88 research outputs found

    Mapeo estático y dinámico de tareas en sistemas multiprocesador, basados en redes en circuito integrado

    Get PDF
    RESUMEN: Las redes en circuito integrado (NoC) representan un importante paradigma de uso creciente para los sistemas multiprocesador en circuito integrado (MPSoC), debido a su flexibilidad y escalabilidad. Las estrategias de tolerancia a fallos han venido adquiriendo importancia, a medida que los procesos de manufactura incursionan en dimensiones por debajo del micrómetro y la complejidad de los diseños aumenta. Este artículo describe un algoritmo de aprendizaje incremental basado en población (PBIL), orientado a optimizar el proceso de mapeo en tiempo de diseño, así como a encontrar soluciones de mapeo óptimas en tiempo de ejecución, para hacer frente a fallos de único nodo en la red. En ambos casos, los objetivos de optimización corresponden al tiempo de ejecución de las aplicaciones y al ancho de banda pico que aparece en la red. Las simulaciones se basaron en un algoritmo de ruteo XY determinístico, operando sobre una topología de malla 2D para la NoC. Los resultados obtenidos son prometedores. El algoritmo propuesto exhibe un desempeño superior a otras técnicas reportadas cuando el tamaño del problema aumenta.ABSTARCT: Due to its scalability and flexibility, Network-on-Chip (NoC) is a growing and promising communication paradigm for Multiprocessor System-on-Chip (MPSoC) design. As the manufacturing process scales down to the deep submicron domain and the complexity of the system increases, fault-tolerant design strategies are gaining increased relevance. This paper exhibits the use of a Population-Based Incremental Learning (PBIL) algorithm aimed at finding the best mapping solutions at design time, as well as to finding the optimal remapping solution, in presence of single-node failures on the NoC. The optimization objectives in both cases are the application completion time and the network's peak bandwidth. A deterministic XY routing algorithm was used in order to simulate the traffic conditions in the network which has a 2D mesh topology. Obtained results are promising. The proposed algorithm exhibits a better performance, when compared with other reported approaches, as the problem size increases

    Multiprocessor System-on-Chips based Wireless Sensor Network Energy Optimization

    Get PDF
    Wireless Sensor Network (WSN) is an integrated part of the Internet-of-Things (IoT) used to monitor the physical or environmental conditions without human intervention. In WSN one of the major challenges is energy consumption reduction both at the sensor nodes and network levels. High energy consumption not only causes an increased carbon footprint but also limits the lifetime (LT) of the network. Network-on-Chip (NoC) based Multiprocessor System-on-Chips (MPSoCs) are becoming the de-facto computing platform for computationally extensive real-time applications in IoT due to their high performance and exceptional quality-of-service. In this thesis a task scheduling problem is investigated using MPSoCs architecture for tasks with precedence and deadline constraints in order to minimize the processing energy consumption while guaranteeing the timing constraints. Moreover, energy-aware nodes clustering is also performed to reduce the transmission energy consumption of the sensor nodes. Three distinct problems for energy optimization are investigated given as follows: First, a contention-aware energy-efficient static scheduling using NoC based heterogeneous MPSoC is performed for real-time tasks with an individual deadline and precedence constraints. An offline meta-heuristic based contention-aware energy-efficient task scheduling is developed that performs task ordering, mapping, and voltage assignment in an integrated manner. Compared to state-of-the-art scheduling our proposed algorithm significantly improves the energy-efficiency. Second, an energy-aware scheduling is investigated for a set of tasks with precedence constraints deploying Voltage Frequency Island (VFI) based heterogeneous NoC-MPSoCs. A novel population based algorithm called ARSH-FATI is developed that can dynamically switch between explorative and exploitative search modes at run-time. ARSH-FATI performance is superior to the existing task schedulers developed for homogeneous VFI-NoC-MPSoCs. Third, the transmission energy consumption of the sensor nodes in WSN is reduced by developing ARSH-FATI based Cluster Head Selection (ARSH-FATI-CHS) algorithm integrated with a heuristic called Novel Ranked Based Clustering (NRC). In cluster formation parameters such as residual energy, distance parameters, and workload on CHs are considered to improve LT of the network. The results prove that ARSH-FATI-CHS outperforms other state-of-the-art clustering algorithms in terms of LT.University of Derby, Derby, U

    Runtime Adaptive System-on-Chip Communication Architecture

    Get PDF
    The adaptive system provides adaptivity both in the system-level and in the architecture-level. The system-level adaptation is provided using a runtime application mapping. The architecture-level adaptation is implemented by using several novel methodologies to increase the resource utilization of the underlying silicon fabric, i.e. sharing the Virtual Channel Buffers among different output ports. To achieve successful runtime adaptation, a runtime observability infrastructure is included

