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An Automatic License Plate Recognition (ALPR) System is one kind of Intelligent 

Transport System. The system’s scope in research and development is considerably 

broad because of a lot of areas still unexplored. The work has been commercialized 

significantly and systems already exist for Chinese, Korean, US and EU license plates. 

However, little exploration is being done in the plates bearing Arabic script. 

The thesis addresses the problem of an ALPR system for Saudi Arabian License 

Plates. A general system consists of four main stages: Image acquisition, License plate 

area extraction, Character block segmentation and isolated character recognition. In 

the thesis we have proposed techniques based on local car features to reduce the area 

of search for license plate candidates, image enhancement using intensity adjustment. 

The algorithms for extraction phase are based on color edge detection based 

techniques and candidate plates are extracted using a Fuzzy compactness operator 

and template matching. The segmentation phase stage is performed using a Hybrid 

fuzzy c means and Image projection profile based technique. Finally the results 

obtained using Principal Component Analysis (PCA). 



 
The proposed system has been implemented under Matlab 7.1 environment on an Intel 

PIV dual processor machine. The performance of the system has been investigated on 

true color images of 852 vehicles captured under various illumination conditions and 

tilts. The system proves an overall accuracy of 93% showing the system is quite 

efficient. 

 



 



 CHAPTER 1  

INTRODUCTION 

With the rapid development of Intelligent Transport Systems, automatic 

identification of vehicles using license plates has played an important role in a lot of 

applications. The LPR (License Plate Recognition) technology uses image 

enhancement, feature extraction and classification techniques to search, locate and 

identify license plate in an image, segment and recognize characters present and 

classify the vehicle on the basis of a database working with regional car records 

present at a backend server. The system can also be made available on a range of 

networks to harmonize records of vehicles moving on regional basis. The area has 

already explored intermediate level expects of enhancing image quality and reducing 

irrelevant information from an image while still leaving enough information for a 

system to successfully recognize license plate area, characters present, segmented 

individual characters, define rules based on area or country specific standards and 

finally the identification of vehicle on the basis of information retrieved. This chapter 

will first focus on introducing a number of systems at work worldwide. Next, we will 

go for a number of phases that are commonly processed in a license plate recognition 

system. Next, we will present the structure of the proposed license plate recognition 

system. Finally, the objectives of the work are stated. The chapter ends with a brief 

review of the rest of the thesis. 



 
1.1. LPR Applications 

LPR technology has been used around the world for a variety of applications 

including: 

Security Imaging System Applications: 

• International Border Control  

• Security and Access Control  

• Military Base Surveillance  

• Industrial and Nuclear Plant Security  

 

Traffic Management Applications: 

• Traffic Law  Enforcement  

• Parking Lot Access Control  

• Port and Shipping Traffic Management  

• Electronic Toll Collection Enforcement 

 

A Commercial LPR System generally: 

 

1. Reads the alphanumeric code on license plates 

2. Operates accurately in most weather conditions  

3. Captures license plates on vehicles traveling at highway speeds  

4. Works 24 hours a day, 7 days a week in all conditions 



 

 

Figure 1-1 Toll Collection 

 

Figure 1-2 Restricted Access 

 

 

Figure 1-3 Automated Container Identification 



 
 

The system has its application in many areas where one wants to restrict car speed, 

monitor traffic flow at signals, record parking statistics or identify car thefts. It 

provides an automated environment to detect and identify a vehicle presence through 

its license plate. The detection of vehicle is applied to advisory of congestion, 

occupancy management of parking areas and surveillance of illegally parked vehicles. 

The classification is utilized for the electronic toll collection system (ETC) and to 

display available parking spaces to vehicles [1]. The identification is also employed 

for managing container transport facilities, monitoring and analysis of travel time, and 

security system such as observation of stolen vehicles and monitoring of unauthorized 

vehicles entering parking areas. 

There are multiple commercial license plate recognition systems available [66], 

[67]; however a majority of the systems available are for foreign plates only. 

Applications such as SeeCar [68], Perceptics [69], and Pearpoint [70] are available in 

the United States and are able to identify license plates in all states. There are 

commercial products for European and some of the Asian countries too. The most 

popular United States application is SeeCar by Hi Tech Solutions. This application 

detects and reads vehicle license plates for parking, access control, traffic surveillance, 

law enforcement and security applications. In addition to these commercial products, 

some of the research projects include: ESPRIT 5184 LOCOMOTIVE [9], software 

architecture thru DLL’s [10]. Until now, to our knowledge, there is no software 

available for the recognition of Saudi Arabian license plates. The proposed work 

would be the first attempt towards the development of such an LPR system. Although 

there is some research work done in LPR [2] but this work only addresses the issue of 



 
static number plates with constraints and limitations pertaining to highly tilted, 

overly illuminated images and those plates with almost same car color compared to the 

license plates.  

 

Figure 1-4: Integrated Multi-pass System by OPTASIA 

1.2. Components in a Typical LPR System 

LPR system normally contains the following components 

• Camera – Takes either the front or rear image of a vehicle. 

• Illumination – A light source that could bring up the license plate.  

• Frame Grabber- An interface card establishing a connection between the 

imaging device and the PC allowing the software to read the image 

information. 

• Computer – A personal computer running over Windows or Linux operating 

system. Runs the LPR application that controls the system flow, reads the 



 
images, analyzes and identifies the license plate(s) and interfaces the 

front-end application over a network with a central server or database. 

• Software – The application program. 

• Hardware – Various interface cards, network hubs, servers and control 

switches. 

• Database – The events are recorded either at a central server or locally at a 

back-end database. 

• Generally, Image-Based vehicle recognition is categorized into detection, 

classification, and recognition.  

1.3. Proposed System Structure 

The system presented is designed to read License Plate System from the rear and 

front of the car though it is advised that the whole process be carried out with the 

snaps taken from the back of the car. Following are a few reasons to support this issue: 

1. Drivers who want to conceal their car plate normally try to hide their 

car front behind the back of the front car by driving too close to it. 

2. Normally the cars do not contain information at the back that could 

confuse a license plate extracting mechanism such as labels, stickers, 

etc. 

3. Plates at the back of the car are normally cleaner and clearer. 

4. Backlights do not hinder a system’s recognition capabilities as does the 

front lights. 



 
5. In some countries there is no concept of front car plates (for 

example MI, United States). 

The input to the system is an image or frame sequence acquired through a digital or 

CCD (Charge Coupled Devices) camera. The input probably contains a scene 

containing license plate(s). The output of the system is the sequence of recognized 

characters present on the license plate. The system is conventionally standardized into 

four main modules, viz. Image Acquisition, License Plate Extraction, Character 

Segmentation and License Plate Identification. The structure of the system is shown in 

Fig 1.5. 



License Plate Extraction

Character Segmentation

Character Recognition

Output

Phase 1 and input image

Phase 2 with extracted plate and Isolated characters

Final phase, character storage and display

Seven:Seven:Seven<>Haah:Taa:Meem

 

 

Figure 1-5: The typical structure of a standard LPR system 

1.4. Image Acquisition 

This is the first phase in the LPR system. There are a number of ways of acquiring an 

image and transferring it to a computer for further processing:  

 



1. Using an analogue camera and a scanner. 
 

2. Using a digital camera 

3. Using a video camera and a frame grabber capture card to select a frame 

 

The first method using a conventional analogue camera is clearly not appropriate for 

the LPR system as it is time consuming, tedious and impractical. The second method, 

i.e., using a digital camera is more convenient, cost effective and reliable. The third 

one uses a video camera with a frame grabber which is used in real life system to 

make the system automated and is suitable for real time processing. Figure 1.6 shows a 

sample result of this stage, the figure shows a front end of the vehicle. 

 

 

Figure 1-6: Typical High-Speed Image Capturing Device 



 
In our proposed system we use a high resolution Kodak DX-3600 digital camera. 

The images are taken at a resolution of 600900× . 

1.5. License Plate Extraction 

The extraction of license plate area is a key step in an LPR system, which influences 

the accuracy as well as the computational cost of the system significantly. This phase 

extracts the region of interest (ROI) from the image acquired. The proposed 

approaches are as follows: 

1. Image Enhancement and Intensity Adjustment using Histogram 

Equalization. 

2. Probable license plate presence detection using horizontal Sobel mask. 

3. License Plate Area Localization using 

 Edge Map based on RGB Vector Angle [3] based Fuzzy 

Technique 

 Edge Map based on RGB Euclidean Distance [4] based Fuzzy 

Technique 

4. License Plate Candidate Selection on the basis of Fuzzy Compactness 

and Template Matching. 

These steps will be discussed in detail in the Section 6.2. 



 
1.6. License Plate Segmentation 

The phase of License Plate Segmentation takes the ROI and attempts to divide it into 

individual characters. The final output divides the ROI into six sub-images, sequenced 

from left to right of the license plate, each containing a single isolated 

character/numeral. Since a standard Saudi Arabian license plate consists of six 

characters, with 3 letters and 3 numerals. The proposed approach discusses 

segmentation using two approaches; Fuzzy C-Means clustering and a Hybrid approach 

based on Fuzzy c means and pixel projection profiling. This will be elaborated in 

Section 6.3. 

1.7. License Plate Recognition 

The last phase in the LPR system is to recognize the isolated characters. The sub 

images of the six characters generated in the License Plate Extraction phase are fed to 

a recognition module. The techniques we have investigated are based on a module 

investigating feature components using Principle Component Analysis (PCA). 

1.8. Objective 

The work presented in this thesis aims at the following aspects. 

• Study of the Intelligent Transport Systems related to Car Recognition, 

• An analytical as well as research based survey of latest image processing 

techniques used in image enhancement and object recognition, 



 
• Development/Enhancement of techniques for all the phases involved in 

the LPR, 

• Performance comparison of the present techniques with those proposed, 

• Identification of the performance bottlenecks of such systems, 

• Identification of the recovery procedures that might help improve success 

rates in all the phases, and  

• Building a system that could operate under various environments, lighting 

conditions and accidental skews with closely matching accuracy and speed. 

1.9. Thesis Organization 

The thesis presents a complete system for the recognition of Saudi Arabian license 

plates. The structure of the thesis document is as follows: 

• Chapter 2: A literature review of the previous research in this area. A survey 

of the techniques used in the four phases of the LPR system followed by an 

overview of the latest LPR systems available worldwide. The chapter also 

discusses a number of commercialization issues for such a system as well as 

a number of applications in image processing industry. 

• Chapter 3: A brief introduction to the state-of-the-art image processing 

techniques used in to enhance the performance and accuracy of such 

applications. The techniques specifically include color edge detection, region 

growing, morphological operations, normalization and contrast adjustment.  



 
• Chapter 4: Some insight into shape analysis and realization of 

geometrical figures in fuzzy domain. The analysis includes features of fuzzy 

image processing.  

• Chapter 5: The chapter addresses the issue of image intensity and 

enhancement in images affected by noise distortion. 

• Chapter 6: The chapter discusses the conceptual layout, design and 

implementation of the system proposed. 

• Chapter 7: The chapter contains experimental analysis, results and the 

performance evaluation of the results obtained at different stages. 

• Chapter 8: Conclusion about the work done and its future prospects. 

 



 CHAPTER 2  

LITERATURE REVIEW 

License Plate Recognition (LPR) is considered a major area in the field of Intelligent 

Transport Systems (ITS). The system still needs significant improvements in order to 

be to be used in a totally unrestricted, natural environment. The limitations and future 

possibilities of LPR systems were discussed in the United States Department of 

Transportation’s Field Operational Test (FOT) [3] carried out under the auspices of 

Federal Highway Administration for LPR/Vehicle Imaging and is narrated as follows: 

“LPR continues to demonstrate its limitations as clearly as its usefulness. During the course 

of the WI/MN OOS FOT, several hundreds of reads were attempted with limited success. Of 

3,460 attempted reads, 1,413 were successful in correctly interpreting the license plate 

information, for a success rate of 40.8 percent. Unsuccessful reads fall into two categories: 

“no reads” and “bad reads.” Reasons cited for “no reads” included missing, damaged, or 

dirty license plates. No reads accounted for 27 percent of the unsuccessful attempts. “Bad 

reads” were attributed to misinterpretation of the license data, often caused by different styles 

and colors of various state plates. “Bad reads” accounted for 32 percent of the unsuccessful 

reads. Excluding unreadable plates, the success rate was 56 percent.”  

Although there has been a lot of research in the area of License Plate Recognition, the 

work has a nation-wide scope only. One reason being the lack of standardization 

between different license plates. Because of different standards adopted worldwide, 

license plates differ in shape, size, character locations, logos, etc. Most of the research 

is done in Korean, Chinese, Dutch and English License Plates. This section gives an 

overview of the research carried out so far in this area and the techniques employed in 



 
developing an LPR system. The system mainly consists of Image Acquisition, 

Extraction, Segmentation and Recognition Phases. 

Automatic license plate recognition has an important role in numerous applications 

such as Unattended Parking Lots [11] [12], security control of restricted areas [13], 

Traffic law enforcement [14] [15], congestion pricing [16], and automatic toll 

collection [17]. 

