202,230 research outputs found
Modeling the emergence of a new language: Naming Game with hybridization
In recent times, the research field of language dynamics has focused on the
investigation of language evolution, dividing the work in three evolutive
steps, according to the level of complexity: lexicon, categories and grammar.
The Naming Game is a simple model capable of accounting for the emergence of a
lexicon, intended as the set of words through which objects are named. We
introduce a stochastic modification of the Naming Game model with the aim of
characterizing the emergence of a new language as the result of the interaction
of agents. We fix the initial phase by splitting the population in two sets
speaking either language A or B. Whenever the result of the interaction of two
individuals results in an agent able to speak both A and B, we introduce a
finite probability that this state turns into a new idiom C, so to mimic a sort
of hybridization process. We study the system in the space of parameters
defining the interaction, and show that the proposed model displays a rich
variety of behaviours, despite the simple mean field topology of interactions.Comment: 12 pages, 10 figures, presented at IWSOS 2013 Palma de Mallorca, the
final publication will be available at LNCS http://www.springer.com/lnc
Effect of Silicon Content on Carbide Precipitation and Low-Temperature Toughness of Pressure Vessel Steels
Cr – Mn – Mo – Ni pressure vessel steels containing 0.54 and 1.55% Si are studied. Metallographic and fractographic analyses of the steels after tempering at 650 and 700°C are performed. The impact toughness at – 30°C and the hardness of the steels are determined. The mass fraction of the carbide phase in the steels is computed with the help of the J-MatPro 4.0 software
Influence of boron content on the fracture toughness and fatigue crack propagation kinetics of bainitic steels
The relatively good combination of high strength and ductility makes bainitic steels a candidate to replace many other steels in industrial applications. However, in service, ductility and strength are not up to standard requirements. In many industrial components, toughness and fatigue performance are also very relevant. In the present study, bainitic steels with varying content of boron were fabricated, with the aim of analyzing the fracture toughness and changes in the fatigue life. The results show that a relatively small change in the boron content can cause a notable variation in the fracture toughness of bainitic steels. The maximum value obtained in fracture toughness was for the steel with the highest boron content. It was observed that the amount of interlath martensite constituents decreases in steels with the addition of boron, leading to the promotion of the presence of void coalescence and a remarkable rise in the toughness of bainitic steels. An increase on the fatigue life of the bainitic steels with an increase in the boron content was also observed, through analysis by means of Paris’ law. A comprehensive micrographic study was carried out in order to examine the mechanics of fatigue crack growth in the bainitic steels, revealing small longitudinal cracks in bainitic steels that lack boron. These cracks tend to disappear in bainitic steels that contain boron. To elucidate this behavior, micrographs of the surfaces generated by the crack growth process were taken, showing that several nano-cracks appeared between the bainite laths. It is finally argued that this high-energy consumption process of nano-crack nucleation and growth is the reason for the improved toughness and fatigue life observed in bainitic steels.Peer ReviewedPostprint (author's final draft
Study made of resistance of stainless steels to zinc-vapor corrosion
Study of the corrosion resistance of several stainless steels to zinc vapor revealed that some stainless steels could be employed for use in zinc processing equipment housings or vapor lines
Processes, microstructure and properties of vanadium microalloyed steels
Vanadium as an important alloying element in steels was initially associated with the properties achieved following tempering. Interest in the microstructure was stimulated by the advent of transmission electron microscopes with a resolution of ~1nm together with selected area electron diffraction techniques. A second timely development was that of controlled rolling, particularly of plate and sheet products. The scope of this review will include the historical background on quenched and tempered vanadium steels, precipitation during isothermal aging, conventional controlled rolling and during thin slab direct charging and the development of strength and toughness in vanadium microalloyed steels. The characterisation of microstructure, in particular the methods for the analysis of the chemical composition of precipitates, has progressed since the availability of X-ray energy dispersive analysis in the 1970s, and the role played by electron energy loss spectroscopy in providing quantitative