
04 August 2020

POLITECNICO DI TORINO
Repository ISTITUZIONALE

License Plate Recognition using Convolutional Neural Networks Trained on Synthetic Images / Bjoerklund, TOMAS PER
ROLF. - (2018 Jun 19).

Original

License Plate Recognition using Convolutional Neural Networks Trained on Synthetic Images

Publisher:

Published
DOI:10.6092/polito/porto/2709876

Terms of use:
openAccess

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2709876 since: 2018-06-21T11:19:33Z

Politecnico di Torino

Doctoral Dissertation
Doctoral Program in Electronical, Electronics and Communications Engineering

(30thcycle)

License Plate Recognition using
Convolutional Neural Networks
Trained on Synthetic Images

By

Tomas Björklund

Supervisor(s):
Prof. E., Magli

Doctoral Examination Committee:
Prof. L. Marcenaro, Università degli Studi di Genova
Prof. S. Tubaro, Politecnico di Milano
Prof. M. Grangetto, Università degli Studi di Torino
Prof. T. Bianchi, Politecnico di Torino
Prof. S. Fosson, Politecnico di Torino

Politecnico di Torino

2018

Declaration

I hereby declare that, the contents and organization of this dissertation constitute my
own original work and does not compromise in any way the rights of third parties,
including those relating to the security of personal data.

Tomas Björklund
2018

* This dissertation is presented in partial fulfillment of the requirements for Ph.D.
degree in the Graduate School of Politecnico di Torino (ScuDo).

For Axel

Acknowledgements

This thesis work has been supported by TIM, Telecom Italia S.p.A.

I would like to thank my supervisor Prof. Enrico Magli for his support and valuable
advice, as well as Gianluca Francini and Attilio Fiandrotti who have also helped out
in this work.

Finally, thanks for all the support I have received from all my friends, including all
my colleagues, and my family.

Abstract

In this thesis, we propose a license plate recognition system and study the feasibility
of using synthetic training samples to train convolutional neural networks for a
practical application.

First we develop a modular framework for synthetic license plate generation; to
generate different license plate types (or other objects) only the first module needs
to be adapted. The other modules apply variations to the training samples such as
background, occlusions, camera perspective projection, object noise and camera
acquisition noise, with the aim to achieve enough variation of the object that the
trained networks will also recognize real objects of the same class.

Then we design two convolutional neural networks of low-complexity for license
plate detection and character recognition. Both are designed for simultaneous
classification and localization by branching the networks into a classification and a
regression branch and are trained end-to-end simultaneously over both branches, on
only our synthetic training samples.

To recognize real license plates, we design a pipeline for scale invariant license
plate detection with a scale pyramid and a fully convolutional application of the
license plate detection network in order to detect any number of license plates and
of any scale in an image. Before character classification is applied, potential plate
regions are un-skewed based on the detected plate location in order to achieve an as
optimal representation of the characters as possible. The character classification is
also performed with a fully convolutional sweep to simultaneously find all characters
at once.

Both the plate and the character stages apply a refinement classification where
initial classifications are first centered and rescaled. We show that this simple, yet
effective trick greatly improves the accuracy of our classifications, and at a small
increase of complexity. To our knowledge, this trick has not been exploited before.

vi

To show the effectiveness of our system we first apply it on a dataset of photos
of Italian license plates to evaluate the different stages of our system and which
effect the classification thresholds have on the accuracy. We also find robust training
parameters and thresholds that are reliable for classification without any need for
calibration on a validation set of real annotated samples (which may not always be
available) and achieve a balanced precision and recall on the set of Italian license
plates, both in excess of 98%.

Finally, to show that our system generalizes to new plate types, we compare our
system to two reference system on a dataset of Taiwanese license plates. For this, we
only modify the first module of the synthetic plate generation algorithm to produce
Taiwanese license plates and adjust parameters regarding plate dimensions, then we
train our networks and apply the classification pipeline, using the robust parameters,
on the Taiwanese reference dataset. We achieve state-of-the-art performance on plate
detection (99.86% precision and 99.1% recall), single character detection (99.6%)
and full license reading (98.7%).

Contents

List of Figures xi

List of Tables xiv

Nomenclature xvi

1 Introduction 1

1.1 Motivation . 1

1.2 Related works . 3

1.2.1 License plate localization 4

1.2.2 Character segmentation . 5

1.2.3 Character classification . 5

1.2.4 Available LPR Software products 6

1.2.5 CNN and other deep learning algorithms applied to LPR . . 7

1.2.6 Challenges in LPR . 9

2 Background on Convolutional Neural Networks 10

2.1 Definition of fully connected layer 11

2.2 Definition of convolutional layer 12

2.3 Max-pooling layer . 14

2.4 Activation functions . 15

viii Contents

2.5 CNN architecture . 16

2.6 Learning . 18

2.7 Fully convolutional neural networks 20

3 Synthetic Sample Generation 23

3.1 A word on generative adversarial networks 23

3.2 Synthetic sample generation algorithm 24

3.2.1 Generate plate template . 26

3.2.2 Load background image 33

3.2.3 Add occlusions . 33

3.2.4 Add perspective . 38

3.2.5 Add plate noise . 45

3.2.6 Merge plate and background 48

3.2.7 Add acquisition noise . 50

3.2.8 Negative sample generation 53

3.2.9 Dataset generation . 55

4 Convolutional Neural Networks: Design and Training 56

4.1 License plate network . 57

4.1.1 Feature extraction . 57

4.1.2 Classification . 61

4.1.3 Localization . 61

4.1.4 Sample selection . 62

4.1.5 Training procedures . 64

4.2 Character network . 65

4.2.1 Feature extraction . 67

4.2.2 Classification . 67

Contents ix

4.2.3 Localization . 68

4.2.4 Sample selection . 68

4.2.5 Training procedures . 71

4.3 Fully convolutional conversion . 72

4.3.1 Fully convolutional networks and convolution padding . . . 75

5 Automatic License Plate Recognition System 76

5.1 Preprocessing . 76

5.1.1 Scale invariant representation 76

5.2 Fully convolutional plate detection 78

5.3 Plate merging . 79

5.4 Refine plate classification . 81

5.5 Plate rectification . 81

5.6 Fully convolutional character classification 83

5.7 Character merging . 84

5.8 Refine character classification . 84

5.9 Post processing . 85

5.10 Final classification output . 86

6 Experiments and Results 88

6.1 Definition of LPR subtasks and corresponding accuracy measurements 88

6.2 LPR evaluation data sets . 90

6.2.1 PlatesMania dataset of real Italian license plates 90

6.2.2 AOLP dataset of real Taiwanese license plates 91

6.3 Classification thresholds and training time 92

6.3.1 Selecting plate training parameters 92

6.3.2 Selecting character training parameters 95

x Contents

6.3.3 Selecting overlap thresholds for merging 96

6.4 Experiments on the Italian PlatesMania data set 96

6.4.1 Dataset size evaluation . 96

6.4.2 Synthetic database evaluation 98

6.4.3 Evaluation of pipeline classification thresholds 99

6.4.4 Evaluation of classification pipeline components 104

6.4.5 Evaluation of the full pipeline 108

6.5 Experiments on Taiwanese Plates 109

6.5.1 Generation of the synthetic Taiwanese LPR training set . . . 109

6.5.2 Training the Taiwanese classifiers 110

6.5.3 Classification of the AOLP data set 111

6.6 GPU computational complexity 113

7 Conclusion and Future Work 115

References 118

Appendix A Camera perspective projection 128

A.1 Rotations . 129

A.2 Internal camera parameters . 131

A.3 2D affine image transformation . 133

List of Figures

1.1 IR License Plate Image . 3

2.1 Neuron and Neural Network Illustration 11

2.2 Convolution Kernel Illustration . 13

2.3 Activation Functions . 16

2.4 CNN Architecture Example . 18

2.5 Fully CNN Example . 21

2.6 Fully Convolutional CNN Example 22

3.1 Sample Generation Overview Flow Chart 25

3.2 Italian Plate Dimensions . 27

3.3 Plate Generation Flowchart . 28

3.4 Plate Colors . 31

3.5 Character Modifications . 32

3.6 Background Image Examples . 34

3.7 Occlusions Flow Chart . 35

3.8 Occlusion Colors . 36

3.9 Occlusion Examples . 36

3.10 Shadow Examples . 36

3.11 Transparency Examples . 37

3.12 Perspective Flow Chart . 38

xii List of Figures

3.13 Plate Rotation Axes . 39

3.14 Plate Perspective Viewpoints . 43

3.15 Small and Large Plate Examples 44

3.16 Perspective Output . 45

3.17 Add Plate Noise Flowchart . 46

3.18 HSL Color Space . 47

3.19 Merge Plate with Background . 49

3.20 Acqusition Noise . 51

3.21 Point Spread Function Comparison 52

3.22 Negative Sample Generation Flowchart 54

3.23 Example of Added Random Text 55

4.1 Plate CNN . 58

4.2 Positive Plate Crop Region . 63

4.3 Negative Plate Crop Region . 64

4.4 Character CNN . 66

4.5 Character Sample Rotation . 70

4.6 Character Samples . 70

5.1 LPR Pipeline . 77

5.2 Plate Fully Convolutional Example 79

5.3 Rectification Example . 82

5.4 Character Fully Convolutional and Merging Example 84

5.5 Example of Final Classification Output 87

6.1 PlatesMania.com Dataset Examples 91

6.2 AOLP Testset Examples . 91

6.3 Training Error Evaluation . 93

List of Figures xiii

6.4 ROC Threshold Selection . 94

6.5 Character Network Training Convergence 95

6.6 Training Set Size . 97

6.7 Evaluation of Thresholds . 100

6.8 Evaluation of Plate Classification Thresholds 103

6.9 Evaluation of Character Classification Thresholds 105

6.10 Plate Centering for Increased Accuracy 108

6.11 Taiwanese Plate Format . 110

6.12 Taiwanese Training Set Example 110

6.13 Classification Examples on AOLP Testset 113

A.1 Perspective projection . 128

A.2 Camera Rotation . 130

A.3 Internal Camera Parameters . 132

List of Tables

3.1 Graphical elements of the Italian plate template. 29

3.2 Colors of graphical elements. 30

3.3 Template generation output. 33

3.4 Occlusion parameters . 37

3.5 Restrictions of projection angles. 40

3.6 Projection at different viewing distances. 42

4.1 Feature extraction details, plate network. 60

4.2 Classification branch details, plate network. 61

4.3 Localization branch details, plate network. 62

4.4 Feature extraction details, character network. 67

4.5 Classification branch details, character network. 68

4.6 Localization branch details, character network. 69

4.7 Fully convolutional network details, plate network. 73

4.8 Fully convolutional network details, character network. 74

6.1 Classification accuracy of feature-divided subsets. 99

6.2 Module Evaluation for Italian Plates 106

6.3 Classification Results for Italian Plates 108

6.4 License Plate Detection Results on Taiwanese Testset 111

6.5 License Reading Results on the Taiwanese Testset 112

List of Tables xv

6.6 Complete Classification Results on the Taiwanese Testset 112

6.7 GPU Processing Time . 114

Nomenclature

Roman Symbols

(·)+ Moore-Penrose pseudoinverse

⌊·⌋ Floor operator, i.e. rounding down

C number of character classification labels

f focal length

i integer valued coordinate on the horizontal axis

j integer valued coordinate on the vertical axis

K camera internal parameter matrix

x real valued coordinate on the horizontal axis

x0 central x-coordinate offset

y real valued coordinate on the vertical axis

y0 central y-coordinate offset

Greek Symbols

φ rotation around the horizontal (pitch)

ψ rotation around the optical axis (roll)

σx internal camera parameter for horizontal scaling

σy internal camera parameter for vertical scaling

Nomenclature xvii

θ rotation around the vertical axis (yaw)

Acronyms / Abbreviations

ANN Artificial Neural Network

AOLP Application Oriented License Plate dataset. a test set of Taiwanese license
plates

AUROC Area Under Receiver Operating Characteristic curve

CCA Connected Component Analysis

CDVS Compact Descriptors for Visual Search

CNN Convolutional Neural Network

FN False Negative classification

FP False Positive classification

FPR False Positive Rate

GAN Generative Adversarial Network

HMM Hidden Markov Model

HSI Hue-Saturation-Intensity color space

HSL Hue-Saturation-Lightness color space

IoU Intersection over Union

LPD License Plate Detection classification task

LPDR License Plate Detection and Recognition classification task

LPR License Plate Recognition

LR License Recognition classification task

MSE Mean Square Error

PSF Point Spread Function

xviii Nomenclature

RBM Restricted Boltzmann Machine

ReLU Rectified Linear Unit, non-linear activation function

RGB Red-Green-Blue image, the color space of a common digital image

ROC curve Receiver Operating Characteristic curve

SGD Stochastic Gradient Decent

SVM Support Vector Machine

TanH Hyperbolic Tangent, non-linear activation function

TN True Negative classification

TP True Positive classification

TPR True Positive Rate

Chapter 1

Introduction

This thesis describes the research I carried out between November 2014 until October
2017 at the TIM Joint Open Lab and Politecnico di Torino, Department of Electronics
and Telecommunications. This chapter starts with the motivation for this work,
followed by a literature review on License Plate Recognition (LPR). Chapter 2 gives
an introduction to Convolutional Neural Networks (CNNs). In chapter 3 the synthetic
sample generation method used is described, which is used to generate the samples to
train the CNNs described in chapter 4. In chapter 5 the classification pipeline using
the trained networks is explained and finally, chapter 6 presents the experimental
results obtained.

1.1 Motivation

In License Plate Recognition systems [1], vehicular traffic images or video flows
are captured, sent to a remote center and processed to detect the presence of plates
(plate detection) and to read the characters in each plate (character detection). LPR
is expected to be a key enabling technology to the smart cities of tomorrow, where a
network of cameras deployed at every crossroad identifies the vehicles to track them
as they move through the city.

Existing LPR systems are largely based on ad-hoc imaging systems such as
infrared illuminators and cameras installed on dedicated infrastructures [2]. How-
ever, a large-scale vehicle tracking infrastructure must necessarily rely on low-cost
cameras, such as visible light IP surveillance cameras, mounted on already existing

2 Introduction

infrastructures such as road poles. In such conditions, LPR becomes very challenging
due to large variations in plate scale, perspective, and illumination conditions.

Deep learning and Convolutional Neural Networks (CNNs, described in chapter
2) in particular have emerged as the cornerstone to efficiently solve a number of
image classification and regression problems such as character recognition [3–5]
object categorization or localization [6, 7]. CNNs are feed-forward, multi-layer
neural networks, with some layers connecting their weights in a convolutional
manner[8] such that the same pattern of weights is shifted over the data, while allows
them to search for learnt features over the whole image, while traditional networks
would need to learn the features individually for each location.

With CNNs, LPR on non-dedicated hardware is now becoming feasible [9–11].
Such a solution would not only enable LPR on traffic surveillance cameras but in
virtually any camera, down to dash cams and mobile phones which would also
lighten work tasks in other areas, such as city police patrols and parking controls.

However, a limitation of deep learning algorithms is that they require a large
amount of labelled training data. Acquiring samples alone may be problematic due
to local privacy regulations. But even if enough samples can be acquired, labelling
training samples is labour intensive and can become totally infeasible depending on
the number of different types of license plates the LPR system should be trained to
recognize.

Therefore, we are interested in investigating whether synthetic sample generation
is feasible for LPR (not only for data augmentation, but as the only source of training
data) and whether such a system can easily be modified to generate and classify other
plate types, and whether the performance is comparable to that of systems trained
on real samples. We also design our system to be practical for real-world, real-time
application, therefore we also want to find a design that allows for scale-invariant,
high classification accuracy, with a low complexity. Specifically, we develop a
synthetic sample generation algorithm for Italian license plates, two low complexity
CNNs for license plate and character recognition trained purely on the generated
samples, and an LPR system for scale independent license plate detection, based on
the two CNNs. We show that, with minor adaptations, we can generate Taiwanese
plates to train our system and test it on the Taiwanese Application Oriented License
Plate dataset (AOLP) proposed by [12] and compare our performance with [9], a
CNN based LPR system trained on real character and plate samples.

1.2 Related works 3

1.2 Related works

The first automatic license plate recognition system was invented by the UK Police
Scientific Development Branch in 1976. But this system still required the license
number to be typed by hand from the automatically acquired images for a database
search.

Until today, installed systems still use dedicated hardware which makes the
automatic recognition significantly easier (see Fig. 1.1), while LPR on RGB images
acquired by normal cameras is an active and open research topic [12–71]. The
cost of installing dedicated hardware solutions may be difficult to motivate in many
cases, e.g. when the purpose does not directly generate an income related to passing
cars (e.g. by highway fees or zone fines), such as traffic flow monitoring or mobile
applications.

Fig. 1.1 Example of image acquired with dedicated hardware for license plate acquisition,
including IR illuminator and IR pass filter on the camera combined with task customized
shutter speed and aperture settings. Downloaded from: http://elitevirtualsecurity.com/cctv-
systems

Before CNNs and deep learning revolutionized the image recognition scene, LPR
algorithms typically performed three image processing tasks [72] sequentially:

1. License plate localization

2. Character segmentation

3. Character recognition

4 Introduction

1.2.1 License plate localization

License plate localization can be performed on binarized images by edge detection
with a mathematical evaluation of the morphology of the edges and filter out un-
wanted edges [13–17] or segmentation by Connected Component Analysis (CCA)
followed by spatial measurement such as area, orientation and aspect ratio of the
segmented objects [18, 19].

On gray-scale images, high or maximum contrast has been used (for plates with
reflective white background and black text) [20, 21] or vertical edge detection to
locate high contrast text [12, 22–27].

Color image processing has also been proposed, but mainly due to country spe-
cific color characteristics in certain license plates, where specific color combinations
are unique to license plates and no other objects [28, 29] and can be combined with
edge detection to detect color specific edges [30]. These methods typically convert
the image into a more natural color representation than RGB, such as Hue-Saturation-
Intensity/Lightness (HSI/HSL).

Finally, classifiers have also been employed, using fixed features such as Haar-
like features in [31–34] and classifiers such as cascaded perceptrons [32–34], Support
Vector Machines (SVMs) [35, 36], Artificial Neural Networks (ANNs) [37–43] or
genetic algorithms [44–47].

Reported success rates by license plate detection algorithms vary from the low
80% up to 100% but unfortunately there is little consensus of a common test set,
therefore a fair comparison cannot be made, [72]. The authors contribute with a
dataset of Greek license plates, but unfortunately the are not labeled. While the
authors of [12] also contribute with a dataset of 2049 Taiwanese license plates for
three different LPR subtasks with different requirements due to camera acquisition
angle and distance, these images are also labeled with plate location and character
classifications. Reported performance may also vary depending of how costly false
positives are considered, some methods may prioritize recall over precision to ensure
no candidates are dropped before the character segmentation and classification stages
while others use a more balanced metric.

1.2 Related works 5

1.2.2 Character segmentation

Next, the identified license plate regions are analyzed to segment any present charac-
ters. A common approach is to use vertical and horizontal projection of the pixels
[18, 22, 24, 26, 29, 37, 42, 48–55], which will produce strong spikes in any space
between characters on the horizontal projection as well as above and under the char-
acters on the vertical projection. CCA is also commonly used [13, 14, 38, 43, 54, 56–
60] in combination with other measurements of e.g. height and width or even projec-
tions to filter out objects of undesired shapes.

Despite the high contrast between character and background, global thresholding
techniques are not accurate enough [21], instead local or adaptive thresholding
techniques are needed [30, 59, 61–63], e.g. Otsu Thresholding [73].

The authors of [64] recognize that simple segmentation algorithms such as
projection or CCA often fail in complicated cases or outside the dataset they were
developed for, and propose a two stage segmentation algorithm with a template
matching a using harrow-shaped filter bank and minimum response followed by
segmentations between connected or overlapping characters are adjusted by a path-
finding algorithm.

1.2.3 Character classification

To recognize the segmented characters, classifiers are typically used but also simple
pattern matching, since the font of license plates is typically known a priori. Classi-
fiers include Hidden Markov Models [74] (HMMs) implemented by [53, 59], SVM
[49], ANN [25, 38, 40, 42, 51, 56, 61, 65–70] or combinations of classifiers [75],
while pattern matching has been attempted by [18, 22, 55, 71]. This typically in-
cludes computing distance metric such as root mean square error for every character
pattern, shifted over the character segmentation area.

Since multiple characters need to be classified within each plate for a correct
detection, the character segmentation and classification accuracy is critical for a
successful reading. Good character recognition results have been reported with
neural networks variants (up to 99.5% [69]) but such algorithms require a huge
amount of training samples, therefore many algorithms employ some stock OCR
solution instead. Most algorithm require a license plate height about 20-25 pixels

6 Introduction

in the source image for the characters to be sufficiently resolved such that character
classification is possible [72].

1.2.4 Available LPR Software products

While most commercial LPR software does not reveal much detail of how their
algorithms work, OpenALPR Technology develops a pure software solution for LPR
and keeps their software as open source [76] while providing services for their users,
such as classification via a cloud service [77]. Their software use a pipeline with the
following stages:

1. Detection, using local binary patterns to identify possible license plate regions.

2. Binarization, where multiple binarized crops are extracted at different bina-
rization thresholds.

3. Character Analysis, searching for character sized connected blobs, regions
without potential character blobs are discarded.

4. Plate edges, refines the plate location using hough lines.

5. Deskew, transforms the plate to (ideally) remove rotation and skew.

6. Character segmentation, uses vertical histogram to find gaps and removes the
plate edges and disconnected speckles to clean up the image.

7. OCR, analyses all characters independently and provides confidence ratings
for each character class.

8. Post Processing, determines the best guess of plate letters combination based
on the specified plate type.

This software supports multiple plate types, although the input type need to be
specified by hand before classification. The cloud API tool is very accurate but
sometimes has problems with small plates and when the viewing angle is extremely
high, and the reported processing time is just above 0.5 seconds for a 1 Mpixel image
with a single plate.

1.2 Related works 7

1.2.5 CNN and other deep learning algorithms applied to LPR

In later years, designs incorporating deep learning techniques such as CNNs and
recurrent neural networks have been proposed.

J. Li et al. [78] propose a plate detection system based on multi-scale CNNs,
where the fully connected layers are fed with features extracted at different convolu-
tional layers to achieve robustness against scale variations. The experiments show
good plate detection performance under reasonable variations of the plate size in
the input image. However, it is not clear to which extent such approach is suitable
to cope with wide changes in plate size, as in the case of different practical LPR
applications.

Menotti et al. [11] explore randomly generated CNNs for the character detection
problem. First, a number of convolutional feed-forward networks where the topology
parameters (e.g. number and size of the filters) are initialized at random and trained
in a supervised manner. Then, an SVM is trained to classify the features extracted
by the best performing network, reporting single character recognition rates of over
98% for digits and 96% for letters. Not unsurprisingly; the best performing network
topologies are reported for networks where the number of filters per convolutional
layer is higher, whereas the associated computational complexity is not discussed.

H. Li et al. [9] employ a combination of different networks to tackle the LPR
problem from a slightly different perspective. First they use a CNN trained on the
datasets created by [79] and [80] to possibly detect characters in the input image. The
candidate image areas are classified as plate or non-plate via a second CNN trained
on the AOLP dataset [12] via cross-validation to discard false positives. Finally, a
long short-term memory recurrent network trained on the same character set is used
to label the characters as a textual sequence, avoiding the otherwise critical character
segmentation step. Despite the use of three different networks, this approach shows
improved results over the same dataset used in [12]

Gou et al. [81] propose a LPR algorithm based on Extremal Regions and Re-
stricted Boltzmann Machines [82] (RBMs). First a coarse detection of license plates
is performed using edge detection and image filtering. Characters regions are then
extracted using Extremal Regions which in turn are used to refine the plate region.
Finally the characters are recognized using hybrid discriminative RBMs trained
on character samples extracted from real photos augmented by rotation and noise.

8 Introduction

However, plate localization deals only with plates of specific size and aspect ratio
and is not demonstrated to be robust to changes in perspectives.

Bulan et al. [10] propose to use a weak and sparse classifier followed by a
strong CNN to sort out readable license plates. For character recognition, they
avoid the segmentation step using a sweeping SVM classifier and a hidden Markov
model to infer their locations. The character classifier is trained either with real
samples labeled by an already working classifier or over synthetic data. However,
the experiments show a performance loss when the network is trained over their
synthetic data.

Training samples for deep learning techniques

Since deep learning requires a large amount of training samples, this is another
challenge to overcome. Menotti et al. [11] and H. Li et al. [9] circumvented this
by training multiple models using k-fold cross validation on the test set itself while
Bulan et al. [10] use classical edge detection to locate the plates and propose to
use synthetic character samples or an already operational OCR algorithm for the
character classification, without going into much detail about how synthetic samples
would be generated.

J. Li et al. [78] and Gou et al. [81] however, take on the laboursome task of la-
belling real samples. Gou et al. collect 12,366 labeled Chinese characters and 10,408
labeled letters for the character classification while J. Li et al. manually annotated
about 5,613 license plates and carefully cropped them for character classification.

Synthetic Samples can also be generated with Generative Adversarial Networks
[83] (GANs), but like any other neural network, GANs are data driven and still
require a large amount of labelled data to be trained. And the problem of LPR is not
access to training data, but labelling the data. Furthermore, the quality of synthetic
samples generated from GANs may be impressive considering they are spawned
from random noise, but the resolution is low and the quality does not fool a human
eye other than at a first glance. They may however be useful to augment an already
existing dataset, by first training the GAN on it, then use the generative network to
dilute the original dataset with additional synthetic samples.

1.2 Related works 9

1.2.6 Challenges in LPR

While LPR systems have matured over time, there is still room for improvement.
Systems having a high detection rate typically do so by sacrificing precision when
avoiding to reject positive classifications. In this case, even if all plates are auto-
matically recognized, a lot of manual labor remains to discard the remaining false
recognitions.

Since CNNs have shown groundbreaking performance in a number of image
processing tasks [3, 84, 85], we base our system around those to achieve high
accuracy and balanced in terms of precision and recall.

However, the use of CNNs also poses other challenges, as they require a large
amount of training samples. This may be achievable by hand when training classifiers
to detect a single plate type, but to train classifiers for multiple plate types this
quickly becomes an overwhelming task. Therefore we will train our classifiers on
automatically annotated and generated synthetic training samples.

Another challenge that arises with the use of complex CNNs is the processing
time, since many LPR applications are constantly active, it is necessary to classify
images at the same rate as they are captured (or at the very minimum, one clas-
sification within the time frame it takes for a car to pass the camera). Therefore,
rather than using a very deep CNN architecture such as [86, 87], we will try to
keep the networks shallow and with as few parameters as possible without losing
performance.

