction there was found out engaging of trapezius 

muscles is more aggressive while walking passively without actuator and costs user more energy. After 

calculation of the power flow in the glenohumeral joint it can be summarized, all main muscle groups 

are engaged more aggressively and indicate more energy consumption. Walking with @halo means 

significant reduction of the forces applied on the upper extremities musculature and thus decrease the 

incidence of some diseases as well as shoulder pain. 

9.3 Contribution for scientific discipline 

New designs of two exoskeletons were discussed and exoskeleton @halo has been chosen. 

Mechanical design of @halo, electronic hardware and software were newly created in order to be able 

to conduct evaluation of the first functional prototype. The core of this evaluation consists of 

biomechanical methods described in details step by step in this work. Over 500 experimental trials 

were conducted in the laboratory setting. A specified data collection using motion analysis system and 

their further processing was demonstrated. Data processing was done in the programming language 

Python after pre-processing in software cortex, new code was written for this purpose. Different kinds 

of scientific approaches were considered. As specifically, all processes to obtain the ensemble averages 

were described and applied to investigate the displacement of the COG of the body and GRF applied 

on the crutches. The inverse dynamics approach was chosen and explained to calculate and investigate 

the loads applied on the upper extremities during preliminary experiments.       
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To conclude, this work contains complete and unique methodology of inventing new product from 

the field of assistive and medical robotics and validating its functionality, efficiency and safety for the 

end-users.            

9.4 Contribution for practice 

The main two advantages and features of @halo are affordability and stability, and the most 

important factor for the user of this device is the intensity of usage.  

The first two attributes are in technical contradiction because to make exoskeleton for lower limbs 

stable requires more control advancements and usually more degrees of freedom and thus more 

expensive components. The new device was designed for people with paraplegia. As it was discussed 

in the introduction of this chapter the life of the people with some form of paraplegia or tetraplegia 

changes rapidly, school enrolment and employment rate drop significantly with a global 

unemployment rate of more than 60% and substantial individual and societal costs emerge. From this 

statistical report done by World Health Organisation, it’s obvious, that the key factor is the price of the 

device. The second key element is stability. Fear of falling due to low stability was reported as another 

factor of giving up regular independent walking as discussed in the introduction chapter. 

To conclude, @halo is an economical solution due to maximal reduction of powered DOF and 

control complexity and due to unique construction is at the same time performing well in the terms of 

stable walking patterns. This makes @halo good candidate for practical everyday home use and thus 

increases the intensity of actually walking and being in the upright posture, which is so important for 

the better overall health of people with paraplegia.  

9.5 Recommendation for further research 

There is not possible to consider this system plugged in the stationary external controller as it is 

now. Compact lightweight embedded control unit with the battery pack as a part of portable 

exoskeleton needs to designed and programed as the first step of further development.  

The crucial is testing of the device with actual aiming group. Walking patterns of the able-bodied 

subjects wearing @halo exoskeleton were deeply examined during the preliminary experiments. Even 

though subjects were trained by professional staff to simulate walking patterns accordingly big 

difference is expected in use by actual people with paraplegia.  

The continuity of gait cycle with @halo was affected by the short time delay caused by pressing of 

the manual switch button in order to activate the motor for the next step, disturbance is evident from 

Figure 8.4. In order to investigate smoothness of the walking, the trajectories of CoG of the body 

without time dependency in sagittal and horizontal planes during one gait cycle using @halo 

exoskeleton were plotted and trajectory graphs show smooth history without disturbances, see Figure 

9.1. In order to eliminate this delay pressure sensors were sealed in soles of the @halo device, these 

sensors were not used in preliminary experiments. Fully automated walking without the necessity of 

activating motor by the button is expected while these sensors will be operational. This new 

functionality will improve smoothness and continuity of walking pattern, this, however, needs to be 

further tested.  
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Figure 9.1 Trajectories of CoG in horizontal plane and sagittal plane  

 

The ground reaction force of foot during the heal strike acts partially against velocity vector v of the 

total body CoG, see Figure 9.2. This causes dissipative negative work, which has to be compensated 

and extra effort needs to be done to continue in forward movement (Kuo and Donelan 2010). Bigger 

dissipation of energy was noticed during evaluation of GRF in case of active device @halo. This 

dissipation is caused by inertial forces acting on the body during deceleration of the actuator, this 

effect helps the user easily overcome redirection phase (from one step to another) with minimum 

effort, but on the other hand, heel impact is less comfortable. To diminish this effect softer cushion 

insole similar to running shoes can be implemented or completely new design of shoe can be 

considered (Suzuki et al. 2005).  Another approach is the change of trend of reference angle trajectory 

of the actuator which was experimentally tested, comparison and outputs from this tests should be 

extended and further examined. 

