7,526 research outputs found

    First Weak-lensing Results from "See Change": Quantifying Dark Matter in the Two Z>1.5 High-redshift Galaxy Clusters SPT-CL J2040-4451 and IDCS J1426+3508

    Full text link
    We present a weak-lensing study of SPT-CLJ2040-4451 and IDCSJ1426+3508 at z=1.48 and 1.75, respectively. The two clusters were observed in our "See Change" program, a HST survey of 12 massive high-redshift clusters aimed at high-z supernova measurements and weak-lensing estimation of accurate cluster masses. We detect weak but significant galaxy shape distortions using IR images from the WFC3, which has not yet been used for weak-lensing studies. Both clusters appear to possess relaxed morphology in projected mass distribution, and their mass centroids agree nicely with those defined by both the galaxy luminosity and X-ray emission. Using an NFW profile, for which we assume that the mass is tightly correlated with the concentration parameter, we determine the masses of SPT-CL J2040-4451 and IDCS J1426+3508 to be M_{200}=8.6_{-1.4}^{+1.7}x10^14 M_sun and 2.2_{-0.7}^{+1.1}x10^14 M_sun, respectively. The weak-lensing mass of SPT-CLJ2040-4451 shows that the cluster is clearly a rare object. Adopting the central value, the expected abundance of such a massive cluster at z>1.48 is only ~0.07 in the parent 2500 sq. deg. survey. However, it is yet premature to claim that the presence of this cluster creates a serious tension with the current LCDM paradigm unless that tension will remain in future studies after marginalizing over many sources of uncertainties such as the accuracy of the mass function and the mass-concentration relation at the high mass end. The mass of IDCSJ1426+3508 is in excellent agreement with our previous ACS-based weak-lensing result while the much higher source density from our WFC3 imaging data makes the current statistical uncertainty ~40% smaller.Comment: Accepted to Ap

    CLASH: Weak-Lensing Shear-and-Magnification Analysis of 20 Galaxy Clusters

    Get PDF
    We present a joint shear-and-magnification weak-lensing analysis of a sample of 16 X-ray-regular and 4 high-magnification galaxy clusters at 0.19<z<0.69 selected from the Cluster Lensing And Supernova survey with Hubble (CLASH). Our analysis uses wide-field multi-color imaging, taken primarily with Suprime-Cam on the Subaru Telescope. From a stacked shear-only analysis of the X-ray-selected subsample, we detect the ensemble-averaged lensing signal with a total signal-to-noise ratio of ~25 in the radial range of 200 to 3500kpc/h. The stacked tangential-shear signal is well described by a family of standard density profiles predicted for dark-matter-dominated halos in gravitational equilibrium, namely the Navarro-Frenk-White (NFW), truncated variants of NFW, and Einasto models. For the NFW model, we measure a mean concentration of c200c=4.010.32+0.35c_{200c}=4.01^{+0.35}_{-0.32} at M200c=1.340.09+0.101015MM_{200c}=1.34^{+0.10}_{-0.09} 10^{15}M_{\odot}. We show this is in excellent agreement with Lambda cold-dark-matter (LCDM) predictions when the CLASH X-ray selection function and projection effects are taken into account. The best-fit Einasto shape parameter is αE=0.1910.068+0.071\alpha_E=0.191^{+0.071}_{-0.068}, which is consistent with the NFW-equivalent Einasto parameter of 0.18\sim 0.18. We reconstruct projected mass density profiles of all CLASH clusters from a joint likelihood analysis of shear-and-magnification data, and measure cluster masses at several characteristic radii. We also derive an ensemble-averaged total projected mass profile of the X-ray-selected subsample by stacking their individual mass profiles. The stacked total mass profile, constrained by the shear+magnification data, is shown to be consistent with our shear-based halo-model predictions including the effects of surrounding large-scale structure as a two-halo term, establishing further consistency in the context of the LCDM model.Comment: Accepted by ApJ on 11 August 2014. Textual changes to improve clarity (e.g., Sec.3.2.2 "Number-count Depletion", Sec.4.3 "Shape Measurement", Sec.4.4 "Background Galaxy Selection"). Results and conclusions remain unchanged. For the public release of Subaru data, see http://archive.stsci.edu/prepds/clash