analysis of carbon and nitrogen in vanadium microalloyed steels will be presented. There are still many topics involving vanadium microalloyed steels that are controversial. These include the nucleation sequence of homogeneous precipitates of vanadium carbonitride and whether this occurs coherently, the composition of the vanadium precipitates, the nucleation mechanism for interphase precipitation, the importance of strain induced precipitation in austenite of vanadium carbonitride, the contributions of both interphase precipitation and random precipitation in ferrite to the yield strength, and the role of the process route parameters in developing properties. These topics will be considered in this paper which concentrates on hot rolled vanadium microalloyed steels placed in the context of pertinent research on other alloys
Influence of geography on language competition
Competition between languages or cultural traits diffusing in the same
geographical area is studied combining the language competition model of Abrams
and Strogatz and a human dispersal model on an inhomogeneous substrate. Also,
the effect of population growth is discussed. It is shown through numerical
experiments that the final configuration of the surviving language can be
strongly affected by geographical and historical factors. These factors are not
related to the dynamics of culture transmission, but rather to initial
population distributions as well as geographical boundaries and
inhomogeneities, which modulate the diffusion process.Comment: typos in contact information have been corrected - text/figures not
change
Nitrogen retention/enrichment of 316LN austenitic stainless steel welds
The development of nitrogen enriched austenitic stainless steels has been a source of recent interest due to the abundant availability of nitrogen and by the manner in which nitrogen contributes several beneficial material property effects over a wide service temperature range. It is widely recognised that, in the case of nitrogen enriched 316L, improvements in mechanical property and corrosion resistance are derived from the interstitial influence of nitrogen within the matrix. Consequently, having the best combination of strength, toughness and corrosion resistance relationships found in any group of steels, nitrogen strengthened austenitic stainless steels have tremendous scope for application in areas as diverse as the cryogenic, nuclear, power generation and chemical transportation industries
On the mechanisms of wetting characteristics modification for selected metallic materials by means of high power diode laser radiation
This work elucidates and analyses the factors responsible for modifications to the wettability characteristics of metallic materials after high power diode laser (HPDL) treatment. It was found that interaction of EN3 and EN8 mild steel with HPDL radiation resulted in the wettability characteristics of the mild steels altering to various degrees depending upon the laser processing parameters. Such changes in the wettability characteristics of the mild steels were found to be due essentially to: (i) modifications to the surface roughness; (ii) changes in the surface O2 content and (iii) the increase in the polar component of the surface energy. All of these factors were seen to influence the wettability characteristics of the mild steels, however, the degree of influence exerted by each was found to differ. Work was therefore conducted to isolate each of these influential factors, thereby allowing the magnitude of their influence to be determined. This analysis revealed that surface roughness was the primary influential factor governing changes in and hence the wettability characteristics of the mild steels. Surface energy, by way of microstructural changes, was also shown to influence to a lesser extent changes in the wettability characteristics, whilst surface O2 content, by way of process gas, was found to play a minor role in inducing changes in the wettability characteristics of the mild steels
Frictional and structural characterization of ion-nitrided low and high chromium steels
Low Cr steels AISI 41410, AISI 4340, and high Cr austenitic stainless steels AISI 304, AISI 316 were ion nitrided in a dc glow discharge plasma consisting of a 75 percent H2 - 25 percent N2 mixture. Surface compound layer phases were identified, and compound layer microhardness and diffusion zone microhardness profiles were established. Distinct differences in surface compound layer hardness and diffusion zone profiles were determined between the low and high Cr alloy steels. The high Cr stainless steels after ion nitriding displayed a hard compound layer and an abrupt diffusion zone. The compound layers of the high Cr stainless steels had a columnar structure which accounts for brittleness when layers are exposed to contact stresses. The ion nitrided surfaces of high and low Cr steels displayed a low coefficient of friction with respect to the untreated surfaces when examined in a pin and disk tribotester
- …
