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Abstract 

A prototype weight-based yield mapping system for seed corn production was developed at the 

University of Tennessee (UTK) and field tested in Iowa. The first chapter of the following study 

focuses on assessing the accuracy of this yield mapping system which employs a novel yield 

prediction and analysis software called Yield Analyzer. Yield Analyzer was designed using a rule-

based system for producing yield maps with minimal user input by automatically determining 

acceptable ranges for known dependent variables that contribute to dynamic weight measurement 

errors.  

The second chapter of this thesis covers the development of a non-intrusive, machine vision 

technique to measure true width of crop entering a header during harvesting. The development of 

this technology would further contribute to the overall yield prediction accuracy by providing 

necessary information for calculating real-time changes in the area component of yield.  

Using a rule-based system for yield data processing, Yield Analyzer produces two levels of site-

specific yield measurements. At the first level of data acquisition, cart weight measurements 

compared to certified scale weights at an average absolute difference of 6.07 %. At the second 

level of data acquisition, weight, length, and yield measurements had a higher degree of variance.  

For determination of effective header width, two vision-based classification methods were tested 

from real-time harvesting video data. The first method used color features for crop detection 

performed > 90 % accuracy at 0.50 - 0.75 standard deviations from mean color feature 

descriptors.  A linear support vector machine classifier trained with image SURF descriptors 

performed at  > 95 % classification accuracy when images from the entire video dataset were used 

for training.  



  

iv 

 

Table of Contents 

Introduction  Yield Monitoring Systems ..........................................................................................1 

Objectives ................................................................................................................................... 3 

Chapter 1  Rule-Based Technique For Improving Yield Accuracy ..................................................4 

Background & Review of Literature .......................................................................................... 5 

Objectives ................................................................................................................................... 7 

Prior Study .................................................................................................................................. 7 

Methods and Materials .............................................................................................................. 12 

Yield Monitoring System Description .................................................................................. 12 

Weighing System .............................................................................................................. 12 

Data Acquisition................................................................................................................ 14 

Yield Data Analysis............................................................................................................... 15 

Determination of Machine States of Operation ................................................................ 17 

Yield Mapping ...................................................................................................................... 20 

Validation .............................................................................................................................. 24 

Results and Discussion ............................................................................................................. 26 

Chase Cart to Tractor Trailer............................................................................................. 26 

Polygon to Chase Cart ...................................................................................................... 30 

Polygon to Polygon ........................................................................................................... 35 

Recommendations ..................................................................................................................... 37 

Chapter 2  A Vision-based Approach for Crop Width Determination............................................38 

Background  & Review of Literature ....................................................................................... 39 

Computer Vision and Machine Learning in Crop Production .............................................. 40 

Objectives ................................................................................................................................. 41 

Methods & Materials ................................................................................................................ 42 

Data Acquisition.................................................................................................................... 42 

Digital Image Processing ...................................................................................................... 43 



  

v 

 

Segmentation......................................................................................................................... 44 

Method 1: Color-based Image Classification ....................................................................... 45 

RGB Color Model ............................................................................................................. 45 

HSI Color Model............................................................................................................... 46 

Description of Color-based Classification Method ........................................................... 47 

RGB to HSI Color Transformation ................................................................................... 48 

Threshold Determination .................................................................................................. 48 

Classification Using Decision Rule .................................................................................. 50 

Results and Discussion ..................................................................................................... 51 

Method 2: Texture-based Image Classification .................................................................... 52 

Bag of Feature Image Classification ................................................................................. 53 

Speeded Up Robust Features ............................................................................................ 54 

Support Vector Machines .................................................................................................. 55 

Results and Discussion ..................................................................................................... 56 

Recommendations ..................................................................................................................... 58 

Conclusions ....................................................................................................................................59 

References ......................................................................................................................................60 

Appendix ........................................................................................................................................65 

Appendix A – SAS Output ........................................................................................................ 66 

Appendix B – Image Processing Scripts ................................................................................... 77 

Appendix C – Image Classification Tests ................................................................................. 87 

Vita ...............................................................................................................................................100 

 

  



  

vi 

 

List of Tables 

 

Table 1. Seed corn production jargon and definitions. ................................................................... 8 

Table 2. System-acquired attributes. ............................................................................................. 14 

Table 3. System-calculated Attributes. ......................................................................................... 15 

Table 4. Rule Configuration Metrics ............................................................................................ 19 

Table 5. Area and yield comparisons between the polygon dataset and the chase cart dataset for 

Field 1. .................................................................................................................................. 33 

Table 6. Area and yield comparisons between the polygon dataset and the chase cart dataset for 

Field 2. .................................................................................................................................. 33 

Table 7. Area and yield comparisons between the polygon dataset and the chase cart dataset for 

Field 3. .................................................................................................................................. 33 

Table 8. Area and yield comparisons between the polygon dataset and the chase cart dataset for 

Field 4. .................................................................................................................................. 34 

Table 9. Area and yield comparisons between the polygon dataset and the chase cart dataset for 

Field 5. .................................................................................................................................. 34 

Table 10. One-way repeated measures for yield data by field. ..................................................... 35 

Table 11. Normalized hue, saturation, and intensity components for classification. ................... 50 

Table 12. Confusion matrix for color-based decision rule classification performance. ............... 52 

Table 13. Average accuracy for each combination of training and testing data. .......................... 57 

 

  



  

vii 

 

List of Figures 

 

Figure 1. Seed corn harvesting machine machines units used during harvest ................................ 9 

Figure 2. Dynamic loading into a towed cart. ............................................................................... 10 

Figure 3. Load transfer from harvester to chase cart. ................................................................... 10 

Figure 4. Side loading. .................................................................................................................. 11 

Figure 5. 100% Side loading ......................................................................................................... 11 

Figure 6. Schematic of yield monitoring hardware configuration. ............................................... 13 

Figure 7. Flow of data from raw and input data to Yield Analyzer output. .................................. 16 

Figure 8. Time domain of harvester velocity and towed weighing cart (Wilkerson, 2015). ........ 18 

Figure 9. Yield map with spatial resolution set to 10 - 30 m yield representations...................... 21 

Figure 10. Yield map with spatial resolution set to 10 - 30 m yield representations.................... 22 

Figure 11. Yield map with spatial resolution set to 70 - 90 m yield representations.................... 23 

Figure 12. Polygon determination and validation to chase cart yield measurements. .................. 25 

Figure 13. Chase cart to tractor trailer load comparison for Field 1. ............................................ 27 

Figure 14. Chase cart to tractor trailer load comparison for Field 2. ............................................ 27 

Figure 15. Chase cart to tractor trailer load comparison for Field 3. ............................................ 28 

Figure 16. Chase cart to tractor trailer load comparison for Field 4. ............................................ 28 

Figure 17. Chase cart to tractor trailer load comparison for Field 5. ............................................ 29 

Figure 18. Stacked maps at various polygon lengths. ................................................................... 36 

Figure 19. Example of a situation mid-field where the harvester harvested at 50% of the header 

capacity. ................................................................................................................................ 43 

Figure 20. Features and regions of interest used for detecting presence of crop rows. ................ 44 

Figure 21. RGB color space model (Instruments, 2016). ............................................................. 46 

Figure 22. Method 1 pipeline using color descriptors for image classification ............................ 47 

Figure 23. Distribution of pixels for an active ROI. ..................................................................... 49 

Figure 24. Distribution of pixels for an inactive ROI. .................................................................. 49 

Figure 25. Classification scheme  for color-based method, where K is knowledge derived from 

the training data represented in Equation 5. .......................................................................... 51 

Figure 26. Method 2 pipeline using texture descriptors for image classification. ........................ 53 

Figure 27. Bag of words image classification method. ................................................................. 54 



  

viii 

 

Figure 28. (A) Various possible decision boundaries (B) Optimal decision boundary using SVM

 ............................................................................................................................................... 56 



  

1 

 

Introduction  

Yield Monitoring Systems 

Yield monitors have become an integral component to many modern farming operations since 

it became commercially available for combines in the early 1990s (Griffin, 2010). These systems 

are designed to collect geo-referenced yield measurements and allow producers to evaluate the 

performance of their crops and assess variability within their fields. From these evaluations, 

producers have the ability to make informed decisions for optimizing the management and 

production of their operations.  

Harvesting techniques are not standard across all varieties of crop; therefore, yield monitoring 

systems must be crop-specific and/or harvester-specific. Though data acquisition systems for 

various yield monitors may differ, the data from yield monitoring systems for any crop are subject 

to similar errors. B. Blackmore and Marshall (1996) analyzed data collected from grain yield 

monitoring systems and discovered six main error sources that contribute to yield data 

inaccuracies. The following is a list of the attributes that contribute to error in no particular order:  

1) Lag and fill times of material through the machine,  

2) Error due to GPS,  

3) Material loss,  

4) Material flow through the harvesting machinery,  

5) Sensor accuracy and calibration, and  

6) Unknown crop width entering the header  

It is important to make corrections for each of these error sources in order to increase the yield 

measurement accuracy of these systems. Yield monitors producing significant amounts of error 

can lead to producers making unnecessary changes to their current field operation procedures 

based on the evaluations of inaccurate yield data. For this reason, there have been many studies 
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focused on developing solutions for correcting these errors, though no methods have been 

standardized (Sudduth & Drummond, 2007).  

Yield is a measurement of the quantity of crop harvested over a given area.  As seen in Equation 

1, yield is made up of three components: weight, length, and header width. Each of these 

components is measured by different hardware within a yield monitoring system, and a yield 

measurement is then calculated from each of the measured components. The methods for obtaining 

a measurement for each of these components may differ depending on the type of crop that is being 

harvested and the equipment used. 

 

 𝑌𝑖𝑒𝑙𝑑 =  
𝑊

𝐿 × 𝐻
  (1) 

Where 

W = weight measurement of harvested crop (kgs), 

L = distance travelled since last measurement (m), and 

H = width of crop entering the header of a harvester (m). 

 

In an ongoing study conducted by the University of Tennessee (UT), a yield monitoring system 

for seed corn was designed, prototyped, and field-tested on two pickers and four weighing carts(in-

tow or side loading) during a commercial-scale harvesting operation . To obtain the weight 

component of a yield measurement, this system used weight-based scales typically designed for 

static measurement systems. For the length component, GPS data was collected and the distance 

between each measurement was calculated. For the H component of a yield measurement, the 

system currently assumes a constant width throughout the harvesting operation. 

While all errors must eventually be addressed, the overall objective of this study was to address 

error sources #5 and #6 discovered by B. Blackmore and Marshall (1996). This proposal is divided 

into two chapters providing a separate discussion for sensor accuracy and unknown crop harvest 
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width. In the first chapter, the error attributed to sensor accuracy (#5) is discussed as it pertains to 

the weight component of a yield measurement. A post-harvest, data processing method was used 

to increase the accuracy of reported yield measurements. In Chapter 2, the error attributed to 

unknown crop harvest width (#6) is discussed along with an in-lab, proof-of-concept for a vision-

based approach to measuring the actual width of crop entering the header. 

Objectives 

The overall objective was to develop a system for determining accurate, site-specific yield 

measurements for seed corn. This study will contribute to the continued development of the 

weight-based, yield monitoring system for seed corn developed by UT. The first goal was to 

evaluate the use of the weight-based scales in a dynamic harvesting operation. This evaluation was 

conducted by using a post-harvest method for determining accurate weight measurements based 

on the operational conditions of the machine when measurements were taken. The second goal 

was to develop a visual means of measuring the actual harvest width throughout the harvesting 

operation. Specific objectives were:  

1) To evaluate a rule-based technique for measuring site-specific yield variability within a seed 

corn field. 

2) To validate the yield measurement accuracy under field harvest conditions. 

3) To evaluate computer vision techniques for row-crop detection.  
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Chapter 1  

Rule-Based Technique For Improving Yield Accuracy 
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Background & Review of Literature 

In the United States alone, more than 90 million agricultural acres are designated for planting 

corn (Capehart, 2016). Since the discovery of hybrid seed corn in the early 1900s, the use of hybrid 

seed corn over conventional open-pollinated varieties of corn became widespread. By the mid 

1960s, hybrid seed for corn made up over 95% of farmland dedicated to corn production (Fernades-

Cornejo, 2004). Unlike conventional corn production,  where combines are used to harvest corn 

and separate kernels, in seed production corn must be harvested with husks intact in order to protect 

the seed. Yield monitoring systems have been developed for conventional corn harvesting 

methods, but there is no commercially available option for seed corn. 

