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Smart Sampling for Lightweight Verification of

Markov Decision Processes
Pedro D’Argenio1, Axel Legay2, Sean Sedwards2 and Louis-Marie Traonouez2

Abstract—Markov decision processes (MDP) are useful to
model optimisation problems in concurrent systems. To verify
MDPs with efficient Monte Carlo techniques requires that their
nondeterminism be resolved by a scheduler. Recent work has
introduced the elements of lightweight techniques to sample
directly from scheduler space, but finding optimal schedulers by
simple sampling may be inefficient. Here we describe “smart”
sampling algorithms that can make substantial improvements in
performance.

I. INTRODUCTION

Markov decision processes describe systems that interleave

nondeterministic actions and probabilistic transitions. This

model has proved useful in many real optimisation problems

[33], [34], [35] and may be used to represent concurrent

probabilistic programs (see, e.g., [3], [1]). Such models com-

prise probabilistic subsystems whose transitions depend on

the states of the other subsystems, while the order in which

concurrently enabled transitions execute is nondeterministic.

This order may radically affect the behaviour of a system and

it is thus useful to calculate the upper and lower bounds of

quantitative aspects of performance.

As an example, consider the network of computational

nodes depicted in Fig. 1 (relating to the case study in Section

VI-D). Given that one of the nodes is infected by a virus,

we would like to calculate the probability that a target node

becomes infected. If we know the probability that the virus will

pass from one node to the next, we could model the system

as a discrete time Markov chain and analyse it to find the

probability that any particular node will become infected. Such

a model ignores the possibility that the virus might actually

choose which node to infect, e.g., to maximise its probability

of passing through the barrier layer. Under such circumstances

some nodes might be infected with near certainty or with only

very low probability, but this would not be adequately captured

by the Markov chain. By modelling the virus’s choice of node

as a nondeterministic transition in an MDP, the maximum and

minimum probabilities of infection can be considered.

Figure 2 shows a typical fragment of an MDP. In a given

state (s0), an action (a1, a2, . . . ) is chosen nondeterministically

to select a distribution of probabilistic transitions (p1, p2, . . .
or p3, p4, etc.). A probabilistic choice is then made to select

the next state (s1, s2, s3, s4, . . . ). In this work we use the

term scheduler to refer to a particular way the nondeterminism

in an MDP is resolved. We consider memoryless schedulers,
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Fig. 2: Fragment of a

Markov decision process.

whose choices depend only on the current state, and history-

dependent schedulers whose choices may also depend on

previous states.

Classic analysis of MDPs is concerned with finding the

expected maximum or minimum reward for an execution of

the system, given individual rewards assigned to each of the

actions [2], [31]. Rewards may also be assigned to states or

transitions between states [21]. Here we focus on MDPs in the

context of model checking concurrent probabilistic systems,

to find schedulers that maximise or minimise the probability

of a property. Model checking is an automatic technique to

verify that a system satisfies a property specified in tem-

poral logic [7]. Probabilistic model checking quantifies the

probability that a probabilistic system will satisfy a property

[13]. Numerical model checking algorithms to solve purely

probabilistic systems are costly in time and space. Finding

extremal probabilities in MDPs is generally more so, but is

nevertheless a polynomial function of the explicit description

of the MDP [3].

Statistical model checking (SMC) describes a collection

of Monte Carlo sampling techniques that make probabilistic

model checking more tractable by returning approximative

results with statistical confidence [37]. SMC algorithms gen-

erally avoid constructing an explicit representation of the

state space of a system, employing a compact executable

model to generate states on the fly during simulation. SMC

is therefore efficient for large, possibly infinite state, systems.

Moreover, since the simulations are required to be statistically

independent, SMC may be efficiently divided on parallel

computing architectures. Recent approaches to apply SMC to

MDPs are memory-intensive [4], [15], [26], [14], [6] or do

not find schedulers that optimise probabilities [4], [26], [14].

Classic sampling approaches for MDPs, such as the Kearns

algorithm [19], are memory-efficient but address a different

problem related to discounted MDPs.

This work extends [27]. In [27] the authors provide sam-
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pling techniques that can form the basis of memory-efficient

(“lightweight”) verification of MDPs. The principal contri-

butions of [27] are (i) specifying the infinite behaviour of

schedulers using O(1) memory, (ii) sampling directly and

uniformly from scheduler space, and (iii) quantifying the sta-

tistical confidence of multiple estimates or multiple hypothesis

tests. As in the case of standard SMC, sampling makes the

verification problem independent of the size of the space of

samples, with a convergence to the correct result almost surely

guaranteed with an infinite number of samples. The use of

lightweight techniques opens up the possibility to efficiently

distribute the problem on high performance massively parallel

architectures, such as GPGPU (general purpose computing on

graphics processing units).

Sampling schedulers makes a significant advance over mere

enumeration. For example, suppose half of all schedulers for

a given MDP and property are “near optimal”, i.e., have a

probability of satisfying the property that is deemed adequately

close to the true optimum. If all such near optimal schedulers

lie in the second half of the enumeration, it will be necessary

to enumerate half of all schedulers before finding one that

is near optimal. In contrast, one would expect to see a near

optimal scheduler after just two random selections, i.e., the

expectation with two samples is one. This phenomenon is

not limited to the case when schedulers are pathologically

distributed with respect to the enumeration. Since the total

number of schedulers increases exponentially with path length,

it is usually very large. Hence, even when near optimal

schedulers are more uniformly distributed with respect to the

enumeration, it is typically not tractable to use enumeration to

find one. Note that sampling also works with non-denumerable

spaces. The cost of finding a near optimal scheduler with

sampling is simply proportional to the relative mass of near

optimal schedulers in scheduler space. Our experiments with

standard case studies suggest that this cost is often reasonable.

It was demonstrated in [27] that simple undirected sampling

may be adequate for some case studies. In this work we present

“smart sampling” algorithms that make significantly better

use of a simulation budget. For a given number of candidate

schedulers, smart sampling can reduce the simulation cost of

extremal probability estimation by more than N/⌈2+log2N⌉,
where N is the minimum number of simulations necessary to

achieve the required statistical confidence, as given by (3). The

basic notions of smart sampling were hinted at in [27]. Simply

put, a small part of the budget is used to perform an initial

assessment of the problem and to generate an optimal initial

candidate set of schedulers. The remaining budget is used to

test and refine the candidate set: sub-optimal schedulers are

removed and their budget is re-allocated to good ones. Here

we give a full exposition of smart sampling and explain its

limitations. We have implemented the algorithms in our sta-

tistical model checking platform, PLASMA1, and demonstrate

their successful application on a number of case studies from

the literature. We include some examples that are intractable

to numerical techniques and compare the performance of our

techniques with an alternative sampling approach [15]. We also
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give an example where smart sampling is less effective, but

show that the results may nevertheless be useful in bounding

the range of extremal probabilities.

Structure of the Paper

In Section II we briefly survey closely related work. In

Section III we introduce some definitions and notation neces-

sary for the sequel. In Sections IV we recall the basis of our

lightweight verification techniques. In Section V we describe

the notion of smart sampling and present our smart estimation

and smart hypothesis testing algorithms. In Section VI we

give the results of experiments with a number of case studies

from the literature. In Section VII we discuss the limitations

of smart sampling and in Section VIII we summarise the

challenges and prospects for our approach.

II. RELATED WORK

The classic algorithms to solve MDPs are ‘policy iteration’

and ‘value iteration’ [31]. Model checking algorithms for

MDPs may use value iteration applied to probabilities [1, Ch.

10] or solve the same problem using linear programming [3].

