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Abstract

Exploiting the differences in supported transmission rates between mobile users, opportunistic scheduling

promises a substantial increase of the aggregate throughput of wireless networks. In this paper, we present

a Markov model to study the trade-off between fairness and wireless efficiency of opportunistic scheduling

at an access point which serves multiple mobile users. The Markov process at hand tracks the queues of

outstanding packets for the different mobile users as well as the states of the wireless channels for these users.

Because the size of the state space of the Markov model prevents a direct solution, we develop a numerical

analysis technique based on Maclaurin series expansions to solve the system in light traffic and in overload.

By numerical examples we illustrate the accuracy of our approach and compare a set of performance metrics

of various schedulers. In particular, we study how cross-channel correlation affects the performance of these

schedulers.

1. Introduction

Efficiently allocating networking resources is key for the performance of many multi-user (MU) wireless

communication systems. Such allocations aim at optimising performance metrics like network throughput,

delay and jitter, while at the same time retaining fairness between the users [1]. In contrast to wireline

networks, the transmission rates supported by individual mobile users vary over time and per user. For

example, the channel capacity of an individual user depends on its distance to the base station. In addition,

users undergo short-term location-dependent fading, the statistics of such short-term variations differing

across users [2]. Therefore, scheduling to the users with the best rates at any given time may allow for

substantially increasing the aggregate throughput of the wireless network.

Such opportunistic scheduling is a promising cross-layer technique that holds the potential of significantly

improving wireless networks’ efficiency in the near future. The technique however immediately brings into
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light the trade-off between wireless efficiency (i.e., a preference to schedule to the best channel) and fair

scheduling (i.e., each user is entitled to a certain amount of network resources) [3]. Since the introduction of

opportunistic scheduling in [4], numerous schedulers have been proposed for different instances of wireless

networks, such as mobile cellular networks, cognitive radio, WiMAX, MIMO systems; see [5–12] and the

references therein.

While holding the promise to increase the throughput, opportunistic scheduling also faces limitations. In

order to select where to send to, the scheduler requires accurate channel state information (CSI). Such CSI

is reported at the low rate of the feedback channel, and may therefore be outdated at the time the scheduler

decides where to send to. In other words, the opportunistic scheduler must always rely on partially known

channel state information, the timeliness depending on the feedback delay. The discussion how much feed-

back is sufficient in order to benefit from the MU diversity is actively investigated [13, 14]. Furthermore, the

gain of opportunistic scheduling may suffer from cross-channel correlations between users [15]. Typically

the wireless networks exploiting MU diversity achieve the maximum performance in case of independent

channels, positive cross-correlation leading to a decrease of the overall transmission capacity [16, 17]. Fi-

nally, the scheduling policy itself cannot require excessive computational complexity. While literature often

focuses on designing optimal schedulers for particular fairness and quality-of-service (QoS) requirements,

such schedulers may require too much computations to be practically implementable. Therefore, heuristic

approaches are often preferred in order to simplify the implementation [18, 19]. Although many schedulers

have been proposed, for the next generation of wireless systems there is a demand for new policies that rely

on less feedback information, account for the spatial correlations between users and require low computa-

tional complexity, while providing nearly optimal scheduling decisions. See for example [5, 8, 19–22, 55–57]

for advances in opportunistic scheduling policies.

Along with developments in scheduling strategies, there is also an increasing demand for performance

evaluation tools (i.e., instruments for testing, comparing and designing schedulers) for opportunistic sched-

ulers. Only few authors assess the performance of opportunistic schedulers by analytic means, most assess-

ments of schedulers relying on simulations, see e.g. [22–26]. This is not surprising as stochastic models of

opportunistic schedulers involve multiple queues. This results in Markov models with a multidimensional

state spaces. Even for a limited number of buffers (or mobile nodes) and limited buffer capacities, the state

space of the Markov chain is huge which makes direct solution techniques numerically unfeasible. In [27],

the authors propose a decomposition method to avoid the state space explosion problem. The approach

relies on representing the MU system with K mobile users by a deterministic stochastic Petri-net (DSPN),

decomposed into K subnets. Since the subnets are analysed separately, the MU system is represented with

far fewer states than the original Markov model, thereby achieving a low computational complexity. This

approach however rules out most interactions between the mobile users which is essential for a complete

performance study. Indeed, the interaction is key for the scheduler as each allocation decision impacts all
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mobile users. A similar decomposition approach is presented in [28] for cognitive radio spectrum allocation.

Here, a queueing model is analysed by matrix-analytic methods. However, the study mainly focuses on the

single-queue case with an extrapolation to multiple queues. Finally, [19] studies the formation of time-space

batches of packets assigned for simultaneous transmission. In this paper, the authors do not track the

number of packets for the different destinations, thereby again avoiding the inherent multidimensionality.

This paper proposes an analytic framework for studying opportunistic schedulers. Specifically, we pro-

pose a method for the fast performance evaluation of wireless networks equipped with one access point

(AP) serving multiple mobile users under varying transmission conditions. Our approach neither relies on

decomposition nor on an extrapolation of the single-queue case, which enables us to accurately study the

interactions among the queues. We consider a continuous-time Markovian model with a separate queue-

ing state variable for each mobile node. Assuming Rayleigh fading, our channel model not only accounts

for temporal correlation, but also for spatial correlation between the channels. The effects of fading are

introduced in the queueing model by a transmission environment variable. The transmission environment

is an exogenous continuous-time Markov process with a finite number of states in accordance with [29].

The overall queueing model at hand is a continuous-time Markov process. This means that opportunistic

scheduling is modelled as an assignment of transmission rates to queues, thereby (possibly) accounting for

both the current number of packets in the queue as well as the channel conditions. The transmission rate

being proportional to the chance of a service time completion in an infinitely small interval, such a model

still allows for some uncertainty in having a successful transmission or in the estimation of the channel

conditions, but largely makes abstraction of the details of scheduling the packets.

The size of the state space of the Markov process at hand makes a direct solution technique computa-

tionally unfeasible. For example, a system with 10 mobile nodes and buffer capacity for storing 10 packets

per mobile node yields a state space with size exceeding 1010. To cope with such state spaces, we rely on

Maclaurin series expansions of the solution of the Markov process to assess the performance both fast and

accurately [31–34]. Depending on the context in which they are introduced, series expansion techniques for

Markov chains are referred to as perturbation techniques, the power series algorithm or light-traffic analysis.