Scale dependency is also a limitation of CNNs; although some CNN architectures
exists that provide some scale robustness [88, 89], images can come in very different
resolutions. This means the resolution of the actual plate will also vary greatly and
in high resolution images, plates within the same image may even vary by several
factors in scale e.g. if the image is taken alongside a road of passing cars. Therefore
we will instead take a scale independent approach by employing a scale pyramid;
in combination with generated training samples we can control the inherent scale
robustness of the CNN itself to match with the pyramid scale step such that the
increased complexity of employing it is optimized and limited well below that of the
initial classification of the full resolution image.

Chapter 2

Background on Convolutional Neural
Networks

CNNs are feed-forward deep neural networks with some layers in the form of
convolutions patterns; typically the convolution layers act as a feature extraction
stage, followed by an inference stage of fully connected layers [8]. Convolution
kernels in the feature extraction stage act as filters, activating upon the detection
of one specific feature in the input. The output of the feature extraction stage is
processed by one or more fully-connected layers in the inference stage, the actual
number of layers and learnable parameters in each layer depends on the specific
application. Finally, the last layer of the network provides the desired output such
as an object class label (classification problems) or the object position in the image
(regression problems).

These networks are extremely powerful models for image recognition, where
the relationship between neighbouring channels are more relevant than individual
channel values since, unlike in classical classification tasks, features are not tied to
specific channels (pixels) in images.

They were first introduced back in 1980 by K. Fukushima under a different name,
"neocognitron" [90], which at the time was performing too slow to be practically
useful. The power of CNNs was not quite realized until Y. LeCunn et al. re-introduced
the concept under its current name in 1999 to recognize hand written digits [3].

2.1 Definition of fully connected layer 11

As the computational power matured, CNNs have emerged as the cornerstone to
efficiently solve a number of image classification and regression problems such as
character recognition [3–5], object categorization and localization [6, 7].

2.1 Definition of fully connected layer

Before defining the convolutional layer of the CNN, let us begin with the mathemat-
ical model of a single neuron and fully connected layer, to introduce the notation.
After all, these are necessary parts in a CNN as well.

The artificial neuron is inspired by the biological neuron with multiple inputs
(representing dendrites) and a single output (axon), providing a non-linear response
based on the input signal:

y = f (∑
i

I(i)W (i)+b), (2.1)

where y is the output value of the neuron, f is a non-linear activation function (see
section 2.4), I(i) is an element of the input vector, I (or vectorized image), W (i) is
an element in a vector, W , of learnable weights connected to every input (hence fully
connected) and b is the bias term. Fig. 2.1 (left) illustrates a neuron as described in
(2.1).

CNN intro figs

1

𝑖

2

…

… 𝑦

1

𝑖

2

…

…

1

2

…

𝑗

…

𝐼 𝐼 ℎ

𝑊 (1,1)

𝑊 (𝑖, 𝑗)

1

2

…

𝑘

…

𝑦

𝑊 (1,1)

𝑊 (𝑗, 𝑘)

dendrites

axon

cell body

nucleus

𝑓(Σ …)

𝑊 (1)

𝑊 (2)

𝑊 (𝑖)

Fig. 2.1 Illustrations of (left) a biological neuron modeled by (2.1), input signals are received
via the dendrites and an output signal is sent via the axon, and (right) the two-layer fully
connected network in (2.3-2.4). Each input element is connected through weights to all
neurons in the hidden layer, the output of the hidden layer acts as input to the output layer.

This can be expanded to a layer of fully connected neurons

12 Background on Convolutional Neural Networks

y(j) = f (∑
i

I(i)W (i, j)+b(j)), (2.2)

and it can be further extended to a multilayer network by adding another layer, such
that the output of the first layer is the input of the second layer:

h1(j) = f (∑
i

I(i)W1(i, j)+b1(j)) (2.3)

y(k) = f (∑
j

h1(j)W2(j,k)+b2(k)), (2.4)

where h1 is a hidden layer, this is also illustrated in Fig. 2.1 (right). In principle, any
number of layers can be added in this manner, a network is said to be deep if it has
more than two layers. The more layers, the more complex the decision boundary can
become (and the higher the risk of overfitting if the sample quantity is not sufficient).

2.2 Definition of convolutional layer

While the fully connected layer uses individual learnable weights between each
connection of an input and an output, a convolutional layer uses patterns of shared
weights applied in a convolutional manner:

y(i, j) = f (∑
m

∑
n

I(i+m−1, j+n−1)W (m,n)+b), (2.5)

where y(i, j) is an output neuron, I the input image and W a matrix of convolution
weights, this is also illustrated in Fig. 2.2. Note that this actually is not the discrete
version of a convolution, but rather the discrete cross-correlation. Many machine
learning libraries actually implement the cross-correlation instead of the convolution
[91]. Although, in practice, the only difference between the two operations is that W
is flipped horizontally and vertically. Of the two operations cross-correlation is the
more intuitive since the pattern is flipped the same way as the image, simplifying
visual comparisons. So, convolution layers are measuring the correlation between the
input image and a feature pattern, however, we will continue to call this convolution,
as is conventional.

2.2 Definition of convolutional layer 13

CNN intro figs

1

𝑖

2

…

… 𝑦

1

𝑖

2

…

…

1

2

…

𝑗

…

𝐼 𝐼 ℎ

𝑊 (1,1)

𝑊 (𝑖, 𝑗)

1

2

…

𝑘

…

𝑦

𝑊 (1,1)

𝑊 (𝑗, 𝑘)

dendrites

axon

cell body

nucleus

𝑓(Σ …)

𝑊 (1)

𝑊 (2)

𝑊 (𝑖)

1

𝑖

2

…

…

𝐼 1 … 𝑗 … 𝑊 … 𝑛𝑗 + 𝑛 1 ……

𝑖 + 𝑚

…

1

𝑚

…

…

1

𝑖

2

…

𝑦 1 … 𝑗

𝑓((…)) = 𝑦(𝑖, 𝑗)

1

𝑖

2

…

…

𝐼

1 … 𝑗 … 𝑗 + 𝑛 …

𝑖 + 𝑚

…

1

𝑖

2

…

𝑦

1 … 𝑗

𝑓((…)) = 𝑦(𝑖, 𝑗)

𝑊

… 𝑛1 …

1

𝑚

…

…

Fig. 2.2 Illustrations of a convolution layer. The weight matrix (orange) is shifted over the
input image (blue) and element-wise multiplied, producing a matrix of outputs (gray).

Typically a convolutional layer consists of multiple convolution patterns, or
kernels, each producing an output layer. The input layer is typically also multidi-
mensional, such as a color image, or a hidden layer from a previous convolution
layer:

y(i, j, l) = f (∑
m

∑
n

∑
k

I(i+m, j+n,k)W l(m,n,k)+bl). (2.6)

where k is the spectral dimension index of the input, I, and l denotes individual
convolution patterns, each producing a "spectral" dimension in the output, y. Note
that the convolution does not act in the spectral dimension. Instead the weights of
the convolution patterns are extended to match the spectral dimension size, thus
measuring the local correlation in all input layers individually. Each convolution
pattern, W l , results in a separate "spectral" dimension of the output, henceforth we
will call the outputs of convolution layers feature maps with feature layers along a
feature dimension rather than images with spectral bands in a spectral dimension
(such as the Red, Green and Blue layers in an RGB image).

In this thesis, a convolutional layer as defined in (2.6) will be described as a layer
of k M×N convolutions, where M and N represent the size of the first and second
dimension of W , while the third dimension is typically omitted since it is already
given by the previous layer.

This means each convolution pattern yields a feature map with the spatial rela-
tions of the original image conserved, but with the spectral dimensions replaced by

14 Background on Convolutional Neural Networks

correlation measurements related to that spatial region. And multiple convolution
patterns replaces the spatial dimensions with feature dimensions. Compared to a fully
connected layer, the number of learnable weights are greatly reduced, for example, a
3×3 pattern operating on a large RGB image has only 28 learnable parameters (27
+ 1 for the bias).

As with fully connected layers, convolutional layers can naturally be stacked to
produce deeper networks:

h1(i, j, l) = f (∑
m

∑
n

∑
k

I(i+m, j+n,k)W l
1(m,n,k)+bl

1) (2.7)

y(i, j, l) = f (∑
m

∑
n

∑
k

h1(i+m, j+n,k)W l
2(m,n,k)+bl

2). (2.8)

This enables the feature extraction stage to form hierarchical features, where the
lower layers form features of relevant texture details, and each layer gradually forms
more complex features based on the features of the previous layer, with a larger and
larger field of view, i.e. the size of the area in the input image which a kernel has
connections to, through previous layers. This allows the feature extraction layer
to recognize complex features with a relatively low number of learnable weights,
reducing the risk of overfitting.

2.3 Max-pooling layer

Typically, a max-pooling [92] layer is placed between convolutional layers, this
further increases the field of view of the next kernels without increasing its size
(and thereby computational complexity). It also decreases the importance of spatial
relationships between previous features, which can also help achieving a more
general model that accepts smaller shape variations of objects without necessarily
being trained on all possible variants. It is defined as follows:

y(i, j,k) =
(i−1)sx+sm

max
m=(i−1)sx+1

(j−1)sy+sn
max

n=(j−1)sy+1
h(m,n,k), (2.9)

2.4 Activation functions 15

where sx and sy are downscaling factors, typically chosen equal to the pooling size
(sm × sn) dimensions such that each feature value is considered exactly once.

As suggested before, mixing convolutional layers with max-pooling layers allows
the network to learn small texture patterns as features while becoming less and less
spatially specific when forming more and more complex features in deeper layers.
If no spatial information is desired in the final classification, a final max-pooling
filter of the same dimensions as the final convolution layer can even be employed to
achieve full translation invariance.

2.4 Activation functions

We have so far left out the activation function, other than specifying it must be
non-linear, which is necessary since stacked linear layers can only produce a linear
decision boundary such as a hyperplane. The following lists some common choices
of activation functions, the first three are also illustrated in Fig. 2.3:

• Sigmoid

y(x) =
1

1+ e−x (2.10)

Historically the typical activation function to use was the sigmoid function,
which squeezes the output into a range [0,1] and has well defined and simple
derivatives, which makes learning with backpropagation (see section 2.6) easy.
A shortcoming of the sigmoid is that it only asymptotically approaches 0 and
1 which are typically the values used as classification targets.

• Hyperbolic Tangent
y(x) = A tanh(Sx) (2.11)

The Hyperbolic Tangent (TanH) is similar in shape to the sigmoid but symmet-
ric [3]. The constants A and S also allows for customization of the range to
[−A,A] and steepness of the curve, this is particularly useful if TanH is used
as the final activation unit before the outputs, to customize the range according
to the output target values and avoid the limitation of the sigmoid by allowing
it to overshoot the target values.

16 Background on Convolutional Neural Networks

• Rectified Linear Unit

y(x) =

x if x > 0

0 otherwise
(2.12)

The Rectified Linear Unit [93] (ReLU) is perhaps the most similar activa-
tion function to that of an organic neuron, since it only propagates positive
signals. This helps the classifier to focus on positive features and ignoring
background features rather than learning them as negative features. This has
become the typical choice of activation function for neural networks applied to
classification problems, while TanH is typically used for regression problems.

-4 -3 -2 -1 1 2 3 4

-1

-0.5

0.5

1

y(
x)

Sigmoid
TanH
ReLU

Fig. 2.3 Plot of the non-linear activation functions Sigmoid (blue), TanH (red) and ReLU
(green).

• SoftMax
y(x)i =

exi

∑ j ex j
(2.13)

The SoftMax function [94] is useful for a the final classification layer because
it normalizes the output units, y(x)i, such that ∑i y(x)i = 1, like a probability
distribution. Note however, that it does not necessarily mean the output class
is correct with that probability, or that it is even a good approximation thereof.
Therefore we will call such outputs confidence ratings rather than probabilities.

2.5 CNN architecture

As mentioned before, a typical CNN consists of a feature extraction stage followed
by a inference stage. The feature stage contains a series of convolution layers with

2.5 CNN architecture 17

small kernels (3×3) and ReLU activation functions, and 2×2 max-pooling layers
in between them to decrease the resolution of the hidden layers. This scheme allows
for an increased amount of convolution kernels per layer, with an increased field of
view (with respect to the input layer), without increasing the computational cost of
the layer compared to previous layers. As illustrated by the following example:

Ex 1. Consider a feature map of size Ih × Iv with F feature layers, and a convolution
layer with 2F kernels of size Ch×Ch. Assuming the convolution is applied with
padding for simplicity (if Ih× Iv >>Ch×Ch this is still a good approximation),
then the convolution is shifted Ih × Iv times and each of the 2F convolution
kernels has Ch ×Ch ×F weights. That is, the number of connections between
the feature map and the convolution kernels (and thereby multiplications
needed to compute the next feature map) is (IhIv)2F(ChChF) = 2F2IhIvChCh.

Ex 2. Now consider the next layer, following this scheme, after the max-pooling
will be of size Ih

2 × Iv
2 with 2F feature layers, and the next convolution layer

with 4F kernels of size Ch ×Ch. Yielding (Ih
2

Iv
2)4F(ChCh2F) = 2F2IhIvChCh

connections again.

The inference stage typically consists of a number of fully connected layers with
ReLU activation functions between them and a SoftMax activation function after the
final layer; the more layers the more complex the decision boundary is allowed to be.
The number of neurons also affects the complexity of the boundary, but can also be
used to gradually scale down the number of connections towards the output. Fig. 2.4
shows an example of a simple CNN architecture.

18 Background on Convolutional Neural Networks
RGB image, 128x64x3

16 Convolutions, 5x5x3

Max Pooling, 2x2

32 Convolutions, 3x3x16

Max Pooling, 2x2

64 Convolutions, 3x3x32

Max Pooling, 2x2

128 Convolutions, 3x3x64

Max Pooling 2x2

Fully Connected
256x4096

Fully Connected
512x4096

ReLU

ReLU

ReLU

ReLU

ReLU TanH

Fully Connected
256x256

TanH

Fully Connected
2x256

SoftMax

Fully Connected
512x512

ReLU

Fully Connected
8x512

TanH

Feature Extraction

Localization

Classification

Class
confidences (2)

Bounding Box
Coordinates (8)

RGB image, 24x40x3

32 Convolutions, 5x5x3

Max Pooling, 2x2

64 Convolutions, 3x3x32

Max Pooling, 2x2

128 Convolutions, 3x3x64

Fully Connected
512x7680

Fully Connected
128x7680

ReLU

ReLU

ReLU

ReLU TanH

Fully Connected
256x512

TanH

Fully Connected
33x256

SoftMax

Fully Connected
64x128

ReLU

Fully Connected
4x64

TanH

Feature Extraction

Localization

Classification

Class
Confidences(33)

Bounding Box
Coordinates (4)

RGB image, 𝐼 × 𝐼 × 3

𝐹 Convolutions, 3 × 3 × 3

Max Pooling, 2 × 2

2𝐹 Convolutions, 3 × 3 × 𝐹

Max Pooling, 2 × 2

ReLU

ReLU

Fully Connected
𝐴 × 𝑀𝑁𝐹/2

Fully Connected
𝐶 × 𝐴

SoftMax

ReLU

Feature Extraction
Classification

Class Confidences, 𝐶

RGB image ≥ 𝐼 × 𝐼 × 3

𝐹 Convolutions, 3 × 3 × 3

Max Pooling, 2 × 2

2𝐹 Convolutions, 3 × 3 × 𝐹

Max Pooling, 2 × 2

ReLU

ReLU

𝐴 Convolutions,
𝑀 × 𝑁 × 2𝐹

𝐶 Convolutions,
1 × 1 × 𝐴

SoftMax

ReLU

Feature Extraction
Classification

Class Confidences,
𝑣 × ℎ × 𝐶

Fig. 2.4 Example of a simple CNN architecture.

2.6 Learning

To be able to classify anything meaningful, the network first needs to learn a set of
good weights. This is done with the help of a training set of labeled examples. A
smaller validation set can also be used to select a good model, which the network
does not directly learn weights from, but it can be used to apply a stop condition for
the learning process and to optimize hyper parameters and the network architecture.
Indirectly the composition of the validation set may therefore still affect the network
model, therefore a separate test set should be used for the final evaluation of the
network model to more accurately measure how it will perform on new, uncorrelated
data.

To learn good weights, the training samples are first classified, initially with
random weights, and the classification error is used to update the weights using a
backpropagation algorithm [95] which calculates the error derivatives of each weight
with respect to the output target value, starting from the output layer, using chain

2.6 Learning 19

rule to propagate these error derivatives backwards in the network all the way to the
input. These derivatives tell us how the output will change if we change the value
of that weight, while keeping everything else fixed, and changing a weight in the
opposite direction of the error derivative is guaranteed to decrease the error when the
same sample is classified again.

In practice however, this is too slow, therefore all weights are changed by a
small step in the direction towards the error derivative simultaneously. To average
out the learning path, multiple images can be classified in parallel before all errors
are backpropagated together; this is called a mini-batch. If the mini-batch is too
small, the learning process becomes unnecessarily costly due to the number of
backpropagations, and the learning may converge badly due to each sample pushing
the weights in a different direction to improve the classification of that particular
sample. On the other hand, if the mini-batch is too large, the learning is slow
because many samples are classified on old weights that could have been improved
by an earlier backpropagation. Classifying and learning from the full set of training
samples is called a training epoch, typically multiple epochs are needed before the
weights of all layers of the network have converged to a good solution with a low
error.

This can be formulated as a minimization problem of a cost function defining an
error metric, which is solved by Stochastic Gradient Decent (SGD) [95]. The classic
cost function is the Mean Square Error (MSE), defined as:

E(W) =
1
C

C

∑
i=1

(yo
i − ti)2, (2.14)

where E(W) is the error as a function of the set of weights, W , to be minimized (it
is a function of W through yo

i), C is the number of output units or classes, yo
i is the

output of neuron i and ti is the corresponding ground truth value. This cost function
is typically used for regression problems, while the cross-entropy cost function is
usually found to work better on classification problems, defined as:

E(W) =−
C

∑
i=1

ti logyo
i . (2.15)

The SGD update rule is defined as follows:

20 Background on Convolutional Neural Networks

W :=W −η∇W E(W), (2.16)

that is, each weight in W is iteratively updated in the direction of the negative
gradient −∇W E(W) scaled by a learning rate factor η . Typically the learning rate
is decreased during training to allow for larger update steps in the beginning to
accelerate learning and smaller updates towards the end as a too large step might
jump past the minimum. Alternatively an adaptive gradient algorithm can be used
that adapts the learning rate, such as AdaGrad [96].

2.7 Fully convolutional neural networks

A limitation of the architecture described above is that it is limited to training and
classification of images of a specific size, this is because the fully connected layers
have fixed connections, which also requires the convolutional layers to be applied
to a specific input size in order to match the input dimension of the fully connected
layer. However, by replacing the fully connected layers with convolutional layers, a
network can be applied to images of varying size. The output then becomes a matrix
of classifications, each of a shifted window of the input image. This is essentially
the same as a sliding window classifier, but this architecture allows for a much more
efficient implementation compared to a normal sliding window classifier because it
avoids re-processing of areas where multiple sliding windows are overlapping.

A fully convolutional network can be constructed to be equivalent to a CNN
with fully connected layers by replacing the fully connected layers by convolutions
(without padding) that are large enough to connect to all inputs without any space
to shift. That is, a network with a separate feature extraction stage followed by a
classification stage, such as in Fig. 2.4, needs to replace the first fully connected
layer by a convolution of the size of the final feature map produced by the feature
extraction stage. If the fully connected layer connects to A neurons, the convolutional
equivalent requires A kernels. The convolution has no space to shift, so each kernel
will only produce 1 output neuron, i.e. the output feature map will be 1×1×A. This
is illustrated in Fig. 2.5 left and center.

Each fully connected layer after the first are then replaced by 1×1 convolutions,
with one kernel per output neuron of the corresponding fully connected layer. Apply-

2.7 Fully convolutional neural networks 21

ing this network to a larger input image will allow the convolutions space to shift
and produce multiple outputs, corresponding to classifications of a sliding window
classifier, as illustrated in Fig. 2.5 right. Fig. 2.6 shows an example of the network in
Fig. 2.4 converted to a fully convolutional network.

Fully Conv

Feature Map

Fully Connected W
eights

Fully Connected
Weights

Output

Feature
Map

Convolution W
eights

Output

1x1 Convolution
Weights

(a) (b) (c)

Larger
Feature
Map

Larger
Output

Fig. 2.5 Comparison of (a) fully connected vs. (b) equivalent fully convolutional architecture
and (c) an illustration of how the fully convolutional version produces a matrix of outputs as
a result of a larger input image.

22 Background on Convolutional Neural Networks

RGB image, 128x64x3

16 Convolutions, 5x5x3

Max Pooling, 2x2

32 Convolutions, 3x3x16

Max Pooling, 2x2

64 Convolutions, 3x3x32

Max Pooling, 2x2

128 Convolutions, 3x3x64

Max Pooling 2x2

Fully Connected
256x4096

Fully Connected
512x4096

ReLU

ReLU

ReLU

ReLU

ReLU TanH

Fully Connected
256x256

TanH

Fully Connected
2x256

SoftMax

Fully Connected
512x512

ReLU

Fully Connected
8x512

TanH

Feature Extraction

Localization

Classification

Class
confidences (2)

Bounding Box
Coordinates (8)

RGB image, 24x40x3

32 Convolutions, 5x5x3

Max Pooling, 2x2

64 Convolutions, 3x3x32

Max Pooling, 2x2

128 Convolutions, 3x3x64

Fully Connected
512x7680

Fully Connected
128x7680

ReLU

ReLU

ReLU

ReLU TanH

Fully Connected
256x512

TanH

Fully Connected
33x256

SoftMax

Fully Connected
64x128

ReLU

Fully Connected
4x64

TanH

Feature Extraction

Localization

Classification

Class
Confidences(33)

Bounding Box
Coordinates (4)

RGB image, 𝐼 × 𝐼 × 3

𝐹 Convolutions, 3 × 3 × 3

Max Pooling, 2 × 2

2𝐹 Convolutions, 3 × 3 × 𝐹

Max Pooling, 2 × 2

ReLU

ReLU

Fully Connected
𝐴 × 𝑀𝑁𝐹/2

Fully Connected
𝐶 × 𝐴

SoftMax

ReLU

Feature Extraction
Classification

Class Confidences, 𝐶

RGB image ≥ 𝐼 × 𝐼 × 3

𝐹 Convolutions, 3 × 3 × 3

Max Pooling, 2 × 2

2𝐹 Convolutions, 3 × 3 × 𝐹

Max Pooling, 2 × 2

ReLU

ReLU

𝐴 Convolutions,
𝑀 × 𝑁 × 2𝐹

𝐶 Convolutions,
1 × 1 × 𝐴

SoftMax

ReLU

Feature Extraction
Classification

Class Confidences,
𝑣 × ℎ × 𝐶

Fig. 2.6 Example of the CNN example in Fig. 2.4 converted to a Fully Convolutional CNN.

Chapter 3

Synthetic Sample Generation

We decided to investigate how feasible it would be to exclusively use synthetic
samples to train the neural networks for LPR, because of how time consuming it
would be to manually label enough training samples, and how badly that scales when
expanding to recognition of other plate types. Synthetic generation scales much
better as it allows us to generate plates of different types, e.g. from other countries
with very small changes to the code. Thanks to this, we can use a Taiwanese dataset
from [12] as the final test set to evaluate our algorithm on, see section 6.5.

3.1 A word on generative adversarial networks

GANs [83] are an obvious potential candidate for synthetic sample generation that
deserves to be mentioned. GANs use two networks in an adversarial fashion during
training, one generative network and one discriminative network. The task of the
generative network is to produce samples that are able to fool the discriminative net-
work that they are real samples, with only noise as input. The discriminative network
on the other hand receives a real sample or one generated by the generative network
and has to predict whether it is a real or a generated sample. Backpropagation is used
to train the networks as a single system. If the discriminator is able to discriminate
between real and fake, the generative network will learn to produce samples more
similar to the real samples and if the generator manages to fool the discriminator, it
will learn to look at finer details to tell the difference.

24 Synthetic Sample Generation

However, there are several reasons why we chose not to implement GANs for
our sample generation:

• Labelled training samples are still needed to train the GANs.

• There was never a point where we considered it possible to produce more
accurate samples with GANs compared to the samples generated by our own
algorithm at that current time. GANs are not (yet) good enough to generate
samples of the same distribution as the training samples [97].

• It is unclear how to implement location labelling and if it would be accurate.

3.2 Synthetic sample generation algorithm

The algorithm described in this section is implemented in MATLAB and produces
a set of 50% positive and 50% negative images, intended to be used for training of
both plate and character classifiers, with some minor post processing (cropping and
scaling) left intentionally for the training stage (so that the training set may be more
useful to others, and so that we would not need to generate a new training set in case
of network design changes). The positive image contains a synthetic license plate
over a background image. For each positive image, there is a corresponding negative
image using the same background image without a license plate (but sometimes with
a random text superimposed instead). This to ensure that the classifier does not learn
background features nor to rely solely on text to identify plates. Then the process is
simply repeated to generate as many samples as needed.

The process of generating synthetic images is divided in eight modules, of which
only the first needs to be changed to generate samples for another plate type or
country. A rectangular plate template is first generated (in section 3.2.1) and a
background image loaded (in section 3.2.2). Occlusions are added to the plate (in
section 3.2.3), followed by perspective distortion (in section 3.2.4) and addition of
noise (in section 3.2.5). Then the plate is added to the background image (in section
3.2.6) and global noise is added to the entire image (in section 3.2.7). Finally, a
negative sample with other text or only a background image is also generated (in
section 3.2.8). The process to generate a pair (a positive and negative sample) is
illustrated in Fig. 3.1 and described in detail in the following sections.

3.2 Synthetic sample generation algorithm 25

Overview

Add the final positive and negative images here

Make Negative
Sample

Background
Image

Generate
Random Text

Add Occlusions

Add Perspective

Add Imaging
Noise

Add Plate Noise

Generate Plate
Template

Add Occlusions

Add Perspective

Add Acquisition
Noise

Make Negative
Sample

Add Plate Noise

Merge Plate and
Background

Add
Text? 50%

50%

Merge Text and
Background

Load Background
Image

Fig. 3.1 Flow Chart of the sample generation algorithm. Each block is detailed in their
corresponding sections.

26 Synthetic Sample Generation

The algorithm evolved iteratively in parallel with the network training and an
initially very crude version of the classification algorithm. Occasionally the algorithm
was tested on the Italian test set (described in section 6.2.1) to see if we were on
the right track, and the errors were evaluated to see where improvements could be
made. Since the classification algorithm was improved in parallel, the results of
these experiment are of little use to compare the impact of different features in the
sample generation algorithm. To demonstrate the relevance of certain non-mandatory
features, an experiment with such features (active versus inactive) was performed on
the final version of the classification algorithm and is presented in section 6.4.2.