The principal challenge of finding optimal schedulers is what

has been described as the ‘curse of dimensionality’ [2] and

the ‘state explosion problem’ [7]. In essence, these two terms

refer to the fact that the number of states of a system increases

exponentially with respect to the number of interacting com-

ponents and state variables. This phenomenon has motivated

the design of lightweight sampling algorithms that find ‘near

optimal’ schedulers to optimise rewards in discounted MDPs

[19], but the standard model checking problem of finding

extremal probabilities in non-discounted MDPs is significantly

more challenging. Since nondeterministic and probabilistic

choices are interleaved in an MDP, schedulers are typically

of the same order of complexity as the system as a whole

and may be infinite. As a result, previous SMC algorithms for

MDPs have considered only memoryless schedulers or have

other limitations.

The Kearns algorithm [19] is the classic ‘sparse sampling

algorithm’ for large, infinite horizon, discounted MDPs. It

constructs a ‘near optimal’ scheduler by approximating the

best action from a current state, using a stochastic depth-

first search. Importantly, optimality is with respect to dis-

counted rewards, not probability. The algorithm can work

with large, potentially infinite state MDPs because it explores

a probabilistically bounded search space. This, however, is

exponential in the discount. To find the action with the greatest

expected reward in the current state of a trace, the algorithm

recursively estimates the rewards of successor states, up to

some maximum depth implicitly defined by the discount and

an error threshold. Actions are enumerated while probabilistic

choices are explored by sampling, with the number of samples

set as a parameter. The discount guarantees that the algorithm

eventually converges. The stopping criterion is when succes-

sive estimates differ by less than the error threshold. Since the

actions of a state are re-evaluated every time the state is visited

(because actions are history-dependent), the performance of

the Kearns algorithm is critically dependent on its parameters.
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There have been several recent attempts to apply SMC to

nondeterministic models [4], [26], [15], [14], [27], [6].

In [4], [14] the authors present on-the-fly algorithms to

remove ‘spurious’ nondeterminism, so that standard SMC may

be used. This approach is limited to the class of models whose

nondeterminism does not affect the resulting probability of a

property. The algorithms therefore do not attempt to address

the standard MDP model checking problems related to finding

optimal schedulers.

In [26] the authors first find a memoryless scheduler that is

near optimal with respect to a discounted reward scheme, using

an adaptation of the Kearns algorithm. This induces a Markov

chain whose properties may be verified with standard SMC.

By storing and re-using the choices in visited states, the algo-

rithm improves on the performance of the Kearns algorithm,

but is thus limited to tractable memoryless schedulers. The

near optimality of the induced Markov chain is with respect

to discounted rewards, not probability, hence [26] does not

address the standard model checking problems of MDPs.

In [15] the authors present an SMC algorithm to decide

whether there exists a memoryless scheduler for a given MDP,

such that the probability of a property is above a specified

threshold. The algorithm has an inner loop that generates

candidate schedulers by iteratively improving a probabilistic

scheduler, according to sample traces that satisfy the property.

The algorithm is limited to memoryless schedulers because the

improvement process learns by counting state-action pairs. The

outer loop tests the candidate scheduler against the hypothesis

using SMC and is iterated until an example is found or

sufficient attempts have been made. The inner loop does not

in general converge to the true maximum (the number of

state-actions does not actually indicate scheduler probability),

but is sometimes successful because the outer loop randomly

explores local maxima. This makes the number of samples

used by the inner loop critical: too many may reduce the ran-

domness of the outer loop’s exploration and thus significantly

reduce the probability of finding examples. A further problem

is that the repeated hypothesis tests of the outer loop will

eventually produce erroneous results.

In [6] the authors present learning algorithms to bound

the maximum probability of reachability properties of MDPs.

The algorithms work by refining upper and lower bounds

associated to individual state-actions, which are initially all

set to the most conservative values. Like the approaches of

[15], [26], the algorithms are limited to memoryless schedulers

of tractable size. Unlike the approach of [15], however, the

algorithms do not learn by counting the occurrence of state-

actions. When a state that satisfies the property is reached

during simulation, the bounds of all the state-actions along

the path that reached it are updated according to the true

(or estimated) probabilities along the path. This ensures that

the bounds remain correct with respect to the true optima,

although convergence is very slow. Actions are initially cho-

sen uniformly at random (as in [15]), such that the initial

successful simulations will favour the “most popular” state-

actions, rather than those that maximise the probability. Since

the algorithms resolve nondeterminism by choosing uniformly

at random an action that maximises the probability according

to the current state-action bounds, the initial simulations may

prevent the algorithms from providing tight bounds.

The present work builds on the elements of lightweight

verification for MDPs introduced in [27]. In [27] the authors

use an incremental hash function and a pseudo-random number

generator to define history-dependent schedulers using only

O(1) memory. This allows the schedulers to be selected at

random and tested individually, thus facilitating Monte Carlo

algorithms that are indifferent to the size of the sample space.

The full details of these techniques are described in Section

IV.

III. PRELIMINARIES

In this work we make use of the following definitions.

An MDP comprises a possibly infinite set of states S, a

finite set of actions A, a finite set of probabilities Q and a

relation T : S × A × S × Q, such that ∀s ∈ S and ∀a ∈ A,
∑

∀s′∈S T (s, a, s
′) = r, where r ∈ {0, 1}. The execution of

an MDP produces a sequence of transitions between states that

induces a set of traces Ω = S+. Given an MDP in state s, an

action a is chosen nondeterministically from the set {a′ ∈ A :
∑

∀s′∈S T (s, a
′, s′) = 1}. A new state d ∈ S is then chosen

at random with probability T (s, a, d).

To make nondeterministic choices we assume the existence

of a scheduler. A (deterministic) history-dependent scheduler

is a function S : Ω → A. A (deterministic) memoryless

scheduler is a function M : S → A. Intuitively, at each state

in the course of an execution, a history-dependent scheduler

chooses an action based on the sequence of previous states

and a memoryless scheduler chooses an action based only

on the current state. We later mention in passing the notion

of a probabilistic scheduler, which is defined by a function

P : S ×A→ Q, such that ∀s ∈ S,
∑

∀a∈A P(s, a) = r, with

r ∈ {0, 1}. Intuitively, in any state of an execution an action

is chosen probabilistically. In what follows we use the general

term ‘scheduler’ to mean history-dependent schedulers (which

include memoryless schedulers) unless specifically qualified

by the terms ‘memoryless’ or ‘probabilistic’.

The application of a scheduler to an MDP resolves the

nondeterminism and thus induces a discrete time Markov

chain over which the probabilistic measure of temporal logic

properties may be defined. In this work we describe sampling

algorithms to find deterministic schedulers that approximately

maximise or minimise the probability of such properties.

