30,857 research outputs found

    Animal models of NASH: getting both pathology and metabolic context right

    Get PDF
    Non-alcoholic fatty liver disease (NAFLD) is the most common cause of referral to liver clinics, and its progressive form, non-alcoholic steatohepatitis (NASH), can lead to cirrhosis and end-stage liver disease. The main risk factors for NAFLD/NASH are the metabolic abnormalities commonly observed in metabolic syndrome: insulin resistance, visceral obesity, dyslipidemia and altered adipokine profile. At present, the causes of progression from NAFLD to NASH remain poorly defined, and research in this area has been limited by the availability of suitable animal models of this disease. In the past, the main models used to investigate the pathogenesis of steatohepatitis have either failed to reproduce the full spectrum of liver pathology that characterizes human NASH, or the liver pathology has developed in a metabolic context that is not representative of the human condition. In the last few years, a number of models have been described in which the full spectrum of liver pathology develops in an appropriate metabolic context. In general, the underlying cause of metabolic defects in these models is chronic caloric overconsumption, also known as overnutrition. Overnutrition has been achieved in a number of different ways, including forced feeding, administration of high-fat diets, the use of genetically hyperphagic animals, or a combination of these approaches. The purpose of the present review is to critique the liver pathology and metabolic abnormalities present in currently available animal models of NASH, with particular focus on models described in approximately the last 5 years.This research was funded through a grant. - Research in the authors' laboratory is supported by program grant 358398 from the Australian National Health and Medical Research Council (NHMRC)

    Immune and Inflammatory Pathways in Non-Alcoholic Steatohepatitis (NASH). An update

    Get PDF
    Non-alcoholic steatohepatitis (NASH), also known as fatty liver disease (FLD), is a major public health problem. It is considered to be the hepatic manifestation of the metabolic syndrome. Chronic inflammation of the liver is an essential key in the progression from simple hepatic steatosis to steatohepatitis, the evolutionary stage of fatty liver disease. Moreover, the innate immune system plays a crucial role in the progression of hepatic inflammation. For this reason, it is of utmost importance to elucidate the connections between immune mechanisms, Toll-like receptor cytokine signalling, in order to find new effective treatments. Further studies are necessary to test theories presented in this paper. The elucidation of mechanisms underlying the progression of hepatic steatosis towards steatohepatitis is essential for the development of useful diagnosis and treatment for medical practice

    The SOD2 C47T polymorphism influences NAFLD fibrosis severity: evidence from case-control and intra-familial allele association studies.

    Get PDF
    AIMS: Non-alcoholic fatty liver disease (NAFLD) is a complex disease trait where genetic variations and environment interact to determine disease progression. The association of PNPLA3 with advanced disease has been consistently demonstrated but many other modifier genes remain unidentified. In NAFLD, increased fatty acid oxidation produces high levels of reactive oxygen species. Manganese-dependent superoxide dismutase (MnSOD), encoded by the SOD2 gene, plays an important role in protecting cells from oxidative stress. A common non-synonymous polymorphism in SOD2 (C47T; rs4880) is associated with decreased MnSOD mitochondrial targeting and activity making it a good candidate modifier of NAFLD severity. METHODS: The relevance of the SOD2 C47T polymorphism to fibrotic NAFLD was assessed by two complementary approaches: we sought preferential transmission of alleles from parents to affected children in 71 family trios and adopted a case-control approach to compare genotype frequencies in a cohort of 502 European NAFLD patients. RESULTS: In the family study, 55 families were informative. The T allele was transmitted on 47/76 (62%) possible occasions whereas the C allele was transmitted on only 29/76 (38%) occasions, p=0.038. In the case control study, the presence of advanced fibrosis (stage>1) increased with the number of T alleles, p=0.008 for trend. Multivariate analysis showed susceptibility to advanced fibrotic disease was determined by SOD2 genotype (OR 1.56 (95% CI 1.09-2.25), p=0.014), PNPLA3 genotype (p=0.041), type 2 diabetes mellitus (p=0.009) and histological severity of NASH (p=2.0×10(-16)). CONCLUSIONS: Carriage of the SOD2 C47T polymorphism is associated with more advanced fibrosis in NASH

    Consensus: guidelines: best practices for detection, assessment and management of suspected acute drug-induced liver injury during clinical trials in patients with nonalcoholic steatohepatitis

    Get PDF
    BACKGROUND: The last decade has seen a rapid growth in the number of clinical trials enrolling patients with nonalcoholic fatty liver disease and nonalcoholic steatohepatitis (NASH). Due to the underlying chronic liver disease, patients with NASH often require different approaches to the assessment and management of suspected drug-induced liver injury (DILI) compared to patients with healthy livers. However, currently no regulatory guidelines or position papers systematically address best practices pertaining to DILI in NASH clinical trials. AIMS: This publication focuses on best practices concerning the detection, monitoring, diagnosis and management of suspected acute DILI during clinical trials in patients with NASH. METHODS: This is one of several papers developed by the IQ DILI Initiative, comprised of members from 15 pharmaceutical companies, in collaboration with DILI experts from academia and regulatory agencies. This paper is based on extensive literature review, and discussions between industry members with expertise in drug safety and DILI experts from outside industry to achieve consensus on common questions related to this topic. RESULTS: Recommended best practices are outlined pertaining to hepatic inclusion and exclusion criteria, monitoring of liver tests, DILI detection, approach to a suspected DILI signal, causality assessment and hepatic discontinuation rules. CONCLUSIONS: This paper provides a framework for the approach to assessment and management of suspected acute DILI during clinical trials in patients with NASH

