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Abstract

We analyze the benefits of look-ahead in the parallel execution
of the LU factorization with partial pivoting (LUpp) in two distinct
“asymmetric” multicore scenarios. The first one corresponds to an ac-
tual hardware-asymmetric architecture such as the Samsung Exynos
5422 system-on-chip (SoC), equipped with an ARM big.LITTLE pro-
cessor consisting of a quad-core Cortex-A15 cluster plus a quad-core
Cortex-A7 cluster. For this scenario, we propose a careful mapping of
the different types of tasks appearing in LUpp to the computational
resources, in order to produce an efficient architecture-aware exploita-
tion of the computational resources integrated in this SoC. The second
asymmetric configuration appears in a hardware-symmetric multicore
architecture where the cores can individually operate at a different fre-
quency levels. In this scenario, we show how to employ the frequency
slack to accelerate the tasks in the critical path of LUpp in order to
produce a faster global execution as well as a lower energy consump-
tion.

Keywords: Dense linear algebra, LU factorization, look-ahead, asymmet-
ric multicore processors, multi-threading, frequency scaling

1 Introduction

The LU factorization with partial pivoting (LUpp) [1] is a crucial operation
for the solution of dense linear systems that is supported by LAPACK [2],
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libflame [3] as well as by commercial libraries such as Intel MKL [4]. High
performance implementations of LUpp decompose this operation into a se-
ries of computational building blocks or tasks. In the legacy version of the
operation in LAPACK, these tasks mainly correspond to kernels from BLAS
(basic linear algebra subroutines [5]), for which there exist vendor-specific
implementations as well as highly competitive open alternatives (e.g., Go-
toBLAS [6, 7], OpenBLAS [8], ATLAS [9], BLIS [10], etc.).

In this paper, we examine the parallelization of LUpp in the context of a
parallel execution on asymmetric multicore processors (AMPs), considering
two sources of asymmetry:

• Hardware architecture: The ARM big.LITTLE (v7/v8) architectures
integrate two types of cores, combining a few high performance yet
power-hungry cores with several energy-efficient but low performance
cores. For linear algebra operations, performance is of paramount
importance and, therefore, exploiting both types of cores is crucial.

• Core frequency: Recent processors from Intel can adjust the frequency
(and voltage) of the hardware cores at execution time, on a per-core
basis. In a power-constrained scenario, either because of thermal de-
sign limits of the architecture or due to external constrains imposed
by the facility, the cores can be set to run at different frequencies to
better leverage the resources [11], yielding an asymmetric architecture
from the point of view of performance.

In our previous work in [12], we proposed several asymmetry-aware en-
hancements for the efficient execution of LUpp, enhanced with a technique
known as static look-ahead [13, 14], which aims to eliminate the sequential
panel factorization from the critical path of the global operation, on ARM
big.LITTLE AMPs. In the present paper, we extend that work, making the
following new contributions:

• For the hardware-asymmetric scenario, we develop several specialized
versions of the BLAS and LAPACK kernels appearing in LUpp, for
the ARM big.LITTLE multicore processor integrated into the Sam-
sung Exynos 5422 system-on-chip (SoC). These versions include a
new asymmetry-aware parallel scheme of the partial pivoting routine
(laswp) as well as some extra tuned configurations for the triangular
system solve (trsm) and matrix multiplication (gemm).

• For the frequency-asymmetric scenario, we evaluate the performance
benefits that can be obtained by carefully adjusting the frequency of
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the cores in charge of the critical tasks during the factorization. While
this strategy can be automatically applied by the hardware via, e.g.,
the Linux kernel when the proper governor is set, in our approach we
depart from this strategy to use application-level information in order
to set the frequency configuration on a task-level basis.

The rest of the paper is structured as follows. In Section 2 we de-
scribe the basic algorithms for LUpp, and discuss their parallelization op-
tions on a symmetric multicore processor. In Section 3, we perform a com-
plete performance analysis of different parallelization variants of LUpp on
a hardware-asymmetric platform equipped with the Samsung Exynos 5422
(ARM big.LITTLE v7) SoC. In Section 4, we study the performance, power
and energy consumption of LUpp with static look-ahead on a frequency-
asymmetric platform. Finally, in Section 5, we present the conclusions.