    Distributed and Lightweight Meta-heuristic Optimization method for Complex Problems

    Get PDF
    The world is becoming more prominent and more complex every day. The resources are limited and efficiently use them is one of the most requirement. Finding an Efficient and optimal solution in complex problems needs to practical methods. During the last decades, several optimization approaches have been presented that they can apply to different optimization problems, and they can achieve different performance on various problems. Different parameters can have a significant effect on the results, such as the type of search spaces. Between the main categories of optimization methods (deterministic and stochastic methods), stochastic optimization methods work more efficient on big complex problems than deterministic methods. But in highly complex problems, stochastic optimization methods also have some issues, such as execution time, convergence to local optimum, incompatible with distributed systems, and dependence on the type of search spaces. Therefore this thesis presents a distributed and lightweight metaheuristic optimization method (MICGA) for complex problems focusing on four main tracks. 1) The primary goal is to improve the execution time by MICGA. 2) The proposed method increases the stability and reliability of the results by using the multi-population strategy in the second track. 3) MICGA is compatible with distributed systems. 4) Finally, MICGA is applied to the different type of optimization problems with other kinds of search spaces (continuous, discrete and order based optimization problems). MICGA has been compared with other efficient optimization approaches. The results show the proposed work has been achieved enough improvement on the main issues of the stochastic methods that are mentioned before.Maailmasta on päivä päivältä tulossa yhä monimutkaisempi. Resurssit ovat rajalliset, ja siksi niiden tehokas käyttö on erittäin tärkeää. Tehokkaan ja optimaalisen ratkaisun löytäminen monimutkaisiin ongelmiin vaatii tehokkaita käytännön menetelmiä. Viime vuosikymmenien aikana on ehdotettu useita optimointimenetelmiä, joilla jokaisella on vahvuutensa ja heikkoutensa suorituskyvyn ja tarkkuuden suhteen erityyppisten ongelmien ratkaisemisessa. Parametreilla, kuten hakuavaruuden tyypillä, voi olla merkittävä vaikutus tuloksiin. Optimointimenetelmien pääryhmistä (deterministiset ja stokastiset menetelmät) stokastinen optimointi toimii suurissa monimutkaisissa ongelmissa tehokkaammin kuin deterministinen optimointi. Erittäin monimutkaisissa ongelmissa stokastisilla optimointimenetelmillä on kuitenkin myös joitain ongelmia, kuten korkeat suoritusajat, päätyminen paikallisiin optimipisteisiin, yhteensopimattomuus hajautetun toteutuksen kanssa ja riippuvuus hakuavaruuden tyypistä. Tämä opinnäytetyö esittelee hajautetun ja kevyen metaheuristisen optimointimenetelmän (MICGA) monimutkaisille ongelmille keskittyen neljään päätavoitteeseen: 1) Ensisijaisena tavoitteena on pienentää suoritusaikaa MICGA:n avulla. 2) Lisäksi ehdotettu menetelmä lisää tulosten vakautta ja luotettavuutta käyttämällä monipopulaatiostrategiaa. 3) MICGA tukee hajautettua toteutusta. 4) Lopuksi MICGA-menetelmää sovelletaan erilaisiin optimointiongelmiin, jotka edustavat erityyppisiä hakuavaruuksia (jatkuvat, diskreetit ja järjestykseen perustuvat optimointiongelmat). Työssä MICGA-menetelmää verrataan muihin tehokkaisiin optimointimenetelmiin. Tulokset osoittavat, että ehdotetulla menetelmällä saavutetaan selkeitä parannuksia yllä mainittuihin stokastisten menetelmien pääongelmiin liittyen

    A survey on scheduling and mapping techniques in 3D Network-on-chip

    Full text link
    Network-on-Chips (NoCs) have been widely employed in the design of multiprocessor system-on-chips (MPSoCs) as a scalable communication solution. NoCs enable communications between on-chip Intellectual Property (IP) cores and allow those cores to achieve higher performance by outsourcing their communication tasks. Mapping and Scheduling methodologies are key elements in assigning application tasks, allocating the tasks to the IPs, and organising communication among them to achieve some specified objectives. The goal of this paper is to present a detailed state-of-the-art of research in the field of mapping and scheduling of applications on 3D NoC, classifying the works based on several dimensions and giving some potential research directions