Typically an LPR process consists of two main stages:  

1. Locating license plates, and  

2. Identifying license numbers.  

2.1. Image Acquisition 

After taking a snap of the vehicle, Image Acquisition proves to be the first step in an 

LPR system. There are a number of ways to capture images and a lot of work has been 

in the image acquisition of license plates. Yan et. al. [18] used an image acquisition 

card that converts video signals to digital images based on some hardware-based 

image preprocessing. Naito et al. [19], [20] developed a sensing system, which uses 

two CCDs (Charge Coupled Devices) and a prism to split an incident ray into two 

lights with different intensities. The main feature of this sensing system is that it 

covers wide illumination conditions from twilight to noon under sunshine, and this 

system is capable of capturing images of fast moving vehicles without blurring. 

Salgado et. al. [9] used a Sensor Subsystem having a high resolution CCD camera 

supplemented with a number of new digital operation capabilities. Comelli et al. [20] 



 
used a TV camera and a frame grabber card to acquire the image for the 

developed vehicle license plate recognition system.  

2.2. License Plate Extraction 

The second phase is extraction and is an important phase in any LPR system. Here we 

discuss some of the techniques used in the literature on license plate extraction. The 

orientation of the license plate is determined by the local features of the license plates 

such as Histogram Stretching [21], Size and Aspect Ratio comparison [1] [22], 

Bounding Box matching, Fuzzy Segmentation, Vertical Edge Matching [24],. 

Character features include blob analysis [25], Aspect ratio of characters [26], the 

distribution [27] and alignment of characters [28]. In reality a universal, small and 

easy to detect features are would suffice. 

 

 Hontani et al. [25] proposed a method for extracting characters without prior 

knowledge on their position and size in the image, which is based on scale shape 

analysis and scale shape analysis, is in turn based on the assumption that characters 

have line-type shapes locally and blob-type shapes globally. In the scale shape 

analysis the given images are blurred by Gaussian filters at various scales and larger 

size shapes appears at larger scales. To detect these scales the idea of principal 

curvature plane is introduced. By means of normalized principal curvatures, 

characteristic points are extracted from the scale space x-y-t. The position (x, y) 

indicates the figure positions and the scales t indicates the inherent characteristic sizes 

of corresponding figures. All these characteristic points enable to extract figures from 

the given images that have line-type shapes locally and blob-type shapes globally. 



 
Kim et al. [29] used two neural network-based filters and a post processor to 

combine the two filtered images in order to locate the license plates. The two neural 

networks used are vertical and horizontal filters, which examine small windows of 

vertical and horizontal cross sections of an image and decide whether each window 

contains a license plate. Cross-sections have sufficient information for distinguishing a 

plate from the background. Lee et al. [30] and Park et al. [31] devised a method to 

extract Korean license plate depending on the color of the plate. A Korean license 

plate is composed of two different colors – one for characters and other for 

background and depending on these they are divided into three categories. In this 

method a Neural Network is used for extracting color of a pixel by HLS (Hue, 

Lightness and Saturation) values of eight neighboring pixels and a node of maximum 

value is chosen as a representative color. After every pixel of input image is converted 

into one of the four groups, horizontal and vertical histogram of white, red and green 

(i.e. In case of Korean Plates, as it contains white, red and green colors) are calculated 

to extract a plate region. To select a probable plate region horizontal to vertical ration 

of plate is used. Dong et al. [32] presented histogram based approach for extraction 

phase. Kim G. M [33] used Hough transform for the extraction. Mei Yu et al. [24] 

discuss a vertical edge based matching technique for locating the license plate region.  

2.3. Segmentation and Recognition 

The License Plate candidate(s) determined in the locating stage are examined for the 

presence of the plate characters or character signature. The major tasks involved in this 

stage are character segmentation and identification. Character separation in the past is 

being done by techniques such as projection profiles [34] [9], morphology [27], 



 
connected components [22] and blob coloring.  

 

Core issues that make a significant difference in the localization of license plates and 

affect the recognition rate in the later stages are the factors changing Illumination 

Conditions such as Fog, Background Light Sources, Dirty Plates, Overly Illuminated 

Plates, etc. An image with low background light and a white number plate can be 

extracted by using a regular or K-means region-growing algorithm [35]. This 

technique generates poor results for cars with white number plates and lighter 

backgrounds and requires closer limits to threshold values on the conventional region 

growing algorithms. Increasing the number of seeds to achieve a better region growing 

appears to be computationally expensive. A morphology based technique is suggested 

for such conditions [36]. Again, the technique fails for overly illuminated images and 

a need arise to use image enhancement techniques for the recovery of distorted 

characters [37]. In Gray-Scale images, edges are typically modeled as brightness 

discontinuities. These discontinuities are employed by most edge detectors using some 

form of difference operator on neighboring pixels [38]. These discontinuities greatly 

reduce license plate area locating accuracy if the car and license plate color is similar 

and there is no visible line of demarcation among the two. On the other hand these 

techniques generate unwanted edges in much greater numbers. 

 

In the literature Segmentation and Recognition steps are combined and discussed 

commonly under the recognition phase, some of the previous work in the recognition 

of characters is as follows: Cowell et al. [39] discussed the recognition of individual 

Arabic and Latin characters; this approach identifies the characters based on the 



 
number of black pixels rows and columns of the character and compares these 

values to a set of templates or signatures in the database.  Cowell et al. [40] discusses 

the thinning of Arabic characters to extract essential structural information of each 

character which may be later used for the classification stage. Mei Yu et al. [24] Naito 

et al. [19] uses template matching, Hasen et al. [41] discusses a statistical pattern 

recognition approach for recognition but is found to be inefficient. 

 

Here we discuss some literature which incorporates different techniques for different 

phases of the LPR system. Mei Yu et al. [42] proposed two simple approaches land 

mark based method and BS & Edge methods for vehicle detection and shadow 

rejection. Based on these two methods, vehicle counting, tracking, classification and 

speed estimation are achieved. AbdelMalek et al. [43] used MCR expression for 

recognition of Arabic text without segmentation using a structural pattern recognition 

approach. Lotufo et al. [17] proposed automatic number plate recognition using optical 

character recognition techniques. Johnson et al. [44] proposed knowledge guided 

boundary following and template matching for automatic vehicle identification. 

Fahmy [45] proposed BAM neural network for reading number plates. Fuzzy logic 

and neural network was used by Nijhuis et al. [22]. Choi [46] and Kim et al. [31] 

proposed the method based on vertical edge using Hough Transform to extract license 

plate. Lee et al. [30] used neural network for color extraction and template matching to 

recognize characters. Kim et al. [47] used genetic algorithm based segmentation to 

extract the plate region but this method was found to be time consuming. 

 



2.3.1. Segmentation using Blob-coloring and NN Recognition 
 

Botha et al [48] proposed a PC Based Number Plate Recognition. The system 

thresholds gray-level images of cars using Niblack algorithm. The reason for using 

Niblack algorithm is because of its robustness against shadows in the images and other 

image defects. The algorithm calculates a local Binarization threshold by calculating 

the local standard deviation and mean and then adding the mean to the product of a 

predefined weight constant and standard deviation: 

 

),(),(),( yxyxwyxT µσ +×=     (2-1) 

 

Where T is the threshold at pixel ,  is the weight, and ),( yx w ),( yxσ and ),( yxµ  are 

the standard deviation and mean of the local neighborhood of the pixel  

respectively. 

),( yx

Botha et al [48] used a set of rules for Digit location. The technique iterates through all 

the pixels in an image and checks at every digit if there is a candidate digit at the 

current position. Draghici [49] used expected alphanumeric size as a criterion for a 

candidate digit. The assumption can be considered if the distance between the car and 

the number plate remains constant. The same author considered another issue of 

“Pixel” coverage checking. ON pixels in an area were counted and percentage 

calculated. If the ‘ON’ percentage appeared 15% or above the position was classified 

as a potential alpha-numeric character, if not it’s disqualified.  



 
Plate area location was detected by using the digit like entities detected in the 

previous stage. The attempt was to determine the geometries (i.e. location and size) of 

all candidate plate areas. 

The approach analyzed contiguous regions. Blob-coloring is a region growing method 

which operates on binary images. It labels pixels which form 8-connected contiguous 

regions (“blobs”) each region receiving a unique label. It thus “colors” the “blobs”. 

2.3.2.  Usage of Morphological Operations for License Plate 

Detection 

Mathematical Morphology or Image algebra is defined as the study of shape or form. 

It is the study of shape using the tools of set theory. It is an area of images that uses 

set-theoretic operations of images. 

Mathematical Morphological operations were used method by Arregui et al [43] to 

detect the license plate location. A shape recognition technique was used by Cimmins 

et al [51] on performing hit and miss transforms using different sizes of every possible 

character as a structuring element. The approach proved expensive in terms of very 

expansive computation. The results proved inaccurate because of distortion in the 

images due to noise, position of the camera and uncertainty of background images. 

The binary morphological operations involved Binarization followed by a closing 

operation to merge the characters thus leaving a white rectangular image at the 

location of the license plate. Unwanted white regions in the image are eliminated by 

an opening operation. In addition, contours of these white regions can be extracted and 

a series of parameters such as area, perimeter compactness, and center of gravity are 

calculated. 



 
 

Poon et al [27] Gray level transitions are determined by taking the first order 

difference of the digitized image and in the location of the license plate region they 

form a cluster. In order to decide a region from other regions, a justifiable method 

based on density, amplitude and width of the cluster is used. The algorithm uses the 

features that may be present rarely in other regions besides the license plate. 

 

2.3.3. Usage of a Real-Time Character Classification and 

Recognition 

The system proposed and tested by Bailey et al [52] used a real-time IVP-150 

TMS320C50 digital signal processor based Video Image Processing System. The 

preprocessing phase of the system involved brightness correction, contrast correction 

and noise filtering. Next, a reliable thinning algorithm will be applied to simplify the 

image into lines of only one pixel thickness while retaining the shape and character 

properties and features of the image. The system used a rule based features of the 

characters. The system provides an advantage of real-time digital signal processing 

and provides real-time recognition results. 

The system can work with speed detector cameras and red light cameras on the road. 

The same algorithm can be used for handwritten character recognition applications.  

The system has a few problems: 

1. Thinning is a tricky process because important features of the image 

need retaining. 



 
2. The features of the characters may not be consistent, especially if 

there is a significant tilt present. 

3. Improper image capturing result in non-distinct characters. 

 

2.4. Commercially available LPR Systems 

2.4.1. DPL Surveillance Equipments 

DPL-LPRS-3000 [53] License Plate Recognition System is designed to work at a 

video input feed of 120 fps and can handle 40 Million car inputs.  

2.4.2. Performance Measures: 

Its special features include usage of massive parallel networks that utilize Neural 

Networks for classification eventually claiming an accuracy of 100%.  

2.4.3. Algorithms Used 

The algorithm used by them basically interprets a line filtering mechanism based on 

adaptively threshold edge maps to pertain the position of the license plates. It has three 

separate image device triggering mechanisms, namely, manual, external sensor based 

and software based internal motion detection modules. The system can handle 4 plates 

simultaneously and handles the following tasks: 

1. Saves the License Plate Image 

2. Shows Notification Message. 



 
3. Supports an informative Sound Base. 

4. Activates an I/O device 

5. Manually edits License Plate’s ID. 

The system is able to handle images taken under high speed, hostile and ambient 

environment and severe weather conditions. All this is achieved using most of the 

software logic built-in (integrated) over hardware chips.  

The system is able to recognize correctly at a skew of 0~30 degrees. 

 

2.4.4. IMPS (Integrated Multi-pass System) 

The system [54] works in China, Hong Kong, Malaysia and South Africa. The 

algorithm used a best first breadth-wise search algorithm in a combination of template 

and neural network-based classifiers, fuzzy logic and a number of image processing 

and enhancement technologies.  

 

 



 

 

Figure 2-1: The vehicle sensing system uses standard inductive loop sensors or 

internal software triggering (day and night). 

2.4.5. Performance Measures 

The vehicle detection rate for this system is 95%.  For the Singaporean system the 

identification accuracy is 99.7%. The response time ranges from 0.4 to 2 seconds. 

2.4.6. Image Format and Snapping Conditions 

The system uses single field image from standard monochrome CCTV (CCIR) 

cameras. The image size is 288768 × . The system is able to handle horizontal and 

vertical angles of 45 degrees. Artificial lighting is a requirement and must be mounted 

near and above the camera. IR Cameras are required to bypass high headlight glare 

present in the case of front license plates at night. 



2.5. Perceptics 
 

The company [55] is involved with the design and development of Security, Traffic 

Management and Computer Vision based systems. 

2.5.1. Performance Measures 

The system converts the array of information (Image) into an ASCII string containing 

the plate number. The image size is roughly 512512 × . The recognition library 

presents the following advantages. 

• Can integrate into existing application based on VB/VC++ environment. 

• Has a multiple letter/digit check providing with a high recognition rate. 

• Covers a wide range of plate size (80-300; recommended 150 pixels side-to-

side) and deals with very small plates (down to ~80 pixels per plate on typical 

plates) 

• Deals with a wide range of contrast images (recommended: 50 gray levels font 

to background) 

• Rotation allowed ± 30 degrees (depends on plate type; recommended smallest 

• angle) 

• Fast response - Pentium 1900 MHz at typical25msec per image to return the 

recognition string. This allows the user’s application to utilize most of the PC 

resources. 

• Can operate over standard PCs. 

• Is adaptable to different country standards. 

