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Abstract
We investigate a parallelization strategy for dense matrix factoriza-

tion (DMF) algorithms, using OpenMP, that departs from the legacy (or
conventional) solution, which simply extracts concurrency from a multi-
threaded version of BLAS. This approach is also different from the more
sophisticated runtime-assisted implementations, which decompose the op-
eration into tasks and identify dependencies via directives and runtime
support. Instead, our strategy attains high performance by explicitly em-
bedding a static look-ahead technique into the DMF code, in order to
overcome the performance bottleneck of the panel factorization, and real-
izing the trailing update via a cache-aware multi-threaded implementation
of the BLAS. Although the parallel algorithms are specified with a high-
level of abstraction, the actual implementation can be easily derived from
them, paving the road to deriving a high performance implementation of a
considerable fraction of LAPACK functionality on any multicore platform
with an OpenMP-like runtime.

1 Introduction

Dense linear algebra (DLA) lies at the bottom of the “food chain” for many sci-
entific and engineering applications, which require numerical kernels to tackle
linear systems, linear least squares problems or eigenvalue computations, among
other problems [13]. In response, the scientific community has created the Ba-
sic Linear Algebra Subroutines (BLAS) and the Linear Algebra Package (LA-
PACK) [14, 1]. These libraries standardize domain-specific interfaces for DLA
operations that aim to ensure performance portability across a wide range of
computer architectures.

For multicore processors, the conventional approach to exploit parallelism
in the dense matrix factorization (DMF) routines implemented in LAPACK
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has relied, for many years, on the use of a multi-threaded BLAS (MTB). The
list of current high performance instances of this library composed of basic
building blocks includes Intel MKL [22], IBM ESSL [21], GotoBLAS [17, 18],
OpenBLAS [24], ATLAS [36] or BLIS [35]. These implementations exert a strict
control over the data movements and can be expected to make an extremely
efficient use of the cache memories. Unfortunately, for complex DLA operations,
this approach constrains the concurrency that can be leveraged by imposing
an artificial fork-join model of execution on the algorithm. Specifically, with
this solution, parallelism does not expand across multiple invocations to BLAS
kernels even if they are independent and, therefore, could be executed in parallel.

The increase in hardware concurrency of multicore processors in recent years
has led to the development of parallel versions of some DLA operations that ex-
ploit task-parallelism via a runtime (RTM). Several relevant examples comprise
the efforts with OmpSs [23], PLASMA-Quark [26], StarPU [32], Chameleon [12]
and libflame-SuperMatrix [15]. In short detail, the task-parallel RTM-assisted
parallelizations decompose a DLA operation into a collection of fine-grained
tasks, interconnected with dependencies, and issues the execution of each task
to a single core, simultaneously executing independent tasks on different cores
while fulfilling the dependency constraints. The RTM-based solution is better
equipped to tackle the increasing number of cores of current and future ar-
chitectures, because it leverages the natural concurrency that is present in the
algorithm. However, with this type of solution, the cores compete for the shared
memory resources and may not amortize completely the overhead of invoking
the BLAS to perform fine-grain tasks [10].

In this paper we demonstrate that, for complex DMFs, it is possible to lever-
age the advantages of both approaches, extracting coarse-grain task-parallelism
via a static look-ahead strategy [34], with the multi-threaded execution of cer-
tain highly-parallel BLAS with fine granularity. Our solution thus exhibits some
relevant differences with respect to an approach based solely on either MTB or
RTM, making the following contributions:

• From the point of view of abstraction, we use of a high-level parallel ap-
plication programming interface (API), such as OpenMP [25], to identify
two parallel sections (per iteration of the DMF algorithm) that become
coarse-grain tasks to be run in parallel.

• Within some of these coarse tasks, we employ OpenMP as well to extract
loop-parallelism while strictly controlling the data movements across the
cache hierarchy, yielding two nested levels of parallelism.

• In contrast with a RTM-based approach, we apply a static version of
look-ahead [34] (instead of a dynamic one), in order to remove the panel
factorization from the critical path of the algorithm’s execution. This is
combined with a cache-aware parallelization of the trailing update where
all threads efficiently share the memory resources.

• We offer a high-level description of the DMF algorithms, yet with enough
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details about their parallelization to allow the practical development of a
library for dense linear algebra on multicore processors.

• We expose the distinct behaviors of the DMF algorithms on top of GNU’s
or Intel’s OpenMP runtimes when dealing with nested parallelism on mul-
ticore processors. For the latter, we illustrate how to correctly set a few
environment variables that are key to avoid oversubscription and obtain
high performance for DMFs.

• We investigate the performance of the DMF algorithms when running
on top an alternative multi-threading runtime based on the light-weight
thread (LWT) library in Argobots [30] accessed via the OpenMP-compatible
APIs GLT+GLTO [8, 6].

• We provide a complete experimental evaluation that shows the perfor-
mance advantages of our approach using three representative DMF on a
8-core server with recent Intel Xeon technology.

The rest of the paper is organized as follows. In Section 2, we review the
cache-aware implementation and multi-threaded parallelization of the BLAS-3
in the BLIS framework. In Section 3, we present a general framework that ac-
commodates a variety of DMFs, elaborating on their conventional MTB-based
and the more recent RTM-assisted parallelization. In Section 4, we present
our alternative that combines task-loop parallelization, static look-ahead, and a
“malleable” instance of BLAS. In Section 5, we discuss nested parallelism and
inspect the parallelization of DMF via the LWT runtime library underlying Ar-
gobots and the OpenMP APIs GLT and GLTO [30, 8, 9]. Finally, in Section 6
we provide an experimental evaluation of the different algorithms/implementa-
tions for three representative DFMs, and in Section 7 we close the paper with
a few concluding remarks.

2 Multi-threaded BLIS

BLIS is a framework to develop high-performance implementations of BLAS and
BLAS-like operations on current architectures [35]. We next review the design
principles that underlie BLIS. For this purpose, we use the implementation
of the general matrix-matrix multiplication (gemm) in this framework/library
in order to expose how to exploit fine-grain loop-parallelism within the BLIS
kernels, while carefully taking into account the cache organization.

