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Abstract

This work aims to investigate the use of a drone-based system to recognize license

plates of vehicles in a parking lot. Many parking lots contain surveillance cameras mounted

on walls or light towers for indoor and outdoor lots respectively. Parked vehicles are com-

monly monitored by law enforcement agents by driving around the parking lot to identify

license plates with an onboard camera or a handheld device. However, these systems use

expensive hardware and proprietary software. The main goal of this thesis is to develop

an autonomous parking lot surveillance system using low-cost hardware and open-source

software. Similar to wall-mounted surveillance cameras, a drone-based system can monitor

parking lots without affecting the flow of traffic while also offering the mobility of patrol

vehicles.

The Parrot AR Drone 2.0 is the quadrotor drone used in this work due to its modularity

and cost efficiency. Video and navigation data (including GPS) are communicated to a host

computer using a Wi-Fi connection. The host computer analyzes navigation data using a

custom flight control loop to determine control commands to be sent to the drone. A new

license plate recognition pipeline is used to identify license plates of vehicles from inflight

video footage.

Although license plate recognition is a well studied topic, previous academic works have ex-

ploited discernibility between characters in high resolution images obtained from stationary

cameras. In this work, the motion of the camera presents a novel challenge to the task of

license plate recognition.
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Chapter 1

Introduction

The number of motor vehicles on the road today is estimated to be over 1.5 billion,

with some observers projecting 2 billion by 2035 [1]. An increase in the number of vehicles

will inevitably lead to an increase in demand for parking lots. Vehicles and parking lots

need to be monitored for occupancy, security and compliance. This has resulted in a great

deal of interest in vehicle monitoring systems. Several systems have been developed for

parking lot monitoring, most of which use stationery cameras mounted on walls and on

light towers for monitoring indoor and outdoor parking spaces respectively.

Another category of vehicle monitoring systems called the License plate (LP) recognition

systems were developed for identifying vehicle license plates at automated toll gates and

parking lot gates. State-of-the-art LP recognition systems mounted on patrol vehicles allow

real time recognition of license plates of both moving and parked vehicles. License plate

recognition has been widely researched in both academia and industry, undergoing contin-

uous improvement with the evolution of computer vision algorithms and embedded system

hardware.

The advent of programmable Unmanned Aerial Vehicles (UAVs) has given rise to a great

deal of interest in applications using UAVs. The Parrot AR Drone, DJI Phantom and the

3D Robotics quadrotor drones are all reasonably priced and ship with a host of onboard
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sensors such as cameras and GPS as well as customizable flight control software. These

UAVs have been used for terrain mapping, crop monitoring and photography [2]. Amazon

Inc. has recently investigated the use of UAVs for delivering small packages [3].

This work is based on the idea of using an autonomous quadrotor drone to identify license

plates of vehicles in a parking lot. The main motivation for this thesis is to find cost-effective

solution to the parking lot surveillance and vehicle identification problem and to eliminate

the need for fuel-based systems to monitor parking lots.

There are two goals to this thesis. Firstly, a quadrotor drone will be used to develop a

new parking lot monitoring system. The drone will be programmed to fly along a user-

defined path using GPS. The drone will communicate video and navigation data with a

host system through Wi-Fi. Secondly, a new computer vision pipeline will be developed to

perform license plate recognition on incoming video from the drone.

The parking lot monitoring system developed in this work uses the Parrot AR Drone 2.0

quadrotor drone because of its modularity and cost efficiency. The AR Drone Software

Development kit provides the application programming interface to develop custom flight

plans using GPS and other sensors. A new Python application called Fly-Py was devel-

oped to easily retrieve the GPS coordinates for user-defined flight paths. The license plate

recognition pipeline running on the host computer is tasked with detecting and recognizing

license plates in the incoming video stream. Plates are detected using an Adaboost classifier

trained using Local Binary Patterns [4]. Characters are segmented using a combination of

Sauvola binarization [5] and Connected Components Analysis. The open-source Tesseract

OCR engine [6] is used to identify the segmented characters.

This thesis is structured in the following manner. A survey of license plate recognition

techniques is presented in Chapter II. Chapter III contains an introduction to the Parrot

AR Drone 2.0 platform. Each component of the proposed license plate recognition pipeline

is described in Chapter IV. The design of the drone-based parking lot monitoring system is

2



described in Chapter V. The experimental studies performed to test the proposed system

are presented in Chapter VI. Chapter VII contains the conclusions drawn from this work,

along with ideas for future development.
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Chapter 2

Literature Review

License plate recognition is defined as the process of locating and identifying the

license plate of a vehicle in an image or video input. Due to immense variation in plate char-

acteristics, background and operational environment, license plate recognition is considered

to be a complex task. Recognizing a license plate involves three main subtasks: license plate

localization, plate character segmentation and plate identification through optical character

recognition of segmented characters.

The first stage involves locating potential license plates in images captured by a camera.

Preprocessing is performed on the captured images in order to remove noise, blurring and

lighting variations for improved performance. Classical image processing techniques such as

edge gradient analysis, morphological operations and connected component analysis (CCA)

are commonly used for plate detection. Due to the recent popularity of machine learning,

classification algorithms such as Adaboost [7] and Support Vector Machines have been

successfully adapted to solve the license plate location problem.

The second stage is license plate character segmentation, where the goal is to isolate the

character regions from the rest of the detected plate. Methods commonly used for character

segmentation include horizontal/vertical pixel projection, connected components analysis,

Maximally Stable Extremal regions, component-based segmentation as well as a large va-
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riety of locally adaptive binarization techniques such as Niblack and Sauvola. Machine

learning techniques such as Adaboost and SVM, used in conjunction with feature descrip-

tors such as Local Binary Patterns (LBP) and Histogram of Oriented Gradients (HOG),

have also been shown to achieve excellent character segmentation.

The final stage is plate identification through Optical Character Recognition (OCR). OCR

is a highly mature topic in computer vision, with almost four decades of research and

development. Many classical OCR engines are based on the artificial neural network (ANN).

However, the development of kernel methods in the late 20th century has led to the adoption

of Support Vector Machine classifiers. OCR engines such as the ABBY FineReader [8] and

Tesseract [9] are easily available along with several training sets for different fonts, languages

and text styles.

The three subtasks (or stages) have been researched separately and as a group, resulting

several license plate recognition system pipelines. This chapter serves as a survey of both

classical and state-of-the-art techniques for each subtask.

2.1 License Plate Detection

License plate (LP) detection is the first stage in LP recognition systems. Pre-

processing is performed to correct for noise, blurring and other disturbances before the

extraction of potential LP regions in the image of the scene. LP detection methods can be

broadly classified into image processing methods and learning-based methods.

Image processing methods are the classical approach to license plate detection. These

methods are reasonably fast and require no prior training. However, they perform poorly

on images with complex backgrounds and are prone to noise. Martin used edge statistics,

gradient analysis and the top-hat morphological operator to locate potential LP regions [10].

In [11], [12], and [13], the Sobel edge operator is used to get the vertical edge statistics which

are then analyzed to determine LP candidates. Guo et al. used high gradient averaging on
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the Sobel Edge map to filter out most non LP regions. Final LP region(s) were obtained

after connected components analysis and heuristic filtering. Hough line transform was used

to correct perspective distortion [14].

Machine learning algorithms such as Adaboost and Support vector machines (SVM) are

increasingly being used for plate detection as seen in surveys [15] and [16]. Statistical clas-

sifiers have very high detection rates, low false positives and small detection time. However,

they require prior training with a decent dataset to achieve exemplar performance.

Adaboost based plate detection methods are based on the Viola-Jones object detection

framework [17], which originally used Haar-like features and integral images for rapid face

detection. Chen et al. [18] first adopted the Viola-Jones framework for scene text detection.

Seventy-nine features, consisting of mean intensity, standard deviation, the x and y deriva-

tives, histogram and edge linking features, were evaluated by a 4-layer cascade classifier.

This classifier was trained using both individual and pairs of features as weak classifiers

for the Adaboost meta-algorithm. Although not specifically trained for LP detection, the

classifier was able to detect license plates due to the presence of text regions on the plate.

Dlagnekov [19] performed Principal Components analysis on 1520 license plate images and

determined that only 30 features were required to capture 90% of the textural and struc-

tural energy. x, y derivative means and x , y derivative variances were used as the weak

classifiers for the Adaboost classifier training to form class conditional densities for each

feature. Although a high detection rate of 95% was achieved, character segmentation and

OCR were not possible since a small window of 45x15 was used for the detector.

Limberger et al. [20] also followed a similar approach, choosing to use standard Haar-like

features and edge orientation histograms for training the Adaboost classifier. Furthermore,

a Kalman tracker was implemented to overcome low resolution images by combining in-

formation of the tracked plate from successive frames. Zheng [21] used Gentle Adaboost

to train a two-classifier system which used Haar-like features and Histogram of Oriented

Gradients[22] features.
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Local Binary Patterns (LBP), proposed by Ojala et al. [4], are a class of highly efficient

local textural descriptors which have been shown to match the performance of Haar-like

features for Adaboost-based face detection, with the additional incentive of lower training

times. Meijer incorporated local binary patterns (LBP) in his license plate recognition

system as character descriptors for the character recognition part of the pipeline, opting to

use a Histogram of Oriented Gradient features to train an SVM classifier for plate detection.

In [23], Nguyen et al. developed a plate detection strategy most similar to the one proposed

in this thesis. Haar features were used in conjunction with LBP features to train a classifier

using Gentle Adaboost. This method claimed to merge the discriminative power of LBP

with the intuition of Haar features to improve overall detection performance. However, this

study was conducted using Vietnamese plates, which have black text on a white background.

For plate detection, we propose to use only LBP features to get an optimal classifier that

accommodates the variety in US license plates.