• Available in 32bit versions, for use with standard compilers 



 
2.6. Zamir Recognition Systems (Ltd) 

The company [56] introduced its all-in-one Insignia 4 License Plate Recognition 

System on March 02, 2004. The system consists of a Lane Controller (LC) housing an 

imaging sensor that enables a 24 hour all weather functionality. The system works in 

the domains of Photo-optical Instruments, Entrance and Parking Control Systems, 

Vehicle Detection, Infrared Detection and Number Plate Recognition. 

2.7. Real Time Traffic Sign Recognition (TSR) 

The first works related to the road sign recognition have been published in Japan in 

1984. The aim was to try various computer vision methods for the detection of the 

objects in outdoor scenes. At the beginning of nineties, several groups interested in the 

subject emerged. We may found there solutions focused on particular road sign type 

together with more general systems. There were reported various approaches for the 

sign detection (employing of edges, color segmentation, correlation etc.) in these 

works. The classification step has been - in most cases - solved by the use of neural 

network.  

The compilation of [72] from CRIM (Canada) the most valuable information source 

describing systems before 1995. Presently, there exist several groups, involved in the 

road sign recognition, in the world. Without doubt, the most advanced system is the 

German TSR (Traffic Sign Recognition System) developed at the University Koblenz-

Landau in cooperation with Daimler-Benz.  

Following are the specific features present in the developed application: 



 
2.7.1. Real time application 

The CSC-TSR, a fast, robust color image evaluation system for the detection of traffic 

signs on European highways, is installed in a driving car. The real-time ability is 

achieved with parallel implementation on a TIP-system (Parsytec Transputer Image 

Processing) with PowerPC processors (Motorola MPC). 

2.7.2. Cooperation 

The CSC-TSR has been developed in cooperation with Daimler Benz within the 

European PROMETHEUS project (Programme for a European Traffic with Highest 

Efficiency and Unprecedented Safety).  

It has been integrated into the autonomous car VITA II. 

2.7.3. Performance 

• Database of approx. 40.000 traffic scenes  

• Analysis of 3 images per second  

• Recognition rate of 98 % 

2.7.4. Image Processing with TIP system 

• Parallel architecture developed by Parsytec.  

• Special BUS-system for online image-transfer. 

• Special processing nodes for graphical in-/output. Color Frame Grabber 

(CFG), Color Graphics Display (CGD). 

http://www.uni-koblenz.de/~lb/lb_research/lb04.html
http://www.uni-koblenz.de/~lb/lb_research/lb05.html
http://www.parsytec.de/


• Processing nodes with T805-Transputer (VPU).  
 

• Integration of MPC processing nodes with Motorola PowerPC 601 processor 

(MPC).  

• Integration of Texas-Instruments C40 processing nodes. 

 

 

Figure 2-2: Example of a CSC-segmented scene, where all found objects (trees in 

the CSC data structure) are presented by the outer border and the involved 

pixels in the mean color of the object. [72] 

The group’s work related to the issue of color segmentation. The areas addressed are 

as following: 

1. CSC (Color Structure Code) 

2. Split and Merge 

3. Recursive Histogram Splitting 

The results of these algorithms are available over a number of real time road images as 

shown in Fig. 2-4 and Fig 2-5. 



2.7.5. Color Structure Code (CSC) 
 

The CSC is an inherently parallel hierarchical color segmentation method that can 

operate on distributed data on an optional number of processors. The CSC operates on 

a hierarchical overlapping hexagonal topology. This leads to inherently parallel 

algorithms and combines the advantages of local region growing (simplicity and 

quickness) and global techniques (robustness and accuracy). An example of such a 

3x3 image grid on a processor is shown in Fig. 2-3. 

 

Figure 2-3: An image on a 3x3 processor grid. 

 

http://www.uni-koblenz.de/~lb/lb_research/research.csc.figs1.html
http://www.uni-koblenz.de/~lb/lb_research/research.csc.figs2.html


 

 

Figure 2-4: (a) An original image. (b) CSC Algorithm. (c) Split and Merge. (d) 

Recursive Histogram Splitting 

 



 

 

Figure 2-5: (a) An original image. (b) CSC Algorithm. (c) Recursive Histogram 

Splitting (d) Split and Merge. 

2.8. Iris Recognition 

The common procedures now employed for proving one’s identity—the use of 

passwords, personal identification numbers, picture IDs and so forth—have given way 

in many situations to automated biometric analysis. One such system takes advantage 

of the detailed patterns within a person’s iris, which make it possible to identify 

someone using nothing more than an infrared image of the eye and a suitably 

programmed computer to process the information. The algorithm for iris recognition 



 
discerns whether two images taken at different times are of the same iris. The 

scheme encodes iris patterns compactly, so that comparisons can be made extremely 

quickly and tests against large numbers of candidate images can be performed in a 

reasonable time when searching for a match. 

2.8.1. Iris Scan  

Iris scan biometrics employs the unique characteristics and features of the human iris 

in order to verify the identity of an individual. The iris is the area of the eye where the 

pigmented or colored circle, usually brown or blue, rings the dark pupil of the eye as 

shown in Fig. 2-6. 



 

 

Figure 2-6: Human Iris 

The iris-scan process begins with a photograph. A specialized camera, typically very 

close to the subject, no more than three feet, uses an infrared imager to illuminate the 

eye and capture a very high-resolution photograph. This process takes only one to two 

seconds and provides the details of the iris that are mapped, recorded and stored for 

future matching/verification. Eyeglasses and contact lenses present no problems to the 

quality of the image and the iris-scan systems test for a live eye by checking for the 

normal continuous fluctuation in pupil size.  

 

Figure 2-7: Identification technology based on individual Iris Patterns 

The inner edge of the iris is located by an iris-scan algorithm which maps the iris’ 

distinct patterns and characteristics.  

The Iris processing algorithm presents a series of directives that direct a biometric 

system how to interpret a specific problem. The samples are matched on the basis of 



 
template feature comparison present in a database and present the closest match 

on the basis of state-of-the-art pattern recognition technologies. 

Iris’ are composed before birth and, except in the event of an injury to the eyeball, 

remain unchanged throughout an individual’s lifetime. A typical Iris pattern is very 

complex and carries at least 200 unique spots that can be used as specific feature sets. 

The fact that an individual’s right and left eyes are different and that patterns are easy 

to capture, establishes iris-scan technology as one of the biometrics that is very 

resistant to false matching and fraud. 

2.8.2. Iridian's iris-recognition technology 

Iris recognition is of course based on the visible qualities of the human iris (see Figure 

5). Visible characteristics include rings, furrows, freckles, and the iris corona. Iridian's 

iris-recognition technology converts these visible characteristics into an IrisCode, a 

template stored for future verification attempts. From the 11-mm diameter iris, 

Daugman's algorithms provide 3.4 bits of data per square millimeter. This information 

density means that each iris can have 266 unique spots—compared to 10 to 60 unique 

spots for traditional biometric technologies [73].  

The first step in scanning an iris is locating it with a dedicated monochrome camera no 

more than three feet from the eye. After the camera situates the eye, the search 

algorithm locates the outer and inner edges of the iris and then proceeds to analyze it. 

The system uses 2D Gabor wavelets [74]—transforms used typically in visualization 

applications—to filter and map iris segments into hundreds of vectors. The wavelets 

assign values drawn from the orientation and spatial frequency of select areas of the 

iris and they then form an ‘IrisCode’. According to Daugman, the equal-error rate (the 



 
point at which the likelihood of a false accept and false reject are the same) is one 

in 1.2 million for IrisCodes. 

The false acceptance rate for iris recognition systems is 1 in 1.2 million, statistically 

better then the average fingerprint recognition system. The real benefit is in the false-

rejection rate, a measure of authenticated users who are rejected. Fingerprint scanners 

have a 3 percent false-rejection rate, whereas iris scanning systems boast rates at the 0 

percent level. 

2.8.3. Technical Scope and Usage 

Iris-scan technology has been piloted in ATM environments in England, the US, Japan 

and Germany since as early as 1997. In these pilots the customer’s iris data became the 

verification tool for access to the bank account, thereby eliminating the need for the 

customer to enter a PIN number or password. When the customer presented their 

eyeball to the ATM machine and the identity verification was positive, access was 

allowed to the bank account. These applications were very successful and eliminated 

the concern over forgotten or stolen passwords and received tremendously high 

customer approval ratings. 

Airports have begun to use iris-scanning for such diverse functions as employee 

identification/verification for movement through secure areas and allowing registered 

frequent airline passengers a system that enables fast and easy identity verification in 

order to expedite their path through passport control. 

Other applications include monitoring prison transfers and releases, as well as projects 

designed to authenticate on-line purchasing, on-line banking, on-line voting and on-



 
line stock trading to name just a few. Iris-scan offers a high level of user security, 

privacy and general peace of mind for the consumer. 

A highly accurate technology such as iris-scan has vast appeal because the inherent 

argument for any biometric is, of course, increased security. 

2.8.4. Benefits of Iris Recognition Technology 

• The iris is a thin membrane on the interior of the eyeball. Iris patterns are 

extremely complex.  

• Patterns are individual (even in fraternal or identical twins).  

• Patterns are formed by six months after birth, stable after a year. They 

remain the same for life.  

• Imitation is almost impossible.  

• Patterns are easy to capture and encode  

2.8.5. Technology Comparison 

Table 2-1: Biometric Application Stats for Industrial Applications 

Method Coded Pattern Misidentification 
rate Security Applications 

Iris 
Recognition Iris pattern 1/1,200,000 High High-security 

facilities 

Fingerprinting Fingerprints 1/1,000 Medium Universal 

Hand Shape 
Size, length and 
thickness of 
hands 

1/700 Low Low-security 
facilities 

Facial 
Recognition 

Outline, shape 
and distribution 
of eyes and nose 

1/100 Low Low-security 
facilities 



 

Signature 
Shape of letters, 
writing order, 
pen pressure 

1/100 Low Low-security 
facilities 

Voiceprinting Voice 
characteristics 1/30 Low Telephone 

service 

 

2.9. Face Recognition 

Face Recognition technology basically analyzes core features of a human face that do 

not change much under various aspects such as glasses, hairstyles, facial expressions, 

beards, etc, therefore, all face-recognition technologies share certain commonalities, 

such as emphasizing those sections of the face that are less susceptible to alteration, 

including the upper outlines of the eye sockets, areas surrounding the cheekbones, and 

sides of the mouth.[75] Facial-scan technology works well with standard PC video 

capture cameras and generally requires cameras that can capture images at least at 320 

× 240 resolution and at least 3 to 5 frames per second. More frames per second, along 

with higher resolution, will lead to better performance in verification or identification, 

but higher rates typically aren't required for basic one-to-one verification systems that 

compare your face scan to a template you've previously stored on the verifying system. 

2.9.1. Face Recognition Process 

As with all biometric technologies, sample capture, feature extraction, template 

comparison, and matching define the process flow of facial-scan technology. The 

sample capture process will generally consist of 20 to 30 seconds during which a 



 
facial-recognition system will take several pictures of the subject's face. Ideally, 

the series of pictures will incorporate slightly different angles and facial expressions to 

allow for more accurate searches. After entering a subject's general face scan, the 

system will typically extract the subject's distinctive features and create a graphic 

template. 

The exact algorithm any given commercial system uses to create and then later verify 

the templates is typically a closely guarded secret. The template is much smaller than 

the image from which it's drawn. Whereas quality facial images generally require 150 

to 300 Kbytes, templates will only be approximately 1 Kbytes.  

 

Visionics, one of the most prominent biometric vendors, uses an even smaller 84-byte 

template to help accelerate one-to-many searches. 

Authentication follows the same protocol. Assuming your user is cooperative; he or 

she stands or sits in front of the camera for a few seconds and is either verified or 

rejected. This comparison is based on the similarity of the newly created template 

against the template on file. One variant of this process is the use of facial-scan 

technology in forensics. The templates come from static photographs of known 

criminals and are stored in large databases. The system performs a one-to-many search 

of these records to determine if the detainee is using an alias. If the database has only a 

handful of enrollees, this kind of search isn't terribly processor intensive. But as 

databases grow large, into the tens and hundreds of thousands, this task becomes more 

difficult. The system might only narrow the search to several likely candidates and 

then require human intervention at the final verification stages. 



 
Another variable in identification is the dynamic between the target subjects and 

capture device. Standard verification typically assumes a cooperative audience, one 

consisting of subjects motivated to use the system correctly. Facial-scan systems, 

depending on the exact type of implementation, might also have to be optimized for 

uncooperative subjects. Uncooperative subjects are unaware that a biometric system is 

in place, or don't care, and make no effort to be recognized. Facial-scan technologies 

are more capable of identifying cooperative subjects. 

2.10. Summary 

The optimal LPR systems operate in a hybrid environment that utilizes the techniques 

of both software and hardware logics. Most of these industrial applications perform 

computationally expensive tasks over logic built on hardware. A standard frame-

grabbing device comes with operations supporting Color Edge Detection, RGB to HSI 

conversions and Region Growing based Image Segmentation. Such real time systems 

are also provided with Pipe-lined or Parallel processors to further support speedy 

image retrieval, handling and processing. Off course, developing an efficient 

algorithm that does the job without employing expensive hardware devices would be a 

significant contribution to the respective Research and Development sector. The 

proposed approaches tested and implemented image enhancement and preprocessing 

techniques to adjust the image to a level suitable enough for the plate extraction 

algorithm to work precisely and accurately even at darker environments. It was also 

required that such techniques wont have an effect on the images taken at clearer 

surroundings. Again, utilizing the availability of processors good enough to support 

true-color (RGB) images should also provide more flexibility towards processing 



 
images distorted by speed, dust, dirt, rust, murkiness, glare, etc. In this domain, 

detection of sharp discontinuities in image parameters could be exploited more 

perfectly.  