2 Parallel LUpp on Symmetric Multi-threaded Ar-
chitectures

Given a square matrix A ∈ Rn×n, the LU factorization with partial pivoting
produces a unit lower triangular factor L ∈ Rn×n, an upper triangular factor
U ∈ Rn×n, and a permutation matrix P ∈ Rn×n, such that PA = LU [1]. In
this section, we revisit two blocked algorithms for LUpp, discussing several
approaches to obtain a multi-threaded execution on a generic (symmetric)
multicore processor. For simplicity, we do not include pivoting in the de-
scription of the algorithms, though all our actual implementations integrate
the standard partial pivoting. The arithmetic cost of computing LUpp via
this algorithm is 2n3/3 +O(n2) floating-point arithmetic operations (flops).

2.1 Basic algorithms and conventional parallelization

The algorithms in Figure 1 show the blocked left-looking (LL) and right-
looking (RL) variants of LUpp, using the FLAME notation [15]. For sim-
plicity, we only describe next the RL variant, which is the algorithm imple-
mented in LAPACK and libflame. At each iteration, this variant of LUpp
relies on an unblocked factorization algorithm to process the “current” panel
Ap, composed of b columns, where b is often referred to as the algorithmic
block size. Next, it updates the trailing submatrix, consisting of A12 and
A22, via a triangular system solve (trsm, RL2) followed by a matrix mul-
tiplication (gemm, RL3). Provided b � n, in this blocked algorithm most

3



Algorithm: [A] := LU blk(A)

A→
(

ATL ATR

ABL ABR

)
where ATL is 0× 0

while n(ATL) < n(A) do
Determine block size b(

ATL ATR

ABL ABR

)
→

A00 A01 A02

A10 A11 A12

A20 A21 A22


where A11 is b× b,

Define Ap =

[
A11

A21

]

LL1. A01 := trilu(A00)
−1A01

LL2. Ap := Ap −
[
A10

A20

]
A01

LL3. Ap := LU unb (Ap)

RL1. Ap := LU unb (Ap)

RL2. A12 := trilu(A11)
−1A12

RL3. A22 := A22 −A21A12(
ATL ATR

ABL ABR

)
←

A00 A01 A02

A10 A11 A12

A20 A21 A22


endwhile

Figure 1: blocked LL and RL algorithms (left and right operations in the
loop-body, respectively) for LUpp. In the notation, n(·) returns the number
of columns of its argument, and trilu(·) returns the strictly lower triangular
part of its matrix argument, setting the diagonal entries of the result to ones.

flops are cast in terms of the gemm kernel. Upon completion, the trian-
gular factors L and U respectively overwrite the strictly lower and upper
triangular parts of the input matrix A.

The conventional parallelization of LUpp for multicore processors simply
relies on multi-threaded instances of trsm and gemm. Unfortunately, the
factorization of the panel Ap (RL1) lies in the critical path of the algorithm
and this kernel exhibits a reduced degree of concurrency. This performance
bottleneck can be ameliorated by computing the factorization of the panel
Ap via a “recursive” call to the blocked variant, with a block size b′ < b.

2.2 Dynamic look-ahead

The “fork-join model” of the conventional parallelization of LUpp artificially
constrains the algorithmic concurrency of the operation to that intrinsic in
the individual BLAS kernels [16, 17]. Recent runtime-based alternatives ex-
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tract task-level parallelism dynamically in an attempt to overcome some of
the problems of the fork-join model [16, 17, 18]. In these dynamic parallel
versions, the matrix is partitioned into a collection of column blocks (or
panels), so that the operations on each panel, during each iteration of the
algorithm, become a single task. In contrast with the conventional paral-
lelization, in the runtime-based solution i) a task comprises multiple calls
to BLAS kernels; ii) each of these invocations to BLAS relies on a sequen-
tial implementation of the corresponding kernel; and iii) the runtime-based
parallelization schedules a concurrent execution of independent tasks.

The runtime-based parallelization overlap the execution of tasks from
the same or different iterations (potentially overcoming the bottleneck im-
posed by the panel factorization), with the only restriction of fulfilling the
real dependencies among them. However, this runtime-based parallelization
often produces a suboptimal use of the cache hierarchy because the threads
then compete for the use of shared resources instead of sharing them [14].

