2,472 research outputs found

    Satellite Monitoring of Railways using Interferometric Synthetic Aperture Radar (InSAR)

    Get PDF
    There is over 15,600 km of track in the Swedish railroad network. This network is vital for the transportation of people and goods across the country. It is important that this network is monitored and maintained to ensure good function and safety. A tool for monitoring and measuring ground deformation over a large area remotely with high frequency and accuracy was developed in recent decades. This tool is known as Interferometric Synthetic Aperture Radar (InSAR), and is used by researchers, geo-technicians, and engineers. The purpose of this study has been to evaluate the use and feasibility of the InSAR technique for track condition monitoring and compare it to conventional track condition monitoring techniques. Malmbanan, which is primarily used to transport iron-ore from mines in Sweden to the ports of Luleå, Sweden and Narvik, Norway, is used as a case study for this project; specifically, the section between Kiruna and Riksgränsen. Coordinate matching of measurements from the provided Persistent Scatterer Interferometry (PSI) InSAR data and Optram data from survey trains were performed. Then measured changes over different time spans within the two systems were overlapped and classified with different thresholds to see if there is correlation between the two systems. An extensive literature review was also conducted in order to gain an understanding of InSAR technologies and uses.The literature review showed that there is a large potential and a quickly growing number of applications of InSAR to monitor railways and other types of infrastructure, and that the tools and algorithms for this are being improved. The case study, on the other hand, shows that it can be difficult to directly compare measurement series from different tools, each working on different resolutions in terms of both time and space. InSAR is thus not about to replace techniques such as those behind Optram (using measurement trains). Instead, the approaches offer complementary perspectives, each highlighting different types of issues. We find that InSAR offers a good way to identify locations with settlements or other types of ground motions. Especially transition zones between settlements and more stable ground can be challenging from a maintenance point of view and can clearly be identified and monitored using InSAR. With the rollout of national InSAR-data, and the large increase in data accessibility, we see a considerable potential for future studies that apply the technique to the railway area

    Advanced Sensors for Real-Time Monitoring Applications

    Get PDF
    It is impossible to imagine the modern world without sensors, or without real-time information about almost everything—from local temperature to material composition and health parameters. We sense, measure, and process data and act accordingly all the time. In fact, real-time monitoring and information is key to a successful business, an assistant in life-saving decisions that healthcare professionals make, and a tool in research that could revolutionize the future. To ensure that sensors address the rapidly developing needs of various areas of our lives and activities, scientists, researchers, manufacturers, and end-users have established an efficient dialogue so that the newest technological achievements in all aspects of real-time sensing can be implemented for the benefit of the wider community. This book documents some of the results of such a dialogue and reports on advances in sensors and sensor systems for existing and emerging real-time monitoring applications

    Integration of InSAR and GPR techniques for monitoring transition areas in railway bridges

    Get PDF
    This paper reports the integration of the Ground Penetrating Radar (GPR) and the Interferometric Synthetic Aperture Radar (InSAR) techniques for the monitoring of the rail-abutment transition area in railway bridges. To this purpose, an experimental campaign was conducted on a rail truss bridge located in Puglia, Southern Italy. On one hand, GPR was used to obtain structural details of the subsurface (thickness of the ballasted layer, position of the sleepers, presence of clay/humidity spots) and to identify potential construction-related issues. Parallel to this, InSAR analyses were mainly addressed to monitor subsidence at the rail-abutment transition area. Outcomes of this investigation outlined presence of subsidence at both the areas of transition and have proven the proposed integrated approach as viable to achieve a more comprehensive assessment of the structural integrity of railway bridges

