65 research outputs found

    Static scheduling of the LU factorization with look-ahead on asymmetric multicore processors

    Get PDF
    [EN] We analyze the benefits of look-ahead in the parallel execution of the LU factorization with partial pivoting (LUpp) in two distinct "asymmetric" multicore scenarios. The first one corresponds to an actual hardware-asymmetric architecture such as the Samsung Exynos 5422 system-on-chip (SoC), equipped with an ARM big.LITTLE processor consisting of a quad core Cortex-A15 cluster plus a quad-core Cortex-A7 cluster. For this scenario, we propose a careful mapping of the different types of tasks appearing in LUpp to the computational resources, in order to produce an efficient architecture-aware exploitation of the computational resources integrated in this SoC. The second asymmetric configuration appears in a hardware-symmetric multicore architecture where the cores can individually operate at a different frequency levels. In this scenario, we show how to employ the frequency slack to accelerate the tasks in the critical path of LUpp in order to produce a faster global execution as well as a lower energy consumption. (C) 2018 Elsevier B.V. All rights reserved.The researchers from Universidad Jaume I were supported by projects TIN2014-53495-R and TIN2017-82972-R of MINECO and FEDER, and the FPU program of MECD. The researcher from Universitat Politecnica de Catalunya was supported by projects TIN2015-65316-P of MINECO and FEDER and 2017-SGR-1414 from the Generalitat de Catalunya.Catalán, S.; Herrero, JR.; Quintana Ortí, ES.; Rodríguez-Sánchez, R. (2018). Static scheduling of the LU factorization with look-ahead on asymmetric multicore processors. Parallel Computing. 76:18-27. https://doi.org/10.1016/j.parco.2018.04.006S18277

    Multi-threaded dense linear algebra libraries for low-power asymmetric multicore processors

    Full text link
    [EN] Dense linear algebra libraries, such as BLAS and LAPACK, provide a relevant collection of numerical tools for many scientific and engineering applications. While there exist high performance implementations of the BLAS (and LAPACK) functionality for many current multi-threaded architectures, the adaption of these libraries for asymmetric multicore processors (AMPs) is still pending. In this paper we address this challenge by developing an asymmetry-aware implementation of the BLAS, based on the BLIS framework, and tailored for AMPs equipped with two types of cores: fast/power-hungry versus slow/energy-efficient. For this purpose, we integrate coarse-grain and fine-grain parallelization strategies into the library routines which, respectively, dynamically distribute the workload between the two core types and statically repartition this work among the cores of the same type. Our results on an ARM (R) big.LITTLE (TM) processor embedded in the Exynos 5422 SoC, using the asymmetry-aware version of the BLAS and a plain migration of the legacy version of LAPACK, experimentally assess the benefits, limitations, and potential of this approach from the perspectives of both throughput and energy efficiency. (C) 2016 Elsevier B.V. All rights reserved.The researchers from Universidad Jaume I were supported by projects CICYT TIN2011-23283 and TIN2014-53495-R of MINECO and FEDER, and the FPU program of MECD. The researcher from Universidad Complutense de Madrid was supported by project CICYT TIN2015-65277-R. The researcher from Universitat Politecnica de Catalunya was supported by projects TIN2015-65316-P from the Spanish Ministry of Education and 2014 SGR 1051 from the Generalitat de Catalunya, Dep. dinnovacio, Universitats i Empresa.Catalán, S.; Herrero, JR.; Igual Peña, FD.; Rodríguez-Sánchez, R.; Quintana Ortí, ES.; Adeniyi-Jones, C. (2018). Multi-threaded dense linear algebra libraries for low-power asymmetric multicore processors. Journal of Computational Science. 25:140-151. https://doi.org/10.1016/j.jocs.2016.10.020S1401512

