Abstract

We present a joint shear-and-magnification weak-lensing analysis of a sample of 16 X-ray-regular and 4 high-magnification galaxy clusters at 0.19<z<0.69 selected from the Cluster Lensing And Supernova survey with Hubble (CLASH). Our analysis uses wide-field multi-color imaging, taken primarily with Suprime-Cam on the Subaru Telescope. From a stacked shear-only analysis of the X-ray-selected subsample, we detect the ensemble-averaged lensing signal with a total signal-to-noise ratio of ~25 in the radial range of 200 to 3500kpc/h. The stacked tangential-shear signal is well described by a family of standard density profiles predicted for dark-matter-dominated halos in gravitational equilibrium, namely the Navarro-Frenk-White (NFW), truncated variants of NFW, and Einasto models. For the NFW model, we measure a mean concentration of c200c=4.010.32+0.35c_{200c}=4.01^{+0.35}_{-0.32} at M200c=1.340.09+0.101015MM_{200c}=1.34^{+0.10}_{-0.09} 10^{15}M_{\odot}. We show this is in excellent agreement with Lambda cold-dark-matter (LCDM) predictions when the CLASH X-ray selection function and projection effects are taken into account. The best-fit Einasto shape parameter is αE=0.1910.068+0.071\alpha_E=0.191^{+0.071}_{-0.068}, which is consistent with the NFW-equivalent Einasto parameter of 0.18\sim 0.18. We reconstruct projected mass density profiles of all CLASH clusters from a joint likelihood analysis of shear-and-magnification data, and measure cluster masses at several characteristic radii. We also derive an ensemble-averaged total projected mass profile of the X-ray-selected subsample by stacking their individual mass profiles. The stacked total mass profile, constrained by the shear+magnification data, is shown to be consistent with our shear-based halo-model predictions including the effects of surrounding large-scale structure as a two-halo term, establishing further consistency in the context of the LCDM model.Comment: Accepted by ApJ on 11 August 2014. Textual changes to improve clarity (e.g., Sec.3.2.2 "Number-count Depletion", Sec.4.3 "Shape Measurement", Sec.4.4 "Background Galaxy Selection"). Results and conclusions remain unchanged. For the public release of Subaru data, see http://archive.stsci.edu/prepds/clash

    Similar works