2.1 Exploiting the cache hierarchy

Consider three matrices A, B and C, of dimensions m × k, k × n and m × n,
respectively. BLIS mimics GotoBLAS to implement the gemm operation

C += A ·B (1)
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(as well as variants of this operation with transposed/conjugate A and/or B)
as three nested loops around a macro-kernel plus two packing routines; see
Loops 1–3 in Listing 1. The macro-kernel is realized as two additional loops
around a micro-kernel; see Loops 4 and 5 in that listing. In the code, Cc(ir :
ir + mr − 1, jr : jr + nr − 1) is a notation artifact, introduced to ease the
presentation of the algorithm and no data copies are involved. In contrast,
Ac, Bc correspond to actual buffers that are involved in data copies.

The loop ordering in BLIS, together with the packing routines and an ap-
propriate choice of the cache configuration parameters nc, kc, mc, nr and mr,
dictate a regular movement of the data across the memory hierarchy. Further-
more, these selections aim to amortize the cost of these transfers with enough
computation from within the micro-kernel to deliver high performance [35]. In
particular, BLIS is designed to maintain Bc into the L3 cache (if present), Ac

into the L2 cache, and a micro-panel of Bc (of dimension kc × nr) into the
L1 cache; in contrast, C is directly streamed from main memory to the core
registers.

1 void Gemm( int m, int n, int k, double *A, double *B, double *C) {

2 // Declarations: mc, nc, kc ,...

3 for ( jc = 0; jc < n; jc += nc ) // Loop 1

4 for ( pc = 0; pc < k; pc += kc ) { // Loop 2

5 // B(pc : pc + kc − 1, jc : jc + nc − 1)→ Bc

6 Pack_buffer_B(kc, nc, &B(pc,jc), &Bc);

7 for ( ic = 0; ic < m; ic += mc ) { // Loop 3

8 // A(ic : ic + mc − 1, pc : pc + kc − 1)→ Ac

9 Pack_buffer_A(mc, kc, &A(ic,pc), &Ac);

10 // Macro -kernel:

11 for ( jr = 0; jr < nc; jr += nr ) // Loop 4

12 for ( ir = 0; ir < mc; ir += mr ) { // Loop 5

13 // Micro -kernel:

14 // Cc(ir : ir + mr − 1, jr : jr + nr − 1) + =
15 // Ac(ir : ir + mr − 1, 1 : 1 + kc − 1) ·
16 // Bc(j, 1 : 1 + kc − 1,r : jr + nr − 1)
17 Gemm_mkernel( mr , nr, kc, &Ac(ir ,1), &Bc(1,jr),

18 &Cc(ir,jr) );

19 }

20 }

21 }

22 }

Listing 1: High performance implementation of gemm in BLIS.

2.2 Multi-threaded parallelization

The parallelization strategy of BLIS for multi-threaded architectures takes ad-
vantage of the loop-parallelism exposed by the five nested-loop organization of
gemm at one or more levels. A convenient option in most single-socket systems
is to parallelize either Loop 3 (indexed by ic), Loop 4 (indexed by jr), or a
combination of both [37, 31, 11].
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Figure 1: Distribution of the workload among tmm = 3 threads when Loop 4
of BLIS gemm is parallelized. Different colors in the output C distinguish the
micro-panels of this matrix that are computed by each thread as the product of
Ac and corresponding micro-panels of the input Bc.

For example, we can leverage the OpenMP parallel application programming
interface (API) to parallelize Loop 4 inside gemm, with tmm threads, by inserting
a simple parallel for directive before that loop (hereafter, for brevity, we omit
most of the parts of the codes that do not experience any change with respect
to their baseline reference):

1 // Fragment of Gemm: Reference code in Listing 1

2 void Gemm( int m, int n, int k, double *A, double *B, double *C) {

3 // Declarations: mc, nc, kc ,...

4 for ( jc = 0; jc < n; jc += nc ) // Loop 1

5 // Loops 2, 3, 4 and packing of Bc, Ac (omitted for simplicity)

6 // ...

7 #pragma omp parallel for num threads(tMM)

8 for ( jr = 0; jr < nc; jr += nr ) // Loop 4

9 // Loop 5 and GEMM micro -kernel (omitted)

10 // ...

11 }

Unless otherwise stated, in the remainder of the paper we will consider a
version of BLIS gemm that extracts loop-parallelism from Loop 4 only, using
tmm threads; see Figure 1. To improve performance, the packing of Ac and
Bc are also performed in parallel so that, for example, at each iteration of
Loop 3, all tmm threads collaborate to copy and re-organize the entries of A(ic :
ic + mc − 1, pc : pc + kc − 1) into the buffer Ac. From the point of view of the
cache utilization, with this parallelization strategy, all threads share the same
buffers Ac and Bc, while each thread operates on a distinct micro-panel of Bc,
of dimension kc × nr. The shared buffers for Ac, Bc are stored in the L2, L3
caches while the micro-panels of Bc reside in the L1 cache.
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3 Parallel Dense Matrix Factorizations

3.1 A general framework

Many of the routines for DMFs in LAPACK fit into a common algorithmic
skeleton, consisting of a loop that processes the input matrix in steps of b
columns/rows per iteration. In general the parameter b is referred to as the
algorithmic block size. We next offer a general framework that accommodates
the routines for the LU, Cholesky, QR and LDLT factorizations (as well as
matrix inversion via Gauss-Jordan elimination) [16]. To some extent, it also
applies to two-sided decompositions for the reduction to compact band forms in
two-stage methods for the solution of eigenvalue problems and the computation
of the singular value decomposition (SVD) [4].

Let us denote the input m×n matrix to factorize as A, and assume, for sim-
plicity, that m = n and this dimension is an integer multiple of the block size
b. Many routines for the afore-mentioned DMFs (and matrix inversion) fit into
the general code skeleton displayed in Listing 2, which is partially based on the
FLAME API for the C programming language [3]. In that scheme, before the
loop commences, and in preparation for the first iteration, routine FLA Part 2x2

decouples the input matrix as

A→
(

ATL ATR

ABL ABR

)
where ATL is 0× 0 .

This initial partition thus enforces that A ≡ ABR while the remaining three
blocks (ATR, ABL, ABR) are void.

Inside the loop body, at the beginning of each iteration, routine FLA Repart 2x2 to 3x3

performs a new decoupling:(
ATL ATR

ABL ABR

)
→

 A00 A01 A02

A10 A11 A12

A20 A21 A22

 where A11 is b× b.