In the context of SMC, we consider finite traces generated

by simulation, which are verified on the fly by an automaton

that encodes the property. The mechanisms, merits and lim-

itations of checking temporal properties on finite traces are

discussed at length in the literature, e.g., in [28], [11], [10],

[12], [9]. In the sequel we simply assume that there exists a

function to decide whether a trace satisfies a property, that

traces are of bounded length for a given property and that

S and M are therefore of finite domain. For concreteness

we define bounded linear time logical properties using the

following syntax:

φ = φ ∨ φ | φ ∧ φ | ¬φ | Xφ | Fkφ | Gkφ | φUkφ | α. (1)
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The symbol α denotes an atomic property that is either

true or false in a state. Given a trace ω ∈ Ω, comprising

states s0s1 . . . , ω
(i) denotes the trace suffix sisi+1 . . . . The

satisfaction relation |= over (1) is constructed inductively as

follows:

ω
(i) |= true

ω
(i) |=α ⇐⇒ α evaluates true in state ωi

ω
(i) |=¬ϕ ⇐⇒ ω

(i) |= ϕ 6∈ |=

ω
(i) |=ϕ1 ∨ ϕ2 ⇐⇒ ω

(i) |= ϕ1 or ω
(i) |= ϕ2

ω
(i) |=X

k
ϕ ⇐⇒ ω

(k+i) |= ϕ

ω
(i) |=ϕ1U

k
ϕ2 ⇐⇒

∃j ∈ {i, . . . , i+ k} : ω(j) |= ϕ2

∧ (j = i ∨ ∀l ∈ {i, . . . , j − 1} : ω(l) |= ϕ1)

(2)

Other elements of the relation are constructed using the equiv-

alences false ≡ ¬true, φ∧φ ≡ ¬(¬φ∨¬φ), Fkφ ≡ trueUkφ,

G
kφ ≡ ¬(trueUk¬φ).

s0

s1

|= ¬ψ

|= ψ

a1

1− p1 1− p2

a2
p1 p2

a0

1

Fig. 3: MDP with different

optima for general and mem-

oryless schedulers.

Figure 3 illustrates a sim-

ple MDP for which memo-

ryless and history-dependent

schedulers give different op-

tima for the bounded tem-

poral logic property X(ψ ∧
XG

t¬ψ) when p1 6= p2 and

t > 0. Intuitively, the property

states that on the next step

ψ will be true and, on the

step after that, ¬ψ will be

remain true for t further time

steps. The property is satis-

fied by the sequence of states

s0s1s0s0 · · · . If p1 > p2, the maximum probability for s0s1 is

achieved with action a2, while the maximum probability for

s0s0 is achieved with action a1. Given that both transitions

start in the same state, a memoryless scheduler will not achieve

the maximum probability achievable with a history-dependent

scheduler.

Statistical Model Checking with PLASMA

The algorithms we present here are implemented in our

SMC platform PLASMA (Platform for Learning and Advanced

Statistical Model checking Algorithms [5]). PLASMA is mod-

ular, allowing new modelling languages, logics and algorithms

to be plugged in and take advantage of its graphical user

interface, its integrated development environment and its abil-

ity to correctly divide simulations on parallel computational

architectures. We introduce here the basic notions of SMC

with PLASMA applied to Markov chains.

PLASMA implicitly implements an indicator function

1(ω |= ϕ) ∈ {0, 1} that returns 1 iff the trace ω ∈ Ω satisfies

property ϕ, where ϕ is specified according to (1) and (2). This

function is used to estimate with probabilistic confidence the

probability of the property or to decide an hypothesis about

the probability.

Typically, the probability of property ϕ is estimated by

the proportion of traces that individually satisfy it, i.e., p̂ =

1
N

∑N
i=1 1(ωi |= ϕ), where p̂ denotes the estimated probability

of true probability p and ω1, . . . , ωN are N independently

generated simulation traces. To bound the error of the esti-

mate the user specifies an absolute error ε and a probability

δ. PLASMA then calculates a priori the required minimum

number of simulations according to a Chernoff bound [30],

to ensure P(| p̂− p |≥ ε) ≤ δ. Parameters ε and δ are related

to the number of simulations N by δ ≤ 2e−2Nε2 [30], giving

N ≥
⌈

(ln 2− ln δ)/(2ε2)
⌉

. (3)

To test hypotheses of the form P(ω |= ϕ) ⊲⊳ θ, where

⊲⊳∈ {≤,≥} and θ is a user-specified probability threshold,

PLASMA adopts the sequential probability ratio test (SPRT)

of Wald [32]. The number of simulations required to decide

the test is typically fewer than (3) but is dependent on how

close θ is to the true probability. The number is therefore not

known in advance. To evaluate P(ω |= ϕ) ⊲⊳ θ the SPRT

constructs hypotheses H0 : P(ω |= ϕ) ≥ p0 and H1 : P(ω |=
ϕ) ≤ p1, where p0 = θ + ε and p1 = θ − ε for some user-

defined interval specified by ε [32]. The SPRT also requires

parameters α and β to specify, respectively, the maximum

acceptable probabilities of incorrectly rejecting a true H0 and

incorrectly accepting a false H0. To choose between H0 and

H1, the SPRT defines the probability ratio

ratio =

n
∏

i=1

(p1)1(ωi|=ϕ)(1− p1)1(ωi|=¬ϕ)

(p0)1(ωi|=ϕ)(1− p0)1(ωi|=¬ϕ)
,

where n is the number of simulation traces ωi, i ∈ {1, . . . , n},
generated so far. The test proceeds by performing a simulation

and calculating ratio until one of two conditions is satisfied:

H1 is accepted if ratio ≥ (1 − β)/α and H0 is accepted if

ratio ≤ β/(1− α).
Parallelisation of SMC is conceptually simple with

lightweight algorithms, but balancing the simulation load

on unreliable or heterogeneous computing devices must be

achieved without introducing a “selection bias”. The problem

arises because simulation traces that satisfy a property will, in

general, take a different time to generate than those which

do not. If the SMC task is divided among a number of

clients of different speed or reliability, a naive balancing

approach will be biased in favour of results that are generated

quickly. To overcome this phenomenon, PLASMA adopts the

load balancing algorithm proposed in [36]. PLASMA’s GUI

facilitates easy parallelisation on ad hoc networked computers

or on dedicated grids and clusters. The server application

(an instance of PLASMA) starts the job and waits to be

contacted by available clients (instances of PLASMA Service).

Our estimation experiments in Section VI were distributed on

the IGRIDA computing grid2.

IV. LIGHTWEIGHT VERIFICATION OF MDPS

In this section we recall the elemental sampling techniques

of [27].

Storing schedulers as explicit mappings does not scale, so

we represent schedulers using uniform pseudo-random number

2igrida.gforge.inria.fr
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generators (PRNG) that are initialised with a seed value

and iterated to generate the next pseudo-random number. In

general, such PRNGs aim to ensure that arbitrary subsets

of sequences of iterates are uniformly distributed and that

consecutive iterates are statistically independent. PRNGs are

commonly used to implement the uniform probabilistic sched-

uler, which chooses actions uniformly at random and can thus

explore all possible combinations of nondeterministic choices.

Executing such an implementation twice with the same seed

will produce identical traces. Executing the implementation

with a different seed will produce an unrelated set of choices.

Individual deterministic schedulers cannot be identified, so it

is not possible to estimate the probability of a property under

a specific memoryless or history-dependent scheduler.

We use a PRNG to resolve nondeterministic choices, but not

to make those choices probabilistically. We use it to range over

all the possible choices in such a way that repeated scheduler

samplings will eventually consider all possible combinations

of sequences of actions. We make use of the fact that the

seed of a PRNG uniquely defines the sequence of pseudo-

random values to ensure that the actions taken by a scheduler

are consistent between simulations. We can thus identify

individual schedulers.

An apparently plausible solution is to use independent

PRNGs to resolve nondeterministic and probabilistic choices.

It is then possible to generate multiple probabilistic simulation

traces per scheduler by keeping the seed of the PRNG for

nondeterministic choices fixed while choosing random seeds

for a separate PRNG for probabilistic choices. Unfortunately,

the schedulers generated by this approach do not span the full

range of general or even memoryless schedulers. Since the

sequence of iterates from the PRNG used for nondeterministic

choices will be the same for all instantiations of the PRNG

used for probabilistic choices, the ith iterate of the PRNG for

nondeterministic choices will always be the same, regardless

of the state arrived at by the previous probabilistic choices.

The ith chosen action can be neither state nor trace dependent,

as required by our definitions of memoryless and history-

dependent schedulers, respectively.