    Programming parallel dense matrix factorizations with look-ahead and OpenMP

    Get PDF
    [EN] We investigate a parallelization strategy for dense matrix factorization (DMF) algorithms, using OpenMP, that departs from the legacy (or conventional) solution, which simply extracts concurrency from a multi-threaded version of basic linear algebra subroutines (BLAS). The proposed approach is also different from the more sophisticated runtime-based implementations, which decompose the operation into tasks and identify dependencies via directives and runtime support. Instead, our strategy attains high performance by explicitly embedding a static look-ahead technique into the DMF code, in order to overcome the performance bottleneck of the panel factorization, and realizing the trailing update via a cache-aware multi-threaded implementation of the BLAS. Although the parallel algorithms are specified with a high level of abstraction, the actual implementation can be easily derived from them, paving the road to deriving a high performance implementation of a considerable fraction of linear algebra package (LAPACK) functionality on any multicore platform with an OpenMP-like runtime.The researchers from Universidad Jaume I were supported by the CICYT Projects TIN2014-53495-R and TIN2017-82972-R of the MINECO and FEDER, and the H2020 EU FETHPC Project 671602 "INTERTWinE". The researchers from Universidad Complutense de Madrid were supported by the CICYT Project TIN2015-65277-R of the MINECO and FEDER. Sandra Catalan was supported during part of this time by the FPU program of the Ministerio de Educacion, Cultura y Deporte. Adrian Castello was supported by the ValI+D 2015 FPI program of the Generalitat Valenciana.Catalán, S.; Castelló, A.; Igual, FD.; Rodríguez-Sánchez, R.; Quintana Ortí, ES. (2020). Programming parallel dense matrix factorizations with look-ahead and OpenMP. Cluster Computing. 23(1):359-375. https://doi.org/10.1007/s10586-019-02927-zS359375231Anderson, E., Bai, Z., Susan Blackford, L., Demmel, J., Dongarra, J.J., Croz, J.D., Hammarling, S., Greenbaum, A., McKenney, A., Sorensen, D.C.: LAPACK Users’ guide. SIAM, 3rd edition (1999)Badia, R.M., Herrero, J.R., Labarta, J., Pérez, J.M., Quintana-Ortí, E.S., Quintana-Ortí, G.: Parallelizing dense and banded linear algebra libraries using SMPSs. Conc. Comp. 21, 2438–2456 (2009)Bientinesi, P., Gunnels, J.A., Myers, M.E., Quintana-Ortí, E.S., van de Geijn, R.A.: The science of deriving dense linear algebra algorithms. ACM Trans. Math. Softw. 31(1), 1–26 (2005)Bischof, C.H., Lang, B., Sun, X.: Algorithm 807: the SBR toolbox–software for successive band reduction. ACM Trans. Math. Softw. 26(4), 602–616 (2000)Buttari, A., Langou, J., Kurzak, J., Dongarra, J.: A class of parallel tiled linear algebra algorithms for multicore architectures. Parallel Comput. 35(1), 38–53 (2009)Castelló, A., Mayo, R., Sala, K., Beltran, V., Balaji, P., Peña, A.J.: On the adequacy of lightweight thread approaches for high-level parallel programming models. Future Gener. Comput. Syst. 84, 22–31 (2018)Castelló, A., Peña, A.J., Seo, S., Mayo, R., Balaji, P., Quintana-Ortí, E.S.: A review of lightweight thread approaches for high performance computing. In: Proceedings of the IEEE International Conference on Cluster Computing, Taipei, Taiwan (September 2016)Castelló, A., Seo, S., Mayo, R., Balaji, P., Quintana-Ortí, E.S., Peña, A.J.: GLT: a unified API for lightweight thread libraries. In: Proceedings of the IEEE International European Conference on Parallel and Distributed Computing, Santiago de Compostela, Spain (August 2017)Castelló, A., Seo, S., Mayo, R., Balaji, P., Quintana-Ortí, E.S., Peña, A.J.: GLTO: on the adequacy of lightweight thread approaches for OpenMP implementations. In: Proceedings of the International Conference on Parallel Processing, Bristol, UK (August 2017)Catalán, S, Herrero, JR., Quintana-Ortí, E.S., Rodríguez-Sánchez, R., van de Geijn, R.A.: A case for malleable thread-level linear algebra libraries: The LU factorization with partial pivoting. CoRR (2016) arXiv:1611.06365Catalán, S., Igual, F.D., Mayo, R., Rguez-Sánchez, R.: Architecture-aware configuration and scheduling of matrix multiplication on asymmetric multicore processors. Clust. Comput. 