Some of these error corrections may have indirectly biased the algorithm towards
the distribution of samples in the Italian test set. In order to check that our LPR
system can generalize properly, the final version of the sample generation algorithm
was also tested on a test set of Taiwanese license plates, see section 6.5.

Note also that the the samples are not intended to all be completely realistic, but
are rather designed to ensure the variance of real samples is at least covered (often
with some margin of unrealistic samples). The decision boundary does not need to
be tight around real plates as long as it does not include other real objects. Neither
are the plates intended to represent the true distribution of real plates, therefore plate
details and noise features that are added are always uniformly distributed to give the
classifier an equal opportunity to learn all variations rather than bias it towards the
more likely features. In other words, rather than allowing the classifier to learn and
take advantage of the a priori probability distribution when performing predictions,
we aim to make the classifier learn to recognize all required features, even if that
may require more samples. This design choice is more stable if the underlying
distribution would change in the future. An example of this is that the first characters
in the alphabet are severely overrepresented as the first character of Italian license
plate. If we adopted this bias in the distribution our classifier may perform better
on the current test set, but it would become weaker in the future as more plates are
produced and the distribution changes.

3.2.1 Generate plate template

This module generates image patches of the different details of the license plate and
stitches them together into a plate with random properties within the desired plate

3.2 Synthetic sample generation algorithm 27

format. Along with the plate image, it also outputs the classification labels needed
for training, i.e. license registration number and initial coordinates of the plate and
character corners (later modules will update the coordinates accordingly as the plate
is transformed and placed into a background image).

This module is the only one that is plate type dependent, in the following de-
scription will focus on EU-format Italian back plates for regular cars as an example,
but it can be interchanged with relatively small changes, as shown in section 6.5.1.
Although we have not tried it, it should also work to use objects other than license
plates, e.g. street signs.

Italian rear license plate format

The basic appearance of an Italian back license plate is shown in Fig 3.2. The license
format is: LL DDDLL, where L indicates a letter from A to Z with I, O, Q, U
excluded (due to being too similar to other letters or numbers) and D indicates a digit
from 0 to 9. Fig 3.2 shows all mandatory details, some plates also include an EU
symbol, a two digit number indicating the year of registration is sometimes indicated
inside the circle and/or two letters in the lower right corner indicating the province
of registration.

520 mm

1
1

0
 m

m

49 mm49 mm

5 mm

5
 m

m

Fig. 3.2 Italian rear plate with measurements specified.

The license plate generation algorithm is illustrated in Fig. 3.3 and described
below.

Load graphics

First, gray-scale versions of the required graphics are loaded, the dimensions of
the patches are chosen such that the backgrounds fill up the entire plate once fitted

28 Synthetic Sample Generation

Load EU
Graphics

Load Emblem
Graphics

Load Year Circle
Graphics

Load Country
Graphics

Fi
na

liz
e

O
ut

pu
t

Load Alpha Channel

Load Character Graphics

Show
Year?

Show
Province?

Load Character
Graphics

Load Character
Graphics

Show EU
symbol?

Merge with
Circle

Apply Colors

Modify Font
Thickness

Add Reflection

50%

50%

50%

50%

50%

50%

Modify Font
Thickness?

50%

50%

Add
Reflection?

50%

50%

Add
Shadow?

50%

50%
Add Shadow

Stitch

Add Border

Add Bounding Boxes

Lo
ad

 G
ra

ph
ic

s
Ap

pl
y

Co
lo

rs
Ch

ar
ac

te
r M

od
ifi

ca
tio

ns

Fig. 3.3 Flow chart of the plate generation algorithm.

3.2 Synthetic sample generation algorithm 29

Table 3.1 Graphical elements of the Italian plate template.

Graphical element Active Inactive Size [pixels]

Characters 122×100, 284×100

Emblem 14×100

EU symbol 45×50

Registration year 45×50

Country letter 45×50

Province letters 45×50

together. This includes the below listed image patches. The graphical elements,
including alternative branches, are also listed in Table 3.1.

• Two image patches with the groups of 2 and 5 characters (according to the
provided input license string) loaded, of 122 × 100 and 284 × 100 pixels
respectively.

• A patch of 14×100 pixels with the emblem located between the two groups
of characters.

• With 50% probability, a patch of 45×50 pixels of the EU symbol otherwise
an empty patch of the same dimensions.

• A patch of 45×50 pixels with a circle, and with 50% probability, 2 random
digits are loaded and inserted inside the circle.

• A patch of 45×50 pixels with an I for Italy.

• With 50% probability, two random letters are inserted in a patch of 45×50
pixels, otherwise an empty patch of the same dimensions.

30 Synthetic Sample Generation

Table 3.2 Colors of graphical elements.

Graphical Foreground Background Example
element color color

Character black white

Emblem black white

EU symbol yellow blue

Registration year yellow blue

Country letter white blue

Province letters white blue

Apply colors

To account for color variations during production or ageing, the four colors used,
black, white, blue and yellow, are given some random variation before being applied
as background and foreground colors to the loaded graphics, within ranges such that
each is still perceived as the intended color. At this stage the colors are homogeneous
within a plate, variations e.g. due to illumination and noise are applied at a later stage.
The colors applied to each graphic element are shown in Table 3.2, each object use
only two colors, a background and a foreground color, initially labelled by black and
white (shown in Table 3.1). However, gray-scale is used when the boundaries are
not exactly along the pixel boundaries. In such cases the applied colors are mixed
according to the percentage of black and white encoded in the gray.

The ranges within which the colors are randomized were selected by comparing
a set of real plate images under different light conditions and cutting color volumes
in the RGB color space until the observed colors were contained within the volumes
(with some margin). The boundaries are defined below and illustrated as volumes in
the RGB color space in Fig. 3.4.

Black = (Kr,Kg,Kb)

3.2 Synthetic sample generation algorithm 31

where Kr,Kg,Kb ∈ N0[0,60]

White = (L+Wr,L+Wg,L+Wb)

where L ∈ N0[155,225] and Wr,Wg,Wb ∈ N0[0,30].

Blue = (Br,Bg,Bb)

where Br ∈ N0[0,100], Bg ∈ N0[0,155] and Bb ∈ N0[max(Br +100,Bg,100),255].

Yellow = (Yr,Yg,Yb)

where Yr,Yg ∈ N0[L,255] and Yb ∈ N0[0,60] (L is the same value as for White).

Fig. 3.4 Black, white, blue and yellow color volumes from which the colors are randomly
selected. Left: View from above, centered over magenta. Center bottom: Reference of the
full RGB color volume from the same view. Center top: Reference of the reverse view. Right:
Reversed view, from below, centered over green.

Character modifications

To reflect the appearance of real plates some modifications are made to the font of
the characters. The text may appear thicker or thinner on images, e.g. because blurry
edges may appear as either white or black due to pixel saturation. Therefore, with
50% probability, the font boldness is varied to be up to 35% thicker or thinner then
originally.

32 Synthetic Sample Generation

The characters are also often embossed, with can produce distinct reflections and
shadows on the background. With 50% probability reflection is therefore added in
the form of a "shadow" of saturated white (i.e. [255 255 255]), extending up to 50%
of the original character thickness at a random angle.

Similarly, a shadow of gray can also be added at the same manner; however,
when both features are active, the angle of the shadow is always shifted 180◦ with
respect to the reflection angle. A few examples with different modifications activated
are shown in Fig. 3.5.

Fig. 3.5 Character modifications. Top-left: Input (and output in case no modifications
activated.) Top-center: Thickened font. Top-right: Shadow actived (on thickened font).
Bottom-left: thinned font. Bottom-canter: Reflection actived (on thinned font). Bottom-right:
Shadow and reflection actived (on thinned font).

Finalize output

Finally the graphical elements are stitched together (the sizes of the patches are
already selected to cover the entire background of the plate) and a black border is
added. The rounded corners of the plate are created by adding an alpha channel to
the image, where 0 (displayed as black in figures) denote full transparency and 255
(displayed as white) denote 100% opacity.

Coordinates of the corners for bounding boxes of the 7 characters and the plate
itself are also stored in separate image layers, this to simplify keeping track of their
final coordinates in the samples after the plate is transformed and placed into the
background image.

To sum up, the template generation module produce the output listed with
examples in Table 3.3.

3.2 Synthetic sample generation algorithm 33

Table 3.3 Template generation output.

Graphical element Example

License plate image

Alpha channel

Plate and character coordinates

3.2.2 Load background image

The background image is the only part of the sample generation that is not synthetic,
since there is no labelling related to the background image there is no advantage in
trying to make it synthetic. It does however, not include a car (other than occasionally)
but only completely random natural images.

This module loads random background images from the CDVS distractor set
[98] (see Fig. 3.6 for a few examples), this set contains 1 million images of varied
resolution and content, collected from FLICKR. The images are cropped down to a
resolution of 768×384, if the original resolution of either dimension is insufficient
the image is first mirrored and duplicated along that dimension until it is large
enough.

The resolution of 768× 384 pixels is chosen because the final plate samples
require a patch with size a third of those dimensions, i.e. 256× 128 pixels. With
the plate placed within the central 256×128 pixels, it still allows to fully shift the
crop region in any direction so any amount of the plate is visible in the sample (from
100% to 0%, not necessarily to be used as positive plate training samples, as will
be described later), 768×384 is the minimum size that allows maximum flexibility.
How the final samples are cropped before training of plates and characters is detailed
in sections 4.1.4 and 4.2.4.

3.2.3 Add occlusions

Due to protrusions of the car, the plate can sometimes be occluded or shaded, either
from above or a side. To simulate such conditions, an occlusion module was added.

34 Synthetic Sample Generation

Fig. 3.6 Some examples of images from the CDVS distractor set, as can be seen, dimensions
may vary.

This module may add an opaque occlusion, a shadow and/or a transparency to the
plate image (each with a 50% probability). This process is illustrated in Fig. 3.7 and
described in more detail below, the characteristics are also summarized in Table 3.4
at the end of this section.

3.2 Synthetic sample generation algorithm 35

Occlusions

Plate Image

Inputs Process Flow

Mask

Occlusion
Transparent

Occlusion

Shadow on

These three are just preseeded 50/50s

Random Seeds in Function

Occlusion Range [1 15]

Color Range [200 255]

Shadow Range [30 99]

Occlusion type [0 1]

Occlusion? 50%
50%

Add Occlusion

Occlusion Size [1 15]
RGB color – each 50% to be off, otherwise random [200 255]
Occlusion direction, 50% top, 25% left, 25% right

Shadow? 50%

50%

Add Shadow

Shadow direction, 50% top, 25% left, 25% right
Shadow Range, [30 99]

Plate Image with applied occlusion

Plate Image with applied shadow

Transparency? 50%

50%

Add Transparency

Shadow direction, 25% top, 25% bottom, 25% left, 25% right
Shadow Range, [1 15]

Alpha channel with applied transparency + plate with applied alpha channel

Add Occlusion

50%

50%
Randomize Width,

Color and
Direction

Add Shadow
Shadow?

50%

50%
Randomize Width,

Darkness and
Direction

Add Transparency

50%

50% Randomize Width
and Direction

Occlusion?

Transparency?

Add Occlusion

50%

50%

Add Shadow
Shadow?

50%

50%

Add Transparency

50%

50%

Occlusion?

Transparency?

Fig. 3.7 Flow chart describing the process of adding occlusions on the plate.

Normal occlusion

To simulate an occlusion, a horizontal or vertical occlusion of a "car color" may
be added over a small part of plate image, with 50% probability. The occlusion is
limited to 1 - 15% or the plate height (for horizontal) or width (for vertical) because
the license number is required to be legible (by eye) on a positive sample. The color
or the occlusion is limited to clearer colors because when randomizing over the full
color spectrum, most colors tend to become gray-brownish. Therefore the color are
randomly selected from R,G,B ∈ N0[0,55]∪ [200,255], these colors are illustrated
in Fig. 3.8.

The occlusion may appear horizontally from the top with 50% probability, or
from either the left or right, with 25% probability each, Fig. 3.9 show a few examples
of possible occlusions.

36 Synthetic Sample Generation

Fig. 3.8 Possible colors of the occlusions added over the plates.

Fig. 3.9 Three examples of possible occlusions added to the plates.

Shadow

From better angles than in the occlusion case, the sun (or other light) may still appear
from a narrow angle, causing a protruding car part to cast a shadow on the plate.
Therefore, a horizontal or vertical shadow is added over the plate image with 50%
probability (independent from the chance to add an occlusion). Because the text
can be read through the shadow, it may cover a larger part of the plate compared to
the occlusion, 10 - 70% of the plate is darkened, from either the top or either side,
the direction is determined with the same probabilities as in the occlusion case, but
independently, i.e. 50% from the top, 25% for the sides. The pixels are darkened
by 10-70%, i.e. each color intensity is multiplied by a factor of 0.1 - 0.7). Fig. 3.10
show a few examples of possible shadows.

Fig. 3.10 Three examples of added shadow, of varying degree, from lighest to darkest.

3.2 Synthetic sample generation algorithm 37

Table 3.4 Occlusion parameters

Type Width [%] Chance to appear on edge Color
Min Max Top Bottom Left Right Modification

Occlusion 1 15 50% 0% 25% 25% Random
Shadow 10 70 50% 0% 25% 25% 10-70% darker
Transparency 1 15 25% 25% 25% 25% Background

Transparency

To simulate other kinds of less defined partial occlusions, the possibility of trans-
parency is also added. Not because it is expected that something behind the plate
may be visible through it, but rather because something else may appear in front of
the plate which is not of a homogeneous color (as is added by the normal occlusion
step above).

A transparency is added with 50% probability, horizontally or vertically, inde-
pendently from previous occlusions. But unlike the other occlusions, it may also be
added from below, with equal probability to appear on any side of the plate. As for
the occlusions, it is limited to 1-15% of the plate height or width, to ensure that the
license number is still legible. The transparency is added by modifying the alpha
channel or the image, Fig. 3.11 shows a few examples along with the plate images
with the alpha channel applied.

Fig. 3.11 Three examples of added transparencies, below each plate image is the correspond-
ing alpha channel.

To sum up, Table 3.4 shows a summary of the parameters for the three different
occlusion types added in this module.

38 Synthetic Sample Generation

3.2.4 Add perspective

Now that the plate appearance differences have been represented, this module repre-
sents plates at a varied perspective, just like a real plate can be photographed from
different angles and distances. This process is illustrated in Fig. 3.12 and described
below.

Perspective

Plate Image

Inputs Process Flow

Mask

Height X Width

BG size

Pixelwidth + pixelwidthspace

Vertical Tilt + Vtilt space
Horizontal tilt + Htilt space

Compute
Perspective pro Compute R vector

Apply TransformationThese are just random seeds

Describe in text what are the limits

X,Y,Z
Vtilt,Htili,Rotation

Plate, mask, coordinates

Compute Perspective
Projection

Randomize Viewing
Angle and Distance

Transform Image, Alpha channel and Bounding box Coordinates

Randomize ScaleRescale Coordinates

𝜙

𝜓

𝜃

Compute Perspective
Projection

Transform Image, Alpha channel and Bounding box Coordinates

Rescale Coordinates

Fig. 3.12 Flow chart of the process of adding perspective to the plate.

Compute Perspective Projection

The perspective projection is computed as explained by [99] and summarized in
appendix A, using (A.14) repeated below.

x′

y′

1

= λ
′KR(φ ,θ ,ψ)

X
Y
Z

 (3.1)

Where in our case, (x′,y′) is the projection of a plate corner point (X ,Y,Z) while
φ , θ and ψ describe how the plate is rotated with respect to the camera, see 3.13.

3.2 Synthetic sample generation algorithm 39

Fig. 3.13 Plate rotation axes.

For our purpose, we restrict these angles such that, 1) the license is still legible
and 2) the angle should be possible based on correctly mounted license plate on a
car, and a correctly mounted/held camera. These restrictions are summarized and
illustrated in Table 3.5 with examples and explained in the following.

Because of 1) the horizontal rotation, φ , is limited to ±70◦ and the vertical
rotation, θ , to ±80◦ and the total angle |φ |+ |θ | < 90 (these limits were decided
by applying high angle rotations and observing by eye if the plate was clearly
recognizable or not, because the plate extends significantly more horizontally, such
rotations were easier to recognize. Furthermore, such extreme camera angles are
more commonly observed in real photos while extreme vertical angles are very rare).
And because of 2) the axial rotation, ψ , is limited to ±5◦; essentially, this means
we require the plate and the camera to be horizontally mounted/held. This is of
course limiting the generalization of the algorithm, but if needed it can easily be
increased, e.g. for motor bike plates, since the bike may be tilted when turning or
parked. However, because a combination of horizontal and vertical rotation gives a
similar appearance, we observed that plates with axial rotation are still recognized.

We want to rotate the plate rather than the camera, since camera rotation leads to
unnecessary translation of the plate in the image plane. Therefore we include the
camera distance to the position of the plate after applying the rotation, yielding:

40 Synthetic Sample Generation

Table 3.5 Restrictions of projection angles.

Rotation Min angle Max Angle Example (Max Angle)

φ −70◦ 70◦

θ −80◦ 80◦

ψ −5◦ 5◦

|φ |+ |θ | 90◦

x′

y′

1

= λ
′K

R(φ ,θ ,ψ)

X
Y
Z

+

 0
0

Zp

 (3.2)

where Zp is the distance from camera to the plate center (the coordinate system
of (X ,Y,Z) has the plate center as origin). The translation is limited to the Z axis in
order to keep the plate centered in the projection, because shifting the plate sideways
is essentially the same as changing the viewing angle - which might push it outside
the desired bounds. Before discussing the range of Zp the internal camera parameters
in K should be defined.

K =

σx f γ x0

0 σy f y0

0 0 1

 (3.3)

For our purpose, we can keep things simple and keep the origin of our camera
sensor in the center, i.e. x0 = y0 = 0, assume the horizontal and vertical axes are
orthogonal, i.e. the skew parameter γ = 0, and scaled equally i.e. σx = σy = σ . This
means K is diagonal and essentially serves as a scale factor of Z. This means by
varying Z we also cover variations of σ f , only at a different scale, which is anyway
something we need to cover later in terms of software scale variations. That is, the

3.2 Synthetic sample generation algorithm 41

factor σ f only has the function to scale Z and Zp to reasonable units with respect
to the X and Y axes. We will use f = 0.017 (i.e. simulating a lens with 17mm focal
length), and σ = 10, i.e. a scale factor of 10 between the sensor coordinate system
and the outside world.

With the internal camera parameters reasonably set, the depth distortion depend-
ing on different object distances Zp becomes reasonable. The range of Zp from
which to generate samples is chosen such that the minimum gives very notable depth
distortion without seeming unnatural while the maximum is far enough away to
approximate parallel projection, i.e. so that almost no depth distortion is noticed. The
distances used in the final algorithm are 0.5 - 2.5m. Table 3.6 show a few examples
of the effect the viewing distance has on the projected image of the plate and Fig.
3.14 shows a sampling of all possible viewpoints.

Before calculating the coordinates, the scale factor for homogeneous coordinates,
λ ′, remains to be fixed.

x′

y′

1

= λ
′

σ f 0 0
0 σ f 0
0 0 1

R(φ ,θ ,ψ)

X
Y
Z

+

 0
0

Zp

 (3.4)

Resolving the homogeneous condition in the third row of the equation system,
we get λ ′:

λ
′ =

1
R3,1X +R3,2Y +R3,3Z +Zp

. (3.5)

where Ri, j are elements in R(φ ,θ ,ψ) according to (A.9). This finally allows us
to calculate the projection (x′,y′) of any point (X ,Y,Z), using (3.4). However, at this
stage, we only compute the projection of the corners, i.e. (X ,Y,Z) = (W/2,H,2,0) ,
(−W/2,H,2,0), (W/2,−H,2,0), (−W/2,−H,2,0), where W and H are the plate
width and height in meters.

Rescale Coordinates

Varying the viewing distance does not only change the depth perspective of the
plate, it also changes the size it appears at (as can be seen in Table 3.6). This is

42 Synthetic Sample Generation

Table 3.6 Projection at different viewing distances.

Zp = 0.5m Zp = 1.5m Zp = 2.5m

φ = 0◦

θ = 50◦

∗ *

φ = 45◦

θ =−45◦

∗

*

φ = 0◦

θ =−80◦

∗

φ = 70◦

θ = 0◦

∗
*

* * * * indicate colors of viewpoints illustrated in Fig 3.14
* indicate that the plate is rescaled to fit page

3.2 Synthetic sample generation algorithm 43

Fig. 3.14 Illustration of some viewpoints from which the plate is projected. Colored * indicate
viewpoints from which the plates in Table 3.6 are projected. Left: Top view. Right: Angled
view. Note that this figure is using parallel projection rather than perspective projection.

44 Synthetic Sample Generation

undesirable since the classifiers should recognize plates of a well controlled range
of scales (as will be described later in section 4.1.4). Furthermore, it is preferable
that the distribution of plate sizes is as uniform as possible, to avoid biasing the
classifier towards certain sizes during training (the distribution of the plate sizes after
perspective projection is rather complex).

Therefore the coordinates are rescaled to a desired output width in pixels. This
range is chosen with two things in mind, i.e. the smallest plates need to have high
enough resolution that the characters are still legible, the largest plates should be
at least twice as large as the smallest, such that a scale pyramid with a factor of 2
can be used during classification of objects of any scale (this will be described later).
Based on this, after comparing samples of various sizes, a minimum pixel width
of 75 and a maximum of 200 is used. A few examples of the smallest and largest
samples in the database are shown in Fig. 3.15.

Fig. 3.15 Examples of smallest and largest training samples. Note that the plate corners we
use for classification are the corners of the white area.

Transform Image

Finally, as described in section A.3, by determining an affine transformation between
the original image corner coordinates and the rescaled projected corners, the plate
image, the alpha channel and all the bounding box coordinates are transformed to
achieve perspective projection. An example is shown in Fig. 3.16.

3.2 Synthetic sample generation algorithm 45

Fig. 3.16 Example after perspective projective is applied. Left: Plate image. Center: Alpha
channel. Left: Annotated coordinates of plate and characters.

3.2.5 Add plate noise

This module varies the plate appearance, in other ways than the perspective, such as
light conditions and dirt. This process is illustrated in Fig. 3.17 and described below.

Light Conditions

While the plate colors were already varied in 3.2.1, this module focus on the appear-
ance rather than the actual production colors. The plate is first converted to the HSL
color space [[100]] (see Fig. 3.18), which is a more natural representation of colors
where the axes represent more independent quantities compared to the RGB color
space (in which, changing one value affects both color and brightness at the same
time).

The reason HSL was preferred over the HSI color space is because the lightness
is equal for all saturated colors while the Intensity of HSI is higher for cyan, magenta
and yellow than it is for red, green and blue and because it is spanning the full
volume of the color cylinder, so any HSL value has an RGB representation, i.e. it is
guaranteed to be invertible after modifications of the color, in particular, hue does not
become undefined (hence the white and black slices in Fig. 3.18) when the lightness
reaches 0 or 1, this allows the previous color to be remembered if it becomes relevant
again after further processing.

46 Synthetic Sample Generation

Pixelated Noise

Shift LightnessShift Saturation

Mix with BackgroundShift Hue

Plate Noise (dirt, motion)

Plate Image

Inputs Process Flow

Mask

Generate Light
conditions patch

Pick
Lighcondi
tion Area

50%

50%

Center (plate area)

Other Background
area

Do HSL, then some filtering to
blur it out and more from the
patch

Convert Plate to HSL

Modify and Shift
LightnessShift SaturationShift Hue

Convert Back to RGB

Shift colors in RGB
space

Add Motion Blur

Add Defocusing
noise

Speckle Noise
(photon quantum

noise)

Modify plate size
Maybe put this somewhere else
instead, where it makes more sense,

paste module,

Merge plate with
background

Randomize Viewing
Angle and Distance

Randomize Scale

Plate

Convert to HSL

Hue channel Saturation channel Lightness channel

Background

Smooth Background
Lightness

Convert to RGB

Motion Blur

Extract Lightness of
Background patch

Alpha channel

Fig. 3.17 Flow chart of the process of adding plate noise.

3.2 Synthetic sample generation algorithm 47

Fig. 3.18 Illustration of the HSL color cylinder with the axes indicated.

To achieve a more naturally varying light conditions over the plate, the lightness
of a random section of the background image is analyzed, this patch has a 50%
chance to be the area directly behind where the plate will be inserted such that the
lightness of the plate will roughly match the background, and 50% chance the be
randomly selected from anywhere in the background image. After extraction this
patch is first smoothed heavily, using a circular mean filter with a radius up to half of
the smallest dimension of the patch. The lightness and saturation channels of the
plate image are dampened by the smoothed background according to:

Lp
i, j = (1−F)Lo

i, j +FLo
i, jmax(Lb

i, j,0.1),

Sp
i, j = (1−F)So

i, j +FSo
i, jmax(Lb

i, j,0.1),

where Lp
i, j is the new lightness and Sp

i, j the new saturation of pixel (i, j), while
Lo

i, j and So
i, j are the original values and Lb

i, j is the lightness of the corresponding
blurred background pixel, and F is a random weight factor between 0 and 0.8, to
ensure at least 20% of the original contrast is maintained so the plate remains legible
even if the background happens to be completely black.

48 Synthetic Sample Generation

Before the image is converted back to RGB colors, all three channels are ma-
nipulated slightly to account for perceived color variations due to illumination (e.g.
sunlight or street lights). Hue is globally shifted (i.e. the same amount on all pixels)
by up to ±30◦ and saturation and lightness each by ±15 percent points.

Plate Noise

Finally a pixelated noise filter and a motion blur filter are applied to simulate dirt
and motion of the plate during exposure. The pixelated filter adds white noise with
a mean of 0 and standard deviation up to 10% (randomized individually for each
plate). The motion blur is applied at a random angle and "smears" the pixels up to 6
pixels, using bilinear interpolation. To make the motion blur appear correctly on the
edges once the plate is added to the background image, the same motion blur filter
is applied on the alpha channel. However, since the filter is symmetric and has the
center of mass in the center, the layers holding the bounding box coordinates do not
need to be filtered. The minimum limits of both filters are set such that they leave
the image unchanged, i.e. the filters vary from not noticeable to quite prominent,
because the final images will be subjected to further noise, the maxima were chosen
well below the limits where the characters were barely legible.

3.2.6 Merge plate and background

In this module the plate image and the background are merged into a training sample.
As was already explained in 3.2.2, the plate is inserted in the center of the background
image to allow maximum flexibility during training. The process is illustrated in Fig.
3.19, and described below.