In 2013, a weight-based yield monitoring system for seed corn was designed and prototyped at 

the University of Tennessee. Weight-based yield monitoring systems have been used for the 

peanut, sugar beet, and potato row crops to name a few industries (Schneider, Von Rawlins, Han, 

Evans, & Campbell, 1996; Thomas et al., 1999; Walter, Hofman, & Backer, 1996).  Walter et al. 

(1996) design a slide bar weighing system to measure the load of crop on a conveyor system that 

performed at < 3% error during an in-field study. In a study for measuring yield of citrus, Whitney, 

Miller, Wheaton, Salyani, and Schueller (1999) designed a system that implemented four shear 

load cells measuring the weight of pallet bins containing harvested fruit with large correlation 

between the measure and actual yield (r = 0.83, p = 0.0001).  

The ultimate goal of using yield monitoring systems is to develop maps that allow producers to 

visualize the yield variability within their fields. To make use of the yield data collected from the 

field, the data must first be calibrated, analyzed for errors, and corrected. There are several popular 

yield editing programs available for adjusting and filtering yield data. Sudduth and Drummond 

(2007) developed Yield Editor, to identify and remove outlying observations from raw yield data. 

Yield Editor is a widely used program provided through the U.S. Department of Agriculture that 
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implements filters to edit yield data for commercially available yield monitoring systems like Ag 

Leader or Greenstar. The latest version of this software, Yield Editor 2.0, gives users the ability to 

select from 12 different filters.  Of the filters used in Yield Editor 2.0, the three that address outliers 

in weight measurements are the maximum yield (MAXY), the minimum yield (MINY), and the 

standard deviation of yield (STDY) filters. 

The MAXY and MINY filters require user input for threshold values that represent the minimum 

expected yield and the maximum expected yield for a given field. These filters require prior 

knowledge of the expected performance of the fields, which may be difficult for new users without 

sufficient historical data. Additionally, by setting thresholds for expected maximum and minimum 

yields, yield measurements that may be accurate but fall outside of the range of expected yields 

would be completely removed. Nevertheless, these methods are commonly used, and in some 

cases, are the only filters that are applied to yield data  (Simbahan, Dobermann, & Ping, 2004).  

The third filter, STDY, identifies data points that are greater than a user-determined number of 

standard deviation coefficients from the mean of the entire field. This approach to removing 

outliers in the yield data has been studied by several researchers. Thylen and Murphy (1996) 

suggest that yield measurements greater than two times the standard deviation of the field mean 

should be removed, and Ping and Dobermann (2005) suggest that the STDY threshold be set to 

three. Simbahan et al. (2004) suggest that there should not be a set threshold, but that the value 

should be adjusted based on the range of the true yield variation for each field. Sudduth and 

Drummond found this parameter difficult to set and discovered that using 3 standard deviations 

led to the removal of what may have been valid data (2007). 

Three additional filters used in Yield Editor 2.0 that reject yield points are the maximum velocity 

(MAXV), minimum velocity (MINV), and smooth velocity (SMV) filters. The MAXV and MINV 
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filters remove samples taken when velocity of the harvester falls outside of the expected harvesting 

velocity range. The  SMV filter removes samples taken while the harvester experiences any rapid 

change in velocity. 

Though Yield Editor and similar yield correction methods offer the removal of seemingly 

erroneous data, these tools heavily rely on user input and some statistical filtering. The focus of 

the study discussed in this chapter evaluates a novel yield analysis and mapping technique for 

increasing yield measurement accuracy without filtering yield data. Yield Analyzer is currently 

programmed for specific use with UT’s yield monitoring system for seed corn. 

Objectives 

Yield monitoring systems consist of three distinct parts: real-time acquisition of yield attributes 

(weight and area) and other attributes that impact the quality of the yield attributes, yield 

validation, and yield mapping. This studied focused on the yield data analysis and mapping 

techniques. The specific objectives of the study are: 

1. Evaluate the rule-based, yield mapping technique implemented in Yield Analyzer, a yield 

analysis software developed by researchers at UT. 

2. Validate in-field, dynamic weight measurements collected by the system using certified 

scale weights. 

Prior Study 

Researchers at UT worked closely with an international commercial seed production company 

to develop and test the yield monitoring system. Harvesting operations for this producer required 

the use of several machines for the harvesting and transporting of seed corn from the field to the 

production facility. Table 1 lists all the harvesting equipment and other frequently used terms for  

describing the harvesting operation. 
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Table 1. Seed corn production jargon and definitions. 

Term Definition 

Picker, Harvester Equipment used for harvesting 

Chase cart 

Tractor with towed cart used for transferring crop 

from harvester (picker) to a tractor trailer. Used for 

side loading and static transfers. 

Cart 
Cart towed by picker or tractor instrumented with 

weighting system. 

Tractor Trailer 
Semi-trailer and road tractor used for hauling 

harvested material from field to processing facility. 

Field 
Area of land used for growing seed corn. Has a pre-

measured shapefile with harvest boundaries. 

Processing 

Facility 
Central terminal location for seed corn processing. 

Weigh Station 
Location at processing facility where tractor trailer 

weights are recorded by a certified scale. 

Yield Harvested crop (weight) divided by harvested area. 

Yield 

Monitoring 

System (YMS) 

Data acquisition system used for collecting real-time 

yield data. 
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For any given field, a different combination of harvesters, chase carts, and tractor trailers may 

be used. The configuration of machines is determined by the production manager’s preferences. 

The possible machine configurations and operational states of the machines are illustrated in 

Figure 1 through Figure 5. In Figure 1, three main machine units used during the harvesting process 

are illustrated. A semi-tractor trailer, not illustrated, is used to transport the harvested material from 

the field to the processing facility for drying, sorting, and packaging.. 

Figure 2 through Figure 5 illustrate possible machine configurations and operational states that 

occur during the harvesting process. Though these may not be all possible configurations and 

operational states, they are some of the most common. In this study, the only configuration of 

machines used for data acquisition was a harvester with towed storage and a single corresponding 

chase cart. The operational states illustrated in Figures 2, 3, and 4 were all possible operational 

states that were identified for the machine configuration used. 

 

 

 
Figure 1. Seed corn harvesting machine machines units used during harvest 
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Figure 2. Dynamic loading into a towed cart. 

 

 

 
Figure 3. Load transfer from harvester to chase cart.  
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Figure 4. Side loading. 

 

 

 
Figure 5. 100% Side loading 
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Methods and Materials 

Yield Monitoring System Description 

The embedded system, seen in Figure 6, is programmed to collect data from an on-board GPS 

unit (Trimble Copernicus II) and an in-cab scale display interfaced with three load cells. In 2013, 

scale readings were recorded by interfacing the display unit with the data acquisition unit via an 

RS232 interface. Three load cells (Avery Weigh-Tronix) mounted to the two axles and the hitch of 

a trailer cart towed by the harvester or tractor. Therefore, yield measurements were represented by 

the accumulation of harvested crop over a known distance. 

To accommodate for the multi-machine harvesting configuration, the system uses wireless 

communication devices to communicate with peripheral systems via Wi-Fi and RF data modems. 

Auxiliary sensors may easily be adapted to wirelessly communicate with the central unit. The 

discreet design requires no user input and has no display monitor. Data is extracted from the system 

through a USB interface. 

Weighing System 

Limited by the inability to modify the harvesting equipment used for harvesting seed corn, the 

yield monitoring system was designed to use existing load cells for measuring the accumulated 

weight of corn in the trailer carts. Commercially available load cells designed specifically for 

agricultural applications allowed for the integration of a weighing system with virtually no 

influence to the operation of any of the machines used in the study. Three weigh bars and a model 

640M indicator from Avery Weigh-Tronix, make up the weighing system used in the design.  
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Figure 6. Schematic of yield monitoring hardware configuration. 
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Data Acquisition 

This study analyzes the performance of two YMS over five commercial hybrid corn seed fields 

located in Iowa. One YMS was installed on a harvester unit, and the second was installed on the 

corresponding chase cart unit. Each system operated at a sampling rate of 1 Hz, collecting each of 

the attributes list in Table 2. From the raw data collected by the system, additional attributes were 

calculated for data analysis purposes. These calculated attributes are seen and described in Table 

3. 

The five fields used in this study varied based on the row length of a single pass in the field. 

The range of lengths evaluated were approximately 480 m to 800 m across. Fields 1 and 2 

measured  >750 m across, Fields 3 and 5 measured between approximately 700 m and 600 m 

across, and Field 4 measured  < 500 m across.  

 

Table 2. System-acquired attributes. 

Attribute Description  

System ID Unique ID 

UTC Universal Time Coordinate (GMT) 

Latitude Degree (WGS84) 

Longitude Degree (WGS84) 

Speed Over Ground (SOG) mph 

Course Over Ground (COG) Degrees 

Scale Reading Reading from load cell interface. Used 

for weight determination. 
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Table 3. System-calculated Attributes. 

Attribute Description and Units 

Cart Weight 3-point running average (Lbs) 

Change in Cart Weight  Change in weight from previous (Lbs) 

Distance Travelled  Distance to previous point (m) 

Change in SOG Used for detecting acceleration (mph/s) 

Change in COG Used for detecting change in angular velocity 

(degrees/s) 

Yield Weight over area travelled (kg/m) 

Header Width Constant value. Either 12 or 14 row. 30”/row. 

 

Yield Data Analysis 

As part of UT’s development of a mass-based yield monitoring system for seed corn, a user-

driven, post-harvest program, called Yield Analyzer, was written to take in the raw data collected 

from the fields, process the data via a rule-based technique, and generate a shape file that represents 

yield measurements at a user-defined spatial resolution as outlined in Figure 7. Yield Analyzer 

extracts multiple levels of information that are discusses in the following sections. Six distinct 

Yield Analyzer tasks are: 

1. Conversion of raw data into a conventional data format 

2. Determination of the operational machine state for each data point 

3. Calculation of total time machine spent in each operational state 

4. Identification of anchor points used for representing yield variation 

5. Detection of all load transfers from harvester to chase cart and chase cart to tractor trailer 

6. Generation of geospatial vector data for yield mapping purposes 
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Figure 7. Flow of data from raw and input data to Yield Analyzer output. 
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Determination of Machine States of Operation 

The data collected by the YMS provides information that can be used to classify the operational 

state of the machine for each data point. In Figure 8, the speed over ground and accumulative 

weight of a harvester trailer are plotted as a function of time (UTC). With initial analysis of the 

data, certain operational states of the harvesting machine can be predicted as noted in Figure 8 

where there is a peak in weight at 25,055 Lbs followed by a sharp drop in weight to near 0 Lbs, 

and the speed of the vehicle decreases to 0 mph. This behavior, for example, can be associated 

with the transfer of load from a harvester to a chase cart. Other patterns have been associated with 

the operational states of: starting up, harvesting, unloading, waiting, side loading, and other. The 

other state includes irrelevant or indeterminate states.  

Classification of the operational states in which samples were taken, provided an additional 

attribute used to determine the quality of the other attributes measured. Additionally, by 

determining operational states of the in-field machines, producers would have the ability to assess 

not only the productivity of their fields, but also the operational efficiency of their harvesting 

system. 

The metrics used to define each operational state are listed in Table 4. However, specific criteria 

used for identifying operational states are beyond the scope of this project. Each of the metric 

limitations are determined by pre-harvest user input, prior knowledge, or field statistics. 
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Figure 8. Time domain of harvester velocity and towed weighing cart (Wilkerson, 2015). 