A. General Schedulers Using Hash Functions

We therefore construct a per-step PRNG seed that is a hash

of the integer identifying a specific scheduler concatenated

with an integer representing the sequence of states up to the

present.

We assume that a state of an MDP is an assignment of

values to a vector of system variables vi, i ∈ {1, . . . , n}.
Each vi is represented by a number of bits bi, typically

corresponding to a primitive data type (int, float, double, etc.).

The state can thus be represented by the concatenation of the

bits of the system variables, such that a sequence of states

may be represented by the concatenation of the bits of all the

states. Without loss of generality, we interpret such a sequence

of states as an integer of
∑n

i=1 bi bits, denoted s, and refer

to this in general as the trace vector. A scheduler is denoted

by an integer σ, which is concatenated to s (denoted σ : s) to

uniquely identify a trace and a scheduler. Our approach is to

generate a hash code h = H(σ : s) and to use h as the seed

of a PRNG that resolves the next nondeterministic choice.

The hash function H thus maps σ : s to a seed that is

deterministically dependent on the trace and the scheduler. The

PRNG maps the seed to a value that is uniformly distributed

but nevertheless deterministically dependent on the trace and

the scheduler. In this way we approximate the deterministic

functions S and M described in Section III. The (potential)

approximation arises because there may be more possible

schedulers than can be uniquely identified by the bits of σ.

Importantly, the standard properties of hash functions and

PRNGs serve to ensure that there is no systematic bias. The

hash function is expected to map a large set of integers to a

smaller set of integers such that sequential or otherwise related

input values have low probability of collision. Sequential

iterates of the PRNG are expected to be (pseudo) statistically

independent and (pseudo) uniformly distributed. Hence, if σ
is chosen uniformly at random, the probability of taking a

particular action in a state (or following a sequence of states)

will be (pseudo) uniformly distributed among the enabled

actions.

Algorithm 1 is the basic simulation function used by our

algorithms.

Algorithm 1: Simulate

Input:

M: an MDP with initial state s0
ϕ: a property

σ: an integer identifying a scheduler

Output:

ω: a simulation trace

1 Let Uprob,Unondet be uniform PRNGs with respective

samples rpr, rnd
2 Let H be a hash function

3 Let s denote a state, initialised s← s0
4 Let ω denote a trace, initialised ω ← s
5 Let s be the trace vector, initially empty

6 Set seed of Uprob randomly

7 while ω |= ϕ is not decided do

8 s← s : s
9 Set seed of Unondet to H(σ : s)

10 Iterate Unondet to generate rnd and use to resolve

nondeterministic choice

11 Iterate Uprob to generate rpr and use to resolve

probabilistic choice

12 Set s to the next state

13 ω ← ω : s

B. An Efficient Iterative Hash Function

To implement our approach we use an efficient hash func-

tion that constructs seeds incrementally. The function is based

on modular division [20, Ch. 6], such that h = (σ : s) mod m,

where m is a suitably large prime.

Since s is a concatenation of states it is usually very

much larger than the maximum size of integers supported as
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primitive data types. Hence, to generate h we use Horner’s

method [17][20, Ch. 4]: we set h0 = σ and find h ≡ hn (n
as in Section IV-A) by iterating the recurrence relation

hi = (hi−12
bi + vi) mod m. (4)

The size of m defines the maximum number of different

hash codes. The precise value of m controls how the hash

codes are distributed. To avoid collisions, a simple heuristic

is that m should be a large prime not close to a power

of 2 [8, Ch. 11]. The number of schedulers is typically

much larger than the number of possible hash codes, hence

collisions are theoretically inevitable. This means that not all

possible schedulers are realisable with a given hash function

and PRNG. We suppose, however, that there is no scheduler

that cannot be realised with some hash function and PRNG.

The problem of collisions can thus be conceivably addressed

by also choosing the hash function and PRNG at random.

A scheduler would then be defined by its label, its hash

function and its PRNG. We do not implement this idea here

to avoid unnecessary complication and because collisions are

not the principal limitation. There are typically many orders

of magnitude more seeds than we can test, hence the problem

of finding the best available scheduler supersedes the problem

that the best available scheduler may not be optimal. We an-

ticipate that our proposed solutions to accelerate convergence

(property-focused scheduler space and composite schedulers)

will effectively bypass the collision problem.

In practical implementations it is an advantage to perform

calculations using primitive data types that are native to the

computational platform, so the sum in (4) should always

be less than or equal to the maximum permissible value.

To achieve this, given x, y,m ∈ N, we note the following

congruences:

(x+ y) mod m ≡ (x mod m+ y mod m) mod m (5)

(xy) mod m ≡ ((x mod m)(y mod m)) mod m(6)

The addition in (4) can thus be re-written in the form of (5),

such that each term has a maximum value of m− 1:

hi = ((hi−12
bi) mod m+ (vi) mod m) mod m (7)

To prevent overflow, m must be no greater than half the

maximum possible integer. Re-writing the first term of (7) in

the form of (6), we see that before taking the modulus it will

have a maximum value of (m − 1)2, which will exceed the

maximum possible integer. To avoid this, we take advantage

of the fact that hi−1 is multiplied by a power of 2 and that m
has been chosen to prevent overflow with addition. We thus

apply the following recurrence relation:

(hi−12
j) mod m = (hi−12

j−1) mod m

+ (hi−12
j−1) mod m (8)

Equation (8) allows our hash function to be implemented

using efficient native arithmetic. Moreover, we infer from (4)

that to find the hash code corresponding to the current state

in a trace we need only know the current state and the hash

code from the previous step. When considering memoryless

schedulers we need only know the current state.

C. Hypothesis Testing Multiple Schedulers

We apply the SPRT to multiple (randomly chosen) sched-

ulers to test hypotheses of the form there exists a scheduler

such that P(ω |= ϕ) ⊲⊳ p. To test hypotheses of the form there

is no scheduler such that P(ω |= ϕ) ⊲⊳ p, our algorithm simply

searches for a scheduler that disproves the hypothesis. Since

the probability of error with the SPRT applied to multiple

hypotheses is cumulative, we consider the probability of no

errors in any of M tests. Hence, in order to ensure overall

error probabilities α and β, we adopt αM = 1 − M
√
1− α

and βM = 1 − M
√
1− β in our stopping conditions. H1 is

accepted if ratio ≥ (1 − βM )/αM and H0 is accepted if

ratio ≤ βM/(1−αM ). Algorithm 2 demonstrates the sequen-

tial hypothesis test for multiple schedulers. If the algorithm

finds an example, the hypothesis is true with at least the

specified confidence.

Algorithm 2: SPRT for multiple schedulers

Input:

M, ϕ: the MDP and property of interest

H ∈ {H0, H1}: the hypothesis with interval θ ± ε
α, β: the desired error probabilities of H
M : the maximum number of schedulers to test

Output: A scheduler that satisfies H or an inconclusive

result

1 Let p0 = θ + ε and p1 = θ − ε be the bounds of H
2 Let αM = 1− M

√
1− α and βM = 1− M

√
1− β

3 Let A = (1− βM )/αM and B = βM/(1− αM )
4 Let Useed be a uniform PRNG and σ be its sample

5 for i ∈ {1, . . . ,M} while H is not accepted do

6 Iterate Useed to generate σi
7 Let ratio = 1
8 while ratio > A ∧ ratio < B do

9 ω ← Simulate(M, ϕ, σi)

10 ratio ← (p1)1(ω|=ϕ)(1−p1)1(ω|=¬ϕ)

(p0)1(ω|=ϕ)(1−p0)1(ω|=¬ϕ) ratio

11 if ratio ≤ A ∧H = H0 ∨ ratio ≥ B ∧H = H1 then

12 accept H

D. Estimating Multiple Schedulers

We consider the strategy of sampling M schedulers to

estimate the maximum or minimum probabilities of satisfying

a property. We thus generate M estimates {p̂1, . . . , p̂M}
corresponding to true values {p1, . . . , pM}, and take either

the maximum (p̂max) or minimum (p̂min), as required. To

overcome the cumulative probability of error with the standard

Chernoff bound, we specify that all estimates p̂i must be

within ε of their respective true values pi, ensuring that any

p̂min, p̂max ∈ {p̂1, . . . , p̂M} are within ε of their true value.