While the naming is not absolute, perturbation methods are mainly motivated by the assessment of the sen-

sitivity of the performance measures with respect to a system parameter. The case where the perturbation

does not preserve the class structure of the non-perturbed chain — the so-called singular perturbations —

has received much attention in literature [31, 35]. The power series algorithm transforms a Markov chain

of interest in a set of Markov chains parametrised by a possibly artificial parameter. When the parameter

is zero, the chain is not only easily solved, but one can also obtain the series expansion in the parameter.

When the parameter is one, one gets the original Markov chain such that the series expansion can be used

to approximate the solution of the original Markov chain, provided the radius of convergence of the series

expansion exceeds one [36]. Finally, light-traffic analysis often corresponds to a series expansion in the ar-

3



λ1

Server

n1

λ2 n2

λK nK

User 1

User 2

User K

µ1(m
,n)

µ2(m,n)

µ
K (m,n)

Figure 1: Queueing model for the opportunistic scheduler

rival rate at a queue. For an overview on the technique of series expansions in stochastic systems, we further

refer the reader to the surveys in [37] and [38] and the recent book [39]. The present study most closely

relates to the numerical series expansion approach of [33] and [34]. In contrast to this work, the present

unperturbed chain is not upper-diagonal, but block upper-diagonal. It is shown below, that calculating the

terms in the series expansion — in overload as well as under light traffic — is much easier than solving the

queueing model for any particular load. The present paper extends our preliminary findings presented in

[40, 41].

The remainder of the paper is organised as follows. The next section introduces the modelling assump-

tions and settles the notational conventions. The proposed analysis technique is then outlined in Section

3. Section 4 discusses the Markovian Rayleigh fading channel model. In order to illustrate and assess the

proposed performance evaluation method, we consider some numerical examples in section 5 and validate the

accuracy of our results by simulation. In particular, we implement several simple schedulers [4, 34, 42, 43]

for systems with spatially independent and correlated channels. Finally, conclusions are drawn in Section 6.

2. Queueing model

We consider a wireless AP, opportunistically sending packets to multiple mobile nodes. The AP is

modelled as a Markovian queueing model with K finite-capacity queues that share a common transmission

channel, as depicted in Figure 1. Each queue corresponds to the AP buffer of a particular mobile node. Let

Nk(t) be the number of packets in the buffer of the kth mobile node at time t, let Ck be the capacity of this

buffer and let N(t) = [N1(t), . . . , NK(t)] be the vector with elements Nk(t). Arrivals at the different buffers

are modelled by independent Poisson processes; λk denotes the arrival rate at queue k. We further assume

that the packet sizes in the kth queue are exponentially distributed with rate θk.

The mobile nodes experience different time-varying channel conditions. To model variations of the

channel conditions in both space and time, we introduce an exogenous continuous-time Markov process

M(t) that modulates the states of the different wireless transmission channels. We refer to M(t) as the

background process. Let the finite set M be the state space of this Markovian background process, let M

denote the cardinality of M, and let αij denote the transition rate from state i to state j, i 6= j, i, j ∈ M.
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The corresponding generator matrix is denoted by A = [αij ]i,j∈M, with αii
.
= −

∑
j∈M\{i} αij for i ∈ M.

For every background state m ∈ M, let gm = [gm1, . . . , gmK ] be a vector whose kth element quantifies the

channel conditions as experienced by the kth mobile node. Hence, the channel condition vector at time t is

G(t) := gM(t). Without loss of generality, we assume that gmk ∈ [0 . . . 1], where gmk = 1 corresponds to the

best expected channel quality that allows transmission at the highest rate and gmk = 0 represents the case

of poor channel quality when transmission is not feasible.

Given the channel conditions G(t) and the number of packets in the queues N(t), the opportunistic

scheduler assigns service rates to the different queues. Let Ψk(g,n) be the rate assigned to the kth mobile

node, assuming channel conditions G(t) = g and queueing state N(t) = n. We do not make any additional

assumptions on the scheduling rule. Various specific schedulers are studied in section 5 including MaxRate,

MaxWeight, Longest Connected Queue, and some schedulers that relate to the generalised and differentiated

processor sharing service disciplines.

In view of the assumptions above, the stochastic process [N(t),M(t)] is a Markov process. Accounting

for the packet size distribution, for queueing state N(t) = n and background state M(t) = m, packets depart

from queue k with rate,

µk(n,m) = θkΨk(gm,n) ,

such that the total departure rate in state (N(t),M(t)) = (n,m) equals,

µ(n,m) =

K∑
k=1

µk(n,m) .

The following notation will simplify the equations below. Let Ck = {0, 1, . . . , Ck} be the set of possible

states of the kth queue and let C = C1× . . .×CK . The state space of the Markovian queueing model is then

C ×M; S denotes the size of the state space C ×M. Also, c = [C1, . . . , CK ] corresponds to the case where

all buffers are full; Mc = {[c, j], j ∈M} denotes the corresponding subset of the state space. We define ek

as the row vector of length K with its kth element set to 1 and all other elements equal to zero and define

e as the row vector of ones. Finally, we introduce the global arrival rate λ and global service rate µ which

allow to simultaneously scale all the arrival rates or all service rates.

Remark 1. At the level of abstraction of the queueing model at hand, we did not specify any technological

assumptions on the AP under consideration. The model at hand allows to assess the performance of the

buffer behaviour at the AP for wireless systems with opportunistic scheduling like cognitive radio, micro-cell

networks, Wi-Fi or WiMAX networks, and for different configurations of MU MIMO with a single AP. In

particular, the present study allows for simultaneous transmissions to multiple users, while the modelling

assumptions are sufficiently versatile to capture a variety of channel- and buffer-aware policies that base

their scheduling decisions on the current state of the system and transmission environment.
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3. Performance analysis

Having specified the modelling assumptions, we now present the numerical analysis technique. We

first introduce the balance equations of the Markov chain under consideration. Expanding the stationary

distribution of the Markov chain around µ = 0 and λ = 0, with µ the global service rate and λ the global

arrival rate, we derive approximations for the stationary distribution and various performance measures in

the light-traffic and the overload regime, respectively.

3.1. Balance equations

In view of the modelling assumptions introduced above, the state of the system is described by the

vector (n, j) where the vector n = [n1, . . . , nK ] collects the states of the queues — nk denotes the number

of packets in the kth queue — and where j ∈ M denotes the state of the background process. Moreover,

let π(n, j) = limt→∞ P[N(t) = n,M(t) = j] be the steady-state probability to be in state (n, j). As the

state space of the Markov chain at hand is finite, the steady-state probabilities are well-defined provided the

Markov chain has a single ergodic class. This is the case if (i) the background process M(t) is stationary

ergodic, (ii) λk > 0 for all k ∈ {1, . . . ,K} and, (iii)
∑
j∈M µk(n, j) > 0 for all n ∈ C\{0} and k ∈ {1, . . . ,K}.