 

Figure 9.2 Step-to-step transition and redirection of velocity vector  
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10 Závěry 
Dva nové mnou navržené exoskelety aplikovatelné na dolní končetiny a určené pro lidi s paraplegií 

byly představeny v této práci. Hlavním cílem bylo nalezení ekonomického, odlehčeného a stabilního 

řešení se sníženou uživatelskou energetickou náročností. Další prioritou je jednoduchá manipulace, 

obsluha a jednoduché nasazení zařízení na dolní končetiny přímo z invalidního vozíku. Tyto atributy 

byly v naprosté shodě s benefity @halo a proto byl tento exoskelet podroben detailnímu testování na 

zdravých subjektech a správnost funkce byla vyhodnocována. V této kapitole je popsán krátký závěr 

z vývoje exoskeletu ORTHOLEG 2.0 a detailní zhodnocení systému @halo.       

 Exoskelet ORTHOLEG 2.0 

Hlavním cílem redesignu exoskeletu ORTHOLEG bylo vyvinutí odlehčené verze, jejichž konstrukce 

sníží spotřebu energie a zvýší pohodlí uživatelů při chůzi. Hmotnost celého zařízení byla snížena o 1/3 

na 11,5 kg, zatímco povolená váha uživatele byla zvýšena o 10 kg na 70 kg. Chůze je nyní plynulejší a 

přirozenější díky novým karbonových vložkám do bot vyrobeným ze silného, ale pružného prepreg 

kompozitu z uhlíkových vláken. Přenos energie z ortézy na dolní končetiny a tělo uživatelů byl vylepšen 

díky novým fixačním prvkům taktéž z prepreg kompozitu z uhlíkových vláken a polymeru Kydex. 

Kabeláž z pohonů a senzoriky lze jednoduše skrýt do rámu exoskeletu, který je navrhnut z trubkových 

profilů. Koncepce modulárního kolenního kloubu byla navržena za účelem testování rozdílů ve 

spotřebě energie a pohodlí uživatele při chůzi s pasivním nebo poháněným kolenním kloubem. 

Experimenty s uživateli jsou prioritním dalším krokem, bude se testovat chůze s pasivním, 

zamknutým a poháněným kolenním kloubem přičemž uživatelská energetická náročnost bude měřena 

a vyhodnocována stejně jako testování řídících algoritmů chůze. 

 Exoskelet @halo 

Nový aktivní exoskelet @halo byl vynalezen na základě principu pasivní ortézy HALO. Nový 

exoskelet @halo má pouze jeden poháněný stupeň volnosti (DOF) a jeho konstrukce je modulární. 

Uživatel může jednoduše odebrat pohonnou jednotku a chodit pasivně bez pomoci pohonu, pasivní 

nastavení bez pohonu bylo pro lepší odlišení nazváno Halo. Předběžné experimenty se zdravými 

subjekty byly provedeny za účelem vyhodnocení funkčnosti aktivního systému @halo a za účelem 

porovnání a vyhodnocení chůze mezi pasivní verzí Halo a aktivním exoskeletem @halo. 

Chůze s Halo byla rychlejší než s @halo, ale délka kroku byla s aktivní verzí mírně delší. Standardní 

odchylky byly však výrazně vyšší při chůzi bez pohonu. To je částečně způsobeno předem stanoveným 

cyklem řídícího programu aktivního exoskeletu, ovlivněným konstantními periodami aktivace pohonu. 

Tyto výsledky lze vyhodnotit následně: Chůze s pohonem je stabilnější pro delší vzdálenosti a 

pravděpodobnost pádu je výrazně snížena, (SHINODA et al. 2008). 

Rozsahy vertikální výchylky CoG během krokového cyklu jsou porovnávány a shrnuty v tabulce 9.1 

s celkovou významností (p <0,0001). Nadměrný pohyb nahoru-dolů byl redukován v případe chůze s 

@halo o 40%. Pokud zjednodušíme posouzení spotřeby energie uživatelem, můžeme pak vypočítat 

pokles spotřeby energie na ušlou vzdálenost v důsledku menších pohybů ve vertikálním směru podle 

rovnice (9.1), (Lee et al. 2015). 