  



  

19 

 

Table 4. Rule Configuration Metrics 

Rule Metric Description 

maxAcceleration Maximum acceleration (mph/s) 

minIntegrationLength 

User-defined. Shortest allowed polygon 

length for yield representation. Target length 

is midpoint of min- and 

maxIntegrationLength. (m) 

maxIntegrationLength 
User-defined. Longest allowed polygon 

length. (m) 

maxTurn Greatest turn rate allowed (degrees/s) 

minYield Minimum yield required for polygon (lbs/m) 

maxDeltaWeight Greatest increase in weight allowed (lbs/s) 

minOperatingSOG 
Below this is not considered harvesting/side 

loading (mph) 

maxOperatingSOG 
Above this not considered harvesting/ side 

loading (mph) 

minSogStdDevs 

Considers points this many standard 

deviations below the mean as not 

harvesting/side loading 

maxSogStdDevs 

Considers points this many standard 

deviations above the mean as not harvesting/ 

side loading 

sideloadCOGDif 

Checks if harvester COG matches chase cart 

COG for side loading determination. 

(degrees) 

sideloadSOGif 
Checks if harvester SOG matches chase cart 

SOG for side loading determination. (mph) 

sideloadDist 
Checks distance between harvester and chase 

cart for side loading determination (m) 
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Yield Mapping 

Conventionally, pre-processing for yield data includes the removal of samples collected outside 

of the field boundaries, the removal of samples that represent start- and end-pass delays, and 

shifting the raw data to correct for the delay of crop flow through the system. Similarly, Yield 

Analyzer applies these preliminary processes to the raw data using field boundary shapefiles and 

a constant lag shift of 6 seconds for both the chase cart and the harvester.  

In Yield Analyzer, not all points from a field dataset are used to produce yield maps. Unlike 

most yield analysis software, Yield Analyzer does not use filters to remove yield data. Instead, 

Yield Analyzer searches for points throughout the dataset that meet a set of criteria that would 

suggest a high degree of accuracy in the measurement. The criteria, or rules, are determined on the 

basis of physical limitations, expert knowledge, and field statistics. The points that meet the criteria 

are called anchor points and are used for yield representation when producing maps.  

Yield Analyzer defines yield measurements over an area not a point. This area is referred to 

throughout this paper as polygons. Users define the range of desired integration length for yield 

representation and yield maps are generated accordingly. Figures 9, 10, and 11 are examples of 

yield maps generated at 10 -30 m, 30 - 50 m, and 70 - 90 m spatial resolution settings.  

Yield Analyzer takes the average of the user-defined range and searches for anchor points at 

intervals of that distance. The anchor points determine the starting and ending points for yield 

representation. Since weight measurements are accumulated weight, yield is calculated using 

Equation 1 where W is the difference of weight from the starting and ending anchor points, L is 

the distance between the two points times, and H is the assumed the header width.  
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Figure 9. Yield map with spatial resolution set to 10 - 30 m yield representations.  
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Figure 10. Yield map with spatial resolution set to 10 - 30 m yield representations. 
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Figure 11. Yield map with spatial resolution set to 70 - 90 m yield representations 



  

24 

 

Each polygon in the yield maps represented above is determine by locating anchor points in the 

raw data that have been determined to be in good standing based by the rule-based system. Yield 

is then determined by taking the yield accumulated from the starting anchor point to ending anchor 

point and dividing that by the distance between anchor points. Figure 12 illustrates a general 

example of how polygons are determined.  

Yield Analyzer searches for anchor points throughout the raw data and aims for intervals based 

on polygon length setting. If the program determines that a point does not meet the criteria outlined 

by Yield Analyzer, the program will continue to look at the surrounding points on either side to 

find an anchor point until the interval exceeds the minimum or maximum polygon length settings. 

If the program is unable to find an anchor point with the polygon length settings, the program will 

look ahead the length of a polygon and search for a  new starting anchor point. 

All polygons formed are associated to the corresponding chase cart unload weight measurement. 

This correspondence provides a means to validate the yield determined by the sum of the polygons 

that correspond to a single chase cart unload. Additionally, the polygon yield measurements can 

be calibrated based on the truth values from the chase cart every time there is a load transfer from 

the harvester to the chase cart. 

Validation 

The validation of the weight measurements obtain in the field is two part. First, chase cart unload 

weights are compared to the corresponding tractor trailer weights measured on certified scales. 

This part of the validation shows how the weighing system performs under static conditions in the 

field as chase cart unload weights are determined in a static state right before load transfer to the 

tractor trailer. During the harvesting operation in which the data set was collected, weight data was 

collected from certified scales. This scale data provides true weight data for every tractor trailer  
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Figure 12. Polygon determination and validation to chase cart yield measurements. 
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load which is equivalent to 2-3 load transfers from chase carts. Each tractor trailer load is traced 

backed to the chase cart load transfers, and each chase cart load has an associated harvester unload. 

This data will be used to validate the in-field yield monitoring system performance and variability 

in accuracy with respect to spatial resolution. 

The second part of the validation is to compare the yield measurements determined by the 

polygons. The polygon yield measurements are calculated from data obtained under dynamic 

conditions within the field. A comparison of the polygon yield measurements and the chase cart 

yield measurements are made in the Results section. Lastly, polygon length settings can vary based 

on user preference. In order to test the repeatability of the yield measurements at varying polygon 

length settings, a sensitivity analysis between five different polygon lengths settings were 

evaluated.  

Results and Discussion 

Chase Cart to Tractor Trailer 

The first comparison is made between each tractor trailer unload and the corresponding weight 

measurements from chase cart unloads. Every tractor trailer load weighed at the processing facility 

can be traced back to the chase cart unloads the crop originated from. This association is made 

based on the recorded dates and times of load transfers by the tractor trailer operators and the date 

and time attributes for each chase cart unload detected by Yield Analyzer. Figures 13 - 17 illustrate 

how the sum of the chase cart unloads compare with each tractor trailer load. Only weight 

measurements are compared at this level because tractor trailer weights do not correspond to any 

measured area. 
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Figure 13. Chase cart to tractor trailer load comparison for Field 1. 

 

 

 

Figure 14. Chase cart to tractor trailer load comparison for Field 2. 
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Figure 15. Chase cart to tractor trailer load comparison for Field 3. 

 

 

 

Figure 16. Chase cart to tractor trailer load comparison for Field 4. 
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Figure 17. Chase cart to tractor trailer load comparison for Field 5. 

 

Figure 13 illustrates that Field 1 required four tractor trailer loads to transfer the crop from the 

field to the processing facility. The sum of the detected chase cart unloads that correspond to each 

tractor trailer load was different in weight by no more than 6.35 % . For most of the fields, 

evaluated in this study, the sum of the chase cart unloads measure < 6% difference in weight.  

In Figure 14, Field 2 had four extreme differences between the chase cart weights and the 

corresponding tractor trailer weight. These patterns are not comparable to the rest of the field 

comparisons where the tractor trailer weight always exceeds the sum of the corresponding chase 

cart weights with a 6% difference. It is believed that the reason for the significant differences 

between the chase cart weights and the tractor trailer weights for Field 2 was due to the inability 

to accurately match the chase carts with the corresponding tractor trailer vehicles. 

This inability to associate the detected chase carts weights with the tractor trailer weights should 

not penalize the performance of the system. Instead, it is recommended that future versions of the 

yield monitoring system should implement a means for automatically detecting the identity of the 
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tractor trailer in which chase cart unloads are transferred and the time associated with the transfer 

of that load into the tractor trailer. Implementing this feature into the system would remove the 

responsibility of machine operators manually recording these events. 

The comparison results between the tractor trailer loads and the chase cart unloads would 

suggest that a weight-based system is a viable means of measuring site-specific data. At this level 

of measurement acquisition, the overall mean absolute percent difference between the chase cart 

unloads and the tractor trailer loads was 6.40%.  

Polygon to Chase Cart 

In this section, the polygon length and yield measurements are compared to the associated chase 

cart unload length and yield measurements. This comparison will provide information about the 

percent coverage of the polygons compared to the total area covered between load transfers.  Table 

5 through Table 9 break down the comparison of the polygons and the chase carts per field.  

Each row indicates the target polygon length determined by the minimum and maximum settings 

used for generating polygons with Yield Analyzer. N is the total number of chase cart unloads 

detected. The MP_areaCovered column is the mean percentage of the harvested area accounted 

for by the sum of the polygons for each load transfer. 

 As seen in Equation 2, the mean percentage differences between the total distance traveled and 

the sum of the polygons is calculated.  This value measures the average magnitude of the 

differences between the sums of the polygon lengths and the total distance travelled between each 

load transfer for the entire field. This value should always be positive since the sum of polygon 

lengths should never exceed the total distance travelled for each load transfer.  Then this value is 

subtracted from 1 in order to calculate the mean percent area accounted for by the polygons as 

follows:  
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  (2) 

Where 

n = total number of chase cart unloads detected, 

TotalDistance = total distance travelled over a given load transfer, and 

PolygonsLength = sum of polygon lengths over a given load transfer. 

 

The MAPD_yield column is the mean absolute percentage difference (MAPD) of the yield 

measurements. This value is a measure of the average magnitude of the differences between the 

polygon and the chase cart yield measurements, as seen in Equation 3. No consideration is made 

to the sign of the difference in yield measurements.  

 

  (3) 

Where 

n = total number of chase cart unloads detected, 

PolygonsYield = sum of polygon weights(Lbs) / sum of the polygon lengths (m), and 

ChaseCartYield = weight of chase cart unload(Lbs) / total distance travelled (m). 

 

 The MPD_yield column is the mean percentage difference (MPD) between polygon and chase 

cart unload yield measurements for the entire field. This value measures the average of the 

differences between the polygon and the chase cart yield measurements with consideration for the 

direction of the differences, as seen in Equation 4. This value may provide useful calibration offset 

values. Equation four is calculated as follows: 
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  (4) 

 

Where 

n = total number of chase cart unloads detected, 

PolygonsYield = sum of polygon weights(Lbs) / sum of the polygon lengths (m), and 

ChaseCartYield = weight of chase cart unload(Lbs) / total distance travelled (m). 

 

 

In Table 7 and Table 8, the mean percentage of the total harvested area accounted for by the 

polygons is greater than 100% for each test. This means that the calculated total distances for each 

chase cart unload was less than the sum of the distances of the polygons. The sum of the polygon 

lengths should never exceed the total distance travelled; therefore, the data in from Tables 7 and 8 

would suggest that there was some error in calculating the total distance measured. This explains 

the increase in the mean percent difference in yield for these fields compared with fields 1, 2, and 

5. 

The difference between the chase cart to tractor trailer comparisons and the polygon to chase 

cart comparisons could be attributed to the differences in the operational states that the 

measurements were taken. Polygon anchor points were selected under dynamic conditions; 

whereas, most chase cart unloads were measured under static conditions. After evaluation of the 

rules-based technique employed by Yield Analyzer, several recommendations for additional rules 

can be made and are discussed in the Recommendations section.  
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Table 5. Area and yield comparisons between the polygon dataset and the chase cart dataset 

for Field 1. 

Polygon 

Length 

Field 1 

N MP_areaCovered MAPD_yield MPD_yield 

20 13 93.60 % 6.70% -0.97% 

30 13 94.68 % 6.30 % -3.78 % 

40 13 96.03 % 5.80 % -5.49 % 

60 13 95.04 % 6.66 % -6.66 % 

80 13 89.75 % 7.12 % -7.12 % 

 

 

Table 6. Area and yield comparisons between the polygon dataset and the chase cart dataset 

for Field 2.  

Polygon 

Length 

Field 2 

N MP_areaCovered MAPD_yield MPD_yield 

20 49 96.35 % 2.42% 16.60% 

30 49 96.17 % 13.46 % -2.01 % 

40 49 96.15 % 11.50 % -8.37 % 

60 49 93.20 % 13.91 % -3.59 % 

80 49 91.94 % 36.59 % -30.76 % 

  

 

Table 7. Area and yield comparisons between the polygon dataset and the chase cart dataset 

for Field 3. 

Polygon 

Length 

Field 3 

N MP_areaCovered MAPD_yield MPD_yield 

20 20 127.61 % 31.46 % -20.71 % 

30 20 128.80 % 36.53 % -23.91 % 

40 20 131.21 % 34.77 % -29.21 % 

60 20 130.95 % 35. 51 % -30.45 % 

80 20 127.56 % 36.59 % -30.76 % 
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Table 8. Area and yield comparisons between the polygon dataset and the chase cart dataset 

for Field 4. 