    ANALYZING THE LIFE-CYCLE OF UNSTABLE SLOPES USING APPLIED REMOTE SENSING WITHIN AN ASSET MANAGEMENT FRAMEWORK

    Get PDF
    An asset management framework provides a methodology for monitoring and maintaining assets, which include anthropogenic infrastructure (e.g., dams, embankments, and retaining structures) and natural geological features (e.g., soil and rock slopes). It is imperative that these assets operate efficiently, effectively, safely, and at a high standard since many assets are located along transportation corridors (highways, railways, and waterways) and can cause severe damage if compromised. Assets built on or around regions prone to natural hazards are at an increased risk of deterioration and failure. The objective of this study is to utilize remote sensing techniques such as InSAR, LiDAR, and optical photogrammetry to identify assets, assess past and current conditions, and perform long-term monitoring in transportation corridors and urbanized areas prone to natural hazards. Provided are examples of remote sensing techniques successfully applied to various asset management procedures: the characterization of rock slopes (Chapter 2), identification of potentially hazardous slopes along a railroad corridor (Chapter 3), monitoring subsidence rates of buildings in San Pedro, California (Chapter 4), and mapping displacement rates on dams in India (Chapter 5) and California (Chapter 6). A demonstration of how InSAR can be used to map slow landslides (those with a displacement rate \u3c 16 mm/year and may be undetectable without sensitive instrumentation) and update the California Landslide Inventory on the Palos Verdes Peninsula is provided in Chapter 7. Long-term landslide monitoring using optical photogrammetry, GPS, and InSAR measurements is also used to map landslide activity at three orders of magnitude (meter to millimeter scales) in Chapter 8. Remote sensing has proven to be an effective tool at measuring ground deformation, which is an implicit indicator of how geotechnical asset condition changes (e.g., deteriorates) over time. Incorporating these techniques into a geotechnical asset management framework will provide greater spatial and temporal data for preventative approaches towards natural hazards

    An integrated investigative approach in health monitoring of masonry arch bridges using GPR and InSAR technologies

    Get PDF
    This paper provides an overview of the existing health monitoring and assessment methods for masonry arch bridges. In addition, a novel “integrated” holistic non-destructive approach for structural monitoring of bridges using ground-based non-destructive testing (NDT) and the satellite remote sensing techniques is presented. The first part of the paper reports a review of masonry arch bridges and the main issues in terms of structural behaviour and functionality as well as the main assessment methods to identify structural integrity-related issues. A new surveying methodology is proposed based on the integration of multi-source, multi-scale and multi-temporal information collected using the Ground Penetrating Radar (GPR – 200, 600 and 2000 MHz central-frequency antennas) and the Interferometric Synthetic Aperture Radar (InSAR – C-band SAR sensors) techniques. A case study (the “Old Bridge” at Aylesford, Kent, UK – a 13th century bridge) is presented demonstrating the effectiveness of the proposed method in the assessment of masonry arch bridges. GPR has proven essential at providing structural detailing in terms of subsurface geometry of the superstructure as well as the exact positioning of the structural ties. InSAR has identified measures of structural displacements caused by the seasonal variation of the water level in the river and the river bed soil expansions. The above process forms the basis for the “integrated” holistic structural health monitoring approach proposed by this paper

    Monitoring track transition zones in railways

    Get PDF
    ABSTRACT: This manuscript presents the first measurement program and data collection on the Dinatrans track transition solution after it was installed in a track section in the north of Spain (Galicia). The Dinatrans solution was created to address the limitations of several track transition solutions. This novel solution consists of two inner and outer rails from slab track to ballast track, pads with different stiffness over sleepers of variable lengths installed from ballast track to slab track, and a simple substructure formed by non-structural concrete poured over the natural ground. The main objective of this research was to assess the suitability and the initial performance of the Dinatrans track transition solution. The measured variables for these initial real-world tests were vertical accelerations on sleepers, shear stress on rails, vertical displacements on rails and vertical displacements on sleepers. All measurements of these variables were obtained in an in-situ program by installing vertical accelerometers and LVDTs on the track structure and extensometer gauges on the rails and sleepers. The methodology and the procedures followed are described. The Dinatrans initial solution was compared with the Standard solution used in Spain using these initial measurements. This field analysis provides an initial understanding of the performance of the new track transition. Further measurements will be required to check the track transition performance over the long term; however, no maintenance works have been necessary since construction (2016).This publication is part of the R&D Project of Reference: RTI2018-096809-JI00, granted by MCIN/AEI/10.13039/501100011033/and FEDER “Una manera de hacer Europa”. In addition, the authors would like to extend these acknowledgements to the Spanish Ministry of Economy and Competitiveness for their financial support to DINATRANS project of reference: IPT-2012-0774-370000 (INNPACTO call for grants 2012)