 𝑃 =
𝑚 ∙ 𝑔 ∙ 𝑧

𝑇
 [𝑁𝑚/𝑠] (9.2) 
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Kde z je vertikální odchylka, m ∙ g je tíha a T je perioda cyklu chůze. Hodnota průměrné tíhy byla 

konstantní, může být vyloučena z rovnice a výpočet může být z důvodů srovnání dále zjednodušen na 

výsledek ve vertikální odchylce v jednotkách % BH za sekundu. Výsledky ukazují, že chůze s pohonem 

vyžaduje 51,65% méně energie spotřebované uživatelem, viz Tabulka 9.1. Rozsah kolébání se při chůzi 

s pohonem ze strany na stranu byl snížen o 40% ve srovnání s konfigurací Halo. Kolébavost chůze je 

stále asi dvakrát větší než během normální pomalé chůze (Orendurff et al. 2004), nicméně toto nelze 

eliminovat z důvodu konstrukčního řešení ortézy se zamčenými kolenními klouby.  

 Během chůze bez motoru byl naměřen o 38,5% větší silový impuls v berlích ve svislém směru než 

v případě chůze s pohonem. Tento rozdíl byl výrazně kompenzován nadměrným zatížením horních 

končetin. To bylo dokázáno výpočtem a vyhodnocením krouticích momentů a sil v glenohumerálním 

kloubu. Zvýšený moment ve směru abdukce v ramenním kloubu může negativně ovlivnit funkčnost 

deltových svalu a může způsobit jejich pravidelnou únavu při každodenním zatěžování, důkazem je 

vypočtená hodnota výkonu v kloubu v mediolaterálním směru, což může být výrazně eliminováno při 

chůzi s aktivním systémem @halo.  Téměř dvakrát větší extenzní momenty v rameni byly vypočítány 

při chůzi bez pohonu. Tato skutečnost může během každodenního užívání způsobit bolest nebo 

přetížení svalů latissimus dorsi. 

 Po výpočtu síly ve vertikálním směru bylo zjištěno, že dochází k agresivnějšímu zapojení 

trapézových svalů při pasivní chůzi bez pohonu, tato svalová skupina tedy spotřebovává více energie. 

Po výpočtu výkonu v glenohumerálním kloubu, můžeme souhrnně říci, že všechny hlavní svalové 

skupiny jsou agresivněji zapojeny a indikují větší spotřebu energie. Chůze s exoskeletem @halo 

znamená výraznou redukci silového působení na svaly horních končetin a tím snížení 

pravděpodobnosti výskytu některých onemocnění či bolesti a únavy ramen. 

10.1 Přínos pro vědní obor 

Byly popsány mnou navržené konstrukční řešení dvou exoskeletů pro paraplegiky a zařízení @halo 

bylo vybráno k podrobnějšímu rozboru. Bylo zhotoveno kompletní konstrukční řešení, návrh 

elektroniky a softwaru za účelem testování a vyhodnocení prvního funkčního prototypu. Jádrem 

tohoto vyhodnocení jsou biomechanické metody popsané podrobně krok za krokem v této práci, jejich 

souhrnné použití reprezentuje unikátní předlohu pro stanovení vhodnosti a bezpečnosti použití 

daného zařízení cílovou skupinou. V laboratoři bylo provedeno více než 500 experimentálních zkoušek. 

Byly popsány detailní postupy sběru dat za použití systému analýzy pohybu a jejich dalšího zpracování. 

V rámci experimentů bylo pro detailnější vyšetření horních a dolních končetin navrženo unikátní 

modifikované rozložení markerů vycházející z rozložení podle Helen-Hayes. Data byla první předběžně 

zpracována v programu Cortex a poté vyhodnocena za pomocí programovacího jazyku Python, pro 

tento účel byl vytvořen nový kód.  

Konkrétně byl popsán mnou navržený specifický postup výpočtu takzvaných “ensemble averages“, 

které byly použity k vyšetření pohybu těžiště těla a k analýze reakčních sil působících při chůzi na berle. 

Pro vyšetření zatížení horních končetin během předběžných experimentů byl popsán a aplikován 

model inverzní dynamiky. 

Tato práce obsahuje kompletní a unikátní metodiku návrhu nového produktu z oblasti asistenčních 

zdravotnických technologií a ověření jeho funkčnosti, účinnosti a bezpečnosti pro koncové uživatele. 
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10.2 Přínos pro praxi 

Hlavní dvě výhody systému @halo jsou cenová dostupnost a stabilita. Nejdůležitějším faktorem pro 

uživatele tohoto zařízení je intenzita používání. První dva atributy jsou v technickém rozporu, protože 

pro návrh stabilního exoskeletu je zapotřebí pokročilé řízení a obvykle více stupňů volnosti a tím i 

dražších komponenty. Nové zařízení bylo navrženo pro lidi s paraplegií. Jak bylo uvedeno v úvodu této 

práce, život lidí s nějakou formou paraplegie nebo tetraplegie se po nehodě rychle mění, školní 

docházka a míra zaměstnanosti výrazně klesají, celková míra nezaměstnanosti přesahuje 60%, a 

objevují se značně navýšené individuální a společenské náklady. Z této statistické zprávy provedené 

světovou zdravotnickou organizací (WHO) je zřejmé, že klíčovým faktorem zůstává cena zařízení. 