Polygon 

Length 

Field 4 

N MP_areaCovered MAPD_yield MPD_yield 

20 24 145.84 % 36.41% -18.78 % 

30 24 149.71 % 35.21 % -17.84 % 

40 24 144.01 % 35.46 % -19.32 % 

60 24 143.56 % -18.26 % 36.03 % 

80 24 136.46 % 36.40 % -18.47 % 

 

 

Table 9. Area and yield comparisons between the polygon dataset and the chase cart dataset 

for Field 5. 

Polygon 

Length 

Field 5 

N MP_areaCovered MAPD_yield MPD_yield 

20 14 88.89 % 16.4% 7.91% 

30 14 90.02 % 13.10 % 4.01 % 

40 14 89.99 % 12.37 % 3.11 % 

60 14 90.76 % 9.21 % -1.11 % 

80 14 88.53 % 7.87 % -3.30 % 
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Polygon to Polygon 

Polygon lengths are user-defined; therefore, it is important to test for significance between 

various integration lengths.  Ideally, for a single point in a given field, Yield Analyzer would 

compute similar yield measurements at various polygon length settings. This concept is illustrated 

in Figure 18, where the same point in each field is observed. In order to test this theory, 100 points 

were randomly selected in each of the five fields.  

The 100 observation data set for each field was analyzed using one-way repeated measures with 

the yield measurement as the response variable and polygon length as the within-subject factor. 

The data violated ANOVA assumptions of normality and equal variance; therefore, ranked 

transformation was applied. Post hoc multiple comparisons among the different polygon lengths 

were conducted with Tukey’s adjustment and statistical significance was identified at a 

significance level of 0.05. All analysis was conducted using PROC MIXED in SAS 9.4 TS1M3 

from SAS institute Inc. (Cary, NC).  A summary of the results in shown in Table 10, and the 

comprehensive results can be found in Appendix A where analysis is conducted by field. 

 

Table 10. One-way repeated measures for yield data by field. 

Field P-Value Description 

1 0.9380 
No significance between polygon 

lengths. 

2 0.0567 
No significance between polygon 

lengths. 

3 0.0009 

Significance caused by differences 

between the 20 and 60 m polygons and 

the 20 and 80 m polygons. 

4 0.386 
No significance between polygon 

lengths. 

5 0.0090 

Significance caused by differences 

between the 20 and 80 m polygons and 

the 30 and 80 m polygons. 
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Figure 18. Stacked maps at various polygon lengths. 



  

37 

 

At the polygon level of acquisition, a significance was analyzed between different integration 

lengths and the results varied between fields. In Fields 1, 2, and 4 results showed no significant 

difference in yield between the various polygon lengths. However, in Fields 3 and 5, the results 

did show significance.  

A post hoc multiple comparisons analysis was used to identify the cause for significance. In 

Field 3, the significance was caused by the differences between two sets of yield measurements: 

the 20 and 60 m polygons and the 20 and 80 m polygons. In Field 5, the significance was also 

caused by differences between two set of yield measurements: 20 and 80 m polygons and the 30 

and 80 m polygons. For both fields, the significance was caused by the difference in yield 

measurements between the two minimum integration lengths and the two maximum integration 

lengths tested.  

Recommendations 

Yield Analyzer either met or exceed the expectations when comparing tractor trailer weights 

with the in-field cart weights. However, there is room for improving the rule-based system for 

detecting error-free anchor points.. The following recommendations are based on the evaluation 

of Yield Analyzer for five fields at five various anchor point distance settings: 

- Accuracy assessment of the calculated total distances measured for each chase cart unload. 

- Definition of rules for determining practical distance measurements. 

- Definition of rules that minimize the allowable distance between polygons. 

- Definition of rules for rejecting physically impossible measurements in weight and distance. 

- Implementation of a peripheral system that will associate harvester to chase cart and chase 

cart to tractor trailer IDs. 

- Implementational of a peripheral system for true header width determination.  
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Chapter 2  

A Vision-based Approach for Crop Width Determination 
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Background  & Review of Literature 

One the leading sources of error found in yield data is due to inaccuracies associated with 

measuring the width of crop entering the header during harvest (B. Blackmore & Marshall, 1996). 

Throughout this study, this width measurement is referred to as the effective header width. The 

effective header width is a necessary measurement for calculating the harvested area component 

of yield. In many existing systems, the effective header width is handled one of four ways: 

 1) header width settings are manually updated by the operator (Nielson, 2014), 

2) an estimated constant header width is assumed throughout the entire harvesting operation 

(Joe D  Luck & Fulton, 2014) , 

3) post-harvest techniques are used to modify header width (Joe D. Luck, Mueller, & Fulton, 

2015), and 

4) header widths are automatically adjusted using field coverage maps (Joe D. Luck et al., 2015) 

The impact of inaccurate header widths can have a significant influence on yield estimation 

errors especially when the percentage of changing header width occurrences are high. The most 

common practical causes for changes in header width are due to field edges, narrow finishes, and 

point rows (S. Blackmore, 1999). Another cause for header width change is the crop layout in the 

field. The discovery of hybrid corn, which can be traced back to the beginning of the 20th century, 

made way for faster growing, disease tolerant, higher yielding crops (Griliches, 1957; Wright, 

1980). On hybrid corn fields, male and female plants are planted in patterns. The most widely used 

schema for planting hybrid corn is a 1 male :4 female row pattern. In order to prevent self-

pollination, female tassels are removed giving male plants the opportunity to pollinate the adjacent 

female rows of corn. After cross-pollination occurs, the male rows are removed prior to harvest 

leaving behind approximately 80% of the initially planted rows.  
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Therefore, in the case of commercial-scale, hybrid corn fields where the percentage of missing 

rows is high, it is necessary to provide producers with the ability to accurately quantify the effective 

header width throughout the harvesting operation in order to calculate yield. Systems that require 

operators to manually change the effective header width require an additional responsibility for 

the operator and add a degree of human error (S. Blackmore, 1999; Reitz & Kutzbach, 1996). 

Other systems that make assumptions on the header width may assign a constant value which can 

be anywhere between 70% - 100% of the maximum header width (Beck, Searcy, & Roades, 2001; 

S. Blackmore, 1999; Reitz & Kutzbach, 1996; Vansichen & De Baerdemaeker, 1992) 

Several studies have been dedicated to finding solutions to the issue of unknown header width 

by developing post-harvest techniques that can be applied to the data after the operation is 

completed. B. Blackmore and Marshall (1996) introduced the concept of Potential Mapping, a 

technique used in the post processing of the yield data to overcome this uncertainty caused by 

unknown crop width. In Yield Editor, a widely used yield data processing software, the Minimum 

Swath (MINS) filter was designed to remove yield samples with an insignificant header width 

entry. Point rows and finishing rows are areas where a narrow width is expected. These areas 

increase noise in the system so significantly that studies such as the one conducted by Beck et al. 

(2001) have led to suggest avoiding recording data with narrow widths completely. The 

development of a technique for automated detection of the effective header width will make 

avoiding these areas unnecessary and will increase the accuracy of yield measurements within 

fields. 

Computer Vision and Machine Learning in Crop Production 

With computer vision (CV) methods, the task of object recognition becomes viable, and this 

technology is being used to accomplish a variety of agricultural tasks such as corn tassel, weed, 

row, and crop identification (Jiang, Wang, & Liu, 2015; Kurtulmuş & Kavdir, 2014; Montalvo et 
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al., 2013). Computer vision techniques are used to implement machine learning capabilities by 

modelling human vision with the use of images. CV is composed of image processing algorithms 

and pattern recognition techniques. Image processing algorithms are used to process raw images 

by transformations, filtering, segmentation, etc. Numerous pattern recognition techniques are used 

for recognizing patterns and trends in a wide variety of datasets.  

In a study conducted on blueberry yield monitoring, Swain, Zaman, Schumann, Percival, and 

Bochtis (2010) uses a color attention method in which the blue pixel index was used as an 

indication of fruit detection.  Another computer vision study used color information as well as 

morphological features to identify corn tassel locations (Kurtulmuş & Kavdir, 2014).  Benalia et 

al. (2016) used color parameters and principal component analysis to develop a sorter that 

determines the quality of dried figs. Muscato, Prestifilippo, Abbate, and Rizzuto (2005) used 

morphological features and neural networks to develop a robotic system for orange harvesting. In 

each of these studies, results showed a significant correlation between the information extracted 

from images and the information required from agricultural environments.  

Often times, farmers are asked for expert advice on making operational decisions which may be 

replaced with automated systems. Computer vision technology and machine learning techniques 

can provide automated solutions for redundant tasks such as header width detection. The focus of 

this study was to use an experimental dataset to test the performance of a vision-based approach 

to determine  effective header width.  

Objectives 

The overall objective of this study is to determine the effective header width of a harvester 

during operation using an image classification approach. In contrast to other computer vision tasks 

such as recognition, content based image retrieval, and detection, the goal of image classification 
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is to determine the class of an entire image or a portion of an image. The following two-part 

experiment tests two separate image classification techniques for determining the status of each 

cutting region of a header implement as active or inactive. The first part of the experiment uses 

image color features for classifying the cutting regions of an image. The second part identifies 

texture features and trains a binary classifier for classifying cutting regions of an image.  

Methods & Materials 

Data Acquisition 

The yield mapping system in this study calculates yield measurements using an assumed 

constant header width. The constant value was determined based on the full width of the header 

implement used on each harvester. Maximum header implement widths varied from 12-row to 14-

row headers. In this study, header imagery was collected from a 12-row header. A GoPro HERO3+ 

1080p (used in 1280 x 720 mode). Action Camera was used to capture two sets of video data during 

actual harvesting operations in the field under natural lighting conditions. 

The video data sets were converted to Portable Network Graphics (.png) files for individual 

frame analysis. Individual frames were 24-bit images with a size of 1280x720 pixels. Figure 19 

shows the extent of the field of view (FOV) at which the videos were acquired.  This image also 

demonstrates the need for a means to measure the effective header width. In this example, it can 

be seen that the harvester is only operating at 50% of the header’s capacity while in mid-field. This 

situation may be one of many, where harvester operators compromise harvesting at maximum 

capacity for logistic purposes. It was discovered that, in this scenario, the operator adjusted the 

rate of harvest so that the towed trailer cart would be filled with crop at the edge of the field. 
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Figure 19. Example of a situation mid-field where the harvester harvested at 50% of the 

header capacity. 

 

Digital Image Processing 

Digital image processing (DIP) encompasses a broad range of techniques used to manipulate 

raw images for a variety of objectives. With DIP, images may be transformed into color spaces that 

accentuate specific parameters not obvious in the raw image format. Segmentation is another DIP 

process and is used to divide an image into meaningful parts.  Other DIP methods include image 

restoration, pixilation, and many others.  

In the following sections, two separate tests were conducted to determine effective header width 

from images using two distinct DIP methods. In the first test, a color feature approach was 

implemented in which thresholds were defined for three parameters: hue, saturation, and intensity. 

The second test used a texture feature description approach in which Speeded Up Robust Features 

(SURF) were identified and used for training a support vector machine (SVM). Though each test 

used different DIP and classifications methods, the same image segmentation method is used for 

both studies.  
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Segmentation 

The camera was mounted such that the FOV of the images contains four main color classes that 

are of interest: crop, soil, row dividers, and stripper plates. These can be seen in Figure 20. In the 

images examined, the camera was not positioned such that all twelve sets of stripper plates were 

visible. For the purposes of this study, only those stripper plate regions that were visible were used 

as illustrated in Figure 20 parts 2-10. The regions surrounding each set of stripper plates, shown 

by the extent of the red boundaries in Figure 20, were the areas defined for row detection. Each 

image was segmented to these nine Regions of Interest (ROIs) for individual image analysis.  

 

 

Figure 20. Features and regions of interest used for detecting presence of crop rows. 

 

Two sets of the nine ROI pixel coordinates was manually determined for each of the two videos 

used in this study. The location of the ROIs remained constant via pixel indexing throughout all 

images within each video. Because of the dynamics of the harvester and changes in header position  

caused by variations in the topography throughout the terrain, the header implement was not static 
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throughout the set of images. Therefore, it was necessary to determine a size for the regions of 

interest large enough to accommodate the movement of the header. This segmentation process was 

the initial DIP step for both methods described below. 