If one relaxes the assumption that queue capacity is finite, conditions for the existence of a stationary solution

are not entirely trivial, see e.g. [30] where the stability of a slightly different queueing system (with infinite

capacities) is addressed.

As there are neither simultaneous arrivals nor departures, we find the following set of balance equations,

π(n, j)

 K∑
k=1

(
λk 1{nk<Ck} + µk(n, j)1{nk>0}

)
+
∑

i∈M\{j}

αji


=

K∑
k=1

π(n + ek, j)µk(n + ek, j)1{nk<Ck}

+

K∑
k=1

π(n− ek, j)λk 1{nk>0} +
∑

i∈M\{j}

π(n, i)αij , (1)

for n ∈ C and j ∈ M. Here 1{·} is the indicator which evaluates to one if its argument is true and to zero

if this is not the case. State transitions correspond to arrivals at and departures from the different queues,

or to state transitions of the channel. For ease of notation, we group the stationary probabilities for a given

queueing state into vectors π(n) = [π(n, j)]j∈M. We can then rewrite the balance equations as follows,

π(n)

(
K∑
k=1

(
λk 1{nk<Ck}IM +Mk(n)1{nk>0}

)
−A

)

=

K∑
k=1

π(n + ek)Mk(n + ek)1{nk<Ck} +

K∑
k=1

π(n− ek)λk 1{nk>0} , (2)
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with Mk(n) the M ×M diagonal matrix with diagonal elements µk(n, j), with IM the M ×M identity

matrix and with A the generator matrix of M(t).

3.2. Regular perturbation

In the following subsections it is shown that a series expansion approach allows for evaluating the

performance of the system under either light-traffic or overload conditions. In particular, it is shown that

the series expansion of the stationary solution of the Markov process is regular (i.e., we have a regular

perturbation) [32, 34, 44] and that the computational complexity of calculating the consecutive terms in the

series expansion is far better than the computational complexity of calculating the stationary distribution

directly. Prior to introducing the equations for the system at hand, we outline the main ideas of the

methodology.

The system of equations (1) takes the generic form

πQ = 0 , (3)

where π is a vector which collects all stationary probabilities π(n, j) and where Q is a known generator

matrix whose off-diagonal elements are the transition rates between states. The row sums of the generator

matrix are zero, and the matrix has negative diagonal elements and non-negative off-diagonal elements.

Assume now that the entries of the generator matrix are affine functions of a system parameter ε. In the

following sections, this parameter will be the global arrival rate λ for the light-traffic approximation and

the global service rate µ for the overload approximation. As the entries of the generator matrix are affine

functions of ε, the generic equation (3) can be written as

π(ε)Q = π(ε)
(
Q(0) + εQ(1)

)
= 0 . (4)

Here we have made the dependence of the stationary solution π on ε explicit. Moreover, note that Q(0) is a

proper generator matrix: this is the generator matrix of the system for ε = 0. Now, assume that this Markov

process is a uni-chain (the Markov process has at most one ergodic class). In this case, π(0)Q(0) = 0 has a

unique normalised solution. Moreover, by Cramer’s rule, one easily finds that π(ε) is an analytic function

of ε in an open interval around ε = 0. Therefore, let πi be the ith term in the series expansion of π(ε),

π(ε) =

∞∑
i=0

πi ε
i . (5)

Plugging the series expansion (5) into (4) and identifying equal powers of ε, we get

π0Q
(0) = 0 , πi+1Q

(0) = −πiQ(1) . (6)

Complementing the former set of equations with the normalisation condition,

π0e
′ = 1 , πie

′ = 0 , (7)
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for i > 0, allows for recursively calculating the terms of the series expansion.

For a generic matrix Q(0), there is no gain in computational complexity as one still needs to invert

this matrix while solving for the next term in the series expansion. However, for the queueing system at

hand, Q(0) has additional structure. Indeed, for the light-traffic approximation, non-λ transitions are either

departures or changes of the channel state. Assuming a proper ordering of the states of the Markov process,

the generator matrix Q(0) is block upper-diagonal, the blocks having the size of the state space of the channel.

For the overload approximation, non-µ transitions are either arrivals or changes of the channel state and —

with a proper ordering of the state space — a similar block upper-diagonal structure is obtained. In either

case, recursively solving the systems of equations (7) is considerably less involved. The equation

π0Q
(0) = 0

reduces to a system of M equations of M unknowns, while for each i the unknowns in the system

πi+1Q
(0) = −πiQ(1)

can be solved in blocks of M unknowns at a time due to the block upper-diagonal structure of Q(0).

3.3. Overload-traffic analysis

We first consider the balance equation for µ→ 0. In particular we express the service rates as

µk(n, j) = µµ̃k(n, j) ,

and consider the Maclaurin series expansion in µ of the steady-state probabilities:

π(n) =

∞∑
i=0

πi(n)µi . (8)

For ease of notation, let M̃k(n) = µ−1Mk(n). Note that M̃k(n) does not depend on µ. Plugging the former

expression into equation (2) and comparing terms in µi, we can express the ith order terms in terms of

(i− 1)st and ith order terms as follows,

πi(n)

K∑
k=1

λk 1{nk<Ck} − πi(n)A = 1{i>0}

K∑
k=1

πi−1(n + ek)M̃k(n + ek)1{nk<Ck}

− 1{i>0}πi−1(n)

K∑
k=1

M̃k(n)1{nk>0} +

K∑
k=1

πi(n− ek)λk 1{nk>0} . (9)

Plugging n = 0 = [0, 0, . . . , 0] and i = 0 into the former equation and post-multiplying with e′ leads to

π0(0)e′ = 0 , (10)

which implies π0(0) = 0 as the elements of π0(0) are non-negative. Using the same arguments, one then

shows by iteration that for all n ∈ C \ {c}, we have π0(n) = 0 and π0(c)A = 0. Together with the
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normalisation condition
∑

n∈C π0(n)e′ = 1, this shows that π0(c) = a, the steady-state solution of the

Markov process M(t) (i.e., the normalised solution of aA = 0).