19(3), 1037–1051 (2016)Chameleon project. http://project.inria.fr/chameleon/Demmel, J.: Applied Numerical Linear Algebra. Society for Industrial and Applied Mathematics, Paris (1997)Dongarra, J.J., Croz, J.D., Hammarling, S., Duff, I.: A set of level 3 basic linear algebra subprograms. ACM Trans. Math. Softw. 16(1), 1–17 (1990)FLAME project home page. http://www.cs.utexas.edu/users/flame/Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. The Johns Hopkins University Press, Baltimore (1996)Goto, K., van de Geijn, R.A.: Anatomy of high-performance matrix multiplication. ACM Trans. Math. Softw. 34(3), 12:1–12:25 (2008)Goto, K., van de Geijn, R.: High performance implementation of the level-3 BLAS. ACM Trans. Math. Softw. 35(1), 4:1–4:14 (2008)Grosser, B., Lang, B.: Efficient parallel reduction to bidiagonal form. Parallel Comput. 25(8), 969–986 (1999)Gunter, B.C., van de Geijn, R.A.: Parallel out-of-core computation and updating the QR factorization. ACM Trans. Math. Soft. 31(1), 60–78 (2005)IBM. Engineering and Scientific Subroutine Library. http://www-03.ibm.com/systems/power/software/essl/ (2015)Intel. Math Kernel Library. https://software.intel.com/en-us/intel-mkl (2015)OmpSs project home page. http://pm.bsc.es/ompsshttp://www.openblas.net (2015)OpenMP API specification for parallel programming. http://www.openmp.org (2017)PLASMA project home page. http://icl.cs.utk.edu/plasmaQuintana-Ortí, E.S., van de Geijn, R.A.: Updating an LU factorization with pivoting. ACM Trans. Math. Softw. 35(2), 11:1–11:16 (2008)Quintana-Ortí, G., Quintana-Ortí, E.S., van de Geijn, R.A., Van Zee, F.G., Chan, E.: Programming matrix algorithms-by-blocks for thread-level parallelism. ACM Trans. Math. Softw. 36(3), 14:1–14:26 (2009)Rodríguez-Sánchez, R., Catalán, Sandra, H., José, R., Quintana-Ortí, E.S., Tomás, A.E.: Two-sided reduction to compact band forms with look-ahead (2017) CoRR, arXiv:1709.00302Seo, S., Amer, A., Balaji, P., Bordage, C., Bosilca, G., Brooks, A., Carns, P., Castelló, A., Genet, D., Herault, T., Iwasaki, S., Jindal, P., Kale, S., Krishnamoorthy, S., Lifflander, J., Lu, H., Meneses, E., Snir, M., Sun, Y., Taura, K., Beckman, P.: Argobots: a lightweight low-level threading and tasking framework. IEEE Trans. Parallel Distrib. Syst. PP(99), 1–1 (2017)Smith, T.M., van de Geijn, R., Smelyanskiy, M., Hammond, J.R., Van Zee, F.G.: Anatomy of high-performance many-threaded matrix multiplication. In: Proceedings of IEEE 28th International Parallel and Distributed Processing Symposium, IPDPS’14, pp. 1049–1059 (2014)StarPU project. http://runtime.bordeaux.inria.fr/StarPU/Stein, D., Shah, D.: Implementing lightweight threads. In: USENIX Summer (1992)Strazdins, P.: A comparison of lookahead and algorithmic blocking techniques for parallel matrix factorization. Technical Report TR-CS-98-07, Department of Computer Science, The Australian National University, Canberra 0200 ACT, Australia (1998)Van Zee, F.G., van de Geijn, R.A.: BLIS: a framework for rapidly instantiating BLAS functionality. ACM Trans. Math. Softw. 41(3), 14:1–14:33 (2015)Whaley, C.R., Dongarra, J.J.: Automatically tuned linear algebra software. In: Proceedings of SC’98 (1998)Van Zee, F.G., Smith, T.M., Marker, B., Low, T., Van De Geijn, R.A., Igual, F.D., Smelyanskiy, M., Zhang, X., Kistler, M., Austel, V., Gunnels, J.A., Killough, L.: The BLIS framework: experiments in portability. ACM Trans. Math. Softw. 42(2), 12:1–12:19 (2016