This partition exposes the panel (column block)

(
A11

A21

)
, consisting of b columns,

and the trailing submatrix

(
A12

A22

)
.

After the Operations, the loop body is closed by routine FLA Cont with 3x3 to 2x2,
which realizes a repartition artifact

(
ATL ATR

ABL ABR

)
←

 A00 A01 A02

A10 A11 A12

A20 A21 A22

,

advancing the boundaries (thick lines) within the matrix by b rows/columns, in
preparation for the next iteration.

In the blocked right-looking variants of the DMF routines, inside the loop
body for the iteration, the current panel is factorized and the transformations
employed for this purpose are applied to the trailing submatrix:
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1 void FLA_DMF( int n, FLA_Obj A, int b )

2 {

3 // Declarations: ATL , ATR ,..., A00 , A01 ,... are FLA_Obj(ects)

4
5 // Partition matrix into 2 x 2, with ATL of dimension 0 x 0

6 FLA_Part_2x2( A, &ATL , &ATR ,

7 &ABL , &ABR , 0, 0, FLA_TL );

8
9 for ( k = 0; k < n / b; k++ ) {

10
11 // Repartition 2x2 -> 3x3 with A11 of dimension b x b

12 FLA_Repart_2x2_to_3x3(

13 ATL , /**/ ATR , &A00 , /**/ &A01 , &A02 ,

14 /* ************* */ /* ********************* */

15 &A10 , /**/ &A11 , &A12 ,

16 ABL , /**/ ABR , &A20 , /**/ &A21 , &A22 ,

17 b, b, FLA_BR );

18 /* -----------------------------------------------------------*/

19 // Operations

20 // ...

21 /* -----------------------------------------------------------*/

22 // Move boundaries 2x2 <- 3x3 in preparation for next iteration

23 FLA_Cont_with_3x3_to_2x2(

24 &ATL , /**/ &ATR , A00 , A01 , /**/ A02 ,

25 A10 , A11 , /**/ A12 ,

26 /* *************** */ /* ****************** */

27 &ABL , /**/ &ABR , A20 , A21 , /**/ A22 ,

28 FLA_TL );

29 }

30 }

Listing 2: Skeleton routine for a DMF.

1 // Fragment of FLA_DMF: Reference code in Listing 2

2 /* -----------------------------------------------------------*/

3 // Operations

4 PF( &A11 , // Panel factorization

5 &A12 );

6 TU( &A11 , &A21 , // Trailing update

7 &A12 , &A22 );

8 /* -----------------------------------------------------------*/

For high performance, the width of the panel (i.e., its number of columns,
b) is in general set to a small value (a few hundreds) in order to cast most
computations in terms of the compute-intensive trailing update.

To conclude the presentation of the general framework for DMF, hereafter
we will abstract many of the details in the DMF routine, to obtain a simpler
algorithm as that shown in Listing 3. For simplicity, we omit there the parti-
tioning operations and replace the operands passed to the panel factorization
and trailing update by the iteration index k.
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1 void FLA_DMF( int n, FLA_Obj A, int b )

2 {

3 for ( k = 0; k < n / b; k++ ) {

4 /* -----------------------------------------------------------*/

5 // Operations

6 PF( k ); // Panel factorization

7 TU( k ); // Trailing update

8 /* -----------------------------------------------------------*/

9 }

10 }

Listing 3: Simplified routine for a DMF.

3.2 Exploiting loop-parallelism via MTB

For high performance, the DMF routines in LAPACK cast most of their com-
putations in terms of the BLAS. Therefore, for many years, the conventional
approach to extract parallelism from these routines has simply linked them with
a multi-threaded instance of the latter library; see Section 2. For the DMFs,
the panel factorization is generally decomposed into fine-grain kernels, some of
them realized via calls to the BLAS. The same occurs for the trailing update
though, in this case, this operation involves larger matrix blocks and rather
simple dependencies. In consequence there is a considerable greater amount
of concurrency in the trailing update compared with that present in the panel
factorization. For a few decades, the MTB approach has reported reasonable
performance for DMFs, at a minimal tuning effort, provided a highly-tuned
implementation of the BLAS was available for the target architecture.

3.3 Exploiting task-parallelism via RTM

The RTM approach exposes task-parallelism by decomposing the trailing up-
date into multiple tasks, controlling the dependencies among these tasks, and
simultaneously executing independent tasks in different cores. This is illus-
trated in Listing 4, using the OpenMP parallel programming API. Note how
the k-th trailing update operation TUk is divided there into multiple panel up-
dates, TUk → (TUk+1

k | TUk+2
k | TUk+3

k . . .). These tasks are then processed inside
the loop indexed by variable j via successive calls to routine TU panel. For clar-
ity, the parallelization exposed in the code contains a simplified mechanism for
the detection of dependencies, which should be specified in terms of the actual
operands instead of their indices. In short detail, a dependency with respect to
panel j can be, e.g., specified in terms of the top-left entry of the j-th panel,
which can act as a “representant” for all the elements in that block [2].

For several DMFs, the RTM can also decompose the panel factorization into
multiple tasks, in an attempt to remove this operation from the critical path
of the algorithm [5, 28]. However, for some DLA operations such as the LU
factorization with partial pivoting (LUpp), performing that type of task de-
composition requires a different pivoting strategy, which modifies the numerical
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1 void FLA_DMF_task_parallel( int n, FLA_Obj A, int b )

2 {

3 #pragma omp parallel

4 #pragma omp single

5 {
6 for ( k = 0; k < n / b; k++ ) {

7 /* -----------------------------------------------------------*/

8 // Operations

9 #pragma omp task depend( inout:k )

10 PF( k ); // Panel factorization

11 for ( j = k+1; j < n / b; j++ ) {

12 #pragma omp task depend( in:k ) depend( inout:j )

13 TU_panel( k, j ); // Trailing update of panel

14 }

15 /* -----------------------------------------------------------*/

16 }

17 }
18 }

Listing 4: Task-parallel routine for a DMF using OpenMP.

properties of the algorithm [27].

3.4 Performance of MTB vs RTM

We next expose the practical performance of the MTB and RTM parallelization
approaches using two representative DLA operations: gemm and LUpp. For
these experiments we employ an 8-core Intel Xeon E5-2630 v3 processor, Intel’s
icc runtime, and BLIS 0.1.8 with the cache configuration parameters set to
optimal values for the Intel Haswell architecture. (The complete details about
the experimentation setup are given in Section 6.)