3.2 Synthetic sample generation algorithm 49

Corners

BackgroundPlate Alpha channel

Merge, plate with background

Plate Image

Inputs Process Flow

Mask

Occlusion
Transparent

Occlusion

Shadow on

These three are just preseeded 50/50s

Random Seeds in Function

Occlusion Range [1 15]

Color Range [200 255]

Shadow Range [30 99]

Occlusion type [0 1]

Occlusion? 50%
50%

Add Occlusion

Occlusion Size [1 15]
RGB color each 50% to be off, otherwise random [200 255]
Occlusion direction, 50% top, 25% left, 25% right

Shadow? 50%

50%

Add Shadow

Shadow direction, 50% top, 25% left, 25% right
Shadow Range, [30 99]

Plate Image with applied occlusion

Plate Image with applied shadow

Transparency? 50%

50%

Add Transparency

Shadow direction, 25% top, 25% bottom, 25% left, 25% right
Shadow Range, [1 15]

Alpha channel with applied transparency + plate with applied alpha channel

Merge

Training sample

Coordinates

Fig. 3.19 Flow chart of the process of merging the plate image with the background image.

Tk,l =

Pi, jAi, j +Bk,l(1−Ai, j) if ⌊(K − I)/2⌋< k < ⌊(K − I)/2⌋

and ⌊(L− J)/2⌋< l < ⌊(L− J)/2⌋

Bk,l otherwise

, (3.6)

where Tk,l and Bk,l are the pixels at coordinate (k, l) of the training sample and
background image respectively, both of size K ×L pixels. Pi, j and Ai, j are the pixels
at coordinate (i, j) of the plate image and it’s alpha channel, of size I × J and ⌊·⌋
is the floor operator. The offset between the plate and the background coordinate
system is given by the upper left corner of the plate image when centered inside the
background image (⌊(K − I)/2⌋,⌊(L− J)/2⌋), i.e:

i = k−⌊(K − I)/2⌋
j = l −⌊(L− J)/2⌋

(3.7)

50 Synthetic Sample Generation

Extract Coordinates

Since the more complex image transformations have been performed at this point,
and only translations remain, the coordinates of the bounding boxes are extracted
from the additional image layers into values, by (discrete) integration of the center
of mass and shifting by the offset of the plate image with respect to the background
image, given by (3.7):

xl =
∑

I
i=1 ∑

J
j=1 Cl

i, ji

∑
I
i=1 ∑

J
j=1 Cl

i, j
+ ⌊(K − I)/2⌋

yl =
∑

I
i=1 ∑

J
j=1 Cl

i, j j

∑
I
i=1 ∑

J
j=1 Cl

i, j
+ ⌊(L− J)/2⌋

, (3.8)

where xl and yl are the real values of coordinate l in the training sample, previously
encoded as intensity values, Cl

i, j, in additional layers of the plate image.

3.2.7 Add acquisition noise

Now that the full scene is assembled, more global noise factors can be considered,
typically caused by the camera, which is added by this module. The process is
illustrated in Fig. 3.20.

Camera movement

To simulate that the camera may move during acquisition, motion blur may be added
to the training sample with 50% probability. Note that the motion blur previously
added in section 3.2.5 was applied to simulate motion of the object alone, while this
simulates movement of the entire scene. The filter is applied in the same manner as
previously, but the angle and size is independent between the two application.

Bad focus

The camera may not be perfectly focused on the plate itself, therefore, with a 50%
probability a Gaussian convolution filter may be applied applied with a standard
deviation of up to 2 pixels. This may seem low, but at a higher level plates run a
too high risk of becoming illegible in combination with other noise. Fig. 3.21 (left)
shows a central cross section of the widest filter (σ = 2) that may be applied.

3.2 Synthetic sample generation algorithm 51

Add Motion Blur

50%

50%Camera
Movement?

Training Sample

Global filters (image acquisition
noise)

Plate Image

Inputs

Mask

Occlusion
Transparent

Occlusion

Shadow on

These three are just preseeded 50/50s

Random Seeds in Function

Occlusion Range [1 15]

Color Range [200 255]

Shadow Range [30 99]

Occlusion type [0 1]

Add Gaussian Blur

50%

50%Bad
Focus?

Add Pixelated Noise

50%

50%Short
Acquisition?

Final Training Sample

Fig. 3.20 Flow chart of the process of adding acquisition noise to the training sample.

52 Synthetic Sample Generation

Although the Gaussian bell shape is not strictly the correct shape of the Point
Spread Function (PSF) of incoherent light focused by a good lens (such as a normal
camera), it is close enough for our purpose, see Fig. 3.21 (right) for a comparison of
a Gaussian and Bessel function based PSF [101].

Add Motion Blur

50%

50%Camera
Movement?

Training Sample

Global filters (image acquisition
noise)

Plate Image

Inputs

Mask

Occlusion
Transparent

Occlusion

Shadow on

These three are just preseeded 50/50s

Random Seeds in Function

Occlusion Range [1 15]

Color Range [200 255]

Shadow Range [30 99]

Occlusion type [0 1]

Add Gaussian Blur

50%

50%Bad
Focus?

Add Pixelated Noise

50%

50%Short
Acquisition?

Final Training Sample

Fig. 3.21 Left: Cross section of the widest Gaussian filter that may be applied. Center:
physics based 2D PSF function based on the Bessel J1 function. Right: Cross section
comparison with a Gaussian bell curve overlayed in cyan. Source: Center and right figures
(except the cyan curve) are copied from [101] with the author’s permission.

.

Low light conditions

Finally, if light conditions are low, or too high ISO number is used (i.e. sensor
sensitivity) to reduce acquisition time, pictures may appear grainy. This noise has its
source on the individual sensor pixels, partly from quantum noise (random variations
in the number of photons hitting with respect to the average expected light flux),
partly electronic noise (inaccuracy in measuring the actual incoming light). Both
these noise sources are more prominent at low light conditions. Photon quantum
variance increases proportionally to the square root of the expected incoming photons,
so although the variance increases with a stronger signal, the signal to noise ratio
decreases, meaning the noise is less noticeable. Electronic noise on the other hand is
more constant, which again means a higher signal to noise ratio if the signal is low.

When mixing multiple random distributions, Gaussian noise is usually a good
model, therefore, with 50% probability pixelated Gaussian noise is applied to the
full image. The added noise has a mean of 0 and a standard deviation of up to 7%.

Since this noise has the source after the lens, as the light is binned on the sensor
pixels, also while simulating it, it needs to be applied last in the process.

3.2 Synthetic sample generation algorithm 53

With this, a positive training sample is complete and stored to the database along
with the labels, i.e. license string and plate and character corner positions. Before
repeating the procedure for another positive sample, a negative sample is produced
with the same background image, as described in the next section.

3.2.8 Negative sample generation

This module produce a negative sample for each positive sample created by the
previous 7 modules. To ensure the plate classifier learns to base its classifications on
the plate features and ignore other features, the negative samples are generated as
similarly as possible to the positive samples. Therefore, the same background image
is used for the negative sample and the modules producing positive samples are
reused with the same settings, all except the generate plate template module, which
is instead replaced by random text in this module to ensure that there is enough text
in the negative samples that the classifier does not learn to classify any text, such as
street signs, as license plates.

Random text is added with 50% probability, the other 50% contain only the
background. The full process is summarized in Fig. 3.22 and the details of adding
random text is described below, while the reused modules are already described in
previous sections above.

54 Synthetic Sample Generation

Overview

Add the final positive and negative images here

Background
Image

Generate
Random Text

Add Occlusions

Add Perspective

Add Imaging
Noise

Add Plate Noise

Generate Plate
Template

Add Occlusions

Add Perspective

Add Acquisition
Noise

Make Negative
Sample

Add Plate Noise

Merge Plate and
Background

Add
Text?

50%

50%

Merge Text and
Background

Load Background
Image

Fig. 3.22 Flow chart of the process of generating a negative training sample.

Random Text

The random text module adds an image of a random text string up to 20 characters
long, of a random color and font in plate of the plate image, and is treated by the
following modules as if it were a plate image. Fig. 3.23 shows an example of random
text added on the background image.

3.2 Synthetic sample generation algorithm 55

Fig. 3.23 Example of random text merged on the background image

3.2.9 Dataset generation

This concludes the final part for generating a pair of a positive and negative synthetic
training image. To generate a data set for training or validation, this process is simply
repeated as many times as desired. The number of samples needed to train our
classification pipeline is evaluated in section 6.4.1.

Note that before being used for plate or character training, the generated samples
are cropped and scaled to suit the desired purpose; the database itself was designed
to be flexible and allow for further design decisions on the training process to be
made at a later stage without the need to re-generate the entire database from scratch,
and also to allow other algorithms to use the database for training, without being too
limited by our design decisions. The details on how training samples for the plate
and character classifiers are extracted from these generated samples are described in
sections 4.1.4 and 4.2.4.

Chapter 4

Convolutional Neural Networks:
Design and Training

This chapter discusses the design of the CNNs we decided to use to solve different
parts of the LPR problem. For an introduction to CCNs and the notation used in this
section to describe the networks, see chapter 2.

Since we focus on exploring the feasibility of using synthetic training data, we
decided to use a more classic convolutional neural network design, such as AlexNet
[84] for classification and Overfeat [7] for localization, rather than a potentially more
powerful but more specific design, such as ResNet [86] or GoogLeNet [102].

Early works on LPR divide the task into four subtasks, segmentation of plate
shaped objects, classification of the license plates, segmentation of characters and
finally character classification. However, since CNNs can generally be trained to
recognize object even in cluttered scenes with background noise, segmentation
should not be necessary. Instead we try to localize the object in parallel with
the classification, as in [7]. We also demonstrate that it works well to train the
classification and localization parts together, as suggested by [7] (although not
actually performed). However, we still divide the task in two subtasks, plate detection
and license number recognition and design one network for each task, we will refer
to them as the plate network and the character network.

The plate network was designed to take a 128× 64 RGB image as input, this
image size is enough to recognize a license plate in, with room for shifting it around
at varying scales, since it cannot be expected to be central nor of known scale during

4.1 License plate network 57

inference. The network should have 2 classification outputs, for positive (plate) and
negative (no plate) classifications, and 8 localization outputs, i.e. x and y-coordinates
for the four corners. Detection is often performed with only 4 units, but since the
plate orientation is useful to facilitate the character classification, as will be shown
in section 5.5. The details of the final design of this network is illustrated in Fig. 4.1
described in section 4.1, including the training process.

The character network on the other hand was designed for smaller input images,
of size 24×40, which is enough resolution to read a character, while two characters
side by side are almost too small to read, the ratio approximately reflects the ratio of
the characters to be classified. This network uses C classification output units, where
C−1 is the number of legal characters for the desired plate (i.e. 32 for Italian plates)
and the last unit represents no character present, and 4 location units - top and bottom
y-coordinates and leftmost and rightmost x-coordinates. Unlike the plate network,
the exact orientation is not necessary. The final configuration for this network and its
training process are described in section 4.2 and the network is illustrated in Fig. 4.4.

Chapter 5 describes how these two networks are applied and combined to achieve
the full LPR system capable of multi-plates classification at any scale.

4.1 License plate network

The CNN for license plate detection (illustrated in Fig. 4.1) takes an 128×64 RGB
image as input and begins with 4 convolution layers for image feature extraction,
followed by a branching into separate stages for classification and localization, each
with 3 fully connected layers with no interconnections between the branches after
feature extraction part. The output consists of 2 classification neurons (true/false)
and 8 localization outputs.

4.1.1 Feature extraction

The feature extraction stage begins with a layer of 16 5× 5 convolutions with a
ReLU activation function followed by a 2×2 max-pooling layer for downsampling,
the following 3 convolution layers use 3× 3 convolutions with 32, 64 and 128
convolutions. Like the first layer, each has a ReLU activation function and is

58 Convolutional Neural Networks: Design and Training

RGB image, 128x64x3

16 Convolutions, 5x5x3

Max Pooling, 2x2

32 Convolutions, 3x3x16

Max Pooling, 2x2

64 Convolutions, 3x3x32

Max Pooling, 2x2

128 Convolutions, 3x3x64

Max Pooling 2x2

Fully Connected
256x4096

Fully Connected
512x4096

ReLU

ReLU

ReLU

ReLU

ReLU TanH

Fully Connected
256x256

TanH

Fully Connected
2x256

SoftMax

Fully Connected
512x512

ReLU

Fully Connected
8x512

TanH

Feature Extraction

Localization

Classification

Class
confidences (2)

Bounding Box
Coordinates (8)

RGB image, 24x40x3

32 Convolutions, 5x5x3

Max Pooling, 2x2

64 Convolutions, 3x3x32

Max Pooling, 2x2

128 Convolutions, 3x3x64

Fully Connected
512x7680

Fully Connected
128x7680

ReLU

ReLU

ReLU

ReLU TanH

Fully Connected
256x512

TanH

Fully Connected
33x256

SoftMax

Fully Connected
64x128

ReLU

Fully Connected
4x64

TanH

Feature Extraction

Localization

Classification

Class
Confidences(33)

Bounding Box
Coordinates (4)

RGB image, 𝐼 × 𝐼 × 3

𝐹 Convolutions, 3 × 3 × 3

Max Pooling, 2 × 2

2𝐹 Convolutions, 3 × 3 × 𝐹

Max Pooling, 2 × 2

ReLU

ReLU

Fully Connected
𝐴 × 𝑀𝑁𝐹/2

Fully Connected
𝐶 × 𝐴

SoftMax

ReLU

Feature Extraction
Classification

Class Confidences, 𝐶

RGB image ≥ 𝐼 × 𝐼 × 3

𝐹 Convolutions, 3 × 3 × 3

Max Pooling, 2 × 2

2𝐹 Convolutions, 3 × 3 × 𝐹

Max Pooling, 2 × 2

ReLU

ReLU

𝐴 Convolutions,
𝑀 × 𝑁 × 2𝐹

𝐶 Convolutions,
1 × 1 × 𝐴

SoftMax

ReLU

Feature Extraction
Classification

Class Confidences,
𝑣 × ℎ × 𝐶

Fig. 4.1 CNN architecture for plate classification and localization.

4.1 License plate network 59

followed by a 2×2 max-pooling layer. All convolution layers use padding to retain
the spatial input resolution. This means the feature extraction stage ends with a
hidden layer of 8× 4× 128 = 4,096 neurons. The details for each hidden layer
are shown in Table 4.1. As can be seen from the number of connections between
the layers, doubling the number of convolutions after each max-pooling keeps the
number of connections (and thereby computations) constant. Since the input has
only 3 spectral dimensions we can afford to use a larger convolution compared to the
following layers without causing a bottleneck.

60 Convolutional Neural Networks: Design and Training

Ta
bl

e
4.

1
Fe

at
ur

e
ex

tr
ac

tio
n

de
ta

ils
,p

la
te

ne
tw

or
k.

L
ay

er
D

es
cr

ip
tio

n
Si

ze
O

ut
pu

tD
im

en
si

on
s

Pa
ra

m
et

er
s

C
on

ne
ct

io
ns

In
pu

t
N

or
m

al
iz

ed
R

G
B

im
ag

e
12

8
×

64
×

3
1

16
C

on
vo

lu
tio

ns
5
×

5
×

3
12

8
×

64
×

16
12

16
9.

83
M

R
eL

U
12

8
×

64
×

16
-

-
M

ax
-p

oo
lin

g
2
×

2
64

×
32

×
16

-
-

2
32

C
on

vo
lu

tio
ns

3
×

3
×

16
64

×
32

×
32

46
40

9.
44

M
R

eL
U

64
×

32
×

32
-

-
M

ax
-p

oo
lin

g
2
×

2
32

×
16

×
32

-
-

3
64

C
on

vo
lu

tio
ns

3
×

3
×

32
32

×
16

×
64

18
49

6
9.

44
M

R
eL

U
32

×
16

×
64

-
-

M
ax

-p
oo

lin
g

2
×

2
16

×
8
×

64
-

-
4

12
8

C
on

vo
lu

tio
ns

3
×

3
×

64
16

×
8
×

12
8

73
85

6
9.

44
M

R
eL

U
16

×
8
×

12
8

-
-

M
ax

-p
oo

lin
g

2
×

2
8
×

4
×

12
8

-
-

to
ta

l
98

20
8

38
.2

M

4.1 License plate network 61

Table 4.2 Classification branch details, plate network.

Layer Description Size Output Dim. Params. Connections

Input F.E. stage output 8×4×128
5C 256 Fully Conn. 256×4096 256 1.049M 1.049M

ReLU 256
6C 256 Fully Conn. 256×256 256 65792 65536

ReLU 256
7C 2 Fully Conn. 2×256 2 514 512

Softmax 2

total 1.115M 1.115M

4.1.2 Classification

The classification stage consists of 3 fully connected layers gradually decreasing
the number of connections towards the 2 output units. The first layer consists of
256×4096 weights (i.e. 256 hidden units all connected to each of the 4096 (hidden)
output neurons of the feature extraction layer), the second 256×256 weights and the
third 2×256 weights, connecting to the two output units. The first two use ReLU as
activation function while the final layer use SoftMax to normalize the output. The
details for each hidden layer and a summary of the number of parameters are shown
in Table 4.2.

4.1.3 Localization

The localization stage also consists of 3 fully connected layers. But since the task is
more challenging, with 8 outputs and real valued target values to learn (regression),
each layer uses twice as many hidden units compared to the classification stage.
Which means the weight matrices become 512×4096 in the first layer, 512×512
in the second and 8×512 in the third, connecting to the 8 output units. Each layer
is followed by a TanH activation function. The details for each hidden layer and a
summary of the number of parameters are shown in Table 4.3.

62 Convolutional Neural Networks: Design and Training

Table 4.3 Localization branch details, plate network.

Layer Description Size Output Dim. Params. Connections

Input F.E. stage output 8×4×128
5L 512 Fully Conn. 512×4096 512 2.098M 2.097M

TanH 512
6L 512 Fully Conn. 512×512 512 262.7K 262.1K

TanH 512
7L 8 Fully Conn. 8×512 8 4104 4096

TanH 8

total 2.364M 2.363M

4.1.4 Sample selection

The plate training samples are selected by extracting 256× 128 crops from the
generated training samples and downscaling them to 128× 64. This means the
plates the classifier is represented with will be from 37.5 to 100 pixels wide, and
the smallest plates will be too small for the license to be legible, therefore it is not
useful to recognizing smaller plates. Plates larger than 100 pixels are recognized
by employing a scale pyramid of downscaled input images at classification, as is
explained in section 5.1.1.

Positive sample extraction

For each epoch, one positive plate training samples is extracted from each positive
training image by randomly selecting a shifted 256×128 crop from the image such
that the entire plate is contained within the image as illustrated in Fig. 4.2, that is, a
crop with an offset (xo,yo) randomized within the ranges [xmin,xmax] and [ymin,ymax],
where:

xmin = max
l∈platecorner

(xl)−256

xmax = min
l∈platecorner

(xl)

ymin = max
l∈platecorner

(yl)−128

ymax = min
l∈platecorner

(yl).

(4.1)

4.1 License plate network 63Network design and training.

min
∈

(𝑥)
max

∈
(𝑥)

min
∈

(𝑦)

max
∈

(𝑦)

𝑦

𝑥

max
∈

𝑥 − 256

max
∈

𝑦 − 128

𝑥 = 0

𝑦 = 0

𝑥 = 384𝑥 = 128

𝑦 = 64

𝑦 = 192

𝑥 = 512

𝑥 = 256

𝑥 = 0

𝑦 = 0

Fig. 4.2 Illustration of the area within which the positive plate training samples is selected.
The green area indicate the region of allowed offsets, i.e. of the upper left corner of the crop.

While adjusting the corner locations according the crop offset, (xo,yo), they are
also normalized to the range [−1,1] before being used as localization output targets,
(t l

x, t
l
y):

t l
x =

xl−xo−128
128

t l
y =

yl−yo−64
64

(4.2)

Negative sample extraction

Negative samples are with 50% probability cropped from the same location as
the positive plate training sample, but from the negative image sample. Since the
classifier will be presented with images partly including plates, they will otherwise
be cropped from the positive samples such that they include up to 50% of a plate.
That is, the combination of ranges xo ∈ [128,384] and yo ∈ [64,192] is not allowed,
as illustrated in Fig. 4.3.

This leaves some margin of crops that cannot be selected, neither as positive nor
negative samples (the area between the red and the green area in Fig. 4.3). This to
avoid "confusing" the classifier with too similar samples with different labels during
training, while during inference, both classes are acceptable choices (although a
positive classification will probably lead to an inaccurate localization since not all
corners of the plate are visible).

64 Convolutional Neural Networks: Design and Training

Network design and training.

min
∈

(𝑥)
max

∈
(𝑥)

min
∈

(𝑦)

max
∈

(𝑦)

𝑦

𝑥

max
∈

𝑥 − 256

max
∈

𝑦 − 128

𝑥 = 0

𝑦 = 0

𝑥 = 384𝑥 = 128

𝑦 = 64

𝑦 = 192

𝑥 = 512

𝑥 = 256

𝑥 = 0

𝑦 = 0

Fig. 4.3 Illustration of the area within which the negative plate training samples is selected.
The red area indicate the region of allowed offsets, i.e. the upper left corner of the crop.
For comparison the green area representing the allowed region for a positive sample is also
shown, from Fig. 4.2. (An offset to the right or below the red area would result in the bottom
right corner of the crop region being outside the image.)

4.1.5 Training procedures

In order to train the plate detector CNN, we first generate at least 20,000 synthetic
images (50% positive and 50% negative samples) using the procedure described
in chapter 3. Our experiments show that above 20k samples the gains are begin to
stagnate. For more details on how the performance depends on the training set size,
see the experiment in section 6.4.1, which shows an evaluation of networks trained
with 10k-80k samples. We also generate 5,000 additional images for a validation set.

We feed batches of 128 samples (64 positives, 64 negatives) to the network and
train with backpropagation of the cost function defined in (4.3) below, updating
the weights after each batch using the AdaGrad [96] algorithm for learning rate
adaptation. Our experiments suggested that an initial learning rate of 10−4 is a good
compromise between convergence speed without risking to fail to converge towards
a solution. After each epoch, we test the trained network over the validation set of
5,000 synthetic images: the experiments showed that the average validation error
derivative becomes zero after about 500 epochs (for a training set of 80k samples, for
other training set sizes the number of epochs should be adjusted such that the total
number of shown samples during training remains constant at 500×80k = 40M).
Concerning the cost function parameters, we experimentally found that a = 0.1 and

4.2 Character network 65

λ = 10−6 best minimize the overall validation error when training the plate detector
CNN.

Finally, we found dropout [103] with a dropout factor of 0.5 to be useful in the
last convolutional layer, and using batch normalization after each convolutional layer
speeds up the convergence rate of the training process.

Target cost function definition

Since different cost functions are typically preferred for classification and regression,
while our neural network combines both in separate branches trained in parallel, we
define our own combined cost function as follows.

E(W,yo, t) = aEc(W,yc,yl)+(1−a)E l(W,yl, t l)+λR(W), (4.3)

where W represents the learnable parameters (weights and biases) of the network, yo

the network output units divided into classification stage outputs, yc, and localization
stage outputs yl with their corresponding target values t, likewise divided into tc and
t l . Ec is the cross-entropy defined in (2.15) of the classification branch output units
and E l is the MSE defined in (2.14) of the localization branch outputs. The factor a
drives the balance between the contributions of the localization and the classification
errors to the overall cost function. Finally, the component R(W) represents an
optional regularization term that helps preventing overfitting to the training samples
and is defined as the squared L2-norm of all the weights in the network.

4.2 Character network

The CNN for character detection (illustrated in Fig. 4.4) takes a 24 × 40 RGB
image as input and begins with 3 convolution layers for image feature extraction,
like the plate network it is followed by a branching into separate classification
and localization parts, each with 3 fully connected layers. The output consists of
C =Ct +1 classification neurons, where Ct is the number of legal characters for the
plate type (Ct = 32 for Italian plates), and 4 localization outputs.

66 Convolutional Neural Networks: Design and Training

RGB image, 128x64x3

16 Convolutions, 5x5x3

Max Pooling, 2x2

32 Convolutions, 3x3x16

Max Pooling, 2x2

64 Convolutions, 3x3x32

Max Pooling, 2x2

128 Convolutions, 3x3x64

Max Pooling 2x2

Fully Connected
256x4096

Fully Connected
512x4096

ReLU

ReLU

ReLU

ReLU

ReLU TanH

Fully Connected
256x256

TanH

Fully Connected
2x256

SoftMax

Fully Connected
512x512

ReLU

Fully Connected
8x512

TanH
Feature Extraction

Localization

Classification

Class
confidences (2)

Bounding Box
Coordinates (8)

RGB image, 24x40x3

32 Convolutions, 5x5x3

Max Pooling, 2x2

64 Convolutions, 3x3x32

Max Pooling, 2x2

128 Convolutions, 3x3x64

Fully Connected
512x7680

Fully Connected
128x7680

ReLU

ReLU

ReLU

ReLU TanH

Fully Connected
256x512

TanH

Fully Connected
33x256

SoftMax

Fully Connected
64x128

ReLU

Fully Connected
4x64

TanH

Feature Extraction

Localization

Classification

Class
Confidences(33)

Bounding Box
Coordinates (4)

RGB image, 𝐼 × 𝐼 × 3

𝐹 Convolutions, 3 × 3 × 3

Max Pooling, 2 × 2

2𝐹 Convolutions, 3 × 3 × 𝐹

Max Pooling, 2 × 2

ReLU

ReLU

Fully Connected
𝐴 × 𝑀𝑁𝐹/2

Fully Connected
𝐶 × 𝐴

SoftMax

ReLU

Feature Extraction
Classification

Class Confidences, 𝐶

RGB image ≥ 𝐼 × 𝐼 × 3

𝐹 Convolutions, 3 × 3 × 3

Max Pooling, 2 × 2

2𝐹 Convolutions, 3 × 3 × 𝐹

Max Pooling, 2 × 2

ReLU

ReLU

𝐴 Convolutions,
𝑀 × 𝑁 × 2𝐹

𝐶 Convolutions,
1 × 1 × 𝐴

SoftMax

ReLU

Feature Extraction
Classification

Class Confidences,
𝑣 × ℎ × 𝐶

Fig. 4.4 CNN architecture for character classification and localization network.

4.2 Character network 67

Table 4.4 Feature extraction details, character network.

