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ABSTRACT

VECTOR SUPPORT FOR MULTICORE PROCESSORS WITH MAJOR
EMPHASIS ON CONFIGURABLE MULTIPROCESSORS

by
Hongyan Yang

It recently became increasingly difficult to build higher speed uniprocessor chips because

of performance degradation and high power consumption. The quadratically increasing

circuit complexity forbade the exploration of more instruction-level parallelism (ILP). To

continue raising the performance, processor designers then focused on thread-level paral-

lelism (TLP) to realize a new architecture design paradigm. Multicore processor design is

the result of this trend. It has proven quite capable in performance increase and provides

new opportunities in power management and system scalability. But current multicore pro-

cessors do not provide powerful vector architecture support which could yield significant

speedups for array operations while maintaining area/power efficiency.

This dissertation proposes and presents the realization of an FPGA-based prototype

of a multicore architecture with a shared vector unit (MCwSV). FPGA stands for Filed-

Programmable Gate Array. The idea is that rather than improving only scalar or TLP per-

formance, some hardware budget could be used to realize a vector unit to greatly speedup

applications abundant in data-level parallelism (DLP). To be realistic, limited by the par-

allelism in the application itself and by the compiler's vectorizing abilities, most of the

general-purpose programs can only be partially vectorized. Thus, for efficient resource us-

age, one vector unit should be shared by several scalar processors. This approach could also

keep the overall budget within acceptable limits. We suggest that this type of vector-unit

sharing be established in future multicore chips.

The design, implementation and evaluation of an MCwSV system with two scalar

processors and a shared vector unit are presented for FPGA prototyping. The MicroBlaze

processor, which is a commercial IP (Intellectual Property) core from Xilinx, is used as the



scalar processor; in the experiments the vector unit is connected to a pair of MicroBlaze

processors through standard bus interfaces. The overall system is organized in a decoupled

and multi-banked structure. This organization provides substantial system scalability and

better vector performance. For a given area budget, benchmarks from several areas show

that the MCwSV system can provide significant performance increase as compared to a

multicore system without a vector unit.

However, a MCwSV system with two MicroBlazes and a shared vector unit is not al-

ways an optimized system configuration for various applications with different percentages

of vectorization. On the other hand, the MCwSV framework was designed for easy scala-

bility to potentially incorporate various numbers of scalar/vector units and various function

units. Also, the flexibility inherent to FPGAs can aid the task of matching target applica-

tions. These benefits can be taken into account to create optimized MCwSV systems for

various applications. So the work eventually focused on building an architecture design

framework incorporating performance and resource management for application-specific

MCwSV (AS-MCwSV) systems. For embedded system design, resource usage, power

consumption and execution latency are three metrics to be used in design tradeoffs. The

product of these metrics is used here to choose the MCwSV system with the smallest value.
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CHAPTER 1

INTRODUCTION

1.1 Vector Processing

During the past thirty years processor designers have mainly concentrated on exploring

instruction-level parallelism (ILP) to improve performance; only recently have they applied

thread-level parallelism (TLP) approaches in chip design. The former approach has lead to

the development of superscalar and VLIW (Very Long Instruction Word) architectures [2].

Superscalar architectures are flexible, can exploit ILP dynamically by hardware and have

dominated CPU design for a long time. This design paradigm, however, requires a complex

control unit with complexity growing exponentially; this eventually diminishes the return

of issuing more instructions [3]. Also, the majority of applications have a limited degree of

ILP. The pure VLIW paradigm relies on the compiler to exploit ILP and issues each time

a fixed number of instructions fetched as one large instruction. It has simpler hardware as

compared to superscalars, but requires large instruction cache space, increased instruction

fetch bandwidth and very sophisticated compilers.

Vector processing avoids the above problems of superscalar and VLIW architectures

for applications rich in data parallelism [2]. It was very common for supercomputers built

in the I980s and 1990s; then it began to fade away but some relevant features were realized

in advanced microprocessors for operations on streams of data. The release of the Earth

Simulator in 2002, the fastest supercomputer in the world for three consecutive years [4],

led to a resurgence of interest in the vector architecture [2]. Vector processors have made a

comeback in several domains, including scientific computing [5, 6], multimedia processing

[7-9], telecommunications and signal processing [10, 11]. Abundant data-level parallelism

(DLP) in these domains allows vector processors to provide higher peak and sustained per-

formance than superscalar, VLIW and chip multiprocessor (CMP) designs [9, I2]. IBM,

1



2

Toshiba and Sony announced the Cell processor in 2000 which consists in part of many

vector processors and is optimized for compute-intensive workloads, broadband data trans-

mission and multimedia processing [13]. Today almost all commodity CPU designs include

some vector processing instructions, typically known as of the Single Instruction, Multiple

Data (SIMD) type. Modern video game consoles and consumer computer-graphics hard-

ware in particular rely heavily on vector processors.

The properties of the vector architecture, which render it the most efficient and

lowest-complexity approach for array operations are [2]:

• A single vector instruction implies lots of essential work; it is equivalent to an en-

tire loop implemented in sequential processing. So the instruction fetch and decode

bandwidths needed to feed multiple, deeply pipelined functional units are dramati-

cally reduced.

• Each element in the resulting vector is independent of the current computation of

other results in the same vector. Thus, multiple operations can be executed in par-

allel on vector elements and the effect of data hazards is minimized. A multi-lane

memory-access structure which explores data parallelism is described in Subsection

1.1.2; this structure is power efficient, simple to design, and easy to scale [14].

• Vector instructions access the memory with known patterns. Thus, the cost of the

latency to access the main memory is amortized because a single access is initiated

for a large part or the whole of a vector.

1.1.1 Vector Supercomputers and Their Applications

Vector processing is particularly useful for large science and engineering applications [2].

Actually, the early supercomputing arena was dominated by vector supercomputers. In

I993, 340 out of the top 500 supercomputers were based on the vector structure [4]. Cray,

NEC, Fujitsu, Hitachi, Convex CDC, EDT and IBM all developed high performance vec-
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tor supercomputers [2]. Then, the fast development of commodity clusters began to take

a leading role in the supercomputing field, benefitting from the performance improvement

of microprocessors [I5]; vector supercomputers appeared to fade. For a decade most of

the computer architects believed that the future belongs to Massively Parallel Processing

(MPP) systems made from off-the-shelf commodity chips. Some persons even predicted

that the vector structure will be of diminished value in the supercomputing area and will be

totally replaced by systems built form large numbers of superscalar microprocessors [2].

But in 2002, NEC Inc. announced the world's fastest supercomputer, the Earth Simulator

based on 5120 vector microprocessors. The impact of the Earth Simulator, together with

the release of a new generation of vector machines from Cray, led to a renaissance of inter-

est in the vector processing structure [2]. Vector processors still remain the most effective

way to exploit data-parallel applications [9]. Due to the high communication latency of

clusters, vector supercomputers have been widely used and will continue to play an es-

sential role in many application areas in government, commercial and academic use [15].

These areas include stockpile stewardship, signal intelligence defense, climate prediction,

plasma physics and etc. [15].

1.1.2 Vector Processing in Embedded Systems

Embedded systems are ubiquitous and can be found in most of the electronic products

related to consumer electronics, office automation, home appliances and automobiles. In

recent years, embedded computing systems have grown tremendously not only in their pop-

ularity, but also in their complexity [16]. Embedded systems are typically single-functioned

and have tight constraints on implementation. In particular, they must often react to the ex-

ternal events in real time, and meet tight the requirements of size, weight, budget power

and cooling consumption [I7].

The vector architecture is especially suitable for embedded systems targeting array-

based applications because of simplicity, good performance and small code size. The sim-
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ple architecture implies small area, low power consumption, low cost and short design

time. It can outperform the two architectures widely used in desktop domain, superscalar

and VLIW by a factor of two to ten on array-intensive applications despite its much lower

clock frequency [9].

Two previous vector systems were built at U.C. Berkeley for embedded applications:

one is TO, a vector microprocessor [14]; the other is a scalable vector media-processor [18].

TO divides the central vector register file into multiple lanes where each lane contains a slice

of vector registers. Each lane also contains a datapath to a function unit, so data parallelism

can be easily employed because there is no data dependency between element calculations

[14]. The scalable vector media-processor not only uses the multi-lane structure, but also a

cluster organization which divides the set of vector registers into different clusters, where

each cluster contains part of the set. A communication network is used to transfer the data

in vector registers between different clusters, when needed. Different function units are

connected with the clusters to achieve ILP. One problem in conventional vector processor

design is that the complexity and size of the centralized multi-port vector register file limits

the number of function units [19]. Both of these architectures can solve the problem and

the latter can also hide long memory latencies [14, 18] .

Multimedia and telecommunications benchmarks from the Embedded Microproces-

sors Benchmark Consortium (EEMBC) [20] were run on the latter and results showed that

the vector processor is two times faster than a 4-way superscalar processor running at five

times higher clock frequency; it is also ten times faster than a 5-way to 8-way VLIW de-

sign. It also showed that the vector microprocessor has smaller code size and less power

consumption as compared to RISC, VLIW and superscalar architectures [9].
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1.2 Multicore Processors

1.2.1 Motivation for Their Development

In the 1990s, computer performance was increasing according to Moore's law, driven

largely by increasing transistor density, accelerating operating frequency and exploring

more ILP. But then it couldn't keep up. The performance increase was 60 percent per year

in the 1990s but slowed to 40 percent from 2000 to 2004; then, it reached only 20 percent

after 2004 [21]. Today, it costs twice the chip area to gain a 20 percent speed increase with

a uniprocessor. The reason lies in two facts. One is that heat management is becoming a

very serious problem with transistor size decreases. Leakage power constrains frequency

acceleration [22]. The other is that both the superscalar and VLIW, two widely used ar-

chitectures in modern computers, approached performance limits of exploring ILP because

of quadratic increases in power, area, hardware control or compiler complexity [3]. The

diminishing returns of building more complex uniprocessors forced researchers to change

their design philosophy toward improving performance and managing power consumption.

As a result, chip processor makers have turned into multicore processor designs.

It can potentially explore TLP to provide increased single-chip computational capability

without requiring a complex microarchitecture. Multiple cores having the same microar-

chitecture are integrated. Generally these cores have a shared L2 cache and each core is

equipped with its own cooling support. They do not necessarily run as fast as single-core

models, but they can improve the overall performance by handling more work in parallel

[2I]. Thus simple multicore processors can provide better performance per watt for a given

area than more complex single-core competitors [23]. The simplicity of their architecture

also offers new opportunities for scalability and thermal control.

1.2.2 State of the Art and Future Multicore Processors

Processor makers like Intel, AMD, IBM and Sun have introduced multicore chips for

servers, desktops and laptops [21]. Intel has shipped Core Duo, Core 2 Duo, and Xeon
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(x lxx series) microprocessors with dual-core technology; it also provided in 2006 quad-

core versions of the Core 2 chip, called the Core 2 Quad and Core 2 Extreme [24]. Also,

it has developed an 80-core processor prototype that can perform a trillion floating-point

operations per second at 3.16GHz and this processor will be rolled out within the next five

years. Moreover, Intel has more than 15 multicore processor projects underway, and the

architecture is expected to hold dozens or even hundreds of processor cores in a single

die [22]. AMD also has released its dual-core Opteron server/workstation processors, the

Athlon 64 X2 family desktop and the Turion 64 X2 for laptops in 2005, and a quad-core

Opteron processor in 2007 [25]. IBM has announced its dual-core chips POWER4 and

POWERS. Sun Microsystems introduced its dual-core chip UltraSPARC IV early in 2003

and unveiled the UltraSPARC Ti in 2005, Sun's first microprocessor that is both multicore

and multithreaded. The UltraSPARC T1 is available with four, six or eight CPU cores, and

each core is able to handle four threads concurrently. Thus, the processor is capable of

processing up to 32 threads concurrently [26]. It is widely believed by computer architects

that future microprocessors will perhaps include hundreds or even thousands of cores in a

single die [27].

Inspired by the fast development of multicore designs, accelerators prototyped on

FPGA boards for multicore processors are under development by groups of researchers in

universities and companies. They aim to build research platforms for multcore/multiple

processor designs with up to thousands of cores in hardware/software IPs, in order to

provide highly accurate performance prediction, parameterized reconfiguration and exten-

sive monitoring. Such accelerators are supposed to provide multiple orders of magnitude

speedup over software-based simulators of multicore processor designs [27].

While most of the current multicore processors only include homogeneous general

processing cores, it could be promising to include heterogenous cores in the multicore de-

sign [22, 23, 28]. Frameworks for heterogenous multicore architectures were studied in

[28, 29]. They tried to provide platforms for integrating different cores flexibly, while
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offering the necessary software support for application scheduling and a simulation envi-

ronment for multicore designs. A performance-asymmetric multicore design, where indi-

vidual cores have different compute capabilities, was also described in [23]. While a few

high-performance complex cores can provide good serial performance required by single

threads, many low-performance simple cores could provide higher performance. It was

demonstrated that some degree of asymmetric performance is beneficial to particular ap-

plications. Multicore designs mixed with multithreading and hyperthreading participants,

such as the UltraSPARC announced by Sun, could increase computer performance even

further [26]. Higher performance can also be expected from integrating special-purpose

processor cores in multimedia processing, speech recognition, networking applications,

etc. [22].

On the other hand, substantial effort has been made to improve software support

for parallel programming on multicore processor platforms. Intel provides a number of

compilers, software primitives and tools, aiming at enabling parallel programming on its

processors. AMD, on the other hand, has announced plans to extend the X86 instruction

set to ease the job of programming multicore processors.

Multicore processors also provide new opportunities in thermal management and

scalability because of multithreading/multitasking. Many new innovations designed to op-

timize power, performance, inter connectivity and scalability have been implemented for

multicore processors [23, 30, 31].