Our MTB version of gemm (MTB-gemm) simply extracts parallelism from
Loop 4 and the packing routines, as described in subsection 2.2. Assuming all
three matrix operands for the multiplication are square of dimension n, and
this value is an integer multiple of b, the task-parallel RTM code (RTM-gemm)
divides the three matrices into square b× b blocks, so that

Cij =

n/b−1∑
k=0

Aik ·Bkj , i, j = 0, 1, . . . , n/b− 1,

and specifies each one of the smaller operations Cij+ = Aik ·Bkj as a task.
The MTB version of LUpp (MTB-LU) corresponds to the reference routine

getrf in the implementation of LAPACK in netlib.1 At each iteration, the
code first computes the panel factorization (getf2) to next update the trailing
submatrix via a row permutation (laswp), followed by a triangular system solve
(trsm) and a matrix-matrix multiplication (gemm). Parallelism is extracted
via the multi-threaded versions of the latter two kernels in BLIS and a simple

1http://www.netlib.org/lapack
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column-oriented multi-threaded implementation of the row permutation routine
parallelized using OpenMP. The RTM version of LUpp (RTM-LU) specifies the
panel factorization arising at each iteration as a task, and “taskifies” the trailing
update into column panels, as described in the generic code in Listing 4. The
blocking parameter is set to b=192 as this value matches the optimal kc for the
target architecture and, therefore, can be expected to enhance the performance
of the micro-kernel [35].

Figure 2 reports the GFLOPS (billions of flops per second) rates attained by
the MTB and RTM parallelizations of gemm and LUpp using all 8 cores. The
results in the top plot show that MTB-gemm (which corresponds to a single
call to the gemm routine in BLIS) delivers up to 245 GFLOPS. Compared with
this, when we decompose this highly-parallel operation into multiple tasks, and
use Intel’s OpenMP RTM to exploit this type of parallelism, the result is a
considerable drop in the performance rate. The reason is that, for RTM-gemm,
the threads compete for the shared cache memory levels, and the packing and
the RTM overheads become more visible.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

 0  5000  10000

G
F

L
O

P
S

Problem dimension n

GEMM on Intel Xeon E5-2630 v3

MTB

RTM

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

 0  5000  10000  15000  20000

G
F

L
O

P
S

Problem dimension n

LU on Intel Xeon E5-2630 v3

RTM

MTB

Figure 2: Performance of gemm (top) and LUpp (bottom) using MTB vs RTM.

The LUpp factorization presents the opposite behavior. In this case, MTB-
LU suffers from the adoption of the fork-join parallelization model, where the
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out and with look-ahead (top and bottom, respectively). Following the conven-
tion, PF stands for panel factorization and TU for trailing update; the subindices
simply refer to the iteration index k; see, e.g., Listing 3.

threads become active/blocked at the beginning/end of each invocation to BLAS.
In consequence, parallelism cannot be exploited across distinct BLAS kernels
and the panel factorization becomes a performance bottleneck [10]. RTM-LU
overcomes this problem by introducing a sort of dynamic look-ahead strategy
that can overlap the execution of the “future” panel factorization(s) with that
of the “current” trailing update [5, 28]. The result is a performance rate that,
for large problems, is higher than that of MTB-LUpp but still far below that of
MTB-gemm, especially for small and moderate problem dimensions.

3.5 Impact for DMFs

Let us re-consider the dependencies appearing in the DMF algorithms. The
partitions of the general algorithm in Listing 3, and the operations present
in the blocked right-looking algorithm, determine a dependency acyclic graph
(DAG) with the structure illustrated in Figure 3 (top). This DAG also exposes
the problem represented by the panel factorization in MTB-LU (or any other
DMF parallelized with the same strategy). As the number of cores grows, the
relative cost of the highly-parallel trailing update is reduced, transforming the
largely-sequential panel factorization into a major performance bottleneck. The
RTM-LU parallelization attacks this problem by dividing the trailing update
into multiple panels/suboperations (or tasks) TUk → (TUk+1

k | TUk+2
k | TUk+3

k . . .)
and overlapping their modification with that of future panel factorizations. In
exploiting this task-parallelism, however, it breaks the highly-parallel trailing
update into multiple operations, to be computed by a collection of threads that
compete for the shared memory resources.

The discussion in this section emphasizes two insights that we can summarize
as follows:

• The trailing update is composed of highly-parallel and simple kernels from
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BLAS that could profit from a fine-grain control of the cache hierarchy
for high performance.

• The panel factorization, in contrast, is mostly sequential and needs to
be overlapped with the trailing update to prevent it from becoming a
bottleneck for the performance of the global algorithm.

4 Static Look-ahead and Mixed Parallelism

The introduction of static look-ahead [34] aims to overcome the strict dependen-
cies in the DMF. For this purpose, the following modifications are introduced
into the conventional factorization algorithm:

• The trailing update is broken into two panels/suboperations/tasks only,
TUk → (TULk | TURk ), where TULk contains the leftmost b columns of TUk,
which exactly overlap with those of PFk+1.

• The algorithm is then (manually) re-organized, applying a sort of software
pipelining in order to perform the panel factorization PFk+1 in the same
iteration as the update (TULk | TURk ).

These changes allow to overlap the sequential factorization of the “next” panel
with the highly parallel update of the “current” trailing submatrix in the same
iteration; see Figure 3 (bottom) and the re-organized version of the DMF with
look-ahead in Listing 5. There, we assume that the k-th left trailing update TULk
and the (k + 1)-th panel factorization PFk+1 are both performed inside routine
PU( k+1 ) (for panel update); and the k-th right trailing update TURk occurs
inside routine TU right( k ).

1 void FLA_DMF_la( int n, FLA_Obj A, int b )

2 {

3 PF( 0 ); // First panel factorization

4 for ( k = 0; k < n / b; k++ ) {

5 /* -----------------------------------------------------------*/

6 // Operations

7 PU( k+1 ); // Panel update: PF + TU (left)

8 TU_right( k ); // Trailing update (right)

9 /* -----------------------------------------------------------*/

10 }

11 }

Listing 5: Simplified routine for a DMF with look-ahead.