Given that all estimates p̂i are statistically independent, the

probability that they are all less than their upper bound is

expressed by

P(

M
∧

i=1

p̂i − pi ≤ ε) ≥ (1− e−2Nε2)M .
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Hence, P(
∨M

i=1 p̂i − pi ≥ ε) ≤ 1− (1 − e−2Nε2)M , giving

N ≥
⌈

− ln
(

1− M
√
1− δ

)

/(2ε2)
⌉

.

This ensures that P(pmin − p̂min ≥ ε) ≤ δ and P(p̂max −
pmax ≥ ε) ≤ δ. To ensure the usual stronger conditions that

P(| pmax − p̂max |≥ ε) ≤ δ and P(| pmin − p̂min |≥ ε) ≤ δ,

we have

N ≥
⌈(

ln 2− ln
(

1− M
√
1− δ

))

/(2ε2)
⌉

. (9)

N scales logarithmically with M , making it tractable to

consider many schedulers. Note that in the case of M = 1,

(9) degenerates to (3). Note also that the confidence expressed

by (9) is with respect to the sampled set, not with respect to

the true extrema.

Algorithm 3 is the resulting extremal probability estimation

algorithm for multiple schedulers. Note that the algorithm dis-

tinguishes pmin, pmax (the notional true extreme probabilities),

pmin, pmax (the true probabilities for the schedulers chosen

by the algorithm) and p̂min, p̂max (the estimated probabilities

using the chosen schedulers).

Algorithm 3: Estimation with multiple schedulers

Input:

M, ϕ: the MDP and property of interest

ε, δ: the required Chernoff bound

M : the number of schedulers to test

Output: p̂min ≈ pmin, p̂max ≈ pmax, where pmin ≥ pmin,

pmax ≤ pmax and P(|pmin − p̂min| ≥ ε) ≤ δ,

P(|pmax − p̂max| ≥ ε) ≤ δ
1 Let N =

⌈

ln(2/(1− M
√
1− δ ))/(2ε2)

⌉

be the no. of

simulations per scheduler

2 Let Useed be a uniform PRNG and σ its sample

3 Initialise p̂min ← 1 and p̂max ← 0
4 Set seed of Useed randomly

5 for i ∈ {1, . . . ,M} do

6 Iterate Useed to generate σi

7 Let truecount = 0 be the initial number of traces

that satisfy ϕ
8 for j ∈ {1, . . . , N} do

9 ωj ← Simulate(M, ϕ, σi)
10 truecount ← truecount + 1(ωj |= ϕ)

11 Let p̂i = truecount/N
12 if p̂max < p̂i then

13 p̂max = p̂i

14 if p̂i > 0 ∧ p̂min > p̂i then

15 p̂min = p̂i

16 if p̂max = 0 then

17 No schedulers were found to satisfy ϕ

Figure 4 shows the empirical cumulative distribution of

schedulers generated by Algorithm 3 applied to the MDP of

Fig. 3, using p1 = 0.9, p2 = 0.5, ϕ = X(ψ ∧ XG
4¬ψ),

ε = 0.01, δ = 0.01 and M = 300. The vertical lines
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Fig. 4: Empirical cumulative distribution of estimates from

Algorithm 3 applied to MDP of Fig. 3.

mark the true probabilities of ϕ under each of the history-

dependent and memoryless schedulers (indicated by arrows).

The shaded areas show the ±ε error bounds, relative to the

true probabilities. There are multiple estimates per scheduler,

but all estimates are within their respective confidence bounds.

V. SMART SAMPLING

The simple sampling strategies used by Algorithms 2 and

3 have the disadvantage that they allocate equal simulation

budget to all schedulers, regardless of their merit. In general,

the problem we address has two independent components: the

rarity of near optimal schedulers and the probability of the

property under a near optimal scheduler. We should allocate

our simulation budget accordingly and not waste budget on

schedulers that are clearly not optimal.

Motivated by the above, our smart estimation algorithm

comprises three stages: (i) an initial undirected sampling

experiment to discover the nature of the problem, (ii) a targeted

sampling experiment to generate a candidate set of schedulers

with high probability of containing an optimal scheduler and

(iii) iterative refinement of the candidates to estimate the

probability of the best scheduler with specified confidence. By

excluding the schedulers with the worst estimated probabilities

and re-allocating their simulation budget to the schedulers

that remain, at each iterative step of stage (iii) the number

of schedulers reduces while the confidence of their estimates

increases. With a suitable choice of per-iteration budget, the

algorithm is guaranteed to terminate.

In the following subsection we develop the theoretical basis

of stage (ii).

A. Maximising the Probability of Seeing a Good Scheduler

We assume the existence of an MDP and a bounded property

ϕ whose probability we wish to maximise by choosing a

suitable scheduler from the finite set S. Let P : S→ [0, 1] be

a function mapping schedulers to their probability of satisfying

ϕ and let pmax = maxσ∈S(P(σ)). For the sake of exposition

we consider the problem of finding a scheduler that maximises

the probability of satisfying ϕ and define a “good” (near

optimal) scheduler to be one in the set Sg = {σ ∈ S |
P(σ) ≥ pmax− ε} for some ε ∈ (0, pmax]. Intuitively, a good

scheduler is one whose probability of satisfying ϕ is within ε
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of pmax, noting that we may similarly define a good scheduler

to be one within ε of pmin = minσ∈S(P(σ)), or to be in

any other subset of S. In particular, to address reward-based

MDP optimisations, a good scheduler could be defined to be

the subset of S that is near optimal with respect to a reward

scheme. The notion of a “best” scheduler follows intuitively

from the definition of a good scheduler.

Given that we sample uniformly from S, the probability

of finding a good scheduler is pg = |Sg|/|S|. The average

probability of a good scheduler is pg =
∑

σ∈Sg
P(σ)/|Sg|.

If we select M schedulers at random and verify each with

N simulations, the expected number of traces that satisfy ϕ
using a good scheduler is thus MpgNpg. The probability of

seeing a trace that satisfies ϕ using a good scheduler is the

cumulative probability

(1− (1− pg)M )(1− (1 − pg)N ). (10)

Hence, for a given simulation budget Nmax = NM , to

implement stage (ii) the idea is to choose N and M to

maximise (10) and keep any scheduler that produces at least

one trace that satisfies ϕ. Since, a priori, we are generally

unaware of even the magnitudes of pg and pg , stage (i) is

necessarily uninformed and we set N =M = ⌈√Nmax⌉. The

results of stage (i) allow us to estimate pg and pg (see Fig. 9a)

and thus maximise (10). This may be done numerically, but

we have found the heuristic N = ⌈1/pg⌉ to be near optimal

in all but extreme cases.

B. Smart Estimation

Algorithm 4 is our smart estimation algorithm to find

schedulers that maximise the probability of a property. The

algorithm to find minimising schedulers is similar. As with

Algorithm 3, Algorithm 4 distinguishes pmax (the notional

true maximum probability), pmax (the true probability using

the current best candidate scheduler) and p̂max (the estimated

probability using the best candidate scheduler).