2.3 Static look-ahead

Look-ahead [13] is a technique that tackles the performance bottleneck rep-
resented by the factorization of Ap by overlapping the factorization of the
“next” panel (say, that involved in iteration k + 1 of the main loop in the
blocked RL algorithm for LUpp) with the update of the “current” trailing
submatrix (for iteration k).

Figure 2 re-organizes the blocked RL algorithm for LUpp to expose the
look-ahead technique. The partitioning of the trailing submatrix into two
column panels creates the two coarse-grain independent tasks which can be
computed concurrently: the factorization of the next panel TPF (consisting
of PF1, PF2, PF3); and the remainder update of the current trailing submatrix
TRU (composed of RU1 and RU2). By adjusting the amount of computational
resources (thread teams) dedicated to each of the two independent tasks,
TPF and TRU, this static look-ahead can partially overcome the bottleneck
represented by the panel factorization.

In [14] we improved the static look-ahead variant via two workload-
balancing techniques:

• Worker Sharing (WS): At each iteration, if the team of threads ded-
icated to TPF completes this task before TRU is finished, a malleable
thread-level (MTL) implementation of BLIS (BLAS-like Library In-
statiation Software Framework [10]) incorporates these idle threads to
the ongoing computation of TRU. Note that this degree of malleabil-
ity is not possible in standard multi-threaded implementations of the
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Algorithm: [A] := LU la blk(A)

Determine block size b

A→
(

ATL ATR

ABL ABR

)
, ABR →

(
APF

BR ARU
BR

)
where ATL is 0× 0, APF

BR has b columns

APF
BR := LU blk

(
APF

BR

)
while n(ATL) < n(A) do(

ATL ATR

ABL ABR

)
→

 A00 A01 A02

A10 A11 A12

A20 A21 A22


where A11 is b× b

Determine block size b
% Partition into panel factorization and remainder(

A12

A22

)
→

(
APF

12 ARU
12

APF
22 ARU

22

)
where both APF

12 , APF
22 have b columns

% Panel factorization, TPF

PF1. APF
12 := trilu(A11)

−1APF
12

PF2. APF
22 := APF

22 −A21A
PF
12

PF3. APF
22 := LU blk

(
APF

22

)
% Remainder update, TRU

RU1. ARU
12 := trilu(A11)

−1ARU
12

RU2. ARU
22 := ARU

22 −A21A
RU
12

(
ATL ATR

ABL ABR

)
←

 A00 A01 A02

A10 A11 A12

A20 A21 A22


endwhile

Figure 2: Blocked RL algorithm enhanced with static look-ahead for the LU
factorization.

BLAS, as once a kernel (such as trsm in RU1 or gemm in RU2) is
invoked with a certain number of threads, these versions of the BLAS
do not allow variations in the thread concurrency until the execution is
completed. We refer to our flexible implementation as the MTL BLIS,
and we view the migration of threads into an ongoing kernel execu-
tion as worker sharing (WS). For further details on the parallelization
of BLIS on multicore processors, in combination with MTL BLIS, we
refer the reader to [14].

• Early Termination (ET): At each iteration, if TRU is completed before
TPF, we notify this event to the team of threads in charge of the
latter so that they stop the factorization of the panel, and both teams
inmediatly proceed to work on the next iteration of the static look-
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ahead algorithm. This produces an automatic tuning of the block size.

The implementation of LUpp with look-ahead, WS, MTL BLIS and ET,
delivers notable performance on a conventional multicore processor equipped
with Intel Xeon cores; see [14] for details.

3 Parallel LUpp on ARM big.LITTLE AMPs

The parallelization of the LUpp with static look-ahead on a multicore plat-
form requires the design of a specialized strategy to distribute the cores
between the TPF and TRU thread teams. In comparison with a symmetric
multicore processor, an AMP such as the Exynos 5422 thus offers a richer
collection of possibilities since, in addition to the number of threads that
are assigned to each team, we also need to decide the type of the cores [12].

After a brief description of the experimental setup, in this section we
further tune our adaption of the LUpp with static look-ahead for AMPs
in [12]. Specifically, we evaluate several new parallel configurations that
were enabled by the use of a more flexible implementation of gemm and
trsm; furthermore, we also inspect the parallel execution of laswp.

3.1 Experimental setup

All the experiments in the following subsections were performed employing
ieee double precision arithmetic on a Samsung Exynos 5422 SoC consisting
of four ARM Cortex-A15 plus four ARM Cortex-A7 cores. The frequency
was set to 1.3 GHz for both types of cores.