    A case for malleable thread-level linear algebra libraries: The LU factorization with partial pivoting

    Get PDF
    (c) 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.[EN] We propose two novel techniques for overcoming load-imbalance encountered when implementing so-called look-ahead mechanisms in relevant dense matrix factorizations for the solution of linear systems. Both techniques target the scenario where two thread teams are created/activated during the factorization, with each team in charge of performing an independent task/branch of execution. The first technique promotes worker sharing (WS) between the two tasks, allowing the threads of the task that completes first to be reallocated for use by the costlier task. The second technique allows a fast task to alert the slower task of completion, enforcing the early termination (ET) of the second task, and a smooth transition of the factorization procedure into the next iteration. The two mechanisms are instantiated via a new malleable thread-level implementation of the basic linear algebra subprograms, and their benefits are illustrated via an implementation of the LU factorization with partial pivoting enhanced with look-ahead. Concretely, our experimental results on an Intel-Xeon system with 12 cores show the benefits of combining WS+ET, reporting competitive performance in comparison with a task-parallel runtime-based solution.This work was supported in part by the Spanish Ministerio de Economia y Competitividad under Project TIN2014-53495-R, Project TIN2015-65316-P, and Project TIN2017-82972-R, in part by the H2020 EU FETHPC "INTERTWinE" under Project 671602, in part by the Generalitat de Catalunya under Project 2017-SGR-1414, and in part by the NSF under Grant ACI-1550493.Catalán, S.; Herrero, JR.; Quintana Ortí, ES.; Rodríguez-Sánchez, R.; Van De Geijn, R. (2019). A case for malleable thread-level linear algebra libraries: The LU factorization with partial pivoting. IEEE Access. 7:17617-17633. https://doi.org/10.1109/ACCESS.2019.2895541S1761717633

    Vector support for multicore processors with major emphasis on configurable multiprocessors

    Get PDF
    It recently became increasingly difficult to build higher speed uniprocessor chips because of performance degradation and high power consumption. The quadratically increasing circuit complexity forbade the exploration of more instruction-level parallelism (JLP). To continue raising the performance, processor designers then focused on thread-level parallelism (TLP) to realize a new architecture design paradigm. Multicore processor design is the result of this trend. It has proven quite capable in performance increase and provides new opportunities in power management and system scalability. But current multicore processors do not provide powerful vector architecture support which could yield significant speedups for array operations while maintaining arealpower efficiency. This dissertation proposes and presents the realization of an FPGA-based prototype of a multicore architecture with a shared vector unit (MCwSV). FPGA stands for Filed-Programmable Gate Array. The idea is that rather than improving only scalar or TLP performance, some hardware budget could be used to realize a vector unit to greatly speedup applications abundant in data-level parallelism (DLP). To be realistic, limited by the parallelism in the application itself and by the compiler\u27s vectorizing abilities, most of the general-purpose programs can only be partially vectorized. Thus, for efficient resource usage, one vector unit should be shared by several scalar processors. This approach could also keep the overall budget within acceptable limits. We suggest that this type of vector-unit sharing be established in future multicore chips. The design, implementation and evaluation of an MCwSV system with two scalar processors and a shared vector unit are presented for FPGA prototyping. The MicroBlaze processor, which is a commercial IP (Intellectual Property) core from Xilinx, is used as the scalar processor; in the experiments the vector unit is connected to a pair of MicroBlaze processors through standard bus interfaces. The overall system is organized in a decoupled and multi-banked structure. This organization provides substantial system scalability and better vector performance. For a given area budget, benchmarks from several areas show that the MCwSV system can provide significant performance increase as compared to a multicore system without a vector unit. However, a MCwSV system with two MicroBlazes and a shared vector unit is not always an optimized system configuration for various applications with different percentages of vectorization. On the other hand, the MCwSV framework was designed for easy scalability to potentially incorporate various numbers of scalar/vector units and various function units. Also, the flexibility inherent to FPGAs can aid the task of matching target applications. These benefits can be taken into account to create optimized MCwSV systems for various applications. So the work eventually focused on building an architecture design framework incorporating performance and resource management for application-specific MCwSV (AS-MCwSV) systems. For embedded system design, resource usage, power consumption and execution latency are three metrics to be used in design tradeoffs. The product of these metrics is used here to choose the MCwSV system with the smallest value