Multicore processors have been used to manage web applications (Sun Microsys-

tems/UltraSparc T1 [32]), game consoles (IBM, Sony, Toshiba/Cell [33]), data storage

networks (Cavium Networks/Octeon), image processing (Rapport/KC256), wireless com-

munications (PicoChip/PC2xx), etc.
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1.3 Configurable Computing

Computation-intensive applications are a great challenge to conventional instruction set

processors due to the latter's underlying sequential architecture. ASIC designs with abun-

dant calculation units are very efficient for such tasks. But they are resilient to potential

modifications required to fit new applications. This makes the ASIC approach prohibitively

expensive for small productions and drives designers to search for flexible solutions. Con-

figurable or reconfigurable computing provides a way to combine the flexibility of mi-

croprocessors and the implementation efficiency of ASICs. It has blurred the distinction

between hardware and software, and benefits from the advantages of both [34]. Config-

urable computing has demonstrated its superiority in many application domains and many

configurable computer systems are based on FPGAs. In this section, we will introduce

the FPGA technology with recent developments that make it feasible to form computation

elements.

1.3.1 Overview of Field-Programable Gate Arrays (FPGAs)

After their invention by the Xilinx Lab in 1984, the FPGA technology has developed

rapidly in both capacity and performance. Take the example of the Virtex-5 series, a new

65nm FPGA announced by Xilinx Inc. It offers up to 51, 840 slices, with each slice con-

taining four 6-input look-up tables (LUTs), four storage elements, wide-function multi-

plexers and carry logic, 1200 user I/Os, I0Mbits of 36Kbit block RAM, and 3.4Mbits of

distributed RAM, plus an abundance of hardened intellectual property (IP) blocks. It pro-

vides 30% higher speed, 35% lower dynamic power and 45% less area than the previous

generation Xilinx FPGA Virtex-4. Additionally, FPGA providers continue to decrease their

price. The cost of logic cells has been reduced 30-fold from their introduction, to as little

as less than 50 cents per 1000 logic cells. Although FPGAs have historically been used

as "glue logic" to connect various other elements within a system or to replace an ASIC

phototype, they are now widely used in several diverse domains because of their advances
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in capacity and performance provided mainly by the last couple of FPGA generations. The

recently improved computational power of FPGAs has also attracted mainstream high-

performance computing companies. Cray's XD1 supercomputer combines AMD Opteron

processors with FPGAs to accelerate computations. This configurable supercomputer can

yield orders-of-magnitude speedups. Silicon Graphics also includes FPGAs in its Altix

platform [35].

As FPGAs have matured, researchers were quick to recognize their potential and they

soon became the most common devices in configurable computing. Many reconfigurable

systems are based on FPGA technology. They can be classified in fine grained and coarse

grained architectures according to the complexity of the lowest level design; or closely cou-

pled and loosely coupled architectures according to the proximity to the host machine [34].

These systems include Splash [36], BEE2 [37], ArMen [38], TM and TM-2 [39], BORG

and BORG II, SPYDER, RENCO, etc. Performance increase of orders of magnitude has

been reported in various application areas such as multimedia, wireless communications

and signal processing [34].

1.3.2 Recent Advances in FPGAs

Most of the recent generation FPGAs are called platform FPGAs as compared to previous

products which were based on fine-grain reconfigurable architectures. The term "platform

FPGA" represents a coarse-grain architecture with the integration of a wide variety of hard

and soft IP cores on a single device. The programmability of this coarse-grain architec-

ture greatly reduces system development time and complexity as compared to fine-grain

FPGA architectures. Platform FPGAs generally provide plenty of DSP blocks, large on-

chip memories, and a lot of IP cores, such as high-speed transceiver links, sophisticated

memory controllers and network interfaces. Take the example of the newest Xilinx FPGA

Virtex-5 series: it provides a built-in PCI express endpoint block which supports a ubiq-

uitous serial connectivity standard, several built-in Ethernet MAC blocks and 1.25Gbps
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selectlO in some models. It also provides up to 640 DSP48E slices with each of the en-

hanced slices containing a 25 x 18 multiplier and a 48-bit adder, and greatly improves

the signal processing ability. These DSP blocks can enable single-precision floating-point

math, which was an impossible task for earlier FPGAs, and wide filters.

Another important feature provided by platform FPGAs is the embedded micropro-

cessor. The FPGA processor can be of the "hard" core or "soft" core type. Hard processors

are microprocessors that have been diffused into the silicon of the FPGA, similar to discrete

processors. However, in the FPGA the CPU is surrounded by programmable logic which

can be configured to perform other functions and can be coupled tightly with the CPU [40].

The IBM PowerPC is a hard processor which can be found in some Xilinx devices such as

the Virtex-II PRO, Spartan-3 and Virtex-4 series chips. AVR is another hard processor used

in the Atmel FPSLIC device in combination with Atmel's programmable logic architecture.

Soft processors are microprocessors that are implemented by the user using the logic

primitives of the FPGA. They provide necessary elements and leave control to the user to

choose optional features, which may include caches, various arithmetic units, FPUs, debug

logic and other function modules for particular application requirements. The MicroBlaze

is a 32-bit soft processor and PicoBlaze is a simpler alternative with an 8-bit data bus made

available from Xilinx. Nios and NiosII are 32-bit soft processors provided by Altera. Other

soft cores include the open source LatticeMico32 and LatticeMico8, as well as third-party

(either commercial or free) processor cores.

The key benefits of using a soft processor include configurability to trade off price

and performance, faster time to market, easy integration with the FPGA fabric, and no

processor obsolescence [I]. It is easy to create a custom processor with the exact mix of

peripherals, memory interfaces, and hardware accelerators for a given application. The

number of soft processors that can be instantiated in a device is only limited by the FPGA's

logic resources. The number of hard processors, conversely, is fixed in a particular FPGA.

While soft IP cores provide flexibility to the user, the optimized design techniques for
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hard IP blocks ensure low area/power consumption and substantially better performance as

compared to typical un-optimized designs.

Their coarse-grained architectures and the embedded microprocessors have made FP-

GAs feasible choices in the high-performance computing area. FPGA-based SIMD/MIMD

systems [41-44], vector microprocessors [45-48] and other reconfigurable systems [34]

have reported impressive performance improvement for applications from various domains.

1.3.3 Design Flow

Fig. 1.1 shows the traditional FPGA design flow. Our design follows this conventional de-

sign flow and ModelSim is used for gate-level simulation, Synplify pro and Xilinx XST

are used for synthesis, and Xilinx place-and-route tools are used to put the design on

FPGA chips. Other development tools, such as Viva of Starbridge Systems [49] and Core-

fire of Annapolis Micro Systems[50] aim to provide alternative programming styles for

FPGA designs targeting specific systems. They provide user friendly graphic interfaces

and incorporate a bunch of high performance IP cores. The user can just use a "drag and

drop approach." Their benefit is short design time and development that does not descend

Figure 1.1: FPGA design flow.
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into low-level hardware details. But on the other hand, they limit the designer's control

and, therefore, the hardware implementation can be hardly fully optimized. Our experi-

ments show that a processor written in VHDL and running at I00 MHz on the Annapolis

WildStar-II board can only run at 60 MHz when designed by Corefire.

1.4 Motivations and Objectives

It is becoming increasingly difficult to build higher performance uniprocessor chips be-

cause of the complexities in manufacturing and power management. On the other hand,

the quadratically increasing circuit complexity forbids the exploration of more ILP, which

is anyway rather limited in the majority of programs. To continue raising the performance,

silicon designers then focused on TLP to realize next generation processors. Multicore pro-

cessor design is the result of this trend. It can potentially explore TLP to provide increased

single-chip computational capability without requiring a complex microarchitecture. It has

thus been deemed to be the most important trend in computer architecture and has been pro-

duced for servers, desktops and laptops by major processor chip makers like Intel, AMD,

Sun and IBM.

On the other hand, in the embedded system market developers have been working

with multicore devices for years. For example, the Apple iPOD features dual 90MHz

ARM7TDMI processors; engineers at NEC have developed a processor for cellular tele-

phones that includes three ARM processor cores in a single chip, aimed to improve the

multimedia capabilities of cell phones. Texas Instruments Inc. (TI) will introduce two

multicore DSPs for wireless infrastructure. ARM, a leader company in embedded sys-

tem design, developed its multicore embedded processor ARM11 MPCore, which can be

configured to contain one to four processors [51].

Although multicore processor designs can boost system performance by exploring

both TLP and ILP, and can solve the power management problem, their ability to utilize

DLP is still limited. Since vector processing is the most efficient way to explore DLP and
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vector operations are rather common in embedded applications, including a vector pro-

cessing unit in the embedded multicore processor can increase the system performance in

many cases. Although current general-purpose processors normally support DLP, the allo-

cated hardware resources are quite limited [9, 52]. We propose that some hardware budget

in multicore processor systems be used to realize a shared vector unit to greatly speedup

computations for applications abundant in DLP. As the number of transistors doubles in

about I8 months (Moore's law), the need for shared vector units in multicore designs will

become even more important. Thus, our thesis is that rather than improving only scalar

or TLP performance, we could spend some of the hardware budget to realize a vector unit

which will greatly speedup computations for applications abundant in DLP. To be realis-

tic, limited by the application itself and the compiler's vectorizing capabilities, most of the

general-purpose programs can only be partially vectorized. For efficient resource usage,

one vector unit should be shared by several scalar processors. The specific objectives of

this dissertation are as follows:

• Design and implement a vector microprocessor which can provide significant speedups

on vector-oriented, computation-intensive algorithms, with low energy consumption.

• Build an FPGA-based prototype for a multicore processor system with a shared vec-

tor unit, which should be able to deliver higher performance as compared to multiple

scalar processors under the same area budget for some full or partially vactorizable

applications.

• The designed system should support high-level languages and compilers.

• The system should support modular hardware implementation.

• Benchmark the prototype for embedded applications.

Thus, the target is a vector processor design framework suitable for embedded sys-

tems in multicore processor environments with a shared vector unit (MCwSV). The vector
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unit should support massive floating-point calculations, generally a time-consuming com-

ponent in scientific computing. The design should be easily configured with respect to

the kinds/number of function units in order to match various application requirements.

MCwSV should be able to take advantage of mature programming languages and compiler

technologies by using processor IPs, such as MicroBlaze, which is a commercial 32-bit

RISC processor. The vector unit should be connected to the scalar processors with stan-

dard bus interfaces to provide ease of scalability and code portability.

Considering the inherent flexibility of FPGAs and due their (re)configuration capabil-

ity, an MCwSV architecture template should be built based on tradeoffs involving resource

consumption and performance.



CHAPTER 2

VECTOR PROCESSING FOR EMBEDDED APPLICATIONS

As stated before, a vector microprocessor has much simpler hardware architecture and

lower energy consumption than VLIW and superscalar processors. And it is probably the

most efficient way to deal with applications that have abundant data parallelism and little

data reuse. Also, as shown in [18], the degree of vectorization can exceed 90% for most

benchmarks in the EDN Embedded Microprocessor Benchmark Consortium (EEMBC)

[20]. All of these make vector processing a very competitive choice for embedded sys-

tems.

In this chapter, a vector processing system with two identical vector processors is

proposed and implemented on the Annapolis WildStar II board [53]. Each vector micro-

processor has abundant parallel calculation units and supports floating-point calculations.

Specialized hardware and respective user instructions for efficient sparse matrix operations

were implemented as well. To test its performance, dense matrix-matrix multiplication,

sparse matrix-vector multiplication and a sparse linear equation solver, with input matri-

ces from various application domains, are run on the system [45-48]. Our comparison

with a commercial PC demonstrates that our implementation is very efficient despite its

low frequency. Our design permits general-purpose programmability and can be applied to

other application areas as well. Such applications having similar types of data parallelism

could benefit from reduced costs and smaller execution times on our vector processing sys-

tem. With continued advances in FPGA technologies, the expected increased speeds and

densities could yield much better performance in the near future for such computationally

intensive problems on FPGA-based vector implementations.

15
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For area/power efficiency, the vector processor is organized in eight banks; each bank

has part of the vector register file and two arithmetic units. The memory is also divided into

eight banks to provide higher bandwidth.

2.1 Architecture of the Vector Processor

Our vector processing system includes two identical programmable vector microprocessors

embedded in two Xilinx Virtex-II XC2V6000 chips on the Annapolis WildStar II board

[53]. The Annapolis board can be mounted on the host machine through a PCI socket [53].

Libraries in the host machine and drivers for the board are provided for data transmissions

between the off-chip/on-chip memories and the host. Our two vector processors commu-

nicate with the host machine via an on-chip dual port memory. The host machine assigns

work to them based on their requests and the load balance. Each vector processor runs at

70MHz and supports the IEEE 754 single-precision floating-point standard and efficient

implementation for sparse matrices. The overview of the system is shown in Fig. 2.1.

The vector processor is composed of a vector core and a tightly coupled five-stage

pipelined scalar unit, as shown in Fig. 2.2. It is organized as a Harvard architecture with

Figure 2.1: Overview of the system.
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Figure 2.2: Block diagram of the vector processor (VLR: Vector Length Register, VMR:

Vector Mask Register).

separate bus interface units for instruction and data access. The scalar processor fetches

and decodes instructions. It does the actual work for scalar commands and forwards the

vector instructions to the vector core. The vector core is structured as eight parallel lanes,

where each lane contains a portion of the vector register file, a floating-point multiplier, a

floating-point adder and connection to the eight-bank memory system. It can produce up

to eight results and get a maximum of eight data items from the memory banks per clock

cycle.

2.1.1 Instruction Set Architecture

Our vector processor has a RISC architecture supporting 24 instructions. There are 16

scalar instructions in the areas of data transfer, arithmetic operations and program control.

The other eight instructions run in the vector mode for data transfers and arithmetic op-

erations. The latter instructions are of Type A or Type B, as shown in Fig. 2.3. Type A

instructions use up to two source registers and one destination register. Type B instructions

use one destination register and a 16-bit immediate operand. Although we do not need

eight bits to represent the opcode or registers, it is a good choice for a possible extension
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Figure 2.3: Instruction formats.

for the instruction set or register populations in the future. Two addressing modes are used

in our design: direct and register indexed.