For the higher-order terms (i > 0), we have

πi(n)

(
K∑
k=1

λk 1{nk<Ck}IM −A

)
=

K∑
k=1

πi−1(n + ek)M̃k(n + ek)1{nk<Ck}

+

K∑
k=1

(
πi(n− ek)λk − πi−1(n)M̃k(n)

)
1{nk>0} . (11)

For n 6= c, the matrix on the left-hand side is invertible. Hence, we can calculate the probabilities πi(n) in

lexicographical order. For n = c, we get

πi(c)A =

K∑
k=1

(
−πi(c− ek)λk + πi−1(c)M̃k(c)

)
, (12)

and the matrix on the left-hand side is not invertible. A solution of this equation takes the form

πi(c) =

K∑
k=1

(
−πi(c− ek)λk + πi−1(c)M̃k(c)

)
A# + κia , (13)

for any κi. Here, A# = (A + e′a)−1 − e′a is the group inverse of A. Finally, the remaining unknown κi

follows from the normalisation condition ∑
n∈C

πi(n)e′ = 0 . (14)

In view of the calculations above, one easily verifies that the numerical complexity of the algorithm for the

Lth order expansion is O(LM2S) as there are S/M blocks, L terms in the recursion and the operations with

blocks have complexity O(M3).

3.4. Light-traffic analysis

Similar arguments can be developed for the case of light-traffic conditions, that is, we set λk = λλ̃k and

consider an expansion of the form

π(n) =

∞∑
i=0

πi(n)λi .

In view of the balance equations, the terms of this series expansion adhere

πi(n)

(
K∑
k=1

Mk(n)1{nk>0} −A

)
=

K∑
k=1

πi(n + ek)Mk(n + ek)1{nk<Ck}

− 1{i>0}πi−1(n)

K∑
k=1

λ̃k 1{nk<Ck} + 1{i>0}

K∑
k=1

πi−1(n− ek)λ̃k 1{nk>0} . (15)

For i = 0, we can show that π0(n) = 0 for n 6= 0 and π0(0) = a. For i > 0 and n 6= 0, we can recursively

calculate all πi(n) in reverse lexicographical order as the matrix on the left-hand side is invertible. For
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n = 0, we get

πi(0) = −
K∑
k=1

πi(ek)Mk(ek) + πi−1(0)

K∑
k=1

λ̃k)A# + κ̃ia , (16)

where κ̃i can be determined from the normalisation condition (14).

3.5. Performance metrics

In order to quantify the performance of the system at hand we consider the following metrics for the kth

queue: the mean queue content E[Qk], the variance of the queue content var[Qk] and the blocking probability

bk. As Poisson arrivals see time averages, the blocking probability for the kth queue is the probability that

the number of packets in this queue is equal to the queue capacity, bk = P[nk = Ck]. Additionally, we

calculate the mean of the total system content E
[
Qtotal

]
. These characteristics can be expressed in terms of

the stationary distribution π(n). We then find approximations of these metrics by replacing the stationary

distribution by its Lth order expansion,

E
[
Qtotal

]
=
∑
n∈C

π(ε)(n)e′ne′ ≈
L∑
i=0

∑
n∈C

π
(ε)
i (n)e′ne′εi ,

E[Qk] =
∑
n∈C

π(ε)(n)e′ne′k ≈
L∑
i=0

∑
n∈C

π
(ε)
i (n)e′ne′kε

i ,

var[Qk] =
∑
n∈C

π(ε)(n)e′(ne′k)2 − E[Qk]2 ≈
L∑
i=0

∑
n∈C

π
(ε)
i (n)e′(ne′k)2εi − E[Qk]2 ,

bk =
∑
n∈C

π(ε)(n)e′1{ne′k=Ck} ≈
L∑
i=0

∑
n∈C

π
(ε)
i (n)e′εi1{ne′k=Ck} , (17)

where the dependence on ε has again been made explicit, ε being the service rate µ in the overload expansion

or the arrival rate λ for the light-traffic case.

4. Modelling the wireless environment

In this section, we introduce a particular channel model for the multi-channel wireless communication

scenario at hand. For a wide range of applications, fluctuations in a wireless communication link can be

efficiently modelled by means of Markov chains. For a single channel, multiple authors have proposed

Markovian models before, see e.g. [29, 45–47]. We here adapt the discrete-time channel model of [29] to the

continuous-time Markov chain setting.

We also investigate the influence of cross-channel correlation, and therefore require a Markovian chan-

nel model with cross-channel correlation. While many authors have proposed models with cross-channel

correlation [58–60], none of these models fit the present Markovian framework. Therefore, we extend the

single-channel approach of [29] to multiple correlated channels. The proposed approach for both single- and
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multi-channel models also extends to other channel models including Rician fading channels and Nakagami-

m fading channels [18].

4.1. Single-channel model

To model the behaviour of a single Rayleigh fading channel by a Markov chain with state space J =

{1, 2, . . . , J}, we construct a Markov chain such that the stationary distribution of the Markov model closely

matches the distribution of the Signal-to-Noise ratio (SNR), as well as the rates in which certain levels are

crossed.

For a Rayleigh fading channel, the stationary distribution of the SNR is exponentially distributed,

P[SNR ≤ η] = F (η) = 1− exp

(
− η

ν

)
,

where ν denotes the mean SNR. To closely match this distribution, we first discretise the distribution. That

is, we choose levels η0 < η1 < η2 < . . . < ηJ , and define,

yj = P[ηj−1 < SNR ≤ ηj ] = F (ηj)− F (ηj−1) = exp

(
− ηj−1

ν

)
− exp

(
− ηj
ν

)
.

That is, yj is the probability that the SNR lies in the interval (ηj−1, ηj ].

The time variations of the SNR are characterised by the Doppler frequency effect, which is caused by

the motion of the mobile nodes. In particular, let Nj denote the mean number of times per time unit the

SNR crosses the threshold ηj downward. Obviously, Nj is also the mean number of times per time unit the

SNR crosses the threshold ηj upward. Nj is given by [48],

Nj =

√
2πηj
ν

f exp

(
−ηj
ν

)
, (18)

where f denotes the Doppler frequency and where ν is the mean SNR as before.

We now construct a Markov chain Y (t) with stationary distribution {yj , j ∈ J } such that the mean

number of transitions per time unit from state j to state j + 1 equals Nj . Indeed, a transition from state j

to state j + 1 corresponds to crossing threshold ηj . Downward crossings are defined likewise. This leads to

the following transition rates for j, k ∈ J ,

aj,k =


Nj

yj
for k = j + 1 ;

Nj−1

yj
for k = j − 1 ;

0 otherwise.