Support Vector Machines, developed by Vapnik and Chervonenkis [24], are a class of kernel-

based supervised classification algorithms used to find a hyper plane that linearly separates

a finite dimensional set of training points in a higher dimensional space. SVM use only

a subset of the training points for the decision function (support vectors) and are gener-

ally quicker to train and evaluate as compared to Adaboost techniques. Therefore, SVM

classifiers have been adopted by many researchers for the task of license plate detection

[25]. A linear SVM classifier, trained using HOG features, was used by Li for plate detec-

tion [26]. However, the algorithm was computationally intensive due to the usage of HOG

features. Another algorithm attempted to improve detection speed by using HOG-based

Bag-of-Features to train a SVM classifier for LP detection [27]. Kim et al. decomposed

an image into 16x16 grid cells and computed wavelet moments within each block before

applying an SVM to classify text/non-text regions [28].

Maximally stable extremal regions (MSER) have also been adopted in some techniques to

localize the license plate. MSER are a set of regions that are continuous and invariant to
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affine transformations and monotonic changes in intensity [29]. One approach [20] modified

the MSER framework to not only detect and track license plates, but to also perform char-

acter segmentation. Robust real-time tracking was achieved without any learning scheme.

Kim et al. [30] used MSER to extract the local extremal regions, which were then filtered

using boundary measures defined by LP text characteristics. Potential character regions

were then classified using a Support Vector Machine. In [31], the MSER framework was

used to find an initial set of regions which were then classified as plate/non plate by an

SVM trained with Scale Invariant Feature Transform (SIFT) keypoint features. In order to

overcome the inherent computational cost of SIFT, a class of nonlinear SVMs called Core

Vector Machine was employed to successfully train and detect license plates with linear

complexity.

Category specific extremal regions (CSER) were designed in [32] to detect plates by extract-

ing local features from extremal regions, and then classifying potential LP character-like

regions using a feed-forward neural network. This method achieved robustness against

variations in illumination and viewpoint. In [33], prior knowledge of the plate layout was

utilized to develop a component based LP detection method using conditional random field

(CRF) model. Individual character-like regions were found using MSER and a CRF was

constructed. LP bounding boxes were then estimated using belief propagation interference

on the CRF. This method was found to capture both the spatial and textural relationship

between characters.

Some other approaches have also yielded satisfactory performance for LP detection. In [34],

the Stroke Width Transform [35] was modified to directly segment LP characters. Another

approach [36] involved discovering the Principal Visual Word (PVW) to find LP using

character geometric constraints and SIFT features. LP regions were detected by matching

the detected PVWs with a PVW library trained in advance. Hsieh et al. [37] used the 1D

wavelet transform to get the horizontal energy band. Horizontal projection and heuristic

filtering are then applied to get a crude estimate of the plate location. Vertical projection

and Black top-hat morphological operation are used for accurate plate localization.
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2.2 License Plate Character Segmentation

Once a license plate has been isolated from the rest of the image, the next goal is to extract

characters from the plate. Therefore, character segmentation is the next stage in the license

plate recognition pipeline. It is be noted that Optical Character Recognition (OCR) is

heavily reliant on the results of the character segmentation stage.

Binarization methods were originally developed to segment characters in scanned document

images, which mostly have dark text on white backgrounds. However, character segmenta-

tion in license plates is a much harder problem due to the presence of complex backgrounds.

Global thresholding methods such as Otsu’s cannot perform optimal binarization for char-

acter segmentation, therefore research has mostly focused on using locally adaptive bina-

rization methods such as Niblack and Sauvola [38]. However, due to recent interest in scene

text understanding, several novel methods such as maximally stable extremal regions [39]

and the Stroke Width transform [35] have been developed specifically to extract characters

from scene images.

The classical solution to the character segmentation problem is the use of horizontal and

vertical histogram profiles. In the work of Kim et al. [40], locally adaptive binarization was

applied to the license plate image, followed by vertical pixel projection of the resulting binary

image to extract characters. In order to tackle adverse effects at the binarization stage,

prior knowledge of the plate was used by He et al. [41] to correct for plate inclination and

illumination variation as well as for splitting and merging characters and edge enhancement.

In the work of Yang et al. [42], the Laplacian transformation was applied to detect character

edges and merged regions were binarized.

Morphological approaches to character segmentation have also been explored. In [43], mor-

phological thickening and thinning were applied after Otsu’s binarization to successfully

segment overlapping character regions. Ezaki et al.[44] used the top-hat morphological op-

eration to segment regions distinct from the background. Sobel edge operation is applied
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separately to the red, green and blue color channels and the maximum Sobel edge values are

combined. This image is then binarized using Otsu’s method to yield character connected

components.

Kim et al. [45] established a contour tracking algorithm which used boundary informa-

tion of license plate characters to perform character segmentation. In [46], a novel image

segmentation technique called the Sliding Concentric Window was used to determine lo-

cal irregularity information which was then combined with Sauvola’s binarization method.

Kang [47] modelled an energy function consisting of the spatial and threshold characteristics

which was minimized using dynamic programming to give rapid and accurate CS results.

PhotoOCR [48], a system developed at Google, used a binary logistic classifier trained with

a combination of HOG features and Weighted Direction Code Histogram features to seg-

ment characters from scene images with low resolution and complex background. A new

HOG-based texture descriptor called T-HOG was proposed by Minetto et al. for classifying

text/non text region using an SVM [49]. T-HOG was designed to characterize single-line

texts in outdoor scenes by partitioning the image into overlapping horizontal cells with

gradual boundaries.

Given the complex nature of license plates, traditional binarization methods fail to produce

optimal results. LP character segmentation needs to be categorized as a scene text segmen-

tation problem. Twelve different binarization schemes, including Niblack [50] and Sauvola

[5], were evaluated by Milyaev et al. [51] based on OCR performance for scene text. A new

binarization strategy was also proposed. A local binarization scheme was used to produce

seed pixels which are labeled as strong/weak based on the magnitude of the Laplacian of

the image. An energy function is constructed, consisting of a local energy term defined

by the local binarization result and the Laplacian labeling process, and a smoothing term

defined by neighborhood pixel similarity. The energy function was minimized globally using

graph-cut interference to get the optimal threshold value for binarization. n [52], the scene

text binarization problem was modeled as a Markov Random Field and a Gaussian Mix-
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ture Model (GMM) was used to represent the background and the foreground. Since the

GMM requires seeds, pixels are initially labeled using the Canny edge map. The foreground

and the background models are learned using iterative graph-cut optimization, and a clean

binarization result is obtained at convergence.

A nonlinear Niblack binarization method developed in [53] used two ordered statistics filters

with the standard Niblack method to efficiently segment natural scene text. The result-

ing connected components were classified as text/non text using an Adaboost classifier

trained using geometric and edge contrast features, in addition to shape regularity, stroke

statistics and spatial coherence. Gatos et al. [54] used Sauvola’s thresholding method to

construct rough estimates of the foreground and background surface. A distance metric was

used to compare the original image with the background surface to get the final threshold

value. A team at Xerox designed a new binarization algorithm called Background Surface

Thresholding [55] to improve OCR results for camera images. The foreground is iteratively

thresholded using a function of mean neighborhood pixel intensities and background noise.

This process removes foreground pixels and the empty areas are filled in using linear inter-

polation resulting in a background surface image. Finally, the original image is binarized

using a pixel-wise threshold based on the background surface image.

Matas et al [32] proposed using a local optimal threshold value for each pixel to overcome

problems due to non-uniform illumination. However, in [39] and [56], they postulated

that separating the character segmentation from character recognition causes in loss of

information. A new method to improve OCR performance was developed using MSER and

two SVM classifiers. First, plate regions were classified using an SVM with a radial basis

function kernel. Then, text lines were formed using an SVM with a polynomial kernel.

After applying geometric normalization to correct for perspective distortion, an optimal

image is fed into the OCR engine. [57] also used MSER but improved the segmentation

performance by implementing an Extremal Region tree which captures the evolution of

every connected component or extremal region across multiple thresholds. Irrelevant sub-
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paths were filtered out by partitioning and pruning the tree. After some heuristic filtering,

the remaining candidates are represented using local binary patterns (LBP) and Adaboost

classifier is applied to segment character-like regions.

Some approaches attempted to utilize text color information for character segmentation. In

[58], the Stroke Feature Transform was developed to incorporate color cues of text pixels

along with the stroke features thereby improving inter-component separation and intra-

component correction. Fraz et al. [59] recently proposed a new method of using color to

enhance the text information. Illumination and reflection effects are removed using color

enhancement. The color image is then quantized into N levels yielding N binary maps. The

connected components obtained at each quantization level are filtered. HOG features are

extracted and an SVM is used to classify text regions.

Kim et al. [60] developed a mobile application system which considered text location clues

provided by the user. Using a mobile camera, a target region or window containing part

of the text region is selected by the user. Colors in that region are clustered to give an

estimate of the foreground color value, which is then used to perform binarization in the

window. The text region is then iteratively expanded by searching the neighborhood for

similar text color and updating the text color after every iteration. [61] introduced another

mobile application for scene text recognition system using a new method called boundary

clustering. Text and background surfaces are modeled and edge pixels are clustered based

on color pairs and spatial position. Characters are extracted by assigning colors to the

boundary layers after which stroke-based segmentation is applied.

2.3 License Plate Character Recognition

The most critical step in identifying the license plate is optical character recogni-

tion (OCR). OCR is widely considered a solved problem, having seen active research and

development since the 1980s. Most OCR frameworks are built on the assumption that the

characters or text lines originate from scanned documents. However, scene text exhibits
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wide variation in orientation, font size, style and color. Therefore, OCR for scene text un-

derstanding is not yet a solved problem, with several new strategies published every year,

particularly at the ICDAR Robust Reading competitions [62].

Early methods for OCR, as enumerated by Ning Li [63], used pixel-wise comparison to find

the best matching character in a stored library. In one approach, the image was decom-

posed into 8x8 grids and those with strokes passing through them were identified as cellular

features. A input image, decomposed to these cellular features, was then compared to a

template library to find the best match. In another method [64], the stroke distributions

were computed in the vertical and horizontal direction using projection and used for match-

ing. In a further improvement, the image was decomposed to an m x n grid or mesh and

the ratio of the stroke areas and the grid area was used as a feature for character classifi-

cation. Such methods were sensitive to noise and character variety. Faster matching was

achieved in [65], where a weighted feature-based hierarchical template evaluation technique

was developed for license plate character recognition in order to effectively classify poorly

segmented characters. [66] also presented a fast template matching method for license plate

character recognition, where each character was scanned along a central axis to construct

a feature vector containing the number of transitions between background and character.