Lines 1 to 5 implement stage (i): N and M are set equal,

simulation experiments are performed and the maximum es-

timate p̂max is found. Lines 6 to 10 implement stage (ii):

the initial candidate set of schedulers is generated by setting

N = ⌈1/p̂max⌉ and removing schedulers that produce no

traces that satisfy the property. Lines 11 to 23 implement stage

(iii). The inner loop (lines 16 to 19) requests simulations and

exits as soon as the number of simulations is sufficient for

the required confidence or when the maximum number for

the iteration has been reached. Lines 20 to 23 calculate the

estimates and select the upper quantile of schedulers for the

next iteration. The outer loop (line 12) quits once the set of

estimates are known with the required confidence.

The per-iteration simulation budget Nmax must be greater

than or equal to the number needed by the standard Chernoff

bound (3), to ensure that there will be sufficient simulations

to guarantee the specified confidence if the algorithm refines

the candidate set to a single scheduler. Typically, the per-

iteration budget will be greater than the minimum, such that

the required confidence is reached before refining the set of

schedulers to a single element. Under these circumstances

the confidence is judged according to the Chernoff bound for

multiple estimates (9).

Algorithm 4 may be further optimised by re-using the

simulation results from previous iterations of stage (iii). The

contribution is small, however, because confidence decreases

exponentially with the age (in terms of iterations) of the

results.

Algorithm 4: Smart Estimating

Input:

M: an MDP

ϕ: a property

ǫ, δ: the required Chernoff bound

Nmax ≥ ln(2/δ)/(2ǫ2): the per-iteration budget

Output: p̂max ≈ pmax, where pmax ≤ pmax and

P(|pmax − p̂max| ≥ ε) ≤ δ
1 N ← ⌈√Nmax⌉; M ← ⌈

√
Nmax⌉

2 S ← {M seeds chosen uniformly at random}
3 ∀σ ∈ S, ∀i ∈ {1, . . . , N} : ωσ

i ← Simulate(M, ϕ, σ)
4 R : S → N maps scheduler seeds to number of traces

satisfying ϕ:

R← {(σ, n) | σ ∈ S ∧ N ∋ n =
∑N

i=1 1(ω
σ
i |= ϕ)}

5 p̂max ← maxσ∈S(R(σ)/N)
6 N ← ⌈1/p̂max⌉, M ← ⌈Nmax p̂max⌉
7 S ← {M seeds chosen uniformly at random}
8 ∀σ ∈ S, ∀i ∈ {1, . . . , N} : ωσ

i ← Simulate(M, ϕ, σ)

9 R← {(σ, n) | σ ∈ S ∧ N ∋ n =
∑N

i=1 1(ω
σ
i |= ϕ)}

10 S ← {σ ∈ S | R(σ) > 0}
11 ∀σ ∈ S, R(σ)← 0; i← 0; conf ← 1
12 while conf > δ ∧ S 6= ∅ do

13 i← i+ 1
14 Mi ← |S|
15 Ni ← 0
16 while conf > δ ∧Ni < ⌈Nmax/Mi⌉ do

17 Ni ← Ni + 1

18 conf ← 1− (1− e−2ǫ2Ni)Mi

19 ∀σ ∈ S : ωσ
Ni
← Simulate(M, ϕ, σ)

20 R← {(σ, n) | σ ∈ S ∧N ∋ n =
∑Ni

j=1 1(ω
σ
j |= ϕ)}

21 p̂max ← maxσ∈S(R(σ)/Ni)
22 R′ : {1, . . . , |S|} → S is an injective function s.t.

∀(n, σ), (n′, σ′) ∈ R′, n > n′ =⇒ R(σ) ≥ R(σ′)
23 S ← {σ ∈ S | σ = R′(n) ∧ n ∈ {⌊|S|/2⌋, . . . , |S|}}

C. Smart Hypothesis Testing

We wish to test the hypothesis that there exists a scheduler

such that property ϕ has probability ⊲⊳ θ, where ⊲⊳∈ {≥,≤}.
Two advantages of sequential hypothesis testing are that it

is not necessary to estimate the actual probability to know

if an hypothesis is satisfied, and the easier the hypothesis

is to satisfy, the quicker it is to get a result. Algorithm

5 maintains these advantages and uses smart sampling to

improve on the performance of Algorithm 2. For the purposes

of exposition, Algorithm 5 tests H0, as described in Section

III. The algorithm to test H1 is similar.
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A sub-optimal approach would be to simply use Algorithm

4 to refine a set of schedulers until one is found whose

estimate satisfies the hypothesis with confidence according

to a Chernoff bound. We improve on this with sequential

hypothesis testing, using the results given in Section IV-C

and as applied in Algorithm 2. Algorithm 5 refines a set of

schedulers according to their estimated probability in the same

manner as Algorithm 4, but also uses the simulation results

to test each scheduler with respect to an hypothesis test for

multiple schedulers. This allows the algorithm to terminate

quickly when the hypothesis is easily satisfied.

We also include a further refinement. Smart sampling im-

plicitly exploits the fact that the average estimate at each

iteration is known with high confidence, i.e., confidence

given by the total simulation budget. This comes from the

linearity of expectation and the result of [16], where the

bound is specified for a sum of arbitrary random variables,

not necessarily with identical expectations. It follows that the

sequential probability ratio test may also be applied to the sum

of results produced during the course of an iteration. This is

because the distribution of the total number of successes after

a number of sequential hypothesis tests is equivalent to the

distribution of successes obtained with the same total number

of trials performed on the weighted average probability of

the individual unknown probabilities (the weights being the

number of trials on the individual tests). By the convexity

of the weighted average, if the hypothesis is satisfied with

respect to the total number of trials, there exists a scheduler

whose probability satisfies the hypothesis with equal or better

confidence.

In summary, if the “average scheduler” or an individual

scheduler ever satisfies the hypothesis (lines 23 and 24), the

algorithm immediately terminates and reports that the hypoth-

esis is satisfied with the specified confidence. If all schedulers

falsify the hypothesis (line 27) the algorithm terminates and

reports that no scheduler in the candidate set satisfies the

hypothesis. Note that this outcome does not imply that no

scheduler exists that will satisfy the hypothesis, only that no

scheduler was found with the given budget. If neither of the

previous conditions apply, the algorithm terminates with an

inconclusive result: there exists a scheduler in the candidate

set that does not reject the hypothesis given the parameters.

We implement one further important optimisation. We use

the threshold probability θ to directly define the simulation

budget to generate the candidate set of schedulers, i.e. N =
⌈1/θ⌉, M = ⌈θNmax⌉ (line 3). This is justified because we

need only find schedulers whose probability of satisfying ϕ
is greater than θ. By setting N = ⌈1/θ⌉, (10) ensures that

such schedulers, if they exist, have high probability of being

observed. The initial uninformed exploration (stage (i)) used

in Algorithm 4 is thus not necessary.

Algorithm 5 is our smart hypothesis testing algorithm. Note

that we do not set a precise minimum per-iteration simulation

budget because we expect the hypothesis to be decided with

many fewer simulations than would be required to estimate

the probability. In practice it is expedient to initially set a low

per-iteration budget (e.g., 1000) and repeat the algorithm with

an increased budget (e.g., increased by an order of magnitude)

if the previous test was inconclusive.