Druhým klíčovým prvkem je stabilita. Strach z pádu kvůli nízké stabilitě je většinou důvod k tomu vzdát 

to a místo roboticky asistované chůze se vrátit zpátky na invalidní vozík. 

@halo je ekonomicky dostupné řešení díky maximální redukci poháněných stupňů volnosti a 

zjednodušenému řídicímu systému. Unikátní konstrukční řešení navíc zabezpečuje poměrně vysokou 

stabilitu chůze. Díky těmto výsledkům může být @halo vhodný kandidát pro praktické každodenní 

používáni z pohodlí domova, čímž také dojde ke zvýšení intenzity chůze a života ve vzpřímené poloze. 

Následně pak může dojít k celkovému zlepšení zdraví lidí s paraplegií.  

 

10.3 Doporučení pro další výzkum 

Současné řešení řídicího systému bylo navrženo z ekonomických důvodů k pouhému ověření 

funkčnosti zařízení. Takto navřená stacionární řídící jednotka je neslučitelná s praktickým používáním 

konečného produktu. Proto jako první krok dalšího vývoje je návrh a naprogramování kompaktní 

odlehčené vestavěné řídicí jednotky s baterií jako součásti přenosného exoskeletu. 

Zásadní a neméně důležité je testování zařízení se skutečnou cílovou skupinou. Během předběžných 

experimentů došlo k detailní analýze chůze s exoskeletem @halo pouze se zdravými subjekty. Pro 

patřičnou simulaci specifické chůze byly subjekty proškoleny profesionálním personálem, i přesto lze 

však očekávat vysokou odlišnost chůze v porovnání s chůzí paraplegiků.     

Kontinuita cyklu chůze se zařízením @halo byla ovlivněna krátkým časovým zpožděním 

způsobeným nepatrnou prodlevou mezi stisknutími ručně ovládaného tlačítka, pro aktivaci motoru k 

dalšímu kroku, toto narušení kontinuity je patrné z analýzy pohybu těžiště těla diskutované v kapitole 

8. Za účelem zkoumání kontinuity chůze byly trajektorie těžiště těla zavedeny do grafů bez závislosti 

na časech. Byly vytvořeny grafy jednoho cyklu chůze s použitím exoskeletu @halo v sagitální a 

horizontální rovině. Z těchto grafů je patrný hladký průběh bez narušení kontinuity.   

Pro eliminaci těchto časových prodlev byly navrženy tlakové senzory (FSR) implementované do 

podrážek exoskeletu @halo. Během předběžných experimentů tyto senzory však nebyly zapojeny a 

testovány. Po zapojení senzorů do systému lze očekávat plně automatickou chůzi, bez nutnosti 

manuální aktivace pohonu tlačítkem, tato nová automatická funkce pak zlepší plynulost chůze, toto je 

však nutné podložit reálnými experimenty. Reakční síly (GRF) chodidla během počátečního kontaktu 

se zemí částečně působí proti vektoru rychlosti těžiště těla, viz obrázek 9.2. To způsobuje disipativní 

negativní práci, která pak musí být kompenzována a je třeba vynaložit další úsilí na pokračování v 

pohybu vpřed (Kuo and Donelan 2010).  
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Při posuzování reakčních sil v případě aktivního přístroje @halo byla zjištěna větší zmařená energie 

během počátečního kontaktu chodidla se zemí. Tato ztráta je způsobena inerciálními silami působícími 

na tělo při zpomalování pohonu, což pomáhá uživateli snadno překonat fázi přesměrování (z jednoho 

kroku na druhý) s minimálním úsilím, ale na druhou stranu je náraz paty při počátečním kontaktu méně 

komfortní. Pro snížení tohoto účinku lze použít měkkou odpruženou podrážku podobnou běžeckým 

botám nebo lze přistoupit k zcela novému návrhu ortopedické boty (Suzuki et al. 2005). Další možností 

jak ovlivnit snížení reakčních sil je změna trendu referenční úhlové trajektorie pohonu, různé úhly 

rozběhu a zpomalení pohonné jednotky byly experimentálně testovány, porovnání a výstupy z těchto 

zkoušek by měly být rozšířeny a dále zkoumány.  
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