178 research outputs found

    Video content analysis for intelligent forensics

    Get PDF
    The networks of surveillance cameras installed in public places and private territories continuously record video data with the aim of detecting and preventing unlawful activities. This enhances the importance of video content analysis applications, either for real time (i.e. analytic) or post-event (i.e. forensic) analysis. In this thesis, the primary focus is on four key aspects of video content analysis, namely; 1. Moving object detection and recognition, 2. Correction of colours in the video frames and recognition of colours of moving objects, 3. Make and model recognition of vehicles and identification of their type, 4. Detection and recognition of text information in outdoor scenes. To address the first issue, a framework is presented in the first part of the thesis that efficiently detects and recognizes moving objects in videos. The framework targets the problem of object detection in the presence of complex background. The object detection part of the framework relies on background modelling technique and a novel post processing step where the contours of the foreground regions (i.e. moving object) are refined by the classification of edge segments as belonging either to the background or to the foreground region. Further, a novel feature descriptor is devised for the classification of moving objects into humans, vehicles and background. The proposed feature descriptor captures the texture information present in the silhouette of foreground objects. To address the second issue, a framework for the correction and recognition of true colours of objects in videos is presented with novel noise reduction, colour enhancement and colour recognition stages. The colour recognition stage makes use of temporal information to reliably recognize the true colours of moving objects in multiple frames. The proposed framework is specifically designed to perform robustly on videos that have poor quality because of surrounding illumination, camera sensor imperfection and artefacts due to high compression. In the third part of the thesis, a framework for vehicle make and model recognition and type identification is presented. As a part of this work, a novel feature representation technique for distinctive representation of vehicle images has emerged. The feature representation technique uses dense feature description and mid-level feature encoding scheme to capture the texture in the frontal view of the vehicles. The proposed method is insensitive to minor in-plane rotation and skew within the image. The capability of the proposed framework can be enhanced to any number of vehicle classes without re-training. Another important contribution of this work is the publication of a comprehensive up to date dataset of vehicle images to support future research in this domain. The problem of text detection and recognition in images is addressed in the last part of the thesis. A novel technique is proposed that exploits the colour information in the image for the identification of text regions. Apart from detection, the colour information is also used to segment characters from the words. The recognition of identified characters is performed using shape features and supervised learning. Finally, a lexicon based alignment procedure is adopted to finalize the recognition of strings present in word images. Extensive experiments have been conducted on benchmark datasets to analyse the performance of proposed algorithms. The results show that the proposed moving object detection and recognition technique superseded well-know baseline techniques. The proposed framework for the correction and recognition of object colours in video frames achieved all the aforementioned goals. The performance analysis of the vehicle make and model recognition framework on multiple datasets has shown the strength and reliability of the technique when used within various scenarios. Finally, the experimental results for the text detection and recognition framework on benchmark datasets have revealed the potential of the proposed scheme for accurate detection and recognition of text in the wild