Method 1: Color-based Image Classification 

The color details from an image may provide a significant amount of useful information. These 

details, also called color descriptors, can simplify the task of object recognition, extraction, and 

segmentation. Color image processing involves any manipulation to pixel values and can be used 

to modify images in many different ways such as correcting colors, reducing noise, and sharpening 

images (Gonzalez & Woods, 2002).  

There is a broad range of color image processing applications such as printing, color televisions, 

and the Internet. Because of this, a method of standardization was needed to facilitate the 

specification of colors for each application. Color models, also known as color spaces, are defined 

for this purpose. A color model describes a range of colors in terms of typically 3 or 4 components, 

and examples of color models include RGB, CMY, CMYK, and HSI (Koschan & Abidi, 2008). 

The RGB and HSI color models are used here. 

RGB Color Model 

The RGB color model is the most commonly used color model. It is commonly found in color 

cameras, and is used to display images on computer monitors. An image in the RGB color model 

is an MxNx3 array of color pixels, and each pixel is a triplet that corresponds to red, green, and 

blue color components (Gonzalez, Woods, & Eddins, 2004). The images used in this study were 

captured in the RGB color space.  

Though the images are captured in RGB, this color model is not always suitable for image 

processing procedures (Liu & Chung, 2011). The red, green, and blue components are highly 

correlated, making it difficult to use these components to characterize objects by their colors. This 
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is particularly a challenge when attempting to identify gray objects. As seen in Figure 21, the gray 

scale in the RGB space is the line where the red, green, and blue components are approximately 

equal in the 3-dimensional model. 

 

 

Figure 21. RGB color space model (Instruments, 2016). 

 

HSI Color Model 

Characteristics that are generally used to distinguish colors are hue,  saturation, and intensity 

(Koschan & Abidi, 2008). The hue component represents the visible color and is a measure of the 

wavelength of light on the visible spectrum that produces the most energy (Gonzalez & Woods, 

2002). The saturation describes the purity of the color which is influenced by the increased 

presence of white(Gonzalez & Woods, 2002). The third component in the HSI color model, 

intensity, does not carry any color information, but is used to describe light that is void of color 

and ranges from black to grays to white (Gonzalez & Woods, 2002).  
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The benefit of analyzing images in the HSI color space is that human perception of color 

corresponds with these three components. In HSI space, color, or hue, is expressed as a single 

component and not a function of three separate RGB components (Gonzalez & Woods, 2002). 

Additionally, saturation and intensity components may be useful in providing information on the 

visibility of the stripper plates within each ROI. The stripper plates in each ROI are distinctly gray 

which can easily be described with intensity and saturation. In the manual detection of active or 

inactive ROIs, a correlation was determined between the visibility of the stripper plates and the 

presence of a crop row. Prior knowledge would suggest that the lack of visibility of the stripper 

plates would determine an active header status. Likely, the clear visibility of the stripper plates 

would suggest the lack of a crop row and determine an inactive header status. 

Description of Color-based Classification Method 

Figure 22 illustrates the image processing pipeline used for this method of extracting color 

features to determine the state of the region of interest. All images used for threshold determination 

were first converted to HSI color space, then threshold values were determined for each color 

component, and finally a simple decision rule was used to classifying ROIs. 

 

 

Figure 22. Method 1 pipeline using color descriptors for image classification 
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RGB to HSI Color Transformation 

A color transformation is used to transform images from one color model to another. This type 

of transformation may be useful in extracting more information from the image in terms of a 

different set of characteristics. The transformation of the images from RGB to HSI is given by the 

following conversions (Gonzalez & Woods, 2002): 

 

 𝐻 =  {
𝜃, 𝑖𝑓 𝐵 ≤ 𝐺

360 − 𝜃, 𝑖𝑓 𝐵 > 𝐺
 (1) 

 𝜃 =  cos−1 {
1

2
[(𝑅−𝐺)+(𝑅−𝐵)]

[(𝑅−𝐺)2+(𝑅−𝐵)(𝐺−𝐵)]
1
2

} (2) 

 𝑆 = 1 −
3

(𝑅+𝐺+𝐵)
[min(𝑅, 𝐺, 𝐵)]   (3) 

 𝐼 =  
1

3
(𝑅 + 𝐺 + 𝐵)    (4) 

where R, G, and B correspond to red, green, and blue pixel values. Each image is represented 

as an element wise average of the pixels, and the resulting 3x1 feature vector (υimage_n) is used to 

represent the image during classification.  

Threshold Determination 

The operational states of the stripper plate regions were determined by significant changes in 

the pixel distribution for hue, saturation, and intensity. This distribution is determined by 

examining the HSI histograms of each image such as the ones in Figures 23 and 24. Thresholds 

were defined based on this pixel distribution on a training set of 160 images that were manually 

labelled as active or inactive, indicating the presence or absence of a crop row, respectively. 

Determining the expected distribution for each class of images required statistical analysis of the 

distribution of pixels. The two descriptive statistical parameters used to design a decision rule were 

the mean and standard deviation.  
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Figure 23. Distribution of pixels for an active ROI. 

 

 

Figure 24. Distribution of pixels for an inactive ROI. 
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Classification Using Decision Rule 

Assigning each of the HSI components with equal weight, thresholds for each component were 

determined for an active class. The minimum and maximum thresholds are expressed in 3x1 

vectors νmin and νmax, respectively. The decision rule, seen in Equation 5, was a basic component-

wise inequality problem where νmin and νmax were determined at 0.25, 0.5, 0.75, and 1 standard 

deviations away from the mean values in Table 11. Tests on thresholds greater than 1 standard 

deviation from the mean resulted in 100 % misclassification of images labelled inactive. For 

automatic analysis, the mean and standard deviation of pixel values for each image were calculated 

and written to a Comma Separated Values (.csv) file using the HSI_Histograms.py script found in 

Appendix B. Equation 5 defines the discriminant function and the decision rule used in the 

classification scheme illustrated in Figure 25.  

 

𝑖𝑓 𝜈𝑚𝑖𝑛  ≥  𝜐𝑖𝑚𝑎𝑔𝑒𝑛
 ≤  𝜈𝑚𝑎𝑥 , 𝑡ℎ𝑒𝑛 𝑖𝑚𝑎𝑔𝑒𝑛 𝑖𝑠 𝑎𝑐𝑡𝑖𝑣𝑒 

 𝑒𝑙𝑠𝑒, 𝑖𝑚𝑎𝑔𝑒𝑛 𝑖𝑠 𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒 (5) 

 

Where  

 𝜈𝑚𝑖𝑛 is the minimum HSI vector for an active state, 

𝜈𝑚𝑎𝑥 is the maximum HSI vector for an active state, and 

𝜐𝑖𝑚𝑎𝑔𝑒𝑛
 is the HSI vector representation for the image. 

 

Table 11. Normalized hue, saturation, and intensity components for classification. 

Active State H, S, and I Component Means ( Normalized ) 

 Hue Saturation Intensity 

Mean 0.13 0.23 0.57 

Standard Deviation 0.12 0.17 0.28 
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Figure 25. Classification scheme  for color-based method, where K is knowledge derived from 

the training data represented in Equation 5. 

 

Results and Discussion 

Method 1 of this experiment implements a simple decision rule based on color parameter 

thresholds determined from statistical analysis on 160 ROI images. A separate dataset of 160 ROI 

images was used for testing threshold parameters. Each of these images was manually labelled as 

active or inactive in order to test the performance of the decision rule. The performance of the 

decision rule is shown in Table 12 for four separate tests based on the standard deviation coefficient 

used to determine minimum and maximum thresholds. 

The classifier performed very well at a threshold range of 0.5 and 0.75 standard deviations away 

from the mean values of the hue, saturation, and intensity components. However, slight deviation 

from 0.5 - 0.75 standard deviations away from the mean caused the frequency of misclassified 

images to far exceed the number of correctly classified images as seen in Table 12. In conclusion, 

the proposed color-based model may be a viable means for classifying active from inactive rows. 

However, color characteristics of hybrid seed corn vary widely from green to beige due to changes 
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in moisture content throughout the harvesting season. For this reason, a second image classification 

method was tested that did not rely on color features alone. 

 

Table 12. Confusion matrix for color-based decision rule classification performance. 

Threshold ROI_Class Active_Actual Inactive_Actual 

Average 

Accuracy 

1  StD 
Active_Predicted 100 % 77.27 % 

60.80 % 
Inactive_Predicted 0 % 21.59 % 

0.75 StD 
Active_Predicted 100 % 5.68 % 

97.16 % 
Inactive_Predicted 0 % 94.32 % 

0.5 StD 
Active_Predicted 98.61 % 0 % 

99.31 % 
Inactive_Predicted 1.39 % 100 % 

0.25 StD 
Active_Predicted 27.78% 0% 

63.89 % 
Inactive_Predicted 72.22 % 100 % 

 

Method 2: Texture-based Image Classification 

For this method, texture features were used for the classification of ROIs as inactive or active. 

Unlike the color-based method which only considers the distribution of pixels values, texture 

features provide information on the spatial arrangement of the pixel values (Shapiro & Stockman, 

2001). Examples of the properties that can be measured in terms of texture features include  

smoothness, coarseness, regularity, and directionality (Gonzalez & Woods, 2002). Texture features 

provide a more robust means of object recognition or classification because many texture features 

are scale- and rotation- invariant. The following method extracts the strongest texture features from 

all the training images in each category. Then for each image, k-nearest neighbors algorithm is 

used to generate a histogram of distinct features and the frequency of each distinct feature. This 

histogram is used as a feature vector for representing the ROIs in each image. The feature vector 



  

53 

 

image representation is used to train a support vector machine classifier. This workflow is 

illustrated in Figure 26 where the image acquisition and segmentation methods are the same as 

those used in Method 1. Matlab’s Computer Vision Toolbox was used for implementing this 

approach (The MathWorks, 2016).  

 

Figure 26. Method 2 pipeline using texture descriptors for image classification. 

 

Bag of Feature Image Classification 

The image classification scheme outlined in Figure 26 is prominently used for handling visual 

classification tasks in computer vision. This process implements a classification model called Bag 

of Words, the name is derived from the model initial conception in text recognition (Csurka, Dance, 

Fan, Willamowski, & Bray, 2004). In computer vision, this model may also be referred to as bag 

of keypoints or bag of features. Throughout the following sections the process will be referred to 

as Bag of Features (BoF). The BoF approach applied in this study for detecting active header rows 

closely follows the methods described by Csurka et al. (2004) with few exceptions.  

The first step in BoF, illustrated in Figure 27, is feature extraction. For each category of images 

in the training data set, all detected Speeded Up Robust Features (SURF) are computed. The next 

section describes SURF descriptors. The training data set consisted of 250 randomly selected 

images for each classification: active and inactive. For each category of header ROI images used, 

4,000 to 16,000 features were detected.   
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Next, from the training set of images, a bag of features is created for each image. Each bag of 

features serves to represent each image during the training of a classifier (Csurka et al., 2004). For 

classifier training, the distance between feature vectors is computed and used to determine the 

classification of each image. Though many classifiers such as Neural Networks and Naïve Bayes 

may be used, a support vector machine classifier was chosen for its repeated success in BoF image 

category classification problems. The BoF method described here is outlined in Figure 27. 

 

 

Figure 27. Bag of words image classification method. 

 

Speeded Up Robust Features 

There are many types of texture features that can be used for object detection purposes such as 

moment invariants, blob features, and Gaussian derivatives. Here, the focus was on using a specific 

feature detector called Speeded Up Robust Features (SURF). SURF are scale- and rotation-

invariant descriptors that are highly discriminative and computationally inexpensive (Bay, 

Tuytelaars, & Van Gool, 2006a).  

The process of SURF detection described by Bay, Tuytelaars, and Van Gool (2006b) can be 

summarized in three main steps: interest point detection, local neighborhood description, and 

matching. SURF detects distinct, local blob features within an image by using the determinant of 
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the Hessian matrix of the image. These blobs become points of interest. Next, image features are 

described by the distribution of pixels that surround each interest point. Finally, for object 

recognition purposes, these features are used for the processing of other ROIs. 