4.1 Parallelization with the OpenMP API

The goal of our “mixed” strategy exposed next is to exploit a combination of
task-level and loop-level parallelism in the static look-ahead variant, extracting
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coarse-grain task-level parallelism between the independent tasks PUk+1 and
TURk at each iteration, while leveraging the fine-grain loop-parallelism within
the latter using a cache-aware multi-threaded implementation of the BLAS.

Let us assume that, for an architecture with t hardware cores, we want to
spawn one OpenMP thread per core, with a single thread dedicated to the panel
update PUk+1 and the remaining tmm = t − 1 to the right trailing update TURk .
(This mapping of tasks to threads aims to match the reduced and ample degrees
of parallelism of the panel factorization (inside the panel update) and trailing
update, respectively.) To attain this objective, we can then use the OpenMP
parallel sections directive to parallelize the operations in the loop body of
the algorithm for the DMF as follows:

1 // Fragment of FLA_DMF_la: Reference code in Listing 5

2 /* -----------------------------------------------------------*/

3 // Operations

4 tMM = t-1;

5 #pragma omp parallel sections num threads(2)

6 {
7 #pragma omp section

8 PU( k+1 ); // Panel update: PF + TU (left)

9 #pragma omp section

10 TU_right( k ); // Trailing update (right)

11 }
12 /* -----------------------------------------------------------*/

Here we map the panel update and trailing update to one thread each. Then, the
invocation to a loop-parallel instance of the BLAS from the trailing update (but
a sequential one for the panel update) yields the desired nested-mixed parallelism
(NMP), with the OpenMP parallel sections directive at the “outer” level
and a loop-parallelization of the BLAS (invoked from the right trailing update)
using OpenMP parallel for directives at the “inner” level; see subsection 2.2.

4.2 Workload balancing via malleable BLAS

Extracting parallelism within the iterations via a static look-ahead using the
OpenMP parallel sections directive implicitly sets a synchronization point
at the end of each iteration. In consequence, a performance bottleneck may
appear if the practical costs (i.e., execution time) of PUk+1(=TURk + PFk) and
TURk are unbalanced.

A higher cost of PUk+1 is, in principle, due to the use of a value for b that is
too large and occurs when the number of cores is relatively large with respect to
the problem dimension. This can be alleviated by adjusting, on-the-fly, the block
dimension via an auto-tuning technique referred to as early termination [10].

Here we focus on the more challenging opposite case, in which TURk is the most
expensive operation. This scenario is tackled in [10] by developing a malleable
thread-level (MTL) implementation of the BLAS so that, when the thread in
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charge of PUk+1 completes this task, it joins the remaining tmm threads that are
executing TURk . Note that this is only possible because the instance of BLAS
that we are using is open source, and in consequence, we can modify the code to
achieve the desired behavior. In comparison, standard multi-threaded instances
of BLAS, such as those in Intel MKL, OpenBLAS or GotoBLAS, allow the user
to run a BLAS kernel with a certain amount of threads, but this number cannot
be varied during the execution of the kernel (that is on-the-fly).

Coming back to our OpenMP-based solution, we can attain the malleability
effect as follows:

1 // Fragment of FLA_DMF_la: Reference code in Listing 5

2 /* -----------------------------------------------------------*/

3 // Operations

4 tMM = t-1;

5 #pragma omp parallel sections num threads(2)

6 {
7 #pragma omp section

8 {
9 PU( k+1 ); // Panel update: PF + TU (left)

10 tMM = t;

11 }
12 #pragma omp section

13 TU_right( k ); // Trailing update (calls GEMM)

14 }
15 /* -----------------------------------------------------------*/

For simplicity, let us assume the right trailing update boils down to a single
call to gemm. Setting variable tMM=t after the completion of the panel update
(in line 8) ensures that, provided this change is visible inside gemm, the next
time the OpenMP parallel for directive around Loop 4 in gemm is encoun-
tered (i.e., in the next iteration of Loop 3; see Listing 1), this loop will be
executed by all t threads. The change in the number of threads also affects the
parallelism degree of the packing routine for Ac.

5 Re-visiting Nested Mixed Parallelism

Exploiting data locality is crucial on current architectures. This is the case for
many scientific applications and, especially, for DMF when the goal is to squeeze
the last drops of performance of an algorithm–architecture pair. To attain this,
a tight control of the data placement/movement and threading activity may be
necessary. Unfortunately, the use of a high-level programming model such as
OpenMP abstracts these mappings, making this task more difficult.

5.1 Conventional OS threads

Nested parallelism may potentially yield a performance issue due to the thread
management realized by the underlying OpenMP runtime. In particular, when
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the first parallel directive is found, a team of threads is created and the
following region is executed in parallel. Now, if a second parallel directive
is encountered inside the region (nested parallelism), a new team of threads is
created for each thread encountering it. This runtime policy may spawn more
threads than physical cores, adding a relevant overhead due to oversubscription
as current OpenMP releases are implemented on top of “heavy” Pthreads, which
are controlled by the operating system (OS).

In the DMF algorithms, we encounter nested parallelism because of the
nested invocation of a parallel for (from a BLAS kernel) inside a parallel

sections directive (encountered in the DMF routine). To tackle this problem,
we can restrict the number of threads for the sections to only two and, in an
architecture with t physical cores, set the number of threads in the parallel

for to tMM=t−1, for a total of t threads. Unfortunately, with the addition of
malleability, the thread that executes the panel factorization, upon completing
this computation, will remain “alive” (either in a busy wait or blocked) while
a new thread is spawned for the next iteration of Loop 3 in the panel update,
yielding a total of t+1 threads and the undesired oversubscription problem.

We will explore the practical effects of oversubscription for classical OpenMP
runtimes that leverage OS threads in Section 6, where we consider the differences
between the OpenMP runtimes underlying GNU gcc and Intel icc compilers,
and describe how to avoid the negative consequences for the latter.

5.2 LWT in Argobots

In the remainder of this section we introduce an alternative to deal with oversub-
scription problems using the implementation of LWTs in Argobots [30]. Com-
pared with OS threads, LWTs (also known as user-level threads or ULTs) run in
the user space, providing a lower-cost threading mechanism (in terms of context-
switch, suspend, cancel, etc.) than Pthreads [33]. Furthermore, LWT instances
follow a two-level hierarchical implementation, where the bottom level (closer
to the hardware) comprises the OS threads which are bound to cores following a
1:1 relationship. In contrast, the top level corresponds to the ULTs, which con-
tain the concurrent code that will be executed concurrently by the OS threads.
With this strategy, the number of OS threads will never exceed the amount of
cores and, therefore, oversubscription is prevented.