Layer Description Size Output dim. Params. Connections

Input 24×40×3
1 32 Convolutions 5×5×3 24×40×32 2,432 2.30M

ReLU 24×40×32 - -
Max-pooling 2×2 12×20×32 - -

2 64 Convolutions 3×3×32 12×20×64 18,496 4.42M
ReLU 12×20×64 - -
Max-pooling 2×2 6×10×64 - -

3 128 Conv. 3×3×64 6×10×128 73,856 4.42M
ReLU 6×10×128 - -

total 94,784 11.15M

4.2.1 Feature extraction

Since the dimensions of the character network input is considerably smaller than
the plate network input dimensions, the feature extraction stage employs only 3
layers. The first layer has 32 5×5 convolutions with a ReLU activation function
followed by a 2× 2 max-pooling layer for downsampling. The second and third
convolution layers use 3×3 convolutions with 64 and 128 convolutions respectively,
and the ReLU activation function. But only the second layer is followed by a 2×2
max-pooling layer, as the third max-pooling was found to have a negative impact on
the accuracy.

Like the plate classifier, all convolution layers use padding, yielding a feature
extraction stage ending with a hidden layer of 5×10×128 = 7,680 neurons. This
is more than the plate classifier, however, the character network ultimately also has
more outputs than the plate network. The details for each layer are shown in Table
4.4.

4.2.2 Classification

Like the plate network, the classification stage consists of 3 fully connected layers.
The first layer consists of 512×7680 weights, the second of 256×512 weights and
the third of 2×256 weights, connecting to the C output units. The first two use ReLU
as activation function while the final layer use SoftMax to normalize the output. The

68 Convolutional Neural Networks: Design and Training

Table 4.5 Classification branch details, character network.

Layer Description Size Output Dim. Params. Connections

Input F.E. stage output 6×10×128
5C 512 FC neurons 512×7680 512 3.93M 3.93M

ReLU 512
6C 256 FC neurons 256×512 256 131K 131K

ReLU 256
7C C FC neurons C×256 C ≈ 33 8481 8448

SoftMax C ≈ 33

total 4.07M 4.07M

details for each hidden layer and a summary of the number of parameters are shown
in Table 4.5.

As can be seen, comparing table 4.5 to 4.2 the character branch requires signifi-
cantly more parameters than the plate counterpart. In part this is explained by the
increase in outputs. But the accuracy requirements are also higher on this network
because each correct plate classification requires multiple character classifications,
with no errors. So each classification is extremely critical at this stage.

4.2.3 Localization

This branch also consists of 3 fully connected layers. But with only 4 localization
outputs, this is the lightest of the four branches. The weight matrices are 128×7680
in the first layer, 64×128 in the second and 4×64 in the final layer connecting to
the 4 output units. And as with the plate localization stage, each layer is followed by
a TanH activation function. The details for each hidden layer and a summary of the
number of parameters are shown in Table 4.6.

4.2.4 Sample selection

The character training sample selection is not as straightforward as for plate training,
because of the way localized plates are rectified before character classification
in the pipeline, as described in section 5.5. Since plates are expected to appear

4.2 Character network 69

Table 4.6 Localization branch details, character network.

Layer Description Size Output Dim. Params. Connections

Input F.E. stage output 6×10×128
5L 128 FC neurons 128×7680 128 983k 983k

TanH 128
6L 64 FC neurons 64×128 64 8,256 8,192

TanH 64
7L 4 FC neurons 4×64 4 260 256

TanH 4

Total 992k 991k

approximately horizontally when shown to the character classifier, the training
samples are "un-rotated" to a degree before sample extraction.

Un-rotation

Based on observations of how accurate the plate localizer is, the plates are not
rectified to undo the perspective projection from a random angle (which this is
exactly what we aim to do in 5.5 after plate localization). Instead we only un-rotate
the plate, based on the angle of the horizontal central line of the plate, up to a 5◦ error.
This is based on measurements of the angular error of the plate localizer applied
on a validation set of synthetic images, with doubled margin to account for higher
error on real images. Furthermore, the images are only rotated and not rectified,
because we observed that plates often remained skewed to some degree after the
rectification. This occurs when the plate localizer successfully predicts the angular
rotation of the plate by accurately representing the y-coordinates of the plate, but
the fine difference between the x-coordinates of the pairs of leftmost and rightmost
corners are inaccurate.

Therefore, to keep the characters as skewed as they may be shown, but on
a relatively horizontal line (as also shown to the classifier during inference), the
samples images are rotated such that the horizontal central line of the plate is less
than ±5◦ of angle relative to the actual horizontal line, as illustrated in Fig. 4.5.

70 Convolutional Neural Networks: Design and Training

𝛼 < 5°

Fig. 4.5 Illustration of un-rotation of a sample before character training sample extraction.
Up to ±5◦ of rotation is intentionally left.

Positive sample extraction

From each un-rotated positive sample image, each character in the plate is cropped
once as a positive character sample in the training set. A positive character sample
requires the character to be entirely contained in the sample and such that the center
of the crop is overlapping the character (such that, in the case of another character
also being visible within the crop, it is well defined which character the sample
represents and which is background noise). The patches are cropped and rescaled
so that the characters in the patch are 16-40 pixels high and 10-24 pixels wide and
randomly positioned within the crop without any margin.

A few positive character training samples are shown in Fig. 4.6.

Fig. 4.6 Examples of positive (10 leftmost) and negative (10 rightmost) samples for training
the character detector CNN.

Negative sample extraction

Negative character samples are also cropped from the positive image. In this context,
a character sample is negative if it contains no character at all or just a partial view of
the character, which the character detector will frequently encounter when deployed
on the field. To ensure a character is not randomly included we verify that the
Intersection over Union (IoU, Jaccard Index [104]) of the potential crop area and the

4.2 Character network 71

area within the 4 corner labels of each character does not exceed 50%. The IoU is
defined as

J(A,B) =
µ(A∩B)
µ(A∪B)

, (4.4)

where A and B are two sets of points and µ(•) measure the area of such a set. Some
negative character training samples are shown in Fig. 4.6.

4.2.5 Training procedures

To train the character network we use all character samples available in all the 40k
positive training images already used for plate training as well as an equal amount of
negative samples, with the procedure described in sections 4.2.4 and 4.2.4. Unlike
during plate training, the character samples are not read and shifted every epoch;
although this feature has a positive impact on the training it was initially implemented
due to memory restrictions for the plate detector only. But because there is more
processing related to the character extraction it would slow down the training time
significantly if this strategy was applied here.

To equalize the number of training samples of each character, we restart the
extraction process after all characters have been extracted once, but reject samples of
any character not already containing the maximum amount collected of any character.
This is repeated until all character classes are equally represented, for each accepted
sample a negative sample is added as well the balance of 50% negative samples.
Overall, this amounts to 960k training samples.

The CNN responsible for character detection is trained according to the same
procedure described for the plate detector network in section 4.1.5. However, in
this case we use batches of 512 samples each and we experimentally found that the
error function derivative becomes negligible after about 200 epochs. Concerning the
cost function parameters, we set a = 0.6 and λ = 10−6 when training the character
detector CNN.

72 Convolutional Neural Networks: Design and Training

4.3 Fully convolutional conversion

The trained networks require a fully convolutional form in their practical deployment
in chapter 5. Namely, units in the first fully connected layer in the classification and
localization branches are rearranged into a convolutional layer with filter size equal
to the dimension of the output features from the last feature extraction layer and the
following fully connected layers are converted to 1×1 convolutions. This procedure
is described in more detail in section 2.7.

However, such design significantly increased the training time, therefore the
networks are trained with fully connected layers. If the training samples were larger
than the input window however, to allow for multiple shifts during training, the fully
convolutional training approach may be favourable. However, since that would only
include multiple shifted copies of the same training samples, it is doubtful if such an
approach would have any positive impact on the training with respect to our current
training approach.

The structure of the plate network after rearranging the trained weights into the
fully convolutional form is detailed in Table 4.7, the last column specifying the
output size given an input image of arbitrary size, corresponding fully connected
network is described in Tables 4.1 - 4.3.

Likewise the character network is rearranged into the fully convolutional network
detailed in Table 4.8, for reference the original fully connected network was detailed
in Tables 4.4 - 4.6.

As can be seen comparing the output size of arbitrary sized images from the
plate and character networks (see the last column of Tables 4.7 and 4.8) the plate
network is downscaled by a factor of 16 while the character network is downscaled
by a factor of 4, this is determined by the Max-pooling layers and affects the distance
between classification shifts. While 16 pixels leaves plenty of overlap between
plate classifications to avoid risking to miss a plate, it would be too much to on the
character classifier. In fact, compared to the plate network it has 1 convolution layer
less but two max-pooling layers less - one extra layer was removed at the end of the
feature extraction stage in order to produce a denser classification map.

4.3 Fully convolutional conversion 73

Ta
bl

e
4.

7
Fu

lly
co

nv
ol

ut
io

na
ln

et
w

or
k

de
ta

ils
,p

la
te

ne
tw

or
k.

L
ay

er
D

es
cr

ip
tio

n
Si

ze
Tr

ai
ni

ng
D

im
en

si
on

s
In

fe
re

nc
e

D
im

en
si

on
s

In
pu

t
N

or
m

al
iz

ed
im

ag
e

12
8
×

64
×

3
(1

28
+

M
)
×
(6

4
+

N
)
×

3
1

16
C

on
vo

lu
tio

ns
5
×

5
×

3
12

8
×

64
×

16
(1

28
+

M
)
×
(6

4
+

N
)
×

3
R

eL
U

12
8
×

64
×

16
M

ax
-p

oo
lin

g
2
×

2
64

×
32

×
16

(6
4
+

M
/

2)
×
(3

2
+

N
/2
)
×

16
2

32
C

on
vo

lu
tio

ns
3
×

3
×

16
64

×
32

×
32

(6
4
+

M
/

2)
×
(3

2
+

N
/2
)
×

32
R

eL
U

64
×

32
×

32
M

ax
-p

oo
lin

g
2
×

2
32

×
16

×
32

(3
2
+

M
/

4)
×
(1

6
+

N
/4
)
×

32
3

64
C

on
vo

lu
tio

ns
3
×

3
×

32
32

×
16

×
64

(3
2
+

M
/

4)
×
(1

6
+

N
/

4)
×

64
R

eL
U

32
×

16
×

64
M

ax
-p

oo
lin

g
2
×

2
16

×
8
×

64
(1

6
+

M
/

8)
×
(8

+
N
/8
)
×

64
4

12
8

C
on

vo
lu

tio
ns

3
×

3
×

64
16

×
8
×

12
8

(1
6
+

M
/

8)
×
(8

+
N
/8
)
×

12
8

R
eL

U
16

×
8
×

12
8

M
ax

-p
oo

lin
g

2
×

2
8
×

4
×

12
8

(8
+

M
/1

6)
×
(4

+
N
/1

6)
×

12
8

5C
25

6
C

on
vo

lu
tio

ns
8
×

4
×

12
8

1
×

1
×

25
6

(1
+

M
/1

6)
×
(1

+
N
/

16
)
×

25
6

R
eL

U
1
×

1
×

25
6

6C
25

6
C

on
vo

lu
tio

ns
1
×

1
×

25
6

1
×

1
×

25
6

(1
+

M
/1

6)
×
(1

+
N
/

16
)
×

25
6

R
eL

U
1
×

1
×

25
6

7C
2

C
on

vo
lu

tio
ns

1
×

1
×

25
6

1
×

1
×

2
(1

+
M
/1

6)
×
(1

+
N
/

16
)
×

2
So

ft
m

ax
1
×

1
×

2

5L
51

2
C

on
vo

lu
tio

ns
8
×

4
×

12
8

1
×

1
×

51
2

1
+

M
/

16
×
(1

+
N
/

16
)
×

51
2

Ta
nH

1
×

1
×

51
2

6L
51

2
C

on
vo

lu
tio

ns
1
×

1
×

51
2

1
×

1
×

51
2

1
+

M
/

16
×
(1

+
N
/

16
)
×

51
2

Ta
nH

1
×

1
×

51
2

7L
8

C
on

vo
lu

tio
ns

1
×

1
×

51
2

1
×

1
×

8
1
+

M
/

16
×
(1

+
N
/

16
)
×

8
Ta

nH
1
×

1
×

8
To

ta
lo

ut
pu

t:
1
×

1
×
(2

+
8)

(1
+

M
/1

6)
×
(1

+
N
/

16
)
×
(2

+
8)

74 Convolutional Neural Networks: Design and Training

Ta
bl

e
4.

8
Fu

lly
co

nv
ol

ut
io

na
ln

et
w

or
k

de
ta

ils
,c

ha
ra

ct
er

ne
tw

or
k.

L
ay

er
D

es
cr

ip
tio

n
Si

ze
Tr

ai
n.

D
im

.
In

fe
re

nc
e

D
im

.

In
pu

t
N

or
m

al
iz

ed
im

ag
e

24
×

40
×

3
(2

4
+

M
)
×
(4

0
+

N
)
×

3
1

32
C

on
vo

lu
tio

ns
5
×

5
×

3
24

×
40

×
32

(2
4
+

M
)
×
(4

0
+

N
)
×

3
R

eL
U

24
×

40
×

32
M

ax
-p

oo
lin

g
2
×

2
12

×
20

×
32

(1
2
+

M
/2

)
×
(2

0
+

N
/2

)
×

32
2

64
C

on
vo

lu
tio

ns
3
×

3
×

32
12

×
20

×
64

(1
2
+

M
/2

)
×
(2

0
+

N
/2

)
×

64
R

eL
U

12
×

20
×

64
M

ax
-p

oo
lin

g
2
×

2
6
×

10
×

64
(6

+
M
/

4)
×
(1

0
+

N
/

4)
×

64
3

12
8

C
on

vo
lu

tio
ns

3
×

3
×

64
6
×

10
×

12
8

(6
+

M
/

4)
×
(1

0
+

N
/

4)
×

12
8

R
eL

U
6
×

10
×

12
8

5C
51

2
C

on
vo

lu
tio

ns
6
×

10
×

12
8

1
×

1
×

51
2

(1
+

M
/

4)
×
(1

+
N
/4

)
×

51
2

R
eL

U
1
×

1
×

51
2

6C
25

6
C

on
vo

lu
tio

ns
1
×

1
×

51
2

1
×

1
×

25
6

(1
+

M
/4

)
×
(1

+
N
/4

)
×

25
6

R
eL

U
1
×

1
×

25
6

7C
C

C
on

vo
lu

tio
ns

1
×

1
×

25
6

1
×

1
×

C
(1

+
M
/4

)
×
(1

+
N
/4

)
×

C
So

ft
m

ax
1
×

1
×

C

5L
12

8
C

on
vo

lu
tio

ns
6
×

10
×

12
8

1
×

1
×

12
8

1
+

M
/4

×
(1

+
N
/4

)
×

12
8

Ta
nH

1
×

1
×

12
8

6L
64

C
on

vo
lu

tio
ns

1
×

1
×

12
8

1
×

1
×

64
1
+

M
/

4
×
(1

+
N
/4

)
×

64
Ta

nH
1
×

1
×

64
7L

4
C

on
vo

lu
tio

ns
1
×

1
×

64
1
×

1
×

4
1
+

M
/

4
×
(1

+
N
/4

)
×

4
Ta

nH
1
×

1
×

4
To

ta
lo

ut
pu

t:
1
×

1
×
(C

+
4)

(1
+

M
/

4)
×
(1

+
N
/4

)
×
(C

+
4)

4.3 Fully convolutional conversion 75

4.3.1 Fully convolutional networks and convolution padding

In theory, convolution padding should not be used during training to make the
convolutional network observations identical to those of a sliding window classifier.
During fully convolutional application, the padding is only applied on the outside of
the image, while the sliding windows inside will have real image data rather than
padding as during training.

Because of this, much effort was put into designing networks without padding
and adapting the sample extraction to compensate for this. However, these networks
never performed as well as the simpler training technique with padding, hence the
result and the described approach in this thesis are based on that.

A reason why the padding does not impact our performance negatively is because
of the reclassification employed (see sections 5.4 and 5.8), which extracts a window
of the size of the training samples and thus applies the padding identically in the
same manner as during the training phase. It could be argued that the reason the
reclassification is needed is because the padding is employed incorrectly, it may
indeed be less needed with networks without padding, however the main reason
to apply the reclassification is to present the network with an image of as close to
optimal scale and position as possible, and this reason remains regardless of the
padding.

Since the final classification is still employed correctly, the advantage of using
padding seems to more than compensate for the disadvantage of using it in the fully
convolutional classification. We also attempted to train unpadded networks to use
only for the fully convolutional classification and use the padded network for the
re-classification, however, this did not improve the performance but only complicated
the design.

Chapter 5

Automatic License Plate Recognition
System

This chapter describes the pipeline surrounding the two core classifiers described in
the chapter 4. Fig. 5.1 shows an overview of the pipeline, detailed in the following
sections.

5.1 Preprocessing

In the following, we assume that one RGB image is provided as input to the system.
Each pixel in the image is normalized according to the pixel mean and standard
deviation values computed over the training images to accelerate learning. In the
following, we refer to such image as the query image.

5.1.1 Scale invariant representation

In order to achieve scale invariance (typical surveillance cameras resolution may
range from at least 1920×1080 full HD to 640×480 VGA), we rely on a scale-
pyramid approach. We repeatedly downsample the query image such that the height
and width of the (n+ 1)th layer is half that of the nth layer. The query image is
repeatedly downsampled until it becomes equal to or smaller than the plate detector
input window (with padding applied to the final layer if needed).

5.1 Preprocessing 77

Re
fin

e
Re

ct
ify

M
er

ge
 re

su
lts

M
ul

tis
ca

le
 p

la
te

 c
la

ss
ifi

ca
tio

n
In

pu
t i

m
ag

e

Po
st

 P
ro

ce
ss

in
g

Ch
ar

ac
te

r c
la

ss
ifi

ca
tio

n
M

er
ge

 re
su

lts
Fi

na
l R

es
ul

t
Re

fin
e

C

 K

 0

 4

2

 Y

J

D

6
6

 1

0

 F

T

D

6
6

 1

0

 F

T

D

 G
6

 1

0

 F

T

CK
04

2Y
J

DG
61

0F
T

Fi
g.

5.
1

Su
m

m
ar

y
of

th
e

cl
as

si
fic

at
io

n
pi

pe
lin

e
ar

ch
ite

ct
ur

e.

78 Automatic License Plate Recognition System

Since the plate detector was trained on plates with a scale difference larger than
a factor of two, plates in the nth layer not fitting the plate detector input window will
fit at least in one of the following layers, enabling plate detection at any scale (down
to the limit at which the plate in the source image is no longer readable, as explained
in section 4.1.4).

Note that detecting plates in the downscaled pyramid layers does not increase the
complexity significantly, as the total additional area of the n downsampled layers does
not exceed 33% of the original image area (Σ∞

n=1
1
4n = 1

3). Therefore we preferred
implementing a classical scale pyramid rather than a scale robust CNN such as
[89, 105], which provides some robustness to scale variations with ROI pooling.
However, the scale ranges at which they can reliably detect objects is still bounded
and depends on the network topology and on the training samples. Conversely,
our design is scale-agnostic both concerning the network topology and the training
samples. Furthermore, such architectures are designed for producing loose, category
agnostic, bounding boxes, while our approach yields plate-tight bounding boxes
enabling rectification, described in section 4.1.

5.2 Fully convolutional plate detection

Plates in the query image are detected by a fully convolutional implementation
of the plate detector network described in section 4.1. Each layer of the query
pyramid is independently fed to the plate detector CNN. We recall that the network
includes 4 pooling layers in its convolutional stage, so adjacent input windows are
shifted by 24 = 16 pixels, vertically and/or horizontally. The network returns one
response for each of the possible 128×64 window shifts spanning over the pyramid
layer. For each window, the network predicts if it contains a plate as well as the
coordinates of its vertices, Fig. 5.2 shows an example of the output of the fully
convolutional classifier (the locations of negative classifications are omitted). In the
following, we define platebox as the output of the network for a given input window.
A platebox defines i) the confidence that the window (entirely) contains a plate and
ii) the predicted coordinates of the plate corners. Adjacent platebox views overlap
completely but by 16 pixels vertically or horizontally.

5.3 Plate merging 79

Fig. 5.2 Example of classification output of the fully convolutional plate classifier. Only
localizations where the plate classification confidence is larger than 0.5 are shown.

5.3 Plate merging

Since the input windows overlap, a plate may appear in part or entirely within
multiple adjacent windows in the same scale layer, as well as in different layers
because the scale range of trained plates is slightly larger than the scale factor
between the scale layers. Therefore, partial platebox views need to be rejected and
redundant plateboxes need to be merged.

Since the coordinate predictions are normalized within their viewing window,
they first need to be converted to absolute positions before they can be compared for
merging (and related to the image graphics as in Fig. 5.2). This is done by:

x = ((xnorm +1)W/2+S)2n−1

y = ((ynorm +1)H/2+S)2n−1,
(5.1)

80 Automatic License Plate Recognition System

where (x,y) are real valued absolute coordinates in pixel-units of the original image
scale, (xnorm,ynorm) the coordinates predicted by the network, normalized to [-1,1]
within their window view. W = 128, H = 64 (window width and height at the
original image scale), S = 16 (window shift step size) and n is the layer index in the
scale pyramid of the classified image, as defined in section 5.1.1).

First, plateboxes that have a confidence lower than a threshold Θ
p
1 are discarded,

as they are expected to contain no plate or a partial view of a plate. During training
and validation, accuracy is typically reported at Θ

p
1 = 0.5. However, by evaluating the

performance on a validation this can be adjusted if desired, a decreasing the threshold
will improve recall while increasing it will improve precision of the classification
step. How this and other thresholds introduced later in this chapter affect the end
performance, is evaluated in section 6.3.

Next, for all the remaining plateboxes, the overlap is computed between each pair
of plateboxes, where the overlap is measured in terms of the IoU, defined in (4.4).
The pair of plateboxes with highest overlap is merged into a new platebox, such that
its vertex coordinates are computed as the average of plateboxes to be merged. When
already merged plate boxes are subject to more merging, the average is weighted by
the number of original plate boxes each originated from. This procedure is iterated
until no more pairs of plateboxes remain such that the IoU is higher than a threshold
ω p.

Note that this process is similar to the method proposed in [7] for merging
generic object bounding boxes. However, in [7] the overlap between two boxes is
defined as the average distance between the center of each box and the center of the
box resulting from the overlap of the two boxes. While the two distance metrics
perform similarly in our application, the IoU metric is scale invariant, unitless and is
bounded in the range [0,1], which simplifies finding a suitable threshold for merging,
regardless of application and scale of the objects. In fact, we find that using a
threshold ω = 0.5 works well for both plates and characters, although the former are
typically far apart while the latter are grouped close together.

5.4 Refine plate classification 81

5.4 Refine plate classification

Initial experiments revealed that networks such as that in Fig. 4.1 are more precise at
localizing objects well centered in the input window and whose size is comparable to
the average size of the objects in the training images (see Fig. 6.10). Therefore, we
crop a rectangular patch around each platebox from the query image and resize them
to 128×64 to fit the classifier network for a single classification. The patches are
tailored such that the platebox is centered and the size of the platebox corresponds to
the average size of plates in the training samples, to provide as good conditions as
possible to make a final classification. The platebox position and confidence values
are refined according to the network output. If the updated platebox prediction is
below a threshold Θ

p
2 , the platebox is discarded.

Plate localization refinement brings an almost negligible complexity increase
compared to the already applied and necessary fully convolutional search over the
query image. Even so, ideally this step should not be needed with a perfect network
and to our knowledge, this simple trick to increase the accuracy has not been used
before. Nevertheless, the impact this re-classification has on the overall accuracy
is significant (10% IoU increase and over 3% precision and recall increase of final
classifications), as the experiment in section 6.4.4 shows.

5.5 Plate rectification

Since detected plates may appear under any arbitrary perspective, which complicates
character recognition later on, we rectify the plate. i.e. we apply a geometric
transformation which maps each platebox to a rectangular area of predefined size
and perspective to improve the performance of the following character detection step,
as described in section A.3, and already used in section 3.2.4, although the purpose
this time is reversed.

82 Automatic License Plate Recognition System

Fig. 5.3 Example of the rectification of a plate based on the refined corners localizations
from section 5.4. As can be seen, if the horizontal difference between the of the corners
on each side is not bad, the horizontal orientation of the plate will be corrected, but it will
appear skewed.

Before performing such transformation, we estimate the corresponding transfor-
mation parameters. Borrowing in part the notation from [106], let us indicate the
(x,y) coordinates of the four corners of the platebox detected by the network in the
query image (the source platebox) as

X s =

[
xs

1 xs
2 xs

3 xs
4

ys
1 ys

2 ys
3 ys

4

]
,

where the subscripts indicate the corner indices and the coordinates are normalized
with respect to the query image size. Now, let us indicate the normalized coordinates
of the corners of a corresponding target platebox in homogeneous coordinates as

X t =

xt
1 xt

2 xt
3 xt

4

yt
1 yt

2 yt
3 yt

4

1 1 1 1

 ,
where X t is such that i) the target platebox corners are located at predefined, known
a priori, positions ii) the target platebox edges are parallel to the canonical axes (i.e.
matching the coordinates of Fig. 3.2). Then, we find the transformation matrix

At =

[
a11 a12 a13

a21 a22 a32

]
,

such that X s = AtX t . We recall that the source platebox coordinates, X s are known
(predicted) and the target platebox coordinates X t are fixed in advance. Hence,

5.6 Fully convolutional character classification 83

X s = AtX t represents an overdetermined system of 8 equations and 6 unknown
variables (the elements of At). Therefore, we find the least squares solution given by
At = X s(X t)+.

Once the parameters of the geometric transformation are known, the RBG values
of each pixel in the target platebox can be computed from corresponding pixels from
the source image as follows. Let us indicate the position of the i-th pixel in the source
platebox [xs

i ys
i]

T and the position of the corresponding pixel in the target platebox
as [xt

i yt
i 1]T . For each pixel within the target platebox, we find the corresponding

coordinates in the source platebox as [xs
i ys

i]
T = At [xt

i yt
i 1]T , linearly interpolating

nearby pixels. Taking into account that the corners X s of a plate may have been
predicted by the plate detection network with some error, we extract a patch of
200×100 pixels centered on the target platebox such that the platebox is 30 pixels
high and the width is such that the aspect ratio of the plate format is achieved.

Notice that in [106] the authors solve for the unknown X s given a target X t and
the parameters of At as output by a localizer network as no knowledge of the actual
X s is available. Conversely, we train our plate localizer over synthetic images for
which X s is known, so we solve for the unknown At for a given target X t for better
localization of the plate corners.