It is now easily verified by checking the local balance equations that {yj , j ∈ J } is the stationary distribution

of the Markov chain with transition rates {aj,k, j, k ∈ J }. Hence we have found a Markov process which

agrees with the (discretised) stationary distribution, as well as with the level crossings specified by the

Doppler effect.
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Once the generator matrix Ã with transition rates aj,k is obtained for a single channel as above, we

can easily expand the model for the case of multiple independent channels. We can do so by merging K

single-channel models, the kth model having state space Jk = {1, . . . , Jk} into a multidimensional Markov

process. The state space of the joint model is then M = J1 × . . .JK . In other words, the state of the

channels is described by a vector, the kth element in this vector denoting the state of the kth channel. The

generator matrix of this Markov chain is,

A =

K⊕
k=1

Ak , (19)

where Ak is the Jk × Jk generator matrix of the kth channel and where ⊕ denotes the Kronecker sum.

4.2. Multiple channels

In order to assess the effects of channel correlations, we now construct a channel model where (i) the

characteristics of the single-channel models are given and (ii) some form of correlation between the channels

is introduced. Moreover, our channel model with cross-correlation will have the same state space as a similar

model without correlation.

Copulas. We consider a model with K Rayleigh fading channels. Let νk denote the mean SNR of the kth

channel and let fk denote the Doppler frequency of the kth channel. Given the distribution Fk of the SNR

of the kth channel for k = 1, . . . ,K, we construct a joint distribution of the channel SNRs by means of a

copula. A K-dimensional copula C(x), x ∈ [0, 1]K , is a multivariate probability distribution for which the

marginal probability distribution of each variable is uniform, see [49, 50]. Hence, for a copula one has,

C(1, . . . , 1, u, 1, . . . , 1) = u ,

for 0 ≤ u ≤ 1. Given a copula Cθ with parameter θ, the K-dimensional distribution

F (x, θ) = Cθ(F1(x1), . . . , FK(xK))

then has the required marginal distributions. The parameter θ can then be used to introduce the required

amount of cross-channel correlation. For the numerical examples, we adopt the Clayton and Vine copulas.

The Clayton copula is an Archimedean copula with generator φ(x) = max((1 + θx)−1/θ, 0), yielding the

copula,

Cθ(x) = max

(
K∑
k=1

x−θk − (K − 1), 0

)−1/θ
for x = [x1, . . . , xK ] ∈ (R+)K and θ ∈ [−1/(d− 1),∞) \ {0}. For the Rayleigh fading channels we therefore

get,

F (x, θ) = max

(
K∑
k=1

(1− exp(−xk/νk))−θ − (K − 1), 0

)−1/θ
.
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By construction, the Clayton copula is symmetric. To allow for a richer correlation structure, one can

construct a Vine copula. Vine copulas combine multiple bivariate copulas into a single multivariate copula.

Such a pair-copula decomposition allows for a flexible and intuitive way of extending bivariate copulas to

higher dimensions [49–52]. For the general theory on Vine copulas, we refer to [52]. We will apply a 3-

dimensional regular D-Vine in the remainder. The density of the multivariate distribution is then given

by,

f(x1, x2, x3) = f1(x1) f2(x2) f3(x3) c12 (F1(x1), F2(x2)) c23 (F2(x2), F3(x3)) c13|2
(
F1|3(x1|x2), F3|2(x3|x2)

)
or, additionally assuming conditional independence, by,

f(x1, x2, x3) = f1(x1) f2(x2) f3(x3) c12 (F1(x1), F2(x2)) c23 (F2(x2), F3(x3)) c13|2 (F1(x1), F3(x3)) . (20)

Here each c∗(·, ·) is a bivariate copula, Fk(·) is the univariate distribution of the SNR of the kth channel as

above, and fk(·) is the corresponding density function.

Discretisation. We now again discretise the SNRs. Assuming we discretise the SNR of the kth channel in

Jk levels, let ηk,0 < ηk,1 < ηk,2 < . . . < ηk,Jk denote the thresholds of these SNR levels. We then introduce

the multivariate discrete distribution,

yj = P[η1,j1−1 < SNR1 ≤ η1,j1 , . . . , ηK,jK−1 < SNRK ≤ ηK,jK ]

with j = [j1, . . . , jK ] ∈ M = J1 × . . .× JK , with Jk = {1, . . . , Jk} as before, and where SNRk denotes the

SNR of the kth channel. We can of course express yj in terms of F (x) as follows,

yj =
∑

i∈{0,1}K
(−1)‖i‖F (η1,j1−i1 , . . . , ηK,jK−iK ) ,

with i = [i1, . . . , iK ] and where ‖i‖ =
∑K
k=1 ik is the `1 norm. For example, for K = 3 we have,

yj1,j2,j3 = F (η1,j1 , η2,j2 , η3,j3)− F (η1,j1−1, η2,j2 , η3,j3)− F (η1,j1 , η2,j2−1, η3,j3)

+ F (η1,j1−1, η2,j2−1, η3,j3)− F (η1,j1 , η2,j2 , η3,j3−1) + F (η1,j1−1, η2,j2 , η3,j3−1)

+ F (η1,j1 , η2,j2−1, η3,j3−2)− F (η1,j1−1, η2,j2−1, η3,j3−1) .

Construction of the Markov process. As for the single-channel case, the time variations of the SNR are

characterised by the Doppler frequency effect, which is caused by the motion of the mobile nodes. We now

construct a Markov chain such that the mean number of upcrossings of the thresholds for the kth channel

is in accordance with the Doppler effect. That is, the mean number of upcrossings of level ηk,j by the kth

channel equals,

Nk,j =

√
2πηk,j
ν

fk exp

(
−ηk,j

ν

)
.
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Additionally assuming that channels do not cross at the same time, we find for i, j ∈M,

αj,i =


Nk,jk

yj
for i = j + ek ;

Nk,jk−1

yj
for i = j− ek ;

0 otherwise.

As for the single-channel case, it is now easily verified by checking the local balance equations that {yj, j ∈

M} is the stationary distribution of the Markov chain with transition rates {αj,i, j, i ∈M}. Hence we have

found a Markov process which agrees with the (discretised) stationary (multivariate) distribution, as well

as with the level crossings specified by the Doppler effect.

4.3. Channel State Information

The Markov chains for the single and multiple channels above describe the evolution of the SNR of the

channels. It now remains to map the states of these Markov chains on the transmission rates that can be

achieved. We describe the mapping for the multivariate case, the single-channel model being a particular

example.

The maximal achievable channel capacity γ for a given SNR η and bandwidth B, is given by the Shannon-

Hartley theorem [48],

γ = B log2(1 + η) .