Respecting and keeping these ideas in our mind and the exploration done by 

previously done work we presented an insight to the latest industrial work going and 

the areas asking future work. 

Biometrics technology has come a long way from simpler forms of systems security. 

While biometric proponents stress the strength of their proprietary technologies or 

biometrics in general, no system is ever completely secure. Bruce Schneier once 

pointed out that all computer security is like putting a wooden stake in front of your 

house and hoping that trespassers will run into it. [76] Contrary to what many 

biometric proponents would have us believe—that biometric security outclasses 

traditional forms of security—all biometric systems are, after all, another form of 

computer security with its own set of strengths and weaknesses. 

Biometrics effectively trade some amount of privacy and cost effectiveness for 

ultimate convenience—and these systems are certainly no less secure than standard 

‘pass-wording’ systems. Pass-wording systems are cheap. Complex biometric 

scanning equipment is usually expensive. But biometrics seems to be where the 

industry is headed. Aside from the Orwellian connotations, biometrics systems offer 

an enormous amount of convenience to users. And, in the present political climate, it's 

hard to counter the argument that we should adopt biometric systems simply as 

additional layers of security on top of traditional pass-wording systems. 

 



 CHAPTER 3  

COLOR EDGE DETECTION 

The use of color in image processing and pattern classification application is provoked 

by two main factors. The ability of color to describe a scenic detail in much clearer 

form making object extraction a far easier task. Second, Humans are able to 

differentiate between thousands of colors no matter how minute their intensity 

differences and saturation details are as compared to just a handful of (256) colors 

present in Gray Scale composition.  

The chapter gives a basic introduction of color image processing techniques used to 

detect edges, segment Region of Interests (ROI) and promote Region Growing. It will 

also touch briefly the effect of Edge Operators on an Image used in real time image 

applications. 

A typical gray scale image ranges from an intensity level of ‘0’ to ‘256’ where ‘0’ 

depicts an off-pixel of black color and ‘256’ a purely white pixel. On the other hand a 

true color image contains three basic color components namely Red, Green and Blue 

(RGB) that ranges from ‘0’ to ‘256’. The combination of these colors produces 

different shades of intensities, saturations and hue in a color that are more easily 

perceivable by a human eye as shown in Fig. 3.1. 



 

 

Figure 3-1 A method of combining pigments 

3.1. Color Edge Detection  

Edge detection is an important process in low level image processing. Research shows 

that more or less 90% of edges are same in gray values and color images [57]. Still 

there are 10% edges left that are not detected in intensity images. These 10% edges 

may significantly affect the edge information that could be utilized in a close 

extraction or segmentation process. An edge typically is a sharp discontinuity in an 

image due to brightness or intensity variations. There are numerous approaches of 

various computational complexities to edge detection in color images. To realize an 

edge various masks know as edge operators are scanned over image ROI to mark such 

discontinuity areas. In general masks of 33× size are enough but larger sizes can also 

be used with multi-resolution techniques to avoid computational overheads. A number 

of significant edges are only missed at areas where two different objects with different 

hues but similar intensities. Such objects are treated as a combined object in gray 

value images.  



 
On the other hand, occasionally we require segmentation of objects having very 

minute geometrical shapes as shown in the Fig. 3.2 (a). If the color information of 

these objects is lost due to noise or the objects present on both the sides of these 

objects are of different intensities but similar hues, situation becomes more 

challenging. 

 

 

Figure 3-2: (a) The gray-scale image. (b) An edge map using a Sobel 

Operator. Areas with similar color but different intensities are lost. 

33×

Most edge detection schemes find maxima in the first derivative of the image function 

or zero crossing of the second derivative. The main problem in extending the same 

approach to color images arises because the image function in such images is vector 

valued.  Combination of separate RGB gradients also remains a significant issue. The 



 
simplest approach appears to apply Sobel masks to the three color channels (Red, 

Green and Blue) independently and combine the image using logical operation. 

3.2. Performance 

The performance of such edge detectors greatly depend upon the application at hand. 

Generally an algorithm using a space other than RGB is more computationally 

complex. Transformations such as HIS, CIE and LUV are very complex. On the other 

hand, RGB suffers from the high correlation among the three planes. However a 

reliable method to extract hue and saturation difference information directly from 

RGB is vector angle measure [59]. [58] Dony et al propose a method for obtaining 

chromaticity information for the purpose of intensity invariant segmentation directly 

from the RGB image. The methods used a modified Robert’s operator to implement a 

vector angle measure in RGB images. [58] also compared the approach with results 

obtained from the Robert’s operator over Euclidean Distance. 

3.3. Edge Detection Techniques 

3.3.1. Euclidean Distance 

The approach [59] is to use Euclidean distance,  between adjacent color pixels to 

calculate an edge map, 

DE
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Where •  is a  vector norm. For an RGB space coordinate system,  the 

distance is calculated as  
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The effects of ED can be analyzed in RGB space as shown in Fig 3.3. Light Green and 

Dark Green only differ in intensity values and have same chromatic values. Dark 

Green and Dark Brown differ in both intensity as well as chromaticity values. Same is 

the case for any colors present in RGB space. 

3.3.2. Vector Angle 

An alternative defined in [59] is to use Vector angle measure defined as: 
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Opposed to ED, VA is insensitive to intensity differences, but qualifies well hue and 

saturation differences. Using angle θ as an edge value has a drawback that the 

calculation of inverse cosine is expensive relative to simple Euclidean arithmetic. 

Furthermore, statistical analysis of values in angular coordinates is problematic [59]. 

For these reasons and since we are interested in Hue differences however small, the 

θsin was proposed in [58] and is defined as follows: 
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Figure 3-3: Vector Geometry between four color examples 

3.4. Edge Operators 

3.4.1. Difference Vector Edge Detectors 

Difference Vector Edge Detector [60] [61], is a 3x3 operator that calculated the 

maximum gradient across the central pixel. The Euclidean distance version of this 

operator can be written as  
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Where represents one of the first four (out of a possible eight) positions around 

the central pixel. This gives the four directional gradients across the pixel.  
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The vector angle version of the Difference Vector Edge Detector is characterized by 
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3.4.2. Vector Gradient Edge Detectors 

The Vector Gradient Edge Detector is an edge operator that computes the maximum 

distance in the desired metric between the central pixel and the 8-connected pixels 

adjacent to it. 

The Euclidean distance version of this operator is defined as follows: 
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Where i is the counter representing one of the eight neighboring pixels. 

The vector angle version of this operator is written as 
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3.4.3. Comparison of Vector Angle and Euclidean Distance 

Color spaces that use polar coordinate systems such as HSI use the HUE component 

directly in the space as one of the coordinates. Such spaces produce more robust 



 
results in terms of quality but have a negative effect on the systems performance 

due to their computational complexity. This is primarily due to the non-linear 

transformation involving sinusoids to convert the raw RGB data to HSI [62]. For high 

speed applications such as Color OC readers, Hand Sign Language Recognition, 

Intelligent Transport Devices, Check Reading, etc this extra computational overhead 

and delay may not be feasible. Processing based on raw RGB coordinates would have 

more advantage. For such applications operators based on 22 ×  masks are enough. 

3.5. Summary 

The chapter gave a brief introduction to color edge detection. The shortcomings of 

gray scale image processing mainly arise when an objective of intensity invariant 

image processing is concerned. RGB is an expansive domain where we can exploit the 

presence of both color and intensity information. A lot of research work has been done 

in this area. For real time image processing applications, a trade off between quality 

and performance must be maintained. Application using masks greater than and 

processing image resolutions of 

55 ×

480640 × may not give optimal results in terms of 

performance but a standard image using a 33×  mask does the job with better 

efficiency. 

 



 CHAPTER 4  

FUZZY IMAGE PROCESSING 

Fuzzy image processing is not a unique theory. It is a collection of different fuzzy 

approaches to image processing. Nevertheless, the following definition can be 

regarded as an attempt to determine the boundaries. “Fuzzy image processing is the 

collection of all approaches that understand, represent and process the images, their 

segments and features as fuzzy sets. The representation and processing depend on the 

selected fuzzy technique and on the problem to be solved.”[63] 

 

Figure 4-1: General Structure of a Fuzzy System 

 

 



 

 

Figure 4-2: Pixel-Based RGB Color Modification using Fuzzy Image Processing 

The three main steps in Fuzzy Image Processing are: 

• Image Fuzzification 

• Membership value modification through Membership Functions 

• Image Defuzzification 



 
We use the coding (Fuzzification), decoding (Defuzzification) of image data (in 

our case RGB intensity values) to process images with fuzzy techniques. The main 

power of fuzzy techniques lies in the middle step (Membership Function(s)) which is 

derived using a knowledge database as shown in Fig 4.2. This is done in the 

Fuzzification step. The overall procedure is somewhat akin to normalizing all the 

inputs according to a knowledge based parameter (in the case shown, it is 255). 

Applying the membership function (Not given in the figure above), and applying the 

Defuzzification mechanism on the modified membership values. The new values are 

also regarded as the Crisp set. 

The overall working system can be further elaborated as follows. “... A pictorial object 

is a fuzzy set which is specified by some membership function defined on all picture 

points. From this point of view, each image point participates in many memberships. 

Some of this uncertainty is due to degradation, but some of it is inherent…In fuzzy set 

terminology, making figure/ground distinctions is equivalent to transforming from 

membership functions to characteristic functions.” 1970, J.M.B. Prewitt. 

4.1. Fuzzy C-Mean Clustering 

Clustering of numerical data forms the basis of many classification and system 

modeling algorithms. The purpose of clustering is to identify natural groupings of data 

from a large data set to produce a concise representation of a system's behavior. 

 

In the iterations of the conventional c-means (Non-Fuzzy) algorithm, each data point 

is assumed to be the member of exactly one cluster. In pattern classification domain 



 
such memberships are rarely seen and a classifier bearing a feature vector of more 

than 2 dimensions is normally considered to be partially associated to one specific 

domain. This partial association can be efficiently described and presented on the basis 

of Fuzzy version of K-Means Clustering Algorithm known as Fuzzy C Means 

Algorithm. Fuzzy c-means is a data clustering technique wherein each data point 

belongs to a cluster to some degree that is specified by a membership grade. This 

technique was originally introduced by Jim Bezdek in 1981 [64] as an improvement 

on earlier clustering methods. It provides a method that shows how to group data 

points that populate some multidimensional space into a specific number of different 

clusters [65]. 

The memberships in this algorithm are equivalent to the probabilities ( )θω ˆ,ˆ
ji xP , 

where θ is the parameter vector for the membership function. The fuzzy c means 

clustering algorithm seeks a minimum of a heuristic global cost function. 
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Where b is a free parameter chosen to adjust the blending of different clusters. If b is 

set to ‘0’, is merely a sum-of-squared error criterion with each pattern assigned to 

each cluster. 

fuzJ

The probabilities of cluster membership for each point are normalized as 
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θ̂Where, for, simplicity, we have not explicitly shown the dependence on . We let 

denote the prior probability of jP̂ ( )jP ωˆ , then at the solution (i.e., the minimum of 

), we have fuzzJ

0=∂∂ ifuzzJ µ      (4-3) 

0ˆ =∂∂ jfuzz PJ      (4-4) 

The solution, therefore, is given as 
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In general, the criterion is minimized when the cluster centers fuzzJ jµ are those points 

that have high estimated probability of being in cluster . Because the equations rarely 

have analytical solutions, the cluster means and point probabilities are estimated 

iteratively according to the following algorithm. 

j

Algorithm 4-1: Fuzzy C-Means Clustering 



 
Begin

Initialize njciXPbcn
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 Do recomputed iµ  

 Re compute ( )ji xP ωˆ  

 until small change in iµ and ( )ji xP ω  

return ci µµµ ,...,, 2  

End  

 

For early iterations, the means lie near the center of the full dataset because each point 

has a non negligible “membership” in each cluster. At later iterations the means 

separate and each membership tends toward the value ‘1.0’ and ‘0.0’. 



 
CHAPTER 5  

DIGITAL IMAGE ENHANCEMENT 

In today's world of advanced technology where most remote sensing data are 

recorded in digital format, virtually all image interpretation and analysis involves 

some element of digital processing. Digital image processing may involve numerous 

procedures including formatting and correcting of the data, digital enhancement to 

facilitate better visual interpretation, or even automated classification of targets and 

features entirely by computer. In order to process remote sensing imagery digitally, the 

data must be recorded and available in a digital form suitable for storage on a 

computer tape or disk. Obviously, the other requirement for digital image processing is 

a computer system, sometimes referred to as an image analysis system, with the 

appropriate hardware and software to process the data. Several commercially available 

software systems have been developed specifically for remote sensing image 

processing and analysis. 