2.1.2 Scalar Unit

The scalar processor in our system supports 16 instructions for control, register and mem-

ory access, and arithmetic operations. There is a five-stage pipeline (fetch, decode, execute,

memory access and write back) in it, as shown in Fig. 2.4. This scalar processor includes an

arithmetic logic unit (ALU), a register file, a data hazard detection unit, and a data forward-

ing unit. For the sake of simplicity, Fig. 2.4 does not depict all the hardware. The shaded

areas are unique to the vector system design; they are used to transfer useful information to

the vector core. The ALU is able to deal with 16-bit integer addition/subtraction and mul-

Figure 2.4: Scalar processor architecture.
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tiplication. The register file includes 30 general-purpose registers and two special-purpose

registers for vector processing. It supports two read ports and one write port.

Two specialized registers in the register file are used to control vector operations.

They are: vector-length register (VLR) and vector-mask register (VMR). VLR is used to

control the length of vector operations and VMR indicates that operations are to be applied

only to the vector elements with corresponding entries equal to 1 in VMR.

To avoid EXE and MED data hazards due to pipelining, data hazard detection and

forwarding units are implemented. We must emphasize that all scalar pipeline hazards can

be avoided either with data forwarding or interlocking in hardware, so scalar instruction

scheduling is not required for correctness; however, it may improve performance. This

greatly eases code writing for our processor.

2.1.3 Vector Register File

The vector register file lies in the heart of the vector unit. It provides both temporary storage

for intermediate values as well as the interconnect between the vector floating-point units

(VFUs) [14]. A straightforward way to implement the vector register file is to use a single

multi-ported memory. But this is a very expensive solution requiring many logic resources

that increase the power consumption of the FPGA chip. Take the example of eight vector

registers each having 32 32-bit elements; the left diagram in Fig. 2.5 shows the slice usage

for a Xilinx XC2V6000 chip and the right one shows the power consumption assuming that

it runs at 70MHz. It can be observed that the slices will be used up quickly and the power

consumption increases greatly for an increased number of ports. We'd like to emphasis

here that all the results presented in this chapter are after the place-and-route step for the

XC2V6000 chip.

To reduce the cost, we could divide the vector register file into banks having smaller

numbers of register elements and ports. A similar method has been used in a media proces-

sor [7] and a smart memory structure [54]. In our design, the vector register file is divided
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Figure 2.5: Resource and power consumption for single-block implementation of a vector

register file containing 8 vector registers of 32 32-bit elements.

into eight banks, where each bank has two read ports and one write port. Take the example

of 8 vector registers, each having 32 32-bit elements; the vector register file construction

and its connections with other components are shown in Fig. 2.6.

Figure 2.6: Vector register file organization and connections with other components.
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The vector memory interface (VMI), FPU adder and FPU multiplier share the read/write

ports of the register file in a time-multiplexed way. The bandwidth of the vector register

file in this configuration is 6.72 GBytes/sec when operating at 70 MHz. If the equivalent

bandwidth is to be provided by a single register bank, a register file with 16 read ports and

8 write ports would be required. This is significantly less efficient in terms of area, speed

and power consumption than the bank-based architecture since the latter only consumes

24% of the slices and 4.3W of power while the resource and power consumptions increase

dramatically with an increase in the number of ports, as shown in Fig. 2.5. The additional

cost of the bank structure corresponds to a circuit for data transfers between any pair of

memory-register banks. This circuit uses quite a few FPGA resources and lies in the crit-

ical path; but comparing to the single register file implementation, this resource usage is

much smaller and does not change the fact that the bank structure is much more efficient

than the single block implementation.

Besides the structure of the vector register file, we also need to determine its size.

Eight vector registers are chosen in our implementation. Although increasing the num-

ber of vector registers can reduce the memory bandwidth requirements by allowing more

data reuse, most matrix-based applications have little data reuse. Thus, eight vector reg-

isters suffice and can demonstrate the effectiveness of our design. Each vector element

has 32 bits, which is required for single-precision floating-point calculations. More vector

elements in a vector register could amortize the startup time and speedup the overall exe-

cution; the time to fill up the pipeline is eight clock cycles for floating-point multiplication

and eleven clock cycles for floating-point addition. So, we decided to implement as many

elements as allowed by the available resources without increasing the circuit complexity

tremendously. We experimented with 8, 16, 32 and 64 elements per vector in our design.

With the increased circuit complexity and congestion of the on-chip routing resources for

more elements, the system frequency of the design drops from 70 MHz for 8, 16 and 32
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elements to 62.5 MHz for 64 elements. A more substantial frequency reduction should be

expected for more elements.

2.1.4 Vector Memory Interface (VMI)

VMI controls all the data transfers to/from the data memory banks. It supports scalar

loads/stores from/to any data memory bank, vector loads/stores starting with any data mem-

ory bank and for any length, and indexed loads/stores for sparse matrices. The execution

time of vector load/store and indexed load/store is not deterministic. The starting point in

memory and the length of the data affect the execution time of these operations. Besides

the impact of the vector length, different data storage patterns in the eight data memory

banks may result in different contention patterns for the indexed load/store, thus resulting

in different execution times. A 8x8 32-bit crossbar is implemented with 16 eight-to-one 32-

bit multiplexers to transfer data between any pair of memory-register banks. This crossbar

has a constant switch delay of one clock cycle. Because of the complicated control logic

and large number of multiplexers, it contributes to part of the critical path in our design.

2.2 Performance Results

To test the performance of our vector processing system, dense matrix-matrix multiplica-

tion, sparse matrix-vector multiplication and a sparse linear equation solver were run on

it. Our system makes no assumption about the sparsity structure of the input matrices to

guarantee the performance. Various matrices from different application areas with different

sparse structures are given as input. Comparisons are made with the calculation time on a

commercial Dell PC that contains a 1.2G Pentium-III processor, 512M bytes of memory

and 512K bytes of L2 cache, and employs the Linux operating system. It is a difficult job

to get the accurate execution time on the PC; we apply several criteria to make sure that the

time measured on the PC is representative of its capabilities [55].
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1. Since the time for our experiments is at the milliseconds level, the interrupt timer

that samples every 10ms is imprecise. So we use assembly-language code to reach

the IA32 clock cycle register and get the clock cycles used by the program.

2. In order to minimize data and instruction cache misses, the code is run once before it

is run again to measure the time.

3. We run the program twenty times and take the smallest value as the calculation time.

For the execution time on our vector processor, the transmission time between the host

machine and the FPGA board is not included. Because data transmissions are through the

PCI socket and under the control of the interrupt handler, the delay time is large and unpre-

dictable. [44] presents a way to hide such latencies. We emphasize the architecture of the

vector processor and how to provide efficient vector processing. Therefore, the transmis-

sion time is omitted in our performance analysis. We can see from the following examples

that the clock cycles on our vector processing system are hundreds of times smaller than

those on the Dell PC. But the architecture of the FPGAs limits the maximum frequency, so

our system can only run at 70MHz. Despite the tremendous frequency disparity compared

to the 1.2GHz of the commercial PC, we will see that our vector processing system still out-

performs the PC when the matrix size becomes larger or when two vector microprocessors

are used.

2.2.1 Preliminaries on Vector Processing

Vector computers require advanced pipelining [56]. Longer vectors in the program will

provide better performance because the penalty caused by the start-up time is amortized.

Actually the throughput of the vector processor highly depends on the length of the vectors.

The recurrence problem and sparse matrices are two general situations which forbid gen-

erating long vectors. Without appropriate preprocessing, the vector processor can hardly

achieve significant improvement [57, 58]. So in implementations the data storage scheme
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Figure 2.7: Recurrence problem.

and application algorithm are modified to get longer input vectors. We explain respectively

how to avoid the effects of the recurrence problem and sparse matrices in the flowing two

subsections.

2.2.1.1 The Recurrence Problem. Optimizing a code for vector processing basically

consists of arranging the algorithmic steps in such a form as to produce long and vectoriz-

able DO loops [58]. One of the most common obstacles to vectorization is the "recurrence"

problem; it is when a variable is obtained based on the value of that variable in an earlier it-

eration [2], as shown in Fig. 2.7. The delay caused by the recurrence problem can be large,

especially for floating-point operations which require more clock cycles. Generally, this

problem can be solved by loop unpacking and parallel calculations. Multiplication and ac-

cumulation (MAC) is highly used in matrix operations, and creates a recurrence problem. A

common solution to MAC is to use more addition units and organize them in a binary tree.

This way the delayed clock cycles can be reduced from n x (delay clocks for addition)

to [log(2, n)1 x (delay clocks for addition). But for floating-point operations, where,

for example, 11 clock cycles are needed for single-precision floating-point addition in our

implementation, the binary tree structure still has quite a significant delay. Also, the binary

tree needs more circuit area and more complex control logic, which may make the MAC

unit in a microprocessor a critical part in the circuit design [59]. So in our implementa-
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tion we replace the MAC operations by vector multiplication and addition as shown in the

following pseudo codes. Take the example of matrix-vector multiplication; matrix-matrix

multiplication can be seen as an extension to matrix-vector multiplication.

loadV V1 col 1 of result matrix c
loop1:loadV V2 col j of matrix a

load 	 R1 j element of vector b
mulVS V3 V2 	 R1
addV V1 V3 V1
j--, if not zero, jump to loop1
storeV Vl col 1 of result matrix c

2.2.1.2 Pseudo-Column Ordering for Sparse Matrix Operations. The efficiency of

sparse matrix multiplication highly depends on how the non-zero entries are represented in

the memory. A proper storage scheme can greatly enhance the performance of the vector

processor by allowing much longer vectors even in a very sparse matrix. The pseudo-

column method stores the non-zeros in a compact way by shifting all non-zeros in a row to

the left. The following example shows that the non-zeros in matrix A are shifted to the left

to produce matrix AP and their corresponding column number is stored in matrix CI.

12

31 51

72

31

12

51

72

3

1

5

7

63 63 6

A = AP= CI=

34 44 34 44 3 4

26 56 66 26 56 66 2 5 6

17 27 47  17 27 47  1 2 4

These two matrices are not actually built; they are just used for explanation. Values

and column indices are stored in the memory based on the pseudo columns. Because the

pseudo-column only contains data from different rows, the recurrence problem caused by
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MAC can be avoided by vector multiplication and addition. Another advantage of this

storage scheme is that elements in the pseudo-columns can be loaded contiguously and

accessed in a unit stride fashion.

2.2.2 Sparse Linear Equation Solver

In a conventional way, a linear system of equations given in the form Ax b is solved by

factorizing matrix A into triangular matrices and then carrying out data forward/backward

substitutions. These substitutions are essentially sequential and hinder parallel computing.

Getting the inverse matrix of A and solving the problem by matrix multiplication is an

obvious solution, but the question is how to get the inverse matrix. There will also be a

major problem with sparse matrices: the inverse matrix of A may turn to be dense even

if A has only a few non-zeros. The W-matrix method, which was proposed in [60, 61],

provides an easy way to get the inverse matrix by partitioning the sparse matrix into a

product having partitions with no fill-ins or with user controlled fill-ins. Thus, in each

partition calculations can be done in parallel. Several W-matrix solvers have been run on

shared-memory computers, multiprocessors and vector supercomputers [57, 58, 62, 63].

We show in this paper that it can also run efficiently on our vector system.

2.2.2.1 The W-matrix Method. A linear equation given in the form

where A is a large, sparse and symmetric matrix can be solved in the following steps:

where L, D and U represent the decomposition of A into a lower triangular, diagonal and

upper triangular matrix, respectively. With appropriate ordering [61], we can first reduce

the factorization fill-ins and factorize A into the form LDLT . After this ordering, assume
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that W = 	 . Then, (2.2) can be rewritten as:

It is obvious that (2.3) can be solved in three steps:

that replace forward and backward substitutions with matrix-vector products. Within each

step, all multiplications can be carried out concurrently, which is suitable for parallel pro-

gramming and vector computing. W-matrix is associated with algorithms that partition the

inverses of L and U into elementary matrices with no fill-ins or only user controlled fill-ins.

Based on [61] and [60], we can write matrix L as

where Li is an identity matrix except that its i-th column is actually the i-th column of

matrix L. Then:

where 1/17„ is equal to Li, with the sign of its off-diagonal elements reversed. Plugging (2.6)

into (2.3), we get the expression:

To avoid fill-ins induced in (2.7), we need 2n + 1 sequential steps of multiplication

to get the final solution; it has no advantage over the common substitution method. But

according to [60, 61], adjacent matrices W i , for 1 i n, can be combined in several

ways to form various partitions:
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Now the triangular factors are partitioned into p parts, where we can have p << n for

a large n. According to (2.8), the solution x can be obtained after 2p + 1 steps, where

many operations can be executed concurrently in each matrix-vector product step. Different

reordering and partitioning schemes based on the factorization path length tree [60, 61]

show that the W partitions can be chosen without adding new fill-ins or with adding only

user controlled fill-ins in efforts to minimize the number of arithmetic operations. Thus,

the combined sparsity of the p factors can be the same as that of L.

2.2.2.2 W-matrix Method Implementation on the Vector Processor. At static time

algorithms for approximate minimum degree ordering and LU factorization were applied

to the input matrix, then the elimination tree of the matrix was generated and the W-matrix

was finally transformed based on the path lengths in the elimination tree [60, 61]. Finding

out how to partition the inverse triangular factors in order to get the shortest solution time on

the vector processor is difficult since there are numerous ways to form W-matrix partitions.