Algorithm 5: Smart Hypothesis Testing

Input:

M: an MDP

ϕ: a property

H0 : P(ω |= ϕ) ≥ θ ± ε is the hypothesis

α, β: the desired error probabilities of H0

Nmax: the per-iteration simulation budget

Output: A scheduler that satisfies H0 or an inconclusive

result

1 Let p0 = θ + ε, p1 = θ − ε
2 Let A = (1− β)/α, B = β/(1− α)
3 N ← ⌈1/θ⌉; M ← ⌈θNmax⌉
4 S ← {M seeds chosen uniformly at random}
5 ∀σ ∈ S, ∀i ∈ {1, . . . , N} : ωσ

i ← Simulate(M, ϕ, σ)

6 R← {(σ, n) | σ ∈ S ∧ N ∋ n =
∑N

i=1 1(ω
σ
i |= ϕ)}

7 if
(p1)

∑
R(σ)(1−p1)Nmax−

∑
R(σ)

(p0)
∑

R(σ)(1−p0)Nmax−
∑

R(σ) ≤ A then

8 Accept H0 and quit

9 S ← {σ ∈ S | R(σ) > 0}, M ← |S|+ 1
10 while M > 1 do

11 M ← |S|
12 Let αM = 1− M

√
1− α, βM = 1− M

√
1− β

13 Let AM = (1 − βM )/αM , BM = βM/(1− αM )
14 Let ratio = 1
15 for σi ∈ S, i ∈ {1, . . . ,M} do

16 Let ratioi = 1
17 for j ∈ {1, . . . , N} do

18 ω ← Simulate(M, ϕ, σi)
19 if ω |= ϕ then

20 ratio ← p1

p0
ratio; ratioi ← p1

p0
ratioi

21 else

22 ratio ← 1−p1

1−p0
ratio; ratioi ← 1−p1

1−p0
ratioi

23 if ratio ≤ A ∨ ratioi ≤ AM then

24 Accept H0 and quit: a scheduler exists

25 if ratioi ≥ BM then

26 Reject H0 for σi and quit this loop

27 if All schedulers rejected H0 then

28 Quit: no scheduler in candidates satisfies H0

29 R′ : {1, . . . , |S|} → S is an injective function s.t.

∀(n, σ), (n′, σ′) ∈ R′, n > n′ =⇒ R(σ) ≥ R(σ′)
30 S ← {σ ∈ S | σ = R′(n) ∧ n ∈ {⌊|S|/2⌋, . . . , |S|}}
31 A scheduler exists that does not reject H0 with the

specified α, β and ε

VI. CASE STUDIES

To demonstrate the performance of smart sampling we have

implemented Algorithms 4 and 5 in our statistical model

checking platform PLASMA [5]. We performed a number

of experiments on standard models taken from the numeri-

cal model checking literature, most of which can be found
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Fig. 5: Estimated maximum and minimum probabilities of

second collision in WLAN protocol (circles). Shaded regions

denote true values ±0.01.

illustrated on the PRISM website3. We found that all of

our estimation experiments achieved their specified Chernoff

bounds (ε = δ = 0.01 in all cases) with a relatively modest

per-iteration simulation budget of 105 simulations. The actual

number of simulation cores used for the estimation results

was subject to availability and varied between experiments.

To facilitate comparisons, in what follows we normalise all

timings to be with respect to 64 cores. Typically, each data

point was produced in a few tens of seconds. Our hypothesis

tests were performed on a single machine, without distribution.

Despite this, most experiments completed in just a few seconds

(some in fractions of a second), demonstrating that our smart

hypothesis testing algorithm is able to take advantage of easy

hypotheses.

A. IEEE 802.11 Wireless LAN Protocol

We consider a reachability property of the IEEE 802.11

Wireless LAN (WLAN) protocol, using the discrete time

(MDP) model of [25]. The protocol aims to avoid “collisions”

between devices sharing a communication channel, by means

of an exponential backoff procedure when a collision is

detected. We therefore estimate the probability of the sec-

ond collision at various time steps, using Algorithm 4 with

per-iteration budget of 105 simulations. Figure 5 illustrates

the estimated maximum probabilities (p̂max) and minimum

probabilities (p̂min) for time steps k ∈ {0, 10, . . . , 100}. The

property is expressed as Fkcol = 2. The shaded areas indicate

the true probabilities±0.01, the specified absolute error bound

using Chernoff bound ε = δ = 0.01. Our results are clearly

very close to the true values. Table I gives the results of

hypothesis tests based on the same model using property

F
100col = 2. See Section VI-B for a description.

The results illustrated in Fig. 5 refer to the same property

and confidence as those shown in Fig. 4 of [27]. The total

simulation cost to generate a point in Fig. 5 is 1.2× 106 (12

iterations of 105 simulations using smart sampling), compared

to a cost of 2.7 × 108 per point in Fig. 4 of [27] (4000

schedulers tested with 67937 simulations using simple sam-

pling). This demonstrates a more than 200-fold improvement

in performance.

3www.prismmodelchecker.org/casestudies/

CSMA 3 4
θ 0.5 0.8 0.85 0.86 0.9 0.95

time 0.5 3.5 737 * 2.9 2.5

CSMA 3 6
θ 0.3 0.4 0.45 0.48 0.5 0.8

time 1.3 5.2 79 * 39 2.6

CSMA 4 4
θ 0.5 0.7 0.8 0.9 0.93 0.95

time 0.2 0.3 4.0 8.6 * 3.8

WLAN 5
θ 0.1 0.15 0.18 0.2 0.25 0.5

time 0.8 2.6 * 2.9 2.9 1.3

WLAN 6 time 1.3 2.2 * 6.5 1.3 1.3

TABLE I: Hypothesis test results for CSMA/CD and WLAN

protocols. θ is the threshold probability or the true probability

(marked by asterisk). time is simulation time in seconds to

achieve the correct result on a single machine.

B. IEEE 802.3 CSMA/CD Protocol

The IEEE 802.3 CSMA/CD protocol is a wired network

protocol that is similar in operation to that of IEEE 802.11,

but using collision detection instead of collision avoidance. In

Table I we give the results of applying Algorithm 5 to the

IEEE 802.3 CSMA/CD protocol model of [23]. The models

and parameters are chosen to compare with results given in

Table III in [15], hence we also give results for hypothesis

tests performed on the WLAN model used in Section VI-A.

In contrast to the results of [15], our results are produced on a

single machine, with no parallelisation. There are insufficient

details given about the experimental conditions in [15] to make

a formal comparison (e.g., error probabilities of the hypothesis

tests and number of simulation cores), but it seems that the

performance of our algorithm is generally much better. We set

α = β = δ = 0.01, which constitute a fairly tight bound, and

note that, as expected, the simulation times tend to increase

as the threshold θ approaches the true probability.

C. Choice Coordination

To demonstrate the scalability of our approach we consider

the choice coordination model of [29] and estimate the mini-

mum probability that a group of six tourists will meet within

T steps. The model has a parameter (BOUND) that limits the

state space. We set BOUND = 100, making the state space

of ≈ 5× 1016 states intractable to numerical model checking.

Fortunately, it is possible to infer the correct probabilities from

tractable parametrisations. For T = 20 and T = 25 the true

minimum probabilities are respectively 0.5 and 0.75. Using

smart sampling and a Chernoff bound of ε = δ = 0.01, we

correctly estimate the probabilities to be 0.496 and 0.745 in a

few tens of seconds on 64 simulation cores.

D. Network Virus Infection

Network virus infection is a subject of increasing relevance.

Hence, using a per-iteration budget of 105 simulations, we

demonstrate the performance of Algorithm 4 on the PRISM

virus infection case study based on [24]. The network is

illustrated in Fig. 1 and comprises three sets of linked nodes:

a set of nodes containing one infected by a virus, a set of

nodes with no infected nodes and a set of barrier nodes which

divides the first two sets. A virus chooses which node to infect

nondeterministically. A node detects a virus probabilistically

and we vary this probability as a parameter for barrier nodes.
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Fig. 6: Minimum probability of network infection.
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Fig. 7: Maximum probability of network infection.