In order to improve OCR speed by using only relevant image data, subsequent research fo-

cused on reducing the dimensionality of the input. Statistical classifiers such as K-Nearest

Neighbors (K-NN), Artificial Neural Networks (ANN) and Support Vector Machines (SVM)

are used to evaluate the reduced input or feature vectors to effectively match characters.

Dimensionality reduction and feature extraction were initially performed using transforma-

tions such as Fourier [67], Gabor and Karhunen-Loeve. [68] decomposed the character image

using the Gabor wavelet transform and a 1-NN classifier was used for character recognition.

Newell and Griffin [69] formulated features called oriented Basic Image Features (oBIFs)

based on local orientation and symmetry and used Nearest neighbors for the character clas-

sification process. In [70], Newell et al. combined pairs of HOG features at different scales
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to achieve robust character recognition using Nearest Neighbor classifiers.

Structural features such as contours and skeletons [63] have also been to improve the speed

of OCR. A distance metric was used in [64] to fit the character contour to a given number of

classes. [71] followed a graph matching approach where characters were represented using

three types of features: curve point, branch point and end point. A similar approach was

followed in [72] where graph grammar rules were used for character recognition in license

plates.

The artificial neural network (ANN) was adopted in [73] to classify 64 x 1 feature vectors

formed by decomposing the character image. Diep et al. [74] created a complex albiet more

accurate neural network which classifies feature vectors of size 2500 x 1. Gonzanga et al. [75]

used 17 features based on line slope, curvature, space interconnection, line interconnection

in addition to other geometrical and topological features for representing characters in ANN

training and classification.

Ramirez et al. [76] developed a structurally adaptive neural network which used Run Length

Encoding to represent characters as feature vectors for ANN classification. In [77], Principal

Components analysis was used for dimensionality reduction and the neural network classifier

was trained using a radial basis function for the hidden nodes. [67] used an ANN to classify

characters represented by Fourier descriptors. [78] and [79] improved recognition by using

parallel neural networks to preserve the spatial compounding information. In [78], LP

character features are extracted by skeletonization and normalized to a size of 8 x 16 pixels

before classification using a parallel neural network. Canny edge detection operator and the

blob coloring method were applied in [80] to separate LP characters and a feed-forward back-

propagated neural network was used for character classification. In the work of Draghici et

al. [81], two OCR engines were developed. The first was an ANN-based OCR engine which

was used to classify feature vectors created by calculating the average intensity value in an

8 x 16 block. A second engine called the constraint-based decomposition was developed

to perform classification and constructively improve OCR performance by updating the
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network architecture. In [82], Histogram of Oriented Gradients (HOG) features are used to

represent characters. Classification is done by a special category of ANN called Extreme

Learning Machines in which the weights of the hidden layers are never updated.

Support Vector Machines have also been employed successfully for character recognition.

SVMs are essentially binary classifiers while OCR is a multi-class problem. However, two

strategies exist to adapt SVMs for character recognition: One-versus-All SVMs and One-

versus-One SVMs. In the One-versus-All approach, the multi-class problem is reduced

to several binary classification problems by training multiple SVM classifiers. For each

classifier a positive label is assigned to the training examples of one class and negative label

to the examples belonging to all the other classes. A winner-takes-all strategy is applied

where the classifier with the highest output function is used to assign the output class. In

the One-versus-One approach, each classifier assigns a vote to one of two classes and the

class with the highest vote gets assigned to the output.

A comprehensive study of both SVM strategies is carried out by Thome et al. [83] based on

their previous works for character recognition in Brazilian license plates [84][85]. The One-

vs-One approach was found to have better classification accuracy (99.7%) as compared to

the One-vs-All approach (96.7%). Liu et al. ( [86], [87]) found that SVM trained using chain

code features and gradient features using the profile structure feature as a complementary

feature, had accuracy rates over 99%. In [87], SVMs trained using Radial Basis Functions

(RBF) or polynomial kernels were observed to have high levels of accuracy when used with

proposed normalized cooperative feature extraction methods. [88] and [89] used multi-class

SVM for character recognition in Indian license plates. Waghmare et al. [88] developed

a One-vs-All SVM classifier system trained to recognize 36 classes (10 numbers and 26

letters). In constrast, Parasuraman and Subin [89] used One-vs-One SVM classifiers to

perform OCR. Ahmad et al. [90] developed a hybrid OCR system which used RBF kernel

based multi-class SVM and a Hidden Markov Model system for character and word level

classification. In [91], Gabor features were used to construct a binary tree-like structure
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using the SVM framework.

Xue [92] trained a One-vs-All SVM using Histogram of Oriented Gradients (HOG) features

to classify hand-written as well as synthetic characters. C. Yi et al. [93] developed a

new descriptor called Global HOG and used RBF-kernel SVM classifiers. When compared

to local HOG descriptors, Global HOG demonstrated better modeling of the character

structure, thereby improving OCR performance for scene text. Xin Li [26] and Bi Li et al.

[94] investigated the use of HOG features and One-vs-All SVM classifier for recognition of

USA and Chinese license plates respectively. G. Ning [95] extracted rotational HOG features

separately from the RGB channels and trained a One-vs-All SVM for classification.

Local Binary patterns (LBP) have also found application in character recognition. Liu et

al. [96] proposed a simplified LBP descriptor to produce optimal code patterns for Chinese

LP characters. OCR is performed by matching the feature vector histograms using the

Mahalanobis distance. Jayke Meijer [97] used the original LBP to decompose the character

image into a feature vector and a linear SVM was used for character classification. In [98], a

new descriptor called the local line binary pattern was formulated to encode the horizontal,

vertical and magnitude information separately.

Some methods have been exclusively developed for scene text understanding. De Campos

et al. [99] experimented with six types of features (shape context, SIFT, geometric blur,

patch descriptor, spin image and maximum response of filters) and three different types

of classifiers (SVM, k-NN and Multiple Kernel Learning) for scene text OCR performance.

They found that a Multiple Kernel Learner trained using only 15 images had significantly

better performance compared to the ABBY commercial OCR engine. Neumann and Matas

[39] developed a robust scene text recognition system using maximally stable extremal

regions (MSER). After normalizing the detected MSER regions to a fixed size, bitmaps are

created by inserting boundary pixels based on orientation. An SVM classifier trained with

a radial basis function is used to recognize characters.
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Recent works have focused on using unsupervised and deep learning methods for charac-

ter classification. Coates et al. [100] used a linear SVM for classifying features obtained

from spatial pooling. Spatial pooling is an unsupervised feature extraction algorithm that

combines the responses of a feature at multiple locations into one feature, thereby reducing

the dimensionality of input character images. A related work by Wang et al. [101] used

spatial pooling to select features which were fed into Convolutional Neural Networks (a

class of massively networked ANNs) to achieve very high OCR performance. Character

classification in the PhotoOCR engine [48] is performed by a deep neural network using

HOG features.

To summarize, this chapter has explored almost two decades of research in the areas of

license plate detection, character segmentation and text recognition. Machine learning

methods such as Adaboost and SVM have found immense popularity for object detection.

Adaboost in particular has been used to achieve excellent results with very low detection

time. Feature descriptors such as Histogram of Oriented gradients (HOG) and Local binary

patterns (LBP) have been used successfully for a variety of tasks including plate detection.

License plate character segmentation is most commonly performed using locally adaptive

thresholding methods such as Niblack and Sauvola. Finally, the wide availability of open-

source Optical Character Recognition engines such as Tesseract emphasizes the maturity of

character recognition techniques. Although not designed for scene text recognition, these

OCR engines can perform reasonably well on optimally segmented characters. Several recent

approaches have been aimed at scene text detection and recognition.

It has to be mentioned that almost all of the previous work on character segmentation and

character recognition have exploited images with high discernibility between characters in

addition to using high resolution images obtained from stationary cameras. It was observed

that many license plate character segmentation and character recognition systems were

developed for European or Asian plates which have dark letters on a white background,

making the problem considerably easier. This work differs from previous approaches in
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that we use low quality images from a moving camera, which introduces an additional level

of complexity to plate detection and recognition. License plates being part of scene images,

this work considers license plate recognition as a scene text understanding problem.
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Chapter 3

The AR Drone

The AR Drone is a low cost quadrotor drone which was designed by engineers

at Parrot, SYSNAV and MINES Paris Tech with the goal of creating a stabilized UAV

platform at affordable costs for home entertainment applications such as video gaming and

Augmented Reality (hence the prefix AR). The first AR Drone was released in 2010, followed

by the AR Drone 2.0 in 2013. The AR Drone 1.0 was equipped with a 480p front camera,

an ultrasound sensor and an inertial measurement unit (IMU) that measures pitch, roll,

yaw and accelerations along all axes. The AR Drone 2.0, which is the platform used in this

work, incorporated better features including a 720p front camera, a pressure sensor and

better flight control due to the addition of a 3-axis magnetometer. A GPS/USB flash unit

was also made available as an add-on feature to enable GPS-based navigation capabilities

in addition to providing 4GB to record inflight video and navigation data.

The Parrot AR Drone can be remotely controlled by providing flight commands through Wi-

Fi using a graphical user interface running on iOS or Android hand-held devices. Further-

more, an open-source AR Drone Software development kit (SDK) is provided for advanced

users. The SDK can be used on Linux, Windows or Mac PCs to access drone hardware

(camera and sensor data) and configure flight parameters (maximum tilt angles, altitude

etc) thereby allowing implementation of custom flight control programs.
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3.1 Basic Concepts in Quadrotor drones

The mechanical structure of a quadrotor drone consists of four rotors attached to

the body frame. Opposite rotors are grouped into 2 pairs: P1(R1, R3) and P2(R2, R4).

Both rotors in a pair turn in the same direction. However, the two rotor pairs P1 and P2

rotate in the opposite direction with respect to each other. For instance, P1 rotates counter

clockwise while P2 rotates clockwise. Each rotor produces three types of dynamical forces:

Thrust, Ti : A force that is generated by accelerating the quadrotor system in one direc-

tion, resulting in equal force on the system in the opposite direction.