In the experiments, we consider square matrices of dimension n=500
to 8,000 in steps of 500, with random entries uniformly distributed in the
interval (0, 1). The algorithmic block size was tested for values b=32 to 512
in steps of 32; the inner block size for the panel factorization was bi=32.
The performance results are rated in terms of GFLOPS (billions of flops per
second), using the standard flop count of 2n3/3 for LUpp.

3.2 Variants with static look-ahead

The starting point for the experimental evaluation of the LUpp with static
look-ahead is an analysis of the impact caused by the distribution of the cores
between the teams that execute the gemm kernels appearing in TPF and
TRU, as this particular BLAS operation dominates the cost of the complete
factorization. This study then impacts the distribution of the threads for
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the trsm kernels, constraining the variety of parallel configurations that can
be employed for the execution of this second BLAS kernel.

The parallel configurations evaluated in the following subsections are
identified using a naming scheme of the form “(w+x|y+z)”, where “w+x”
are two numbers, in the range 0–4, used to specify the amount of Cortex-
A7+Cortex-A15 cores (in that order) mapped to the execution of the BLAS
kernels appearing in TPF; and “y+z”, in the same range, play the same role
for those mapped to the execution of the BLAS kernels appearing in TRU.
At this point, we note that given that most flops occur inside TRU, it is
natural to dedicate more threads (or, at least, the most powerful ones) to
the execution of the kernels in this task. We report results for a natural
“homogenous” configurations that distributes the cores between the two
execution branches (TPF and TRU) depending on the core type, and the best
“heterogeneous” configurations among those that we tested.

3.2.1 Configuration of gemm

Compared with our previous version in [12], this work introduces some
changes in the parallelization of gemm for AMPs in order to make the code
for this operation more flexible. Concretely, our previous work required
that, in a “heterogeneous” configuration, a thread team includes cores of
the two distinct types, and the number of Cortex-A7 and Cortex-A15 cores
in the teams were the same. In contrast, in the current version we have
modified the code to accommodate heterogeneous configurations with any
combination of Cortex-A7 and Cortex-A15 cores in a team. This is achieved
by decoupling the code of both core types, via the implementation of two
execution branches in the kernel code. This new structure offers greater
flexibility and allows a finer control of the processing elements.

In this subsection, we propose three mappings of the Cortex-A7 and
Cortex-A15 cores to the execution of the gemm kernels:

• GEMM(4+0|0+4): Homogeneous configuration where the Cortex-A7
cluster executes PF2 and the gemm kernels in PF3; the Cortex-A15
cluster is in charge of RU2.

• GEMM(1+1|3+3): Heteregeneous configuration with one Cortex-A7 core
collaborating with one Cortex-A15 core in the execution of PF2 and
the gemm kernels in PF3; the remaining cores (three Cortex-A7 cores
plus three Cortex-A15 cores) are mapped to RU2.

• GEMM(0+1|4+3): Heterogeneous configuration with a single Cortex-
A15 core mapped to PF2 and the gemm kernels in PF3; the remaining
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cores (four Cortex-A7 cores plus three Cortex-A15 cores) execute RU2.

For this initial experiment, the number of threads that participate in the
execution of the trsm kernels appearing in TPF and TRU (PF1 plus the
invocations to trsm from within PF3 and RU1, respectively) equals the
number of Cortex-A15 cores that are in charge of the corresponding task.
This means, for example, that in the configuration GEMM(1+1|3+3), a single
Cortex-A15 executes PF1 and the trsm kernels appearing in PF3, while
the remaining three Cortex-A15 cores execute RU1. Furthermore, if the
configuration assigns no Cortex-A15 cores to the execution of gemm for
a particular task, then the full Cortex-A7 cluster will participate in the
execution of the trsm kernels present in that task. The row permutations
(laswp) mostly occur outside the coarse-grain tasks TPF and TRU, and are
carried out by all threads. The only exception are the row permutations
that occur within the panel factorization PF3, which are performed by the
same collection of threads that are mapped to the execution of the gemm
kernels in TPF.