    Three-dimensional Multi-probe Analysis of the Galaxy Cluster A1689

    Get PDF
    We perform a 3D multi-probe analysis of the rich galaxy cluster A1689 by combining improved weak-lensing data from new BVRi'z' Subaru/Suprime-Cam observations with strong-lensing, X-ray, and Sunyaev-Zel'dovich effect (SZE) data sets. We reconstruct the projected matter distribution from a joint weak-lensing analysis of 2D shear and azimuthally integrated magnification constraints, the combination of which allows us to break the mass-sheet degeneracy. The resulting mass distribution reveals elongation with axis ratio ~0.7 in projection. When assuming a spherical halo, our full weak-lensing analysis yields a projected concentration of c200c2D=8.9±1.1c_{200c}^{2D}=8.9\pm 1.1 (cvir2D11c_{vir}^{2D}\sim 11), consistent with and improved from earlier weak-lensing work. We find excellent consistency between weak and strong lensing in the region of overlap. In a parametric triaxial framework, we constrain the intrinsic structure and geometry of the matter and gas distributions, by combining weak/strong lensing and X-ray/SZE data with minimal geometric assumptions. We show that the data favor a triaxial geometry with minor-major axis ratio 0.39+/-0.15 and major axis closely aligned with the line of sight (22+/-10 deg). We obtain M200c=(1.2±0.2)×1015M/hM_{200c}=(1.2\pm 0.2)\times 10^{15} M_{\odot}/h and c200c=8.4±1.3c_{200c}=8.4\pm 1.3, which overlaps with the >1σ>1\sigma tail of the predicted distribution. The shape of the gas is rounder than the underlying matter but quite elongated with minor-major axis ratio 0.60+/-0.14. The gas mass fraction within 0.9Mpc is 10^{+3}_{-2}%. The thermal gas pressure contributes to ~60% of the equilibrium pressure, indicating a significant level of non-thermal pressure support. When compared to Planck's hydrostatic mass estimate, our lensing measurements yield a spherical mass ratio of MPlanck/MGL=0.70±0.15M_{Planck}/M_{GL}=0.70\pm 0.15 and 0.58±0.100.58\pm 0.10 with and without corrections for lensing projection effects, respectively.Comment: Accepted by ApJ. Minor textual changes to improve clarity (e.g., 5. HST STRONG-LENSING ANALYSIS). 26 pages, 17 figures. A version with high-resolution figures is available at http://www.asiaa.sinica.edu.tw/~keiichi/upfiles/Umetsu15/umetsu15.pd

    Source Selection for Cluster Weak Lensing Measurements in the Hyper Suprime-Cam Survey

    Full text link
    We present optimized source galaxy selection schemes for measuring cluster weak lensing (WL) mass profiles unaffected by cluster member dilution from the Subaru Hyper Suprime-Cam Strategic Survey Program (HSC-SSP). The ongoing HSC-SSP survey will uncover thousands of galaxy clusters to z1.5z\lesssim1.5. In deriving cluster masses via WL, a critical source of systematics is contamination and dilution of the lensing signal by cluster {members, and by foreground galaxies whose photometric redshifts are biased}. Using the first-year CAMIRA catalog of \sim900 clusters with richness larger than 20 found in \sim140 deg2^2 of HSC-SSP data, we devise and compare several source selection methods, including selection in color-color space (CC-cut), and selection of robust photometric redshifts by applying constraints on their cumulative probability distribution function (PDF; P-cut). We examine the dependence of the contamination on the chosen limits adopted for each method. Using the proper limits, these methods give mass profiles with minimal dilution in agreement with one another. We find that not adopting either the CC-cut or P-cut methods results in an underestimation of the total cluster mass (13±4%13\pm4\%) and the concentration of the profile (24±11%24\pm11\%). The level of cluster contamination can reach as high as 10%\sim10\% at R0.24R\approx 0.24 Mpc/hh for low-z clusters without cuts, while employing either the P-cut or CC-cut results in cluster contamination consistent with zero to within the 0.5% uncertainties. Our robust methods yield a 60σ\sim60\sigma detection of the stacked CAMIRA surface mass density profile, with a mean mass of M200c=(1.67±0.05(stat))×1014M/hM_\mathrm{200c} = (1.67\pm0.05({\rm {stat}}))\times 10^{14}\,M_\odot/h.Comment: 19 pages, 4 tables, 12 figures, accepted to PASJ special issu