SURF is widely used in image processing problems for object detection and is a patented 

detector and descriptor that requires a license for use. In this study, SURF tools were accessed 

through MATLAB’s Computer Vision Toolbox. 

Support Vector Machines 

The classification problem presented was made up of only two classes: active and inactive. 

Classification problems such as this one can be solved with support vector machines (SVM), which 

are designed for binary classification. SVMs are a supervised, discriminative classifier that 

requires a labeled training set of data (Duda, Hart, & Stork, 2012). In this test, the labeled training 

set of data comes from the bags of features created from the training set of images. 

SVMs are maximum margin classifiers. This means that the algorithm finds a hyperplane that 

totally separates the two classes with the maximum distance from hyperplane to any feature vector 

from either class. In Figure 28-A, notice how multiple hyperplanes can be fitted to separate the 

two classes, but the optimal hyperplane in Figure 28-B identifies the maximum margin between 

classes (Cortes & Vapnik, 1995).  
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(A)  (B) 

Figure 28. (A) Various possible decision boundaries (B) Optimal decision boundary using 

SVM 

 

Methods such as Naïve Bayes and Linear Regression are able to find a decision boundary 

between classes. However support vector machines use support vectors to find the optimal decision 

boundary with the greatest marginal distance between classes.  For the purpose of training and 

testing the image category classification techniques, random images were selected from a database 

of over 16,000 labelled images. Each training set consisted of two categories: active and inactive. 

Each category contains 250 randomly selected for training. The testing set contained 1,000 

randomly selected validation images to evaluate the performance of the SVM classifier (k = 100, 

linear kernel). 

Results and Discussion 

Since the images in the dataset were collected under natural lighting conditions, a change in the 

direction of the harvester could lead to shadow interferences, pixel saturation, and insufficient 

lighting. Therefore, multiple sets of training images were used to create SVM classifiers.  Table 

13 reports the average accuracy for the SVM performance on all combinations of training and 
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testing sets. Two set of video data were used, and the passes indicated the harvester pass in the 

field. Subsequent passes represent a change in the direction of the harvester in the field. Individual 

confusion matrices for each test run can be found in Appendix C.  

 

Table 13. Average accuracy for each combination of training and testing data. 

Training Sets 
Testing Sets 

Video 1 All Video 2 All 

Video 1 All 95 % 88 % 

Video 1 Pass 1 83 % 74 % 

Video 1 Pass 2 84 % 87 % 

Video 2 All 76 % 96 % 

Video 2 Pass 1 71 % 94 % 

Video 2 Pass 2 82 % 96 % 

 

 

 

Overall, the BoF approach for image category classification achieved classification above 83% 

when using training images from within the same video as testing image. Additionally, the 

classifier performed above 71% when using any combination of training and testing sets from two 

separate videos and four different passes in the field. SVMs trained with the images throughout 

the entirety of the same video as the testing images had the greatest performance of 95 – 96%. The 

results in Table 13 would suggest that training SVMs with images from a single pass in the field 

performed significantly less than if training images from segments of the entire video were used.  

Pattern recognition models and computer vision techniques provide a powerful tool that can 

replace the need for expert advice on redundant tasks. Computer vision can provide sight to 

agricultural machinery and pattern recognition tools can be used to train systems to make decisions 

based on what the machines see.  The success of using computer vision in agricultural 

environments could lead to many crop management solutions such as time lag determination, weed 

mapping, and field process automation.  



  

58 

 

Recommendations 

The concept study presented in this chapter is just the start of the development of a vision-based 

system for effective header width determination. Further research should be conducted to test the 

performance of the system under extreme conditions. One of the main challenges of using a vision 

system is that images acquired in an agricultural environment are exposed to the elements. 

Furthermore, certain crops are not exclusively harvested under daylight conditions and 

consideration must be made to the change in lighting throughout the day. Suggested 

recommendations for future research needs are as follows: 

- Further development of this study should incorporate automatic detection of the header 

implement and each set of stripper plates. 

- ROIs should automatically adjust to the extent of the stripper plates. 

- Additional video data should be recorded under various possible weather conditions 

considered suitable for harvesting. 

- Additional video data should be recorded under various possible lighting conditions. 

- Image acquisition systems should have a field of view of the entire span of a header 

implement. 

- Image analysis methods that combine the methods used in this study should be testing. 
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Conclusions  

The results of this study will contribute to the overall effort of increasing the performance the 

yield monitoring system for seed corn developed by the University of Tennessee. The main 

objectives of this study were: 

1) to evaluate a rule-based technique for measuring site-specific yield variability within a seed 

corn field, 

2) To validate the yield measurement accuracy under field harvest conditions, and 

3) To evaluate computer vision techniques for row-crop detection.  

The rule-based techniques offers multiple level of yield determination for the users. At the chase 

cart level of yield determination, weight measurements calculated by Yield Analyzer were within 

approximately 6.0 % of the tractor trailer loads. Polygon-level performance varied among fields, 

but for three of the five fields, polygon yield measurements compared mostly < 20.0 % from the 

chase cart yield measurements. One-way repeated measures analysis resulted in the three of the 

five fields showing no significance between various polygon length measurements. A post hoc 

multiple comparisons analysis identified the cause for significance was due to differences between 

yield measurements at the low polygon lengths (20 and 30 m) and high polygon lengths (60 and 

80 m).   

The overall performance of both vision-based methods studied in this paper would suggest that 

a vision-based system can assist in the task of determining effective header width. The color-based 

method performed > 97.0 % average accuracy when a standard deviation coefficient of 0.75 was 

used. The texture-based method performed with an average accuracy >70 % for any combination 

of training images used, and > 95 % average accuracy when training images and testing images 

from the same video data set were used. 
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Appendix A – SAS Output 
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Field 1: One-way repeated measures analysis and multiple comparisons results.  

Covariance Parameter Estimates 

Cov Parm Subject Estimate 

CS subject 281006 

Residual  130879 

Fit Statistics  

-2 Res Log Likelihood 7503.7 

AIC (Smaller is Better) 7507.7 

AICC (Smaller is Better) 7507.7 

BIC (Smaller is Better) 7512.9 

Null Model Likelihood Ratio 
Test 

DF Chi-Square Pr > ChiSq 

1 323.70 <.0001 

Type 3 Tests of Fixed Effects 

Effect 

Num 

DF 
Den 

DF 
F Value Pr > F 

distance 4 396 0.20 0.9380 

  Least Squares Means    

Effect distance Estimate 

Standard 

Error 
DF t Value Pr > |t| 

distance Yield_20m 1023.90 64.1783 396 15.95 <.0001 

distance Yield_30m 1015.23 64.1783 396 15.82 <.0001 

distance Yield_40m 1029.33 64.1783 396 16.04 <.0001 
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distance Yield_60m 989.93 64.1783 396 15.42 <.0001 

distance Yield_80m 1001.48 64.1783 396 15.60 <.0001 

 Differences of Least Squares Means  

Effect distance _distance Estimate 

Standard 

Error 
DF t Value 

Pr > 

|t| Adjustment Adj P 

distance Yield_20m Yield_30m 8.6700 51.1624 396 0.17 0.8655 Tukey-

Kramer 
0.9998 

distance Yield_20m Yield_40m -5.4300 51.1624 396 -0.11 0.9155 Tukey-

Kramer 
1.0000 

distance Yield_20m Yield_60m 33.9700 51.1624 396 0.66 0.5071 Tukey-

Kramer 
0.9639 

distance Yield_20m Yield_80m 22.4200 51.1624 396 0.44 0.6615 Tukey-

Kramer 
0.9923 

distance Yield_30m Yield_40m -14.1000 51.1624 396 -0.28 0.7830 Tukey-

Kramer 
0.9987 

 

   Differences of Least Squares Means    

Effect distance _distance Estimate 

Standard 

Error 
DF t Value 

Pr > 

|t| Adjustment Adj P 

distance Yield_30m Yield_60m 25.3000 51.1624 396 0.49 0.6212 Tukey-

Kramer 
0.9879 

distance Yield_30m Yield_80m 13.7500 51.1624 396 0.27 0.7883 Tukey-

Kramer 
0.9989 

distance Yield_40m Yield_60m 39.4000 51.1624 396 0.77 0.4417 Tukey-

Kramer 
0.9391 

distance Yield_40m Yield_80m 27.8500 51.1624 396 0.54 0.5865 Tukey-

Kramer 
0.9826 

distance Yield_60m Yield_80m -11.5500 51.1624 396 -0.23 0.8215 Tukey-

Kramer 
0.9994 
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Field 2: One-way repeated measures analysis and multiple comparisons results. 

 

Covariance Parameter Estimates 

Cov Parm Subject Estimate 

CS subject 356453 

Residual  187227 

Fit Statistics  

-2 Res Log Likelihood 7670.1 

AIC (Smaller is Better) 7674.1 

AICC (Smaller is Better) 7674.1 

BIC (Smaller is Better) 7679.3 

Null Model Likelihood Ratio 
Test 

DF Chi-Square Pr > ChiSq 

1 294.72 <.0001 

Type 3 Tests of Fixed Effects 

Effect 

Num 

DF 
Den 

DF 
F Value Pr > F 

distance 4 396 2.32 0.0567 

  Least Squares Means    

Effect distance Estimate 

Standard 

Error 
DF t Value Pr > |t| 

distance Yield_20m 1572.09 73.7347 396 21.32 <.0001 

distance Yield_30m 1472.93 73.7347 396 19.98 <.0001 

distance Yield_40m 1562.21 73.7347 396 21.19 <.0001 
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distance Yield_60m 1412.78 73.7347 396 19.16 <.0001 

distance Yield_80m 1511.88 73.7347 396 20.50 <.0001 

 Differences of Least Squares Means  

Effect distance _distance Estimate 

Standard 

Error 
DF t Value 

Pr > 

|t| Adjustment Adj P 

distance Yield_20m Yield_30m 99.1600 61.1926 396 1.62 0.1059 Tukey-

Kramer 
0.4851 

distance Yield_20m Yield_40m 9.8800 61.1926 396 0.16 0.8718 Tukey-

Kramer 
0.9998 

distance Yield_20m Yield_60m 159.31 61.1926 396 2.60 0.0096 Tukey-

Kramer 
0.0716 

distance Yield_20m Yield_80m 60.2100 61.1926 396 0.98 0.3257 Tukey-

Kramer 
0.8625 

distance Yield_30m Yield_40m -89.2800 61.1926 396 -1.46 0.1454 Tukey-

Kramer 
0.5898 

 

   Differences of Least Squares Means    

Effect distance _distance Estimate 

Standard 

Error 
DF t Value 

Pr > 

|t| Adjustment Adj P 

distance Yield_30m Yield_60m 60.1500 61.192

6 
396 0.98 0.326

2 
Tukey-

Kramer 
0.8629 

distance Yield_30m Yield_80m -38.9500 61.192

6 
396 -0.64 0.524

8 
Tukey-

Kramer 
0.9690 

distance Yield_40m Yield_60m 149.43 61.192

6 
396 2.44 0.015

0 
Tukey-

Kramer 
0.1065 

distance Yield_40m Yield_80m 50.3300 61.192

6 
396 0.82 0.411

3 
Tukey-

Kramer 
0.9236 

distance Yield_60m Yield_80m -99.1000 61.192

6 
396 -1.62 0.106

1 
Tukey-

Kramer 
0.4858 
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Field 3: One-way repeated measures analysis and multiple comparisons results. 