For the homogeneous configuration GEMM(4+0|0+4), at the beginning of
each iteration, the execution employs symmetric kernels since PF2 and the
gemm kernels in PF3 are mapped to four Cortex-A7 cores only, while RU2 is
executed by the four Cortex-A15 cores only. However, due to the integration
of an instance of BLIS with thread-level malleability, as soon as the gemm
kernels in TPF are completed, the active Cortex-A7 cores become part of the
team in charge of TRU, and the execution relies on asymmetric kernels from
that point.
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Figure 3: Performance of the blocked RL algorithm with static look-ahead
enhanced with WS and ET for different configurations of gemm.

The heterogeneous configurations differ in the combination of a few
Cortex-A7 and Cortex-A15 in the execution of the gemm operations ap-
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pearing in TRU. In the first case, GEMM(1+1|3+3), the same number of big
and LITTLE cores are used in each task, devoting less resources to TPF.
As shown in Figure 3, combining two different types of cores in both tasks
improves the performance of LUpp. On the other hand, GEMM(0+1|4+3)

features an uneven number of cores for the execution of the gemm kernels
in both TPF and TRU. This mapping accelerates the execution of TRU be-
cause more cores are devoted to the gemm appearing in this task, which
benefits an operation as parallel as gemm.

In general, the best parallelization option, GEMM(0+1|4+3), assigns a
single Cortex-A15 core to the execution of TPF while the remaining resources
are dedicated to TRU. Fortunately, this choice is the optimal for almost
all problem dimensions and, therefore, it is not necessary to modify the
thread mapping during the progress of the factorization as smaller LUpp
subproblems are encountered. This decision sets some conditions on the
parallelization of trsm next, as we cannot expect to change the mapping of
the cores from between different kernels.

3.2.2 Configuration of trsm

The parallelization of trsm for AMPs presented in [12] could not accommo-
date any combination of Cortex-A7 and Cortex-A15 cores. One contribution
of this work is the modification of trsm code in order to make it as flexible
as gemm. We include the best configuration for trsm from our previous
work and, thanks to the finer control provided by the new implementation
of trsm, we present two new configurations in order to explore the impact
of including Cortex-A7 cores in the execution of TRU.

We next proceed to assess the performance of three different configura-
tions for trsm. These variants differ in the specific loop that is parallelized
in BLIS [10] and the use of a homogeneous/heterogenoeus configuration for
the execution of the trsm kernels in TRU:

• TRSM(L1L4;0+1|4+3): Heterogeneous configuration where a two-level
parallelization is employed to distribute the iteration space of Loop 1
(outermost loop of the kernel) for trsm between the Cortex-A15 and
Cortex-A7 clusters; then, in Loop 4 of trsm, each core within the
same cluster is given an even part of the workload assigned to that
cluster; see [19] for details.

• TRSM(L4;0+1|4+3): Heterogeneous configuration where the asymmet-
ric distribution of the workload between the two types of clusters oc-
curs in Loop 4 only.
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• TRSM(L4;0+1|0+3): Homogeneous configuration where a symmetric
implementation of trsm takes advantage of the Cortex-A15 cores only.

Figure 4 reports the results for the different configurations of trsm.
Clearly, the worst option corresponds to the mapping that implements an
asymmetric distribution of Loop 4 only. Curiously, although this reduces the
number of data buffers and diminishes the volume of cache misses [10], it
offers the lowest performance rate. This behaviour can be explained by the
implementation of this configuration. Given that an asymmetric distribution
of the workload is required at this level, a dynamic mechanism is needed
in order to implement it [19]. However, the overhead introduced by the
dynamic scheduling impairs performance when exploiting the asymmetry
of the SoC, mainly due to the small workload that trsm represents in the
factorization (note that, for large matrix sizes, this trend changes). On
the other hand, if the trsm kernels are configured to leverage the dynamic
distribution at a higher level (Loop 1), the overhead of this mechanism is
significantly reduced and the performance improves considerably.
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Figure 4: Performance of the blocked RL algorithm with static look-ahead
enhanced with WS and ET for different configurations of trsm.