As the transmission rate is proportional to the channel capacity, we introduce the following mapping j =

[j1, . . . , jK ]→ gj from M to [0, 1]K ,

gj =

[
log2(1 + ξ1,j1)

log2 (1 + η best)
, . . . ,

log2(1 + ξK,jK )

log2 (1 + η best)

]
,

where η best is the best SNR that is achievable (for all channels) and where ξk,j is the average SNR of the

kth channel in state j,

ξk,j =

∫ ηk,j

ηk,j−1
ηdFk(η)

ηk,j − ηk,j−1
.

The kth element gjk of the vector gj denotes the fraction of the maximal transmission rate that is available

for the kth channel when the channel state is j. The mapping from SNR to rate depends on the system

specifications and can vary from one transmitter to another. The value gjk is referred to as the channel state

information and is made available to the opportunistic scheduler.

4.4. Examples of schedulers

To illustrate our approach, we consider several schedulers including purely opportunistic, purely non-

opportunistic and weighted schedulers. We describe the different schedulers in detail below. For j ∈ M,

gjk denotes the channel state information of the channel of the kth MU when the background process is in

state j.

14



MaxRate. A first example of a greedy opportunistic scheduler is the MaxRate scheduler. This scheduler

serves the MUs with the best channel conditions. Let κMR(j) be the set

κMR(j) = arg max
k∈{1,...,K}

gjk .

For MaxRate, we have the following service rate,

µk(n, j) =

µgjk
1

|κMR(j)| for k ∈ κMR(j)

0 otherwise.

Here |κMR(j)| is the cardinality of κMR(j). This scheduler was first considered in [4] for single-cell MU

communication.

MaxWeight. In contrast to MaxRate, the MaxWeight scheduler selects the user with the maximum weight,

which is calculated as the product of queue length and channel quality, see [43]. For N(t) = n and M(t) = j,

MaxWeight selects users at time t from the set,

κMW(n, j) = arg max
k∈{1,...,K}

gjknk .

Hence this results in the following service rate for MaxWeight,

µk(n, j) =

µgjk
1

|κMW(j)| for k ∈ κMW(j)

0 otherwise.

Longest connected queue. Schedulers may also not account for the channel state at all. An example of

a non-opportunistic scheduler is one that chooses the longest queue. This scheduler is referred to as the

Longest Connected Queue (LCQ). It is shown to be stable for dynamic server allocation to parallel queues

with randomly varying connectivity in [42]. For N(t) = n and M(t) = j, the scheduler serves mobile nodes

from the set

κLCQ = arg max
k∈{1,...,K}

nk .

Notice that also in this case the actual service rate µk(n, j) for node k does depend on the channel condition.

Indeed, we have,

µk(n, j) =

µgjk
1

|κLCQ| for k ∈ κLCQ

0 otherwise.

Processor sharing. Finally, we mention two schedulers which are inspired by discriminatory (DPS) and

generalised processor sharing (GPS) [34], but with weights set to reflect the channel conditions. The share
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of transmission resources assigned for each user takes one of the following forms:

DPS: µk(n, j) = µ
gjknk∑K
`=1 gj`n`

,

GPS: µk(n, j) = µ
gjk1{nk>0}∑K
`=1 gj`1{n`>0}

.

The formulas for the DPS and GPS schedulers defined above assume that the overall transmission rate

is constant over time. This is the case in a scenario where there are no simultaneous transmissions, and

the transmission power is adapted to the SNR. Note however that even if there is but one transmission at

any time, one does not have non-zero departure rates from the different queues. The departure rate is the

product of the departure rate from the queue if it selected and the probability that this queue is selected,

and therefore non-zero for every queue which can be selected.

In general, if there are multiple simultaneous transmissions, the departure rates from the different queues

will depend both on the queue sizes and on the channel states. The combined transmission rate will also be

a function of the queue sizes and the channel states, as transmitting over one channel can influence other

channels.

5. Results

In this section we compare various schedulers by some numerical examples. We consecutively consider

systems with independent channels and systems with cross-channel correlation. The following performance

metrics are calculated by means of (17): the mean queue content E[Qk], the variance of the queue content

var[Qk] and the blocking probability bk of the kth queue. Assuming identical queues and channels, we

provide results for a single queue, and therefore drop the index k in the figures. As our analysis is an

approximation, we validate our results by simulations. The simulation results are obtained by means of the

standard Gillespie algorithm, see for example [53].

5.1. Independent channels

We first assume that all channels are independent and identical with Doppler frequency fk = 100 Hz

and mean SNR level νk = 30dB for k = 1, . . . ,K. To construct the channel model, we partition the SNR

into 3 ranges, the thresholds being chosen as follows: η0 = 0dB, η1 = 23dB, η2 = 27dB, η3 = 40dB. Note

that various strategies of SNR partitioning can be applied in order to establish SNR thresholds, see [54].

With these parameters, following the approach described in subsection 4.1, we find the following generator

matrix:

Ak =


−50.98 50.98 0

42.99 −93.39 50.39

0 17.74 −17.74

 .
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In the figures below, we consider systems with K = 4 mobile users experiencing independent and stochas-

tically identical channel conditions. Up to C = 10 packets can be stored at the buffer of the AP for each

mobile user. Packets that arrive at a full buffer are rejected. We assume a maximum achievable downlink

transmission rate of 10 Mbit/s and an average packet size of 1.125 MB. Note that with the above assump-

tions, the channel process with transition rate matrix A = ⊕4
k=1Ak has 34 states, whereas the number of

queueing states amounts to 114 states. Hence, the Markov process at hand has 1,185,921 states.

Remark 2. We choose a fairly large packet size in the numerical examples. As the size of the state space of

the Markov process (and the numerical complexity for solving it) grows quickly with the queue capacity, this

capacity cannot be chosen arbitrarily large. Opting for a larger packet size implies that the buffer capacity

expressed in bytes is larger as well, without any additional numerical complexity. If the packets are smaller

in reality, one can approximate the system with small packets by a system where packets are aggregated

into larger. The queue content is then expressed in terms of aggregated packets, and only drops or increases

if all packets of the aggregated packet have departed or arrived.