    The mass distribution in an assembling super galaxy group at z=0.37z=0.37

    Get PDF
    We present a weak gravitational lensing analysis of supergroup SG1120-1202, consisting of four distinct X-ray-luminous groups, that will merge to form a cluster comparable in mass to Coma at z=0z=0. These groups lie within a projected separation of 1 to 4 Mpc and within Δv=550\Delta v=550 km s1^{-1} and form a unique protocluster to study the matter distribution in a coalescing system. Using high-resolution {\em HST}/ACS imaging, combined with an extensive spectroscopic and imaging data set, we study the weak gravitational distortion of background galaxy images by the matter distribution in the supergroup. We compare the reconstructed projected density field with the distribution of galaxies and hot X-ray emitting gas in the system and derive halo parameters for the individual density peaks. We show that the projected mass distribution closely follows the locations of the X-ray peaks and associated brightest group galaxies. One of the groups that lies at slightly lower redshift (z0.35z\approx 0.35) than the other three groups (z0.37z\approx 0.37) is X-ray luminous, but is barely detected in the gravitational lensing signal. The other three groups show a significant detection (up to 5σ5 \sigma in mass), with velocity dispersions between 35570+55355^{+55}_{-70} and 53055+45530^{+45}_{-55} km s1^{-1} and masses between 0.80.3+0.4×10140.8^{+0.4}_{-0.3} \times 10^{14} and 1.60.4+0.5×1014h1M1.6^{+0.5}_{-0.4}\times 10^{14} h^{-1} M_{\odot}, consistent with independent measurements. These groups are associated with peaks in the galaxy and gas density in a relatively straightforward manner. Since the groups show no visible signs of interaction, this supports the picture that we are catching the groups before they merge into a cluster.Comment: 10 pages, 10 figures, accepted for publication by Astronomy & Astrophysic

    CLASH: Mass Distribution in and around MACS J1206.2-0847 from a Full Cluster Lensing Analysis

    Get PDF
    We derive an accurate mass distribution of the galaxy cluster MACS J1206.2-0847 (z=0.439) from a combined weak-lensing distortion, magnification, and strong-lensing analysis of wide-field Subaru BVRIz' imaging and our recent 16-band Hubble Space Telescope observations taken as part of the Cluster Lensing And Supernova survey with Hubble (CLASH) program. We find good agreement in the regions of overlap between several weak and strong lensing mass reconstructions using a wide variety of modeling methods, ensuring consistency. The Subaru data reveal the presence of a surrounding large scale structure with the major axis running approximately north-west south-east (NW-SE), aligned with the cluster and its brightest galaxy shapes, showing elongation with a \sim 2:1 axis ratio in the plane of the sky. Our full-lensing mass profile exhibits a shallow profile slope dln\Sigma/dlnR\sim -1 at cluster outskirts (R>1Mpc/h), whereas the mass distribution excluding the NW-SE excess regions steepens further out, well described by the Navarro-Frenk-White form. Assuming a spherical halo, we obtain a virial mass M_{vir}=(1.1\pm 0.2\pm 0.1)\times 10^{15} M_{sun}/h and a halo concentration c_{vir} = 6.9\pm 1.0\pm 1.2 (\sim 5.7 when the central 50kpc/h is excluded), which falls in the range 4 <7 of average c(M,z) predictions for relaxed clusters from recent Lambda cold dark matter simulations. Our full lensing results are found to be in agreement with X-ray mass measurements where the data overlap, and when combined with Chandra gas mass measurements, yield a cumulative gas mass fraction of 13.7^{+4.5}_{-3.0}% at 0.7Mpc/h (\approx 1.7r_{2500}), a typical value observed for high mass clusters.Comment: Accepted by ApJ (30 pages, 17 figures), one new figure (Figure 10) added, minor text changes; a version with high resolution figures available at http://www.asiaa.sinica.edu.tw/~keiichi/upfiles/MACS1206/ms_highreso.pd
    corecore