To close the evaluation of this kernel, we tested the benefits of employing
the Cortex-A15 cores to compute trsm only. Interestingly, the results show
that this is the best choice in order to optimize performance, since adding
Cortex-A7 cores decreases the performance rate due to the low workload of
this kernel. Concretely, the trsm kernels appearing in LUpp operate most
of the time on a square triangular matrix of small dimension of order b (often
with b = 256) lessening the benefits of using additional resources.
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3.2.3 Configuration of laswp

To conclude the analysis of the three main building blocks present in LUpp
when running on an AMP, we extend the work in [12] to analyze the impact
of the row permutations (laswp). For this analysis, we fix the configura-
tions GEMM(0+1|4+3) and TRSM(L4;0+1|0+3). The major part of the row
permutations occur after the operations in tasks TPF and TRU have been
completed. The purpose of the following experiments is to determine which
cores to employ in these permutations.

 0

 2

 4

 6

 8

 10

 12

 14

 0  2000  4000  6000  8000

G
F

L
O

P
S

Problem dimension n

LUpp on Exynos 5422 SoC 

LASWP(0+1)
LASWP(0+2)
LASWP(0+3)
LASWP(0+4)
LASWP(1+2)
LASWP(2+2)

 6

 7

 8

 9

 4000  6000  8000

G
F

L
O

P
S

Problem dimension n

LUpp on Exynos 5422 SoC 

LASWP(0+1)
LASWP(0+2)
LASWP(0+3)
LASWP(0+4)
LASWP(1+2)
LASWP(2+2)

Figure 5: Performance of the conventional parallelization of the blocked
RL algorithm with different laswp parallelizations and static look-ahead
enhanced with WS and ET.

The left-hand side plot in Figure 5 reports the performance of distinct
mappings of threads to the execution of laswp. From these results, we
can conclude that, for small matrices, a homogeneous configuration that
employs the Cortex-A15 cores only in general provides higher performance
rates. The reason is that the workload is too small to take advantage of the
Cortex-A7 cores. In addition, for the large matrices, it is hard to determine
whether there is any difference in performance. When zooming in the results
(see the right-hand side plot in the same figure), we can observe that adding
one or more Cortex-A7 cores actually reduces the performance.

In summary, we can conclude that, in order to attain high performance,
the best option when parallelizing laswp employs two Cortex-A15 cores
only. The main reason for this is that laswp is a memory-bound operation
and adding more cores, simply saturates the memory bandwidth with no
real benefit from the point of view of performance.
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3.3 Global comparison

Figure 6 compares three parallel asymmetry-aware configurations for the
execution of LUpp on ARM big.LITTLE AMPs:

• LU AS: blocked RL algorithm for LUpp (without look-ahead) linked
with asymmetric-aware implementation of the basic building blocks
gemm and trsm that employs all 8 cores of the ARM SoC to extract
parallelism from within each BLAS kernel.

• LU LA: LUpp with look-ahead with the optimal configurations of the
basic kernels determined in subsection 3.2: GEMM(0+1|4+3), TRSM(L4;0+1|0+3)

and two Cortex-A15 for the execution of laswp.

• LU OS VC: The best runtime-based option found in the literature which
exploits the asymmetry of the SoC aggregating the computational re-
sources into 4 homogeneous virtual cores (VCs), composed each of a
single Cortex-A15 core plus a single Cortex-A7 core, and then relies
on a runtime in order to introduce a dynamic look-ahead strategy in
the implementation of LUpp; see [20, 12] for details.

In this plot, we can observe that the conventional parallelization delivers a
reduced performance rate due to the bottleneck imposed by the panel fac-
torization. This hurdle can be greatly palliated through the introduction
of static look-ahead, enhanced with WS and ET, yielding an implementa-
tion that consistently delivers up to 2 GFLOPS more than the conventional
algorithm for LUpp. Finally, the runtime-based implementation, which ap-
plies a dynamic look-ahead strategy, proves that the dynamic look-ahead is
especially beneficial for small problems (n < 2, 000). For mid-large prob-
lem dimensions though, our implementation with static look-ahead matches
or slightly outperforms the runtime-based approach, at the cost of a more
expensive programming and optimization cost.

4 Parallel LUpp on Frequency-Asymmetric Intel
Xeon Cores

As argued in the introduction, even in a symmetric multicore processor, a
potential asymmetric scenario appears if different cores operate at distinct
frequency levels. This may occur, for example, because the power budget
for the processor, server or complete facility enforces strict constrains in the
highest power rate for the processor. As a response, in recent hardware
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Figure 6: Performance of the best parallel configuration for each variant:
conventional blocked RL algorithm, static look-ahead version enhanced with
WS and ET, and runtime-based implementation.

architectures, power consumption can be finelly regulated (at the core level)
by adjusting the voltage level and frequency of individual cores.