For discussion purposes, most of the common image processing functions available 

in image analysis systems can be categorized into the following four categories:  

• Preprocessing  

• Image Enhancement  

• Image Transformation  

• Image Classification and Analysis  

Preprocessing functions involve those operations that are normally required prior to 

the main data analysis and extraction of information, and are generally grouped as 



 
radiometric or geometric corrections. Radiometric corrections include correcting 

the data for sensor irregularities and unwanted sensor or atmospheric noise, and 

converting the data so they accurately represent the reflected or emitted radiation 

measured by the sensor. Geometric corrections include correcting for geometric 

distortions due to sensor-Earth geometry variations, and conversion of the data to real 

world coordinates (e.g. latitude and longitude) on the Earth's surface. 

The objective of the second group of image processing functions grouped under the 

term of image enhancement is solely to improve the appearance of the imagery to 

assist in visual interpretation and analysis. Examples of enhancement functions 

include contrast stretching to increase the tonal distinction between various features in 

a scene, and spatial filtering to enhance (or suppress) specific spatial patterns in an 

image. 

Image transformations are operations similar in concept to those for image 

enhancement. However, unlike image enhancement operations which are normally 

applied only to a single channel of data at a time, image transformations usually 

involve combined processing of data from multiple spectral bands. Arithmetic 

operations (i.e. subtraction, addition, multiplication, division) are performed to 

combine and transform the original bands into "new" images which better display or 

highlight certain features in the scene. We will look at some of these operations 

including various methods of spectral or band ratioing, and a procedure called 

principal components analysis which is used to more efficiently represent the 

information in multi-channel imagery. 

Image classification and analysis operations are used to digitally identify and 

classify pixels in the data. Classification is usually performed on multi-channel data 



 
sets and this process assigns each pixel in an image to a particular class or theme 

based on statistical characteristics of the pixel brightness values. There are a variety of 

approaches taken to perform digital classification. We will briefly describe the two 

generic approaches which are used most often, namely supervised and unsupervised 

classification. 

5.1. Preprocessing 

Pre-processing operations, sometimes referred to as image restoration and 

rectification, are intended to correct for sensor- and platform-specific radiometric and 

geometric distortions of data. Radiometric corrections may be necessary due to 

variations in scene illumination and viewing geometry, atmospheric conditions, and 

sensor noise and response. Each of these will vary depending on the specific sensor 

and platform used to acquire the data and the conditions during data acquisition. Also, 

it may be desirable to convert and/or calibrate the data to known (absolute) radiation 

or reflectance units to facilitate comparison between data. 

Variations in illumination and viewing geometry between images (for optical 

sensors) can be corrected by modeling the geometric relationship and distance 

between the areas of the Earth's surface imaged the sun, and the sensor. This is often 

required so as to be able to more readily compare images collected by different sensors 

at different dates or times, or to mosaic multiple images from a single sensor while 

maintaining uniform illumination conditions from scene to scene. 

For many quantitative applications of remote sensing data, it is necessary to convert 

the digital numbers to measurements in units which represent the actual reflectance or 

emittance from the surface. This is done based on detailed knowledge of the sensor 



 
response and the way in which the analog signal (i.e. the reflected or emitted 

radiation) is converted to a digital number, called analog-to-digital (A-to-D) 

conversion. By solving this relationship in the reverse direction, the absolute radiance 

can be calculated for each pixel, so that comparisons can be accurately made over time 

and between different sensors. 

5.2. Image Intensity Adjustment 

Enhancements are used to make it easier for visual interpretation and understanding 

of imagery. The advantage of digital imagery is that it allows us to manipulate the 

digital pixel values in an image. Although radiometric corrections for illumination, 

atmospheric influences, and sensor characteristics may be done prior to distribution of 

data to the user, the image may still not be optimized for visual interpretation. Remote 

sensing devices, particularly those operated from satellite platforms, must be designed 

to cope with levels of target/background energy which are typical of all conditions 

likely to be encountered in routine use. With large variations in spectral response from 

a diverse range of targets (e.g. forest, deserts, snowfields, water, etc.) no generic 

radiometric correction could optimally account for and display the optimum brightness 

range and contrast for all targets. Thus, for each application and each image, a custom 

adjustment of the range and distribution of brightness values is usually necessary. 

 

In raw imagery, the useful data often populates only a small portion of the available 

range of digital values (commonly 8 bits or 256 levels). Contrast enhancement 

involves changing the original values so that more of the available range is used, 

thereby increasing the contrast between targets and their backgrounds. The key to 



 
understanding contrast enhancements is to understand the concept of an image 

histogram. A histogram is a graphical representation of the brightness values that 

comprise an image. The brightness values (i.e. 0-255) are displayed along the x-axis of 

the graph shown in Fig 5-1(b). The frequency of occurrence of each of these values in 

the image is shown on the y-axis. 

 

 

Figure 5-1: (a) Gray scale profile of a hand. (b) Histogram profile of number of 

occurrences of every intensity over the map shown in (a). 

By manipulating the range of digital values in an image, graphically represented by 

its histogram as shown in Fig. 5-1(b), we can apply various enhancements to the data. 

There are many different techniques and methods of enhancing contrast and detail in 

an image; we will cover only a few common ones here. The simplest type of 

enhancement is a linear contrast stretch. This involves identifying lower and upper 

bounds from the histogram (usually the minimum and maximum brightness values in 

the image) and applying a transformation to stretch this range to fill the full range. In 

our example, the minimum value (occupied by actual data) in the histogram is 84 and 

the maximum value is 153. These 70 levels occupy less than one-third of the full 256 



 
levels available. A linear stretch uniformly expands this small range to cover the 

full range of values from 0 to 255. This enhances the contrast in the image with light 

toned areas appearing lighter and dark areas appearing darker, making visual 

interpretation much easier.  

 

Figure 5-2: An example of stretching image gray scale limits 



 
Fig 5.3 illustrates the increase in contrast in an image before (left) and after 

(right) a linear contrast stretch. 

 

Figure 5-3: The images are manipulated specimen of satellite data. (a) Original 

satellite image. (b) An intensity enhanced sample of (a) 

A uniform distribution of the input range of values across the full range may not 

always be an appropriate enhancement, particularly if the input range is not uniformly 

distributed. In this case, a histogram-equalized stretch as shown in Fig 5-4 may be 

better. This stretch assigns more display values (range) to the frequently occurring 

portions of the histogram. In this way, the detail in these areas will be better enhanced 

relative to those areas of the original histogram where values occur less frequently. In 

other cases, it may be desirable to enhance the contrast in only a specific portion of the 

histogram. For example, suppose we have an image of the mouth of a river, and the 

water portions of the image occupy the digital values from 40 to 76 out of the entire 

image histogram. If we wished to enhance the detail in the water, perhaps to see 

variations in sediment load, we could stretch only that small portion of the histogram 

represented by the water (40 to 76) to the full grey level range (0 to 255). All pixels 

below or above these values would be assigned to 0 and 255, respectively, and the 

detail in these areas would be lost. However, the detail in the water would be greatly 

enhanced. 



 

 

Figure 5-4: An example of image histogram stretching 

5.3. Spatial Filtering 

Spatial filtering encompasses another set of digital processing functions which are 

used to enhance the appearance of an image. Spatial filters are designed to highlight or 

suppress specific features in an image based on their spatial frequency. Spatial 

frequency is related to the concept of image texture. It refers to the frequency of the 

variations in tone that appear in an image. "Rough" textured areas of an image, where 

the changes in tone are abrupt over a small area, have high spatial frequencies, while 

"smooth" areas with little variation in tone over several pixels, have low spatial 

frequencies. A common filtering procedure involves moving a 'window' of a few 

pixels in dimension (e.g. 3x3, 5x5, etc.) over each pixel in the image, applying a 

mathematical calculation using the pixel values under that window, and replacing the 

central pixel with the new value. The window is moved along in both the row and 

column dimensions one pixel at a time and the calculation is repeated until the entire 

image has been filtered and a "new" image has been generated. By varying the 

calculation performed and the weightings of the individual pixels in the filter window, 

filters can be designed to enhance or suppress different types of features. 



 
5.3.1. Low Pass Filtering 

A low-pass filter is designed to emphasize larger, homogeneous areas of similar 

tone and reduce the smaller detail in an image. Thus, low-pass filters generally serve 

to smooth the appearance of an image. Average and median filters, often used for 

radar imagery, are examples of low-pass filters. 

5.3.2. High Pass Filters 

High-pass filters do the opposite and serve to sharpen the appearance of fine detail 

in an image. One implementation of a high-pass filter first applies a low-pass filter to 

an image and then subtracts the result from the original, leaving behind only the high 

spatial frequency information. 

 

Directional, or edge detection filters are designed to highlight linear features, such 

as roads or field boundaries. These filters can also be designed to enhance features 

which are oriented in specific directions. These filters are useful in applications such 

as geology, for the detection of linear geologic structures. 



5.4. Image Classification and Analysis 
 

 

Figure 5-5: An image of the elevation map of the Waitaki basin (NZ). The lower 

right corner shows the coast with Alps classified as dark violet areas on the left 

A human analyst attempting to classify features in an image uses the elements of 

visual interpretation to identify homogeneous groups of pixels which represent various 

features or land cover classes of interest. Digital image classification uses the spectral 

information represented by the digital numbers in one or more spectral bands, and 

attempts to classify each individual pixel based on this spectral information. This type 

of classification is termed spectral pattern recognition. In either case, the objective is 

to assign all pixels in the image to particular classes or themes (e.g. water, coniferous 

forest, deciduous forest, corn, wheat, etc.). The resulting classified image is comprised 

of a mosaic of pixels, each of which belong to a particular theme, and is essentially a 

thematic "map" of the original image. 

When talking about classes, we need to distinguish between information classes and 

spectral classes. Information classes are those categories of interest that the analyst is 

actually trying to identify in the imagery, such as different kinds of crops, different 

forest types or tree species, different geologic units or rock types, etc. Spectral classes 



 
are groups of pixels that are uniform (or near-similar) with respect to their 

brightness values in the different spectral channels of the data. The objective is to 

match the spectral classes in the data to the information classes of interest. Rarely is 

there a simple one-to-one match between these two types of classes. Rather, unique 

spectral classes may appear which do not necessarily correspond to any information 

class of particular use or interest to the analyst. Alternatively, a broad information 

class (e.g. forest) may contain a number of spectral sub-classes with unique spectral 

variations. Using the forest example, spectral sub-classes may be due to variations in 

age, species, and density, or perhaps as a result of shadowing or variations in scene 

illumination. It is the analyst's job to decide on the utility of the different spectral 

classes and their correspondence to useful information classes. 

Common classification procedures can be broken down into two broad subdivisions 

based on the method used: supervised classification and unsupervised classification.  

5.4.1. Supervised Classification 

In a supervised classification, the analyst identifies in the imagery homogeneous 

representative samples of the different surface cover types (information classes) of 

interest. These samples are referred to as training areas. The selection of appropriate 

training areas is based on the analyst's familiarity with the geographical area and their 

knowledge of the actual surface cover types present in the image. Thus, the analyst is 

"supervising" the categorization of a set of specific classes. The numerical information 

in all spectral bands for the pixels comprising these areas are used to "train" the 

computer to recognize spectrally similar areas for each class. The computer uses a 

special program or algorithm (of which there are several variations), to determine the 



 
numerical "signatures" for each training class. Once the computer has determined 

the signatures for each class, each pixel in the image is compared to these signatures 

and labeled as the class it most closely "resembles" digitally. Thus, in a supervised 

classification we are first identifying the information classes which are then used to 

determine the spectral classes which represent them. 

5.4.2. Unsupervised Classification 

Unsupervised classification in essence reverses the supervised classification 

process. Spectral classes are grouped first, based solely on the numerical information 

in the data, and are then matched by the analyst to information classes (if possible). 

Programs, called clustering algorithms, are used to determine the natural (statistical) 

groupings or structures in the data. Usually, the analyst specifies how many groups or 

clusters are to be looked for in the data. In addition to specifying the desired number 

of classes, the analyst may also specify parameters related to the separation distance 

among the clusters and the variation within each cluster. The final result of this 

iterative clustering process may result in some clusters that the analyst will want to 

subsequently combine, or clusters that should be broken down further - each of these 

requiring a further application of the clustering algorithm. Thus, unsupervised 

classification is not completely without human intervention. However, it does not start 

with a pre-determined set of classes as in a supervised classification. 

5.5. Image Segmentation 

Partitioning of an image into several constituent components is called segmentation. 

Segmentation is an important part of practically any automated image recognition 



 
system, because it is at this moment that one extracts the interesting objects, for 

further processing such as description or recognition. Segmentation of an image is in 

practice the classification of each image pixel to one of the image parts. If the goal is 

to recognize black characters, on a grey background, pixels can be classified as 

belonging to the background or as belonging to the characters: the image is composed 

of regions which are in only two distinct grey value ranges, dark text on lighter 

background. The grey level histogram, viz. the probability distribution of the grey 

values, has two separated peaks, i.e. is clearly bimodal. In such a case, the 

segmentation, i.e. the choice of a grey level threshold to separate the peaks, is trivial. 

The same technique could be used if there were more than two clearly separated 

peaks.  

Unfortunately, signal and background peaks are usually not so ideally separated, 

and the choice of the threshold is problematic. A typical histogram, still bimodal, but 

with peaks not separated, is shown in the Fig. 5-6 

 

Figure 5-6: A vertical histogram of a binary image. 