5.6 Fully convolutional character classification

Each rectified plate patch is independently fed to a fully convolutional implementa-
tion of the character network described in section 4.2. The network input window is
24×40 pixels, so characters sized about 20×30 pixels, as produced during plate recti-
fication, fit within the input window, including some tolerance margin. The output of
the network is a classification response of 24×40 input windows, spaced by 4 pixels,
spanning over the patch (adjacent input windows stride is equal to 4 pixels vertically
and horizontally due to the network topology). We define as charbox the network
response at a given input window position. A charbox defines i) the confidence that
the window (entirely) contains each of the considered C character classes and ii) the
predicted bounding box (i.e. the top, bottom, right and left position). Thus, adjacent
charboxes overlap completely but by 4 pixels, vertically and horizontally. First, we
discard charboxes for which the class with the highest confidence rating correspond
to Cnull (the background class) or is below a threshold Θc

1.

84 Automatic License Plate Recognition System

(a) (b)

Fig. 5.4 Character fully convolutional classification (a) and resulting merged classifications
(b).

An example of fully convolutional classification outputs is shown in Fig. 5.4a.

5.7 Character merging

Next, redundant boxes are discarded by means of the same iterative merging process
as for plateboxes (see section 5.3), until no more charboxes exist with an IoU > ωc.
When boxes to be merged belong to different classes, the class with the highest
merging weight (i.e. originating from the most original boxes) is chosen. If the
weight is equal the class of the highest confidence is used.

An example of merged fully convolutional character classifications is shown in Fig.
5.4b.

5.8 Refine character classification

Once merged, the precision of each charbox classification is refined via a second
application of the character detector network. Due to the tolerance margin and
window stride, detected characters may be significantly offset from the input window
center.

For each charbox, we crop a patch from the rectified plate patch, centered on the
charbox central point. The character patch is cropped to include 20% margin relative
to the height and width of the charbox and is then resized to 24×40 pixels. A batch
of extracted patches, one for each charbox, is fed as input to the character detector
network and charboxes for which the highest confidence rating is below a threshold

5.9 Post processing 85

Θc
2 are discarded along with inputs classified as Cnull . As for the refinement of

detected plateboxes, this step increases the overall system complexity only marginally
whereas it consistently improves the overall performance, as we experimentally show
later on.

Table 6.2 compares the character classification with this module active compared
to deactivate, as can be seen, this model is critical to an accurate license reading.

5.9 Post processing

For each detected plate, the character detector may return a sequence of a variable
number of characters. Each character bears a class confidence score and the position
within the corresponding rectified plate patch. By assuming this confidence score
is a good approximation of the probability if a correct classification we can take a
statistical approach to find the most likely license number with the correct amount of
characters and with the correct syntax.

Let us assume that the character detector has detected M characters and the
expected number of characters is equal to N. If M > N, up to M −N spurious
characters may have been detected in the plate (for example, background clutter
may have been interpreted as a character). Namely, we have M choose N possible
sequences of N characters each, called words in the following. Let us indicate as wi

the ith word of N characters, where wi = {ci,1, . . . ,ci, j, . . . ,ci,N} and ci, j indicates the
jth character in the ith word, where the characters are sorted in left-to-right order. Let
P{ci, j} indicate the maximum probability that ci, j is a valid character, as predicted
by the plate detector. Furthermore, let li, j be 1 if ci, j character is allowed to appear at
the jth position in the ith word according to the considered syntax scheme, otherwise
0. The probability that the ith word is correct can be defined as

P{wi}= ∏
j∈1,N

ci, jli, j.

That is, for each of the M choose N words of N characters, we compute the probability
that the word is admissible. Next, for each plate we return the most likely word
with the relative correctness probability as computed above. Note that for M = N,
we just have one possible reading. Conversely, if M < N, the character detector has

86 Automatic License Plate Recognition System

not detected enough characters in the plate and the classification is discarded as
incomplete (e.g. due to occlusions in the query image).

Finally, before returning the classifications, any license plate detection without a
license reading of the correct syntax is discarded. A final check is also performed to
verify that there are not multiple classifications of the same plate; if two classifica-
tions of the same license number have been identified, they will be merged if they
have any overlap. Note that this should not occur if the plate overlap threshold, ω p,
is properly set.

5.10 Final classification output

The final output of the classification pipeline is a set of license numbers with at-
tached place corner coordinates and character coordinates (if any license plates with
license numbers of the correct syntax were found). Fig. 5.5 shows an example of
classification outputs from an image with multiple plates.

5.10 Final classification output 87

Fig. 5.5 Example of output classification of an image with multiple cars, license plate
readings are placed above the image for readability.

Chapter 6

Experiments and Results

In this section, we experimentally evaluate a Torch [107] implementation of our LPR
system, using two CNN classifiers (described in sections 4.1.5 and 4.2.5) trained on
synthetic images and tested in this chapter on real vehicle images.

First we define the classification tasks and their accuracy measurements in section
6.1 and describe the test sets in section 6.2. Then we show how we reliably obtain
robust classification thresholds and trained models that work out of the box with the
LPR pipeline without further calibration in section 6.3. Then we test the performance
on the Italian data set we created in section 6.4 and evaluate the impact of variations
of our system, such as training set size and feature composition, the classification
thresholds and the non-mandatory parts of the classification pipeline. We also
compare our final algorithm to the OpenALPR algorithm [77]. To show robustness
in the whole system and that it generalizes to other plate types, in section 6.5 we
generate Taiwanese license plates, train new networks and classify a data set of
Taiwanese license plates and compare our results to other LPR systems. Finally, we
evaluate the complexity and classification time of our system in section 6.6.

6.1 Definition of LPR subtasks and corresponding ac-
curacy measurements

We evaluate our system considering three different tasks, defined below along with
their performance metrics:

6.1 Definition of LPR subtasks and corresponding accuracy measurements 89

1 The License Plate Detection (LPD) task aims at assessing the LPR system
performance at localizing plates in the input image. Concerning our proposed
pipeline in Fig. 5.1, we consider the plate in an image as correctly detected (i.e.,
a true positive detection) if it returns a platebox overlapping with the ground
truth box by at least 50%. Each detected bounding box overlapping the ground
truth by < 50% is counted as a false positive. If no matching bounding box is
returned (IoU ≥ 50%), the plate is counted as a false negative. We indicate the
number of true positive (TP), false positive (FP) and false negative (FN) detec-
tions as #T P, #FP and #FN respectively. The LPD performance is measured
in terms of Precision = #T P/(#T P+#FP) and Recall = #T P/(#T P+#FN).
Note that neither precision nor recall requires a true negative count, but for the
sake of completeness: a true negative (TN) sample is every area of the image
that is neither classified as a plate nor contain a real plate.

2 The License Recognition (LR) task aims at assessing the LPR system perfor-
mance at character recognition and is further subdivided in two sub-tasks. The
Character Recognition subtask consists in recognizing each single character
in each plate. Considering the Character Recognition subtask, let us indicate
the number of true positive character recognitions as #T P and the number of
incorrect classifications (wrong character, missed character or background
as a character) as #F . Then, we define the character recognition accuracy as
Accuracy = #T P/(#T P+#F). The License Recognition subtask consists in
recognizing all the characters in each plate. Let us define a true positive if
all and only the actual plate characters are correctly recognized, otherwise
the recognition is false (F). The overall LR accuracy over a set is defined as
Accuracy = #T P/(#T P+#F).

3 The License Plate Detection and Recognition (LPDR) task aims at assessing
the overall, end-to-end, LPR system performance. For this task, we define a
true positive plate detection and recognition as i) the plate has been correctly
localized within the image with IoU > 50% and ii) all and only the characters
actually in the plate have been correctly recognized. Each positive classifica-
tion (i.e. a positive plate classification with a recognized character string of
the correct format) such that IoU < 50% or incorrect license classification is
counted as a false positive. For each labelled sample not found (e.g. no LPD
detection with sufficient overlap, of due to an incorrect LR detection, i.e. an

90 Experiments and Results

FP detection is often coupled with an FN detection), we count it as a false
negative classification. LPD is evaluated in terms of Precision and Recall with
the same definition as the LPD task (with the TP, FP and FN definitions of this
task).

Notice that the LPD and LR task definitions and performance metrics are bor-
rowed from [12, 9], such that the results are comparable, while neither of them report
any accuracy of the complete system.

6.2 LPR evaluation data sets

We evaluate our system on two data sets, a set of Italian plates described in section
6.2.1 and a set of Taiwanese plates proposed in [12] and described in section 6.2.2.
The Italian set was used to evaluate the earlier stages of LPR system and help us
understand where improvements were needed. Although we tried to avoid biasing
the algorithm towards this set, the critical reader may consider this a validation set
rather than a test set. The Taiwanese data set however, was introduced after the
Italian version of the system was completed and the system was only modified to
accommodate for differences between the plate types, such as plate dimensions and
number of characters present on the plates.

6.2.1 PlatesMania dataset of real Italian license plates

This database includes images of different types of vehicles captured with smart-
phones and digital cameras that users have uploaded to platesMania.com, a website
collecting vehicle license plates from all over the world. For our experiments, we
downloaded 1153 images of vehicles captured under a wide range of conditions of
light and perspective, a few such examples are shown in Fig. 6.1. The images are
already annotated with the license number by the uploaders but we performed the
license plate corner annotations ourselves, the character corners are not annotated
and thus the character localization accuracy is not measured (although it indirectly
affects the character classification accuracy through more accurate merging and
re-classification, see sections 5.8-5.7).

6.2 LPR evaluation data sets 91

Fig. 6.1 A few samples from the PlatesMania.com dataset. Original resolution is 0.3 - 3
Mpixels.

6.2.2 AOLP dataset of real Taiwanese license plates

This dataset was introduced by Hsu et al. in [12]; the database contains 2049 Tai-
wanese vehicle license plate images of which 1891 are annotated with license strings
and plate positions of one or more cars (we use the annotated part of the dataset). The
database is subdivided into three application-oriented subsets; Access control (AC),
Traffic Law Enforcement (LE) and Road Patrol (RP); Fig. 6.2 show one example of
each. The AC subset contains small images of front plates, acquired from slightly
above but with little horizontal angle (e.g. by a camera mounted above an access
gate). The LE subset contains larger images of vehicles in traffic, acquired with a
large horizontal angle (e.g. by a roadside camera). Finally the RP subset contains
images acquired from a patrolling vehicle (e.g. a mounted or hand held camera).

Fig. 6.2 Application Oriented License Plate (AOLP) database samples: (left) Access Control
subset, (center) Traffic Law Enforcement subset, (right) Road Patrol subset. Original
Resolution: 0.08 - 0.3 Mpixels.

92 Experiments and Results

6.3 Classification thresholds and training time

Throughout the development process we initially had difficulties in consistently find-
ing a good set of parameters for a trained model. With empirical testing, sometimes
models at only 75 epochs (of 80k training samples) worked well, and other times the
thresholds would need to be adapted based on observed errors on the test set (which
would rather make it a validation set), or a longer training time was needed.

Given a validation set of real, labelled samples, calibrating the thresholds and
testing multiple versions at different epochs can certainly improve the performance.
However, since validation sets of real samples may not be available (e.g. because
collecting and labelling samples for multiple plate types would be very laborsome),
we needed to find a robust method to obtain our trained models as well as robust
classification parameters that works out of the box with newly trained models without
calibration.

Our approach to find this method was more empirical in practice, the following
analysis of a training process of a plate network is rather meant to show why it works,
and uses a set of crops extracted from the Italian PlatesMania.com data set in the
same manner as the training samples were extracted (see section 4.1.4) with 50%
positive samples and 50% negative samples with a chance to include up to 50% of a
plate.

6.3.1 Selecting plate training parameters

The training and validation prediction errors (on a synthetic validation set) during
the training process over 500 epochs are shown in Fig. 6.3a (this process takes about
1 day on a TITAN X Pascal GPU). As can be seen the error is still slowly decreasing
at the end of the training process, without any clear signs of overfitting. The training
process saves the parameters of every 50th training epoch, which are further analysed
with the data set just described above. This is done with more classification near
performance measurements, namely Receiver Operating Characteristic curves (ROC
curve) showing for the classification and IoU for the localization.

The ROC curve is useful to illustrate the trade-off between precision and recall
by plotting True Positive Rate (TPR) versus the False Positive Rate (FPR), while the

6.3 Classification thresholds and training time 93

(a) Classification and localization prediction
errors for each training epoch.

0 0.02 0.04 0.06 0.08 0.1

FPR

0.75

0.8

0.85

0.9

0.95

1

T
P

R

epoch 0050
epoch 0100
epoch 0150
epoch 0200
epoch 0250
epoch 0300
epoch 0350
epoch 0400
epoch 0450
epoch 0500

(b) ROC curves

0 100 200 300 400 500

epochs

0.73

0.74

0.75

0.76

0.77

0.78

0.79

0.8

Io
U IoU

epoch 0050
epoch 0100
epoch 0150
epoch 0200
epoch 0250
epoch 0300
epoch 0350
epoch 0400
epoch 0450
epoch 0500

(c) Intersection over union

50 100 150 200 250 300 350 400 450 500

epochs

0.93

0.94

0.95

0.96

0.97

0.98

0.99

A
U

R
O

C
AUROC
epoch 0050
epoch 0100
epoch 0150
epoch 0200
epoch 0250
epoch 0300
epoch 0350
epoch 0400
epoch 0450
epoch 0500

(d) Area under ROC curve

Fig. 6.3 Classification and localization prediction error.

area under this curve is a measurement of the overall performance before choosing a
threshold and thereby the trade-off point.

Fig. 6.3b show the ROC curves for every 50th epoch and Fig. 6.3d shows the
Area Under ROC (AUROC) with the data points color coded as the corresponding
ROC curves, and Fig. 6.3c shows the location accuracy in terms of IoU for the same
epochs. As can be seen in Fig. 6.3d and 6.3c, the classification performance on the
dataset of real samples is initially good before taking a dip around 250 epochs and
recovering towards the end. However, the localization accuracy is not stable until
epochs 350-500.

These observations explain why some models trained a shorter time than the
500 epochs can perform well (e.g. epoch 200 in this example) but the results of
earlier epochs are unstable. A validation set of real samples can be used to stop early,
as well as to calibrate the classifier threshold to achieve desired balance between

94 Experiments and Results

precision and recall from the ROC curve. Another effect of letting the training
process go on longer is that the model better learns the classification threshold since
the classification confidences are being pushed closer and closer towards a binary
classification the longer the training process goes on. Fig. 6.4 illustrate this effect by
showing the location of some fixed threshold on the ROC curves of epoch 50 vs 500.

0 0.02 0.04 0.06 0.08 0.1

FPR

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

T
P

R

ROC-curves

epoch 50
T=0.05
T=0.25
T=0.50
T=0.75
T=0.95
epoch 500
T=0.05
T=0.25
T=0.50
T=0.75
T=0.95

Fig. 6.4 ROC curves of epoch 50 and 500 illustrating the concentration difference of the
thresholds 0.05, 0.25, 0.50, 0.75 and 0.95 on the two curves. An early epoch requires the
threshold to be carefully chosen to perform optimally, while a later epoch is more robust to
the threshold choice, although it is not optimal.

As can be seen in Fig. 6.4, earlier epochs are more flexible because they have not
yet learnt the classification threshold, allowing (and requiring) the user to choose
that after training. However, as explained at the beginning of this section, we want to
avoid such calibration since a validation set of real samples is not always available,
therefore we prefer to train the network for longer so that it becomes almost binary
and the classification more robust.

Hence, by training the network for as long as 500 epochs, although early stopping
may achieve a similarly performing model, we noticed that we can reliably train

6.3 Classification thresholds and training time 95

Fig. 6.5 Character classification and localization prediction errors for each training epoch.

multiple models that perform well, without any need of calibration and simply using
the default classification threshold of 0.5 for both fully convolutional classification
and the refinement classification, i.e. Θ

p
1 = Θ

p
2 = 0.5.

6.3.2 Selecting character training parameters

Similarly for the character classifier, by training it for a longer time than necessary we
found that we reliable achieve a robust classifier that works well with Θc

1 = Θc
2 = 0.5.

Although, because there are significantly more character samples per epoch, it
converges faster than the plate classifier and 200 epochs are enough. Fig. 6.5) shows
the training and validation prediction errors of the character classifier. Unfortunately
we can not show the same analysis of real samples for the character classifier,
because we do not have any annotated corner location of the real character samples
which are required to accurately extract the samples (and evaluate the localization
performance).

96 Experiments and Results

6.3.3 Selecting overlap thresholds for merging

To further avoid biasing our method towards a calibration set, and to show robustness
of the algorithm, we will also use 0.5 as merge thresholds to merge fully convolutional
plate classifications (see section 5.3) and character classifications (see section 5.7),
i.e. ω p = ωc = 0.5. We consider as 0.5 a default threshold because an overlap of
50% is commonly considered sufficient for a localization prediction agreeing with
the ground truth [108].

However, we will also evaluate the effect of changing these thresholds (as well
as the plate and character classification thresholds) in section 6.4.3.

6.4 Experiments on the Italian PlatesMania data set

The robust parameters from section 6.3 allow us to train multiple models to evaluate
the impact of variations of the system by observing how the classification perfor-
mance on the Italian data set is affected. Here we investigate the impact of different
design choices of the synthetic sample generation, the training process and classifi-
cation pipeline on the classification output. Specifically, in section 6.4.1 we evaluate
the effect of varying the training set size and in section 6.4.2 we evaluate the effect
of some non-mandatory feature variations added to synthetic samples. In section
6.4.3 we vary the classification and merging thresholds of the classification pipeline
to see how they impact the classification output and in section 6.4.4 we disable the
non-mandatory stages of the pipeline to reveal how much their presence improves
the classification performance.

6.4.1 Dataset size evaluation

To evaluate the number of synthetic training samples needed to train our classifiers,
we generated 80k training samples (during the development process we mainly used
40k samples) and created subsets of 10k, 20k, 40k, 60k and all 80k unique samples
to train plate and character networks on. The number of epochs was adjusted to
compensate for the amount of samples per epoch, such that each network would
receive an equal amount of backpropagations during the full training process. Fig.
6.6 shows the end-to-end LPDR performance of the classification pipeline in terms

6.4 Experiments on the Italian PlatesMania data set 97

of precision and recall when using plate and character classifiers trained on different
amounts of unique training samples.

1 2 3 4 5 6 7 8

Training set size #104

97

97.5

98

98.5

99

99.5

100

[%
]

Plate network training sample count varied, (Pr+Re)/2
Character network training sample count varied, (Pr+Re)/2
Both networks training sample count varied, (Pr+Re)/2
Plate, Precision
Character, Precision
Both, Precision
Plate, Recall
Character, Recall
Both, Recall

Fig. 6.6 License plate detection and recognition precision and recall as a function of the
number of training samples in the training set in the plate (red), character (blue) and both
(green) classifiers. Full lines indicate the average of precision and recall, dashed lines
precision and dotted lines recall.

Two trends are rather clear; i) the performance when increasing the number of
samples for the character network (blue) is steadily increasing, and ii) the difference
between 10k and 20k samples is significant for all cases. However, the results are not
very conclusive, e.g. why is the performance with fewer samples for both classifiers
(green) better than when one of the classifiers use all samples (blue and red)? Likely
there is too much variance when only one trained network is used for each data
point. However, because of the amount of computation time already required to train
multiple networks for this plot, we decided that effort was better spent elsewhere.

Based on these results we decided to continue using 80k samples, as that data
point shows the best results. Increasing the data set size more would perhaps be
beneficial to, but as the storage size and generation time of 80k samples was already
cumbersome, we decided to settle for 80k samples also for the Taiwanese training
set generated in section 6.5.

98 Experiments and Results

6.4.2 Synthetic database evaluation

Since 40k samples is sufficient too, we can divide the dataset of 80k training samples
into subsets where some non-mandatory features that activate with 50% probability
are consistently either all activated within the same subset or all deactivated, to
evaluate the usefulness of these features.

Note that this is an evaluation of the final synthetic sample generation algorithm
and not the process used to select which features to include. The design decisions
regarding which features to use in the modules was a continuous process in parallel
with the development of the classification process, after reviewing the errors made,
which sometime required improvement of the sample generation and sometimes
improvements of the classification process, rendering previous comparisons outdated.
However, because the random activation of features added later are all only activated
50% of the time (to ensure that the variance of features in the previous was main-
tained, while adding more variance), the database can be divided into subsets within
which such a feature is either always active or always inactive, to compare whether
it was useful or not.

Therefore, as a final evaluation to verify that the features were still useful on the
final classification and training algorithms, multiple plate and character networks
were trained on these subsets and compared to the final version. The results are
shown in Table 6.1, where the number of training epochs was doubled for the subsets
compared to the reference set to compensate for the number of samples being halved.

As can be seen, the one feature standing out is text thickness (see section 3.2.1),
which improves the plate localization when active while being almost on par with
the reference on the other scores. This indicates that it certainly was a good addition,
in fact so good that it might be better to keep it on all the time instead of only 50%.
The other features generally show slight improvements on the sets where they are
active compared with inactive, however, the combination of both is still better (i.e.
the reference).

Overall these results gave no strong indications that the database could be im-
proved by limiting the full database to the features of one of these subsets. Therefore
the algorithm was not changed before being used to generate a Taiwanese database
to train classifiers to be used on the final evaluation of our algorithm on the test set
of Taiwanese license plates, also used in [12] and [9].

6.4 Experiments on the Italian PlatesMania data set 99

Table 6.1 Classification and localization accuracy with training sets feature-divided in subsets.

Plate Character
Subset Prec. [%] Recall [%] IoU [%] Accuracy [%]

Text Shadow 3.2.1 99,0 98,0 85,5 99,5
Text Shadow inactive 98,9 98,2 85,5 99,5
Text Reflection 3.2.1 98,9 98,0 85,4 99,3
Text Reflection inactive 98,6 97,9 85,8 99,4
Text Thickness 3.2.1 99,0 98,4 86,4 99,4
Text Thickness inactive 98,4 98,1 85,4 99,5
Plate Occlusion 3.2.3 98,7 98,3 84,4 99,4
Plate Occlusion inactive 98,5 98,3 83,8 99,3
Plate Shadow 3.2.3 98,6 98,3 85,2 99,5
Plate Shadow inactive 98,3 98,2 84,2 99,5
Bad Focus 3.2.7 98,6 97,9 84,8 99,5
Bad Focus inactive 98,9 98,1 85,5 99,5
Low Light 3.2.7 98,9 98,2 85,6 99,6
Low Light inactive 98,5 98,1 86,0 99,4

Full Database 99,0 98,4 85,0 99,6

6.4.3 Evaluation of pipeline classification thresholds

To evaluate the effects of the classification thresholds, Θ
p
1 , ω p, Θ

p
2 , Θc

1, ωc, Θc
1 (in

order of application) they were varied from 0.01 to 0.99 one by one while classifying
the PlatesMania.com data set and observing the performance metrics defined in
section 6.1.

We begin analyzing the metrics one by one, comparing all thresholds together
and observing which threshold values are outstanding for each metric (after this we
will also analyze the thresholds one by one to identify which metrics they affect). Fig.
6.7 shows all the metrics of all the thresholds, with the point of all default thresholds
marked as a black circle, while the other threshold points are marked with triangles
pointing upwards for higher thresholds and downwards for lower thresholds and
rainbow-color coded according to their values. The thresholds standing out which
are discussed below are indicated with thicker lines in the relevant plots.

100 Experiments and Results

0 0.2 0.4 0.6 0.8 1

Threshold Value

83

83.5

84

84.5

85

85.5

86

LP
 In

te
rs

ec
tio

n
ov

er
 U

ni
on #

p
1

!p

#
p
2

#
c
1

!c

#
c
2

(a) IoU

98 98.2 98.4 98.6 98.8 99

LPD Precision

98

98.2

98.4

98.6

98.8

99

99.2

99.4

99.6

99.8

100

LP
D

 R
ec

al
l

#
p
1

!p

#
p
2

#
c
1

!c

#
c
2

(b) LPD

0 0.2 0.4 0.6 0.8 1

Threshold Value

99

99.1

99.2

99.3

99.4

99.5

99.6

99.7

99.8

99.9

100

LR
 A

cc
ur

ac
y

#
p
1

!p

#
p
2

#
c
1

!c

#
c
2

(c) LR

97 97.5 98 98.5 99

LPDR Precision

97.5

98

98.5

99

99.5

LP
D

R
 R

ec
al

l

#
p
1

!p

#
p
2

#
c
1

!c

#
c
2

(d) LPDR

Fig. 6.7 Accuracy of the license plate recognition tasks with varied thresholds Θ
p
1 , ω p, Θ

p
2 ,

Θc
1, ωc and Θc

1. The black circle indicate all thresholds set to the default value of 0.5, upwards
pointing triangles indicate the threshold is increased from the default value of 0.5 while
downwards pointy triangles indicate decreased value, while color coding of the triangles
indicate to which degree.

6.4 Experiments on the Italian PlatesMania data set 101

License plate detection

For the LPD task (see Fig. 6.7b) the default thresholds are not optimal. Decreasing
the plate classification, Θ

p
1 (red line), can improve both precision and recall, while

increasing the plate reclassification threshold, Θ
p
2 (green line), increases the precision

without a loss of recall while decreasing it increases the recall without a loss of
precision.

The plate localization accuracy in terms of IoU (see Fig. 6.7a) is mostly unaf-
fected by all threshold changes except for the merge overlap threshold, ω p (blue
line, which is indeed the most expected parameter to affect the plate localization),
choosing ω p < 0.6 appears to have a negative impact. From observations of classifi-
cations, this can sometimes cause the fully convolutional classifications not to merge
fully, resulting in two clusters merged to opposite ends of the plate, so this result is
expected.

License plate reading

For the LPR task (see Fig. 6.7c) the default thresholds are close to optimal. It appears
that bringing the character classification threshold, Θc

1 (orange line) up as high as
0.99 has a positive impact, given that the character accuracy is in the range of 99% it
makes sense that the prediction scores of accurate classifications are driven that high
and such a high threshold may reject more negative samples than it fails to detect
correct classifications. However, note that the LPR accuracy is already so high that
the difference is only on two samples in the entire data set.

Both overlap thresholds for merging, ω p and ωc (blue and yellow lines), also
show improvements at some values, but on a single sample compared to the default
thresholds.

License plate detection and reading

For the combined task, LPDR (see Fig. 6.7d), the default thresholds are average,
the improvements from LPD of the Θ

p
2 (green line) carries well over to the LPDR

task, as does the improvement from a low ωc from the LPR task. Notable is also
the increased recall from ω p ≥ 0.9, despite the low IoU mentioned previously. This
configuration causes the plate classification stage to not merge detections effectively,

102 Experiments and Results

forwarding multiple localization guesses to the character classifier, resulting in
multiple character classifications for each license plate. This configuration is not
recommended because it has a very negative impact on both classification time and
memory requirements.

Plate classification thresholds

Fig. 6.8 shows the plate classifier thresholds from Fig. 6.7 isolated for a less cluttered
view to easier analyze the effects of changing these thresholds.