5.2.1 LWT parallelization with GLTO

To improve code portability, we utilize the GLTO API [9], which is an OpenMP-
compatible implementation built on top of the GLT API [8], and rely on Ar-
gobots as the underlying threading library. Concretely, our first LTW-based
parallelization employs GLTO to extract task-parallelism from the DMF, us-
ing the OpenMP parallel sections directive, and loop-parallelism inside the
BLAS, using the OpenMP parallel for directive. Therefore, no changes are
required to the code for the DMF with static look-ahead, NMP and MTL BLAS.
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The only difference is that the OpenMP threading library is replaced by GLTO’s
(i.e., Argobot’s) instance in order to avoid potential oversubscription problems.

Applied to the DMFs, this solution initially spawns one OS thread per core.
The master thread first encounters the parallel sections directive, creating
two ULT work-units (one per section), and then commences the execution of one
of these sections/ULTs/branches. Until the creation of the additional ULTs, the
remaining threads cycle in a busy-wait. Once this occurs, one of these threads
will commence with the execution of the alternative section (while the remaining
ones will remain in the busy-wait). The thread in charge of the right trailing
update then creates several ULTs inside the BLAS, one per iteration chunk due
to the parallel for directive. These ULTs will be executed, when ready, by
the OS threads. The TLM technique is easily integrated in this solution as OS
threads execute ULTs, independently of which section of the code they “belong
to”.

1 void Gemm_Tasklets( int m, int n, int k, double *A, double *B,

2 double *C) {

3 // Declarations: mc, nc, kc ,...

4 // GLT tasklet handlers

5 GLT tasklet tasklet[tMM];

6 struct L4 args L4args[tMM];

7
8 for ( jc = 0; jc < n; jc += nc ) { // Loop 1

9 // Loops 2, 3, 4 and packing of Bc, Ac (omitted for simplicity)

10 for ( th = 0; th < tMM; th++ ) // Loop 4

11 {

12 L4args[th].arg1 = arg1;

13 L4args[th].arg2 = arg2;

14 // ...

15 // Tasklet creation that invokes L4 function

16 glt tasklet create(L4, L4args[th], &tasklet[th]);

17 }

18
19 glt yield();

20 // Join the tasklets

21 for ( th = 0; th < tMM; th++ )

22 glt tasklet join(&tasklet[th]);

23 }

24 }

Listing 6: High performance implementation of gemm in BLIS on top of GLT
using Tasklets.

5.2.2 LWT parallelization with GLTO+GLT

Argobots provides direct access to Tasklets, a type of work-units that is even
lighter than ULTs and can deliver higher performance for just-computation
codes [7]. In our particular example, Tasklets can leveraged to parallelize the
BLAS routines, providing an MTL black-box implementation of this library that
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can be invoked from higher-level operations, such as DMFs. In this alternative
LWT-based parallel solution, the potential higher performance derived from the
use of Tasklets comes at the cost of some development effort. The reason is
that GLTO does not support Tasklets but relies on ULTs to realize all work-
units. Therefore, our implementation of MTL BLAS has to abandon GLTO,
employing the GLT API to introduce the use of Tasklets in the BLAS instance.

In more detail, we implemented a hybrid solution with GLTO and GLT. At
the outer level, the parallelization of the DMF employs the parallel sections

directive on top of GLTO, the OpenMP runtime and Argobots’ threading mech-
anism. Internally, the BLAS routines are implemented with GLT tasklets, as
depicted in the example in Listing 6. In the Gemm Tasklets routine there, in
line 5 we first declare the tasklet handlers (one per thread that will execute
Loop 4, that is, tMM). The original Loop 4 in Gemm, indexed by jr (see List-
ing 1), is then replaced by a loop that creates one Tasklet per thread. Lines
12–14 inside this new loop initialize the arguments to function L4, among other
parameters defining which iterations of the iteration space of the original loop
indexed by jr will be executed as part of the Tasklet indexed by th. Then, line
16 generates a GLT tasklet that contains the function pointer (L4), the function
arguments (L4args) and the tasklet handler. This Tasklet will be responsible
for executing the corresponding iteration space of jr, including Loop 5 and the
micro-kernel(s). Line 19 allows the current thread to yield and start execut-
ing pending work-units (Tasklets). Finally, line 22 checks the Tasklet status to
ensure that the work has been completed (synchronization point).

In Section 6, we evaluate the LWT solutions based on GLTO vs GLTO+GLT,
and we compare the performance compared with a conventional OpenMP run-
time using the DMF algorithms as the target case study.

6 Performance Evaluation

6.1 Experimental setup

All the experiments in this paper were performed in double precision real arith-
metic, on a server equipped with an 8-core Intel Xeon E5-2630 v3 (“Haswell”)
processor, running at 2.4 GHz, and 64 Gbytes of DDR4 RAM. The codes were
compiled with Intel icc 17.0.1 or GNU gcc 6.3.0. The LWT implementation
is that in Argobots.2 (Unless explicitly stated otherwise, we will use Intel’s
compiler and OpenMP runtime.) The instance of BLAS is a modified version
of BLIS 0.1.8, to accommodate malleability, where the cache configuration pa-
rameters were set to nc = 4032, kc = 256, mc = 72, nr = 6, and mr = 8. These
values are optimal for the Intel Haswell architecture.

The matrices employed in the study are all square of order n, with random
entries following a uniform distribution. (The specific values can only have a
mild impact on the execution time of LUpp, because of the different permuta-
tion sequences that they produce.) The algorithmic block size for all algorithms

2Version from October 2017. Available online at http://www.argobots.org.
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was set to b = 192. This specific value of b is not particularly biased to fa-
vor any of the algorithms/implementations and avoids a very time-consuming
optimization of this parameter for space range of tuples DMF/problem dimen-
sion/implementation.

In the following two subsections, we employ LUpp to compare the distinct
behavior of Intel’s and GNU’s runtimes when dealing with nested parallelism;
and the performance differences when using GLTO or GLT to parallelize BLAS.
After identifying the best options with these initial analyses, in the subsequent
subsection we perform a global comparison using three DMFs: LUpp, the QR
factorization (QR), and a routine for the reduction to band form that is utilized
in the computation of the SVD. These DMFs are representative of many linear
algebra codes in LAPACK.