We consider time as a second parameter. Figures 6 and 7

illustrate the estimated probabilities that the target node in the

uninfected set will be infected. We observe in Figs. 6b and 7b

that the estimated minimums are within [−0.0070,+0.00012]
and the estimated maximums are within [−0.00012,+0.0083]
of their true values. The respective negative and positive

biases to these error ranges reflects the fact that Algorithm

4 converges from respectively below and above (as illustrated

in Fig. 9b). The average time to generate a point in Fig. 6 was

approximately 100 seconds using 64 simulation cores. Points

in Fig. 7 took on average approximately 70 seconds.

E. Gossip Protocol

Gossip protocols are an important class of network algo-

rithms that rely on local connectivity to propagate information

globally. Using the gossip protocol model of [22], we used

Algorithm 4 with per-simulation budget of 105 simulations to

estimate the maximum (p̂max) and minimum (p̂min) probabil-

ities that the maximum path length between any two nodes is

less than 4 after T time steps. This is expressed by property

F
Tmax path len < 4. The results are illustrated in Fig. 8.

Estimates of maximum probabilities are within [−0,+0.0095]
of the true values. Estimates of minimum probabilities are

within [−0.007,+0] of the true values. Each point in the figure

took on average approximately 60 seconds to generate using

64 simulation cores.

VII. CONVERGENCE AND COUNTEREXAMPLES

The techniques described in the preceding sections open up

the possibility of efficient lightweight verification of MDPs,

with the consequent possibility to take full advantage of

parallel computational architectures, such as multi-core pro-

cessors, clusters, grids, clouds and general purpose computing

on graphics processors (GPGPU). These architectures may
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Fig. 8: Estimated probabilities that maximum path length is

< 4 in gossip protocol model. Shaded regions denote ±0.01
of true values.

potentially divide the problem by the number of available

computational devices (i.e., linearly), however this must be

considered in the context of scheduler space increasing expo-

nentially with path length. Although Monte Carlo techniques

are essentially impervious to the size of the state space (they

also work with non-denumerable space), it is easy to construct

verification problems for which there is a unique optimal

scheduler. Such examples do not necessarily invalidate the

approach, however, because it may not be necessary to find

the possibly unique optimal scheduler to return a result with

a level of statistical confidence. The nature of the distribution

of schedulers nevertheless affects efficiency, so in this section

we explore the convergence properties of smart sampling and

give an example from the literature that does not converge as

well as the case studies in Section VI.

Essentially, the problem is that of exponentially distributed

schedulers, i.e., distributions having a very low mass of near

optimal schedulers. Figure 10 illustrates the difference be-

tween exponentially decreasing and linearly decreasing distri-

butions with the same overall mass. In both cases pmax ≈ 0.2
(the density at 0.2 is zero), but the figure shows that there

is more probability mass near 0.2 in the case of the linear

distribution.

Figure 9 illustrates the convergence of Algorithm 4, using

a per-iteration budget of 106 applied to schedulers whose

probability of success (i.e., of satisfying a hypothetical prop-

erty) is distributed according to the exponential distribution of

Fig. 10. Figure 9a shows how the initial undirected sampling

(dots) can identify a crude approximation of pmax. This

approximation is then used to generate the candidate set of

schedulers (distribution indicated with an arrow). The other

lines illustrate five iterations of refinement, resulting in a

shift of the distribution towards pmax. Figure 9b illustrates

the same shift in terms of the convergence of probability

estimates. Iteration 0 corresponds to the uninformed sampling.

Iteration 1 corresponds to the generation of the candidate set

of schedulers. Note that for these first two iterations, p̂mean

includes schedulers that have zero probability of success. The

expected value of p̂mean is therefore equal to the total mass

of non-zero probabilities in the distribution (≈ 0.0144), the

expected probability of estimates produced by the uniform

probabilistic scheduler. This fact can be used to verify that
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Fig. 9: Convergence of Algorithm 4 with exponentially dis-

tributed scheduler probabilities (Fig. 10) and per-iteration

budget of 106 simulations.
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the hash function and PRNG described in Section IV sample

uniformly. In subsequent iterations the candidates all have non-

zero probability of success. Importantly, the figure demon-

strates that there is a significant increase in the maximum

probability of scheduler success (σmax) between iteration 0

and iteration 1, and that this maximum is maintained through-

out the subsequent refinements. Despite the apparently very

low density of schedulers near pmax, Algorithm 4 is able to

make a good approximation.

The theoretical performance demonstrated in Fig. 9 explains

why we are able to achieve good results in Section VI. It

is nevertheless possible to find examples for which accurate

results are difficult to achieve. Figure 11 illustrates the results

of applying Algorithm 4 to instances of the self-stabilising al-

gorithm of [18], using a per-iteration budget of 105. Although

the estimates (dots) do not lie within our statistical confidence

bounds of the true values (shaded areas), we nevertheless

make the claim that the results are useful. In general, given

a Chernoff bound specified according to (9), our approach is

able to provide extremal probability estimates for intractable

MDPs, which are guaranteed not to be greater than the true

maximum nor less than the true minimum by more than ε with

probability δ.

To improve the performance of smart sampling it is possible

to make an even better allocation of simulation budget. For

example, if good schedulers are very rare it may be beneficial

to increase the per-iteration budget (thus increasing the possi-

bility of seeing a good scheduler in the initial candidate set)

but increase the proportion of schedulers rejected after each

iteration (thus reducing the overall number of iterations and

maintaining a fixed total number of simulations). To avoid

rejecting good schedulers under such a regime, it may be

necessary to reject fewer schedulers in the early iterations

when confidence is low.

VIII. PROSPECTS AND CHALLENGES

The use of sampling facilitates algorithms that scale inde-

pendently of the sample space, hence we anticipate that it

will be possible to apply our techniques to nondeterministic

models with non-denumerable schedulers. We believe it is

immediately possible to apply smart sampling to reward-based

MDP optimisation problems.

The success of sampling depends on the relative abun-

dance of near optimal schedulers in scheduler space and

our experiments suggest that these are not rare in standard

case studies. While it is possible to construct pathological

examples, where near optimal schedulers cannot easily be

found by sampling, it is perhaps even simpler to confound

numerical techniques with state explosion (three independent

counters ranging over 0 to 1000 is typically sufficient with

current hardware). Hence, as with numerical model checking,

our ongoing challenge is essentially to increase performance

and increase the number of models and problems that may

be efficiently addressed. Smart sampling has made significant

improvements over simple sampling, but we recognise that it

will be necessary to develop other techniques to accelerate

convergence. We anticipate that the most fruitful approaches

will be (i) to reduce the sampled scheduler space to only

those that satisfy the property and (ii) to construct composite

schedulers. Such techniques will also reduce the potential of

hash function collisions.

An important remaining challenge is to quantify the con-

fidence of our estimates and hypothesis tests with respect

to optimality. In the case of hypothesis tests that satisfy the

hypothesis, the statistical confidence of the result is sufficient.

If an hypothesis is not satisfied, however, the statistical con-

fidence does not relate to whether there exists a scheduler

to satisfy it. Likewise, the statistical confidence bounds of

probability estimates imply nothing about how close they are

to the true optima. We nevertheless know that our estimates

of the extrema must lie within the true extrema or exceed

them with the specified statistical confidence. This is already

useful and a significant improvement over the results produced

using the uniform probabilistic scheduler. In addition, given

the number of simulations performed, we may at least quantify

confidence with respect to the product pgpg (the rarity of

near optimal schedulers times the average probability of the

property with near optimal schedulers).
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