Θ
p
1 (red line) has no clear tendencies; while the LPR precision and recall appears

to both improve for carefully selected lower values, this does not appear to carry
over to the overall results because this also causes the LR accuracy to decrease,
furthermore the changes are small and may be random variations.

As explained above, increasing ω p (blue dashed line) causes less accurate plate
localization because the merging is not complete; this has a positive effect on
recall because merging is more accurate after the character classification has been
performed compared to before. However, it causes multiple character classifications
of the same plate and unnecessary repeated classifications of the same object. If only
recall is relevant, this configuration is a good option, as it increases LR accuracy as
well as LPD and LPDR recall, at the cost of precision and processing time.

Θ
p
2 (green dotted line) offers a trade-off between LPD and LPDR precision and

recall, which should come as no surprise since a high threshold is more likely to
reject false plate detections (higher precision) while a lower threshold is more likely
to accept plate detections (higher recall).

Character classification thresholds

Fig. 6.9 shows the character classifier thresholds from Fig. 6.7 isolated to analyze
the effects of these thresholds.

Θc
1 (orange line) naturally mainly has an impacts on the license reading, but due

to the rejection of plate detections when the predicted license does not match the
required syntax, it also affects the precision-recall trade-off for plates as well as the
complete LPDR prediction. A low threshold value increases the acceptance rate of
characters, which can lead to license predictions that are incorrect but of the right

6.4 Experiments on the Italian PlatesMania data set 103

0 0.2 0.4 0.6 0.8 1

Threshold Value

83

83.5

84

84.5

85

85.5

86

LP
 In

te
rs

ec
tio

n
ov

er
 U

ni
on #

p
1

!p

#
p
2

(a) IoU

98 98.2 98.4 98.6 98.8 99

LPD Precision

98

98.2

98.4

98.6

98.8

99

99.2

99.4

99.6

99.8

100

LP
D

 R
ec

al
l

#
p
1

!p

#
p
2

(b) LPD

0 0.2 0.4 0.6 0.8 1

Threshold Value

99

99.1

99.2

99.3

99.4

99.5

99.6

99.7

99.8

99.9

100

LR
 A

cc
ur

ac
y

#
p
1

!p

#
p
2

(c) LR

97 97.5 98 98.5 99

LPDR Precision

97.5

98

98.5

99

99.5

LP
D

R
 R

ec
al

l

#
p
1

!
p

#
p
2

(d) LPDR

Fig. 6.8 Accuracy of the license plate recognition tasks with the plate classification thresholds,
Θ

p
1 , ω p and Θ

p
1 varied. The black circle indicate all thresholds set to the default value of

0.5, upwards pointing triangles indicate the threshold is increased from the default value of
0.5 while downwards pointy triangles indicate decreased value, while color coding of the
triangles indicate to which degree.

104 Experiments and Results

syntax, thereby accepting the correct LPD while erring on the LPDR task (compare
the recall gain in Fig. 6.9b and Fig. 6.9d). A high threshold value on the other hand
will prefer to reject characters over making a wrong prediction, causing an incorrect
syntax and a rejection of the plate detection as well.

ωc (yellow dashed line) has no clear trade-offs; it appears that lower values work
better than the default by a slight increase in LR accuracy which directly leads to
increased precision of the LPDR precision but also the LPD precision since correct
predictions naturally have the correct syntax as well. However, when the threshold is
pushed to either extreme (0.01 or 0.99) the character prediction completely collapses.

Θc
2 (brown dotted line) has little to no impact unless pushed to the upper extreme

at Θc
2 = 0.99, where it causes the character classification to completely collapse;

at low thresholds it still works because when multiple predictions are above the
threshold, only the highest prediction is chosen (and essentially rising the actual
threshold for the other predictions). In fact, the results from all the other variations
of Θc

2 are hidden behind the black circle of the default threshold because they all
result in identical predictions, from Θc

2 = 0.01 to Θc
2 = 0.9.

6.4.4 Evaluation of classification pipeline components

In this experiment we are interested in assessing how the non-mandatory components
of our LPR system in chapter 5 contribute to the system overall performance. Namely,
we are interested in assessing how plate localization refinement, plate rectification,
character classification refinement and the error correction components (see Fig. 5.1)
affect the overall system performance. Table 6.2 shows our LPR system performance
for the three experimental tasks defined in section 6.1.

The Full system reference scheme corresponds to our full-fledged LPR system as
described in chapter 5. The four following schemes represent the cases where plate
classification and localization refinement, plate rectification, character classification
refinement and error correction 5.9 have been excluded respectively. Note that we
have also disabled LPR feedback on the LPD task in this case to better single out the
classification results from the individual classifiers, normally plates classifications
with a license reading not matching the correct syntax are eliminated. This feedback
is re-enabled for the final experiments in section 6.4.5.

6.4 Experiments on the Italian PlatesMania data set 105

0 0.2 0.4 0.6 0.8 1

Threshold Value

83

83.5

84

84.5

85

85.5

86

LP
 In

te
rs

ec
tio

n
ov

er
 U

ni
on

#
c
1

!c

#
c
2

(a) IoU

98 98.2 98.4 98.6 98.8 99

LPD Precision

98

98.2

98.4

98.6

98.8

99

99.2

99.4

99.6

99.8

100

LP
D

 R
ec

al
l

#
c
1

!c

#
c
2

(b) LPD

0 0.2 0.4 0.6 0.8 1

Threshold Value

99

99.1

99.2

99.3

99.4

99.5

99.6

99.7

99.8

99.9

100

LR
 A

cc
ur

ac
y

#
c
1

!c

#
c
2

(c) LR

97 97.5 98 98.5 99

LPDR Precision

97.5

98

98.5

99

99.5

LP
D

R
 R

ec
al

l

#
c
1

!c

#
c
2

(d) LPDR

Fig. 6.9 Accuracy of the license plate recognition tasks with the character classification
thresholds, Θc

1, ωc and Θc
1 varied. The black circle indicate all thresholds set to the default

value of 0.5, upwards pointing triangles indicate the threshold is increased from the default
value of 0.5 while downwards pointy triangles indicate decreased value, their color coding
is matched between the sub-figures such that the vertical axis on (a) or (c) can be used to
indicate the threshold values in (b) and (d).

106 Experiments and Results

Table 6.2 LPR accuracy for Italian plates with pipeline modules disabled [%].

Task LPD LR LPDR
Scheme Prec. Recall IoU Char. Lic. Prec. Recall

Full system 93.76* 99.22* 85.56 99.81 99.48 98.87 98.70
No plate 69.61* 96.03* 75.37 99.11 98.81 93.97 94.80
refinement (-24.1) (-3.19) (-10.2) (-0.70) (-0.67) (-4.90) (-3.90)

No plate 93.76* 99.22* 85.56 97.44 92.36 96.69 91.23
rectification (-2.37) (-7.12) (-2.18) (-7.47)

No character 93.76* 99.22* 85.56 85.67 58.45 54.28 52.26
refinement (-14.1) (-41.0) (-44.6) (-46.4)

No error- 93.76* 99.22* 85.56 99.80 99.30 99.82 98.52
correction (-0.01) (-0.18) (+0.95) (-0.18)

*includes classifications rejected by post-processing

Note that this is not how the the algorithm is intended to run; the plate network
is not intended to be used alone for plate detection, it is designed to have high recall
at almost any cost of precision. Even if the characters do not need to be correctly
interpreted for the license plate detection task, verifying that a potential plate contains
characters is a crucial part. A high recall is necessary throughout the pipeline to avoid
that errors accumulate; a false positive classification can be corrected by rejecting a
candidate later on, but a missed detection can never be recovered.

When plate rectification is disabled, detected plates are still rescaled, this part
is considered mandatory since the character network is not designed to be scale
independent. The character network is also re-trained without applying the un-
rotation described in section 4.2.4, to account for the fact that the input from the
pipeline will also remain rotated.

As can be seen in Table 6.2 both the plate and character refinement components
are critical to their corresponding task. Plate rectification also improves the character
recognition significantly by providing more consistent input to it. However, dis-
abling the error correction step shows a significant improvement on LPDR precision
(+0.95pp), for a relatively small cost in LPDR recall (-0.18pp). For this reason we
choose to leave the error correction off for all further experiments.

Error correction is not working as well as expected because the dataset contains
un-annotated plates, often of other formats from different countries that are still

6.4 Experiments on the Italian PlatesMania data set 107

detected by the plate detector. When error correction is deactivated, such plate
detections are correctly discarded because the syntax of the detected license number
does not match. However, with error correction enabled, it tries to find the most
likely Italian license string instead, resulting in an FP classification. If classifications
of plates that are not annotated were ignored instead of counted as FP when they
are incorrect, the full system with error correction enabled indeed performs the best,
with an LPDR precision and recall at 99.74% and 98.70% respectively.

Why refinement classifications improve the prediction accuracy

The reason why we chose to implement the refinement classification was an observa-
tion that off-centered localizations were often less accurate than well centered ones.
Further experiments show this is also true for the classification accuracy as well as
the scale of the objects. Fig. 6.10 illustrates how the classification detection rate
and localization error depend on the object location within the classification window
(left) and the scale of the plate (right).

The fully convolutional classifier will typically cover the object with at least 4
shifted windows, often more. Since the plate will not be optimally located in most of
those, neither the average classification nor localization will be optimal by averaging
the positive classifications.

As long as the object is fully inside the classification window this effect is
small. Therefore an alternative refinement method to the re-classification could be
to estimate which of the contributing predictions did not view the full object, based
on the merged plate location, and remove them from the averaging. However, this
may be inaccurate because such predictions will estimate that the object are inside
their classification window, which may cause the average location prediction to
erroneously be within the window and thus not eliminating the faulty classification.

108 Experiments and Results

Table 6.3 LPR accuracy for Italian plates [%].

Task LPD LR LPDR
Scheme Prec. Recall Char. Lic. Prec. Recall

Proposed 100 99.21 99.80 99.30 99.82 98.52
Full system 98.97 99.22 99.81 99.48 98.87 98.70
Calibrated 100 99.21 99.86 99.39 99.82 98.61
OpenALPR 100 99.13 99.88 99.21 99.64 98.35

0 10 20 30

off-centered shift [pixels]

0

20

40

60

80

100

de
te

ct
io

n
ra

te
 [%

]

0

2

4

6

8

10

av
er

ag
e

lo
ca

liz
at

io
n

er
ro

r
[p

ix
el

s]

20 40 60 80 100 120

plate width [pixels]

0

20

40

60

80

100

de
te

ct
io

n
ra

te
 [%

]

0

2

4

6

8

10

av
er

ag
e

lo
ca

liz
at

io
n

er
ro

r
[p

ix
el

s]

Fig. 6.10 (a) Prediction accuracy of off-centered classifications. Detection rate (blue) and
average localization error (orange) as the plate is shifted off the center of the classification
view. (b) Prediction accuracy of scaled classifications. Detection rate (blue) and average
localization error (orange) as the plate width is increased.

6.4.5 Evaluation of the full pipeline

Finally we evaluate the proposed pipeline in terms of LPD, LR and LPDR, and
compare it to the full system, the calibrated system and the OpenALPR software
[77], the results are shown in Table 6.3. "Proposed" uses the robust classification
thresholds for the pipeline (i.e. Θ

p
1 = Θ

p
2 = Θc

1 = Θc
2 = ω p = ωc = 0.5) with error

correction disabled. "Full system" also uses the robust thresholds but with error
correction enabled. "Calibrated" uses the calibrated thresholds (Θ

p
1 =Θc

2 =Θc
1 = 0.5,

Θ
p
2 = ω p = 0.9 and ωc = 0.1) from section 6.3 with error correction disabled.

"OpenALPR" uses the OpenALPR cloud service set to recognize EU-plates.

As can be seen in Table 6.3 the proposed system performs overall (LPDR) better
than the full system (as already discussed in section 6.4.4 and slightly better than
OpenALPR in both precision and recall. The calibrated system has slightly higher

6.5 Experiments on Taiwanese Plates 109

recall but is calibrated on the test set itself and we can therefore not guarantee
that the improvement generalizes to another set. The reason OpenALPR shows a
higher character accuracy, yet a lower license reading accuracy may be related to
a stricter plate rejection policy than our algorithm; both algorithms reject potential
plate detections with the help of character classification, but their method may be
stricter, causing a few character misclassifications to count as false negative plate
predictions instead of incorrect LR classifications and a different trade-off between
LPD recall and character accuracy than our algorithm and may be the reason for
the slightly lower LPD recall of the OpenALPR system. This rejection is also the
reason why both algorithms can achieve 100% LPD precision, i.e. 0 false positive
plate detections, it is highly unlikely that other objects both get classified as potential
plates by the plate detector and the character detector finds enough characters within
the region.

6.5 Experiments on Taiwanese Plates

To classify Taiwanese plates, we generated a new synthetic training set following
the same procedure described in chapter 3 for generating the Italian synthetic plate
images, with the template generation module from section 3.2.1 modified to produce
Taiwanese plates, as described below in section 6.5.1.

Hence, this experiment does not only evaluate the performance of the classifi-
cation pipeline on Taiwanese vehicle plates from the Application Oriented License
Plate data set (introduced in section 6.2.2). It tests the whole system, including
sample generation and training, also putting the parameter settings to test (which
were decided by the experiments in sections 6.3 and 6.4.1).

6.5.1 Generation of the synthetic Taiwanese LPR training set

The basic appearance of an Taiwanese license plates of the AOLP data set is shown
in Fig 6.11. The license format is: XX-DDDD or DDDD-XX, where D indicate
a digit from 0 to 9 and the X:es indicate letters or digits, at least one of which is
always a letter. The letters go from A to Z with I and O excluded. Three Chinese
characters may be located at the top but are non-mandatory features, the four black

110 Experiments and Results

bars towards the corners are holes for mounting, which we represent in the alpha
channel for transparency.

Fig. 6.11 Taiwanese license plate.

With these differences applied to the plate template module from section 3.2.1 we
leave the synthetic sample generation algorithm otherwise unchanged and generate a
training set of 80k samples. An example is shown in Fig. 6.12.

Fig. 6.12 Taiwanese synthetic training image (left) with corresponding plate training crops
(positive: top center, negative: top right) and character training crops (positive: bottom
center, negative: bottom right).

6.5.2 Training the Taiwanese classifiers

The training process of the plate classifier is unchanged with respect to the Italian
plate classifier. The character classifier is modified to have C = 35 output because
the Taiwanese plates allow two more characters than the Italian plate format (U and
Q). However, due to the disproportionately small fraction of letters on the plates, the
data set becomes significantly larger after the character counts have been equalized
(as described in section 4.2.5). Fig. 6.12 shows some examples of extracted plate
and character samples from a synthetic image.

6.5 Experiments on Taiwanese Plates 111

Table 6.4 License plate detection precision (PR) and recall (RE) on the AOLP data set. A
classification is considered positive if IoU> 50% with respect to the ground truth.

Subset AC LE RP
Method PR [%] RE [%] PR [%] RE [%] PR [%] RE [%]

Hsu et al. [12] 91 96 91 95 91 94
Li et al. [9] 98.5 98.4 97.8 97.6 95.3 95.6
Proposed 100 99.85 99.84 99.33 99.84 100

6.5.3 Classification of the AOLP data set

To classify the AOLP dataset, the plate network model after 500 epochs of training
and the character network after 200 epochs are used, and the classification and
merging thresholds are all set to 0.5 (i.e. Θ

p
1 = Θ

p
2 = Θc

1 = Θc
2 = ω p = ωc = 0.5),

as suggested after the experiments in section 6.3. The classifications are compared
to the ground truth labels and evaluated according to the three subtasks defined in
section 6.1 and discussed in detail below.

License plate detection task

Table 6.4 shows the performance of our system on the AOLP dataset in the LPD task
and compares it with [12] and [9]. Our proposed approach outperforms the approach
of [12], where the plate location is determined via as single CNN, for every AOLP
subset. Interestingly, our approach also outperforms that of [9], which relies on a
double plate detection approach where the characters are first detected and then the
plate is localized based on the character detector output. The high precision values
reported in the table are confirmed by the actual measured IoU, which is equal to
85% on average over the three AOLP subsets.

License recognition task

Table 6.5 shows the performance of our proposed system over the AOLP dataset
in the LR task and its two character recognition (Char) and license recognition
(Lic) subtasks. The results of [12] and [9] are extracted from Table 8 of [9]. Our
character detector CNN outperforms both the character detector of [9] based on a
CNN and the character detector of [9] based on a LSTM recurrent network. The

112 Experiments and Results

reason for the superior performance of our system is the improved ability to correctly
classify characters by refinement of already classified characters, as our experiments
in section 6.5 revealed also for Italian plates. We recall that character classification
refinement in our proposed system yields a negligible complexity increase as it does
not entail a fully convolutional character search in the query image.

Table 6.5 Comparison of single character recognition accuracy (CH) and full license recog-
nition accuracy (LIC) on correctly localized plates from the three subsets of the AOLP
dataset.

Subset AC LE RP
Method CH [%] LIC [%] CH [%] LIC [%] CH [%] LIC [%]

Hsu [12] 96 - 94 - 95 -
Li - CNN [9] 98.2 94.0 98.4 92.9 95.6 87.7
Li - LSTM [9] - 94.9 - 94.2 - 88.4
Proposed 99.43 97.05 99.78 98.83 99.51 97.71

License plate detection and recognition task

The performance of our system over the AOLP dataset in the LPDR task is shown in
Table 6.6. A comparison with the corresponding results over the PlatesMania.com
database of Italian plates in Table 6.2 shows a comparable performance. Although
the Taiwanese plates have one character less to classify we consider the LR task
more difficult because more similar digits are allowed in the same positions (in fact,
most of the errors observed could never occur on Italian license plates, because they
regard a banned character, a letter classified as a number or vice versa). Therefore,
this experiment shows that our LPR system is capable of accurate plate detection
across widely different types of vehicle plates. Fig. 6.13 shows a few examples of
final classifications of the LPDR task.

Table 6.6 Complete classification precision (PR) and recall (RE) for our proposed system on
the AOLP dataset.

Subset AC LE RP
Method PR [%] RE [%] PR [%] RE [%] PR [%] RE [%]

Proposed 97.63 96.91 99.33 98.50 98.84 98.03

6.6 GPU computational complexity 113

Fig. 6.13 Examples of AOLP images processed by our LPR system. Blue boxes correspond
to detected plates, red boxes to detected characters (textual reading is superimposed).

6.6 GPU computational complexity

As a final experiment, we measure the computational complexity on a GPU of our
LPR architecture in two different scenarios. In the first scenario, a smart surveillance
camera with an NVIDIA Jetson TX1 embedded board (256 CUDA cores) captures
mid-resolution images and performs LPR aboard the camera. In the second scenario,
a high-resolution camera streams the captured images to a remote LPR server
equipped with a GeForce GTX 1080 GPU with 2560 CUDA cores. We measure
the time required by the GPU to apply the described CNNs in the pipeline. Table
6.7 shows that, as expected, the plate processing time is proportional to number of
pixels. Most important, most of the complexity lies in the processing of the first,
full-resolution, layer of the pyramid of query images. The additional complexity of
processing the remaining downscaled layers is only a fraction thereof. Therefore, the
relative penalty of our pyramid-based approach to scale invariance with respect to
architectures such as [89, 105] is only marginal, whereas the low-complexity CNN
design allows for about 1-2 fps processing in the embedded scenario, and about
13-40 fps in the server scenario, while coping with a potentially unlimited number of
scales. Finally, we benchmark the VGG16-based Faster R-CNN [89] architecture
with test images of the same size (one detectable object per image). The complexity
of the R-CNN architecture is higher than that of our entire LPR system, showing the
benefits of our ad-hoc, parameter-savvy, CNN design.

114 Experiments and Results

Table 6.7 GPU Processing Time [ms].

Platform Jetson TX1 GeForce GTX 1080
Resolution 320×240 640×480 640×480 1280×960

Plate classif. (base layer) 101 457 12.5 47.5
Plate classif. (other layers) 26.4 127 5.5 18.0
Plate refinement 23.9 23.9 2.2 2.2
Char classific. 191 191 3.2 3.2
Char refinement 46.2 46.2 2.2 2.2

Total Proposed 389 845 25.5 72.7
Faster R-CNN - - 82 96

Chapter 7

Conclusion and Future Work

In this thesis we studied the feasibility of using synthetic samples to train convolu-
tional neural networks for license plate detection as character recognition and design
of a classification pipeline to make use of such networks.

By using automatically annotated synthetic training samples we avoid the often
unfeasible tasks of collecting and manually annotating real samples and we show
that it is possible to achieve good classification results with only synthetic samples.
Furthermore, we show that by training these networks for sufficiently long, the
classifications are robust enough to generalize on real samples without need of a
validation set of real, annotated images for calibration. However, should such a set be
available, it is possible to further calibrate the thresholds and improve the accuracy
and/or balance the precision-recall trade-off as desired.

Furthermore, by generating Taiwanese plates and testing our system on the AOLP
dataset; we show that the whole system, from including sample generation, training
and classification pipeline with robust thresholds, generalizes to other new license
plate types, by achieving state-of-the-art performance on the dataset.

We also show that our added stages in the pipeline to solve the issue of scale de-
pendency in CNNs (by employing scale pyramid), and the refinement classifications
stages to improved the accuracy, both increase the computational complexity by a
relatively small amount compared to the required initial classification stage.

A limitation of this study is that although it can be applied to different plate types,
it only considers one type at a time. In a real world scenario there are often multiple

116 Conclusion and Future Work

plate types available, and if would not be sufficient with a classifier discriminating
between a single plate type and background.

For the synthetic plate generation this poses no real challenges, other than a
bigger data to account for each plate type, it rather highlights the advantage of
synthetic sample generation when considering the increased amount of work that
would be required to manually collect and annotate real samples for each type, of
which some plate types may be rarer than other.

The plate classifier would either need to be trained for a multiple class problem,
or be trained on a mixed set if the plate type is not required as long as the license
number is correctly read. For our pipeline design the former is probably preferred,
for two reasons. First, because the rectification stage should ideally rectify each plate
type to its native dimensions to simplify the task of the character classifier as much
as possible. While in the latter case, the rectification would not work well because
the specific plate dimensions to transform the plate onto would not be known, likely
it would work better to replace the rectification stage with one that only rotates
the image to aligns the plate horizontally, which would still be useful before the
character classification. And second, because different plate types may use different
fonts, so individual character classifiers may be preferred for some or all plate types.

The error correction stage would also need some modifications to handle cor-
rection of plate type to consider if the plate was possibly of another type than first
classified, if the syntax of the found characters match another plate type. This would
not be a complicated change since the current method already considers the multi-
class problem of multiple characters, so it would be similar to just adding another
character.

Another limitation is that we only consider single frame classification, while
many of today’s cameras can acquire multiple frames per second.

A simple solution would be to first treat frames individually with the current
pipeline, and merge classifications afterwards, and if two classifications between
frames are similar but not identical, use a modified version of the error correction
stage to determine which is most likely to be correct.

Another approach would be to consider the images as a time series in the clas-
sification stage and use either recurrent convolutional neural networks or a using
3D convolutional neural networks which allow the convolution to shift in the time

117

dimension as well. This would require some significant changes to the synthetic
sample generation algorithm to output multiple frames with movement of the plate
between them. However, since the algorithm is already considering the plate as a 3D
object being projected to a 2D camera, realistic movements would be relatively easy
to simulate by updating the 3D coordinates of the plate position according to realistic
velocity, acceleration and rotation before projecting the frames as 2D images.

References

[1] Christos-Nikolaos E Anagnostopoulos. License plate recognition: A brief
tutorial. IEEE Intelligent transportation systems magazine, 6(1):59–67, 2014.

[2] Rahim Panahi and Iman Gholampour. Accurate detection and recognition of
dirty vehicle plate numbers for high-speed applications. IEEE Transactions
on Intelligent Transportation Systems, 18(4):767–779, 2017.

[3] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-
based learning applied to document recognition. Proceedings of the IEEE,
86(11):2278–2324, 1998.

[4] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and
Andrew Y Ng. Reading digits in natural images with unsupervised feature
learning. In NIPS workshop on deep learning and unsupervised feature
learning, volume 2011, page 5, 2011.

[5] Max Jaderberg, Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman.
Synthetic data and artificial neural networks for natural scene text recognition.
arXiv preprint arXiv:1406.2227, 2014.

[6] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.
Imagenet: A large-scale hierarchical image database. In Computer Vision and
Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pages 248–255.
IEEE, 2009.

[7] Michael Mathieu, Yann LeCun, Rob Fergus, David Eigen, Pierre Sermanet,
and Xiang Zhang. Overfeat: Integrated recognition, localization and detection
using convolutional networks. 2013.

[8] Yoshua Bengio, Ian J Goodfellow, and Aaron Courville. Deep learning.
Nature, 521:436–444, 2015.

[9] Hui Li and Chunhua Shen. Reading car license plates using deep convolutional
neural networks and lstms. arXiv preprint arXiv:1601.05610, 2016.

[10] Orhan Bulan, Vladimir Kozitsky, Palghat Ramesh, and Matthew Shreve.
Segmentation-and annotation-free license plate recognition with deep localiza-
tion and failure identification. IEEE Transactions on Intelligent Transportation
Systems, 2017.

References 119

[11] David Menotti, Giovani Chiachia, Alexandre X Falcão, and VJ Oliveira Neto.
Vehicle license plate recognition with random convolutional networks. In
Graphics, Patterns and Images (SIBGRAPI), 2014 27th SIBGRAPI Conference
on, pages 298–303. IEEE, 2014.

[12] Gee-Sern Hsu, Jiun-Chang Chen, and Yu-Zu Chung. Application-oriented
license plate recognition. IEEE transactions on vehicular technology,
62(2):552–561, 2013.

[13] Fernando Martin, Maite Garcia, and José Luis Alba. New methods for
automatic reading of vlp’s (vehicle license plates). In Proc. IASTED Int. Conf.
SPPRA, volume 26, pages 257–271, 2002.

[14] Shen-Zheng Wang and Hsi-Jian Lee. Detection and recognition of license
plate characters with different appearances. In Intelligent Transportation
Systems, 2003. Proceedings. 2003 IEEE, volume 2, pages 979–984. IEEE,
2003.

[15] Bai Hongliang and Liu Changping. A hybrid license plate extraction method
based on edge statistics and morphology. In Pattern Recognition, 2004. ICPR
2004. Proceedings of the 17th International Conference on, volume 2, pages
831–834. IEEE, 2004.

[16] Danian Zheng, Yannan Zhao, and Jiaxin Wang. An efficient method of license
plate location. Pattern recognition letters, 26(15):2431–2438, 2005.

[17] Abbas M Al-Ghaili, Syamsiah Mashohor, Abdul Rahman Ramli, and Alyani
Ismail. Vertical-edge-based car-license-plate detection method. IEEE trans-
actions on vehicular technology, 62(1):26–38, 2013.