    Relationship between adipose tissue dysfunction, Vitamin D deficiency and the pathogenesis of non-alcoholic fatty liver disease

    Get PDF
    Non-alcoholic fatty liver disease ( NAFLD) is the most common chronic liver disease worldwide. Its pathogenesis is complex and not yet fully understood. Over the years many studies have proposed various pathophysiological hypotheses, among which the currently most widely accepted is the "multiple parallel hits" theory. According to this model, lipid accumulation in the hepatocytes and insulin resistance increase the vulnerability of the liver to many factors that act in a coordinated and cooperative manner to promote hepatic injury, inflammation and fibrosis. Among these factors, adipose tissue dysfunction and subsequent chronic low grade inflammation play a crucial role. Recent studies have shown that vitamin D exerts an immune-regulating action on adipose tissue, and the growing wealth of epidemiological data is demonstrating that hypovitaminosis D is associated with both obesity and NAFLD. Furthermore, given the strong association between these conditions, current findings suggest that vitamin D may be involved in the relationship between adipose tissue dysfunction and NAFLD. The purpose of this review is to provide an overview of recent advances in the pathogenesis of NAFLD in relation to adipose tissue dysfunction, and in the pathophysiology linking vitamin D deficiency with NAFLD and adiposity, together with an overview of the evidence available on the clinical utility of vitamin D supplementation in cases of NAFLD

    Synergistic interaction of fatty acids and oxysterols impairs mitochondrial function and limits liver adaptation during nafld progression

    Get PDF
    The complete mechanism accounting for the progression from simple steatosis to steatohepatitis in nonalcoholic fatty liver disease (NAFLD) has not been elucidated. Lipotoxicity refers to cellular injury caused by hepatic free fatty acids (FFAs) and cholesterol accumulation. Excess cholesterol autoxidizes to oxysterols during oxidative stress conditions. We hypothesize that interaction of FAs and cholesterol derivatives may primarily impair mitochondrial function and affect biogenesis adaptation during NAFLD progression. We demonstrated that the accumulation of specific non-enzymatic oxysterols in the liver of animals fed high-fat+high-cholesterol diet induces mitochondrial damage and depletion of proteins of the respiratory chain complexes. When tested in vitro, 5α-cholestane-3ÎČ,5,6ÎČ-triol (triol) combined to FFAs was able to reduce respiration in isolated liver mitochondria, induced apoptosis in primary hepatocytes, and down-regulated transcription factors involved in mitochondrial biogenesis. Finally, a lower protein content in the mitochondrial respiratory chain complexes was observed in human non-alcoholic steatohepatitis. In conclusion, hepatic accumulation of FFAs and non-enzymatic oxysterols synergistically facilitates development and progression of NAFLD by impairing mitochondrial function, energy balance and biogenesis adaptation to chronic injury

    Overexpression of the vitronectin v10 subunit in patients with nonalcoholic steatohepatitis: Implications for noninvasive diagnosis of NASH

    Get PDF
    Nonalcoholic steatohepatitis (NASH) is the critical stage of nonalcoholic fatty liver disease (NAFLD). The persistence of necroinflammatory lesions and fibrogenesis in NASH is the leading cause of liver cirrhosis and, ultimately, hepatocellular carcinoma. To date, the histological examination of liver biopsies, albeit invasive, remains the means to distinguish NASH from simple steatosis (NAFL). Therefore, a noninvasive diagnosis by serum biomarkers is eagerly needed. Here, by a proteomic approach, we analysed the soluble low-molecular-weight protein fragments flushed out from the liver tissue of NAFL and NASH patients. On the basis of the assumption that steatohepatitis leads to the remodelling of the liver extracellular matrix (ECM), NASH-specific fragments were in silico analysed for their involvement in the ECM molecular composition. The 10 kDa C-terminal fragment of the ECM prote in vitro nectin (VTN) was then selected as a promising circulating biomarker in discriminating NASH. The analysis of sera of patients provided these major findings: the circulating VTN fragment (i) is overexpressed in NASH patients and positively correlates with the NASH activity score (NAS); (ii) originates from the disulfide bond reduction between the V10 and the V65 subunits. In conclusion, V10 determination in the serum could represent a reliable tool for the noninvasive discrimination of NASH from simple steatosi

    Systematic review: the diagnosis and staging of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis.

    Get PDF
    Background: Non-alcoholic fatty liver disease (NAFLD) has become the most prevalent cause of liver disease in Western countries. The development of non-alcoholic steatohepatitis (NASH) and fibrosis identifies an at-risk group with increased risk of cardiovascular and liver-related deaths. The identification and management of this at-risk group remains a clinical challenge. \ud \ud Aim: To perform a systematic review of the established and emerging strategies for the diagnosis and staging of NAFLD. \ud \ud Methods: Relevant research and review articles were identified by searching PubMed, MEDLINE and EMBASE. \ud Results: There has been a substantial development of non-invasive risk scores, biomarker panels and radiological modalities to identify at-risk patients with NAFLD without recourse to liver biopsy on a routine basis. These modalities and algorithms have improved significantly in their diagnosis and staging of fibrosis and NASH in patients with NAFLD, and will likely impact on the number of patients undergoing liver biopsy. \ud \ud Conclusions: Staging for NAFLD can now be performed by a combination of radiological and laboratory techniques, greatly reducing the requirement for invasive liver biopsy
    • 

    corecore