The partitioning method used in this paper is easy to implement and can also guarantee

good performance. We generate W-matrix partitions in such a way that when an added

column increases the non-zeros in the partition to more than two times the original non-

zeros in those columns in the L/U matrix, a new partition will be created. Partition numbers

for each input matrix and non-zero numbers after each step are shown in Table 2.1. It can

Table 2.1: Non-Zero Element (NNZ) Changes in W-Matrix Partition Generation

Matrix Size Original NNZs NNZs after LU Partitions NNZs in w-matrix

49x 49 118 / 4.9% 160 / 6.7% 4 265 / 11%

118 x 118 358 / 2.6% 526 / 3.8% 4 792 / 5.7%

443 x 443 1180 / 0.6% 1936 / 1.0% 5 3543 / 1.8%

1454 x 1454 3840 / 0.18% 6878 / 0.33% 6 11434 / 0.54%

1723 x 1723 4782 / 0.16% 8984 / 0.30% 7 14307 / 0.48%
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be seen that, after W-matrix factorization the sparsity of the matrix is still large. After

the W-matrix partitions are formed, pseudo-columns are generated by the host computer,

and data is downloaded into the FPGA board for actual computations. This experiment is

suitable for those applications that require repetitive linear equation solutions without any

change in the input matrices.

2.2.2.3 Performance Result. The linear equation solver uses input matrices from real

power networks containing 49 to 1723 nodes [64]. It is run on one vector processor and

the result is compared with that of a commercial PC. It is not distributed into two vector

processors because there will be a lot of data communication and synchronization, which

will increase the solution time significantly. Performance comparisons with the commercial

PC are shown in Fig. 2.8.

Figure 2.8: Performance of sparse linear equation solver.
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Figure 2.9: Performance of dense matrix-matrix multiplication.

2.2.3 Dense Matrix-Matrix Multiplication

The dense matrix is divided into 32x32 sub-blocks because of limitations in the capacity of

the on-chip data memory. Matrices of different size were run and the performance is shown

in Fig. 2.9. For simplicity in programming and without loss of generality, we assume test

matrices with dimensionality which is a multiple of the sub-block dimensionality. Also,

for a fair comparison with a commercial PC, we did not really use very large matrices on

the PC but just used a loop for sub-block multiplication and addition on the same 32x32

sub-blocks; the input matrices were created in such a manner that all the sub-blocks con-

tain the same data. This way, matrix data can all be stored in the cache and there will

be no large time delays because of cache misses. Otherwise, the calculation time on the

PC may increase cubically with increases in the matrix size, not conforming to the pro-

portional increase shown in Fig. 2.9. If these matrix-matrix multiplications are divided to

run on two vector processors residing on two FPGAs, then the calculation time is reduced
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approximately by half since equivalent numbers of calculations are assigned to the FPGAs.

Fig. 2.9 shows the performance of matrix-matrix multiplication on one vector processor,

the commercial PC and two vector processors. We can see that the two vector processors

achieve a speedup of about 53% compared to the PC.

2.2.4 Sparse Matrix-Vector Multiplication

Sparse matrices from various engineering application areas, including power flow, struc-

tural engineering and aircraft design, were run on our vector processing system for evalu-

ation. All these matrices are from the Harwell-Boeing Collection [64]. For simplicity and

without loss of generality, all chosen matrices are square and symmetric. Table 2.2 gives

the basic characteristics of the input matrices used in our experiments of sparse matrix-

vector multiplication. The calculation time depends on the numbers of non-zero elements

since they determine the amount of floating-point operations needed. Another factor affect-

ing the calculation time is the maximum number of non-zeros in rows because this number

Table 2.2: Input Sparse Matrices from the Harwell-Boeing Collection in Our Experiments

Name Application Area MD' NNZ2 % of NNZ ANNZ3 MNNZ4

can 144 aircraft/structure 144 1296 6.25% 9 15

dwt 193 structure/knee prosthesis 193 3493 9.38% 18 30

dwt 992 structure/mirror 992 16744 1.70% 17 18

jagmech9 finite-element model 1349 9101 0.50% 6.7 7

lshp2614 finite-element model 2614 17980 0.26% 6.9 7

bcspwr10 power networks 5300 21842 0.078% 4.1 14

1 MD: Matrix dimension.

2 NNZ: Number of Non-Zeros.

3 ANNZ: Average Number of Non-Zeros per row.

4 MNNZ: Maximum Number of Non-Zeros in rows.
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decides how many pseudo-columns will be generated, which in turn decides the number

of loops to run. For larger matrices having more non-zeros, the calculation is divided into

the two vector processors by dividing the matrix into sub-blocks. Since the distribution

of non-zeros is not balanced in these sub-blocks and in the dense matrices, the calculation

time on the two processors varies from 50% to 100% of the time on one processor. For

matrices with a balanced distribution of the non-zeros, the calculation time can be reduced

by half when run on two processors (e.g., jagmech9 and lshp2614). In a well unbalanced

situation (e.g., dwt992), the time can only be reduced by about 30%.

Figure 2.10: Performance of sparse matrix-vector multiplication.



CHAPTER 3

MULTICORE PROCESSOR SYSTEM WITH A SHARED VECTOR UNIT

There has been a recent trend to implement single-chip multicore processors on because

of limited ILP exploitation in real applications and uniprocessor power dissipation prob-

lems. A multicore design has the potential to provide higher throughput, easier scalability,

and greater peformance/power ratio than its single-core comparables [30]. Incorporating a

shared vector unit in a multicore system as an accelerator for computation-intensive tasks

could greatly increase system performance through DLP at low area and power costs. Var-

ious applications can then be mapped onto such a system. Results to support this argument

are shown in the next chapter.

Relevant system design and implementation issues are detailed in this chapter. The

system is implemented on the latest Xilinx FPGA series: the Virtex-5. MicroBlaze, the 32-

bit soft processor from Xilinx, is used as the scalar processor in the system. The benefit is

that we can then use mature high-level languages and compilers to implement a substantial

part of the applications. The vector unit designed by ourselves is closely coupled to the

MicroBlazes through their fast data links. A decoupled structure, in which the instruction

stream is split into several instruction queues for different function units and load/store

units, can hide part of the latency of fetching data from the memory by the fact that the

load/store unit can start fetching data ahead of the computation units and increase the total

throughput of the system [65]. The benefit is even more prominent in the multithreaded

environment [65]. In [66], large speedups are reported with very simple hardware and a

small number of threads. Our shared vector unit in the MCwSV system, dealing with in-

structions from several scalar processors, works in the multithreaded way and the efficiency

can be improved greatly by employing a decoupled technique. So along with the multibank

structure implemented in Chapter 2, our vector unit is also organized in a decoupled way
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with two arithmetic units and one load/store unit. This architecture can further increase

the scalability and flexibility for the system because of the modular design approach. We

also designed the vector unit to support configurations with 1, 2, 4 or 8 banks, and different

register/element sizes to add even more flexibility to the system. For a better understanding

of the system, we will first present an introduction to MicroBlaze and the Virtex-5 FPGA

chip. Then, the design diagram and implementation will be explained.

3.1 Scalar Processor and FPGA Resources

3.1.1 MicroBlaze Soft Processor

MicroBlaze is a 32-bit Harvard RISC architecture optimized for Xilinx FPGAs. We used

version V5.00 with a five-stage pipeline. The stages are Fetch (IF), Decode (DF), Execute

(EX), Access Memory (MEM), and Writeback (WB). The block diagram of MicroBlaze is

shown in Fig. 3.1. Its basic architecture consists of 32 general-purpose registers, an Arith-

metic Logic Unit (ALU), a shift unit, and two levels of interrupts. The shaded parts in the

diagram are optional and can be configured to meet the exact needs of the target application

Figure 3.1: MicroBlaze core block diagram [1].
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domain. They provide great flexibility but do not add any cost if they are not needed for

a specific system. These configurable features include the barrel shifter, integer divider,

integer multiplier, floating-point unit, instruction and data caches, on-chip peripheral bus

(OPB), fast simplex link (FSL) interfaces, and hardware debug logic. Depending on the

configurable options and target FPGA, MicroBlaze uses about 800 to 2600 LUTs.

MicroBlaze has three kinds of bus infrastructure: local memory bus (LMB), FSL to

interface co-processors and OPB to interface peripherals. We focus on the FSL and OPB

buses here. MicroBlaze provides up to eight FSLs to interface hardware co-processors.

Each FSL channel provides a low latency interface (two clocks for write and one clock

for read) to the processor pipeline and is ideal for extending the processor's execution unit

with custom hardware accelerators. The length and depth of the FSL FIFO is configurable.

In our system, MicroBlaze executes scalar operations and sends vector instructions to the

shared vector unit through FSL. There are three pairs of FSLs in our system: a pair between

each MicroBlaze and the vector unit is used to transfer vector instructions and handshake

signals; another exists between the two MicroBlaze processors for communication signals.

An OPB bus that involves an OPB arbiter can support up to 16 masters and any number of

slaves. Masters send data requests on the OPB bus; and the OPB arbitrator decides which

request can be satisfied and then uses hand shake signals. In our system, the memory

controller for the shared memory banks is attached to the OPB bus as one of its slaves. The

vector unit as well as the two scalar processors send requests to the OPB bus to access the

shared memory; they are all connected to the OPB bus as masters. Each scalar processor

fetches instructions from its local memory using its own LMB.

3.1.2 Virtex-5 Resources

Our design is implemented on Xilinx Virtex-5 XC5VLX50-1FFG676 FPGAs. Virtex-5 is

based on a 65-nm copper CMOS process and triple-oxide technology. This new manu-

facturing technology makes Virtex-5 more area and power efficient than its predecessors.
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Along with the larger 6-input LUTs, Virtex-5 can provide maximum routing capability

and accommodate a large number of built-in hard-IPs. Particularly for the XC5VLX50-

1FFG676 chip, there are 7200 slices, 28800 6-input LUTs, 480Kb distributed memory, 48

36Kb block memories/built-in FIFOs, 6 clock management tiles with each containing two

Digital Clock Managements (DCMs) and one PLL, and 48 DSP48E slices. Each of the DSP

slices has a 25 x 18 two's complement multiplier or a 48-bit adder/subtracter/accumulator.

The 36Kb block memory can also be configured as two independent 18Kb blocks/18Kb

built-in-FIFOs.

3.2 System Design and Organization

Fig. 3.2 shows the block diagram of the system with two scalar processors and a shared

vector unit. Each MicroBlaze has its own instruction/data memory connected via the lo-

cal memory bus (LMB). The two cores share with the vector unit a low-order interleaved

data memory which is organized in multiple banks. The scalar processors fetch the vector

operations and subsequently forward them to the vector unit through the fast simple links

(FSLs) interconnect. This system is easily scalable to many processors. The vector unit is

composed of four parts: the vector issue logic (VIL), several function units, scalar regis-

ters and a central vector register file (VRF). The vector register file is organized in several

banks, and can be configured into groups of 1, 2, 4 or 8 banks. The function units are also

duplicated to match the number of banks in the vector register file.

3.2.1 Vector Issue Logic

The scalar processors send the vector instructions to their FSLs; the vector unit takes in-

structions out of each FSL in a round-robin fashion potentially balancing the load of the

function units and substantially hiding the latency of memory accesses. VIL is also in

charge of register renaming and instruction reformatting. VIL has a renaming table where

every register in a scalar processor has a corresponding entry in it as shown in Fig. 3.3.
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Figure 3.2: MCwSV multicore processor system with a shared vector unit (The scalar

registers are not shown in the vector unit).

The renaming table maintains the current mapping between the vector registers in the in-

struction set of each scalar processor and the actual registers in the vector processing unit.

VIL reads the instruction in, does vector register renaming, decides which function units

this operation should go to, and then generates new, local instructions and broadcasts them

on IBUS. Fig. 3.4 shows the instruction formats of incoming and outgoing instructions.



Figure 3.3: Vector register renaming table (R: Reserved; V: Valid),
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Figure 3.4: The format of incoming and outgoing instructions in VIL. "MB ID" indicates

which MicroBlaze issued the operation; "FU ID" indicates which function unit should this

instruction go to. (OP: Opcode, R: Reserved.)

3.2.2 Vector Register File

Designing high-performance low-power register files is very important to the continuation

of current performance advances in wide-issue and deeply-pipelined superscalar micro-



39

processors [67, 68]. Vector processors also have the same concern. And normally vector

register file is very large, so the higher-performance and lower-power vector register file is

of critical importance to the whole system design.

The vector register file can be organized in either a distributed or a centralized way;

both organizations can employ the multibank structure with each bank containing several

elements of the vector registers [3]. In the distributed structure [52], the vector unit is

based on a clustered design. Each cluster has one function unit and part of the vector

registers. Each distributed vector register file only needs to have two read ports and one

write port to feed its corresponding function unit. A communication network is used to

connect all the clusters. A data transfer is needed if the vector register is used by a remote

cluster. A centralized register file serves all the function units; thus, we need to provide

a number of ports which is three times the number of function units if all of them are

to run simultaneously. But it eliminates the need for a crossbar to transmit data between

different function units, which could add much more complexity to the control structure

with additional power requirements as well. Also, highly frequent data transfers among

the function units could further diminish the benefit of the distributed structure. Therefore,

although the distributed register file has several advantages, we have chosen to use the

centralized structure for our implementation.

Similar to the vector register structure in Chapter 2, the vector register file is divided

into multiple banks for area and power efficiency [14]. The vector register file can be

configured to have 1, 2, 4 or 8 banks, and the number-of-vector-register/vector-size pair

can be configured to be 128/32, 64/64, 32/128, 16/256 and 8/512 where each word is four

bytes long. Each vector register bank provides five read ports and three write ports for

the three function units to be capable of running simultaneously. The vector register file

construction and its connections with other components are similar to Fig. 2.6 in Chapter

2. The only difference is that the function units use two read ports and one write port in a
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time-multiplexed way in Chapter 2, but each function unit in our MCwSV system has its

own read/write ports.