6.2 Conventional OS threads: GNU vs Intel

GNU and Intel have different policies to deal with nested parallelism that may
produce relevant consequences on performance. In principle, upon encounter-
ing the first (outer) parallel region, say OR (for outer region), both runtimes
“spawn” the requested number of threads. For each thread hitting the second
(inner) region, say IR1 (inner region-1), they will next “spawn” as many threads
as requested in the corresponding directive. The differences appear when, after
completing the execution of IR1, a new inner region IR2 is encountered. In this
scenario, GNU’s runtime will set the threads that executed IR1 to idle, and a
new team of threads will be spawned and put in control of executing IR2. Intel’s
runtime behavior differs from this in that it re-utilizes the team that executed
IR1 for IR2 (plus/minus the differences in the number of threads requested by
the two inner regions). This discussion is important because, in our paralleliza-
tion of the DMFs, this is exactly the scenario that occurs: OR is the region in
the DMF algorithm that employs the parallel sections directive, while IR1,
IR2, IR3,. . . correspond to each one of regions annotated with the parallel for

directives that are encountered in successive iterations of Loop 3 for the BLAS.
It is thus easy to infer that, under these circumstances, GNU will produce con-
siderable oversubscription, due to the overhead of creating new teams even if
the threads are set to a passive mode after no longer needed (or even worse if
they actively cycle in a busy-wait).

With Intel, a mild risk of oversubscription still appears with the version of
the DMF algorithm that employs a malleable BLAS. In this case, the thread that
completes the execution of the panel factorization, upon execution of this part,
is set to idle; and the next time the parallel for inside Loop 3 of the BLAS is
encountered, a new thread becomes part of the team executing the panel update.
The outcome is that now we have one thread waiting for the synchronization
at the end of the parallel sections and tMM=t threads executing the trailing
update, where t denotes the number of cores. Fortunately, we can avoid the
negative consequences in this case by controlling the behavior of the idle thread
via Intel’s environment variables, as we describe next.

The experiments in this subsection aim to illustrate these effects. Concretely,
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Figure 4 compares the performance of both conventional runtimes for the LUpp
codes (with static look-ahead in all cases), and shows the impact of their mech-
anisms for thread management in performance. For Intel’s runtime, we also
provide a more detailed inspection using several fine-grained optimization strate-
gies enforced via environment variables. Each line of the plot corresponds to a
different combination of runtime-environment variables as follows:

Base: Basic configuration for both runtimes. Nested parallelism is explicitly en-
abled by setting OMP NESTED=true and OMP MAX LEVELS=2. The waiting
policy for idle threads is explicitly enforced to be passive for both runtimes
via the initialization OMP WAIT POLICY=passive. This environment vari-
able defines whether threads spin (active policy) or sleep (passive policy)
while they are waiting.

Blocktime: Only available for Intel’s runtime. When using a passive waiting
policy, we leverage variable KMP BLOCKTIME to fix the time that a thread
should wait after completing the execution of a parallel region before sleep-
ing. In our case, we have empirically determined an optimal waiting time
of 1 ms. (In comparison, the default value is 200 ms.)

HotTeams: Only available for Intel’s runtime. Hot teams is an extension of
OpenMP supported by the Intel runtime that specifies the runtime behav-
ior when the number of threads in a team is reduced. Specifically, when
the hot teams are active, extra threads are kept in the team in reserve,
for faster re-use in subsequent parallel regions, potentially reducing the
overhead associated with a full start/stop procedure. This functionality
by setting KMP HOT TEAMS MODE=1 and KMP HOT TEAMS MAX LEVEL=2.
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Figure 4: Performance of LUpp using the conventional OpenMP runtimes on 8
cores of an Intel Xeon E5-2630 v3.

The analysis of performance in Figure 4 exposes the differences between
Base configurations of the Intel’s and GNU’s runtimes, mainly derived from the
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distinct policies in thread re-use between the two runtimes, and the consequent
oversubscription problem described above. For Intel’s runtime, the explicit in-
troduction of a passive wait policy (Base line) yields a substantial performance
boost compared with GNU; and additional performance gains are derived from
the use of an optimal block time value, and hot teams (lines labeled with Block-
time and HotTeams, respectively).

6.3 LWT in Argobots: GLTO vs GLTO+GLT

Figure 5 compares the performance of the LUpp codes (with static look-ahead),
using the two LWT solutions described in subsection 5. Here we remind that
the simplest variant utilizes GLTO’s OpenMP-API on top of Argobot’s runtime
(line labeled as GLTO in the plot) while the most sophisticated one, in addition,
employs Tasklets to parallelize the BLAS (line GLTO+GLT). This experiment
show that using Tasklets compensates the additional efforts of developing this
specific implementation of the BLAS. This is especially the case, as this devel-
opment is a one-time effort that, once completed, can be seamlessly leveraged
multiple times by the users of this specialized instance of the library.
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Figure 5: Performance of LUpp using the LWT in Argobots on 8 cores of an
Intel Xeon E5-2630 v3.

6.4 Global comparison

The final analysis in this paper compares the five parallel algorithms/implemen-
tations listed next. Unless otherwise stated, they all employ Intel’s OpenMP
runtime.

• MTB: Conventional approach that extracts parallelism in the reference
DMF routines (without look-ahead) by simply linking them with a multi-
threaded instance of BLAS.
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• RTM: Runtime-assisted parallelization that decomposes the trailing up-
date into multiple tasks and simultaneously executes independent tasks in
different cores. Most of the tasks correspond to BLAS kernels which are
executed using a serial (i.e., single-threaded) instance of this library. The
tasks are identified using the OpenMP 4.5 task directive and dependen-
cies are specified via representants for the blocks and the proper in/out
clauses.

• LA: DMF algorithm that integrates a static look-ahead and exploits NMP
with task-parallelism extracted from the loop-body of the factorization
and loop-parallelism from the multi-threaded BLAS.

• LA MB S and LA MB G: Analogous to LA but linked with an MTL multi-
threaded version of BLAS. The first implementation (with the suffix “ S”)
employs Intel’s OpenMP runtime, with the environment variables set as
determined in the study in subsection 6.2. The second one (suffix “ G”)
employs GLTO+GLT and Argobot’s runtime, as derived to be the best
option from the experiment in subsection 6.3.