 

Covariance Parameter Estimates 

Cov Parm Subject Estimate 

CS subject 163715 

Residual  121350 

Fit Statistics  

-2 Res Log Likelihood 7425.1 

AIC (Smaller is Better) 7429.1 

AICC (Smaller is Better) 7429.1 

BIC (Smaller is Better) 7434.3 

Null Model Likelihood Ratio 
Test 

DF Chi-Square Pr > ChiSq 

1 220.08 <.0001 

Type 3 Tests of Fixed Effects 

Effect 

Num 

DF 
Den 

DF 
F Value Pr > F 

distance 4 396 4.75 0.0009 

  Least Squares Means    

Effect distance Estimate 

Standard 

Error 
DF t Value Pr > |t| 

distance Yield_20m 933.49 53.3915 396 17.48 <.0001 

distance Yield_30m 875.35 53.3915 396 16.39 <.0001 

distance Yield_40m 872.10 53.3915 396 16.33 <.0001 
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distance Yield_60m 789.33 53.3915 396 14.78 <.0001 

distance Yield_80m 742.52 53.3915 396 13.91 <.0001 

 Differences of Least Squares Means  

Effect distance _distance Estimate 

Standard 

Error 
DF t Value 

Pr > 

|t| Adjustment Adj P 

distance Yield_20m Yield_30m 58.1400 49.2646 396 1.18 0.2386 Tukey-

Kramer 
0.7628 

distance Yield_20m Yield_40m 61.3900 49.2646 396 1.25 0.2135 Tukey-

Kramer 
0.7242 

distance Yield_20m Yield_60m 144.16 49.2646 396 2.93 0.0036 Tukey-

Kramer 
0.0297 

distance Yield_20m Yield_80m 190.97 49.2646 396 3.88 0.0001 Tukey-

Kramer 
0.0012 

distance Yield_30m Yield_40m 3.2500 49.2646 396 0.07 0.9474 Tukey-

Kramer 
1.0000 

 

   Differences of Least Squares Means    

Effect distance _distance Estimate 

Standard 

Error 
DF t Value 

Pr > 

|t| Adjustment Adj P 

distance Yield_30m Yield_60m 86.0200 49.2646 396 1.75 0.0816 Tukey-

Kramer 
0.4070 

distance Yield_30m Yield_80m 132.83 49.2646 396 2.70 0.0073 Tukey-

Kramer 
0.0563 

distance Yield_40m Yield_60m 82.7700 49.2646 396 1.68 0.0937 Tukey-

Kramer 
0.4475 

distance Yield_40m Yield_80m 129.58 49.2646 396 2.63 0.0089 Tukey-

Kramer 
0.0669 

distance Yield_60m Yield_80m 46.8100 49.2646 396 0.95 0.3426 Tukey-

Kramer 
0.8769 
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Field 4: One-way repeated measures analysis and multiple comparisons results. 

 

 

Covariance Parameter Estimates 

Cov Parm Subject Estimate 

CS subject 207086 

Residual  127044 

Fit Statistics  

-2 Res Log Likelihood 7464.3 

AIC (Smaller is Better) 7468.3 

AICC (Smaller is Better) 7468.3 

BIC (Smaller is Better) 7473.5 

Null Model Likelihood Ratio 
Test 

DF Chi-Square Pr > ChiSq 

1 259.50 <.0001 

Type 3 Tests of Fixed Effects 

Effect 

Num 

DF 
Den 

DF 
F Value Pr > F 

distance 4 396 1.05 0.3826 

  Least Squares Means    

Effect distance Estimate 

Standard 

Error 
DF t Value Pr > |t| 

distance Yield_20m 1671.85 57.8040 396 28.92 <.0001 

distance Yield_30m 1585.95 57.8040 396 27.44 <.0001 
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distance Yield_40m 1632.68 57.8040 396 28.25 <.0001 

distance Yield_60m 1583.66 57.8040 396 27.40 <.0001 

distance Yield_80m 1617.69 57.8040 396 27.99 <.0001 

   Differences of Least Squares Means    

Effect distance _distance Estimate 

Standard 

Error 
DF t Value 

Pr > 

|t| Adjustment Adj P 

distance Yield_20m Yield_30m 85.9000 50.4071 396 1.70 0.0891 Tukey-

Kramer 
0.4326 

distance Yield_20m Yield_40m 39.1700 50.4071 396 0.78 0.4376 Tukey-

Kramer 
0.9371 

distance Yield_20m Yield_60m 88.1900 50.4071 396 1.75 0.0810 Tukey-

Kramer 
0.4049 

distance Yield_20m Yield_80m 54.1600 50.4071 396 1.07 0.2833 Tukey-

Kramer 
0.8196 

 

 

   Differences of Least Squares Means    

Effect distance _distance Estimate 

Standard 

Error 
DF t Value 

Pr > 

|t| Adjustment Adj P 

distance Yield_30m Yield_40m -46.7300 50.4071 396 -0.93 0.3545 Tukey-

Kramer 
0.8863 

distance Yield_30m Yield_60m 2.2900 50.4071 396 0.05 0.9638 Tukey-

Kramer 
1.0000 

distance Yield_30m Yield_80m -31.7400 50.4071 396 -0.63 0.5293 Tukey-

Kramer 
0.9702 

distance Yield_40m Yield_60m 49.0200 50.4071 396 0.97 0.3314 Tukey-

Kramer 
0.8675 

distance Yield_40m Yield_80m 14.9900 50.4071 396 0.30 0.7663 Tukey-

Kramer 
0.9983 

distance Yield_60m Yield_80m -34.0300 50.4071 396 -0.68 0.5000 Tukey-

Kramer 
0.9617 
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Field 5: One-way repeated measures analysis and multiple comparisons results. 

 

Covariance Parameter Estimates 

Cov Parm Subject Estimate 

CS subject 452155 

Residual  151775 

Fit Statistics  

-2 Res Log Likelihood 7530.4 

AIC (Smaller is Better) 7534.4 

AICC (Smaller is Better) 7534.4 

BIC (Smaller is Better) 7539.6 

Null Model Likelihood Ratio 
Test 

DF Chi-Square Pr > ChiSq 

1 405.65 <.0001 

Type 3 Tests of Fixed Effects 

Effect 

Num 

DF 
Den 

DF 
F Value Pr > F 

distance 4 392 3.43 0.0090 

  Least Squares Means    

Effect distance Estimate 

Standard 

Error 
DF t Value Pr > |t| 

distance Yield_20m 1346.90 78.1044 392 17.24 <.0001 

distance Yield_30m 1316.57 78.1044 392 16.86 <.0001 

distance Yield_40m 1242.41 78.1044 392 15.91 <.0001 
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distance Yield_60m 1235.25 78.1044 392 15.82 <.0001 

distance Yield_80m 1163.13 78.1044 392 14.89 <.0001 

   Differences of Least Squares Means    

Effect distance _distance Estimate 

Standard 

Error 
DF t Value 

Pr > 

|t| Adjustment Adj P 

distance Yield_20m Yield_30m 30.3333 55.3728 392 0.55 0.5841 Tukey-

Kramer 
0.9822 

distance Yield_20m Yield_40m 104.48 55.3728 392 1.89 0.0599 Tukey-

Kramer 
0.3261 

distance Yield_20m Yield_60m 111.65 55.3728 392 2.02 0.0445 Tukey-

Kramer 
0.2601 

distance Yield_20m Yield_80m 183.77 55.3728 392 3.32 0.0010 Tukey-

Kramer 
0.0087 

 

 

   Differences of Least Squares Means    

Effect distance _distance Estimate 

Standard 

Error 
DF t Value 

Pr > 

|t| Adjustment Adj P 

distance Yield_30m Yield_40m 74.1515 55.3728 392 1.34 0.1813 Tukey-

Kramer 
0.6669 

distance Yield_30m Yield_60m 81.3131 55.3728 392 1.47 0.1428 Tukey-

Kramer 
0.5836 

distance Yield_30m Yield_80m 153.43 55.3728 392 2.77 0.0059 Tukey-

Kramer 
0.0460 

distance Yield_40m Yield_60m 7.1616 55.3728 392 0.13 0.8972 Tukey-

Kramer 
0.9999 

distance Yield_40m Yield_80m 79.2828 55.3728 392 1.43 0.1530 Tukey-

Kramer 
0.6075 

distance Yield_60m Yield_80m 72.1212 55.3728 392 1.30 0.1935 Tukey-

Kramer 
0.6899 
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Appendix B – Image Processing Scripts 
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Image Segmentation Script 

# ROI Module 

# Written by Fatima Murillo 

# Written on November 17, 2015 

# Last Updated on July 24, 2015 

 

""" 

This module contains functions for reading ROI boundary information from 

.txt 

files. The location of the files has a defaulted path, but users can 

provide a 

new path for a new set of ROI Coordinates if they have been adjusted. 

 

setBounds function returns the slopesIntercepts and xyRange dictionaries 

 

splinWin function extracts ROIs from an image and saves them as individual 

image files 

""" 

 

import re  # Provides regular expression matching operations 

import os  # Miscellaneous operating system interfaces 

import csv # Implements classes to read and write tabular data in CSV 

format 

import copy # Provides generic shallow and deep copy operations 

import skimage # Collection of algorthms for image processing 

from skimage import io # Utilities to read and write images 

import random 

 

 

# select random images from image directory 

i = 0 

imageList = [] 

imageDir = '/Users/fatimamurillo/Research/Images/video1Im/v1w6p1Im' 

while i < 200: 

    randIm = random.choice(os.listdir(imageDir)) 

    if randIm == '.DS_Store': 

        continue 

    elif randIm == 'Thumbs.db': 

        continue 

    elif randIm in imageList: 

        continue 

    else: 

        imageList.append(randIm) 

        print(randIm) 

    i += 1 

 

# setBounds function 

def  setBounds(coordPath): 

    # coordPath is the path to the directory containing the ROI coord 

files 

    # Extract coordinates of 4 corners of each quadrangle (ROI) from 

directory containing coordinate .txt files 

    xyCoords = {} 
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    while True: 

        if os.path.exists(coordPath): 

            break 

        else: 

            print("That was not a valid path to coordinates directory.") 

            coordPath = input('Please enter valid path to coordinates 

directory:') 

    for filename in os.listdir(coordPath): 

        print(filename) 

        if filename == '.DS_Store': 

            continue 

        else: 

            windowNum = re.findall(r'\d+', filename) 

            window = windowNum[3] 

            nfn = coordPath + '/' + filename 

            with open(nfn, 'r') as f: 

                reader = csv.reader(f, delimiter = '\t')      

                xyCoords["window{0}".format(window)] = list() 

                for row in reader: 

                    xEntry = float(row[0]) 

                    yEntry = float(row[1]) 

                    newEntry = [int(xEntry),int(yEntry)] 

                    # For each window, dictionary includes points as 

follows: [[A],[B],[C],[D]] 

                    # A to D are the four corners of each ROI from top 

left to bottom left 

                    xyCoords["window{0}".format(window)].append(newEntry) 

            f.close() 

                 

    # Determine max and min x and y coordinates for use in ROI extraction 

    xyRange = {} 

    windowsList = list() 

    for ROI in xyCoords:    

        currentWindow = str(ROI) 

        windowNum = re.findall(r'\d+', currentWindow) 

        windowsList.append(currentWindow) 

        xyRange["window{0}".format(windowNum[0])] = list() 

        maxX = xyCoords[ROI][0][0] 

        minX = xyCoords[ROI][0][0] 

        maxY = xyCoords[ROI][0][1] 

        minY = xyCoords[ROI][0][1] 

        for xy in xyCoords[currentWindow]: 

            if xy[0] > maxX: 

                maxX = xy[0] 

            elif xy[0] < minX: 

                minX = xy[0] 

            else: 

                continue 

            if xy[1] > maxY: 

                maxY = xy[1] 

            elif xy[1] < minY: 

                minY = xy[1] 

            else: 

                continue 
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        rangeEntry = [maxX, minX, maxY, minY] 

        xyRange["window{0}".format(windowNum[0])].append(rangeEntry) 

         

    # Determine the slope and y-intercept for each line segment for each 

window 

    slopesIntercepts = {} 

    triangleCentroids = {} 

    SITCentroids = {} 

    ROICentroids = {} 

    assignmentCheck = {} 

    thresholdCheckImage = list() 

    for each in xyCoords: 

        wNum = re.findall(r'\d+', each) 

        w = wNum[0] 

        slopesIntercepts["window{0}".format(w)] = list() 

        triangleCentroids["window{0}".format(w)] = list() 

        SITCentroids["window{0}".format(w)] = list() 