In a first set of figures, we compare the MaxRate, MaxWeight and LCQ schedulers. Figures 2 and 3

show the mean and variance of the queue content as well as the blocking probabilities for these schedulers,

in the light-traffic and in the overloaded regime, respectively. For each of these performance measures,

we plot the 5th, 15th and 100th order expansions, as well as simulation results for comparison. Both

simulation and numerical results indicate that the purely opportunistic MaxRate scheduler performs better

than MaxWeight and LCQ in both the light-traffic regime and the overloaded regime. The reason for this

advantage can be explained as follows: MaxRate always serves a customer with the maximum available

transmission rate, and therefore, maximises the throughput of the system. In contrast, the MaxWeight

policy selects the user with the highest product of queue length and transmission rate. Under this strategy

the system benefits from the multi-channel diversity while preventing service starvation in the queues with

constantly poor channel quality. Fairness of the MaxWeight scheduler, however, comes at the cost of a

decrease of the system throughput as compared to the purely opportunistic MaxRate. In comparison with

LCQ, MaxWeight performs slightly better than the LCQ scheduler, due to the utilisation of the channel

information. Recall that LCQ does not benefit from the channel information and always serves the node

with the longest queue, even if the channel conditions are unfavourable for transmission. This approach

guarantees fairness, however, impairs the system performance in a transmission environment with a high MU

diversity. Numerical results show that although MaxWeight performs better than LCQ, the performance

metrics are rather close to each other.

We now assess the accuracy of the series expansions. Obviously, by increasing the order of the expan-

sion, the approximations improve, as they are known to converge to the correct value within the region

of convergence of the expansion. While the 5th order expansion is only accurate in a small region around
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Figure 2: Mean queue content, variance and blocking probability in the light traffic regime for systems with K = 4 mobile

users, M = 3 channel states, and for the MaxRate (MR), MaxWeight (MW) and LCQ scheduling disciplines

18



0 2 4 6 8 10 12
6

6.5

7

7.5

8

8.5

9

9.5

10

µ, Mbit/s

E
[Q

],
p
a
ck
et
s

N =5

 

 

0 2 4 6 8 10 12
6

6.5

7

7.5

8

8.5

9

9.5

10

µ, Mbit/s

N =15

0 2 4 6 8 10 12
6

6.5

7

7.5

8

8.5

9

9.5

10

µ, Mbit/s

N =100

MR sim
MW sim
LCQ sim
MR approx
MW approx
LCQ approx

0 2 4 6 8 10 12
0

0.5

1

1.5

2

2.5

3

3.5

4

µ, Mbit/s

va
r[
Q
]

N =5

 

 

0 2 4 6 8 10 12
0

0.5

1

1.5

2

2.5

3

3.5

4

µ, Mbit/s

N =15

0 2 4 6 8 10 12
0

0.5

1

1.5

2

2.5

3

3.5

4

µ, Mbit/s

N =100
MR sim
MW sim
LCQ sim
MR approx
MW approx
LCQ approx

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

µ, Mbit/s

b

N =5

 

 

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

µ, Mbit/s

N =15

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

µ, Mbit/s

N =100

MR sim
MW sim
LCQ sim
MR approx
MW approx
LCQ approx

Figure 3: Mean queue content, variance and blocking probability in the overload traffic regime for systems with K = 4 mobile

users, M = 3 channel states, and for the MaxRate (MR), MaxWeight(MW) and LCQ scheduling disciplines.

19



λ = 0 or µ = 0, the 15th order approximation is already accurate in a much wider region, while the 100th

order expansion is accurate in an even wider region. Note that the series expansions of all performance

measures (for a particular scheduler) have the same region of convergence, as they are derived from the

same expansion of the steady-state distribution. In fact, the higher order expansions allow for heuristi-

cally determining the region of convergence as we get a very accurate match in the region of convergence,

followed by an almost immediate and considerable deviation of the true value. This is the case for the

100th order expansion, higher order expansions (not shown here) further confirming that the position of

this sudden deviation is fixed. This then indeed strongly suggests that this position corresponds with the

boundary of the region of convergence. On the figures, the the regions of convergence for the light traffic

approximation are approximately λ ∈ [0, 10] Mbit/s for MaxRate, λ ∈ [0, 6.3] Mbit/s for MaxWeight, and

λ ∈ [0, 6.8] Mbit/s for LCQ. For the overload expansions in Figure 3, we observe the convergence regions

µ ∈ [0, 7.8] Mbit/s, µ ∈ [0, 6] Mbit/s and µ ∈ [0, 4.7] Mbit/s for the MaxRate, the MaxWeight and the LCQ

scheduler, respectively.

As the blocking probability decreases almost linearly for increasing µ, the 5th order expansion seems

rather accurate in a wide region. The match beyond the region of convergence for low order expansions is

coincidence and does not further improve by increasing the order of the expansion. Indeed, the higher order

expansions reveal the limits of the region of convergence. For the light-traffic approximations, the blocking

probability is very small in the region of convergence for the MaxWeight and LCQ schedulers; the values for

which the blocking probability starts increasing lie outside the region of convergence. In contrast, for the

MaxRate scheduler, we do find a good match in the region where the blocking probabilities start increasing

(the interval λ ∈ [7, 9] Mbit).

The next set of figures compare the DPS and GPS schedulers. Figures 4 and 5 depict the mean and

variance of the queue content and the blocking probability vs. the global arrival rate and vs. the global

service rate, respectively. DPS and GPS are opportunistic schedulers that allocate resources among the

mobile users for simultaneous transmission. All users with nonempty queues receive a share of the service

proportional to their channel qualities. GPS always allocates resources primarily to the users with favourable

channel conditions, while DPS also takes into account the queue content of the customers. The comparison

of these two schedulers is similar to the MaxRate and MaxWeight comparison. GPS is purely opportunistic

and provides better throughput, while DPS guarantees fairness and prevents service starvation for users

experiencing poor channel conditions. The numerical results in Figures 4 and 5 indeed confirm these findings,

though the difference between GPS and DPS is not as outspoken as the difference between MaxWeight and

MaxRate. Moreover, in the light-traffic regime, GPS and DPS hardly differ. This is not unexpected as DPS

and GPS only differ once the queue size grows beyond 1, which does not occur frequently in light traffic.

Regarding the accuracy of the approximations, we again observe that increasing the order of the ap-

proximations improves the accuracy, in the region of convergence of the series expansions. Compared to the
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Figure 4: Mean queue content, variance and blocking probability in the light traffic regime for systems with K = 4 mobile

users, M = 3 channel states, and for the DPS and GPS scheduling disciplines.
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Figure 5: Mean queue content, variance and blocking probability in the overload traffic regime for systems with K = 4 mobile

users and M = 3 channel states, for the DPS and GPS scheduling disciplines.
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previous plots (figures 2 and 3), the region of convergence is wider. For DPS we have λ ∈ [0, 8.5] Mbit/s

and µ ∈ [0, 9.5] Mbit/s, while for GPS, we have λ ∈ [0, 8.5] Mbit/s and µ ∈ [0, 8] Mbit/s.