For this study, we use leverage the following three DMFs:

• LUpp: The LU factorization with partial pivoting as utilized and described
earlier in this work; see subsection 3.4.

• QR: The QR factorization via Householder transformations. The refer-
ence implementation is a direct translation into C of routine geqrf in
LAPACK. The version with static look-ahead is obtained from this code
by re-organizing the operations as explained for the generic DMF earlier
in the paper. The runtime-assisted parallelization operates differently, in
order to expose a higher degree of parallelism, but due to the numerical
stability of orthogonal transformations, produces the same result. In par-
ticular, RTM divides the panel and trailing submatrix into square blocks,
using the same approach proposed in [5, 28], and derived from the incre-
mental QR factorization in [20].

• SVD: The reduction to compact band form for the (first stage of the)
computation of the SVD, as described in [19, 29]. This is a right-looking
routine that, at each iteration, computes two panel factorizations, using
Householder transformations respectively applied from the left- and right-
hand side of the matrix. These transformations are next applied to update
the trailing parts of the matrix via efficient BLAS-3 kernels. The variants
that allow the introduction of static look-ahead were presented in [29]. No
runtime version exist at present for this factorization [29].

The results are compared in terms of GFLOPS, using the standard flop counts
for LUpp (2n3/3) and QR (4n3/3). For the SVD reduction routine, we employ
the theoretical flop count of 8n3/3 for the full reduction to bidiagonal form.
However, the actual number of flops depends on the relation between the actual
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Figure 6: Performance of LUpp on 8 cores of an Intel Xeon E5-2630 v3.
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Figure 7: Performance of QR on 8 cores of an Intel Xeon E5-2630 v3.

target bandwidth w and the problem dimension. In these experiments, w was
set to 384. For the SVD, this performance ratio allows a fair comparison between
the different algorithms as the GFLOPS can still be viewed as an scaled metric
(for the inverse of) time.

Figures 6–8 compare the performance of the distinct algorithms for the three
DMFs, using square matrices of growing dimensions from 500 till 20,000 in steps
of 500. These experiments offer some important insights:

• The basic algorithm (MTB), corresponding to the reference implementa-
tion without look-ahead, which extracts all parallelism from the BLAS,
cannot compete with the other variants. The reason for this is the low
performance of the panel factorization, which stands in the critical path
of the algorithm, and results in a serious bottleneck for the global perfor-
mance of the algorithm. (Decreasing drastically the panel width, i.e., the
algorithmic block size b, is not an option because the trailing update then
becomes a memory-bound kernel, delivering low performance and poor
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Figure 8: Performance of SVD on 8 cores of an Intel Xeon E5-2630 v3.

parallel scalability.)

• The algorithm enhanced with a static look-ahead (LA) partially eliminates
the problem of the panel factorization by overlapping, at each iteration,
the execution of this operation with that of the highly-parallel trailing
update. Only for the smallest problem sizes, the panel factorization is too
expensive compared with the trailing update, and the cost of the panel
operation cannot be completely hidden. (However, as stated earlier, this
an be partially tackled via early termination [10].)

• As the problem size grows, employing a malleable instance of BLAS (as in
versions LA MB S and LA MB G) squeezes around 5–20 additional GFLOPS
(depending on the DMF and problem dimension) with respect to the ver-
sion with look-ahead that employs the regular implementation of BLAS.
This comes from the thread performing the panel factorization jumping
into the trailing update as soon as it is done with the former operation. As
it was expected, this occurs for the largest problems, as in those cases the
cost of the trailing update dominates over the panel factorization. Fur-
thermore, the theoretical performance advantage that could be expected
is 8/7 (from using 7 threads in the trailing update to having 8), which
is about 14% at most, in the theoretical assumption that the panel fac-
torization has no cost. This represents about 25 extra GFLOPS for a
performance rate of 180 GFLOPS.

• The runtime-based parallelization (RTM) is clearly outperformed by the
algorithms that integrate a static look-ahead for LUpp and all problem
dimensions. This is a consequence of the excessive fragmentation into
fine-grain kernels and the overhead associated with these conditions. The
scenario though is different for QR. There RTM is the best option for small
problem sizes. The reason is that the algorithm for this factorization
performs a more aggressive division of the factorization into fine-grain
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tasks, which in this case pay offs for this range of problems. Unfortunately,
the same approach cannot be applied to LUpp without abandoning the
standard partial pivoting and, therefore, changing the numerics of the
algorithm.

7 Concluding Remarks

We have addressed the parallelization of a general framework that accommo-
dates a relevant number of dense linear algebra operations, including the major
dense matrix factorizations (LU, Cholesky, QR and LDLT), matrix inversion
via Gauss-Jordan elimination, and the initial decomposition in two-stage algo-
rithms for the reduction to compact band forms for the solution of symmetric
eigenvalue problems and the computation of the SVD. Our work describes these
algorithms with a high level of abstraction, hiding some implementation details,
an employs a high-level parallel programming API such as OpenMP to provide
enough information in order to obtain a practical high-performance parallel code
for multicore processors. The key factors to the success of this approach are:

• The exploitation of task-parallelism in combination with a static look-
ahead strategy explicitly embedded in the code that hides the latency of
the panel factorization.

• The integration of a malleable, multi-threaded instance of the BLAS that
realizes the major part of the flops and ensures that the threads/cores
involved in these operations efficiently share the memory resources causing
little overhead.

• The use of Intel’s OpenMP runtime, with the proper setting of several
environment variables in order to prevent oversubscription problems when
exploiting nested parallelism or, alternatively, the support from a LWT-
runtime such as Argobots.

Our approach shows very competitive results, in general outperforming other
parallelization strategies for DMFs, for problem dimensions that are large enough
with respect to the number of cores.

Overall, we recognize that current development efforts in the DLA-domain
are pointing in the direction of introducing dynamic scheduling via a runtime,
taking away the burden of optimization off the user while still providing high
performance across different systems. In comparison, when applied with care,
one could naturally expect that a manual distribution of the workload among the
processor cores outperforms dynamic scheduling, at the cost of a more complex
coding effort. This work aims to show that, given the right level of abstrac-
tion, modifying a DMF routine to manually introduce a static look-ahead, and
parallelizing the outcome via the appropriate runtime, is a simple task.
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