For LUpp with static look-ahead, in our parallelization we divided the
main loop into two coarse-grain tasks, TPF and TRU, and explored how to
distribute the computational resources (i.e., cores) in order to produce a
balanced execution cost of both “branches”, identifying two cases: i) When
the block size is relatively large compared with the problem dimension, TPF

dominates the total execution time of LUpp; while, ii) in the opposite case,
TRU is more costly than TPF.

In the remainder of this section, we will focus on the first case. For this
particular situation, ET tackles the cost imbalance by stopping the panel
factorization in TPF at an early stage, to advance the computation to the
next iteration, in practice reducing the algorithmic block size. As a side ef-
fect, if the parameter b becomes “too small” (usually, below 192, depending
on the implementation of the BLAS and the cache hierarchy), the perfor-
mance of the gemm kernels appearing in the TRU task is strongly reduced,
and this renders a significant negative impact on the global performance
of LUpp. At this point we remind that, in this TPF-dominated scenario,
increasing the amount of cores that compute TPF cannot be expected to
produce a significant positive effect, as the degree of parallelism of the panel
factorization is very reduced.

In the same scenario (i.e., when the execution time of TPF is significantly
larger than that of TRU, given the computational resources assigned to each
task), a strategy to ameliorate the cost imbalance can exploit a potential sur-
plus in the power budget to accelerate the execution of TPF, via an increase
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of the frequency of the cores assigned to this task. Thus, the question we
want to investigate is whether, by shifting part of the power budget to accel-
erate the execution of TPF, we can reduce the total execution time of LUpp.
Leaving the Linux governor in control of adjusting the voltage–frequency
scaling will likely produce a suboptimal solution because, by the time TRU

is completed, and the governor shifts the surplus in the power budget to
the execution of TPF, a significant time may have been wasted. In contrast,
given our detailed knowledge about the task-parallel organization of LUpp
with look-ahead, we can set the cores in charge of TPF to operate at a higher
frequency than those that compute TRU for the full execution of LUpp. We
can refer to our approach as algorithmic-based (voltage–)frequency scaling
(ABFS).

4.1 Experimental setup

Our experiments have been carried out on an Intel Xeon E5-2630 v3 that is
furnished with 64 GB of DDR3 RAM and features two sockets with 8 cores
each, which may run from 1.2 GHz to 2.4 GHz. In our tests we only employ
one socket, assigning 1 core to TPF and 7 cores to TRU. All experiments
are done in double precision arithmetic. Moreover, in the experiments we
consider square matrices of dimension n=1,000 to 18,000 in steps of 2,000,
with random entries uniformly distributed in the interval (0, 1). The algo-
rithmic block size was set to b = 256 and the inner block size for the panel
factorization was bi = 32.

4.2 Global comparison

We remind that the case that we explore in this section corresponds to the
following scenario:

• LUpp with static look-ahead. To simplify the analysis, we will not
enhance this code with ET and WS, and we will use the regular BLIS
instance of BLAS (without thread malleability). WS is only possible
when using a MTL instance of the BLAS, which is currently only avail-
able as part of our implementation of BLIS. Furthermore, WS+MTL
BLAS can only be expected to have a positive impact on performance
when the cost of LUpp is dominated by TRU. In our approach for
frequency-asymmetry architectures, we consider the variation of fre-
quency as an alternative to ET.
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• Target hardware-symmetric multicore architecture, with voltage and
frequency scaling at the core level.

• Small problem dimension compared with the amount of cores dedi-
cated to computing the factorization.

In the remaining experiments in this subsection, the frequency of the core
in charge of TPF is set to the highest possible value, fPF = fmax = 2.4 GHz,
while the frequency of the remaining 7 cores, in charge of TRU, is set to a
“nominal” value fRU = fN ranging between 1.2 and 2.3 GHz, depending
on the configuration. The results obtained for LUpp with look-ahead using
these configurations are reported in Figure 7. There, each line represents
the normalized value obtained for a specific asymmetric configuration with
1 core at fPF and 7 cores at fRU, with respect to the reference configuration
that has all 8 cores set to operate at fRU.

