289,210 research outputs found

    A search for late-type supergiants in the inner regions of the Milky Way

    Full text link
    We present the results of a narrow-band infrared imaging survey of a narrow strip (12' wide) around the galactic equator between 6 deg and 21 deg of galactic longitude aimed at detecting field stars with strong CO absorption, mainly late-type giants and supergiants. Our observations include follow-up low resolution spectroscopy (R = 980) of 191 selected candidates in the H and K bands. Most of these objects have photometric and spectroscopic characteristics consistent with them being red giants, and some display broad, strong absorption wings due to water vapor absorption between the H and K bands. We also identify in our sample 18 good supergiant candidates characterized by their lack of noticeable water absorption, strong CO bands in the H and K windows, and HK_S photometry suggestive of high intrinsic luminosity and extinctions reaching up to A_V ~40 mag. Another 9 additional candidates share the same features except for weak H2O absorption, which is also observed among some M supergiants in the solar neighbourhood. Interesting differences are noticed when comparing our stars to a local sample of late-type giants and supergiants, as well as to a sample of red giants in globular clusters of moderately subsolar metallicity and to a sample of bulge stars. (...) We propose that the systematic spectroscopic differences of our inner Galaxy stars are due to their higher metallicities that cause deeper mixing in their mantles, resulting in lower surface abundances of C and O and higher abundances of CN, which contribute to the strength of the CaI and NaI features at low resolution. Our results stress the limitations of using local stars as templates for the study of composite cool stellar populations such as central starbursts in galaxies (Abridged).Comment: 21 pages (including figures), A&A accepte

    Census of the Local Universe (CLU) Narrow-Band Survey I: Galaxy Catalogs from Preliminary Fields

    Get PDF
    We present the Census of the Local Universe (CLU) narrow-band survey to search for emission-line (\ha) galaxies. CLU-\ha~has imaged \approx3π\pi of the sky (26,470~deg2^2) with 4 narrow-band filters that probe a distance out to 200~Mpc. We have obtained spectroscopic follow-up for galaxy candidates in 14 preliminary fields (101.6~deg2^2) to characterize the limits and completeness of the survey. In these preliminary fields, CLU can identify emission lines down to an \ha~flux limit of 101410^{-14}~erg s1 cm2\rm{erg~s^{-1}~cm^{-2}} at 90\% completeness, and recovers 83\% (67\%) of the \ha~flux from catalogued galaxies in our search volume at the Σ\Sigma=2.5 (Σ\Sigma=5) color excess levels. The contamination from galaxies with no emission lines is 61\% (12\%) for Σ\Sigma=2.5 (Σ\Sigma=5). Also, in the regions of overlap between our preliminary fields and previous emission-line surveys, we recover the majority of the galaxies found in previous surveys and identify an additional \approx300 galaxies. In total, we find 90 galaxies with no previous distance information, several of which are interesting objects: 7 blue compact dwarfs, 1 green pea, and a Seyfert galaxy; we also identified a known planetary nebula. These objects show that the CLU-\ha~survey can be a discovery machine for objects in our own Galaxy and extreme galaxies out to intermediate redshifts. However, the majority of the CLU-\ha~galaxies identified in this work show properties consistent with normal star-forming galaxies. CLU-\ha~galaxies with new redshifts will be added to existing galaxy catalogs to focus the search for the electromagnetic counterpart to gravitational wave events.Comment: 28 pages, 22 figures, 4 tables (Accepted to ApJ

    Optimization as a design strategy. Considerations based on building simulation-assisted experiments about problem decomposition

    Full text link
    In this article the most fundamental decomposition-based optimization method - block coordinate search, based on the sequential decomposition of problems in subproblems - and building performance simulation programs are used to reason about a building design process at micro-urban scale and strategies are defined to make the search more efficient. Cyclic overlapping block coordinate search is here considered in its double nature of optimization method and surrogate model (and metaphore) of a sequential design process. Heuristic indicators apt to support the design of search structures suited to that method are developed from building-simulation-assisted computational experiments, aimed to choose the form and position of a small building in a plot. Those indicators link the sharing of structure between subspaces ("commonality") to recursive recombination, measured as freshness of the search wake and novelty of the search moves. The aim of these indicators is to measure the relative effectiveness of decomposition-based design moves and create efficient block searches. Implications of a possible use of these indicators in genetic algorithms are also highlighted.Comment: 48 pages. 12 figures, 3 table

    Inter-theory Relations in Quantum Gravity: Correspondence, Reduction and Emergence

    Get PDF
    Relationships between current theories, and relationships between current theories and the sought theory of quantum gravity (QG), play an essential role in motivating the need for QG, aiding the search for QG, and defining what would count as QG. Correspondence is the broad class of inter-theory relationships intended to demonstrate the necessary compatibility of two theories whose domains of validity overlap, in the overlap regions. The variety of roles that correspondence plays in the search for QG are illustrated, using examples from specific QG approaches. Reduction is argued to be a special case of correspondence, and to form part of the definition of QG. Finally, the appropriate account of emergence in the context of QG is presented, and compared to conceptions of emergence in the broader philosophy literature. It is argued that, while emergence is likely to hold between QG and general relativity, emergence is not part of the definition of QG, and nor can it serve usefully in the development and justification of the new theory

    Side conditions for ordinary differential equations

    Full text link
    We specialize Olver's and Rosenau's side condition heuristics for the determination of particular invariant sets of ordinary differential equations. It turns out that side conditions of so-called LaSalle type are of special interest. Moreover we put side condition properties of symmetric and partially symmetric equations in a wider context. In the final section we present an application to parameter-dependent systems, in particular to quasi-steady state for chemical reactions.Comment: To appear in J. of Lie Theor
    corecore