Torque, τ. : A force that causes the quadrotor to rotate about its central axis,

Drag, Fdrag : A force that resists the quadrotor motion through the air, due to air friction.

The quadrotor moves as a result of differential torque and thrust. Pitch (Θ), roll (Φ) and

yaw(Ψ) are used to represent the angles of rotation in three axes about the vehicles center

of mass. In order to stay airborne, the motors should generate sufficient vertical thrust to

overcome the gravitational force in the downward direction. A vertical movement can be

achieved by varying the motor thrusts (T1,T2,T3, T4) by the same magnitude. This changes

the total vertical thrust without creating a differential torque on the body, thereby avoiding

rotation along any of three axes. Difference in the angular velocity of each rotor pair creates

an angular acceleration (Ψ̇) about the yaw axis. Each rotor pair can be used to control the

pitch and roll angles separately. Increasing thrust for one rotor while decreasing thrust for

the other rotor in the pair introduces a differential torque about the pitch or roll axes, while

maintaining stability in the yaw axis. Horizontal forward/backward motion can be initiated

by creating a differential between the front and the rear rotors, resulting in a non-zero pitch

angle Θ. Similarly, a sideways movement can be obtained if the roll angle Φ is non-zero as

a result of differential torque between the left and the right rotors.

Θ and Φ govern the magnitude of acceleration of the drone along the pitch and roll axes.

The greater the tilt, the faster the drone will accelerate. Therefore, by placing an upper
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bound on the tilt angles, an upper bound can be placed on the maximum acceleration of

the drone. However, if this acceleration is insufficient to overcome air resistance, the drone

will not move in the desired direction.

3.2 Previous work using the AR Drone

Due to low cost and high modularity, the AR Drone has become an attractive choice

for researchers in academia and industry [102], resulting in its adoption for a variety of appli-

cations. Bills et al. [103] used perspective cues to navigate structured indoor environments.

Another method [104] used SURF features and template matching for indoor navigation

of the AR Drone using its front camera. Vissier et al [105] developed advanced navigation

capability for the AR Drone based on simulation. In [106], probabilistic models for sensing

and motion were used to learn elevation maps, optimal paths and optical flow based obstacle

avoidance. [107] used an extended Kalman filter (EKF) to improve localization accuracy

to within 10cm by fusing information from GPS, Inertial Measurement Unit (IMU) and

Ultra-wide band (UWB) tracking.

Cremers et al. published several works on camera based navigation using the Parrot AR

Drone. In their first work [108], a monocular SLAM-based navigation system was developed

for GPS-denied indoor environments. Data fusion and state estimation were performed

by an extended Kalman filter and a PID flight controller was used. Following a similar

approach, state pose estimation was used to achieve accurate figure flying in an indoor

environment [109]. In a more recent work [110], scale estimation was attempted using the

front camera to assist in visual SLAM for navigation.

3.3 Hardware

The body of the AR Drone 2.0 [111] is constructed using carbon fiber and high

resistance plastic. The rotors are made with fiber-charged nylon plastic parts. Two light

weight hulls made of Expanded Polypropylene (EPP) foam are also provided with the drone
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to protect against mechanical shocks during indoor and outdoor flights. The total weight

of the drone is between 380-420g, depending on the hull being used.

The AR Drone 2.0 is equipped with a 1GHz 32-bit ARM Cortex A8 processor and a ded-

icated video processor (800MHz DSP TMS320DMC64x). The processors run Linux 2.6.32

as the default operating system. 1 Gbit 200 MHz DDR2 random access memory (RAM)

and a 802.11g wireless card are also integrated with the processor to provide computational

power and Wi-Fi connectivity. Custom software can be flashed to the board through a

universal serial bus (USB) connection, which can also be used to attach add-on units like

the GPS.

The four rotors are powered using 14.5W brushless DC motors, which have a range of

10,350- 41,400 RPM. While hovering, each motor runs at 28,000 RPM which translates into

3,300 RPM on the rotor by using the 1/8.75 Nylatron reductor gears. A custom Electronic

Speed Controller (ESC), which consists of a low power 8-bit AVR microcontroller and a 10-

bit ADC, is used to control each motor. A protection system continually monitors all the

motors. It prevents damage by cutting off power to all the motors if any rotor encounters

an obstacle.

The standard power source for the AR Drone 2.0 quadrotor system is a 1000 mAh Lithium

polymer (LiPo) battery a flight time of approximately 10 minutes. However, 2000 mAh

LiPo batteries were used in this work to allow flight times up to 20 minutes.

3.4 Sensors

A variety of sensors are incorporated with AR Drone 2.0 in order to allow automatic

stabilization and to provide video data for the user. Flight dynamics are monitored by

the various sensors and sensory data is analyzed by internal stabilization algorithms to

allow robust control and stable flight. Take-off, hovering, trimming and landing are fully

automatic using sensory data [112].

22



The AR Drone features a 6 degree-of-freedom inertial measurement unit (IMU) which pro-

vides the pitch, roll and yaw measurements necessary for flight stabilization and assisted

tilting control. The IMU contains a 3-axis accelerometer, a 2-axis roll/pitch gyroscope and

a single axis yaw gyroscope. One or more accelerometers are used to detect the current rate

of acceleration of the inertial frame with respect to the world frame. The gyros are used to

measure angular velocity in degrees per second. The angular velocity signal is integrated

with respect to time in order to estimate the absolute angle. However, sensor noise leads

to orientation drift. The AR Drone 2.0 uses a 3 axis magnetometer to correct for this

orientation drift. The IMU allows motion estimation and stabilization [112].

An ultrasound telemeter is used to measure the altitude up to 6m [113] after which the

altitude is measured by a pressure sensor. The altitude measurements are also used for

stabilization.

Finally, two vision sensors are present on the AR Drone: a QVGA 240p vertical camera and

a 720p 30frames per second (FPS) front camera. The vertical camera has a field-of-view of

64◦ and is used to measure the ground speed for automatic hovering and trimming. The

front camera consists of a CMOS sensor with 92◦ lens. Live video feed from either camera

can be relayed over Wi-Fi or recorded on a USB flash drive using JPEG/H264 encoding

scheme. For this work, the front camera was tilted by 16◦ along the pitch axis so that

the drone can obtain a direct view of vehicle license plates while maintaining a safe flying

altitude.

3.5 Software

The open-source AR Drone Software Development Kit (AR Drone SDK 2.0) al-

lows the development of custom software for the drone using C. The AR Drone Library is

part of the SDK and provides high-level application programming interface (API) for de-

veloping custom applications. It includes the details about the video processing pipelines,
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codecs, input device management, communication and navigation structures. It also allows

implementation of custom controller threads for flight control.

Communication between the AR Drone and the client is through an ad-hoc Wi-Fi connec-

tion. There are four main services implemented in the SDK [112].

1. ardrone tool or AT commands: Transmitting/receiving data at a frequency of

20Hz, this service is used to control the drone. This thread will be used by the flight

control loop (see Section 3.7.3) to send input commands to the drone. The syntax of

the control input string is shown below,

a r d r o n e t o o l s e t p r o g r e s s i v e c m d (

i n t 3 2 t control mode ,

f l o a t 3 2 t r o l l a n g l e ,

f l o a t 3 2 t p i t ch ang l e ,

f l o a t 3 2 t v e r t i c a l s p e e d ,

f l o a t 3 2 t yaw speed ,

f l o a t 3 2 t mag psi ,

f l o a t 3 2 t mag ps i accuracy )

The first argument is used to switch between hovering mode (0) and control mode

(1). The next two arguments are the roll angle Φ and pitch angle Θ between (-1,

1) where 1 refers to the maximum preset value. The drone tilts left and forward

for negative values of Φ and Θ respectively. Positive vertical speed increases drone

altitude. Left/right rotation along the yaw axis is obtained by specifying negative

and positive values respectively. The last two arguments are used to refine the com-

pass heading using the magnetometer. The application programming interface also

allows specification of drone flight environment (indoor/outdoor), protective hull type

(indoor/outdoor shell) and other configuration data.

2. Navdata: This service receives various instrumentation data including sensor mea-

surements at a frequency of 30Hz (200Hz in debug mode). This data is unpacked by
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the SDK and made available to the user in the form of structures, the most important

of which are listed below.

navdata demo t \\ Battery status , V e l o c i t i e s V x , V y , V z

navdata t ime t \\ Time

n a v d a t a e u l e r a n g l e s t \\ Theta , Phi , Ps i

n a v d a t a a l t i t u d e t \\ Alt i tude

navdata magneto t \\ Magnetometer r ead ings

navdata gps t \\ GPS coo rd ina t e s

3. Video: This service allows live streaming of video data from the drone using the

Parrot video encapsulation and the MPEG4 codec. Video packets received from the

drone are decoded by the SDK and direct user access is possible through the API. This

video data will be processed by the host computer to perform license plate recognition.

Using the ardrone tool commands, frame rate and bitrate of the video stream can be

adjusted between 15-30 frames per second and 300-1700 bits per second respectively.

4. Control Port: Critical tasks such as configuration data retrieval are communicated

through this channel via TCP/IP for reliability.

3.6 Control

The internal flight controller of the AR Drone is based on the difference between the

user input and the current values of the controllable parameters. Values in the user-defined

input string (see Section 3.5) should be in the range (-1, 1) as a factor of preset maximum

values [112]. The pitch (Θ) and roll angles (Φ) can be specified to control the linear and

lateral velocities of the drone. Rotation about the yaw axis can be achieved by specifying

yaw speed (Ψ̇). The altitude is controlled by providing the desired vertical speed (Vz) in

the input string.
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In order to ensure stable and controlled motion, the drone does not allow the user to directly

control the motors. This task is performed by an internal control system which regulates

the motor speeds based on the ardrone tool set progressive cmd arguments. Different

modes of the drone (flight, take off etc) are modeled as a finite state machine. There are

two nested control loops: the Attitude Control Loop and the Angular Rate Control Loop

[113].