    Dynamic Power Management of High Performance Network on Chip

    Get PDF
    With increased density of modern System on Chip(SoC) communication between nodes has become a major problem. Network on Chip is a novel on chip communication paradigm to solve this by using highly scalable and efficient packet switched network. The addition of intelligent networking on the chip adds to the chip’s power consumption thus making management of communication power an interesting and challenging research problem. While VLSI techniques have evolved over time to enable power reduction in the circuit level, the highly dynamic nature of modern large SoC demand more than that. This dissertation explores some innovative dynamic solutions to manage the ever increasing communication power in the post sub-micron era. Today’s highly integrated SoCs require great level of cross layer optimizations to provide maximum efficiency. This dissertation aims at the dynamic power management problem from top. Starting with a system level distribution and management down to microarchitecture enhancements were found necessary to deliver maximum power efficiency. A distributed power budget sharing technique is proposed. To efficiently satisfy the established power budget, a novel flow control and throttling technique is proposed. Finally power efficiency of underlying microarchitecture is explored and novel buffer and link management techniques are developed. All of the proposed techniques yield improvement in power-performance efficiency of the NoC infrastructure

    Run-time management of many-core SoCs: A communication-centric approach

    Get PDF
    The single core performance hit the power and complexity limits in the beginning of this century, moving the industry towards the design of multi- and many-core system-on-chips (SoCs). The on-chip communication between the cores plays a criticalrole in the performance of these SoCs, with power dissipation, communication latency, scalability to many cores, and reliability against the transistor failures as the main design challenges. Accordingly, we dedicate this thesis to the communicationcentered management of the many-core SoCs, with the goal to advance the state-ofthe-art in addressing these challenges. To this end, we contribute to on-chip communication of many-core SoCs in three main directions. First, we start with a synthesizable SoC with full system simulation. We demonstrate the importance of the networking overhead in a practical system, and propose our sophisticated network interface (NI) that offloads the work from SW to HW. Our results show around 5x and up to 50x higher network performance, compared to previous works. As the second direction of this thesis, we study the significance of run-time application mapping. We demonstrate that contiguous application mapping not only improves the network latency (by 23%) and power dissipation (by 50%), but also improves the system throughput (by 3%) and quality-of-service (QoS) of soft real-time applications (up to 100x less deadline misses). Also our hierarchical run-time application mapping provides 99.41% successful mapping when up to 8 links are broken. As the final direction of the thesis, we propose a fault-tolerant routing algorithm, the maze-routing. It is the first-in-class algorithm that provides guaranteed delivery, a fully-distributed solution, low area overhead (by 16x), and instantaneous reconfiguration (vs. 40K cycles down time of previous works), all at the same time. Besides the individual goals of each contribution, when applicable, we ensure that our solutions scale to extreme network sizes like 12x12 and 16x16. This thesis concludes that the communication overhead and its optimization play a significant role in the performance of many-core SoC

    Energy-efficient Static Task Scheduling on VFI based NoC-HMPSoCs for Intelligent Edge Devices in Cyber-Physical Systems

    Get PDF
    The interlinked processing units in the modern Cyber-Physical Systems (CPS) creates a large network of connected computing embedded systems. Network-on-Chip (NoC) based multiprocessor system-on-chip (MPSoC) architecture is becoming a de-facto computing platform for real-time applications due to its higher performance and Quality-of-Service (QoS). The number of processors has increased significantly on the multiprocessor systems in CPS therefore, Voltage Frequency Island (VFI) recently adopted for effective energy management mechanism in the large scale multiprocessor chip designs. In this paper, we investigate energy and contention-aware static scheduling for tasks with precedence and deadline constraints on intelligent edge devices deploying heterogeneous VFI based NoC-MPSoCs with DVFS-enabled processors. Unlike the existing population-based optimization algorithms, we propose a novel population-based algorithm called ARSH-FATI that can dynamically switch between explorative and exploitative search modes at run-time. Our static scheduler ARHS-FATI collectively performs task mapping, scheduling, and voltage scaling. Consequently, its performance is superior to the existing state-of-the-art approach proposed for homogeneous VFI based NoC-MPSoCs. We also developed a communication contention-aware Earliest Edge Consistent Deadline First (EECDF) scheduling algorithm and gradient descent inspired voltage scaling algorithm called Energy Gradient Decent (EGD). We have introduced a notion of Energy Gradient (EG) that guides EGD in its search for islands voltage settings and minimize the total energy consumption. We conducted the experiments on 8 real benchmarks adopted from Embedded Systems Synthesis Benchmarks (E3S). Our static scheduling approach ARSH-FATI outperformed state-of-the-art technique and achieved an average energy-efficiency of ~ 24% and ~ 30% over CA-TMES-Search and CA-TMES-Quick respectively
    corecore