[18] Nikolaos Bellas, Sek M Chai, Malcolm Dwyer, and Dan Linzmeier. Fpga im-
plementation of a license plate recognition soc using automatically generated
streaming accelerators. In Parallel and Distributed Processing Symposium,
2006. IPDPS 2006. 20th International, pages 8–pp. IEEE, 2006.

[19] Hsien-Huang P Wu, Hung-Hsiang Chen, Ruei-Jan Wu, and Day-Fann Shen.
License plate extraction in low resolution video. In Pattern Recognition, 2006.
ICPR 2006. 18th International Conference on, volume 1, pages 824–827.
IEEE, 2006.

[20] Paolo Comelli, Paolo Ferragina, Mario Notturno Granieri, and Flavio Stabile.
Optical recognition of motor vehicle license plates. IEEE transactions on
Vehicular Technology, 44(4):790–799, 1995.

[21] Sorin Draghici. A neural network based artificial vision system for licence
plate recognition. International Journal of Neural Systems, 8(01):113–126,
1997.

[22] J Barroso, EL Dagless, A Rafael, and J Bulas-Cruz. Number plate reading
using computer vision. In Industrial Electronics, 1997. ISIE’97., Proceedings
of the IEEE International Symposium on, pages 761–766. IEEE, 1997.

120 References

[23] Javier Cano and Juan-Carlos Pérez-Cortés. Vehicle license plate segmentation
in natural images. In Iberian Conference on Pattern Recognition and Image
Analysis, pages 142–149. Springer, 2003.

[24] Tsang-Hong Wang, Feng-Chou Ni, Keh-Tsong Li, and Yon-Ping Chen. Robust
license plate recognition based on dynamic projection warping. In Networking,
Sensing and Control, 2004 IEEE International Conference on, volume 2, pages
784–788. IEEE, 2004.

[25] A Broumandnia and M Fathy. Application of pattern recognition for farsi
license plate recognition. In ICGST Int. Conf. Graphics, Vision and Image
Processing (GVIP), number V2, pages 25–31, 2005.

[26] Jun Kong, Xinyue Liu, Yinghua Lu, and Xiaofeng Zhou. A novel license
plate localization method based on textural feature analysis. In Signal Pro-
cessing and Information Technology, 2005. Proceedings of the Fifth IEEE
International Symposium on, pages 275–279. IEEE, 2005.

[27] Hung Ngoc Do, Minh-Thanh Vo, Bao Quoc Vuong, Huy Thanh Pham,
An Hoang Nguyen, and Huy Quoc Luong. Automatic license plate recognition
using mobile device. In Advanced Technologies for Communications (ATC),
2016 International Conference on, pages 268–271. IEEE, 2016.

[28] Guangzhi Cao, Jianqian Chen, and Jingping Jiang. An adaptive approach
to vehicle license plate localization. In Industrial Electronics Society, 2003.
IECON’03. The 29th Annual Conference of the IEEE, volume 2, pages 1786–
1791. IEEE, 2003.

[29] Xifan Shi, Weizhong Zhao, and Yonghang Shen. Automatic license plate
recognition system based on color image processing. In International Con-
ference on Computational Science and Its Applications, pages 1159–1168.
Springer, 2005.

[30] Shyang-Lih Chang, Li-Shien Chen, Yun-Chung Chung, and Sei-Wan Chen.
Automatic license plate recognition. IEEE transactions on intelligent trans-
portation systems, 5(1):42–53, 2004.

[31] L Dlagnekov. License plate detection using adaboost, mar. 2004, san diego.
CA: Comput. Sci. Eng. Dept., Univ. California, San Diego.[Online]. Available:
http://www. cse. ucsd. edu/classes/fa04/cse252c/projects/louka. pdf.

[32] Qiang Wu, Huaifeng Zhang, Wenjing Jia, Xiangjian He, Jie Yang, and Tom
Hintz. Car plate detection using cascaded tree-style learner based on hybrid
object features. In Video and Signal Based Surveillance, 2006. AVSS’06. IEEE
International Conference on, pages 15–15. IEEE, 2006.

[33] Huaifeng Zhang, Wenjing Jia, Xiangjian He, and Qiang Wu. Learning-based
license plate detection using global and local features. In Pattern Recognition,
2006. ICPR 2006. 18th International Conference on, volume 2, pages 1102–
1105. IEEE, 2006.

References 121

[34] Shen-Zheng Wang and Hsi-Jian Lee. A cascade framework for a real-time sta-
tistical plate recognition system. IEEE Transactions on Information Forensics
and Security, 2(2):267–282, 2007.

[35] Kwang In Kim, Keechul Jung, and Jin Hyung Kim. Color texture-based object
detection: an application to license plate localization. In Pattern Recognition
with Support Vector Machines, pages 293–309. Springer, 2002.

[36] Yule Yuan, Wenbin Zou, Yong Zhao, Xinan Wang, Xuefeng Hu, and Nikos
Komodakis. A robust and efficient approach to license plate detection. IEEE
Transactions on Image Processing, 26(3):1102–1114, 2017.

[37] Eun Ryung Lee, Pyeoung Kee Kim, and Hang Joon Kim. Automatic recogni-
tion of a car license plate using color image processing. In Image Processing,
1994. Proceedings. ICIP-94., IEEE International Conference, volume 2, pages
301–305. IEEE, 1994.

[38] MH Ter Brugge, JH Stevens, JAG Nijhuis, and L Spaanenburg. License plate
recognition using dtcnns. In Cellular Neural Networks and Their Applications
Proceedings, 1998 Fifth IEEE International Workshop on, pages 212–217.
IEEE, 1998.

[39] Sung Han Park, Kwang In Kim, Keechul Jung, and Hyung Jin Kim. Locating
car license plates using neural networks. Electronics Letters, 35(17):1475–
1477, 1999.

[40] Wu Wei, Yuzhi Li, Mingjun Wang, and Zhongxiang Huang. Research on
number-plate recognition based on neural networks. In Neural Networks for
Signal Processing XI, 2001. Proceedings of the 2001 IEEE Signal Processing
Society Workshop, pages 529–538. IEEE, 2001.

[41] Mario I Chacon and A Zimmerman. License plate location based on a dynamic
pcnn scheme. In Proc. Int. Joint Conf. Neural Netw, volume 2, pages 1195–
1200, 2003.

[42] Cemil Oz and Fikret Ercal. A practical license plate recognition system
for real-time environments. In International Work-Conference on Artificial
Neural Networks, pages 881–888. Springer, 2005.

[43] Gang Li, Ruili Zeng, and Ling Lin. Research on vehicle license plate location
based on neural networks. In Innovative Computing, Information and Control,
2006. ICICIC’06. First International Conference on, volume 3, pages 174–
177. IEEE, 2006.

[44] Sang Kyoon Kim, Dae Wook Kim, and Hang Joon Kim. A recognition of
vehicle license plate using a genetic algorithm based segmentation. In Image
Processing, 1996. Proceedings., International Conference on, volume 2, pages
661–664. IEEE, 1996.

122 References

[45] Giovanni Adorni, Stefano Cagnoni, and Monica Mordonini. Efficient low-
level vision program design using sub-machine-code genetic programming.
In Proc. Workshop sulla Percezione e Visione nelle Macchine, 2002.

[46] Seiki Yoshimori, Yasue Mitsukura, Minoru Fukumi, and Norio Akamatsu.
License plate detection using hereditary threshold determine method. In
International Conference on Knowledge-Based and Intelligent Information
and Engineering Systems, pages 585–593. Springer, 2003.

[47] Xiong Jun, Du Sidan, Gao Duntang, and Shen Qinhong. Locating car license
plate under various illumination conditions using genetic algorithm. In Signal
Processing, 2004. Proceedings. ICSP’04. 2004 7th International Conference
on, volume 3, pages 2502–2505. IEEE, 2004.

[48] Hans A Hegt, Ron J De La Haye, and Nadeem A Khan. A high performance
license plate recognition system. In Systems, Man, and Cybernetics, 1998.
1998 IEEE International Conference on, volume 5, pages 4357–4362. IEEE,
1998.

[49] Kap Kee Kim, KI Kim, JB Kim, and Hang Joon Kim. Learning-based ap-
proach for license plate recognition. In Neural Networks for Signal Processing
X, 2000. Proceedings of the 2000 IEEE Signal Processing Society Workshop,
volume 2, pages 614–623. IEEE, 2000.

[50] Choudhury A Rahman, Wael Badawy, and Ahmad Radmanesh. A real time
vehicle’s license plate recognition system. In Advanced Video and Signal
Based Surveillance, 2003. Proceedings. IEEE Conference on, pages 163–166.
IEEE, 2003.

[51] A Taleb-Ahmed, Denis Hamad, and Gautier Tilmant. Vehicle license plate
recognition in marketing application. In Intelligent Vehicles Symposium, 2003.
Proceedings. IEEE, pages 90–94. IEEE, 2003.

[52] Yue Cheng, Jiaiuning Lu, and Takashi Yahagi. Car license plate recognition
based on the combination of principal components analysis and radial basis
function networks. In Signal Processing, 2004. Proceedings. ICSP’04. 2004
7th International Conference on, volume 2, pages 1455–1458. IEEE, 2004.

[53] Tran Duc Duan, TL Hong Du, Tran Vinh Phuoc, and Nguyen Viet Hoang.
Building an automatic vehicle license plate recognition system. In Proc. Int.
Conf. Comput. Sci. RIVF, pages 59–63, 2005.

[54] Shigueo Nomura, Keiji Yamanaka, Osamu Katai, Hiroshi Kawakami, and
Takayuki Shiose. A novel adaptive morphological approach for degraded
character image segmentation. Pattern Recognition, 38(11):1961–1975, 2005.

[55] Cheokman Wu, Lei Chan On, Chan Hon Weng, Tong Sio Kuan, and
Kengchung Ng. A macao license plate recognition system. In Machine
Learning and Cybernetics, 2005. Proceedings of 2005 International Confer-
ence on, volume 7, pages 4506–4510. IEEE, 2005.

References 123

[56] JAG Nijhuis, MH Ter Brugge, KA Helmholt, JPW Pluim, L Spaanenburg,
RS Venema, and MA Westenberg. Car license plate recognition with neural
networks and fuzzy logic. In Neural Networks, 1995. Proceedings., IEEE
International Conference on, volume 5, pages 2232–2236. IEEE, 1995.

[57] BL Lim, Wenzheng Yeo, KY Tan, and CY Teo. A novel dsp based real-time
character classification and recognition algorithm for car plate detection and
recognition. In Signal Processing Proceedings, 1998. ICSP’98. 1998 Fourth
International Conference on, volume 2, pages 1269–1272. IEEE, 1998.

[58] Fatih Kahraman, Binnur Kurt, and Muhittin Gökmen. License plate character
segmentation based on the gabor transform and vector quantization. In Inter-
national Symposium on Computer and Information Sciences, pages 381–388.
Springer, 2003.

[59] David Llorens, Andrés Marzal, Vicente Palazón, and Juan M Vilar. Car license
plates extraction and recognition based on connected components analysis
and hmm decoding. In Iberian Conference on Pattern Recognition and Image
Analysis, pages 571–578. Springer, 2005.

[60] Hamid Mahini, Shohreh Kasaei, and Faezeh Dorri. An efficient features-based
license plate localization method. In Pattern Recognition, 2006. ICPR 2006.
18th International Conference on, volume 2, pages 841–844. IEEE, 2006.

[61] Charl Coetzee, Charl Botha, and David Weber. Pc based number plate recog-
nition system. In Industrial Electronics, 1998. Proceedings. ISIE’98. IEEE
International Symposium on, volume 2, pages 605–610. IEEE, 1998.

[62] Takashi Naito, Toshihiko Tsukada, Keiichi Yamada, Kazuhiro Kozuka, and
Shin Yamamoto. Robust license-plate recognition method for passing vehicles
under outside environment. IEEE Transactions on Vehicular Technology,
49(6):2309–2319, 2000.

[63] Byeong Rae Lee, Kyungsoo Park, Hyunchul Kang, Haksoo Kim, and
Chungkyue Kim. Adaptive local binarization method for recognition of
vehicle license plates. In International Workshop on Combinatorial Image
Analysis, pages 646–655. Springer, 2004.

[64] Jiangmin Tian, Ran Wang, Guoyou Wang, Jianguo Liu, and Yuanchun Xia. A
two-stage character segmentation method for chinese license plate. Computers
& Electrical Engineering, 46:539–553, 2015.

[65] Thanongsak Sirithinaphong and Kosin Chamnongthai. The recognition of car
license plate for automatic parking system. In Signal Processing and Its Ap-
plications, 1999. ISSPA’99. Proceedings of the Fifth International Symposium
on, volume 1, pages 455–457. IEEE, 1999.

[66] Thanongsak Sirithinaphong and Kosin Chamnongthai. Extraction of car
license plate using motor vehicle regulation and character pattern recognition.

124 References

In Circuits and Systems, 1998. IEEE APCCAS 1998. The 1998 IEEE Asia-
Pacific Conference on, pages 559–562. IEEE, 1998.

[67] C Anagnostopoulos, E Kayafas, and V Loumos. Digital image processing and
neural networks for vehicle license plate identification. Journal of Electrical
Engineering, 1(2):2–7, 2000.

[68] C Anagnostopoulos, I Anagnostopoulos, G Tsekouras, G Kouzas, V Loumos,
and E Kayafas. Using sliding concentric windows for license plate segmenta-
tion and processing. In Signal Processing Systems Design and Implementation,
2005. IEEE Workshop on, pages 337–342. IEEE, 2005.

[69] Yafeng Hu, Feng Zhu, and Xianda Zhang. A novel approach for license
plate recognition using subspace projection and probabilistic neural network.
In International Symposium on Neural Networks, pages 216–221. Springer,
2005.

[70] Christos Nikolaos E Anagnostopoulos, Ioannis E Anagnostopoulos, Vassilis
Loumos, and Eleftherios Kayafas. A license plate-recognition algorithm
for intelligent transportation system applications. IEEE Transactions on
Intelligent transportation systems, 7(3):377–392, 2006.

[71] Yo-Ping Huang, Shi-Yong Lai, and Wei-Po Chuang. A template-based model
for license plate recognition. In Networking, Sensing and Control, 2004 IEEE
International Conference on, volume 2, pages 737–742. IEEE, 2004.

[72] Christos-Nikolaos E Anagnostopoulos, Ioannis E Anagnostopoulos, Ioannis D
Psoroulas, Vassili Loumos, and Eleftherios Kayafas. License plate recognition
from still images and video sequences: A survey. IEEE Transactions on
intelligent transportation systems, 9(3):377–391, 2008.

[73] Nobuyuki Otsu. A threshold selection method from gray-level histograms.
IEEE transactions on systems, man, and cybernetics, 9(1):62–66, 1979.

[74] Lawrence R Rabiner. A tutorial on hidden markov models and selected
applications in speech recognition. Proceedingfs of the IEEE, 77(2):257–286,
1989.

[75] Xiang Pan, Xiuzi Ye, and Sanyuan Zhang. A hybrid method for robust car
plate character recognition. Engineering Applications of Artificial Intelligence,
18(8):963–972, 2005.

[76] Inc. OpenALPR Technology. Openalpr - automatic license plate recognition,
2018.

[77] Inc. OpenALPR Technology. Openalpr - automatic license plate recognition,
2018.

[78] Jia Li, Changyong Niu, and Ming Fan. Multi-scale convolutional neural
networks for natural scene license plate detection. In International Symposium
on Neural Networks, pages 110–119. Springer, 2012.

References 125

[79] Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman. Deep features for
text spotting. In European conference on computer vision, pages 512–528.
Springer, 2014.

[80] Kai Wang, Boris Babenko, and Serge Belongie. End-to-end scene text recog-
nition. In Computer Vision (ICCV), 2011 IEEE International Conference on,
pages 1457–1464. IEEE, 2011.

[81] Chao Gou, Kunfeng Wang, Yanjie Yao, and Zhengxi Li. Vehicle license plate
recognition based on extremal regions and restricted boltzmann machines.
IEEE Transactions on Intelligent Transportation Systems, 17(4):1096–1107,
2016.

[82] Yoav Freund and David Haussler. Unsupervised learning of distributions on
binary vectors using two layer networks. In Advances in neural information
processing systems, pages 912–919, 1992.

[83] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative ad-
versarial nets. In Advances in neural information processing systems, pages
2672–2680, 2014.

[84] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classi-
fication with deep convolutional neural networks. In Advances in neural
information processing systems, pages 1097–1105, 2012.

[85] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional
networks for semantic segmentation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 3431–3440, 2015.

[86] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–778, 2016.

[87] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A Alemi.
Inception-v4, inception-resnet and the impact of residual connections on
learning. In AAAI, volume 4, page 12, 2017.

[88] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Region-
based convolutional networks for accurate object detection and segmentation.
IEEE transactions on pattern analysis and machine intelligence, 38(1):142–
158, 2016.

[89] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: To-
wards real-time object detection with region proposal networks. In Advances
in neural information processing systems, pages 91–99, 2015.

[90] Kunihiko Fukushima and Sei Miyake. Neocognitron: A self-organizing neural
network model for a mechanism of visual pattern recognition. In Competition
and cooperation in neural nets, pages 267–285. Springer, 1982.

126 References

[91] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016. http://www.deeplearningbook.org.

[92] YT Zhou and R Chellappa. Computation of optical flow using a neural
network. In IEEE International Conference on Neural Networks, volume 27,
pages 71–78, 1988.

[93] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted
boltzmann machines. In Proceedings of the 27th international conference on
machine learning (ICML-10), pages 807–814, 2010.

[94] M Bishop Christopher. PATTERN RECOGNITION AND MACHINE LEARN-
ING. Springer-Verlag New York, 2016.

[95] Stephen Marsland. Machine learning: an algorithmic perspective. USA:
Chapman &Hall/CRC, 2009.

[96] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods
for online learning and stochastic optimization. Journal of Machine Learning
Research, 12(Jul):2121–2159, 2011.

[97] Ian Goodfellow. Nips 2016 tutorial: Generative adversarial networks. arXiv
preprint arXiv:1701.00160, 2016.

[98] Yuri Reznik, G Cordara, and M Bober. Evaluation framework for compact
descriptors for visual search. ISO/IEC JTC1/SC29/WG11 N, 12202:2011,
2011.

[99] Stefan Carlsson. Geometric computing in image analysis and visualization.
Lecture Notes, KTH Royal Insittute of Technology, Department of Numerical
Analysis and Computing Science, 2007.

[100] George H Joblove and Donald Greenberg. Color spaces for computer graphics.
In ACM siggraph computer graphics, volume 12, pages 20–25. ACM, 1978.

[101] Kjell Carlsson. Light microscopy. KTH Physics, Stockholm, 2007.

[102] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich,
et al. Going deeper with convolutions. Cvpr, 2015.

[103] Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov. Dropout: a simple way to prevent neural networks
from overfitting. Journal of machine learning research, 15(1):1929–1958,
2014.

[104] Paul Jaccard. Étude comparative de la distribution florale dans une portion
des alpes et des jura. Bull Soc Vaudoise Sci Nat, 37:547–579, 1901.

http://www.deeplearningbook.org

References 127

[105] Jianan Li, Xiaodan Liang, ShengMei Shen, Tingfa Xu, Jiashi Feng, and
Shuicheng Yan. Scale-aware fast r-cnn for pedestrian detection. IEEE Trans-
actions on Multimedia, 2017.

[106] Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al. Spatial trans-
former networks. In Advances in Neural Information Processing Systems,
pages 2017–2025, 2015.

[107] Ronan Collobert, Koray Kavukcuoglu, and Clément Farabet. Torch7: A
matlab-like environment for machine learning. In BigLearn, NIPS Workshop,
number EPFL-CONF-192376, 2011.

[108] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh,
Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bern-
stein, Alexander C. Berg, and Li Fei-Fei. ImageNet Large Scale Visual
Recognition Challenge. International Journal of Computer Vision (IJCV),
115(3):211–252, 2015.

Appendix A

Camera perspective projection

This section follows [99].

When a camera captures an image of the 3D world, the image is perspectively
projected on the image sensor, as illustrated in Fig. A.1. In reality, the image is
flipped and recorded behind a lens as illustrated by the green rectangle. However, to
avoid confusion with signs, let us define the plane (x,y,1) the image plane, illustrated
by the red rectangle in Fig. A.1.

(0,0,0)

(x,y,1)

(0,0,1)

(X,Y,Z)

Y-axis

X-axis
Z-axis

y-axis

x-axis

Fig. A.1 Perspective projection of 3D coordinates (X ,Y,Z) to image coordinates (x,y)

A.1 Rotations 129

Through similar-triangle-relations we see that the projected coordinates in the
image plate of a 3D point P = (X ,Y,Z) are given by:

x = X/Z
y = Y/Z

(A.1)

Using homogeneous coordinates, this can be expressed as a linear equation
system (note however that the projection is non-linear and therefore the scale factor
λ is introduced, which is typically different for each set of points):

x
y
1

= λ

X
Y
Z

 (A.2)

A.1 Rotations

The above equations were particularly simple to derive because the coordinate
systems of the image plane and the 3D world are aligned by sharing parallel X
and Y axes. However, when different coordinates systems are used we can find the
transformation between them, using translations and rotations, to keep using the
simple equations.

A rotation around the Y-axis by an angle θ , as in Fig. A.2, between the coordinate
systems (X ,Y,Z) and (X ′,Y ′,Z′) has the following transformation:

X ′ =

Y ′ =

Z′ =

cos(θ)X + sin(θ)Z
Y

−sin(θ)X + cos(θ)Z
(A.3)

130 Camera perspective projection

#

Y/Y'-axis

X'-axis

X-axis

Z-axis

Z'-axis

(x',y',1)-plane

Fig. A.2 Rotation of camera angle Θ around the Y− axis.

Using matrix notation we can isolate the transformation matrix, or rotation
matrix:

X ′

Y ′

Z′

=

 cos(θ) 0 sin(θ)
0 1 0

−sin(θ) 0 cos(θ)

X

Y
Z

 (A.4)

Applying this transformation we can obtain the coordinates in the rotated camera
plane, of a point in the original system:

x′

y′

1

= λ
′

X ′

Y ′

Z′

=

 cos(θ) 0 sin(θ)
0 1 0

−sin(θ) 0 cos(θ)

X

Y
Z

 (A.5)

By defining rotation matrices for all the axes as follows,

Rx(φ) =

1 0 0
0 cos(φ) sin(φ)
0 −sin(φ) cos(φ)

 (A.6)

A.2 Internal camera parameters 131

Ry(θ) =

 cos(θ) 0 sin(θ)
0 1 0

−sin(θ) 0 cos(θ)

 (A.7)

Rz(ψ) =

 cos(ψ) sin(ψ) 0
−sin(ψ) cos(ψ) 0

0 0 1

 (A.8)

we can define a general rotation matrix,

R(φ ,θ ,ψ) = Rx(φ)Ry(θ)Rz(ψ), (A.9)

and generalize (A.5) to a general rotation:x′

y′

1

= λ
′R(φ ,θ ,ψ)

X
Y
Z

 (A.10)

Note: In reality the image plane is also on the negative Z-axis, and the image is
flipped, i.e. all axes are revered in the real camera coordinate system, however we
will continue to picture the image plate in a positively aligned coordinate system for
simplicity.

A.2 Internal camera parameters

The camera model in (A.2) is limited in that the image plane is at unit distance and
the coordinates in the image are measured in the same unit as the 3D real world
coordinates. In practice the image sensor is distanced by the focal length from the
origin and the distances in the sensor are more conveniently measured in pixels,
furthermore the sensor may not be perfectly centered along the optical axis. With the
modified camera model in Fig. A.3 in mind, after rescaling the image coordinates to
the image plane specific coordinate system, (A.1) becomes:

132 Camera perspective projection

x−x0
σx f = X/Z

y−y0
σy f = Y/Z,

(A.11)

where x0 and y0 are the image coordinates of the principal point (where the
optical axis crosses the image plane), σx and σy are the scale factors for respective
image axis and f is the focal length of the lens.

Y-axis

X-axis
Z-axis

x-axis

(x,y)
P=(X,Y,Z)

f

y-axis

(x
0
,y

0
)

optical axis

projection center

Fig. A.3 Perspective projection with internal camera parameters

Using (A.11) instead of (A.1), (A.2) can now be written as:

x
y
1

= λ

σx f 0 x0

0 σy f y0

0 0 1

X

Y
Z

 (A.12)

Let us define K as the matrix of internal camera parameters (for completeness a
skew factor, γ , has been added, but for our purposes γ = 0):

A.3 2D affine image transformation 133

K =

σx f γ x0

0 σy f y0

0 0 1

 (A.13)

Combining (A.12) with (A.10) we get the final equation from camera perspective
projection:

x′

y′

1

= λ
′KR(φ ,θ ,ψ)

X
Y
Z

 (A.14)

A.3 2D affine image transformation

Since the images in our case, although positioned in 3D, are actually 2D images,
straight lines will be preserved throughout the perspective projection (but angles
between lines will change). Therefore, an affine 2D to 2D transformation can be
used once the corners are projected. This simplifies things significantly since λ ′

would otherwise need to be calculated individually for each projected point.

Using the notation in [106]

(
xs

i

ys
i

)
= Aθ

xt
i

yt
i

1

=

[
θ1,1 θ1,2 θ1,3

θ2,1 θ2,2 θ2,3

]xt
i

yt
i

1

 (A.15)

where (xs
i ,y

s
i) is a source image point and (xt

i,y
t
i,1) is its corresponding location

in the transformed image, again using homogeneous coordinates. And Aθ is the
2x3 affine transformation matrix. Using the 4 image corners as (xs

1,y
s
1) - (xs

4,y
s
4)

their corresponding projections as (xts1,yt
1) - (xt

4,y
t
4). This yields 8 equations, to

determine the 6 transformation parameters in Aθ , i.e. an overdetermined equation
system:

134 Camera perspective projection

[
xs

1 xs
2 xs

3 xs
4

ys
1 ys

2 ys
3 ys

4

]
=

[
θ1,1 θ1,2 θ1,3

θ2,1 θ2,2 θ2,3

]xt
1 xt

2 xt
3 xt

4

yt
1 yt

2 yt
3 yt

4

1 1 1 1

 (A.16)

or in short:
X s = Aθ X t (A.17)

Using the Moore-Penrose pseudoinverse (indicated with (·)+), the least squares
solution of Aθ is given by:

Aθ = X s(X t)+ (A.18)

Hence, with the projected corners and Aθ known, (A.15) provides an easier way
to map the image pixels to the entire projected area instead of using (A.14 pixel by
pixel, it allows for multiple pixels to be calculated as a matrix computation as in
(A.16).