Attitude Control Loop: In this loop, the difference between the estimated heading and

the desired heading is used to compute an angular velocity for the motor which is tracked

using a Proportional Integral (PI) controller. The Attitude Control Loop also handles

altitude stabilization using information from the ultrasound sensor to maintain a fixed

distance from the ground. However, the ultrasound sensor data may cause the drone to

automatically increase its height due to perceived difference in altitude when the drone flies

over objects. To overcome this undesirable behavior, the altitude stabilization is based on

a filtered derivative of the ultrasound measurements [114]. The ultrasound sensor is also

used during take-off to reach a fixed altitude quickly, and to decrease the vertical velocity

Vz when near the floor while landing.

Angular Rate Control Loop: This loop consists of simple proportional (P) controllers

for motor speed control. If no user input is specified, a Hovering Control Loop is used to

maintain constant altitude and zero speed using a PI controller.

26



Chapter 4

The License Plate Recognition

Pipeline

This section introduces the license plate recognition pipeline. The algorithms in-

volved in license plate detection, pre-processing, character segmentation and OCR are de-

scribed in detail. OpenCV 3.0 was used to implement the computer vision algorithms

because of its immense functionality and ease of use, in addition to being open-source.

4.1 License plate detection

This work adopts the Viola Jones object detection framework to rapidly locate

license plates in video frames. However, instead of the standard Haar-like features, local

binary pattern (LBP) descriptors are used to represent images. Local histograms are first

extracted from license plate images using an LBP operator. Next, a spatially enhanced

feature vector called the LBP histogram is obtained by concatenating the local histograms.

These feature vectors are used to train a Gentle Adaboost classifier.
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4.1.1 Local Binary Patterns

Local binary patterns (LBP) are a class of powerful, computationally simple textural

descriptors which are used to capture local image structure by evaluating pixel neighbor-

hood. The LBP histogram of a region can serve as an effective texture descriptor since the

LBP operator is invariant to monotonic gray-scale transformations (Figure 4.3).

Local binary patterns are computed by taking the central pixel location as the reference

point and its value (Ic) as a threshold for comparison with its neighbors. If a neighboring

pixel has an intensity (Ip) higher than the threshold, it is assigned a value of 1, else it is

assigned a value of zero. Following a binary code construction scheme as shown in Figure 4.1,

each pixel in the input image can be represented by a binary number or the local binary

pattern code. LBP codes are written as LBP(P,R) where P is the number of neighbors and

R is the radius of the neighborhood within which the image structure is evaluated. The

construction of an 8-neighbor local binary pattern code is defined in Equation 4.1,

LBP(8,1) =
8∑
p=0

n(Ip − Ic)2p (4.1)

where n is determined by the difference in intensities between the neighbor and the central

pixel.

n =


1 if (Ip − Ic) ≥ 0

0 if (Ip − Ic) ¡ 0

The original local binary pattern fails to encode large textural features which are necessary

for multi-scale description [115]. This was addressed by using a circular neighborhood

operator of radius R, consisting of P evenly spaced points. Parameters P and R regulate

angular space quantization and spatial resolution respectively. Multi-resolution analysis can

be performed by combining the responses of multiple operators with different (P , R) pairs.

Neighboring pixel locations (xp, yp) are estimated as follows:
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Figure 4.1: Local Binary pattern code formation

Figure 4.2: SC (left) and NC license plates (center), both subjected to LBP(8,1) and SC
plate subjected to the circular LBP(16,2)

xp = x+Rcos(2πp/P ) (4.2)

yp = y −Rsin(2πp/P ) (4.3)

The LBP code for the circular LBP (also called the extended or E-LBP) is defined as follows:

LBP(P,R) =

P∑
p=0

n(I(xp, yp)− Ic)2p (4.4)

In this license plate recognition pipeline, an advanced LBP derivative called the multi-scale
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Figure 4.3: LBP invariance to monotonic changes in intensity

Figure 4.4: Multi-Block Local Binary Pattern for scale s = 9

block local binary pattern (MB-LBP) is used for encoding license plate images into feature

vectors. MB-LBP efficiently represents the image by incorporating the macrostructure of

the image with its microstructure[116]. The MB-LBP operator divides the image into s x

s sub-regions or blocks where s is the scale (Figure 4.4). Within these blocks, the average
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sum of image intensities (S1-S8) are computed rapidly using integral images. The average

sums of the P neighbors block are compared to the central block sum (Sc) to form the

MB-LBP code. MB-LBP thus effectively encodes the local information in each block while

eliminating noise due to the large window size. The local histograms extracted from each

block are concatenated to form the final LBP histogram which is used as input to the

classifier.

4.1.2 Adaboost

Boosting is a machine learning approach where the goal is to create a strong classifier

by combining several weak(inaccurate) classifiers or learners. The only selection criterion

for the weak classifiers that the accuracy of each classifier is slightly better than random

guessing. Therefore, for a 2-class problem like plate detection (plate/non-plate), each weak

classifier must have an accuracy greater than 51%. Adaboost (Adaptive Boosting) is the

most popular boosting algorithm as it can achieve excellent classification performance when

trained properly. Decision trees are the most common weak learners used for classifier

training with Adaboost.

Given a labeled training set {(x1, y1)...(xm, ym)}, weak classifiers can be constructed by

considering individual or combinations of input features. These weak classifiers (hi(x)) are

iteratively weighted (wt) and combined to minimize training error (Et) at every stage t,

resulting in a potentially strong classifier ft(x):

ft(x) = wthi(x) (4.5)

Different variants of Adaboost (Real Adaboost, Discrete Adaboost, Gentle Adaboost) use

different training error metrics to choose ft(x). Gentle Adaboost uses least squares fitting

to minimize the error function (Et) as shown in Equation 4.6.

Et =
∑
n=i

wt,i(yi − ft(xi))2 (4.6)
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After several stages of training, the final boosted classifier (F (x)) is formed as the sum of

the strong classifiers,

F (x) =
T∑
t=1

ft(x) (4.7)

Viola and Jones [17] laid the foundation for a new object detection framework based on

boosting. Firstly, image features are computed using integral images with linear complex-

ity. Next, Adaboost is used as a feature selection process where each weak classifier is

dependent only on one image feature. The resulting classifier retains only strong features

since irrelevant features are quickly eliminated by Adaboost. Algorithm 1 describes the

feature selection process using Gentle Adaboost. The resulting classifiers are combined into

a degenerate decision tree-like structure, resulting in a cascade of classifiers. This improves

detection speed and performance since large areas of the image are discarded by the initial

classifiers using relatively simple features. Subsequent classifiers in the cascade evaluate

computationally intensive features to produce the final classification result. The cascade

classifier can be optimized by varying the number of features used, the number of classifiers

in the cascade and the threshold criterion at each stage of classifier training.

4.1.3 Implementation

The plate detector was created using the Viola Jones framework with Gentle Ad-

aboost for feature selection. LBP histograms are computed by applying the multi-scale

local binary pattern (MB-LBP) operator to the integral image. These features are used

to train a Gentle Adaboost cascade classifier with 14 layers. Decision stumps, which are

one-level decision trees, were used as weak learners. Thirty-two features were learned by

the classifier at the end of the training process. Few of the more interesting features are

shown in Figure 4.5). It can be seen that several features are learned around the tree in

SC plates, in addition to dark-to-light and light-to-dark transitions which characterize the

presence of text in an image.

At the end of Adaboost training, an XML file containing the classifier information is gener-
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Algorithm 1 Gentle Adaboost learning algorithm used in the Viola Jones framework

1. Given a training set {(x1, y1)...(xn, yn)} where yi = 1 or 0 for positive and negative
examples respectively.

2. Initialize weights wi = 1/2m, 1/2l for positive and negative examples respectively,
where m and l are the number of positive and negative samples.

for t = 1 to T do

for each feature j do

3. Train weak classifier hj

4. Minimize classifier error ej,t using least squares fitting

ej,t ⇐
∑
j

wj,t(yi − hj(xj))2 (4.8)

end for

5. Select classifier hj,t with the smallest error ej,t as strong classifier ft for stage t.

6. Update the weights

wj,t ← wj,tβ
1−ej
t (4.9)

where βt = ej,t/1− ej,t and ej = 1 or 0 if classified correctly/incorrectly.

7. Normalize weights to create a probability distribution:

wj,t ← wj,t/

n∑
i=1

wj,t (4.10)

8. Final boosted classifier
Ft(x)← Ft−1 + ft (4.11)

if termination criteria reached then
Ft(x)← Final boosted classifier

end if

end for
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Figure 4.5: Features learned by the cascade classifier during training

ated. During operation, file is loaded by the license plate recognition pipeline to instantiate

a plate detector object. Video frames are converted to grayscale before being evaluated by

the plate detector.

4.2 License plate correction

Once a plate has been identified, it is subjected to various corrective operations

in order to improve performance at the character segmentation stage. Detected plates

are corrupted by significant noise, uneven illumination and perspective distortion. Pre-

processing plays a vital role in improving image quality for better character segmentation

and recognition results. This section describes the pre-processing methods implemented in

the license plate recognition pipeline.

Figure 4.6 shows a template of the South Carolina license plate and an image captured by

the drone. It can be seen that the image received from the drone is affected by the low

quality camera sensor and low bitrate of the video stream. The presence of unfavorable

illumination and motion blur further corrupt several frames, therefore only a small fraction

of the detected plate images are available for further processing. Severely blurred plates are

discarded by using the variance of Laplacian of the image as a measure of focus[117].
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Figure 4.6: SC license plate template(left) and SC license plate captured by the drone
camera(right).

Figure 4.7: License plate captured by the drone(left) and license plate image after Gamma
transformation(right)

4.2.1 Gamma correction

Gamma correction is a non-linear image transformation which is used for contrast

enhancement. Contrast enhancement may be defined as the process of increasing the dis-

cernibility between light and dark regions in a grayscale intensity image. Given an input

image pixel Iin(x, y), the standard gamma correction operation can be defined as,

Iout(x, y) = 255

(
Iin(x, y)

255

)γ
(4.12)

where γ (as seen in Equation 4.13) adjusts the dark ( Iin(x, y) <60 ) and bright (Iin(x, y)

>190) pixels more as compared to the median pixel intensities.