    Object detection, recognition and re-identification in video footage

    Get PDF
    There has been a significant number of security concerns in recent times; as a result, security cameras have been installed to monitor activities and to prevent crimes in most public places. These analysis are done either through video analytic or forensic analysis operations on human observations. To this end, within the research context of this thesis, a proactive machine vision based military recognition system has been developed to help monitor activities in the military environment. The proposed object detection, recognition and re-identification systems have been presented in this thesis. A novel technique for military personnel recognition is presented in this thesis. Initially the detected camouflaged personnel are segmented using a grabcut segmentation algorithm. Since in general a camouflaged personnel's uniform appears to be similar both at the top and the bottom of the body, an image patch is initially extracted from the segmented foreground image and used as the region of interest. Subsequently the colour and texture features are extracted from each patch and used for classification. A second approach for personnel recognition is proposed through the recognition of the badge on the cap of a military person. A feature matching metric based on the extracted Speed Up Robust Features (SURF) from the badge on a personnel's cap enabled the recognition of the personnel's arm of service. A state-of-the-art technique for recognising vehicle types irrespective of their view angle is also presented in this thesis. Vehicles are initially detected and segmented using a Gaussian Mixture Model (GMM) based foreground/background segmentation algorithm. A Canny Edge Detection (CED) stage, followed by morphological operations are used as pre-processing stage to help enhance foreground vehicular object detection and segmentation. Subsequently, Region, Histogram Oriented Gradient (HOG) and Local Binary Pattern (LBP) features are extracted from the refined foreground vehicle object and used as features for vehicle type recognition. Two different datasets with variant views of front/rear and angle are used and combined for testing the proposed technique. For night-time video analytics and forensics, the thesis presents a novel approach to pedestrian detection and vehicle type recognition. A novel feature acquisition technique named, CENTROG, is proposed for pedestrian detection and vehicle type recognition in this thesis. Thermal images containing pedestrians and vehicular objects are used to analyse the performance of the proposed algorithms. The video is initially segmented using a GMM based foreground object segmentation algorithm. A CED based pre-processing step is used to enhance segmentation accuracy prior using Census Transforms for initial feature extraction. HOG features are then extracted from the Census transformed images and used for detection and recognition respectively of human and vehicular objects in thermal images. Finally, a novel technique for people re-identification is proposed in this thesis based on using low-level colour features and mid-level attributes. The low-level colour histogram bin values were normalised to 0 and 1. A publicly available dataset (VIPeR) and a self constructed dataset have been used in the experiments conducted with 7 clothing attributes and low-level colour histogram features. These 7 attributes are detected using features extracted from 5 different regions of a detected human object using an SVM classifier. The low-level colour features were extracted from the regions of a detected human object. These 5 regions are obtained by human object segmentation and subsequent body part sub-division. People are re-identified by computing the Euclidean distance between a probe and the gallery image sets. The experiments conducted using SVM classifier and Euclidean distance has proven that the proposed techniques attained all of the aforementioned goals. The colour and texture features proposed for camouflage military personnel recognition surpasses the state-of-the-art methods. Similarly, experiments prove that combining features performed best when recognising vehicles in different views subsequent to initial training based on multi-views. In the same vein, the proposed CENTROG technique performed better than the state-of-the-art CENTRIST technique for both pedestrian detection and vehicle type recognition at night-time using thermal images. Finally, we show that the proposed 7 mid-level attributes and the low-level features results in improved performance accuracy for people re-identification

    Identification of Saudi Arabian License Plates

    Get PDF

    Identification of Saudi Arabian License Plates

    Get PDF

    Identification of Saudi Arabian License Plates

    Get PDF

    Parking lot monitoring system using an autonomous quadrotor UAV

    Get PDF
    The main goal of this thesis is to develop a drone-based parking lot monitoring system using low-cost hardware and open-source software. Similar to wall-mounted surveillance cameras, a drone-based system can monitor parking lots without affecting the flow of traffic while also offering the mobility of patrol vehicles. The Parrot AR Drone 2.0 is the quadrotor drone used in this work due to its modularity and cost efficiency. Video and navigation data (including GPS) are communicated to a host computer using a Wi-Fi connection. The host computer analyzes navigation data using a custom flight control loop to determine control commands to be sent to the drone. A new license plate recognition pipeline is used to identify license plates of vehicles from video received from the drone

    Segmentation of images by color features: a survey

    Get PDF
    En este articulo se hace la revisión del estado del arte sobre la segmentación de imagenes de colorImage segmentation is an important stage for object recognition. Many methods have been proposed in the last few years for grayscale and color images. In this paper, we present a deep review of the state of the art on color image segmentation methods; through this paper, we explain the techniques based on edge detection, thresholding, histogram-thresholding, region, feature clustering and neural networks. Because color spaces play a key role in the methods reviewed, we also explain in detail the most commonly color spaces to represent and process colors. In addition, we present some important applications that use the methods of image segmentation reviewed. Finally, a set of metrics frequently used to evaluate quantitatively the segmented images is shown

    Yield Measurement System for Seed Corn: Improving Dynamic Weight Accuracy and Harvest Area Determination