    Non-destructive assessment and health monitoring of railway infrastructures

    Get PDF
    A continuous increase of the demand for high-speed traffic, freight tonnage as well as of the train operating frequency is worsening the decay conditions of many railway infrastructures. This occurrence affects economy-related business as well as it contributes to raise maintenance cost. It is known that a failure of a railway track may result in tremendous economic losses, law liabilities, service interruptions and, eventually, fatalities. Parallel to this, requirements to maintain acceptable operational standards are very demanding. In addition to the above, a main issue nowadays in railway engineering is a general lack of funds to allow safety and comfort of the operations as well as a proper maintenance of the infrastructures. This is mostly the result of a traditional approach that, on average, tends to invest on high-priority cost, such as safety-related cost, compromising lower-priority cost (e.g., quality and comfort of the operations). A solution to correct this trend can be to move from a reactive to a proactive action planning approach in order to limit more effectively the likelihood of progressive track decay. Within this context, this paper reports a review on the use of traditional and non-destructive testing (NDT) methods for assessment and health monitoring of railway infrastructures. State-of-the-art research on a stand-alone use of NDT methods or a combination of them for specific maintenance tasks in railways is discussed

    Urban Deformation Monitoring using Persistent Scatterer Interferometry and SAR tomography

    Get PDF
    This book focuses on remote sensing for urban deformation monitoring. In particular, it highlights how deformation monitoring in urban areas can be carried out using Persistent Scatterer Interferometry (PSI) and Synthetic Aperture Radar (SAR) Tomography (TomoSAR). Several contributions show the capabilities of Interferometric SAR (InSAR) and PSI techniques for urban deformation monitoring. Some of them show the advantages of TomoSAR in un-mixing multiple scatterers for urban mapping and monitoring. This book is dedicated to the technical and scientific community interested in urban applications. It is useful for choosing the appropriate technique and gaining an assessment of the expected performance. The book will also be useful to researchers, as it provides information on the state-of-the-art and new trends in this fiel

    An Overview of Remote Sensing in Russian Forestry

    Get PDF
    The Russian Federation possesses vast forested areas, containing about 23% of the world's closed forests. A significant part of these forestlands is neither managed nor regularly monitored. This is due in part to the absence of developed infrastructure in the remote northern regions, which hampers the collection of data on forest inventory and monitoring in all areas by precise and expensive on-ground methods. As a result, the monitoring in all areas by precise and expensive on-ground methods. As a result, the former Soviet Union conducted intensive research on remote sensing during the last few decades, resulting in significant achievements. However, there has been a noticeable decline in remote sensing research and applications in the Russian forest sector from 1990-1998. Russia needs a new system of forest inventory and monitoring capable of providing reliable, practical information for sustainable forest management. Such a system should take into account current national demands on the Russian forest sector as well as the international obligations of the country. Remote sensing methods are an indispensable part of such a system. These methods will play a crucial role in critical applications such as ensuring the sustainability of forest management, protecting threatened forests, fulfilling the countrys Kyoto Protocol obligations, and others. This paper presents an overview of past and current remote sensing methods in the Russian forest sector, including both practical and scientific applications. Based on this overview, relevant applications of remote sensing methods in the Russian forest sector are discussed. This discussion considers current Russian economic conditions and the direction of political and social development of the country
    • …
    corecore