γ(x, y) = 2

(
Iin(x,y)−127

128

)
(4.13)

Gamma correction in this license plate recognition pipeline is performed using the locally

adaptive method proposed in [118]. The image histogram is partitioned based on local
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minima and the mean gray-level (Imp) of each partition is used for gamma correction as

seen in Equation 4.14,

γ(x, y) = 2

[
1− 255−Iin(x,y)

128α+(1−α)Imp

]
(4.14)

The factor α in Equation 4.14 is a function of the frequencies of the local histograms.

Figure 4.7 shows the effect of applying histogram partitioning based gamma correction to

the detected plate image.

4.2.2 Color channel processing

Given the geographic location of the experiments, South Carolina (SC) plates were

the most frequently encountered class of license plates. SC license plate (Figure 4.6) contain

a color gradient which complicates the character segmentation problem. During initial

experimentation, it was found that the orangish hue in the lower regions of the plate had

an adverse effect on character segmentation. Therefore, separate processing of the red, blue

and green channels was considered. Satisfactory segmentation results were obtained for SC

plates by using only the red channel while no adverse effect was observed in other plates

(Figure 4.8). It can be observed that some noise gets added as a result of using only the

red channel but the characters are not broken.

4.2.3 Perspective correction using the Hough Transform

Detected plates are subjected to perspective transformation since the drone camera

experiences changes in viewing angle. Therefore, it is necessary to undo this perspective

transformation in order to simplify character segmentation. In this system, rotation along

the image plane is rectified by applying a corrective transformation using a scaled rotation

matrix Rs is defined as:

Rs =

 α β (1− α)x− βy

−β α βx+ (1− α)y

 (4.15)
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Figure 4.8: Result of binarization for Georgia (left) and SC plates: using the grayscale
image (left) and the red channel only (right)

where α and β are defined by rotation angle θr and scale s as follows,

α = s cos θr

β = s sin θr

The Hough transform is feature extraction technique commonly used as a shape detector,

particularly for detecting lines in an image. It uses a voting scheme to effectively find

imperfect instances of a shape in an image. Equation 4.16 defines a line in parametric form,

where ρ is the perpendicular distance to the origin of the line and θ is the angle between

the perpendicular line and the horizontal axis.

ρ = x cos θ + y sin θ (4.16)

Using (ρ, θ) as the parameter space, the Hough transform detects line points as local max-

ima in an accumulator space where votes are counted for each (ρ, θ) pair applied to all

non-zero points in the edge map. This formulation of the Hough transform is computa-

tionally intensive since it evaluates a large number of points. The Progressive Probabilistic

Hough transform increases computational efficiency considering a random subset of the edge

points[119].
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Figure 4.9: From left: Distorted license plate, longest line detected by the Hough Transform
in the Canny edge map, corrected license plate image

In this work, lines extracted from the license plate image are used to determine the angle of

tilt along the plane. First, the probabilistic Hough transform is applied to locate the lines

in the Canny edge map of the plate image. The upper and lower boundaries of the license

plate are usually the longest line candidates detected by the Hough transform (Figure 4.9).

The angle (θr) needed for the rotation matrix Rs in Equation 4.15 can be computed using

the end points of the longest line candidate. In OpenCV, the probabilistic Hough transform

function directly returns the endpoints of the detected lines. After computing the tilt angle

θ, the image is subjected to perspective correction using the matrix Rs. Figure 4.9 shows a

license plate image before and after perspective correction.

4.3 License plate character segmentation

The next stage in the LP detection pipeline is character segmentation. Character

segmentation involves extracting characters from license plate images. This section de-

scribes the character segmentation stage of the license plate recognition pipeline. License

plate characters are extracted using locally adaptive binarization and connected compo-

nents filtering. After perspective correction, the plate image is scaled up to a size of 300 x

150 using bicubic interpolation in order to enhance inter-character separation.

4.3.1 Binarization

The goal of binarization is to find a threshold t(x, y) such that
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Iout(x, y) =


255 if (Iin(x, y)) ≥ t(x, y)

0 if (Iin(x, y)) < t(x, y)

where Iin and Iout are the input and output image respectively. Figure 4.10 shows the

performance of different thresholding methods on a test image. It can be seen that global

thresholding methods such as Otsu’s do not satisfactorily perform character segmentation.

Therefore, locally adaptive binarization methods such as Niblack and Sauvola were consid-

ered.

Niblack [50] and Sauvola [5] methods use statistical information such as mean (m(x, y))

and standard deviation (s(x, y)) from a local neighborhood window Wx x Wy around the

pixel Iin(x, y). In this pipeline, we calculate these statistics using integral images, which

drastically reduces computation time. Niblack threshold tn(x, y) can be computed as

tn(x, y) = m(x, y) + k · s(x, y) (4.17)

where k is a weighting constant usually in the range (0-0.5). Sauvola modified Equation 4.17

as follows:

ts(x, y) = m(x, y)

[
1 + k(

s(x, y)

D
− 1)

]
(4.18)

where D is the dynamic range. In this work, D is computed as the difference between the

maximum and minimum intensity values in the neighborhood. For the task of character

segmentation in this plate recognition pipeline, Sauvola binarization is used with window

sizes wx=13, wy= 17 and weight k= -0.15. Figure 4.11 shows the effect of varying window

sizes (w) and k on binarization using Sauvola’s method.
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Figure 4.10: From top: sample license plate, Otsu’s global thresholding, Niblack’s method
and Sauvola’s method
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Figure 4.11: Sauvola binarization results: (from top) small window size ( wx = 7, wy = 11)
with (k = −0.15), large window size( wx = 13, wy = 17) with large weight (k = 0.10), large
window size ( wx = 9, wy = 13) with small weight (k = -0.15)

4.3.2 Connected Components Analysis

Binarization results may contain several unwanted areas including plate edges and

broken pieces of the background. Connected components analysis can be used to filter out

non-character areas. True character regions can be extracted using heuristic filtering based

on component area and location (Figure 4.12).
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Figure 4.12: Binarization result before and after connected component analysis and filtering

4.4 Optical Character Recognition

The final stage in the license plate recognition pipeline is plate identification through

optical character recognition (OCR). The output image of the connected component filtering

stage consists of mostly character blobs and can directly used for character recognition

Tesseract [6] is an open-source OCR engine that was originally developed at HP. The cur-

rent version (Tesseract 3.0.3) is maintained by Google. The Tesseract optical character

recognition pipeline is as follows:

• Blobs are formed by analyzing the connected components in the input image.

• Blobs are then sorted based on horizontal position and assigned to unique text lines,

without being affected by image skew

• Text pitch is evaluated in order to chop fixed pitch words into characters. A fuzzy

approach is employed for separating words and characters with varying pitch.

• A fully-chop-then-associate approach is used to resolve joined or broken characters.

Separation of joined characters is performed by chopping at concave vertices in the

outline.

• 50 to 100 features (represented by position(x, y) and angle) are extracted from the

short and thick lines in the polynomial approximation of the characters. These 3-
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dimensional features are matched with 4-dimensional (position, angle, length) proto-

type features .

• Character classification takes place over two passes. In the first pass, a static classifier

shortlists potential character classes from the set of all possible classes. The second

pass consists of an adaptive classifier trained using the output of the static classifier

in order to recognize application-specific fonts.

Tesseract performs best when used for its original purpose: optical character recognition

of scanned text. However, a number of recent works have adopted Tesseract for scene text

recognition ([51],[120],[121],[122],[123]). The quality of binarization is of utmost importance

as Tesseract is meant to operate on clear, definite characters encountered in high resolution

scanned document images. Unfortunately, scene text seldom exhibits the same behavior as

printed document text. Therefore, when Tesseract is used for scene text recognition, factors

such as noise, blur and text variety adversely affect OCR performance.

OpenCV provides a text detection module with embedded support for the Tesseract OCR

engine. The images containing segmented LP characters or text blocks are directly pro-

cessed in the pipeline using OpenCV-Tesseract. Figure 4.14 shows license plate character

recognition using OpenCV-Tesseract on a binary image obtained after character segmen-

tation stage. Small, broken components which escape CC-based filtering stage affect the

recognition since Tesseract is programmed to find punctuation marks (Figure 4.13). There-

fore, Tesseract’s vocabulary was manually restricted to recognize only capital letters and

numerals.
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Figure 4.13: Character Recognition using Tesseract(from left): using full vocabulary and
limited vocabulary

Figure 4.14: Character Recognition using Tesseract(from left): Noisy binary image and
clean image
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Chapter 5

Parking lot monitoring system

using the AR Drone 2.0

This chapter explains the design of the drone-based parking lot monitoring system

developed in this work. The system will use the AR Drone 2.0 along with open-source

software (the AR Drone SDK, OpenCV 3.0 and the Tesseract OCR engine) to fly along

user-defined paths in parking lots and perform license plate recognition using video from

the front camera of the drone. All components and features of the system are described.

5.1 Host Computer

A host computer will be used to receive navigation data from the Navdata service,

to send control and configuration commands and to receive the video data for processing

(See Section 3.5). The host computer used in this work was a Macbook Pro with 4 GB

of RAM and a 2.6 GHz Intel Core 2 Duo processor running the Ubuntu 14.04 operating

system. The host computer is connected to the drone via an ad-hoc Wi-Fi network of the

IEEE 802.11 b/g standard.

As mentioned in Section 3.6, the motor control system of the AR Drone cannot be accessed

by the user. However, the AR Drone SDK provides the application programming interface
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Figure 5.1: System design for drone-based license plate recognition in parking lots

to indirectly control the behavior of the drone and design custom flight paths. The flight

control loop (See Section 5.3) was written using C API provided by the SDK. The com-

puter vision algorithms in the license plate recognition pipeline (Chapter 4) were written

implemented using the C++ API provided by OpenCV.

The design of the drone-based parking lot monitoring system is shown in Figure 5.1.

Navigation data and video are received by the host computer from the drone. The host com-

puter runs two processes: the flight control loop and the license plate recognition pipeline.