    Parallel architectures and runtime systems co-design for task-based programming models

    Get PDF
    The increasing parallelism levels in modern computing systems has extolled the need for a holistic vision when designing multiprocessor architectures taking in account the needs of the programming models and applications. Nowadays, system design consists of several layers on top of each other from the architecture up to the application software. Although this design allows to do a separation of concerns where it is possible to independently change layers due to a well-known interface between them, it is hampering future systems design as the Law of Moore reaches to an end. Current performance improvements on computer architecture are driven by the shrinkage of the transistor channel width, allowing faster and more power efficient chips to be made. However, technology is reaching physical limitations were the transistor size will not be able to be reduced furthermore and requires a change of paradigm in systems design. This thesis proposes to break this layered design, and advocates for a system where the architecture and the programming model runtime system are able to exchange information towards a common goal, improve performance and reduce power consumption. By making the architecture aware of runtime information such as a Task Dependency Graph (TDG) in the case of dataflow task-based programming models, it is possible to improve power consumption by exploiting the critical path of the graph. Moreover, the architecture can provide hardware support to create such a graph in order to reduce the runtime overheads and making possible the execution of fine-grained tasks to increase the available parallelism. Finally, the current status of inter-node communication primitives can be exposed to the runtime system in order to perform a more efficient communication scheduling, and also creates new opportunities of computation and communication overlap that were not possible before. An evaluation of the proposals introduced in this thesis is provided and a methodology to simulate and characterize the application behavior is also presented.El aumento del paralelismo proporcionado por los sistemas de cómputo modernos ha provocado la necesidad de una visión holística en el diseño de arquitecturas multiprocesador que tome en cuenta las necesidades de los modelos de programación y las aplicaciones. Hoy en día el diseño de los computadores consiste en diferentes capas de abstracción con una interfaz bien definida entre ellas. Las limitaciones de esta aproximación junto con el fin de la ley de Moore limitan el potencial de los futuros computadores. La mayoría de las mejoras actuales en el diseño de los computadores provienen fundamentalmente de la reducción del tamaño del canal del transistor, lo cual permite chips más rápidos y con un consumo eficiente sin apenas cambios fundamentales en el diseño de la arquitectura. Sin embargo, la tecnología actual está alcanzando limitaciones físicas donde no será posible reducir el tamaño de los transistores motivando así un cambio de paradigma en la construcción de los computadores. Esta tesis propone romper este diseño en capas y abogar por un sistema donde la arquitectura y el sistema de tiempo de ejecución del modelo de programación sean capaces de intercambiar información para alcanzar una meta común: La mejora del rendimiento y la reducción del consumo energético. Haciendo que la arquitectura sea consciente de la información disponible en el modelo de programación, como puede ser el grafo de dependencias entre tareas en los modelos de programación dataflow, es posible reducir el consumo energético explotando el camino critico del grafo. Además, la arquitectura puede proveer de soporte hardware para crear este grafo con el objetivo de reducir el overhead de construir este grado cuando la granularidad de las tareas es demasiado fina. Finalmente, el estado de las comunicaciones entre nodos puede ser expuesto al sistema de tiempo de ejecución para realizar una mejor planificación de las comunicaciones y creando nuevas oportunidades de solapamiento entre cómputo y comunicación que no eran posibles anteriormente. Esta tesis aporta una evaluación de todas estas propuestas, así como una metodología para simular y caracterizar el comportamiento de las aplicacionesPostprint (published version