A variety of techniques for automatic threshold selection exists. A relatively 

successful method for certain applications is described in [71], where it is suggested 

that a modified histogram is employed by using only pixels with a small gradient 

magnitude, i.e. pixels which are not in the region of the boundaries between object and 

background.  



 
In many cases, segmentation on the basis of the greyvalue alone is not efficient. 

Other features like colour, texture, gradient magnitude or orientation, measure of a 

template match etc., can be put to use. This produces a mapping of a pixel into a point 

in an n-dimensional feature space, defined by the vector of its feature values. The 

problem is then reduced to partitioning the feature space into separate clusters, a 

general pattern recognition problem that is discussed in the literature.  

5.6. Summary 

The chapter covered the essentials basics and methodlogies present in practice. The 

areas of image intensity adjustment, enhancement of image clusters of interest and 

suppression of unwanted details were discussed. Furthermore, classification 

techniques addressing supervised and unsupervised segmentation were explored. 



 
CHAPTER 6  

CONCEPTUAL MODEL 

The main objective of an image processing system is to improve the quality of an 

image to a level where it could be easily processed by an image information retrieval 

system. Generally, if carefully done, this step takes care of much of the burden from a 

computer vision application whose main objective is to recognize a specific pattern, 

object or area from an image while keeping accuracy and performance.  

A conceptual model of such a pattern recognition application can be considered as a 

black box in which an image in its raw form is input and at the output we get standard 

information of our objective. Consequently, such an application can be divided into 

following main sub-objectives or goals. 

 

• Data Collection: Setting up a testing and training database covering all the 

cases that might encounter such an application in its real life situation. 

• Sampling: Filtering out information that is not required, thereby, reducing the 

level of complexity incurred by the system at the training level. 

• Segmentation: Isolating well defined set of blocks. 

• Normalization: To make input invariant to all sorts of scaling, rotation and 

translation. 

• Feature Extraction: To further reduce the input space by grouping the segments 

obtained on the basis of relevant features. 

• Classification: To correctly classify the input as one of the output classes. 



 
 

In the conceptual model of our system, data is collected by acquiring the image of the 

vehicle. The image is preprocessed in order to obtain the area of interest (i.e. License 

plate). The ROI is further re-sampled in order to filter-out unnecessary areas from the 

plate before commencing to the segmentation phase. The segmented blocks (plate 

characters) are then normalized and their features are extracted. These features are 

input to the classification stage to obtain the respective group or class of the individual 

blocks. 

 

The chapter is organized in the following order. The first section deals with the 

collection of image data. The data is gathered by acquiring images of cars using a 

digital camera. The second section covers the extraction of the license plates. This 

process is further divided into four phases, viz., contrast adjustment, color-intensity 

based edge detection/ color saturation based edge detection, connected candidate 

search, compactness based shape filtering and template matching. The next section 

presents the segmentation of the license plate into individual characters based on 

character height and centroid similarity. Following the segmentation stage is the 

recognition of the segmented characters using the syntactic approaches. The chapter is 

concluded by a brief summary. 

6.1. Image Acquisition 

This is the first phase in the LPR system. An image is generally acquired in the 

following three ways. 



 
 

1. Using a conventional analogue camera and a scanner 

2. Using a digital camera 

3. Using a video camera and a frame grabber (a frame averaging device 

for optimal frame selection) 

4. Digital Camcorder with a Software/Hardware trigger. 

 

The first method remains impractical for real time image processing applications 

because it is time consuming and tedious. Generally a digital camera can be used for 

research and development purposes which can later be exchanged by a camcorder and 

a frame grabbing device. The fourth case requires much programming overhead 

towards the programmer since the system also has to decide between a number of 

frames taken for the most suitable one for processing. 

In the proposed system a high resolution camera is used to acquire the image. The 

image is processed in its true-color (24 bit) form. Conversion to gray-scale is avoided 

in any of the image preprocessing phases in order to obtain stronger edge information 

in the later stages. The true color image is shown in Fig. 6.1. 

 



 

 

Figure 6-1: Original Image (A 16 million color (24 bit) image) 

6.2. License Plate Extraction 

License plate extraction is a key step in an LPR system. The objective of this phase is, 

given an input image, to produce a number of candidate regions with a significant 

degree of similarity with a license plate. In the adopted approach the extraction phase 

is divided into 4 phases which are explained in the following subsections. 

6.2.1. Image Contrast Adjustment 

Images taken in darker surrounds like rainy days, evenings or low light areas tend to 

stay short at their intensity profiles. The overall picture looks dim, which in turn leads 

to large saturation values through out the picture as shown in Fig 6.2. 



 

 

Figure 6-2: An image in low light 

The presence of shadows and partial illumination in an image directly affects the 

ability of color edge detection or a region growing algorithm to detect a ROI 

accurately.  

We tested a number of license plates taken at various lighting conditions to estimate 

the intensity variation due to the effect of shadows, low light and glare. The intensity 

of these images was adjusted such that a specific percentage of data at low and high 

intensities of the images was saturated. A saturation of 1% at both end of the image 

showed improvement in the image quality in darker surroundings. We simply map the 

low intensity to bottom intensity, and high intensity to the top. The values between 

low and high are, in general, mapped linearly to values between bottom and top. For 

example, the value halfway between low and high corresponds to the value halfway 

between bottom and top.  

The tested images showed minimal variation in image quality in normal lightning 

conditions. Examples of two such images are shown in Fig 6.3 and Fig 6.4. The main 



 
objective in this section remains to enhance an image’s quality and remove the 

effect of shadows and glare. 

 

Figure 6-3: (a) Image taken at low lightning conditions. (b) Results of Image 

Contrast Adjustment 



 

 

Figure 6-4: (a) Image taken in sufficient light. (b) Effect of contrast adjustment 

on the image. 

 



6.2.2. Search Map Optimization 
 

We consider the enhanced true color map as our search map. Our core objective is to 

locate or isolate an area with highest probability of the presence of the plates and 

characters. The presence of a car in an image is always marked by some local features 

that are normally not present in the entire image. Before commencing a plate 

extraction search over an entire image, it is better to look for some local features 

describing the presence of a car. The objective in this section is only to reduce the 

search space and chances of mistakenly processing a structure similar to a license plate 

in the background. If the two techniques fail to locate car presence successfully, the 

whole image is fed into the system for processing. 

In the proposed approach an image is first search for the following features. 

• Presence of maximum width horizontal edges 

• Presence of car break lights 

6.2.3. Horizontal edge based features 

The number of horizontal edges in an image always remains greater than the vertical 

edges. This is mainly due to the presence of Windscreen joints, Bumpers, Headlights 

and other similar objects present in a car. A horizontal edge map of Fig 6.4 is shown in 

Fig 6.5 (a). 

To enhance the horizontal edges we created a 2D special filter enhancing only the 

horizontal edges of the image. We used a 33× Sobel horizontal edge emphasizing 

filter given below. The filter emphasizes the smoothing effect by approximating a sh



 
vertical gradient. The result returned is used as a correlation kernel which is used 

with a two dimensional filter. 

121
000
121

−−−
=sh  (6-1) 

The two dimensional filter we are discussing here is our actual image intensity 

matrix , derived from the (Hue, Saturation, Intensity) HSI domain where is 

the number of rows and is the number of columns. The result of this horizontal edge 

emphasizing filter is shown in Fig 6.5 (a). 
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n

Algorithm 6-1: Local Edge-based Feature Search 

 Input: 

1. A True Color (24 bit) Image Matrix 

2. A Sobel based correlation kernel 

Begin  

 Scale the image matrix )( nmRGB × resolution to . 240320 ×

Perform to HSI conversion. RGB

Obtain the Intensity Map ‘ )( nmI × ’ (Discard the other two). 

Convert the Map ‘ I ’to Binary Map ‘ BW ’using dynamic threshold. 

Use the special filter given in Eq.6-1 over 2D matrix ‘ BW ’. 

Obtain an 8-connected labeled matrix of filtered BW as’ ’. filBW

Sort all the regions (horizontal lines) present in in descending 

order according to their widths. 

filBW



 
Select the first three lines (widest) 

If the lines cover more area underneath them in the image. Select that 

area for search starting from the very first line. 

If a license plate candidate is found, terminate the search 

Else 

Scan the image area above the lines 

End  

 

 

Figure 6-5: (a) A horizontal edge of image present in Fig 6.4 using Sobel 

Horizontal Edge Mask. (b) The first three edges found.  

6.2.4. Break light shape and symmetry based features 

Car break lights offer a number of unique features that are rarely common in all the 

other areas present in an image contain the back of a car. The break lights are 



 
prominent because normally the only rich color present at the back of the car is of 

break lights. The important characteristics of RED color are: 

1. Its invariance to HUE in the Hue, Saturation, Intensity (HIS) domain.  

2. Dissimilarity of break lights to any other objects in the image. 

These characteristics contain some important local features in an image like color, 

shape, symmetry and distance. 

Algorithm 6-2: Local Structure-based Search 

Input A True Color (24 bit) Image Matrix 

Output Feature vector for height, width and area of the regional components 

Begin  

 Scaled down the image ‘ I ’to 320x240 using a bi-cubic filter. 

 Convert I  it to HSV domain as ‘ ’ HSV

 Set a threshold to extract the upper most color domain 

 Apply a ‘7x7’ median filter to remove salt & pepper noise 

 Label ‘ ’in a 4-connected regional neighborhood search as 

‘ ’ 

HSV

labeled

 Divide the matrix ‘ ’into two halves  HSV

 Store the following values for all connected regions 

 i. Regional Height 

ii. Vertical Width 

iii. Area 



 
Based on all the features, all the regions in the left halve are compared with those 

on the right. To realize fuzziness in these comparisons a fuzzy set termed as “similar 

to each other” is shown in Fig 6-6: 



 

 

Figure 6-6: Flowchart for Break light pair locating module 



Consider the universal set of areas of all regions in the image. 
 
Suppose the object of comparison on the left has an area and that on the right has an 

area .  

lA

rA

The measure of similarity between the two can be calculated as follows:  

 

),max(/),min()( , rlrllk AAAAweight =    (6-2) 

lkllk weightAmembership ,, )(×=     (6-3) 

r
lklk A

membershipA 1)()( ,, ×=µ     (6-4) 

Where ‘ ’is a region in the right half of the image and ‘ ’is a region in the left half of 

the image.  

k l

The two operators of Fuzzy Height and Vertical Width are calculated on the basis 

similar to that of Fuzzy Area given in Equations 6-2, 6-3 and 6-4 and will be defined 

as follows.  

l
lklk H

membershipH 1)()( ,, ×=µ     (6-5) 

r
lklk V

membershipV 1)()( ,, ×=µ     (6-6) 

This results in a membership matrix in which each region in the left half is 

similar to a region in the right half of the image by some degree set by the fuzzy 

membership functions defined in Equations 6-4, 6-5, 6-6. These membership functions 

result in three separate membership values ranging from 0 to 1 based on the closeness 

of the region with the one compared on the basis of the three maps discussed. The 

lk ×



 
overall aggregate fuzzification as shown in Fig. is achieved by multiplying the 

membership values to achieve an ultimate membership as follows: 

)(*)(*)()( ,,,, lklklklk VHAAHV µµµµ =     (6-7) 

The final map, thus obtained, as shown in Fig 6-6; has the final break light candidates 

selected on the basis of maximum-area-pair.  

 

Figure 6-7: (a) HUE Map of an image shown in Fig 6-4 of resolution 320x240. (a). 

(b) Threshold Image for the top 20% rich values (RED). (c) Candidate area with 

similarity to break lights. (d) A color map of (c). (e) Final Break light pair. (f) 

Clipped Image for input of high resolution. 



 
The two techniques based on extracting local features to minimize search area 

contributed a small part for 

6.2.5. Color Edge Detection 

From the enhanced true color image, its corresponding edge maps are calculated and 

modified on the basis of a fuzzy operator calculating the degree of edginess of a pixel 

in a neighborhood. The edge maps are calculated on the basis of two different 

techniques. 

a. Euclidean Distance based technique. 

b. Vector Angle based technique. 

The two techniques have already been discussed in detail in Chapter 3. To ensure 

better performance, the techniques were employed using a simple color mask.  22 ×

6.2.6. Euclidean/Vector Angle Robert’s Operator 

A simple edge operator known as Robert’s operator was used [58]. The operator uses a 

neighborhood of the current pixel. The convolution masks used by Robert’s 

Operator are as follows: 

22 ×
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The edge magnitude is computed as follows 
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This operator can be generalized to multidimensional pixel values for ED and VA as 

follows: 
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where is the vector containing the multiple values of the pixel at coordinate 

, and 

),( yxc

),( yx •  is the vector norm. 2L

 

The masks thus obtained were enhanced using a membership function indicating the 

degree of edginess in each pixel’s neighborhood. The membership function is 

measured as follows. 
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Where  is the pixel whose edginess is to be determined and is a predefined 

neighborhood (  in our case) along which the edginess of the pixel is to be 

calculated. ‘ ’ is the total number of pixel present in the neighborhood (8  in our 

case). The membership function enhances the edginess of a pixel in a way that if there 

),( yxg N

33×

∆ N



 
are a lot of edges present in a neighborhood, the membership value of the pixel 

increases to ‘1’. The same value asymptotically reaches ‘0’ if there are almost 

no pixels present in the neighborhood. The maps thus obtained are filtered based on 

their eight connected neighborhood.  

