1,412 research outputs found

    Smart Sampling for Lightweight Verification of Markov Decision Processes

    Get PDF
    Markov decision processes (MDP) are useful to model optimisation problems in concurrent systems. To verify MDPs with efficient Monte Carlo techniques requires that their nondeterminism be resolved by a scheduler. Recent work has introduced the elements of lightweight techniques to sample directly from scheduler space, but finding optimal schedulers by simple sampling may be inefficient. Here we describe "smart" sampling algorithms that can make substantial improvements in performance.Comment: IEEE conference style, 11 pages, 5 algorithms, 11 figures, 1 tabl

    Cross-Layer Adaptive Feedback Scheduling of Wireless Control Systems

    Get PDF
    There is a trend towards using wireless technologies in networked control systems. However, the adverse properties of the radio channels make it difficult to design and implement control systems in wireless environments. To attack the uncertainty in available communication resources in wireless control systems closed over WLAN, a cross-layer adaptive feedback scheduling (CLAFS) scheme is developed, which takes advantage of the co-design of control and wireless communications. By exploiting cross-layer design, CLAFS adjusts the sampling periods of control systems at the application layer based on information about deadline miss ratio and transmission rate from the physical layer. Within the framework of feedback scheduling, the control performance is maximized through controlling the deadline miss ratio. Key design parameters of the feedback scheduler are adapted to dynamic changes in the channel condition. An event-driven invocation mechanism for the feedback scheduler is also developed. Simulation results show that the proposed approach is efficient in dealing with channel capacity variations and noise interference, thus providing an enabling technology for control over WLAN.Comment: 17 pages, 12 figures; Open Access at http://www.mdpi.org/sensors/papers/s8074265.pd

    Scheduling for next generation WLANs: filling the gap between offered and observed data rates

    Get PDF
    In wireless networks, opportunistic scheduling is used to increase system throughput by exploiting multi-user diversity. Although recent advances have increased physical layer data rates supported in wireless local area networks (WLANs), actual throughput realized are significantly lower due to overhead. Accordingly, the frame aggregation concept is used in next generation WLANs to improve efficiency. However, with frame aggregation, traditional opportunistic schemes are no longer optimal. In this paper, we propose schedulers that take queue and channel conditions into account jointly, to maximize throughput observed at the users for next generation WLANs. We also extend this work to design two schedulers that perform block scheduling for maximizing network throughput over multiple transmission sequences. For these schedulers, which make decisions over long time durations, we model the system using queueing theory and determine users' temporal access proportions according to this model. Through detailed simulations, we show that all our proposed algorithms offer significant throughput improvement, better fairness, and much lower delay compared with traditional opportunistic schedulers, facilitating the practical use of the evolving standard for next generation wireless networks

    Scalable Verification of Markov Decision Processes

    Get PDF
    Markov decision processes (MDP) are useful to model concurrent process optimisation problems, but verifying them with numerical methods is often intractable. Existing approximative approaches do not scale well and are limited to memoryless schedulers. Here we present the basis of scalable verification for MDPSs, using an O(1) memory representation of history-dependent schedulers. We thus facilitate scalable learning techniques and the use of massively parallel verification.Comment: V4: FMDS version, 12 pages, 4 figure
    • …
    corecore