Since the vector register file in our implementation needs 16K bytes of storage space

and eight ports, it could consume most of the slice resources in an FPGA chip if imple-

mented by D registers or distributed memory blocks. Each Virtex-5 slices contains four 6-

input LUTs and four flip-flops. Unlike ASIC technology which can be used to build a ded-

icated circuit for the large multiport register file, FPGA designs utilize pre-manufactured

resources. Fortunately, current FPGAs provide abundant on-chip block memories which

can be used for the register file. But the block memory only provides two read/write ports

whereas our register file needs eight ports. So we have to use the block memory to form

multiport vector registers, via time-multiplexing on its dual port. The block memory can

be extended into 8-port vector registers as shown in Fig. 3.5. A DCM block is used to

generate the synchronous clock with a frequency three times higher than that of the system

clock. This implementation is very resource efficient, but it also constitutes a big part of

the critical path; this reduces somewhat the operating frequency of the vector unit.

Figure 3.5: Multiport vector register implementation.
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3.2.3 Function Units

A function unit gets an instruction from IBUS if the broadcast ID matches its own ID, and

stores it in an execution FIFO. Then, it checks the renaming table to see if the source reg-

isters (either scalar or vector registers) are valid (have valid data); if they are, then it starts

execution. This structure allows good scalability and easy implementation of instruction

chaining. Chaining allows a vector operation to start as soon as the individual elements of

its vector source operands become available; it acts like operand forwarding in scalar pro-

cessor design (that is, the results from a function unit are sent to another function unit in a

chain [2]). There are three function units in our system: load/store core, floating-point mul-

tiplier and floating-point adder/subtracter. If there is only one bank in the system, chaining

acts as shown in the example of Fig. 3.6. If these function units are replicated for several

banks and multiple vector elements can be fed into them per cycle, then multiple results can

be produced simultaneously. With eight banks accessed in parallel, 24 operations can be

processed simultaneously at peak rate with the support of chaining as shown in Fig. 3.7. In

our implementation, the two function units are single-precision floating-pointer multiplier

and adder/subtractor based on the IEEE 754 standard. They can be easily configured into

other kinds of arithmetic units. The function units in our proof-of-concept system can be

configured into 1, 2, 4 or 8 banks interfacing 1, 2, 4 or 8 memory banks, respectively.

Figure 3.6: Vector chaining.
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Figure 3.7: Vector chaining in a multi-lane structure (LSU: load/store unit).

3.2.4 Memory Controller

The memory also can be configured to have 1, 2, 4 or 8 banks in a low-order interleaved

organization in order to match the structure of the vector register file. A memory controller

was implemented to provide interleaved data to the vector processor as well as the scalar

processors. Since the vector unit and the MicroBlaze processors are all connected to the

OPB bus, the OPB arbitrator decides whose request should be served first. The memory

controller is connected to the OPB bus as a slave. It receives requests from the OPB bus,

loads or stores data from/to the data memory banks, and then sends back the data slave

signals on the OPB bus. Our vector unit is connected to the OPB bus as a master. The OPB

arbitrator could realize dynamic or fixed priority arbitration. We use the latter approach,

giving the highest priority to the shared vector unit, then the first MicroB laze and finally the

second MicroBlaze. 2N N — to — 1 multiplexers are currently put between the multi-bank

memory and the vector register file to act as a crossbar switch. They induce a delay of three

clock cycles for each data read/write. These multiplexers are not needed for the 1-bank

configuration. More advance interconnect organization could be developed for larger N.
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3.3 System Implementation on the FPGA Chip

The platform Virtex-5 FPGA provides abundant dedicated function units such as block

memories, embedded FIFOs and DSP blocks. These embedded devices are optimized for

efficient usage of the silicon resources and outstanding performance. Targeting at high

performance, our design tries to use such dedicated units whenever possible.

3.3.1 Digital Signal Processing (DSP) Blocks

DSP48E blocks serve as floating-point adders/subtractors and multipliers in the vector unit,

and as floating-point operators, integer multipliers and integer dividers in the scalar pro-

cessors. The two MicroBlaze processors in the system use 14 DSP48E tiles totally and

34 DSP blocks are left to the vector unit. Each MicroBlaze uses 7 DSP blocks for an

integer adder/subtractor, an integer multiplier, an integer divider and floating-point calcu-

lations. The resource usage for the single-precision floating-point adder and multiplier is

shown in Table 3.1. Even though the 3-DSP multiply implementation (the Xilinx library

does not provide a similar implementation for add/sub) can increase the speed, it is not re-

quired for MCwSV because the floating-point arithmetic units do not create bottlenecks for

the operating frequency. Thus, in our MCwSV system both the floating-point multiplier

and adder/subtractor employ the 2-DSP implementation. If there are eight banks in the

Table 3.1: Resource Consumption of Single-Precision Implementations

Operation Type DSPs LUTs Flip-Flops

Multiply DSP48E (3-DSP) 3 63 77

DSP48E (2-DSP) 2 86 83

logic only 0 664 142

Add/Subtract DSP48E (2-DSP) 2 251 85

Logic only 0 402 72
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system, then the FPUs will need (2D S P s(adder subtractor) 2DSPs(multiplier)) *

8(bank number) = 32 DSP blocks.

3.3.2 Digital Clock Manager (DCM) Primitive

Three clock signals are needed in the MCwSV system; one is the system clock, which is

83.3MHz, 80MHz, 77MHz and 72.5MHz, respectively, for the 1-, 2-, 4- and 8-bank con-

figurations; another is used for the 8-port vector registers whose frequency is four times

the system frequency; the third one is used for the 6-port scalar registers and its frequency

is three times the system frequency. All of the clocks must be synchronized. The FPGA

provides the DCM primitive for implementing delay locked loop, digital frequency synthe-

sizer, digital phase shifter, or digital spread spectrum. We use three DCMs in the MCwSV

system to generate all the clocks: one is used to convert the 100MHz clock signal provided

by the oscillator on the ML501 board to the system clock; another is used to generate the

clock for vector registers from the system clock and the other one is used to generate the

clock for scalar registers from the system clock.

3.3.3 On-Chip Block Memories

Our MCwSV system uses up almost all of the on-chip block memories and aims to provide

large storage space with fast data access. As mentioned before, there are 48 36Kb block

RAMs in our target FPGA chip XC5VLX50 and they can also be configured as 96 18Kb

block RAMs. They are used as the instruction/data memory and FIFOs in our system, as

shown in Table 3.2:



Table 3.2: Configuration and Usage of Block Memories

36Kb Configurations (40 blocks) 18Kb Configurations (16 blocks)

Block # Usage Block # Usage

32 128KB SDMa
8 Vector register file

1 Scalar register file

4 16KB LIM/LDMb for MBO 3
256x32 FIFOs in two function

units and load/store core

4 16KB LIM/LDM for MB1 3
256x32 FIFOs in FSLs between

each MB and vector unit, and be-

tween two MBs

40 out 40 blocks 15 out of 16 used

a SDM: Shared Data Memory.

b LIM: Local Instruction Memory. LDM: Local Data Memory.

3.3.4 Resource Usage for Various Configurations

The system is implemented on the Xilinx Virtex-5 series XC5VLX50 FPGA chip. Each

MicroBlaze is attached to two pairs of FSL buses and an OPB bus, and contains an RS232

UART port, an integer multiplier, an integer divider and floating-point units. Each MicroB-

laze uses 5% of the flip flops, 7% of the LUTs, 9% of the slices, and 7 of the 48 DSP blocks

in this FPGA. The vector unit and the memory controller consume the resources shown in

Table 3.3. The slice usage of the vector unit is less than that of one MicroBlaze for the

1- and 2-bank configurations, 1.3 times for the 4-bank configuration, and 2.4 times for the

8-bank configuration. The system frequency is 83.3MHz, 80MHz, 77MHz and 72.5MHz,

respectively.
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Table 3.3: Resource Usage of the Vector Unit and the Memory Controller

Banks # 1 2 4 8

DSPs 4 8 16 32

Flip-Flops 3% 4% 6% 11%

LUTs 6% 8% 11% 18%

Slices 7% 10% 14% 23%
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CHAPTER 4

PERFORMANCE RESULTS AND ANALYSIS

The MCwSV system can find wide application in various scientific domains. To prove the

viability of the shared vector unit concept, three testbenches were run on this system; the

results are analyzed in this Chapter. The first application can be almost fully vectorized and

is used to show the efficiency of a "standalone" vector unit. The second testbench provides

performance evaluation when the vector unit is shared by two scalar processors. The third

one demonstrates the use of stride load/store vector operations, and shows the relationship

between speedup and the ratio of vector and scalar execution times.

4.1 RGB to YIQ Conversion (RGB2YIQ)

RGB(red, green and blue) to YIQ conversion is a benchmark in the EEMBC collection of

embedded-computing benchmarks [20] that explores the CPU's capability to perform basic

arithmetic and matrix math. The benchmark converts a digital image into the YIQ format

that complies with the NTSC television standard. Each function takes a "point" in the

RGB color space, and converts it into a luminance (Y) and two chrominance (I, Q) signals

as follows:

The above equations can be fully vectorized for the vector unit in the MCwSV sys-

tem; the scalar processor is only used for loop control, and preparing and transferring

vector instructions. This is quite an ideal case for the vector unit because the distribution
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of tasks between its two function units (multiplier and adder) and the load/store unit is well

balanced, and further parallelism is possible through instruction chaining.

As described in Chapter 3, the vector unit in the MCwSV system can be configured

to have 1, 2, 4 or 8 banks and different number-of-vector-registers/elements-in-vector pairs.

More elements in a vector register could amortize the startup time and enhance the overall

execution time, so the largest number of elements for a vector register (its size) is chosen if

possible. We assume 2n points in the image for simplicity in programming, without loss of

generality. The vector register size is chosen to match the number of pixels, when less than

or equal to 256. This size cannot be increased further since there will not be enough vector

registers to use. Table 4.1 shows the execution times on one MicroBlaze with and without

the support of the vector unit under different configurations. Fig. 4.1 shows the speedup

of using the vector unit as compared to a MicroBlaze without this unit for various vector

configurations. In this comparison, the MicroBlaze runs at 100MHz, whereas the vector

unit runs at 83.3MHz, 80MHz, 77MHz and 72.5MHz, respectively, for the 1-bank,

2-bank, 4-bank and 8-bank configurations.

The speedup mainly comes from the chaining of function units which can overlap

executions and consecutive accesses to the main memory; this amortizes the cost of mem-

ory latency while greatly reducing instruction hazards. Although MicroBlaze is a 5-stage

pipelined RISC processor, Xilinx does not pipeline its floating-point instructions. Floating-

Table 4.1: Execution Times (us) for RGB2YIQ Conversion

Data Size 32 64 128 256 512

One MicroBlaze 32.4 64.7 129.4 258.7 517.2

1 Bank 4.99 8.45 15.37 29.2 35.25

2 Banks 3.43 5.23 8.83 16.03 30.43

4 Banks 2.65 3.58 5.46 9.2 16.68

8 Banks 2.35 2.84 3.83 5.82 9.79
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Figure 4.1: RGB2YIQ speedup of using the vector unit as compared to one MicroBlaze

processor without this unit.

point multiplication or addition needs six clock cycles. Thus, for 256 additions and 256

multiplications, MicroBlaze needs 256 * 6 + 256 * 6 clock cycles, while the vector unit

under the 8-bank configuration only needs (256 ± 8) + 2 * Latency clock cycles when

considering chaining, where the latency is two in our implementation. This explains why

our vector unit can yield a speedup higher than its number of banks, or even higher than

24, which is the number of operations that can be processed simultaneously at peak rate.

Increasing the number of banks can speedup the execution and the improvement

becomes more significant when the vector register size increases. However, more banks

means higher resource usage. If the speedup is "normalized" by dividing it with the slice

usage ratio between the vector unit and one MicroBlaze, it will be as shown in Fig. 4.2. The

1-bank configuration provides good performance at low cost for small vector register size.

The 4-bank configuration is better for larger vector registers. The 8-bank configuration

is not preferable because of its significant slice usage increase from 14% for the 4-bank

configuration to 23% as shown in Table 3.3.

4.2 Demodulation Algorithm in Communication Systems

This section deals with a testbench in the area of digital communication systems. A typ-

ical communication system is composed of a channel encoder, a modulator, a channel, a
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Figure 4.2: RGB2YIQ normalized speedup (using resource usage) of the vector unit as

compared to one MicroBlaze processor.

demodulator and a channel decoder as shown in Fig. 4.3. The channel encoder adds data

redundancy that can be used by the receiver for error correction. The binary sequences at

the output of the encoder are passed to the modulator, which maps the binary bits to sig-

nal waveforms for transmission. The modulated bits are passed to the channel, which can

be wireline or wireless. Whatever is the physical medium for information transmission,

the transmitted signal can be corrupted by various types of noise. On the receiver side,

the demodulator de-maps the potentially channel-corrupted transmitted waveform to a se-

quence of binary bits, which are passed to the channel decoder to reconstruct the original

information bits.

Let us now demonstrate how our vector processor can be used to implement the

demodulation part. On the receiver side, the received signal, y, is filtered by a finite impulse

response (FIR) filter. The demodulator finds the symbol that has the shortest distance to

Figure 4.3: A typical digital communication system.
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Table 4.2: Execution Times (ms) of the Distance Calculation Algorithm when Run on One

MicroBlaze with the Vector Unit for 1000 Input Data.

Constellation points 32 64 128 256 512

1 Bank 1.873 2.26 3.457 6.531 12.677

2 Banks 1.75 1.95 2.35 3.6 6.8

4 Banks 1.741 1.818 2.026 2.442 3.74

8 Banks 1.761 1.821 1.931 2.152 2.593

the filtered signal, z, in the signal constellation:

where |.| denotes amplitude. s I is the number of points in the constellation. The al-

gorithm can be divided into three sequential parts: FIR, distance calculation and distance

comparison. Among them, FIR is an essential sequential part to be run on MicroBlaze.

Distance calculation and distance comparison can be parallelized between MicroBlazes.