),( yxg

6.2.7. Plate Candidate Selection 

The Edge Maps thus obtained are searched for connected components similar to a 

license plate. The feature used is the regional compactness of each connected area 

found. It is compared with the compactness of the standard license plate image using 

Fuzzy Logic. Based on area and perimeter, the compactness of a fuzzy set can be 

determined as follows: 
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The value of compactness is invariant to distance and skew in the image and serves 

well in Fuzzy domain even if an extent of noise distortion is present. This resulted in a 

Compactness Map )(ˆ cCµ for all the candidate regions present. 

Ĉ Map: Suppose that the object of interest has compactness . Given an entry in 

map

'' ic

C
)

, say , the membership degree,'' c Ĉµ  of the entry belonging to fuzzy set ‘Like a 

Plate’ can be written 

)exp()(ˆ iC ccac −−=µ     (6-15) 



 
According to the definition of a Fuzzy Map, a large entry indicates a high degree 

of possibility that the region belonged to a license plate. The candidate license plate(s) 

are extracted on the basis of threshold criteria finding out the minimum and the 

maximum entry present in the C Map. Let ˆ M~ be any fuzzy map, 

2/)~~( minmax aathreshold +=     (6-16) 

Where max
~a and min

~a are the maximum and minimum values in M~ . All the entries that 

are greater than the threshold are taken as potential candidates of being a license plate.  

The process of filtering unwanted regions normally ends up with more than one 

license plate candidates. This situation is handled by matching all such regions with a 

standard template as shown in Fig 6-8 (b). 

 

Figure 6-8: (a) Standard Saudi Arabian License Plate. (b) Saudi Arabian License Plate 

Template  )( TI



 
 

Candidate Image: 

‘I ’ C

XOR Matrix: CT II ⊕  Mismatch 
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Figure 6-9: The white area in the XOR matrix displays the mismatch present between 

the actual and the template image. 

Let be the template image and be the candidate image to be compared. The 

candidate image is first normalized to the template image size 

TI CI

[65 ]145 using Nearest-

neighbor Interpolation. We measure the difference between the two matrices using the 

standard Hamming Distance (XOR). The operation on the binary image matrix of the 

two will give a HIT/MISS based matrix containing ones in the regions with 

dissimilarity and zeros in the regions containing similar pixels. Counting the number 

of MISS pixel positions give us the error code or the number of pixel that mismatched 

with the standard template. We simply select the candidate with lowest mismatch 

value. The whole extraction process starting from the search optimization based 

cropped image is shown in Fig 6.10(a) – Fig 6.11. 



 

 

Figure 6-10: (a) Vector Angle based edge map of image shown in Fig 6-4(b). (b) 8-

connected areas of the image shown in (a).
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Figure 6-11: Candidate areas shown in column (a) are the normalized form 

equivalent in dimension to the template image shown in Fig 6.8(b). 

6.3. Character Segmentation 

The license plate segmentation is used to divide the final plate extracted into 

individual characters. The individual recognition of characters is only possible when 

the plate is divided into six isolated blocks each containing a single character. This is 

done because a standard Saudi Arabian license plate consists of 6 characters, with 3 

letters and 3 numerals.  



6.3.1. Plate Enhancement 
 

Before commencing the segmentation process, the plate area is enhanced using a 

dynamic threshold based plate conversion. The gray scale image of the plate is 

converted into a binary image using a dynamic mask of size . The mask 

averages the gray scale intensity value in a 

1515×

1515× neighborhood for a pixel and 

converts the pixel to black or white on the basis of this threshold. 

iP

RGB-to-Binary conversions, using a mask of such larger sizes, are not recommended 

at big images and are, therefore, not carried out in real time application. The approach 

proved very effective in removing noise and intensity distortions. 

Original Plate Dynamically Threshold 

  

  

  

Figure 6-12: Plates taken under (a) Fog. (b) Rust. (c) A tilt of 45 degree and a 

Reflection 

Note: The additional area visible around each plate shown in Fig 6.12 is only to 

compensate for the huge mask size. 



The effect of lesser mask size is shown in Fig 6.13 (c). 
 

 

 

Figure 6-13: All three cases. (a) Actual Plate. (b) Threshold with a mask 

(c) Threshold with a 

1515×

55 × mask.  

Before commencing to the character isolation phase, the upper part of the plate is 

cropped to remove . For the segmentation phase, the proposed strategy is 

based on separating every connected component present in the plate using a hybrid 

approach. The approach uses a fuzzy c means algorithm with the plate’s projection 

profile.  



 
6.3.2. Fuzzy C Means Clustering 

The features local to a license plate that differentiate between license plate characters 

and other objects such as bolts, monograms and state names can be utilized to classify 

valid characters and drop other areas before commencing an image histogram 

projection. This eliminates significant number of areas that affect the threshold of a 

plate’s segmentation.  

We basically adopted a hybrid approach of making use of bounding box search for 

extracting the local segments. A feature vector based on the centroid, vertical and 

horizontal width of the regions found in the candidate plate area was passed through a 

bi-cluster fuzzy c-means algorithm. The actual cluster among the two was decided on 

the basis of its average centroid height in the plate. The process is shown in Fig 6.14. 

If the number of segmented characters found is larger than the prescribed number 

(six), components are deleted one at a time starting with the smallest one until the 

above condition is satisfied. 

 



 

 

Figure 6-14: The figure shows a tilt-invariant clustering of license plate clusters 

using a fuzzy c means algorithm (cluster-2 candidates are shown in blue color). 

 

 

 

Figure 6-15: Horizontal (a) and Vertical (b) projection profile of the plate based 

on the selected cluster (cluster 2) from the image shown in Fig 6.14. 

 

Figure 6-16: The final ‘6’ characters of the license plate 



 
6.4. Plate Recognition 

Plate Recognition is the final phase in any LPR system. The phase deals with the 

recognition of the characters isolated in the phase of character segmentation. 

Respecting the fact that characters present on the license plate are of same font, size 

and shape, recognition is considered a simple task. Our work here deals with the 

offline recognition of the characters. 

Because classification, basically, is a task of generating a group that generated the 

patterns, various classification techniques are useful depending on the type of 

application at hand. 

There are basically three approaches in pattern recognition: Statistical, Syntactic and 

Neural [65]. Statistical Approach is based on decision making (i.e. probabilistic 

model), Syntactic deals with the structural description of the pattern and Neural is 

based on training the system with a large dataset of input and storage of weights that 

are used at the later stages in recognition of trained patterns. 

6.4.1. Statistical Pattern Recognition 

In statistical pattern recognition we address properties of patterns related to the 

probability densities. In this case the model for a pattern may be a single specific set of 

features, though; the actual pattern has been corrupted by some form of random noise. 

Focusing this major factor we effort was concentrated at utilizing an approach from 

this area for our recognition problem. The area of neural pattern recognition is 

considered a close descendant of statistical pattern recognition [65]. 

 



6.4.2. Syntactic Pattern Recognition 
 

If the model consists of a set of crisp logical rules, the methods of syntactic pattern 

recognition are used. Basically a set of grammar describe the recognition module in 

such a case.  

 

6.4.3. Recognition using Principal Component Analysis 

To prevent human error in reading number plates, the characters chosen in the 

Saudi Arabian number plates are categorized based on the structure of the character 

and the characters bearing dots are kept as low as possible. Characters with similar 

features are avoided. This left a typical Saudi Arabian number plate with only 17 out 

of 26 Arabic alphabets and 10 numerals. The situation favors the recognition and 

classification strategies as well.  

Since the standard set for the License Plate only used key features of Arabic 

characters to make reading easier for human beings, a classification technique making 

use of these key features would provide nearest results. A sudden human glance over a 

bunch of characters of a rapidly separating car uses structural features for 

identification such as the lengthy and straight structure of , the semi-rounded shape of 

 or arced nature of  enables one to discriminate them from other such characters 

on the foundation of their principal components. 



 
Keeping the idea of such key features in mind, we tested the segmented 

characters using PCA (Principal Component Analysis). The basic structures (2D 

matrix) of all of these 17 characters and 10 digits were passed as feature vector for 

training to the PCA. 

Definition: A set of variables that define a projection that encapsulates the 

maximum amount of variations in a dataset and is orthogonal (and therefore) 

uncorrelated to the previous principle component of the same dataset. 

PCA is commonly used as a cluster analysis tool. It is designed to capture the 

variance in a dataset in terms principle components. In effect, we try to reduce the 

dimensionality of the data to summarize  

To use PCA, five steps must be performed as follows: 

1. Development of proper data 

2. Calculation of Covariance Matrix 

3. Calculation of Eigenvalues/Vectors 

4. Selection of Eigenvectors 

5. Data Mapping 

 

If it is chosen to use R  eigenvectors, then the dataset must include at least R samples 

from each class. 

2. Calculation of Covariance Matrix  

To hold the correlation within the training data, the covariance matrix,  is 

calculated as follows: 

xC

}))({( T
xxx xxEC µµ −−=    (6-17) 

 



 
 

3. Calculation of Eigenvalues/Vectors  

The eigenvalues, jλ  and eigenvectors,  are calculated as follows: je

0)det( =− IC jx λ      (6-18) 

The eigenvectors span an orthonormal space. This space will be used for the mapping 

of training data. 

4. Selection of Eigenvectors  

After the solution of the Eigenvalue problem, proper eigenvectors must be determined 

to be used.  

5. Data Mapping. 

Data mapping is done as follows 

          (6-19) )( x
T xBC µ−=

T
nxxxx ),...,,( 21=      (6-20) 

Where denotes the output data. x

B denotes the transformation matrix containing the chosen eigenvalues as column 

vectors. 

x denotes the input data. 

xµ denotes the centroid of the training data. 
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CHAPTER 7  

EXPERIMENTAL ANALYSIS AND RESULTS 

The chapter describes the tests and analysis done on all the thesis work described in 

the previous chapter. The tests performed for various techniques used for the phases of 

extraction, segmentation and recognition will be discussed. Analysis of the following 

issues will be addressed in detail. 

• Image enhancement 

• Edge Mapping and Detection 

• Fuzzy Techniques used for 

o Compactness Matching 

o Edge Enhancement, and 

o Segmentation 

• Mask based Averaging for plate enhancement 

• Recognition  



 

 

Figure 7-1: Figure displaying the various angles and distances at which the test 

samples were taken. 

Table 7-1: Number of images taken at various measures 

 2 meter 4 meter 

0 degree skew 200 200 

101 
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45 degree skew 198 202 

60 degree skew 35 17 

Total Number of Images: 852 

7.1. Image Enhancement 

In the extraction phase the main object remains to enhance an image taken in 

considerable low light or glares due to the presence of luminance at an angle incident 

to the camera. A good enhancement technique helps in clearing areas with a balanced 

color presence (like a license plate) to enhance their contrast as compared to the other 

objects present with comparable uneven illumination.  

7.1.1. Criteria of success 

While testing this important factor must be kept in mind that the goal is to enhance the 

plate area only. Since we are saturating (mapping) intensities in the upper (whiter) 2% 

of the image, the license plate that generally appears to be among the whitest areas in 

an image, enhances its presence. 

7.1.2. Testing 

The image contrast adjustment module was tested basically at two sets of images. The 

first set consisted of images taken in a garage at around 10:00 PM and contained 

images either low in details due to the presence of lesser light, shadows, tilt or those 

affected by artificial light sources. The second set was taken in open environment 
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under either direct sunlight or sufficient illumination. The angular and distance 

information was kept as shown in Fig 7.1. 

The results were initially tested manually and observed for any apparent improvement. 

The phase had a significant effect over the forthcoming license plate extraction phase 

as it improved the rate of license plate recovery cases. 

7.2. Extraction Test 

In the extraction phase a test is performed and results are compared with the method 

proposed by Sarfraz et al [2]. Sarfraz et al [2] used Hough transform to detect vertical 

edges; filtering, vertical edge matching and B/W ratio matching for license plate 

extraction.  

The proposed method is based on steps starting from the enhanced true color image: 

Color Edge Detection, Connected Area Blob Search, Candidate Search based on a 

Fuzzy Compactness Map and Template Matching for final extraction.  

7.2.1. Criteria of success 

The goal in this phase is to shorten the search for the license plate candidates by taking 

only those areas that are 8-connected based on the edge maps obtained. This leaves us 

with a limited set of regions in which at least one is probably containing the license 

plate. The criterion is relatively straight forward and was adopted on the basis of the 

following two reasons. 
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1. An 8-connected search doesn’t come up with regions that are 

computationally hard to process. 

2. The regions are numerically less than those extracted on the basis of 

vertical edges and are, therefore, less expensive to process. 

 

The situation does not emphasize on what is present in these connected regions neither 

is it extracting the characters when the plate candidate is finalized on the basis of the 

following reasons:  

1. The edge maps (Vector Angle, Euclidean distance) detect more edges 

than regular color edge detection schemes. This generally results in 

oversized, inter-connected character pairs that are hard to segment. 

Though, the schemes proved its robustness in its own account.  

2. Once the final candidate is decided, it is relatively easy to use some 

well defined technique (addressed in the thesis under section 6.4) to 

cater the character segmentation process. 