        ROICentroids["window{0}".format(w)] = list() 

        assignmentCheck["window{0}".format(w)] = list() 

        xA = xyCoords[each][0][0] 

        yA = xyCoords[each][0][1] 

        xB = xyCoords[each][1][0] 

        yB = xyCoords[each][1][1] 

        xC = xyCoords[each][2][0] 

        yC = xyCoords[each][2][1] 

        xD = xyCoords[each][3][0] 

        yD = xyCoords[each][3][1] 

        # 1 corresponds to line AB 

        slope1 = (yB-yA)/(xB-xA) 

        intercept1 = yA - (xA*slope1) 

        # 2 corresponds to line BC 

        slope2 = (yC-yB)/(xC-xB) 

        intercept2 = yB - (xB*slope2) 

        # 3 corresponds to line CD 

        slope3 = (yD - yC)/(xD-xC) 

        intercept3 = yC - (xC*slope3) 

        # 4 correcsponds to line DA 

        slope4 = (yA-yD)/(xA-xD) 

        intercept4 = yD - (xD*slope4) 

        entrySI = [[slope1,intercept1],[slope2, intercept2],[slope3, 

intercept3],[slope4, intercept4]] 

        slopesIntercepts["window{0}".format(w)].append(entrySI) 

         

        # Calculate the centroids of all triangles within the 

quadrilateral given coordinates of the corners 

        xABC = (xA+xB+xC)/3 

        yABC = (yA+yB+yC)/3 

        xBCD = (xB+xC+xD)/3 

        yBCD = (yB+yC+yD)/3 

        xCDA = (xC+xD+xA)/3 

        yCDA = (yC+yD+yA)/3 

        xDAB = (xD+xA+xB)/3 

        yDAB = (yD+yA+yB)/3 
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        # Triangle centroids 

        xyABC = [round(xABC), round(yABC)] 

        xyBCD = [round(xBCD), round(yBCD)] 

        xyCDA = [round(xCDA), round(yCDA)] 

        xyDAB = [round(xDAB), round(yDAB)] 

        entryTC = [xyABC,xyBCD, xyCDA, xyDAB] 

        triangleCentroids["window{0}".format(w)].append(entryTC) 

         

        # Determine the slope and y-intercept for each line between 

centroids 

        # For line between ABC centroid and CDAcentroid     

        slope_ABCtoCDA = (yCDA-yABC)/(xCDA-xABC) 

        intercept_ABCtoCDA = yABC - xABC*slope_ABCtoCDA 

        # BCD centroid to DAB centroid 

        slope_BCDtoDAB = (yDAB-yBCD)/(xDAB-xBCD) 

        intercept_BCDtoDAB = yBCD - xBCD*slope_BCDtoDAB 

        entrySIT = 

[[slope_ABCtoCDA,intercept_ABCtoCDA],[slope_BCDtoDAB,intercept_BCDtoDAB]] 

        SITCentroids['window{0}'.format(w)].append(entrySIT) 

         

        # Find the coordinates of the intersection of these two lines 

        # First calculate x 

        xCentroid =  (intercept_BCDtoDAB-

intercept_ABCtoCDA)*(1/(slope_ABCtoCDA-slope_BCDtoDAB)) 

        yCentroid = slope_ABCtoCDA*xCentroid+intercept_ABCtoCDA 

        entryCentroid = [xCentroid,yCentroid] 

        ROICentroids["window{0}".format(w)].append(entryCentroid) 

         

        # Standard form: Ax + By = C 

        # A = slope, B = 1, C = intercept 

        thresholdCheck1 = yCentroid - slope1*xCentroid 

        if thresholdCheck1 > intercept1: 

            assignment1 = 1 

        else: 

            assignment1 = 0 

        thresholdCheck2 = yCentroid - slope2*xCentroid 

        if thresholdCheck2 > intercept2: 

            assignment2 = 1 

        else: 

            assignment2 = 0 

        thresholdCheck3 = yCentroid - slope3*xCentroid 

        if thresholdCheck3 > intercept3: 

            assignment3 = 1 

        else: 

            assignment3 = 0 

        thresholdCheck4 = yCentroid - slope4*xCentroid 

        if thresholdCheck4 > intercept4: 

            assignment4 = 1 

        else: 

            assignment4 = 0 

        entryAC = [assignment1, assignment2, assignment3, assignment4] 

        thresholdCheckImage.append(entryAC) 

        assignmentCheck["window{0}".format(w)].append(entryAC) 
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    return(slopesIntercepts, xyRange) 

 

 

#splitWin function  

def splitWin(slopesIntercepts, xyRange, folderPath): 

    #imageDir = '/Users/fatimamurillo/Research/Images/v2w10p2Im/' 

    outputLoc = '/Users/fatimamurillo/Research/Images/v1Label/v1w6p1ROI' 

    ''' 

    imagePath = input('Please enter path to images directory:') 

    while True:     

        if os.path.exists(imagePath): 

            break 

        else: 

            print('Path invalid.') 

            imagePath = input('Please enter path to images directory:') 

    ''' 

    

    for filename in os.listdir(folderPath): 

        if filename == '.DS_Store': 

            continue 

    #for name in imageList: 

       #print(name) 

       #imagePath = imageDir + name 

        else: 

            imagePath = folderPath + '/' + filename 

            # Extract image info from image name 

            imageNums = re.findall(r'\d+', filename) 

            print(imageNums) 

            ehwNum = imageNums[0] 

            passNum = imageNums[1] 

            frameNum = imageNums[2] 

           # Create a new folder for each frame 

           #newOutputLoc = outputLoc + frameNum 

           #if not os.path.exists(newOutputLoc): 

            #   os.makedirs(newOutputLoc) 

           # Read each image 

            image = skimage.io.imread(imagePath) 

            for window in slopesIntercepts: 

                copyPic = copy.copy(image) 

                wNum = re.findall(r'\d+', window) 

                windNum = wNum[0] 

                dynY = xyRange[window][0][3] 

                yMax = xyRange[window][0][2] 

                for y in range (dynY, yMax): 

                   #dynX = xyRange[window][0][1] 

                   xMin = xyRange[window][0][1] 

                   xMax = xyRange[window][0][0] 

                   #line BC: slopesIntercept[window][0][1] 

                   slopeBC = slopesIntercepts[window][0][1][0] 

                   interceptBC = slopesIntercepts[window][0][1][1] 

                   #line DA: slopesIntercept[window][0][3] 

                   slopeDA = slopesIntercepts[window][0][3][0] 

                   interceptDA = slopesIntercepts[window][0][3][1] 

                   dynXBC = int((y - interceptBC)/slopeBC)        
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                   dynXDA = int((y - interceptDA)/slopeDA) 

                   for x in range (dynXBC, xMax): 

                       copyPic[y, x] = [255,255,255] 

                   for x in range (xMin, dynXDA): 

                       copyPic[y,x] = [255,255,255] 

                windowPortion = copyPic[dynY:yMax, xMin:xMax] 

                filename = outputLoc + 'f{0}'.format(frameNum) + 

'w{0}'.format(ehwNum) + 'p{0}'.format(passNum) + 'r{0}'.format(windNum) + 

'.png' 

                io.imsave(filename, windowPortion) 
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Histogram Generation Script 

# HSI Module 

# Written by Fatima Murillo 

# Written on December 9, 2015 

# Last updated on March 3, 2016 

 

""" 

This program retrieves statistical information of images in the HSI 

colorspace. 

""" 

 

import re 

import os # Miscellaneous operating system interfaces 

import scipy # Collection of numerical algorithms 

from scipy import misc 

from matplotlib import pyplot as plt 

from matplotlib import colors 

import numpy as np # Multi-dimensional container of generic data 

import statistics # Provides functions for calculating mathematical 

statistics 

import csv # Implements classes to read and write tabular data in CSV 

format 

 

 

# img = 

scipy.misc.imread('/Users/fatimamurillo/Documents/PythonScripts/rowDetecti

on/templateROIs/NEWwindow6ROI_template.png') 

 

 

# Generate a csv file that includes statistics report for each image from 

splitWinOutput 

 

# Create a new file 

filename = 

'/Users/fatimamurillo/Documents/PythonScripts/rowDetectII/HSIstats_test.cs

v' 

path2RefIm = 

'/Users/fatimamurillo/Documents/PythonScripts/rowDetectII/splitWinOutputTe

st' 

 

with open(filename, 'w', newline = '') as openFile: 

    csvWriter = csv.writer(openFile, delimiter = ',') 

    csvWriter.writerow(['Frame','Window','Class', 'hueMean', 'hueVar', 

'hueStDev', 'satMean',  

                        'satVar', 'satStDev', 'intMean','intVar', 

'intStDev'])  

 

    for frame in os.listdir(path2RefIm): 

        if frame == '.DS_Store': 

            continue 

        else: 

            frameDir = path2RefIm + '/' + frame 

            for label in os.listdir(frameDir): 
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                if label == '.DS_Store': 

                    continue 

                else: 

                    labelDir = frameDir + '/' + label 

                    for image in os.listdir(labelDir): 

                        if image == '.DS_Store': 

                            continue 

                        else: 

                            path2Im = labelDir + '/' + image 

                            windowNum = re.findall(r'\d+',image)        

                            img = scipy.misc.imread(path2Im)       

                            array = np.asarray(img) 

                            arr = (array.astype(float))/255.0 

                            img_hsv = colors.rgb_to_hsv(arr[...,:3]) 

                             

                            # Extract hue information 

                            lu1 = img_hsv[...,0].flatten() 

                            hueMean = statistics.mean(lu1) 

                            hueVar = statistics.pvariance(lu1) 

                            hueStDev = statistics.pstdev(lu1) 

                             

                            # Extract saturation information 

                            lu2 = img_hsv[...,1].flatten() 

                            satMean = statistics.mean(lu2) 

                            satVar = statistics.pvariance(lu2) 

                            satStDev = statistics.pstdev(lu2)         

                             

                            # Extract intensity information 

                            lu3 = img_hsv[...,2].flatten() 

                            intMean = statistics.mean(lu3) 

                            intVar = statistics.pvariance(lu3) 

                            intStDev = statistics.pstdev(lu3)                           

                            csvWriter.writerow([frame, windowNum[0], 

label, hueMean, hueVar, hueStDev, satMean,  

                                satVar, satStDev, intMean,intVar, 

intStDev]) 

            print('Please wait...') 

            print('Working on Frame ' + frame + '...') 

openFile.close()      

 

 

       

 

# Plot HSI histogram   

import numpy as np 

from matplotlib import pyplot as plt 

from matplotlib import colors 

# Active 

#imgPath = 

'/Users/fatimamurillo/Research/Images/v1Label/v1w10p1ROI/Active/f4w10p1r7.

png' 

 

# Inactive 
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imgPath = 

'/Users/fatimamurillo/Research/Images/v1Label/v1w10p1ROI/Inactive/f4w10p1r

4.png' 

img = plt.imread(imgPath)    

array=np.asarray(img) 

arr=(array.astype(float))/255.0 

img_hsv = colors.rgb_to_hsv(arr[...,:3]) 

 

lu1=img_hsv[...,0].flatten() 

plt.subplot(1,3,1) 

plt.hist(lu1*360,bins=360,range=(0.0,400.0),histtype='stepfilled', 

color='r', label='Hue') 

plt.title("Hue") 

plt.xlabel("Value") 

plt.ylabel("Frequency") 

plt.legend() 

 

 

lu2=img_hsv[...,1].flatten() 

plt.subplot(1,3,2)                   

plt.hist(lu2,bins=100,range=(0.0,1.0),histtype='stepfilled', color='g', 

label='Saturation') 

plt.title("Saturation")    

plt.xlabel("Value")     

plt.ylabel("Frequency") 

plt.legend() 

 

 

lu3=img_hsv[...,2].flatten() 

plt.subplot(1,3,3)                   

plt.hist(lu3*255,bins=256,range=(0.0,255.0),histtype='stepfilled', 

color='b', label='Intesity') 

plt.title("Intensity")    

plt.xlabel("Value")     

plt.ylabel("Frequency") 

plt.legend() 
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Appendix C – Image Classification Tests 
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Test 1 
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Test 2 
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Test 3 
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Test 4 
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Test 5 

  

  
 



  

93 

 

Test 6 
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