    Get PDF
    A prototype weight-based yield mapping system for seed corn production was developed at the University of Tennessee (UTK) and field tested in Iowa. The first chapter of the following study focuses on assessing the accuracy of this yield mapping system which employs a novel yield prediction and analysis software called Yield Analyzer. Yield Analyzer was designed using a rule-based system for producing yield maps with minimal user input by automatically determining acceptable ranges for known dependent variables that contribute to dynamic weight measurement errors. The second chapter of this thesis covers the development of a non-intrusive, machine vision technique to measure true width of crop entering a header during harvesting. The development of this technology would further contribute to the overall yield prediction accuracy by providing necessary information for calculating real-time changes in the area component of yield. Using a rule-based system for yield data processing, Yield Analyzer produces two levels of site-specific yield measurements. At the first level of data acquisition, cart weight measurements compared to certified scale weights at an average absolute difference of 6.07 %. At the second level of data acquisition, weight, length, and yield measurements had a higher degree of variance. For determination of effective header width, two vision-based classification methods were tested from real-time harvesting video data. The first method used color features for crop detection performed \u3e 90 % accuracy at 0.50 - 0.75 standard deviations from mean color feature descriptors. A linear support vector machine classifier trained with image SURF descriptors performed at \u3e 95 % classification accuracy when images from the entire video dataset were used for training

    License Plate Recognition using Convolutional Neural Networks Trained on Synthetic Images

    Get PDF
    In this thesis, we propose a license plate recognition system and study the feasibility of using synthetic training samples to train convolutional neural networks for a practical application. First we develop a modular framework for synthetic license plate generation; to generate different license plate types (or other objects) only the first module needs to be adapted. The other modules apply variations to the training samples such as background, occlusions, camera perspective projection, object noise and camera acquisition noise, with the aim to achieve enough variation of the object that the trained networks will also recognize real objects of the same class. Then we design two convolutional neural networks of low-complexity for license plate detection and character recognition. Both are designed for simultaneous classification and localization by branching the networks into a classification and a regression branch and are trained end-to-end simultaneously over both branches, on only our synthetic training samples. To recognize real license plates, we design a pipeline for scale invariant license plate detection with a scale pyramid and a fully convolutional application of the license plate detection network in order to detect any number of license plates and of any scale in an image. Before character classification is applied, potential plate regions are un-skewed based on the detected plate location in order to achieve an as optimal representation of the characters as possible. The character classification is also performed with a fully convolutional sweep to simultaneously find all characters at once. Both the plate and the character stages apply a refinement classification where initial classifications are first centered and rescaled. We show that this simple, yet effective trick greatly improves the accuracy of our classifications, and at a small increase of complexity. To our knowledge, this trick has not been exploited before. To show the effectiveness of our system we first apply it on a dataset of photos of Italian license plates to evaluate the different stages of our system and which effect the classification thresholds have on the accuracy. We also find robust training parameters and thresholds that are reliable for classification without any need for calibration on a validation set of real annotated samples (which may not always be available) and achieve a balanced precision and recall on the set of Italian license plates, both in excess of 98%. Finally, to show that our system generalizes to new plate types, we compare our system to two reference system on a dataset of Taiwanese license plates. For this, we only modify the first module of the synthetic plate generation algorithm to produce Taiwanese license plates and adjust parameters regarding plate dimensions, then we train our networks and apply the classification pipeline, using the robust parameters, on the Taiwanese reference dataset. We achieve state-of-the-art performance on plate detection (99.86% precision and 99.1% recall), single character detection (99.6%) and full license reading (98.7%)

    Big data analytics and processing for urban surveillance systems

    Get PDF
    Urban surveillance systems will be more demanding in the future towards smart city to improve the intelligence of cities. Big data analytics and processing for urban surveillance systems become increasingly important research areas because of infinite generation of massive data volumes all over the world. This thesis focused on solving several challenging big data issues in urban surveillance systems. First, we proposed several simple yet efficient video data recoding algorithms to be used in urban surveillance systems. The key idea is to record the important video frames when cutting the number of unimportant video frames. Second, since the DCT based JPEG standard encounters problems such as block artifacts, we proposed a very simple but effective method which results in better quality than widely used filters while consuming much less computer CPU resources. Third, we designed a novel filter to detect either the vehicle license plates or the vehicles from the images captured by the digital camera imaging sensors. We are the first to design this kind of filter to detect the vehicle/license plate objects. Fourth, we proposed novel grate filter to identify whether there are objects in these images captured by the cameras. In this way the background images can be updated from time to time when no object is detected. Finally, we combined image hash with our novel density scan method to solve the problem of retrieving similar duplicate images
    corecore