3. Size and shape filtering is error prone to cars with reflective surfaces. 

 

7.2.2.  Test Data and Test Description 

The images were taken as shown in Fig 6.1. The images were taken at varying lighting 

conditions including low light, direct sunlight and uneven intensities. The test set 

included plates with dirt, rust, skew, break and other noise distortions. 
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As mentioned earlier, the test was performed on all the images shown in Table 7.1. 

Generally a lower number of connected regions will make the task of finding the 

number plate easier. 

7.2.3. Results 

The proposed method based on Vector Angle based edge detector turned out to be a 

very robust way of finding the license plate. As Table 7-2 indicates, it almost always 

created an 8-connected license plate candidate entry in the edge map. In only 8 out of 

852 test images it failed in locating a connected region. The failure cases are shown in 

Fig 7.7 and Fig 7.8 for vector angle based technique. This is because either the plate 

character got connected because of severely illuminated surface as shown in Fig 7.7 or 

the plate’s black outline was unclear with a background of same hue and saturation as 

shown in Fig 7.8. 

 

In the case of Euclidean Distance based edge map, the number of failures was a bit 

high. This was basically due to the fact that the edge detector only emphasized edges 

similar in color but different in intensity. The system failed for 12 out of 852 images in 

locating the 8-connected edge map.  

 

The 8-connected labeled matrix, thus obtained, contained a number of candidate 

connected region. The regions were tested for a fuzzy compactness map that created a 

membership based on the similarity of compactness of the candidate region with that 

of a standard license plate. Those with membership values close to 1 (greater than 
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0.8), were selected as prospective license plates candidates. All the cases tested 

contained at least one actual license plate. The final candidate plate selection module 

compared these candidates with the template of a standard Saudi Arabian license plate 

(as discussed in the previous chapter). This, again, had an almost 100% outcome. The 

statistical results are shown in Table 7-3. 

Table 7-2: Comparison with previous work. 

 Method Success Rate Percent Error No. of Regions 

1. Hough 

Transform 

46/72 63.88% 50-100 

2. VA 844/852 99.06% 2-5 

3. ED 840/852 98.59% 2-8 

4. Vertical Edge 68/72 94.44% 20-30 

 

Table 7-3: Success rate at candidate selection 

 Method 

(Candidate Selection) 

Success Rate 

(VA) 

Success Rate 

(ED) 

1. Fuzzy Compactness 

Matching 
842/844 838/840 

2. Template Matching 842/842 838/838 
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7.3. Segmentation Test 

The section describes the test for isolation of characters using a hybrid approach based 

on fuzzy clustering and projection profiles. To enhance the plate image a dynamic 

mask based threshold was performed over the plate area. The method simply takes 

average value of a masked neighborhood for each pixel and sets the pixel’s value on 

the basis of that threshold. The quality of the image increases with the size of the mask 

as shown in Fig 6.11. The image detail converges at a point with the mask increase. 

The image, thus obtained, is processed to extract areas using fuzzy c means clustering. 

Only areas extracted in this phase are subject to the pixel profile projections 

(horizontal and vertical). On the extracted areas, horizontal pixel profile is found. The 

profile only has one wide peak formed by the character rows. The clipped plate on the 

basis of horizontal profile is shown in Fig 6.13 (a). The clipped plate is passed through 

a vertical pixel projecting profiler to obtain the final candidate characters. The tests on 

these methods are provided with the results. 

7.3.1. Criteria of success 

The purpose of this step is to divide a license plate into exactly six sub images, each 

containing one of the six characters. A successful isolation fills all of the following 

criteria: 

• The plate must be divided into six sub images 
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• None of the six characters have significant loss of details. 

• The order of the images has to be in correct order and matches the characters 

present on the plate. 

7.3.2. Test Data and Test Description 

The method for isolating the characters is a simple black box test. An input image is 

given to the license plate character isolation module and the success of the test simply 

depends upon the resulting outcome as discussed in the previous section. The test is 

performed on the images received from the successfully extracted plates. The process, 

therefore, was tested on 842 and 838 images for VA and ED based image maps 

respectively. 

7.3.3. Results 

Table 7-4: Hybrid approach outcome of Fuzzy C Means/Projection based 

segmentation 

Technique Method Rate/Percentage 

(VA) 

Out of 842 

Rate/Percentage 

(ED) 

Out of 838 

Direct extraction from edge 

maps 

785 93.23% 779 92.95% Hybrid Approach 

Masking 803 94.24% 790 94.27% 
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7.4. Recognition Test 

The final step in recognizing a license plate is identifying the single characters 

extracted from the segmentation stage. An approach based on Principal Component 

Analysis is presented earlier in chapter 6. 

7.4.1. Criteria of success 

The standard of success is simply a high recognition rate of the isolated characters. 

7.4.2. Test Data 

The test data originates from the 852 test images extracted and isolated during the 

previous tests. The actual test data is the single characters extracted from the license 

plates. The characters are identified using principal components of the blocks 

extracted from the two dimensional image matrices.  

7.4.3.  Results 

The system was trained and tested with PCA on a large set of input data. (852 input 

images). First the system was trained on the dataset available and based on the training 

data; a database of classifiers for different classes of characters was created. The 

system was tested on the new dataset to get the overall recognition rate. In the case of 

the proposed system, there are 27 set of classes for the 27 characters used on the 

license plate. From the dataset, 70% was used to train the PCA and 30% was used for 

testing. The overall recognition using PCA is shown in Table 7-5. 
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Table 7-5: Success rate for individual characters using PCA 

Character Recognized 

English form 

Recognition 

Rate 

Alif A 95% 

Baa B 92% 

Haa H 98% 

Daal D 73% 

Raa R 71% 

Seen S 67% 

Suad Sa 68% 

Tua T 97% 

Aien Ae 77% 

Quaf Q 88% 

Kaaf K 95% 

Laam L 93% 

Meem M 100% 

Noon N 94% 

Waow W 81% 

Yaa Y 100% 

One 1 100% 



 

Two 2 85% 

Three 3 85% 

Four 4 100% 

Five 5 100% 

Six 6 85% 

Seven 7 95% 

Eight 8 95% 

Nine 9 100% 

Zero 0 100% 

 Average 97.46% 

 

7.5. System Test 

In the previous sections, the components were examined separately in terms of 

performance. It is also necessary to test the combination of the components. In real 

life, an error made in the initial stages of the system ripples through the system, 

thereby, affecting the overall performance.  

The system is designed and developed in Matlab 7.1 for the Identification of Saudi 

Arabian license plates. The input image to the system is a 24-bit image of 

size . The test images were taken under various illumination conditions at 600900 ×
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angular and distance measurements shown in Fig 7-1. The experiments were 

performed for the following cases: 

• Images taken under normal illumination conditions 

• Images taken under various skews 

• Distorted Plates 

• Occluded Plates 

The whole system is achieving a high recognition rate. Table 7-6 gives an overall 

performance evaluating results for the license plate extraction, segmentation and 

character recognition. A failure is generally encountered in the cases of extremely poor 

quality of image. A few of such cases are presented at the end of the chapter. It is 

shown that the system correctly isolated 803 plates in the case of VA based edge 

detection and 790 plates using ED based technique. The individual testing in the 

recognition phase over the characters was carried out over characters extracted from 

30% of the license plates. The overall system successfully identified 791/803 plates in 

the case of VA based technique giving an overall accuracy of 92.82% and 742/790 

plates in the case of ED based implementation giving an accuracy of 87.09% over the 

total 852 plates. The whole system design was implemented using Intel Pentium® 1.7 

MHz Dual Processor machine under Matlab 7.1 IDE. 

The experimental results show that the shortcoming of the proposed system was 

mainly due to the following factors: 

 

1. Poor image quality due to unstable imaging stance of the photographer. 

2. Unrealistic tilt (Fig 7-7) in the image. 

3. Extremely low light. 
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4. Extreme depression in the image angle. 

5. High intensity light incident over the image. 

 

There was a slight error in the segmentation was of the system mainly due to the 

presence of illegal label between the character blocks. Since the standard Saudi 

Arabian license plate format follows a single font, the recognition phase doesn’t have 

the complexities that are usually present in the classification of unconstrained 

recognition. 



 

114 

Table 7-6: Results for extraction, segmentation recognition phase (VA) 

 Extraction Segmentation Recognition Overall 

Success  842/852 803/842 791/803 791/852 

Percent 

Recognition 

98.82% 95.36% 98.5% 92.84% 

 

Table 7-7: Results of extraction, segmentation and recognition phase (ED) 

 Extraction Segmentation Recognition Overall 

Success  838/852 790/838 742/790 742/852 

Percent 

Recognition 

98.35% 94.27% 93.92% 87.09% 

 

7.6. Summary 

The chapter covered the test on the individual phases of an LPR system with some of 

the comparisons with the work previously done in this area. For the extraction phase 

the proposed method showed a better result then the extraction done by Hough 

Transform as well as Vertical Edge matching. An improvement in accuracy and a 

drastic improvement in the application processing time were recorded when 

comparing all the techniques with the proposed one. For segmentation, the system 
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proved error proneness to tilt of high degrees and distance. An overall system was also 

presented attaining good results. 



 

 

Figure 7-2: Image taken under normal illumination conditions with similar plate 

and background Hue and Intensity (VA implementation) 
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Figure 7-3: Image taken under the effect of glare with significant intensity 

variations at the plate surface area (VA implementation) 
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Figure 7-4: Image of a car with dim license plate and characters low in color 

profile (ED implementation) 
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Figure 7-5: Image taken under low light. The plate’s background color is similar 

to the foreground (VA implementation) 
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Figure 7-6: Plate with an extreme tilt (ED implementation) 
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Figure 7-7: Failure case: Image taken under extreme low light with artificial 

illumination directly incident over a bent plate (VA implementation) 
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Figure 7-8: Failure Case: Image taken at low light with the plate’s color 

saturation similar to the background color saturation. (VA implementation) 
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Figure 7-9: Image taken at low light and plate under shadow effect(VA 

implementation) 
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Figure 7-10: Plate under direct illumination of camera flash (VA implementation) 
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Figure 7-11: Image taken at sunset under receding light (VA implementation) 
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Figure 7-12: A tilted image under low light (ED implementation) 
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Figure 7-13: A tilted image at low light (ED implementation) 
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CHAPTER 8  

CONCLUSION AND FUTURE WORK 

8.1. Conclusion 

The purpose of this thesis has been to investigate the scope of automatic license plate 

recognition under minimal restrictions. The main objective was aimed at contributing 

towards the research in the fields of machine vision, pattern analysis and image 

processing. The system developed investigates the possibility of automating the whole 

process of license plate recognition for a wide range of environments. Given an input 

image, the system extract extracts the license plate, isolates the characters, and finally 

identify the characters. For each task, a set of methods were proposed, designed and 

developed. The input image was first passed through an image enhancement and 

intensity adjustment algorithm to obtain better detail of snaps taken in low light. For 

the extraction, a connected component labeling technique was used to obtain a number 

of regions. The technique was performed on the color edge maps based on Vector 

Angle and Euclidean Distance based techniques. The edge profile of these maps was 

enhanced using a fuzzy edginess calculating procedure. The final edge maps thus 

obtained were processed to obtain 8-connected regions that were finalized a 

The number of regions were shortened using a Fuzzy technique based compactness 

mapping and comparing algorithm. The final candidate was decided on the minimal 

mismatch criteria based on Hamming Distance using XORed image matrices.  



 

The method based on projection profiles were not very successful but a hybrid 

approach based on clustering regions of interest first improved the performance of 

projection based segmentation drastically.  

For the recognition process, a technique based on Principal Component Analysis was 

used. The technique was able to recognize even the characters that were structurally 

incomplete or broken especially the character  that normally losses information at 

its thinner part in distant or noisy images. 

In order for the system to be robust and reliable, it should be able to combine the three 

separate stages and to recognize the license plates in high percentages, in order to keep 

the manual work as minimal as possible. This implies that the success rate of the 

system should be 100%.  

8.2. Future Work 

The system explores the core possibilities available in image enhancement and 

restructuring.  

Steps can be taken to further enhance the image areas with highest probability of 

license plate presence.  

At the moment the system uses two core techniques for extracting edges namely 

Vector Angle and Euclidean Distance. Both the techniques have their own 

significances discussed earlier. The fact is widely accepted that ED and VA metrics 

take into account the intensity and chromaticity information. To exploit their particular 

features, specific combination operators can be worked upon. These operators can be 
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further enhanced to HSV domain, thereby, utilizing the flexible human perception of 

Hue, Saturation and Intensity domains. 

The issue of compactness threshold for candidate selection at the moment is hard-

coded on the basis of thresholds set by experience. The system can be trained using 

some pattern recognition technique over a large set of license plates taken under 

various conditions. This can make the number of candidates much shorter in 

environments much complex and detailed. 

The area of segmentation uses a straight forward fuzzy clustering technique to remove 

noise and unrelated areas. There are no weight assignments to enhance the presence of 

either one of the feature vectors used. The features currently used are Centroid, 

Vertical and horizontal height). The system, simply, gives equal weight to all the 

entries. Further work can be done to define membership functions enhancing the 

presence of either of the features. 

The approach is currently developed used sequential programming techniques. Since 

Matlab 7.1 has no thread support. Most of the areas in image processing like image 

reading, type conversions, mask based operations, noise removal, etc can be handled 

using thread based developments. An implementation done in a concurrent 

environment will enhance the running time of the application significantly. 
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