    High performance Cholesky and symmetric indefinite factorizations with applications

    Get PDF
    The process of factorizing a symmetric matrix using the Cholesky (LLT ) or indefinite (LDLT ) factorization of A allows the efficient solution of systems Ax = b when A is symmetric. This thesis describes the development of new serial and parallel techniques for this problem and demonstrates them in the setting of interior point methods. In serial, the effects of various scalings are reported, and a fast and robust mixed precision sparse solver is developed. In parallel, DAG-driven dense and sparse factorizations are developed for the positive definite case. These achieve performance comparable with other world-leading implementations using a novel algorithm in the same family as those given by Buttari et al. for the dense problem. Performance of these techniques in the context of an interior point method is assessed

    Using program behaviour to exploit heterogeneous multi-core processors

    Get PDF
    Multi-core CPU architectures have become prevalent in recent years. A number of multi-core CPUs consist of not only multiple processing cores, but multiple different types of processing cores, each with different capabilities and specialisations. These heterogeneous multi-core architectures (HMAs) can deliver exceptional performance; however, they are notoriously difficult to program effectively. This dissertation investigates the feasibility of ameliorating many of the difficulties encountered in application development on HMA processors, by employing a behaviour aware runtime system. This runtime system provides applications with the illusion of executing on a homogeneous architecture, by presenting a homogeneous virtual machine interface. The runtime system uses knowledge of a program's execution behaviour, gained through explicit code annotations, static analysis or runtime monitoring, to inform its resource allocation and scheduling decisions, such that the application makes best use of the HMA's heterogeneous processing cores. The goal of this runtime system is to enable non-specialist application developers to write applications that can exploit an HMA, without the developer requiring in-depth knowledge of the HMA's design. This dissertation describes the development of a Java runtime system, called Hera-JVM, aimed at investigating this premise. Hera-JVM supports the execution of unmodified Java applications on both processing core types of the heterogeneous IBM Cell processor. An application's threads of execution can be transparently migrated between the Cell's different core types by Hera-JVM, without requiring the application's involvement. A number of real-world Java benchmarks are executed across both of the Cell's core types, to evaluate the efficacy of abstracting a heterogeneous architecture behind a homogeneous virtual machine. By characterising the performance of each of the Cell processor's core types under different program behaviours, a set of influential program behaviour characteristics is uncovered. A set of code annotations are presented, which enable program code to be tagged with these behaviour characteristics, enabling a runtime system to track a program's behaviour throughout its execution. This information is fed into a cost function, which Hera-JVM uses to automatically estimate whether the executing program's threads of execution would benefit from being migrated to a different core type, given their current behaviour characteristics. The use of history, hysteresis and trend tracking, by this cost function, is explored as a means of increasing its stability and limiting detrimental thread migrations. The effectiveness of a number of different migration strategies is also investigated under real-world Java benchmarks, with the most effective found to be a strategy that can target code, such that a thread is migrated whenever it executes this code. This dissertation also investigates the use of runtime monitoring to enable a runtime system to automatically infer a program's behaviour characteristics, without the need for explicit code annotations. A lightweight runtime behaviour monitoring system is developed, and its effectiveness at choosing the most appropriate core type on which to execute a set of real-world Java benchmarks is examined. Combining explicit behaviour characteristic annotations with those characteristics which are monitored at runtime is also explored. Finally, an initial investigation is performed into the use of behaviour characteristics to improve application performance under a different type of heterogeneous architecture, specifically, a non-uniform memory access (NUMA) architecture. Thread teams are proposed as a method of automatically clustering communicating threads onto the same NUMA node, thereby reducing data access overheads. Evaluation of this approach shows that it is effective at improving application performance, if the application's threads can be partitioned across the available NUMA nodes of a system. The findings of this work demonstrate that a runtime system with a homogeneous virtual machine interface can reduce the challenge of application development for HMA processors, whilst still being able to exploit such a processor by taking program behaviour into account
    • …
    corecore