From the point of view of execution time, the top–left plot in the figure
shows that, as expected, the acceleration factors are more relevant for the
smaller problem dimensions, for which TPF plays a more important role and
dominates the total execution time. As the problem dimension grows, TRU

becomes more costly, and the time reductions become less important, though
they are still visible as the algorithm for LUpp decomposes the operation into
sub-problems of decreasing dimensions. In all experiments, the existence of
a larger power surplus (i.e., the acceleration of the panel factorization by a
larger margin) produces a more significant reduction of the execution time.

The top-right plot in Figure 7 reports the normalized average power
consumption. The highest difference in the power dissipation rate appears
for the configuration that sets fRU to the lowest frequency, i.e., 1.2 GHz.
Now, given that the dynamic power satisfies Pdynamic ∝ V 2f ≈∝′ f3 [21], if
we calculate the theoretical normalized power ratio between the asymmet-
ric and symmetric configurations for that particular configuration, we have
Pasym/Psym = (f3

PF + 7f3
RU)/8f3

RU = 1.875. In contrast, the comparison of
the actual consumption rates shown in the plot offers an experimental ratio
of 1.322. The difference between theory and practice can be explained here
by the role of the static power consumption, which varies at a lower pace
with respect to the frequency than that of the dynamic component of the
power [21]. An additional explanation for the source of this difference is the
temporal and energy costs of changing the frequency during the execution
of the factorization.

The results for the normalized energy consumption are reported in the
bottom plot in Figure 7. The trend for the energy consumption is similar to
that observed for the execution time: small and medium problems largely
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Figure 7: Normalized execution time (top left), average power (top right)
and energy (bottom) of the blocked RL algorithm with static look-ahead for
different core frequency configurations.

benefit from setting the core executing TPF to fPF. However, for matrix
sizes larger than n = 10,000, the asymmetric configuration of the platform
increases the total energy consumption. The reason is that, although the
asymmetric configuration reduces the execution time, the increase in power
consumption exceeds that reduction, harming the total energy consumption.

5 Concluding Remarks

While the parallelization of dense linear algebra operations (DLA) on sym-
metric multicore processors has been largely analyzed, in this paper we have
addressed the more arduous parallel execution of this type of operations on
AMPs, using the LU factorization with partial pivoting (LUpp) and static-
look-ahead as a representative case study. The rationale for our study steams
from two asymmetric configurations, discussed next.

Hardware-based AMPs provide a means to tackle the power wall by
utilizing the most appropriate type of core at each moment, while power-
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ing down the remaining computational resources (dark silicon). However,
for dense linear algebra, attaining high performance is of paramount im-
portance. In this situation, an appealing alternative is to set the cores to
operate at a low frequency, but employ all of them to solve the problem.
This leads to the question of how to coordinate all these resources efficiently
for the parallel execution of LUpp with static look-ahead (enhanced with
workload balancing techniques such as WS and ET). Our analysis and ex-
periments show that this can be done by considering the distinct type of
tasks appearing in LUpp, choosing the best number and type of cores on an
individual basis.

Frequency-based AMPs stand at an intermediate point between stan-
dard multicore processors and hardware-based AMPs: like in a standard
multicore architecture, all threads present the same architecture (e.g., cache
organization) and instruction set; but if one or more cores operate at a differ-
ent frequency, they reproduce the parallel programming challenge identified
for AMPs. For this particular case, we demonstrate the advantages of uti-
lizing the frequency slack to obtain an algorithmic-based frequency scaling
(ABFS) of the critical tasks appearing in LUpp, in order to reduce both the
execution time and energy consumption of this DLA operation.

In summary, when applied with care it is natural to expect that a man-
ual distribution of the workload among the processor cores can outperform
dynamic scheduling, at the cost of a more complex coding effort. We believe
that delivering this message is nonetheless important for three reasons: i)
Current development efforts are pointing in the opposite direction of intro-
ducing dynamic scheduling via a runtime; ii) for AMPs, the development of
asymmetry-aware runtimes is rather inmature and quite more complex; and
iii) given the right level of abstraction, modifying a factorization routine to
manually introduce a static look-ahead is rather simple.

Acknowledgements

The researchers from Universidad Jaume I were supported by projects TIN2014-
53495-R and TIN2017-82972-R of MINECO and FEDER, and the FPU pro-
gram of MECD. The researcher from Universitat Politècnica de Catalunya
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