Furthermore, distance calculation can be assigned to the vector unit. This approach results

in substantial overlap of the scalar and vector execution times. Table 4.2 shows the distance

calculation time for 1000 input data when one MicroBlaze is run with the support of the

vector unit and Fig. 4.4 shows the speedup over one MicroBlaze under different bank con-

figurations of the vector processor. For a fair comparison, the speedup can be normalized

by dividing the slice usage ratio between the vector unit and one MicroBlaze. Fig. 4.5

shows that considering the area consumption; the vector unit can still yield a speedup from

2.5 to 35. As expected, the 1-bank configuration is the most efficient for a small data size

and the benefit of more banks becomes more obvious when the data size increases.

Take the example of a 3-tap FIR and 512 points in the constellation; when there are

1000 input data, FIR consumes 0.58ms, distance comparison takes 102.36ms and distance

calculation takes 174.17ms. The behavior of the 3-tap FIR is shown in Eq. (4.3), where b0 ,
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Figure 4.4: The speedup for distance calculation of the vector unit over one MicroBlaze.

Figure 4.5: Speedup normalized by the slice usage ratio for distance calculation.

b 1 and b2 are known coefficients.

z(n) = b0 y(n) + b1y(n — 1) + b2 y(n — 2) 	 (4.3)

Distance calculation contributes about 63% to the overall execution time. When this part

is put on the vector unit, it is reduced to 12.68ms, 6.8ms, 3.74ms or 2.59ms based on

the configuration. Since the time on the vector unit is much less than the scalar execu-

tion time and can be almost completely overlapped by the distance comparison time, we

choose the 1-bank configuration for the vector unit with vector register size of 512 and one

adder/multiplier. A higher degree bank configuration only induces more resource/power

usage and cannot reduce the total execution time further.
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Table 4.3: Execution Times (ms) of the Demodulation Algorithm (MB: MicroBlaze,

DIS:Distance, VU: Vector Unit.)

FIR DIS calculation DIS compare Total

MB (100MHz) 0.58 174.17 102.36 277.11

One MB w/ VU (83.3MHz) 0.7 12.67 122.88 123.58

Two MBs w/ shared VU (83.3MHz) 0.7 12.7 62.4 63.1

Table 4.3 shows the whole execution time for demodulation with 1000 input data.

The first line shows execution times on one MicroBlaze. The second line shows execution

times when distance calculation is run on the vector unit while FIR and distance compar-

ison are run on a MicroBlaze. With two scalar processors, the master-slave mode is used

where one MicroBlaze controls communications with the other. Task division is carried out

at static time and the programs are preloaded into each MicroBlaze. For demodulation, the

programs for each MicroBlaze can run independently and need not communicate during

execution. So the only overhead induced by the multiple scalar processors is the commu-

nication time to start and end the program, and probably delays caused by collisions on the

shared data memory bus. But the memory access time in this algorithm is much smaller

than the computation time and conflicts seldom happen; also, the communication overhead

is negligible compared to the large calculation time. So the execution time for distance

comparison is reduced almost by half for two MicroBlazes. The vector unit receives vector

instructions from both MicroBlazes for distance calculation. The execution time is shown

in the third line. More scalar processors could reduce further the execution time. For our

proof-of-concept work, two scalar processors with a shared vector unit suffice.

If the same amount of slices with this MCwSV system (two MicroBlazes and a shared

vector unit with the 1-bank configuration) are used to build a multicore scalar processor

system, then 2.67 scalar "MicroBlazes" could fit. "Ideally", the whole execution time can
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then be reduced to (174.17 + 102.36) ± (2.67) + 0.58 = 104.1ms, which needs (104.1 —

63.1)/63.1 or 65% more time than the MCwSV system with the same slice usage.

4.3 Discrete Cosine Transform

The Discrete Cosine Transform (DCT) converts a spatial domain waveform into one in the

frequency domain. It has been widely used in signal and image processing. We run one-

dimensional DCT (1D DCT) on MCwSV for performance analysis. We show here how the

ratio between vector and scalar execution times affects the MCwSV speedup. The 1D DCT

conversion is given by:

where Cu = √ 1/2 for u = 0 and Cu = 1 otherwise; u = 0, 1, 2..., or N — 1, and N rep-

resents the size of the population for the input signal s(.). The basis triangular vector

cos((2x+1)uπ/2n), which contains at most 2N values, can be stored in the on-chip memory for

high efficiency.

Here we focus on accumulation and stride load, two kinds of new operations appear-

ing in this application. Adder units organized in a binary tree can ensure fast accumulation.

But this scheme requires additional hardware and new instructions. In our implementation,

we use existing shift and addition instructions in the vector unit as well as the scalar pro-

cessor to do accumulation. Thus, no more hardware resources or instructions are needed

for this operation. The vector unit keeps shifting half of the elements in the vector reg-

ister into another one, halving each time the vector length register (VLR) value and then

applying vector addition until VLR contains eight. Then the scalar processor takes over to

carry out the remaining accumulations sequentially. The number eight is chosen because of

limitations in the shift instruction. For resource efficiency and implementation simplicity,

the shared vector unit does not contain any switches between the vector register file and

the function units; it does not include any switches between banks in the vector register file
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Table 4.4: Vector and Scalar Execution Times and Their Ratio for the DCT Algorithm

Data Size 32 64 128 256 512

1 Bank (ms) Vector 0.051 0.184 0.673 2.544 9.858

Scalar time 0.079 0.169 0.361 0.768 1.629

Ratio 0.644 1.091 1.864 3.312 6.053

2 Banks (ms) Vector 0.067 0.24 0.902 3.488 13.568

Scalar 0.082 0.176 0.376 0.8 1.696

Ratio 0.82 1.364 2.4 4.36 8

4 Banks (ms) Vector 0.054 0.188 0.595 2.56 9.854

Scalar 0.085 0.183 0.391 0.831 1.762

Ratio 0.634 1.027 1.523 3.08 5.592

8 Banks (ms) Vector 0.044 0.143 0.500 1.833 6.871

Scalar 0.090 0.194 0.415 0.883 1.871

Ratio 0.483 0.736 1.204 2.076 3.672

either. So the shift instruction only supports shift sizes which are multiples of the number

of banks. A stride load is needed to fetch the triangular vector from the memory into the

vector register file. The stride is 2u and we will see later on how it affects the performance

of the multi-bank MCwSV system.

Table 4.4 shows the vector and scalar execution times, and their ratio. The scalar time

on the MicroBlaze, includes loop control, vector instruction preparation and transmission,

eight floating-point additions, coefficient multiplication and result storage. The vector time

is for the shared vector unit. We will see later on that, when the ratio is less than one, which

means that the vector unit has some idle time when the scalar processor is busy, the DCT

algorithm can yield higher speedup when run on two scalar processors with a shared vector

unit. Since almost all of the work on the scalar processor and the vector unit can be run

simultaneously, their execution times can be overlapped substantially.
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Figure 4.6: Speedup of including a vector unit in a MicroBlaze processor for the DCT

algorithm.

Fig. 4.6 shows a large speedup between 3 and 14 when including a vector unit in

MicroBlaze. The 2-bank configuration yields the smallest speedup whereas the 4-bank

configuration cannot provide better performance than the 1-bank configuration for most

data array sizes. This is because the interconnection structure between the memory and

the register file induces a delay of three clock cycles for each step of indexed load/store

for the multi-bank configuration. There is no such structure for the 1-bank configuration,

and thus no such overhead. Also, the 2-bank configuration cannot load two elements in

one step using a stride because the stride is always a multiple of two. So the load requires

3 * (array size) clock cycles, which contributes significantly to the execution time and

neutralizes the benefit of multiple function units. The case for the 4-bank configuration is

better, but still half of the stride load instructions can only retrieve one element at a time

while the other half can only get two per cycle. So, it cannot provide better performance

than the 1-bank configuration for most data array sizes. This situation is much better when

there are eight banks in the vector unit since only 25% of the stride load instructions get

one element per cycle; another 25% can retrieve two and the other 50% can retrieve four.
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In this case, the benefit due to the multi-bank structure is more prominent, thus yielding

higher speedup than the 1-bank configuration.

For those cases in Table 4.4 with a ratio less than one, implementing the DCT algo-

rithm on two scalar processors with a shared vector unit will further improve the execution

time. Fig. 4.7 shows the relevant speedups.

Figure 4.7: Speedup of two MicroBlazes versus one MicroBlaze, both systems with a

vector unit, as a function of the ratio of vector and scalar execution times.



CHAPTER 5

POWER CONSUMPTION CHARACTERIZATION AND RESOURCE

MANAGEMENT FOR MCWSV SYSTEMS

Dramatic increases in logic density, speed and abundant IP blocks have made FPGA plat-

forms appealing alternatives to DSPs or ASICs for high-performance SOC designs. FPGAs

have the inherent advantage of reconfiguration flexibility to fit various application require-

ments. But on the other hand, field programmability requires additional resources and

increased power consumption [69]. Although recent FPGA chips, which incorporate mil-

lions of gates with abundant on-chip block memories and IP cores, can provide enough

resources for most SOC designs, energy consumption still remains a critical issue. And

as FPGA manufacturing reaches the nanometer scale and designs require higher operating

frequency, the power dissipation problem becomes of higher concern.

In embedded system design, energy consumption is a key system evaluation metric

in addition to system throughput, since embedded devices typically operate in power con-

strained environments. Current FPGAs require innovative methods to deal with the power

consumption problem. There are two major power consumption types: static power and

dynamic power; each one poses a unique challenge when reaching nanometer manufactur-

ing processes. Static power consumption occurs as a result of current leakage in transistors.

For FPGAs manufactured with a 0.35/μm technology ten years ago, the static power con-

sumption was negligible compared to the dynamic power. But as transistors get smaller

and chip voltages get lower, the leakage current increases and, nowadays, static power is

threatening to eclipse dynamic power [70]. Since the introduction of the Virtex-4 series,

Xilinx has proposed a new manufacturing process called "triple oxide technology" to solve

the static power problem. This method uses three gate-oxide thicknesses for transistors

running at different speeds. As a result, Virtex-4 FPGAs consume 50% less static power

58
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than their predecessors, the 130nm Virtex-II Pro FPGAs. The Virtex-5 series also uses this

method to control static power consumption. Other approaches to control the static power

include power gating of unused FPGA logic blocks [71], dual-Vdd FPGA logic blocks

[72, 73], and Vdd-programmable FPGA routing [74].

The well-known formula P = CV2 f for dynamic power calculation shows that dy-

namic power benefits from a decrease in the transistor size, which means decreased capac-

ity and lower core voltage with a smaller process. Thus, the rate of increase in dynamic

power drops [70]. But still, the increase in frequency requires more dynamic power con-

sumption. One major improvement for dynamic power control is to use hard IP cores.

When embedded functions are implemented using dedicated hardware instead of config-

urable logic blocks and programmable interconnects, many fewer transistors are needed

and thus much less power is consumed [70]. Actually, the resource and power usage of

programmable interconnects play major roles in current FPGA designs at nanometer tech-

nologies [69]. In our MCwSV design, embedded function units are employed whenever

possible for efficient power and resource usage. In Chapter 3, we listed the resource usage

of the MCwSV system. In this Chapter, we build a resource/power usage model and present

an architecture template to guide resource/power-efficient implementations for MCwSV

systems targeting at given applications.

5.1 Resource/Power Modeling for the MCwSV System

In this section, we present characterization and modeling techniques for resource/power

consumption of function units, block memories, scalar processors and the vector unit in

the MCwSV system. This model will be used in the next section to build resource/power-

efficient MCwSV systems for given applications. XPower, a low-level energy estimation

tool provided by Xilinx, is used to analyze the power consumption. The typical estimation

process is as follows: after the design is synthesized, it is placed and routed for the target

FPGA chip and the native circuit description file (.ncd file) is generated. This .ncd file
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records various parameters of the circuit implementation, such as device utilization, routing

structure, channel capacitance and embedded block usage. On the software side, the design

is simulated at the transfer/gate level and the simulation record files (.vcd files) which

record the switching activities of all the logic and wires on the FPGA device are generated.

Then, XPower can be used to estimate the power consumption based on the information

of circuit implementation (.ncd file) and signal activities (.vcd file). While this process

can provide accurate power estimation, it is extremely time consuming and the simulation

record files require huge storage space [75]. Also, the result is only accurate for the specific

algorithm and there may be orders of magnitude difference for other applications. So in our

implementation, instead of using the simulation record files, we give the calculated signal

activities to XPower and generate power consumption estimates of the various components.

FPGA power consumption has three components related to different parts of the

FPGA chip: core power, auxiliary power and input/output power. The later two are re-

lated to the I/O standards being implemented and are expected to remain about the same

for different circuit implementations and softwares if they have the same input/output pin

assignment and activities. So, here we put emphasis on core power, which is the power con-

sumed by the embedded logic and signals. Different implementations will greatly affect the

core dynamic power consumption [76, 77].

5.1.1 Dynamic Power Consumption of Floating-Point Arithmetic Units

The floating-point arithmetic units in the MCwSV system are taken from the Xilinx math

library. It provides single/double-precision and other fraction/exponent combinations for

floating-point adder/subtractor, multiplier, divider, comparator and square-root implemen-

tations. Among them, the multiplier and adder/subtractor can be implemented either by

DSP embedded blocks and logic resources, or by logic resources only. Other arithmetic

units are implemented by logic resources only. So here we just give the resource usage and
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power consumption for multipliers and adders/subtractors to compare various implementa-

tion methods.