5.2. Correlated channels

We now study opportunistic scheduling with correlated channels. We retain the single channel assump-

tions of the preceding section: the mean SNR for every channel is ν = 30 dB, while the Doppler frequency

is fk = 100 Hz. We use the threshold values η0 = 0dB, η1 = 20, η2 = 30dB, and η3 = 40dB. The AP

serves 3 mobile users, where each user can store up to C = 30 packets. Note that we chose a capacity that

is considerably larger, compared to the results in section 5.1. Having defined the characteristics of a single

channel, we study the following three different correlated channel scenarios.

1. Using a Clayton copula with parameter θ = 1, we obtain the following channel correlation matrix,

R1 =


1 0.369 0.369

0.369 1 0.369

0.369 0.369 1

 . (21)

where the kjth element of R denotes Pearson’s correlation coefficient of the SNR of the kth and jth

channel,

rk` =
σ2
k`√

σ2
kkσ

2
``

,

with

σ2
k` =

∑
j∈M

yjξk,jkξ`,j` −

∑
j∈M

yjξk,jk

∑
j∈M

yjξ`,j`

 ,

where we used the notation of subsection 4.2. For any two channels, we obtain the same correlation.

This is not unexpected due to the symmetry of Archimedean copulas.

2. A Vine copula allows for non-symmetric channel correlations. We consider two vine copulas that are

build using bivariate Gaussian copulas. We use expression (20), where the copulas C12, C23 and C13|2

are Gaussian copulas with correlation coefficients ρ12 = 0.2, ρ23 = 0.1 and ρ13|2 = 0.3. This parameter

setting results in the following correlation matrix,

R2 =


1 0.076 0.238

0.076 1 0.152

0.238 0.152 1

 . (22)

3. The third correlated channel is again based on a Vine copula with Gaussian bivariate copulas, but

now with correlation parameters ρ12 = 0.8, ρ23 = 0.7, ρ13|2 = 0.6. For this set of parameters, we get

the following correlation matrix,

R3 =


1 0.565 0.650

0.565 1 0.662

0.650 0.662 1

 .
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Figure 6: Total buffer content in light and overload traffic for systems with K = 3 mobile users with correlated channels

(Clayton copula) and M = 3 states per channel, working under MaxRate (MR), MaxWeight (MW), LCQ, DSP and GPS

scheduling disciplines. The number of terms in the series expansion is N = 100.

Figure 6 again compares the MaxRate, MaxWeight and LCQ schedulers as well as the DPS and GPS

schedulers. We show the 100th order light-traffic and overload expansions of the total mean queue content,

as well as simulation results to verify the accuracy of the approximations. We here use the first correlated

channel model with correlation matrix R1. We again obtain a perfect match in a first region, followed by

a sharp deviation from the correct value. This again suggests that the region of convergence of the series

expansion ends at the position of this fast deviation. Figure 7 depicts the same values for the Vine copula

with rate matrix R2.

Positive spatial correlations reduce MU diversity and therefore also reduce the gain of opportunistic

scheduling. Nevertheless, if correlations are not strong, the opportunistic approach can still be beneficial.

Figure 8 demonstrates the diminished efficiency of opportunistic scheduling by comparing the MaxRate,

MaxWeight and LCQ schedulers for independent and correlated channels in the overloaded regime. In

particular, Figure 8 compares the differences in total queue content between MaxRate and LCQ, MaxWeight
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Figure 7: Total buffer content in light and overload traffic for systems with K = 3 mobile users with correlated channels (Vine

copula) and M = 3 states per channel, working under MaxRate (MR), MaxWeight (MW), LCQ, DSP and GPS scheduling

disciplines; the order of the series expansion is N = 100.
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disciplines; the order of the expansion is N = 100.
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and LCQ, and GPS and DPS,

MaxRate and LCQ : ∆LCQ
MR = E

[
QLCQ

]
− E

[
QMR

]
,

MaxWeight and LCQ : ∆LCQ
MW = E

[
QLCQ

]
− E

[
QMW

]
,

GPS and DPS : ∆DSP
GSP = E

[
QDPS

]
− E

[
QGPS

]
.

Note that a positive difference corresponds to a performance gain of the more opportunistic scheduler (MR,

MW, GPS). For each comparison, we plot these differences for uncorrelated channels, for the Vine copula

channel with rate matrix R2 (weak correlation), and for the Vine copula channel with rate matrix R3

(strong correlation). As previously noted, both MaxWeight and MaxRate outperform the LCQ scheduler,

while GPS performs better than DPS, the performance gain being higher for less heavily loaded systems. The

performance gain however clearly diminishes by the introduction of channel correlations, more correlation

meaning less gain.

6. Conclusions

We considered a queueing model for assessing the performance of a downlink wireless MU transmission

scenario, under varying channel conditions. The buffer behaviour of the wireless access point was modelled

by a queueing system with multiple queues and a shared server. Accounting for time-correlation of the

channel quality, the channels were modelled by an exogenous Markov process, each state of this Markov

process corresponding to fixed (but not necessarily equal) channel qualities of the different channels.

As the state space of this system is very large and does not have additional structure which can be

exploited (like product form, G/M/1-type or M/G/1-type), we focused on a numerical approximation ap-

proach which relies on series expansion techniques. We showed that this approach can calculate various

performance measures fast in the light-traffic and the overload-traffic regimes.

We then adapted a discrete-time Markov model from literature for a single Rayleigh fading channel, first

to an equivalent continuous-time Markov channel model, and then to a multi-channel Markov model. In the

latter case, we relied on copulas (Clayton and Vine copulas) of the stationary distribution of the SNR of

the different channels for the introduction of cross-channel correlation.

For the purpose of demonstration, several well-known scheduling disciplines were studied numerically.

Our approximations for both independent and correlated channels were validated by simulation. It was

shown that the approximation of the performance measures was not only computationally efficient, but also

very accurate in the light-traffic and the overload-traffic regimes.

The proposed approach allows for several extensions. Most importantly, the Poisson assumption is not

essential. The modelling assumptions can be extended to include arrival processes like interrupted Poisson

processes and Markovian arrival processes. This can be achieved by introducing an arrival state for each
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arrival process which can easily be incorporated in the background process M(t). A similar approach can be

followed to relax the assumption that the transmission times are exponentially distributed. By introducing

a service state for each queue and incorporating these states in the background process, the transmission

times can follow a phase-type distribution. All these extensions however come with a computational cost as

the state space of the background process will be considerably larger.
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