Video frames are analyzed by the license plate recognition pipeline to recognize plates of

vehicles in the parking lot. Navigation data is used by the flight control loop to determine

the control commands which are then communicated to the drone.

5.2 Fly-Py

A new application called Fly-Py was developed using Python 2.7 in order to provide

a graphical user interface for extracting GPS points from a map. Figure 5.2 shows a

screenshot of the operation of Fly-Py. After specifying a location in the interface and

clicking the Go button, an online map utility called GPS Visualizer is loaded. A custom

flight path can be drawn on the map of the desired location by pressing the Draw track
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Figure 5.2: Fly-Py: a Python application to select the GPS coordinates in the parking lot
for the drone flight path

button. The white circles in Figure 5.2 indicate the selected points in the parking lot while

the orange line represents the flight path. GPS coordinates of the selected points can be

obtained as a text file by clicking Get coordinates .

5.3 Flight Control loop

Once the text file containing the GPS points has been generated, these points

are evaluated by the flight control loop to determine next set of arguments for the next

ardrone set progressive cmd command to the drone. This loop was written using the

C programming language, which is supported by the AR Drone SDK. The flight control

loop flies the drone from one GPS point (lati, loni) to another GPS point (lati+1, loni+1)

where lati and loni are the latitude and longitude (in radians) respectively. Since the GPS

coordinates represent points on a sphere, equirectangular projection is used to map them

into 2D space. The desired heading Ψr is determined using x and y as seen in Equation 5.1.
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x = cos(lati) sin(lati+1)− sin(lati). cos(lati+1). cos(loni+1 − loni) (5.1)

y = sin(loni+1 − loni) cos(lati+1) (5.2)

Ψr =
180

π
(tanh 2(

y

x
)) (5.3)

The Haversine formula is used to calculate shortest distance between two points on a sphere,

as measured along the surface of the sphere. Assuming the earth to be a sphere of radius

R = 6378137 metres, the following equations can be used to estimate the distance d between

two GPS coordinates in metres (m),

∆lon = lon2 − lon1 (5.4)

∆lat = lat2 − lat1 (5.5)

a = sin2(∆lat/2) + cos(lat1) cos(lat2) sin2(∆lon/2) (5.6)

c = 2 tanh

(√
a

1− a

)
(5.7)

d = R · c (5.8)

The current heading of the drone (Ψ) can be obtained from the Navdata service (see

Section 3.5). Therefore, the heading error can be computed as,

∆Ψ = Ψ−Ψr (5.9)

As mentioned in Section 3.6, the SDK allows the user to set a maximum value for Φ and

Θ through using the ardrone tool service in the application programming interface. This

not only places an upper bound on the drone velocities Vx and Vy but also ensures that

the recorded images are not rotated significantly, thereby allowing license plate recognition.

For this system, the maximum roll (Φ) and pitch (Θ) angles were set to 7 degrees. The

maximum flying altitude was set to 3.5 metres.
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The drone velocities (Vx, Vy) along the x and y axes can be controlled by specifying the

values for pitch (Θ) and roll (Φ) as a fraction of preset maximum values. The heading of the

drone is controlled by specifying yaw speed (Ψ). The altitude can be controlled by setting

the vertical speed (Vz).

The flight control loop implemented for this system consists of two proportional gain con-

trollers C1 and C2:

• In controller C1, a reference velocity Vref is computed as a function of the distance d

with a gain of 0.2.

Vref = 0.2d (5.10)

Then, the reference velocity is separated into the components along the x and y axes.

Vrx = Vref cos
(π∆Ψ

180

)
(5.11)

Vry = Vref sin
(π∆Ψ

180

)
(5.12)

Comparing Vrx and Vry with current velocities Vx and Vy obtained from the nav-

data demo struct (see Section 3.5), the values of Θ and Φ are estimated as shown

below.

Θ = −0.2(Vrx − Vx) (5.13)

Φ = 0.2(Vyx − Vy) (5.14)

• In the second controller C2, yaw speed is computed using the value of the heading

error ∆Ψ from Equation 5.9 and a proportional gain of 0.011.

Ψ̇ = 0.011∆Ψ (5.15)
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The ardrone tool service (see Section 3.5) is then used to communicate the values for

pitch (Θ), roll (Φ), and yaw speed (Ψ̇). If the magnitude of Θ, Φ or Ψ̇ is greater than 1, a

value of -1 or 1 is used in the corresponding argument, depending on the desired direction

of motion.

5.4 License plate recognition

The host computer performs the task of vehicle identification using the video frames

received and decoded by the Video thread of the application programming interface.

Frames are processed by the license plate recognition pipeline (see Chapter 4) and a text

file containing the plate recognition results is generated. A flow diagram of the license plate

recognition pipeline is shown in Figure 5.3
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Figure 5.3: The license plate recognition pipeline
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Chapter 6

Experiments, Results and

Discussion

This chapter presents a detailed discussion of the training and testing process for

the drone-based parking lot monitoring system. In order to validate its efficiency and

modularity, the license plate recognition pipeline was tested with Caltech dataset in addition

to drone video. Empirical analysis of experimental results are presented. Source code for

the license plate recognition pipeline and the flight control loop are available online at the

following Git repository:

https://github.com/v4ven27/ar-drone

6.1 Data collection and Training

Video footage was captured by flying the tethered AR Drone in 6 parking lots across

Clemson, South Carolina. License plates were extracted from video frames by cropping

manually. A small portion of the boundary was also included in the cropped region to allow

the classifier to learn better features. Cropped images were processed to remove perspective

distortion. After eliminating noisy plates and redundancies, a total of 892 license plate

images and 1000 negative images were used for training. It is to be noted that over 95%
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Figure 6.1: Example of license plates used for training the plate detector

of the positive training images contain license plates from the states of South Carolina,

Georgia and North Carolina. Few of the positive training images are shown in Figure 6.1.

The negative training set included images of trees and signs and some vehicle features (tail

lamps and wheels). All the training images were resized to 40 x 25 in order to speed up

the training process. The machine learning module in OpenCV automatically augments

the training set by applying perspective distortions to the existing set of training images.

About 4500 images were obtained by applying random distortion with maximum magnitude

(in radians) of αx = 0.1, αy = 0.1 and αz = 0.1 along the x, y and z axes respectively. The

XML file generated at the end of classifier training is used for plate detection in the license

plate recognition pipeline.

6.2 The Caltech dataset

The LP recognition pipeline was tested using a common benchmark: the Caltech

LP dataset. Several images from the Caltech LP dataset were added to the original training

set in order to test using California license plates. It is to be noted that the images from
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Figure 6.2: Caltech dataset license plate detection results

the Caltech dataset are of much better quality as compared to the drone images due to the

absence of skew and blur.

Since 105 images from the Caltech dataset (out of a total 126 images) were used to train a

new classifier, only 21 plate images were available for testing. Ten scene images were also

used, resulting in a test set of size 31. The cascade classifier was tuned to detect plates

having sizes in the range 80 x 40 and 160 x 120. Figure 6.2 shows a few plate detection

results. Precision and recall were used as evaluation metrics. For the LP detection problem,

precision and recall are defined as follows:

Precision =
No. of detected regions which are plates

Total number of detected regions
(6.1)

Recall =
No. of plates detected

Total number of plates
(6.2)

Table 6.1 shows the difference in performance between a 14-layer LBP cascade classifier

with 60 features and a 17-layer cascade classifier with 100 features. It was observed that

the detection rate can be increased significantly by allowing the classifier to learn more

features.

The outputs of the license plate recognition pipeline for some of the Caltech images are

shown in Figure 6.3. Excellent results were achieved for plate detection and character
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segmentation as a direct result of the high quality of the images (Table 6.2). The 17-stage

plate detector was able to identify every plate in the test set without any false positives.

Character segmentation rate was observed to be 97.2% due to the loss of some characters

closer to the license plate edges. The character recognition stage was evaluated using

the number of segmented characters identified correctly. Due to Tesseract’s limited OCR

performance on scene text, the plate identification accuracy was not as high as expected.

6.3 Flight experiments

In order to test the license plate recognition system, the drone was programmed to

fly along a user-defined path parallel to the rear end of parked vehicles, at an altitude of 3-

3.5 m. The flight path was constructed by selecting GPS coordinates of several points in

the parking lot using a custom Python application called Fly-Py on the host computer (see

Section 5.2). This application generates GPS coordinates of the user-defined flight path as

a text file. These coordinates were evaluated by the flight control loop (see Section 5.3)

and corresponding motion commands were relayed to the AR Drone using an ad-hoc Wi-Fi

network.

Video data was streamed from the drone to the host computer at 15 frames per second

with a bitrate of 500 bits per second and resolution of 1280 x 720. The performance of

the pipeline was tested by varying the drone speed between 0.75 m/s and 1.25 m/s. The

effect of the distance between the drone and the vehicle (dv) on plate recognition was also

evaluated by adjusting dv between 3 m to 4 m.

Number of Features Precision Recall

60 0.9 0.86

100 0.95 1

Table 6.1: Performance of the 60-feature and 100-feature classifiers on the Caltech dataset
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Dataset Caltech

Number of license plates 21

Number of plates detected 21

Number of characters in plates 145

Number of characters segmented 141

Characters identified correctly 128

Plate detection accuracy 100%

Character segmentation rate 97.2%

Character recognition accuracy 90.8%

Table 6.2: Performance of the 3 stages in license plate recognition pipeline for the Caltech
dataset

6.3.1 Effect of drone speed on plate recognition

A non-distorted plate image is considered to be a frame containing a detected plate

that is sufficiently free of blur and other noisy artifacts that can be used for character

segmentation and character recognition. For this study, frames were evaluated manually

in order to obtain non-distorted frames. Table 6.3 shows the performance of the plate

detection stage for drone speeds between 0.75-1.25 m/s. A total of 46 plates were evaluated

and the distance was fixed at dt = 3 m .