The Xilinx math library provides four different ways to implement the floating-point

multiplier by using logic resources only, one DSP with logic resources, two DSPs with

logic resources, and three DSPs with logic resources. The implementation method with

more DSP blocks does not imply less logic resource usage, but aims to provide higher

maximum frequency which is achieved at largest latency. The logic only and the 2-DSP

implementations provide user defined latency from 0 to 8 clock cycles. The 3-DSP imple-

mentation provides user defined latency from 0 to 9. The 1-DSP implementation, however,

can only provide a fixed latency of 8 clock cycles. The maximum frequency provided by the

3-DSP, 2-DSP, 1-DSP and logic only implementations is 450MHz, 406MHz, 375MHz

and 357MHz, respectively, which are much higher than our targeted system frequency of

100MHz. So instead of using the maximum latency cycles to get the highest frequency, we

can use the configuration with smaller latency which can provide the result quicker and still

satisfies the time requirement. Another advantage of the smaller latency cycles is less re-

source usage and less power consumption. Larger latency implies deeper pipeline and thus

more resource usage. Thus in our implementation, we choose the smallest latency cycles

which can satisfy the 100MHz requirement, which is two clock cycles. Further decrease

in the latency cycles will cause a timing problem. Because the 1-DSP implementation can

only provide a fixed number of latency cycles, we will not consider it. Thus in Tab.5.1,

we only show the resource and power consumption for the logic only, 2-DSP and 3-DSP

multiplier implementations with all of them having a latency of two clock cycles. For the

floating-point adder/subtratror, the Xilinx math library only provides two kinds of imple-

mentations: logic resources only, and 2-DSP with logic resources. Similarly, the latency of

two clock cycles is chosen; the resource and power consumption are also shown in Tab.5.1.

As shown in Tab.5.1, the multiplier with the 2-DSP implementation uses 44,5% and

30.9% less power compared to its logic only and 3-DSP implementation alternatives. So the
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Table 5.1: Resource Usage and Dynamic Power Consumption of IEEE Single-Precision

FPUs on the Virtex-5 FPGA

Operation Type DSPs LUTs PP s Slices Power (mw)

Multiply DSP48E (3-DSP) 3 63 77 116 24.52

DSP48E (2-DSP) 2 86 83 106 18.73

logic 0 663 142 663 33.75

Add/Subtract DSP48E (2-DSP) 2 251 85 279 27.06

Logic 0 402 72 402 27.56

2-DSP implementation is chosen for the single-precision floating-point multipliers in our

MCwSV system. For the single-precision floating-point adders, the two implementation

methods consume almost the same power. However, we still choose the DSP configuration

due to less slice usage in order to leave logic resources available to other logic and routing

units.

Double-precision FPUs consume much more resource and power comparing to their

single-precision versions. A double-precision multiplier, based on the latency configura-

tion, can consume a dynamic power from 100mw to 300mw.

5.1.2 Dynamic Power Consumption of Dual-Port Block Memories

There are 48 36-Kbit dual-port block memories in the target FPGA chip and they are used as

local instruction/data memory, shared data memories and FIFOs. Each port has an enable

bit to power on the block memory. When both ports are disabled, only clock power is

consumed. So the block memory should be disabled for power efficiency when it is not in

use. Fig. 5.1 shows the dynamic power consumption without including the clock power for

one 36-Kbit embedded memory block at different enable rates. The dual-port line shows

the power consumption when both ports are used assuming the same enable rates; the
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Figure 5.1: Dynamic power consumption of one memory block VS the enable rate.

Figure 5.2: Dynamic power consumption of the dual-port memory VS the toggle rate.

single-port line shows the power consumption when only one port is used and the other one

is always off. The toggle rate is assumed to be 100% in this figure.

Fig. 5.2 shows the power consumption for the dual-port block memory at different

toggle rates assuming that the enable rate is 100%. One 36K-bit memory block can also

be configured as two independent 18K-bit memory blocks. Each 18k-bit memory block

consumes half the power of the 36K-bit memory with the same frequency, enable rate and

toggle rate.
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Table 5.2: Resource Usage and Power Consumption of a MicroBlaze w/wo FPU Support

Resources Power (mw)

DSPs BRAMs LUTs FFs Slices Dynamic Static

wo FPU 3 2 1085 (3%) 958 (3%) 1607 (5%) 93.96 11.37

w FPU 7 2 1885 (6%) 1440 (5%) 2508 (8%) 134 18.19

5.1.3 Power Consumption of MicroBlaze w/wo a Floating-Point Unit

MicroBlaze has some optional features and can be configured when needed. Among these

features, the FPU is resource/power consuming. So here we study the two cases of re-

source/power consumption: MicroBlaze with or without FPU support. The configurable

FPU for MicroBlaze includes a divider, a multiplier, an adder/subtractor, a comparator and

a shifter. MicroBlaze can only be configured to include all or none of these function units.

The resource usage and dynamic power with or without the FPU configuration are shown

in Table 5.2. In this table, we use 12.5% as the default toggle rate for asynchronous signals.

The default toggle rate of 12.5% is widely accepted in power analysis and is derived by

analyzing over 100 proprietary benchmark designs [69] . From Table 5.2, it can be seen

that a MicroBlaze with FPU support requires 56% more resources and 43% more power.

The dynamic power consumption of a MicroBlaze w/wo an FPU at other toggle rates

is shown in Fig. 5.3.

5.1.4 Power Consumption of the Vector Unit for Different Configurations

Table 5.3 shows the resource usage and power consumption of the vector unit in the

MCwSV system under different configurations without enable signals for block memo-

ries. Compared to the 134mw consumed by one MicroBlaze with FPU support, our vector

unit for the 1-bank configuration needs quite more power even with similar resource us-

age. This is mainly because the multi-port block memories consume lots of power. As

described in Chapter 3, our eight-port 16KB vector register is implemented by four 36Kb
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Figure 5.3: Dynamic power consumption of a MicroBlaze w/wo an FPU at different toggle

rates.

Table 5.3: Resource Usage and Power Consumption of the Vector Unit Without Enable

Control of Block Memories

BRAMs Resources Power (mw)

DSPs 18KB 36KB slices Dynamic Static

1 Bank 4 3 4 2278 (7%) 240.98 15.92

2 Banks 8 3 4 3071 (10%) 343.63 22.74

4 Banks 16 3 4 4275 (14%) 534.25 31.83

8 Banks 32 11 0 6873(23%) 886.14 52.29

block memories using time-multiplexing and its operating frequency is four times the sys-

tem frequency. Similarly, the six-port scalar registers are implemented by an 18KB block

memory with an operating frequency which is three times the system frequency. Take the

example of the vector register file; if all the block memories are enabled at a 12.5% toggle

rate, then the block memories will require 6.83 * 4 * 4 = 109.28mw. 6.83 is the power con-

sumption of the 36Kb block memory at 100MHz with a 12.5% toggle rate. There are four

such blocks in the system and they are all running at 400MHz, so the total power consump-
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Table 5.4: Dynamic Power Consumption of the BRAMs and the VRF

Enable Rate Power(mw) BRAM Power(mw) VRF

1 Bank 12.5% 13.66 94.66

2 Banks 25% 27.32 110.3

4 Banks 50% 54.64 192.86

8 Banks 100% 109.28 324.13

tion is calculated as above. This number is even larger than the power consumption of the

whole system of a MicroBlaze without FPU support. So it is necessary to control the power

consumption of the block RAMS for the power efficiency of the entire system. The enable

signals of the BRAM should be set accordingly for less power consumption. Considering

that half of the BRAM of the 36Kb configuration can be disabled if it is constructed by two

18Kb BRAM blocks, eight 18Kb BRAMs will be used for the vector register file instead

of four 36Kb BRAMs for power efficiency. For the worst case, all three function units

in the vector processing unit are run simultaneously and all the eight ports are occupied.

Then the enable rate for the BRAMs and the dynamic power consumption of VRF for each

bank configuration are shown in Table 5.4. A 12.5% toggle rate is assumed here. When

the configuration in Table 5.4 is used in the vector unit, its power consumption can be re-

duced from 240.98mw, 343.63mw, 534.25mw to 145.36mw, 261.67mw and 479.61mw,

respectively, for the 1-, 2- and 4-bank configuration. Table 5.5 shows the resource usage

and power consumption of the vector unit with enable control for the block memories.

Fig. 5.4 shows the percentage of power consumption and the slice usage of each

component in the vector unit. It can be seen that the multi-port vector register file and

scalar register file contribute significantly to the power consumption and resource usage in

the vector unit. So area and power efficient multi-port register files are critical in the vector

processing unit design. But limited by the current FPGA resources, we cannot have a better

implementation method.
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Table 5.5: Resource Usage and Power Consumption of the Vector Unit with Enable Control

of the Block Memories

BRAMs Resources Power (mw)

DSPs 18KB LUTs Flip-Flops slices Dynamic Static

1 Bank 4 11 1887 (6%) 929 (3%) 2278 (7%) 145.36 15.92

2 Banks 8 11 2482 (8%) 1259(4%) 3071 (10%) 251.67 22.74

4 Banks 16 11 3290 (11%) 1912(6%) 4275 (14%) 479.61 31.83

8 Banks 32 11 5199 (18%) 3238(11%) 6873(23%) 886.14 52.29

Figure 5.4: Percentage of power consumption and slice usage for the vector unit with the

1-bank configuration.

5.2 Power/Resource-Efficient MCwSV Systems for Various Applications

In Chapter 3, an MCwSV system with two MicroBlaze processors and a shared vector

processing unit was designed and implemented on the target FPGA. Its efficiency was

shown in Chapter 4 by running three testbenches on it. However, this organization was

not optimized for various applications with different percentages of vectorization. But

on the other hand, the MCwSV system was designed for easy scalability to potentially

incorporate different numbers of scalar/vector units and various function units. Also, the

flexibility inherent to the FPGA can aid the task of matching different applications. These

benefits can be taken into account to create an optimized MCwSV system for each specific
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requirement. For embedded system design, the area, power and system throughput are three

metrics for overall system evaluation; an optimized system should be based on a good trade-

off among them. In this section, we build an architecture framework for performance and

resource management to guide configuration for the MCwSV system targeting at different

applications. The target MCwSV system architecture has the following key features:

• A vector unit which can be configured to contain various types and numbers of func-

tion units, and different number-of-vector-registers/vector-size pairs.

• Multiple MicroBlaze scalar processors with or without FPU support.

• These multiple scalar processors are organized in the master-slave mode where one

scalar processor controls each time communications with all the others.

• These multiple scalar processors can share the vector unit by sending instructions to

the latter via standard bus interfaces.

• These multiple scalar processors and the vector unit share the data in the shared data

memory via a memory access arbitrator.

• The MicroBlaze processors and the vector unit use different clock networks in the

FPGA; thus, they can be disabled individually for power efficiency.

The architectural design is based on the analysis of scalar/vector execution times and

resource/power consumptions of various components. This process is driven by analyzing

the target algorithms. At the end, the derived architecture template will give the configura-

tion of the MCwSV system with the type and number for FPUs in the shared vector unit,

and the number of scalar processors and their configuration. The primary goal is to find

a near-optimal configuration based on cost-performance tradeoffs for each given applica-

tion. Fig. 5.5 provides an overview of the procedure for architecture template creation. In

this template, MBNum indicates the number of MicroBlaze processors, which are used as

scalar processors in the system. V BankNum indicates the number of banks in the vector
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Figure 5.5: Overview of the procedure for architecture template creation.

unit. If the product M = T * E * R of execution time, energy consumption and resources

is used as the design metric here, then the architecture which can provide the smallest M

is considered to be the optimized design.

For computation-intensive algorithms with floating-point calculations, which are the

primary target of our MCwSV systems, generally a few blocks of code consume most of
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the overall execution time [78]. These blocks are usually represented by loops. The vec-

torization process for the architecture template is actually based on loop analysis of these

blocks, which is the first task in the process. Vectorization are performed on the loops

which has no flow dependence and cross-iteration dependence. Temporary storage space

and loop splitting are used when necessary to remove dependence in some loops and they

make partial vectorization possible. Then scalar and vector partitions are processed and

their execution times on the scalar processor and the vector unit for the 1-bank configura-

tion are estimated. We assume that the scalar and vector codes run exclusively on the scalar

and vector units and the scalar calculation can be divided into several parts and run inde-

pendently on several MicroBlaze. Examples are shown in Section 5.2.2. Then if the scalar

execution time is larger than the vector execution time, the number of vector banks is set

to one and the number of MicroBlazes is increased by one at each step. The design metric

M is then calculated for each configuration based on the estimated scalar/vector execution

time and the resource/power modeling built in the previous section. The scalar/vector time

estimation will be explained in the following subsection. This process stops when increas-

ing the number of MicroBlazes results in an increase of M. The vector bank number is

set to one because reducing the vector execution time will not reduce the total execution

time in this situation. Then more banks in the vector unit only means more resource used

and higher power consumption. Increasing the number of scalar processors can reduce the

scalar execution time proportionally for some applications as shown in Section 5.2.2 and

thus reduce the total execution time. But more MicroBlazes definitely mean more resources

to be used, so a tradeoff should be made between resources used and execution time, which

in our implementation is interpreted as finding the smallest M.

In the other situation where the scalar execution time is less than the vector execution

time, the number of MicroBlazes is set to one and M is calculated for various bank con-

figurations in the vector unit. The number of banks that produces the smallest M is chosen

for the vector unit.
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5.2.1 Scalar/Vector Execution Time Estimation

Here we give a simplified estimation model for the scalar/vector execution times. For

scalar execution time estimation, we need to emphasize here that although MicroBlaze

is a 5-stage pipelined RISC processor, it does not pipeline the floating-point instructions.

Floating-point multiplication or addition needs six clock cycles, floating-point comparison

needs three clock cycles and floating-point division needs 30 clock cycles. To simplify the

estimation model, we use the clock latency recorded in the MicroBlaze reference manual

[79] for the scalar instructions, without considering hazards. This method, though not very

accurate, is enough for our proof-of-concept work. The experimental data shows that when

comparing with the real execution time, this estimation module has an error percentage

from —20% to 0. The symbol "—" indicates that the estimation module always underes-

timates the execution time, which matches out assumption of not considering the hazards.

Introducing the average stall cycles in the estimation module will give more accurate results

and can be studied in future work.

For loops which can be vectorized, the optimized program for the vector unit will

be written by the programmer manually and the instructions will be read into a simplified

model for vector execution time estimation. Considering that the vector unit in the MCwSV

system supports chaining and the code is optimized by hand, most execution times on dif-

ferent FPUs can be overlapped. So we only take the largest execution time of one FPU. But

the index and stride loads/stores are exceptions because their behavior cannot be decided

till run time and they do not support chaining either. So their execution times are calculated

separately. Take the example of three function units in the system: floating-point multiplier,

floating-point adder and load/store unit; the vector execution time is estimated as shown in

Fig. 5.6. In this figure, two is the latency of the floating-point multiplier and adder, four is

the execution time of a scalar instruction executed on an FPU control part, and three is the

latency of each loadVI/storeVI and loadVS/storeVS induced by the crossbar between the

multi-bank memory blocks and the register file blocks. AVGNum is the average number
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Figure 5.6: Estimation model for the vector execution time.

of loads/stores at one clock cycle for the loadVI/storeVI and loadVS/StoreVS instructions.

AVGNum is calculated assuming the uniform distribution for the number of loads/stores

throughout the bank. If BNum is the number of banks in the vector unit, AVGNum, can

be calculated by the following equation.

Similar to the scalar time estimator, when compared with the real execution time the

vector time estimation model always underestimates the time because it does not consider

hazards either. Take the example of the RGB2YIQ algorithm; its instruction profiling for
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the vector unit is shown in Fig. 5.7. The percentage of error between the real and estimated

vector execution times is shown in Fig. 5.8. It can be seen that the error percentage for

the vector estimation time increases with the number of banks and decreases with data size

increases. The reason is that larger data sizes and smaller numbers of banks mean a higher

percentage of FPU vector execution time in the overall execution time, which is estimated

with higher accuracy because there are no hazards for executions in any given FPU and the

hazards between different FPUs are negligible.

Figure 5.7: Instruction profiling for the RGB2YIQ algorithm on the vector unit.

Figure 5.8: Error percentage of the vector time estimation model for the RGB2YIQ algo-

rithm.
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5.2.2 Application-Specific MCwSV (AS-MCwSV) System for Power/Resource Effi-

ciency

In this section, we produce optimized configurations for two applications using the afore-

mentioned architecture template process. They are the RGB2YIQ algorithm and the de-

modulation algorithm, which were used as testbenches in Chapter 4. These two algorithms

represent two situations for architecture template creation, as shown in Fig. 5.5. RGB2YIQ

conversion represents the case where the vector execution time is larger than the scalar ex-

ecution time. In this case, the number of MicroBlazes is set to one and we need to find the

optimized bank configuration for the vector unit. The demodulation algorithm represents

the other case where the scalar execution time is larger than the vector execution time. In

this situation, the number of banks in the vector unit is set to one and we need to find out

how many scalar processors should be included in the MCwSV system.

5.2.2.1 AS-MCwSV System for RGB2YIQ Conversions. The main part in the RGB2-

YIQ algorithm is a FOR loop without any flow dependencies and cross-iterations. It can

be fully vectorized for the vector unit. The scalar processor is only used for loop con-

trol, preparing and transferring vector instructions. Its execution time is much less than

the vector execution time. So for this algorithm, the AS-MCwSV system only needs one

MicroBlaze without FPU support. The vector unit should have floating-point multipliers

and adders/subtractors for the RGB2YIQ algorithm. We need to determine the bank con-

figuration for the vector unit.

In our design, each MicroBlaze processor and the vector unit use different clock

networks that can be turned off if the corresponding scalar processor(s) or vector unit are

in the idle status. So the energy consumption is composed of the following four parts:

• Active power of the vector unit.

• Standby power of the vector unit.

• Active power of each MicroBlaze.
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• Standby power of each MicroBlaze.

While the active power is composed of the dynamic power and the leakage power, the

standby power is only the leakage power.

Since the estimation of the execution time was explained in the previous section, here

we will proceed to the other steps shown in Fig. 5.5. For this algorithm, the execution time

of MicroBlaze is small and can be assumed as totally overlapping the vector execution

time. So the power consumption for this application is composed of the active/idle power

of MicroBlaze and the active power of the vector unit. Take the example of 32 data items

processed by the MCwSV system: the vector register size is set as 32 also to match the

data size. For the 1-bank configuration, the estimated vector and scalar execution times are

3.93/μs and 1.14μs, respectively. The total energy consumption of 0.79/./J is calculated as

shown below using the power consumption model we built in the previous section.
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Figure 5.9: Execution time and power estimation for the MCwSV system for various data

sizes and different bank configurations for the RGB2YIQ algorithm.

Figure 5.10: Normalized design metric (M) for various data sizes and different bank con-

figurations.

If the same calculation is performed for other bank configurations and data sizes, Fig.

5.9 shows the estimated energy consumption based on power modeling and the estimated

execution time according to the above equations.

It shows that as the data size increases, the benefit of large numbers of banks becomes

more significant. The normalized design metric M Resource * Energy * Time is

shown in Fig. 5.10. It can be seen from this figure that one MicroBlaze with the 8-bank

configuration is the best choice for large data sizes greater than 256; for small data sizes,

like 32, the 2-bank configuration is the most efficient solution. For other data sizes, the
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4-bank configuration is the best choice. So for RGB2YIQ conversions, the AS-MSwSV

system is one MicroBlaze processor without FPU and a vector unit with the 2-, 4-, or

8-bank configuration for various data sizes.

5.2.2.2 AS-MSwSV System for the Demodulation Algorithm. As described in Chap-

ter 4, the algorithm is composed of three parts: FIR filtering, distance calculation and dis-

tance comparison. Among them, FIR is an essentially sequential part and has to be run

on one MicroBlaze. The distance calculation and distance comparison can be divided into

several parts to be run simultaneously on multiple processors. And the distance calculation

part can be further vectorized. So in the MSwSV system, distance comparison will be run

on multiple scalar processors and distance calculation will be run on the shared vector unit.

Most of their execution times can be overlapped.

Assume that the system has a 3-tap FIR and 32 points in the signal constellation; then

for 1000 input data, the scalar execution time for FIR and distance comparison is 0.58ms

and 6.16ms, respectively. The estimated vector execution time for distance calculation

is 1.15ms, 0.80ms, 0.62ms and 0.55ms for the 1-, 2-, 4- and 8-bank configurations. In

this case, the scalar execution time is much larger than the vector execution time and the

number of banks in the vector unit is set to one as explained before. We need to find out how

many scalar processors should be included in the AS-MCwSV system for the demodulation

algorithm. Because all of the scalar processors need to deal with floating-point calculations,

each MicroBlaze is configured to include FPU hardware support.

When multiple scalar processors are employed in the system, they are organized in

the master-slave mode with one MicroBlaze controls each time communications with all the

other processors. Task division is made at static time and the programs are preloaded onto

each MicroBlaze before execution. For the demodulation algorithm, the distance compari-

son part can be divided to run on several MicroBlazes independently and these MicroBlazes

need not communicate during execution. As explained in Chapter 4, the overhead induced
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Table 5.6: Estimated Execution Time for the Demodulation Algorithm

MicroBlazes 1 2 3 4 5 6

FIR (ms) 0.58 0.58 0.58 0.58 0.58 0.58

Distance Comparison (ms) 6.16 3.09 2.07 1.56 1.27 1.03

Distance Calculation (ms) 1.15 1.15 1.15 1.15 1.15 1.15

Total (ms) 6.74 3.67 2.65 2.14 1.85 1.73

by several MicroBlazes is negligible. So the execution time for distance comparison is

reduced almost proportionally with increases in the number of scalar processors. And the

execution time for FIR and distance calculation remains the same.

The estimated execution time is shown in Table 5.6 based on the time estimation

module. Because the distance comparison time can be overlapped with the distance calcu-

lation time, the total execution time is the sum of the larger of these two numbers and the

FIR calculation time.

The power consumption is then calculated based on the estimated execution time and

power modeling. The total power consumption is the sum of the power of each MicroBlaze

in the system and the power of the shared vector unit. Since all MicroBlazes have the same

configuration, we use PP Mdynamic and PMBleakage to represent their dynamic power and leakage

power. Take the example where there are two MicroBlazes in the system:
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We perform the same calculation for all the other situations and Table 5.7 shows the

total execution time, power and area consumption. Fig. 5.11 shows the normalized values

of the design metrics, the normalized execution time, the normalized Resource * Energy

and the normalized Time * Energy * Resource. When M Time * Energy * Resource is

Table 5.7: Execution Time and Resource/Power Consumption for the Demodulation Algo-

rithm

MicroB lazes 1 2 3 4 5 6

Execution times(ms) 6.74 3.66 2.63 2.12 1.85 1.73

Percentage of slices 15% 23% 31% 39% 47% 55%

Power consumption (mJ) 1.30 1.26 1.26 1.27 1.29 1.28
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Figure 5.11: Normalized design metrics.

taken as the design metric for the demodulation algorithm, the right part in Fig. 5.11 shows

that the AS-MSwSV system for demodulation algorithm should have three MicroBlazes

with a shared vector unit. The vector unit should be configured with 1-bank having a

multiplier and an adder. All the MicroBlazes should have FPU support.



CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

The work in this dissertation stems from the observation that vector processing can eas-

ily outperform Superscalar and VLIW approaches for array-intensive algorithms while re-

maining area and power efficient. The fact that vector processing exploits DLP also makes

rather simple the software/hardware implementation of vector operations. All of these facts

make the vector structure a suitable approach for embedded applications with abundant

DLP. Also, new FPGA generations demonstrate significant improvements in density, speed

and structure, which make them feasible for SOC designs. So we first designed and im-

plemented a programmable vector processor on a single-chip targeting embedded systems.

It supports general-purpose instructions and is equipped with high-performance FPUs. A

multibank structure is employed in the vector processor for area and power efficiency. Ma-

trix multiplication and linear equation solvers, two kinds of representative computation-

intensive benchmark algorithms, were run on the vector processor. The results are better

than those of commercial PCs for large matrices despite much lower frequency due to the

FPGA structure. With the fast development of FPGA technologies, more performance

gains should be expected in the near future.

The focus in the second part of this dissertation, the MCwSV system, stems from the

fact that recent research on GPP processor design has shifted from exploiting more ILP to

multicore designs exploiting TLP, primarily because of the increasing difficulty in getting

more ILP from applications. However, no current multicore processor contains a really

powerful vector unit, which is the most efficient way to exploit DLP. Considering a vector

unit requires many hardware resources and most general-purpose applications can only be

partially vectorized. In the MCwSV system, the vector processing unit serves as a shared

81
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coprocessor to the resident scalar processors. The overall structure can then efficiently ex-

ploit all three kinds of parallelism: ILP, TLP and DLP. The implemented MCwSV system in

this dissertation contains two scalar processors and one shared vector unit. It is prototyped

on a Xilinx Virtex-5 FPGA platform. The MicroBlaze soft processor core from Xilinx is

used as the scalar processor and the vector processing unit is developed to communicate

with the MicroBlazes through standard interfaces and shared data memories. Besides the

multibank structure employed in the first part of our work, the shared vector unit in this

part is also organized in a decoupled way to facilitate ease of chaining and also to provide

further performance increases. The incoming instruction stream is split into three different

substreams for the three function units, which can be duplicated into several banks. The

vector processor can be configured to have various kinds and different numbers of function

units, and different number-of-vector-registers/vector-size pairs based on the requirements

of applications and resource/power usage. The standard interfaces to the scalar processors,

as well as the decoupled organization, provide good scalability in the MCwSV system.

Three testbenches were run on the system. It was shown that our MCwSV system can

yield significant performance increases while maintaining area efficiency.

However, the MCwSV system with two MicroBlazes and a shared vector unit is

not always the optimized system configuration for various applications with different per-

centages of vectorization. So, finally, the third part of our work focused on building an

architecture template for performance and resource management and guiding configura-

tion decisions of the MCwSV system for each given application. The decision is based on

the analysis of scalar/vector execution times and resource/power consumptions of various

components. At the end, the architecture template gives the configuration of the MCwSV

system with the type and number for FPUs in the shared vector processor, and the number

of scalar processors and their configuration. The primary goal is to find a near-optimal

configuration based on cost-performance tradeoffs for each given application. In out im-

plementation, the product M = Time * Energy * Resource of execution time, power and
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area is used to guide configurations. The MCwSV system which can provide the small-

est M is taken as the optimized one. Two examples were given to show how to build an

optimized MCwSV system for each specific application. For the demodulation algorithm,

the optimized MCwSV system involves three MicroBlaze processors with FPU support

and a 1-bank shared vector unit; for the RGB2YIQ algorithm, the optimized system needs

one MicroBlaze without FPU support and a shared vector unit which has 2-, 4-, or 8-bank

configuration for various data sizes.

Besides its use as a standalone system for embedded applications, the MCwSV sys-

tem can also be used as a prototype for research in incorporating a vector coprocessor into

current multicore processors. Our work demonstrates the effectiveness of a shared vector

unit in the multicore processor environment. The same concept could be applied to the

sharing of other units as well.

6.2 Future Work

More research could be done on the dynamic reconfiguration of the MCwSV system in

terms of changing the FPU type/number dynamically for the vector processor and/or im-

porting more scalar processors. The reconfiguration time should be calculated and com-

pared with the estimated computation time, if possible, to decide if the reconfiguration

should happen or not.

Different task scheduling policies, other than round-robin, could be studied. For

example, an alternative scheduling method to allow a thread to run until it blocks due to a

data or resource hazard may be a better choice for some tasks.

In addition, the performance of the MCwSV system is highly dependent on task

scheduling between the scalar processor and the vector unit as well as on program vec-

torization. The current approach is neither portable nor general. It is necessary to explore

languages and compilers to support program vectorization and task division, so the inherent

features of the MCwSV system could be fully utilized.
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