It can be seen that between 0.75- 1 m/s, about half of the detected plate frames are discarded

by the blur filter. However, the rejection rate is over 70% at 1.25 m/s. It was observed

that increasing the drone speed resulted in fewer plate frames suitable for the license plate

recognition pipeline (an average of 10 good frames per plate at 1.25 m/s as compared to 17

frames at 0.75 m/s). This phenomenon can be attributed to a number of factors. Firstly,

several images are rejected by the license plate recognition pipeline because of motion blur
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Figure 6.3: License plate segmentation and detection using images from the Cal Tech dataset
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Drone speed (in m/s) 0.75 1.0 1.25

Number of plate frames 723 494 336

Number of detected plate frames 721 490 328

Number of plate frames after blur filter 373 198 97

Frame loss (in %) 48.3 59.6 70.5

Table 6.3: Table showing the relationship between drone speed and number of frames
containing a single license plate

and blocking artifacts due to video streaming errors. The video processing pipeline of the

AR Drone is another factor contributing to frame loss. The latency reduction mechanism

used by the SDK operates such that only the most recent decodable frame in the video

stream is evaluated while some older frames are dropped from the frame buffer [112]. It

was also observed that more frames were dropped at higher bitrates. In order to optimize

the performance of the license plate recognition system and the time of travel of the drone,

the drone speed was set to 1 m/s.

6.3.2 Effect of distance between the drone and the vehicle on plate recog-

nition

By considering the flying altitude of the drone and its distance from the vehicle (dv), rea-

sonable assumptions can be made about potential plate locations and dimensions. License

plates are most likely to be found in the central portion of video frames. Therefore, the

search space for license plate detection was limited to a small area in the middle of the

image (0.25-0.70 image width and 0.40-0.95 image height), as shown in figure 6.4. For dv

between 3 to 4 m, the plate detector was constrained to only locate plates having dimensions

between 90 x 50 and 160 x 90.
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Figure 6.4: Full video frame (left) and constrained search space for dv = 3 m (right)

Distance dv (m) 3 3.5 4

Total number of plate frames 1553 1058 852

Number of plate detections 1539 1044 837

Hit rate(%) 99.1 98.6 98.2

Table 6.4: Effect of distance between vehicle and the drone on plate detection

Table 6.4 shows the performance of the plate detection stage for dv between 3 to 4 m.

Hit rate is defined as the percentage of plates detected in all frames containing plates.

This takes into account multiple instances of the same plate. The plate detector could

successfully locate some distorted plates, however these plates were unsuitable for character

segmentation and recognition.

Plate detection accuracy is defined as the percentage of plates detected from the total

number of distinct plates. From a total of 107 distinct license plates evaluated over various

distances, 103 plates were detected giving an overall plate detection accuracy of 96.26%.

As can be seen from Table 6.5, plate detection accuracy decreases slightly with increase

in the distance between the drone and the vehicle. It was observed that some plates are

misclassified as non-plates since similar plates were not learned by the Adaboost classifier

during training. Few examples for the successful detection of both SC and non-SC plates

are shown in Figure 6.5.

hIn order to construct the fifth row of Table 6.5, the output of character segmen-

tation stage was examined manually to enumerate the maximum number of characters
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Distance (in m) 3 3.5 4 Total

Number of license plates 46 40 21 107

Number of plates detected 45 39 19 103

Number of plate characters 262 229 102 593

Sum of maximum characters segmented per plate 237 212 78 527

Characters identified correctly 206 170 59 435

Plate detection accuracy (in %) 97.8 97.5 90.48 96.26

Character segmentation rate (in %) 90.46 92.58 76.47 88.87

Character recognition accuracy (in %) 86.91 80.18 75.64 82.54

Table 6.5: Performance of the three stages of the license plate recognition pipeline for
distance dv between 3 to 4 m

segmented for each plate. Characters were deemed to be properly segmented if there was

a high likelihood of them being classified correctly at the character recognition stage, tak-

ing into consideration factors like clarity, inter-character separation and presence of noise.

Figure 6.6 shows some examples for poor character segmentation. It was observed that the

character segmentation rate suffered with increase in distance, dropping from 90.46% at 3

m to 76.47% at 4 m (Table 6.5). This is most likely a consequence of the decrease in size

of the detected license plates, which leads to very small character size. For a plate detected

at 4 m, each character was about 7 pixels wide as compared to 14 pixels and 11 pixels at

3 m and 3.5 respectively. Furthermore, smaller plates are more sensitive to noise, blur and

other artifacts. These adverse effects are amplified when the image is resized to improve

inter-character separation in the character segmentation stage (see Section 4.3.2).
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Figure 6.5: License plate detection in drone video frames

An OCR engine such as Tesseract relies only on the binary input image. Therefore, the use

of the poorly segmented characters will result in sub-optimal OCR results. The scope of this

thesis is to demonstrate the idea that the Tesseract OCR engine can be used to satisfactorily

read license plates given optimally segmented characters. Therefore, for the purpose of

this study, the accuracy of character recognition is tested using plate images that have at

least 80% of characters segmented correctly. For instance, SC plates containing at least 5

segmented characters were considered. Bad segmentation results were discarded manually.

Figure 6.7 shows a few examples of character recognition on good quality binarized images.

It is to be noted that X is incorrectly identified as A in the final image. Several such errors

were found during testing, resulting in an average character recognition rate of 82.54%.
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Figure 6.6: Examples of plate images with subpar character segmentation which were dis-
carded before character recognition

Figure 6.7: Character recognition of license plates detection the drone video using OpenCV-
Tesseract

Tesseract is prone to such errors due to the feature extraction technique used in its engine

(see Section 4.4). Characters with similar polynomial approximations are misclassified.

The variation of accuracy rates of the three stages are shown in Figure 6.8. Given the

accuracy rates of plate detection, character segmentation and character recognition are

Apd, Acs and Acr, the overall accuracy of the license plate recognition system is given by,

System Accuracy = Apd ·Acs ·Acr (6.3)

The overall accuracy of the system lies between 73-77% for distances between 3 to 3.5 m.

However, the accuracy drops to about 53% at 4 m. This is mainly due to the significant

drop in segmentation accuracy at 4m.
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Figure 6.8: Performance of the plate detection, character segmentation and character recog-
nition stages for distance dv between 3 to 4 m

63



Chapter 7

Conclusion and Future Work

Inspired by growing interest in applications for unmanned aerial vehicles, this work

has presented a drone-based parking lot monitoring system with the ability to recognize

vehicle license plates. This system differs from existing license plate recognition systems by

the use of cost-efficient hardware and open source software. A drone-based system combines

the non-intrusive nature of wall-mounted surveillance cameras with the mobility of patrol

vehicles.

The Parrot AR Drone 2.0 was used to build and test the system due to its modularity and

low cost. A custom flight control loop for the drone was implemented using the application

programming interface provide by the AR Drone SDK. OpenCV 3.0 and the Tesseract OCR

engine were used to implement the computer vision algorithms necessary for license plate

recognition. License plates were detected in video frames at an average accuracy rate of

98.6%, validating the choice of Adaboost cascade classifiers and local binary pattern features

for license plate detection. Plates were detected by the cascade classifier in approximately

50ms. Segmentation rate of 91.5% was achieved using Sauvola’s method for the dv between

3 to 3.5 m. Tesseract, an engine originally meant for OCR of scanned documents, exhibited

an average character recognition rate of 82.54%. The average time spent processing a frame

containing a plate was about 250 ms. Therefore, the license plate recognition pipeline can

be considered to have real-time performance. The overall system accuracy was 73 - 77% (for

64



dv= 3-3.5 m). Although the performance is low compared to commercial systems, the results

of the various experiments prove the feasibility of using a quadrotor drone for license plate

recognition. With further research and development, drone-based systems could emulate

the performance of commercial license plate recognition systems.

The greatest challenge faced during the development of the system was the quality of the

video from the AR Drone 2.0. Although the video is suitable for image operations such as

feature extraction, it does not appear to have sufficient quality for character segmentation.

The video stream suffers from latency and blocking artifacts errors when the drone is in

motion as a consequence of low bitrate and low quality camera sensor. Therefore, a number

of frames are rendered unfit for license plate recognition, limiting the efficiency of the system.

It might be possible to implement license plate detection using the video processor on board

the AR Drone 2.0. This can potentially improve the quality of the video stream as Only

detected plates are streamed to the host computer instead of the entire scene.

This system is built on the assumption that vehicles are parked such that a license plate

can be observed by a passing drone. Since many US states do not require vehicles to have

license plates at both the front and rear ends, license plates may be hidden from the drone

camera.

Navigation accuracy of the drone was limited since the AR Drone GPS has an accuracy of

±2 m. GPS errors increase in the presence of trees or buildings due to the very nature of

GPS itself. Therefore, there is a need to implement a Kalman filter for better navigation.

Another solution would be to use differential GPS.

The system is also limited by the drone’s Wi-Fi range of 25 m. However, the range can be

increased to 50 m using a Wi-Fi range extender. The use of an ad-hoc Wi-Fi connection

prevents control of multiple drones using a single host computer.

Therefore, there is plenty of room for improvement of the system developed in this work.

Given that the AR Drone 2.0 model is over 3 years old, the performance of the parking lot
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monitoring system can be expected to improve significantly by using a newer drone. The

new Parrot Bebop drone has vastly superior flight control and video capabilities at a cost

of $500 as compared to $400 for the AR Drone 2.0 with a GPS unit.

Navigation accuracy can be improved in two ways. An extended Kalman filter can be used

to fuse the information from the inertial measurement unit with the GPS data to improve

localization and motion. Another option would be to place tracks or guide lines along the

parking lot. Using video from the vertical camera, a line-following algorithm can enable

drone flight along the designated track.

A Robotic Operating System (ROS) node called ardrone autonomy can be used to connect

an AR Drone to a router-based infrastructure network. Using a host computer and multiple

drones to connected to an infrastructure wireless network, a parking lot surveillance network

could be developed where each drone essentially functions as a surveillance camera. Each

drone could be provided with an enclosed dock or ”nest” from where it performs surveillance

when not in flight. Simultaneous license plate recognition in multiple parking lots can be

achieved by synchronizing the flight of different drones. An automatic charging station can

be provided at each ”nest”, resulting in a fully autonomous drone network for parking-lot

monitoring.
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